Science.gov

Sample records for phosphatase gene mendelian

  1. Pst I restriction fragment length polymorphism of human placental alkaline phosphatase gene: Mendelian in segregation and localization of mutation site in the gene

    SciTech Connect

    Tsavaler, L.; Penhallow, R.C.; Sussman, H.H. )

    1988-10-01

    The pattern of inheritance of a Pst I restriction fragment length polymorphism (RFLP) of the human placental alkaline phosphatase gene was studied in nine nuclear families by Southern blot hybridization analysis of genomic DNA. The dimorphic RFLP is defined by the presence of allelic fragments 1.0 kilobase and 0.8 kilobase long. The results of this study show that the two alleles of the Pst I RFLP of the placental alkaline phosphatase gene segregate as codominant traits according to Mendelian expectations. For a polymorphism to be useful as a genetic marker the probability that an offspring is informative (PIC) must be at least 0.15. The allelic frequency of the 1.0-kilobase allele is 0.21, which correlates to a probability that an offspring is informative of 0.275 and is indicative of a useful polymorphism. By using probes derived from different regions of the placental alkaline phosphatase cDNA, the mutated Pst I site causing the RFLP was located in the penultimate intron 2497 base pairs downstream from the transcriptional initiation site.

  2. The Centers for Mendelian Genomics: a new large-scale initiative to identify the genes underlying rare Mendelian conditions.

    PubMed

    Bamshad, Michael J; Shendure, Jay A; Valle, David; Hamosh, Ada; Lupski, James R; Gibbs, Richard A; Boerwinkle, Eric; Lifton, Richard P; Gerstein, Mark; Gunel, Murat; Mane, Shrikant; Nickerson, Deborah A

    2012-07-01

    Next generation exome sequencing (ES) and whole genome sequencing (WGS) are new powerful tools for discovering the gene(s) that underlie Mendelian disorders. To accelerate these discoveries, the National Institutes of Health has established three Centers for Mendelian Genomics (CMGs): the Center for Mendelian Genomics at the University of Washington; the Center for Mendelian Genomics at Yale University; and the Baylor-Johns Hopkins Center for Mendelian Genomics at Baylor College of Medicine and Johns Hopkins University. The CMGs will provide ES/WGS and extensive analysis expertise at no cost to collaborating investigators where the causal gene(s) for a Mendelian phenotype has yet to be uncovered. Over the next few years and in collaboration with the global human genetics community, the CMGs hope to facilitate the identification of the genes underlying a very large fraction of all Mendelian disorders; see http://mendelian.org. Copyright © 2012 Wiley Periodicals, Inc.

  3. Mendelian and Non-Mendelian Regulation of Gene Expression in Maize

    PubMed Central

    Li, Lin; Petsch, Katherine; Shimizu, Rena; Liu, Sanzhen; Xu, Wayne Wenzhong; Ying, Kai; Yu, Jianming; Scanlon, Michael J.; Schnable, Patrick S.; Timmermans, Marja C. P.; Springer, Nathan M.; Muehlbauer, Gary J.

    2013-01-01

    Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B73×Mo17 recombinant inbred line population. RNA–based sequencing (RNA–seq) allowed for the detection and quantification of the transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci (eQTL) mapping identified 30,774 eQTL including 96 trans-eQTL “hotspots,” each of which regulates the expression of a large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore, we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression patterns and broaden the understanding of transcriptional variation in plants. PMID

  4. A Genetic Map of Non-Mendelian Genes in Chlamydomonas*

    PubMed Central

    Sager, Ruth; Ramanis, Zenta

    1970-01-01

    A group of eight non-Mendelian genes have been shown by recombination analysis to be linked into a linear structure or chromosome. Similar genetic maps of gene order and relative distances between genes have been constructed by two methods, one based on additivity of recombination frequencies, the other on frequency of reciprocal recombination with a postulated attachment point. The data indicate that the progeny are diploid for this linkage group, and that the strands are distributed in a precisely oriented manner at mitosis. Evidence is discussed in support of the view that this linkage group is located in chloroplast DNA. PMID:5267141

  5. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is

  6. Mendelian genes for Parkinson's disease contribute to the sporadic forms of the disease.

    PubMed

    Spataro, Nino; Calafell, Francesc; Cervera-Carles, Laura; Casals, Ferran; Pagonabarraga, Javier; Pascual-Sedano, Berta; Campolongo, Antònia; Kulisevsky, Jaime; Lleó, Alberto; Navarro, Arcadi; Clarimón, Jordi; Bosch, Elena

    2015-04-01

    Parkinson's disease (PD) can be divided into familial (Mendelian) and sporadic forms. A number of causal genes have been discovered for the Mendelian form, which constitutes 10-20% of the total cases. Genome-wide association studies have successfully uncovered a number of susceptibility loci for sporadic cases but those only explain a small fraction (6-7%) of PD heritability. It has been observed that some genes that confer susceptibility to PD through common risk variants also contain rare causing mutations for the Mendelian forms of the disease. These results suggest a possible functional link between Mendelian and sporadic PD and led us to investigate the role that rare and low-frequency variants could have on the sporadic form. Through a targeting approach, we have resequenced at 49× coverage the exons and regulatory regions of 38 genes (including Mendelian and susceptibility PD genes) in 249 sporadic PD patients and 145 unrelated controls of European origin. Unlike susceptibility genes, Mendelian genes show a clear general enrichment of rare functional variants in PD cases, observed directly as well as with Tajima's D statistic and several collapsing methods. Our findings suggest that rare variation on PD Mendelian genes may have a role in the sporadic forms of the disease.

  7. Genetic similarity between cancers and comorbid Mendelian diseases identifies candidate driver genes

    PubMed Central

    Melamed, Rachel D.; Emmett, Kevin J.; Madubata, Chioma; Rzhetsky, Andrey; Rabadan, Raul

    2015-01-01

    Despite large-scale cancer genomics studies, key somatic mutations driving cancer, and their functional roles, remain elusive. Here we propose that analysis of comorbidities of Mendelian diseases with cancers provides a novel, systematic way to discover new cancer genes. If germline genetic variation in Mendelian loci predisposes bearers to common cancers, the same loci may harbor cancer-associated somatic variation. Compilations of clinical records spanning over 100 million patients provide an unprecedented opportunity to assess clinical associations between Mendelian diseases and cancers. We systematically compare these comorbidities against recurrent somatic mutations from more than five thousand patients across many cancers. Using multiple measures of genetic similarity, we show that a Mendelian disease and comorbid cancer indeed have genetic alterations of significant functional similarity. This result provides a basis to identify candidate drivers in cancers including melanoma and glioblastoma. Some Mendelian diseases demonstrate “pan-cancer” comorbidity and shared genetics across cancers. PMID:25926297

  8. Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function

    PubMed Central

    Fuchsberger, Christian; Köttgen, Anna; O’Seaghdha, Conall M.; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I.; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J.; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V.; O’Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M.; Bochud, Murielle; Heid, Iris M.; Siscovick, David S.; Fox, Caroline S.; Kao, W. Linda; Böger, Carsten A.

    2013-01-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research. PMID:24029420

  9. Common variants in Mendelian kidney disease genes and their association with renal function.

    PubMed

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  10. Non-Mendelian inheritance induced by gene amplification in the germ nucleus of Paramecium tetraurelia.

    PubMed

    Matsuda, Atsushi; Takahashi, Mihoko

    2005-01-01

    A genetic investigation of strain d4-95, which carries a recessive mutant allele (pwB(95)) of pawn-B, one of the controlling elements of voltage-dependent calcium channels in Paramecium tetraurelia, revealed a non-Mendelian feature. Progeny of the cross between d4-95 and wild type often expressed a clonally stable mutant phenotype, even when they had a wild-type gene. The mutant phenotype was also expressed after self-fertilization of theoretical wild-type homozygotes recovered from the cross. Our molecular analysis demonstrated that the copy number of the mutant pwB gene in the micro- and macronucleus of d4-95 was much greater than that of the wild type. Most of the amplified, extra pwB gene copies in d4-95 were heritable independently from the original pwB locus. Repeated backcrossing of d4-95 with the wild type to dilute extra pwB genes in the strain produced segregants with a completely normal Mendelian trait in testcrosses. These results strongly suggest that a non-Mendelian inheritance of d4-95 was induced by gene amplification in the micronucleus.

  11. Mendelian Genes and Risk of Intracerebral Hemorrhage and Small-Vessel Ischemic Stroke in Sporadic Cases.

    PubMed

    Chong, Michael; O'Donnell, Martin; Thijs, Vincent; Dans, Antonio; López-Jaramillo, Patricio; Gómez-Arbeláez, Diego; Mondo, Charles; Czlonkowska, Anna; Skowronska, Marta; Oveisgharan, Shahram; Yusuf, Salim; Paré, Guillaume

    2017-08-01

    Mendelian strokes are rare genetic disorders characterized by early-onset small-vessel stroke. Although extensively studied among families with syndromic features, whether these genes affect risk among sporadic cases is unknown. We sequenced 8 genes responsible for Mendelian stroke in a case-control study of sporadic stroke cases (≤70 years). Participants included 1251 primary stroke cases of small-vessel pathology (637 intracerebral hemorrhage and 614 small-vessel ischemic stroke cases) and 1716 controls from the INTERSTROKE study (Study of the Importance of Conventional and Emerging Risk Factors of Stroke in Different Regions and Ethnic Groups of the World). Overall, the prevalence of canonical disease-causing mutations was 0.56% in cases and 0.23% in controls (odds ratio=1.89; 95% confidence interval, 0.54-7.57; P=0.33). CADASIL (Cerebral Autosomal Dominant Arteriopathies with Subcortical Infarcts and Leukoencephalopathies) mutations were more frequent among cases (0.48%) than controls (0.23%) but were not significantly associated with stroke risk (odds ratio=2.03; 95% confidence interval, 0.58-8.02; P=0.27). Next, we included all rare nonsynonymous mutations to investigate whether other types of mutations may contribute to stroke risk. Overall, 13.5% of cases and 14.2% of controls were carriers of at least one rare nonsynonymous mutation among the 8 Mendelian stroke genes. Mutation carriers were not at elevated risk of stroke (odds ratio=0.93; 95% confidence interval, 0.75-1.16; P=0.55). In the absence of syndromic features and family history of stroke, screening for Mendelian mutations among small-vessel stroke patients is unlikely to have high diagnostic utility. © 2017 American Heart Association, Inc.

  12. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    PubMed

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The

  13. Evaluating Mendelian nephrotic syndrome genes for evidence for risk alleles or oligogenicity that explain heritability.

    PubMed

    Crawford, Brendan D; Gillies, Christopher E; Robertson, Catherine C; Kretzler, Matthias; Otto, Edgar; Vega-Wagner, Virginia; Sampson, Matthew G

    2017-03-01

    More than 30 genes can harbor rare exonic variants sufficient to cause nephrotic syndrome (NS), and the number of genes implicated in monogenic NS continues to grow. However, outside the first year of life, the majority of affected patients, particularly in ancestrally mixed populations, do not have a known monogenic form of NS. Even in those children classified with a monogenic form of NS, there is phenotypic heterogeneity. Thus, we have only discovered a fraction of the heritability of NS-the underlying genetic factors contributing to phenotypic variation. Part of the "missing heritability" for NS has been posited to be explained by patients harboring coding variants across one or more previously implicated NS genes, insufficient to cause NS in a classical Mendelian manner, but that nonetheless have a sufficient impact on protein function to cause disease. However, systematic evaluation in patients with NS for rare or low-frequency risk alleles within single genes, or in combination across genes ("oligogenicity"), has not been reported. To determine whether, compared with a reference population, patients with NS have either a significantly increased burden of protein-altering variants ("risk-alleles"), or a unique combination of them ("oligogenicity"), in a set of 21 genes implicated in Mendelian forms of NS. In 303 patients with NS enrolled in the Nephrotic Syndrome Study Network (NEPTUNE), we performed targeted amplification paired with next-generation sequencing of 21 genes implicated in monogenic NS. We created a high-quality variant call set and compared it with a variant call set of the same genes in a reference population composed of 2,535 individuals from phase 3 of the 1000 Genomes Project. We created both a "stringent" and a "relaxed" pathogenicity-filtering pipeline, applied them to both cohorts, and computed the burden of variants in the entire gene set per cohort, the burden of variants in the entire gene set per individual, the burden of variants

  14. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    PubMed

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  15. Non-Mendelian inheritance of macronuclear mutations is gene specific in Paramecium tetraurelia.

    PubMed

    Scott, J M; Mikami, K; Leeck, C L; Forney, J D

    1994-04-01

    Paramecium tetraurelia contains two types of nuclei, a diploid germinal micronucleus and a large transcriptionally active macronucleus. The macronuclear genome is formed from the micronuclear DNA during sexual reproduction. Previous studies have shown that the processing of the A-type variable surface protein gene during formation of a new macronucleus is dependent on the presence of the A gene in the old macronucleus. It is not clear if this is a general feature that controls the formation of the Paramecium macronuclear genome or a unique feature of the A locus. Using micronuclear transplantation, we have constructed a strain that has a wild-type micronucleus but has macronuclear deletions of the A- and B-type surface protein genes. Neither the A nor the B gene is incorporated into the new macronucleus after sexual reproduction. Macronuclear transformation of this strain with the B gene rescues the B-gene deletion after formation of the next macronucleus but has not effect on the A deletion. Similarly, transformation with the A gene shows gene-specific rescue for A but not B. The effect of the old macronucleus on the processing of the new macronucleus results in a pattern of non-Mendelian inheritance of both macronuclear deletions. Progeny from the wild-type exconjugant are all wild type, and progeny from the A- B- exconjugant are mutant. The features of this A- B- non-Mendelian mutant demonstrate that the regulation of macronuclear DNA processing is gene specific, and our results open the possibility that this type of regulation affects many regions of the Paramecium genome.

  16. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    PubMed Central

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors

  17. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes.

    PubMed

    Amberger, Joanna S; Hamosh, Ada

    2017-06-27

    Online Mendelian Inheritance in Man (OMIM) at OMIM.org is the primary repository of comprehensive, curated information on genes and genetic phenotypes and the relationships between them. This unit provides an overview of the types of information in OMIM and optimal strategies for searching and retrieving the information. OMIM.org has links to many related and complementary databases, providing easy access to more information on a topic. The relationship between genes and genetic disorders is highlighted in this unit. The basic protocol explains searching OMIM both from a gene perspective and a clinical features perspective. Two alternate protocols provide strategies for viewing gene-phenotype relationships: a gene map table and Quick View or Side-by-Side format for clinical features. OMIM.org is updated nightly, and the MIMmatch service, described in the support protocol, provides a convenient way to follow updates to entries, gene-phenotype relationships, and collaborate with other researchers. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Clinical Diagnosis of Mendelian Disorders Using a Comprehensive Gene-Targeted Panel Test for Next-Generation Sequencing

    PubMed Central

    Okazaki, Tetsuya; Murata, Megumi; Kai, Masachika; Adachi, Kaori; Nakagawa, Naoko; Kasagi, Noriko; Matsumura, Wataru; Maegaki, Yoshihiro; Nanba, Eiji

    2016-01-01

    Background Genetic diagnoses provide beneficial information to patients and families. However, traditional genetic diagnoses are often difficult even for experienced clinicians and require recognition of characteristic patterns of signs or symptoms to guide targeted genetic testing for the confirmation of diagnoses. Next-generation sequencing (NGS) is a powerful genetic diagnostic tool. However, whole-genome and whole-exome sequencing (WES) are expensive, and the interpretation of results is difficult. Hence, target gene capture sequencing of gene panels has recently been applied to genetic diagnoses. Herein, we demonstrate that targeted sequencing approaches using gene panel testing are highly efficient for the diagnosis of Mendelian disorders. Methods NGS using TruSight one gene panel was performed in 17 families and 20 patients, and we developed a bioinformatic pipeline at our institution for detecting mutations. Results We detected causative mutations in 6 of 17 (35%) families. In particular, 11 (65%) families had syndromic diagnosis and 6 (35%) had no syndromic diagnosis before NGS testing. The number of positive diagnoses was 5 of 11 (45%) in the syndromic group and were 1 of 6 (17%) among patients of the no syndromic diagnosis group. Conclusion Diagnostic yields in the present study were higher than in previous reports of genetic and chromosomal tests and WES. The present comprehensive gene-targeted panel test is a powerful diagnostic tool for Mendelian disorders. PMID:27493482

  19. On the origins of Mendelian disease genes in man: the impact of gene duplication.

    PubMed

    Dickerson, Jonathan E; Robertson, David L

    2012-01-01

    Over 3,000 human diseases are known to be linked to heritable genetic variation, mapping to over 1,700 unique genes. Dating of the evolutionary age of these disease-associated genes has suggested that they have a tendency to be ancient, specifically coming into existence with early metazoa. The approach taken by past studies, however, assumes that the age of a disease is the same as the age of its common ancestor, ignoring the fundamental contribution of duplication events in the evolution of new genes and function. Here, we date both the common ancestor and the duplication history of known human disease-associated genes. We find that the majority of disease genes (80%) are genes that have been duplicated in their evolutionary history. Periods for which there are more disease-associated genes, for example, at the origins of bony vertebrates, are explained by the emergence of more genes at that time, and the majority of these are duplicates inferred to have arisen by whole-genome duplication. These relationships are similar for different disease types and the disease-associated gene's cellular function. This indicates that the emergence of duplication-associated diseases has been ongoing and approximately constant (relative to the retention of duplicate genes) throughout the evolution of life. This continued until approximately 390 Ma from which time relatively fewer novel genes came into existence on the human lineage, let alone disease genes. For single-copy genes associated with disease, we find that the numbers of disease genes decreases with recency. For the majority of duplicates, the disease-associated mutation is associated with just one of the duplicate copies. A universal explanation for heritable disease is, thus, that it is merely a by-product of the evolutionary process; the evolution of new genes (de novo or by duplication) results in the potential for new diseases to emerge.

  20. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  1. The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity.

    PubMed

    Dillon, D A; Wu, W I; Riedel, B; Wissing, J B; Dowhan, W; Carman, G M

    1996-11-29

    We provided genetic and biochemical evidence that supported the conclusion that the product of pgpB gene of Escherichia coli exhibited diacylglycerol pyrophosphate (DGPP) phosphatase activity. DGPP phosphatase activity was absent in pgpB mutant cells and was expressed at high levels in cells carrying the wild-type pgpB gene on a runaway replication plasmid. The pgpB mutant has been primarily characterized by a defect in phosphatidate (PA) phosphatase activity and also exhibits defects in lyso-PA phosphatase and phosphatidylglycerophosphate phosphatase activities. The defective PA phosphatase in the pgpB mutant was shown to be a Mg2+-independent PA phosphatase activity of the DGPP phosphatase enzyme. We characterized DGPP phosphatase activity in membranes from cells overproducing the pgpB gene product. DGPP phosphatase catalyzed the dephosphorylation of the beta phosphate of DGPP to form PA followed by the dephosphorylation of PA to form diacylglycerol. The specificity constant (Vmax/Km) for DGPP was 9.3-fold greater than that for PA. The pH optimum for the DGPP phosphatase reaction was 6. 5. Activity was independent of a divalent cation requirement, was potently inhibited by Mn2+ ions, and was insensitive to inhibition by N-ethylmaleimide. Pure DGPP phosphatase from Saccharomyces cerevisiae was shown to be similar to the E. coli DGPP phosphatase in its ability to utilize lyso-PA and phosphatidylglycerophosphate as substrates in vitro.

  2. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.

    PubMed

    Amberger, Joanna S; Bocchini, Carol A; Schiettecatte, François; Scott, Alan F; Hamosh, Ada

    2015-01-01

    Online Mendelian Inheritance in Man, OMIM(®), is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features

    PubMed Central

    Chong, Jessica X.; Yu, Joon-Ho; Lorentzen, Peter; Park, Karen M.; Jamal, Seema M.; Tabor, Holly K.; Rauch, Anita; Saenz, Margarita Sifuentes; Boltshauser, Eugen; Patterson, Karynne E.; Nickerson, Deborah A.; Bamshad, Michael J.

    2015-01-01

    Purpose The pace of Mendelian gene discovery is slowed by the “n-of-1 problem” – the difficulty of establishing causality of a putatively pathogenic variant in a single person or family. Identification of an unrelated person with an overlapping phenotype and suspected pathogenic variant in the same gene can overcome this barrier but is often impeded by lack of a convenient or widely-available way to share data on candidate variants / genes among families, clinicians and researchers. Methods Social networking among families, clinicians and researchers was used to identify three children with variants of unknown significance in KDM1A and similar phenotypes. Results De novo variants in KDM1A underlie a new syndrome characterized by developmental delay and distinctive facial features. Conclusion Social networking is a potentially powerful strategy to discover genes for rare Mendelian conditions, particularly those with non-specific phenotypic features. To facilitate the efforts of families to share phenotypic and genomic information with each other, clinicians, and researchers, we developed the Repository for Mendelian Genomics Family Portal (RMD-FP). Design and development of a web-based tool, MyGene2, that enables families, clinicians and researchers to search for gene matches based on analysis of phenotype and exome data deposited into the RMD-FP is underway. PMID:26656649

  4. Few Mendelian Genes Underlie the Quantitative Response of a Forest Tree, Eucalyptus globulus, to a Natural Fungal Epidemic

    PubMed Central

    Freeman, Jules S.; Potts, Brad M.; Vaillancourt, René E.

    2008-01-01

    Foliar fungal pathogens from the genus Mycosphaerella affect eucalypts in natural forests and plantations worldwide. QTL analysis was conducted to dissect the genetic control of resistance in Eucalyptus globulus to a natural infection by Mycosphaerella leaf disease, using a clonally replicated outbred F2 family (112 genotypes) planted in a field trial. Two major QTL, with high LOD support (20.2 and 10.9) and high genomewide significance, explained a large proportion (52%) of the phenotypic variance in the severity of damage by Mycosphaerella cryptica, which may be indicative of oligogenic control. Both QTL were validated in a second F2 family and one was validated in a third F2 family. The mean values of different genotype classes at both major QTL argue for Mendelian inheritance with resistance dominant over susceptibility. There were strong correlations between the levels of Mycosphaerella damage in related genetic material planted in three widely separated locations in Tasmania. These findings together provide evidence that the genes controlling resistance to Mycosphaerella damage are stable in different genetic backgrounds and across different environments. PMID:18202395

  5. Collaborative pooled analysis of data on C-reactive protein gene variants and coronary disease: judging causality by Mendelian randomisation.

    PubMed

    2008-01-01

    Many prospective studies have reported associations between circulating C-reactive protein (CRP) levels and risk of coronary heart disease (CHD), but causality remains uncertain. Studies of CHD are being conducted that involve measurement of common polymorphisms of the CRP gene known to be associated with circulating concentrations, thereby utilising these variants as proxies for circulating CRP levels. By analysing data from several studies examining the association between relevant CRP polymorphisms and CHD risk, the present collaboration will undertake a Mendelian randomisation analysis to help assess the likelihood of any causal relevance of CRP levels to CHD risk. A central database is being established containing individual data on CRP polymorphisms, circulating CRP levels, and major coronary outcomes as well as age, sex and other relevant characteristics. Associations between CRP polymorphisms or haplotypes and CHD will be evaluated under different circumstances. This collaboration comprises, at present, about 37,000 CHD outcomes and about 120,000 controls, which should yield suitably precise findings to help judge causality. This work should advance understanding of the relevance of low-grade inflammation to CHD and indicate whether or not CRP itself is involved in long-term pathogenesis.

  6. Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene.

    PubMed

    Massimelli, María J; Beassoni, Paola R; Forrellad, Marina A; Barra, José L; Garrido, Mónica N; Domenech, Carlos E; Lisa, Angela T

    2005-05-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.

  7. Cloning of the canine glucose-6-phosphatase gene

    SciTech Connect

    Kishnani, P.; Bao, Y.; Brix, A.E.

    1994-09-01

    Two Maltese puppies with massive hepatomegaly and failure to thrive were found to have a markedly reduced Glucose-6-phosphatase (G-6-Pase) activity in the liver and kidney. Deficiency of G-6-Pase activity causes type 1a glycogen storage disease in humans. To further study the mutation responsible for the disease in dog, we cloned G-6-Pase canine cDNA from normal mixed breed dog liver RNA using reverse transcriptase and PCR amplification using primers derived from the published murine G-6-Pase gene sequence. Sequencing revealed an open reading frame of 1071 nucleotides that encodes a predicted 357 amino acid polypeptide in the canine G-6-Pase gene, same as mouse and human. We found more than 90% sequence homology between dog and human G-6-Pase sequence. Hydropathy analysis of the deduced canine G-6-Pase polypeptide shows six transmembrane-spanning segments similar to those seen in human and mouse. Endoplasmic reticulum (ER) localization is similarly predicted by the presence of the ER protein retention signal KK positioned 3 and 4 amino acids from the carboxy terminal. Potential asparagine-linked glycosylation sites are identified at positions 96, 203, and 276. Northern blot analysis revealed increased G-6-Pase mRNA in the deficient dog liver compared to control. This could possibly reflect upregulation of transcription due to the persistent hypoglycemic state. Further studies are directed at the identification of the mutation involved in this deficient dog strain. Characterization of the G-6-Pase gene and protein in the deficient dog model can pave the way for new understanding in the pathophysiology of this disease and for the trials of novel therapeutic approaches including gene therapy.

  8. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    PubMed Central

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  9. Function-Based Metagenomic Library Screening and Heterologous Expression Strategy for Genes Encoding Phosphatase Activity.

    PubMed

    Villamizar, Genis A Castillo; Nacke, Heiko; Daniel, Rolf

    2017-01-01

    The release of phosphate from inorganic and organic phosphorus compounds can be mediated enzymatically. Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocatalysts in applications such as plant and animal nutrition, bioremediation and diagnostic analysis. Metagenomic approaches provide access to novel phosphatase-encoding genes. Here, we describe a function-based screening approach for rapid identification of genes conferring phosphatase activity from small-insert and large-insert metagenomic libraries derived from various environments. This approach bears the potential for discovery of entirely novel phosphatase families or subfamilies and members of known enzyme classes hydrolyzing phosphomonoester bonds such as phytases. In addition, we provide a strategy for efficient heterologous phosphatase gene expression.

  10. Phenotype-driven strategies for exome prioritization of human Mendelian disease genes.

    PubMed

    Smedley, Damian; Robinson, Peter N

    2015-01-01

    Whole exome sequencing has altered the way in which rare diseases are diagnosed and disease genes identified. Hundreds of novel disease-associated genes have been characterized by whole exome sequencing in the past five years, yet the identification of disease-causing mutations is often challenging because of the large number of rare variants that are being revealed. Gene prioritization aims to rank the most probable candidate genes towards the top of a list of potentially pathogenic variants. A promising new approach involves the computational comparison of the phenotypic abnormalities of the individual being investigated with those previously associated with human diseases or genetically modified model organisms. In this review, we compare and contrast the strengths and weaknesses of current phenotype-driven computational algorithms, including Phevor, Phen-Gen, eXtasy and two algorithms developed by our groups called PhenIX and Exomiser. Computational phenotype analysis can substantially improve the performance of exome analysis pipelines.

  11. Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A

    SciTech Connect

    Van Hoof, C.; Cayla, X.; Merlevede, W.; Goris, J.

    1995-07-20

    The PTPA gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. PTPA, cloned from human genomic libraries, is encoded by one single-copy gene, composed of 10 exons and 9 introns with a total length of about 60 kb. The transcription start site was determined, and the 5{prime} flanking sequence was analyzed for its potential as a promotor. This region lacks a TATA sequence in the appropriate position relative to the transcription start, is very GC-rich, and contains upstream of the transcription start four Sp1 sites, a feature common to many TATA-less promotors. Based on the homology with DNA binding consensus sequences of transcription factors, we identified in this promotor region several putative DNA binding sites for transcription factors, such as NF-{kappa}B, Myb, Ets-1, Myc, and ATF. Transfection experiments with a construct containing the PTPA promotor region inserted 5{prime} of a luciferase reporter gene revealed that the 5{prime} flanking sequence of the PTPA gene indeed displayed promotor activity that seems to be cell-line dependent. By fluorescence in situ hybridization and G-banding, the PTPA gene was localized to the 9q34 region. The PTPA gene is positioned centromeric of c-abl in a region embracing several genes implicated in oncogenesis. 28 refs., 8 figs., 1 tab.

  12. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    SciTech Connect

    Henthorn, P.; Zervos, P.; Raducha, M.; Harris, H.; Kadesch, T.

    1988-09-01

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity.

  13. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities

    PubMed Central

    Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.

    2015-01-01

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479

  14. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities.

    PubMed

    Chong, Jessica X; Buckingham, Kati J; Jhangiani, Shalini N; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D; Harrell, Tanya M; McMillin, Margaret J; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H; Doheny, Kimberly; Scott, Alan F; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V Reid; Tabor, Holly K; Leal, Suzanne M; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R; Lifton, Richard P; Valle, David; Nickerson, Deborah A; Bamshad, Michael J

    2015-08-06

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.

  15. The discovery of the fat-regulating phosphatidic acid phosphatase gene

    PubMed Central

    CARMAN, George M.

    2011-01-01

    Phosphatidic acid phosphatase is a fat-regulating enzyme that plays a major role in controlling the balance of phosphatidic acid (substrate) and diacylglycerol (product), which are lipid precursors used for the synthesis of membrane phospholipids and triacylglycerol. Phosphatidic acid is also a signaling molecule that triggers phospholipid synthesis gene expression, membrane expansion, secretion, and endocytosis. While this important enzyme has been known for several decades, its gene was only identified recently from yeast. This discovery showed the importance of phosphatidic acid phosphatase in lipid metabolism in yeast as well as in higher eukaryotes including humans. PMID:21785579

  16. The discovery of the fat-regulating phosphatidic acid phosphatase gene.

    PubMed

    Carman, George M

    2011-05-01

    Phosphatidic acid phosphatase is a fat-regulating enzyme that plays a major role in controlling the balance of phosphatidic acid (substrate) and diacylglycerol (product), which are lipid precursors used for the synthesis of membrane phospholipids and triacylglycerol. Phosphatidic acid is also a signaling molecule that triggers phospholipid synthesis gene expression, membrane expansion, secretion, and endocytosis. While this important enzyme has been known for several decades, its gene was only identified recently from yeast. This discovery showed the importance of phosphatidic acid phosphatase in lipid metabolism in yeast as well as in higher eukaryotes including humans.

  17. Deletion map of the Escherichia coli structural gene for alkaline phosphatase, phoA.

    PubMed Central

    Sarthy, A; Michaelis, S; Beckwith, J

    1981-01-01

    Lambda transducing phages containing portions of the phoA gene have been isolated and used to construct a deletion map of the phoA gene. The isolation of a plaque-forming lambda transducing phage carrying the entire phoA gene is also described. Two new methods for screening or selection of mutants that have altered levels of alkaline phosphatase activity are reported. PMID:6450745

  18. Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterial acid-phosphatase-encoding genes.

    PubMed

    Thaller, M C; Lombardi, G; Berlutti, F; Schippa, S; Rossolini, G M

    1995-01-01

    The gene encoding a minor phosphate-irrepressible acid phosphatase (named NapA) of Morganella morganii was cloned and sequenced, and its product characterized. NapA is a secreted acid phosphatase composed of four 27 kDa polypeptide subunits. The enzyme is active on several organic phosphate monoesters but not on diesters, and is also endowed with transphosphorylating activity from organic phosphoric acid esters to nucleosides and other compounds with free hydroxyl groups. Its activity is inhibited by EDTA, inorganic phosphate, nucleosides and Ca2+, but not by fluoride or tartrate, and is enhanced by Mg2+, Co2+ and Zn2+. At the sequence level, the NapA enzyme did not show similarities to any other sequenced bacterial phosphatases. However, a search for homologous genes in sequence databases allowed identification of two open reading frames located within sequenced regions of the Escherichia coli and Proteus mirabilis genomes respectively, encoding proteins of unknown function which are highly homologous to the Morganella enzyme. Moreover, the properties of the NapA enzyme are very similar to those reported for the periplasmic nonspecific acid phosphatase II of Salmonella typhimurium (for which no sequence data are available). These data point to the existence of a new family of bacterial acid phosphatases, which we propose designating class B bacterial acid phosphatases.

  19. Customized Array Comparative Genomic Hybridization Analysis of 25 Phosphatase-encoding Genes in Colorectal Cancer Tissues

    PubMed Central

    LACZMANSKA, IZABELA; SKIBA, PAWEL; KARPINSKI, PAWEL; BEBENEK, MAREK; M. SASIADEK, MARIA

    2016-01-01

    Background/Aim: Molecular mechanisms of alterations in protein tyrosine phosphatases (PTPs) genes in cancer have been previously described and include chromosomal aberrations, gene mutations, and epigenetic silencing. However, little is known about small intragenic gains and losses that may lead to either changes in expression or enzyme activity and even loss of protein function. Materials and Methods: The aim of this study was to investigate 25 phosphatase genes using customized array comparative genomic hybridization in 16 sporadic colorectal cancer tissues. Results: The analysis revealed two unique small alterations: of 2 kb in PTPN14 intron 1 and of 1 kb in PTPRJ intron 1. We also found gains and losses of whole PTPs gene sequences covered by large chromosome aberrations. Conclusion: In our preliminary studies using high-resolution custom microarray we confirmed that PTPs are frequently subjected to whole-gene rearrangements in colorectal cancer, and we revealed that non-polymorphic intragenic changes are rare. PMID:28031238

  20. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction

    PubMed Central

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Jasmine, Farzana; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-01-01

    Background Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms (SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Methods Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Results Causal odds ratios for skin lesions were 0.90 (95% confidence interval [CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36) for a one standard deviation increase in DMA%, MMA% and iAs%, respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). Conclusions We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions. Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health. PMID:24536095

  1. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    PubMed

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  2. [Mendelian randomisation - a genetic approach to an epidemiological method].

    PubMed

    Stensrud, Mats Julius

    2016-06-01

    BACKGROUND Genetic information is becoming more easily available, and rapid progress is being made in developing methods of illuminating issues of interest. Mendelian randomisation makes it possible to study causes of disease using observational data. The name refers to the random distribution of gene variants in meiosis. The methodology makes use of genes that influence a risk factor for a disease, without influencing the disease itself. In this review article I explain the principles behind Mendelian randomisation and present the areas of application for this methodology.MATERIAL AND METHOD Methodology articles describing Mendelian randomisation were reviewed. The articles were found through a search in PubMed with the combination «mendelian randomization» OR «mendelian randomisation», and a search in McMaster Plus with the combination «mendelian randomization». A total of 15 methodology articles were read in full text. Methodology articles were supplemented by clinical studies found in the PubMed search.RESULTS In contrast to traditional observational studies, Mendelian randomisation studies are not affected by two important sources of error: conventional confounding variables and reverse causation. Mendelian randomisation is therefore a promising tool for studying causality. Mendelian randomisation studies have already provided valuable knowledge on the risk factors for a wide range of diseases. It is nevertheless important to be aware of the limitations of the methodology. As a result of the rapid developments in genetics research, Mendelian randomisation will probably be widely used in future years.INTERPRETATION If Mendelian randomisation studies are conducted correctly, they may help to reveal both modifiable and non-modifiable causes of disease.

  3. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae.

    PubMed

    Ter-Avanesyan, M D; Dagkesamanskaya, A R; Kushnirov, V V; Smirnov, V N

    1994-07-01

    The SUP35 gene of yeast Saccharomyces cerevisiae encodes a 76.5-kD ribosome-associated protein (Sup35p), the C-terminal part of which exhibits a high degree of similarity to EF-1 alpha elongation factor, while its N-terminal region is unique. Mutations in or overexpression of the SUP35 gene can generate an omnipotent suppressor effect. In the present study the SUP35 wild-type gene was replaced with deletion alleles generated in vitro that encode Sup35p lacking all or a part of the unique N-terminal region. These 5'-deletion alleles lead, in a haploid strain, simultaneously to an antisuppressor effect and to loss of the non-Mendelian determinant [psi+]. The antisuppressor effect is dominant while the elimination of the [psi+] determinant is a recessive trait. A set of the plasmid-borne deletion alleles of the SUP35 gene was tested for the ability to maintain [psi+]. It was shown that the first 114 amino acids of Sup35p are sufficient to maintain the [psi+] determinant. We propose that the Sup35p serves as a trans-acting factor required for the maintenance of [psi+].

  4. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  5. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus

    PubMed Central

    Winkelströter, Lizziane K.; Dolan, Stephen K.; Fernanda dos Reis, Thaila; Bom, Vinícius Leite Pedro; Alves de Castro, Patrícia; Hagiwara, Daisuke; Alowni, Raneem; Jones, Gary W.; Doyle, Sean; Brown, Neil Andrew; Goldman, Gustavo H.

    2015-01-01

    Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen. PMID:25943523

  6. A 1,100-year-old founder effect mutation in IL12B gene is responsible for Mendelian susceptibility to mycobacterial disease in Tunisian patients.

    PubMed

    Ben-Mustapha, Imen; Ben-Ali, Meriem; Mekki, Najla; Patin, Etienne; Harmant, Christine; Bouguila, Jihène; Elloumi-Zghal, Houda; Harbi, Abdelaziz; Béjaoui, Mohamed; Boughammoura, Lamia; Chemli, Jalel; Barbouche, Mohamed-Ridha

    2014-01-01

    Mendelian susceptibility to mycobacterial disease (MSMD) is a rare disorder predisposing apparently healthy individuals to infections caused by weakly virulent mycobacteria such as bacille Calmette-Guerin (BCG), environmental mycobacteria, and poorly virulent Salmonella strains. IL-12p40 deficiency is the first reported human disease due to a cytokine gene defect and is one of the deficiencies that cause MSMD. Nine mutant alleles only have been identified in the IL12B gene, and three of them are recurrent mutations due to a founder effect in specific populations. IL-12p40 deficiency has been identified especially in countries where consanguinity is high and where BCG vaccination at birth is universal. We investigated, in such settings, the clinical, cellular, and molecular features of six IL-12p40-deficient Tunisian patients having the same mutation in IL12B gene (c.298_305del). We found that this mutation is inherited as a common founder mutation arousing ~1,100 years ago. This finding facilitates the development of a preventive approach by genetic counseling and prenatal diagnosis especially in affected families.

  7. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease Type 1a

    SciTech Connect

    Lei, K.J.; Shelly, L.L.; Pan, C.J.; Sidbury, J.B.; Chou, J.Y. )

    1993-10-22

    Glycogen storage disease (GSD) type 1a is caused by the deficiency of d-glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high incidence and morbidity, the molecular mechanisms underlying this deficiency have eluded characterization. In the present study, the molecular and biochemical characterization of the human G6Pase complementary DNA, its gene, and the expressed protein, which is indistinguishable from human microsomal G6Pase are reported. Several mutations in the G6Pase gene of affected individuals that completely inactivate the enzyme have been identified. These results establish the molecular basis of this disease and open the way for future gene therapy.

  8. Position effect variegation of an acid phosphatase gene in Drosophila melanogaster.

    PubMed

    Frisardi, M C; MacIntyre, R J

    1984-01-01

    X-ray mutagenesis has produced a series of deficiencies in a duplication of part of the third chromosome containing the acid phosphatase gene (Acph-1) in Drosophila melanogaster. In one of these deficiencies, Acph-1 is shown to be undergoing position effect variegation. Naturally occurring electrophoretic variants of the enzyme were used to visualize and determine quantitatively the extent of variegation of the allele which is cis to the heterochromatic breakpoint. Alteration of genotypic background and temperature provided further evidence for position effect. Rocket immunoelectrophoresis was used to correlate the levels of acid phosphatase activity and protein in flies containing the deficiency. A novel result indicates that the variegation is not the consequence of an averaging of active and inactive cells, but rather due to a quantitative alteration of gene activity within at least some individual cells.

  9. Investigating the role of rare coding variability in Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP) in late-onset Alzheimer's disease

    PubMed Central

    Sassi, Celeste; Guerreiro, Rita; Gibbs, Raphael; Ding, Jinhui; Lupton, Michelle K.; Troakes, Claire; Al-Sarraj, Safa; Niblock, Michael; Gallo, Jean-Marc; Adnan, Jihad; Killick, Richard; Brown, Kristelle S.; Medway, Christopher; Lord, Jenny; Turton, James; Bras, Jose; Morgan, Kevin; Powell, John F.; Singleton, Andrew; Hardy, John

    2014-01-01

    The overlapping clinical and neuropathologic features between late-onset apparently sporadic Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and other neurodegenerative dementias (frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, and Creutzfeldt-Jakob disease) raise the question of whether shared genetic risk factors may explain the similar phenotype among these disparate disorders. To investigate this intriguing hypothesis, we analyzed rare coding variability in 6 Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP), in 141 LOAD patients and 179 elderly controls, neuropathologically proven, from the UK. In our cohort, 14 LOAD cases (10%) and 11 controls (6%) carry at least 1 rare variant in the genes studied. We report a novel variant in PSEN1 (p.I168T) and a rare variant in PSEN2 (p.A237V), absent in controls and both likely pathogenic. Our findings support previous studies, suggesting that (1) rare coding variability in PSEN1 and PSEN2 may influence the susceptibility for LOAD and (2) GRN, MAPT, and PRNP are not major contributors to LOAD. Thus, genetic screening is pivotal for the clinical differential diagnosis of these neurodegenerative dementias. PMID:25104557

  10. The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase.

    PubMed

    Reddy, Venky Sreedhar; Singh, Arjun Kumar; Rajasekharan, Ram

    2008-04-04

    Phosphate is the essential macronutrient required for the growth of all organisms. In Saccharomyces cerevisiae, phosphatases are up-regulated, and the level of lysophosphatidic acid (LPA) is drastically decreased under phosphate-starved conditions. The reduction in the LPA level is attributed to PHM8, a gene of unknown function. phm8Delta yeast showed a decreased LPA-hydrolyzing activity under phosphate-limiting conditions. Overexpression of PHM8 in yeast resulted in an increase in the LPA phosphatase activity in vivo. In vitro assays of the purified recombinant Phm8p revealed magnesium-dependent LPA phosphatase activity, with maximal activity at pH 6.5. The purified Phm8p did not hydrolyze any lipid phosphates other than LPA. In silico analysis suggest that Phm8p is a soluble protein with no transmembrane domain. Site-directed mutational studies revealed that aspartate residues in a DXDXT motif are important for the catalysis. These findings indicated that LPA plays a direct role in phosphate starvation. This is the first report of the identification and characterization of magnesium-dependent soluble LPA phosphatase.

  11. Expression of the gene encoding secreted placental alkaline phosphatase (SEAP) by a nondefective adenovirus vector.

    PubMed

    Doronin, K K; Zakharchuk, A N; Grinenko, N F; Yurov, G K; Krougliak, V A; Naroditsky, B S

    1993-04-30

    A nondefective recombinant human adenovirus 5 (Ad5) carrying the SEAP gene, encoding human secreted placental alkaline phosphatase, in the E3 region of the Ad5 genome was obtained. The expression of SEAP at the early and late stages of Ad5 infection was demonstrated in permissive and semi-permissive cell cultures. The amount of SEAP in the culture medium of the 293 cells was 13.6% of the total protein.

  12. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes.

    PubMed Central

    Sneddon, A A; Cohen, P T; Stark, M J

    1990-01-01

    Two genes (PPH21 and PPH22) encoding the yeast homologues of protein serine-threonine phosphatase 2A have been cloned from a Saccharomyces cerevisiae genomic library using a rabbit protein phosphatase 2A cDNA as a hybridization probe. The PPH genes are genetically linked on chromosome IV and are predicted to encode polypeptides each with 74% amino acid sequence identity to rabbit type 2A protein phosphatase, indicating once again the extraordinarily high degree of sequence conservation shown by protein-phosphatases from different species. The two PPH genes show less than 10% amino acid sequence divergence from each other and while disruption of either PPH gene alone is without any major effect, the double disruption is lethal. This indicates that protein phosphatase 2A activity is an essential cellular function in yeast. Measurement of type 2A protein phosphatase activity in yeast strains lacking one or other of the genes indicates that they account for most, if not all, protein phosphatase 2A activity in the cell. Images Fig. 5. PMID:2176150

  13. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.

    PubMed

    Nosaka, K

    1990-02-09

    The enzymatic properties of acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) encoded by PHO3 gene in Saccharomyces cerevisiae, which is repressed by thiamin and has thiamin-binding activity at pH 5.0, were investigated to study physiological functions. The following results led to the conclusion that thiamin-repressible acid phosphatase physiologically catalyzes the hydrolysis of thiamin phosphates in the periplasmic space of S. cerevisiae, thus participating in utilization of the thiamin moiety of the phosphates by yeast cells: (a) thiamin-repressible acid phosphatase showed Km values of 1.6 and 1.7 microM at pH 5.0 for thiamin monophosphate and thiamin pyrophosphate, respectively. These Km values were 2-3 orders of magnitude lower than those (0.61 and 1.7 mM) for p-nitrophenyl phosphate; (b) thiamin exerted remarkable competitive inhibition in the hydrolysis of thiamin monophosphate (Ki 2.2 microM at pH 5.0), whereas the activity for p-nitrophenyl phosphate was slightly affected by thiamin; (c) the inhibitory effect of inorganic phosphate, which does not repress the thiamin-repressible enzyme, on the hydrolysis of thiamin monophosphate was much smaller than that of p-nitrophenyl phosphate. Moreover, the modification of thiamin-repressible acid phosphatase of S. cerevisiae with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide resulted in the complete loss of thiamin-binding activity and the Km value of the modified enzyme for thiamin monophosphate increased nearly to the value of the native enzyme for p-nitrophenyl phosphate. These results also indicate that the high affinity of the thiamin-repressible acid phosphatase for thiamin phosphates is due to the thiamin-binding properties of this enzyme.

  14. Application of next generation sequencing technology in Mendelian movement disorders.

    PubMed

    Wang, Yumin; Pan, Xuya; Xue, Dan; Li, Yuwei; Zhang, Xueying; Kuang, Biao; Zheng, Jiabo; Deng, Hao; Li, Xiaoling; Xiong, Wei; Zeng, Zhaoyang; Li, Guiyuan

    2016-02-01

    Next generation sequencing (NGS) has developed very rapidly in the last decade. Compared with Sanger sequencing, NGS has the advantages of high sensitivity and high throughput. Movement disorders are a common type of neurological disease. Although traditional linkage analysis has become a standard method to identify the pathogenic genes in diseases, it is getting difficult to find new pathogenic genes in rare Mendelian disorders, such as movement disorders, due to a lack of appropriate families with high penetrance or enough affected individuals. Thus, NGS is an ideal approach to identify the causal alleles for inherited disorders. NGS is used to identify genes in several diseases and new mutant sites in Mendelian movement disorders. This article reviewed the recent progress in NGS and the use of NGS in Mendelian movement disorders from genome sequencing and transcriptome sequencing. A perspective on how NGS could be employed in rare Mendelian disorders is also provided.

  15. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach.

    PubMed

    Mendelson, Michael M; Marioni, Riccardo E; Joehanes, Roby; Liu, Chunyu; Hedman, Åsa K; Aslibekyan, Stella; Demerath, Ellen W; Guan, Weihua; Zhi, Degui; Yao, Chen; Huan, Tianxiao; Willinger, Christine; Chen, Brian; Courchesne, Paul; Multhaup, Michael; Irvin, Marguerite R; Cohain, Ariella; Schadt, Eric E; Grove, Megan L; Bressler, Jan; North, Kari; Sundström, Johan; Gustafsson, Stefan; Shah, Sonia; McRae, Allan F; Harris, Sarah E; Gibson, Jude; Redmond, Paul; Corley, Janie; Murphy, Lee; Starr, John M; Kleinbrink, Erica; Lipovich, Leonard; Visscher, Peter M; Wray, Naomi R; Krauss, Ronald M; Fallin, Daniele; Feinberg, Andrew; Absher, Devin M; Fornage, Myriam; Pankow, James S; Lind, Lars; Fox, Caroline; Ingelsson, Erik; Arnett, Donna K; Boerwinkle, Eric; Liang, Liming; Levy, Daniel; Deary, Ian J

    2017-01-01

    The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.

  16. Rapid evolution and gene expression: a rapidly evolving Mendelian trait that silences field crickets has widespread effects on mRNA and protein expression.

    PubMed

    Pascoal, S; Liu, X; Ly, T; Fang, Y; Rockliffe, N; Paterson, S; Shirran, S L; Botting, C H; Bailey, N W

    2016-06-01

    A major advance in modern evolutionary biology is the ability to start linking phenotypic evolution in the wild with genomic changes that underlie that evolution. We capitalized on a rapidly evolving Hawaiian population of crickets (Teleogryllus oceanicus) to test hypotheses about the genomic consequences of a recent Mendelian mutation of large effect which disrupts the development of sound-producing structures on male forewings. The resulting silent phenotype, flatwing, persists because of natural selection imposed by an acoustically orienting parasitoid, but it interferes with mate attraction. We examined gene expression differences in developing wing buds of wild-type and flatwing male crickets using RNA-seq and quantitative proteomics. Most differentially expressed (DE) transcripts were down-regulated in flatwing males (625 up vs. 1716 down), whereas up- and down-regulated proteins were equally represented (30 up and 34 down). Differences between morphs were clearly not restricted to a single pathway, and we recovered annotations associated with a broad array of functions that would not be predicted a priori. Using a candidate gene detection test based on homology, we identified 30% of putative Drosophila wing development genes in the cricket transcriptome, but only 10% were DE. In addition to wing-related annotations, endocrine pathways and several biological processes such as reproduction, immunity and locomotion were DE in the mutant crickets at both biological levels. Our results illuminate the breadth of genetic pathways that are potentially affected in the early stages of adaptation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  17. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach

    PubMed Central

    Joehanes, Roby; Liu, Chunyu; Aslibekyan, Stella; Demerath, Ellen W.; Guan, Weihua; Zhi, Degui; Willinger, Christine; Courchesne, Paul; Multhaup, Michael; Irvin, Marguerite R.; Schadt, Eric E.; Bressler, Jan; North, Kari; Sundström, Johan; Gustafsson, Stefan; Shah, Sonia; McRae, Allan F.; Harris, Sarah E.; Gibson, Jude; Redmond, Paul; Corley, Janie; Starr, John M.; Visscher, Peter M.; Wray, Naomi R.; Krauss, Ronald M.; Feinberg, Andrew; Fornage, Myriam; Pankow, James S.; Lind, Lars; Fox, Caroline; Ingelsson, Erik; Arnett, Donna K.; Boerwinkle, Eric; Liang, Liming; Levy, Daniel; Deary, Ian J.

    2017-01-01

    Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases. PMID:28095459

  18. Uteroferrin and intracellular tartrate-resistant acid phosphatases are the products of the same gene.

    PubMed

    Ling, P; Roberts, R M

    1993-04-05

    Uteroferrin (Uf) is a purple acid phosphatase with a bi-iron center. It is the major secretory product of the porcine uterus under the influence of progesterone and supplies iron to the developing fetuses during pregnancy. Tartrate-resistant acid phosphatases (TRAP) are clearly similar to Uf in many of their properties but are generally located intracellularly in lysosomes. To determine whether Uf and intracellular TRAP are distinct gene products, cDNA for the TRAP from pig spleen were compared with Uf cDNA. Although no full-length cDNA for the former were isolated, a TRAP cDNA of 1.1 kilobases was identical in nucleotide sequence to a Uf cDNA (1.42 kilobases) in the region of overlap, which included the entire 3'-end of the transcript and most of the open reading frame. TRAP purified from porcine spleen also had an NH2-terminal amino acid sequence that corresponded to that of Uf purified from uterine secretions and was also similar in sequence to intracellular TRAP isolated from tissues of other species, including ones from human osteoclastomas and spleen. Finally, Southern hybridization analysis with two probes specific for exons 1 and 2 of the Uf gene strongly suggested the presence of only a single gene for acid phosphatases of this class in the pig. A similar analysis performed on human DNA with an exon-specific probe for human TRAP was also consistent with a single gene. It is concluded that the difference in trafficking between a secreted TRAP, such as Uf, and TRAP located in lysosomes is not the result of distinctive primary sequence of the polypeptides and that the variability within species ascribed to such enzymes is most likely the result of minor posttranslational changes.

  19. A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk

    PubMed Central

    Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey

    2013-01-01

    Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861

  20. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance.

    PubMed

    Hernandez, Dena G; Reed, Xylena; Singleton, Andrew B

    2016-10-01

    Parkinson's disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically, Parkinson's disease (PD) is associated with resting tremor, postural instability, rigidity, bradykinesia, and a good response to levodopa therapy. Over the last 15 years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. This review discusses monogenic risk factors and mechanisms of Mendelian inheritance of Parkinson disease. Highly penetrant mutations in SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35 produce rare, monogenic forms of the disease, while unique variants within LRRK2 and GBA show incomplete penetrance and are strong risk factors for PD. Additionally, over 20 common variants with small effect sizes modulate disease risk. The challenge over the next decade is to strengthen genetic findings by assessing direct, biological consequences of risk variants in tandem with high-content, integrated datasets. This article is part of a special

  1. Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata.

    PubMed

    França, Marcel Giovanni Costa; Matos, Ana Rita; D'arcy-Lameta, Agnès; Passaquet, Chantal; Lichtlé, Christiane; Zuily-Fodil, Yasmine; Pham-Thi, Anh Thu

    2008-12-01

    Under environmental stresses, several lipolytic enzymes are known to be activated and to contribute to membrane lipid turnover and generation of second messengers. In animal cells, phosphatidic acid phosphatase (PAP, EC 3.1.3.4), which dephosphorylates phosphatidic acid generating diacylglycerol, is long known as an enzyme involved in lipid synthesis and cell signalling. However, knowledge on PAP in plants remains very limited. The aim of this work was to isolate and characterize PAP genes in the tropical legume Vigna unguiculata (cowpea), and to study their expression under different stress conditions. Two cDNAs designated as VuPAPalpha and VuPAPbeta were cloned from the leaves of cowpea. Both proteins share sequence homology to animal type 2 PAP, namely, the six transmembrane regions and the consensus sequences corresponding to the catalytic domain of the phosphatase family, like the recently described Arabidopsis LPP (Lipid Phosphate Phosphatase) proteins. The recombinant protein VuPAPalpha expressed in Escherichia coli cells was able to convert phosphatidic acid into diacylglycerol. Unlike VuPAPbeta, VuPAPalpha has an N-terminal transit peptide and was addressed to chloroplast in vitro. Both genes are expressed in several cowpea organs and their transcripts accumulate in leaves in response to water deficit, including progressive dehydration of whole plants and rapid desiccation of detached leaves. No changes in expression of both genes were observed after wounding or by treatment with jasmonic acid. Furthermore, the in silico analysis of VuPAPalpha promoter allowed the identification of several putative drought-related regulatory elements. The possible physiological role of the two cloned PAPs is discussed.

  2. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements.

    PubMed

    Vander Kooi, Beth T; Onuma, Hiroshi; Oeser, James K; Svitek, Christina A; Allen, Shelley R; Vander Kooi, Craig W; Chazin, Walter J; O'Brien, Richard M

    2005-12-01

    Glucose-6-phosphatase catalyzes the final step in the gluconeogenic and glycogenolytic pathways. Glucocorticoids stimulate glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription and studies performed in H4IIE hepatoma cells demonstrate the presence of a glucocorticoid response unit (GRU) in the proximal G6Pase promoter. In vitro deoxyribonuclease I footprinting analyses show that the glucocorticoid receptor binds to three glucocorticoid response elements (GREs) in the -231 to -129 promoter region and transfection results indicate all three contribute to glucocorticoid induction of G6Pase gene transcription. Furthermore, binding sites for hepatocyte nuclear factor-1 and -4, CRE binding factors, and FKHR (FOXO1a) are required for the full glucocorticoid response. Chromatin immunoprecipitation assays show that dexamethasone treatment stimulates glucocorticoid receptor and FKHR binding to the endogenous G6Pase promoter. Surprisingly, although glucocorticoids stimulate G6Pase gene transcription, deoxyribonuclease I footprinting and transfection analyses demonstrate the presence of a negative GRE and an associated negative accessory factor element in the -271 to -225 promoter region, which inhibit the glucocorticoid response. This appears to be the first report of a promoter that contains both positive and negative GREs, which function within the same cellular environment. We hypothesize that targeted signaling to the negative accessory element within the GRU may provide tight regulation of the glucocorticoid stimulation.

  3. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  4. Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene

    PubMed Central

    Elsayed, Solaf M.; Phillips, Jennifer B.; Heller, Raoul; Thoenes, Michaela; Elsobky, Ezzat; Nürnberg, Gudrun; Nürnberg, Peter; Seland, Saskia; Ebermann, Inga; Altmüller, Janine; Thiele, Holger; Toliat, Mohammad; Körber, Friederike; Hu, Xue-Jia; Wu, Yun-Dong; Zaki, Maha S.; Abdel-Salam, Ghada; Gleeson, Joseph; Boltshauser, Eugen; Westerfield, Monte; Bolz, Hanno J.

    2015-01-01

    Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare, apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense variant, p.Arg1066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation (p.Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat formation. Morpholinos against N-terminal zebrafish Ahi1, orthologous to where human mutations cluster, produced a ciliopathy, but targeting near human p.Arg1066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications, considering that variants like p.Glu984* identified by preconception screening (‘Kingsmore panel’) do not necessarily indicate JBTS carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception carrier screening. PMID:25616960

  5. Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase.

    PubMed

    Bradshaw, Niels; Losick, Richard

    2015-10-14

    Formation of a division septum near a randomly chosen pole during sporulation in Bacillus subtilis creates unequal sized daughter cells with dissimilar programs of gene expression. An unanswered question is how polar septation activates a transcription factor (σ(F)) selectively in the small cell. We present evidence that the upstream regulator of σ(F), the phosphatase SpoIIE, is compartmentalized in the small cell by transfer from the polar septum to the adjacent cell pole where SpoIIE is protected from proteolysis and activated. Polar recognition, protection from proteolysis, and stimulation of phosphatase activity are linked to oligomerization of SpoIIE. This mechanism for initiating cell-specific gene expression is independent of additional sporulation proteins; vegetative cells engineered to divide near a pole sequester SpoIIE and activate σ(F) in small cells. Thus, a simple model explains how SpoIIE responds to a stochastically-generated cue to activate σ(F) at the right time and in the right place.

  6. Characterization and genomic mapping of genes and pseudogenes of a new human protein tyrosine phosphatase

    SciTech Connect

    Zhao, Zhaoyang; Lee, Cheng-Chi; Monckton, D.G.

    1996-07-01

    Previously described protein tyrosine phosphatases (PTPs) are classified into three types according to their sequence homology and structural features. Here we describe the characterization of genes and pseudogenes of a member of a fourth type of PTP, designated protein tyrosine phosphatase 4A (PTP4A). The 167-amino-acid human PTPs, but does not show any other sequence homology to any of the previously described PTPs. Two cDNA encoding PTP4A that differed in their noncoding regions were isolated. Another cDNA that has a high level of sequence identity with these two cDNAs and a deletion in the coding region was also isolated. Northern analysis using a probe from a common 3{prime}-untranslated region of the cDNAs recognized mRNAs of about 2 and 4 kb. Both species of mRNA were seen in all human adult and fetal tissues tested. Fluorescence in situ hybridization mapping of the corresponding yeast artificial chromosome clones and sequence-tagged site analysis suggested that one of the PTP4A coding genes is located at 1p35 and the other is on chromosome 11. A processed pseudogene for PTP4A was found in the BRCA1 region of 17q21 and shares 96% sequence identity to one of the PTP4A coding cDNAs. Our studies also suggest the existence of another processed pseudogene on chromosome 11. 31 refs., 6 figs., 1 tab.

  7. Differential expression of alkaline phosphatase gene in proliferating primary lymphocytes and malignant lymphoid cell lines.

    PubMed

    Latheef, S A A; Devanabanda, Mallaiah; Sankati, Swetha; Madduri, Ramanadham

    2016-02-01

    Alkaline Phosphatase (APase) activity has been shown to be enhanced specifically in mitogen stimulated B lymphocytes committed to proliferation, but not in T lymphocytes. APase gene expression was analyzed in proliferating murine and human primary lymphocytes and human malignant cell lines using reverse transcriptase and real time PCR. In mitogen stimulated murine splenic lymphocytes, enhancement of APase activity correlated well with an increase in APase gene expression. However, in mitogen stimulated murine T lymphocytes and human PBL despite a vigorous proliferative response, no increase in APase enzyme activity or gene expression was observed. A constitutive expression of APase activity concomitant with APase gene expression was observed inhuman myeloma cell line, U266 B1. However, neither enzyme activity nor gene expression of APase were observed in human T cell lymphoma, SUPT-1. The results suggest a differential expression of APase activity and its gene in proliferating primary lymphocytes of mice and humans. The specific expression of APase activity and its gene only in human myeloma cells, but not in proliferating primary B cells can be exploited as a sensitive disease marker.

  8. MRI-based detection of alkaline phosphatase gene reporter activity using a porphyrin solubility switch

    PubMed Central

    Westmeyer, Gil G.; Emer, Elena G.; Lintelmann, Jutta; Jasanoff, Alan

    2014-01-01

    SUMMARY The ability to map patterns of gene expression noninvasively in living animals could have impact in many areas of biology. Reporter systems compatible with magnetic resonance imaging (MRI) could be particularly valuable, but existing strategies tend to lack sensitivity or specificity. Here we address the challenge of MRI-based gene mapping using the reporter enzyme secreted alkaline phosphatase (SEAP), in conjunction with a water soluble metalloporphyrin contrast agent. SEAP cleaves the porphyrin into an insoluble product that accumulates at sites of enzyme expression and can be visualized by MRI and optical absorbance. The contrast mechanism functions in vitro, in brain slices, and in animals. The system also provides the possibility of readout both in the living animal and by post mortem histology, and it notably does not require intracellular delivery of the contrast agent. The solubility switch mechanism used to detect SEAP could be adapted for imaging of additional reporter enzymes or endogenous targets. PMID:24613020

  9. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    PubMed Central

    Li, Chengchen; Gui, Shunhua; Yang, Tao; Walk, Thomas; Wang, Xiurong; Liao, Hong

    2012-01-01

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparative studies on structure, transcription regulation and responses to phosphate (Pi) deprivation of the soybean PAP gene family should facilitate further insights into the potential physiological roles of GmPAPs. Methods BLAST searches were performed to identify soybean PAP genes at the phytozome website. Bioinformatic analyses were carried out to investigate their gene structure, conserve motifs and phylogenetic relationships. Hydroponics and sand-culture experiments were carried out to obtain the plant materials. Quantitative real-time PCR was employed to analyse the expression patterns of PAP genes in response to P deficiency and symbiosis. Key Results In total, 35 PAP genes were identified from soybean genomes, which can be classified into three distinct groups including six subgroups in the phylogenetic tree. The expression pattern analysis showed flowers possessed the largest number of tissue-specific GmPAP genes under normal P conditions. The expression of 23 GmPAPs was induced or enhanced by Pi starvation in different tissues. Among them, nine GmPAP genes were highly expressed in the Pi-deprived nodules, whereas only two GmPAP genes showed significantly increased expression in the arbuscular mycorrhizal roots under low-P conditions. Conclusions Most GmPAP genes are probably involved in P acquisition and recycling in plants. Also we provide the first evidence that some members of the GmPAP gene family are possibly involved in the response of plants to symbiosis with rhizobia or arbuscular mycorrhizal fungi under P-limited conditions. PMID:21948626

  10. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis.

    PubMed

    Li, Chengchen; Gui, Shunhua; Yang, Tao; Walk, Thomas; Wang, Xiurong; Liao, Hong

    2012-01-01

    Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparative studies on structure, transcription regulation and responses to phosphate (Pi) deprivation of the soybean PAP gene family should facilitate further insights into the potential physiological roles of GmPAPs. BLAST searches were performed to identify soybean PAP genes at the phytozome website. Bioinformatic analyses were carried out to investigate their gene structure, conserve motifs and phylogenetic relationships. Hydroponics and sand-culture experiments were carried out to obtain the plant materials. Quantitative real-time PCR was employed to analyse the expression patterns of PAP genes in response to P deficiency and symbiosis. In total, 35 PAP genes were identified from soybean genomes, which can be classified into three distinct groups including six subgroups in the phylogenetic tree. The expression pattern analysis showed flowers possessed the largest number of tissue-specific GmPAP genes under normal P conditions. The expression of 23 GmPAPs was induced or enhanced by Pi starvation in different tissues. Among them, nine GmPAP genes were highly expressed in the Pi-deprived nodules, whereas only two GmPAP genes showed significantly increased expression in the arbuscular mycorrhizal roots under low-P conditions. Most GmPAP genes are probably involved in P acquisition and recycling in plants. Also we provide the first evidence that some members of the GmPAP gene family are possibly involved in the response of plants to symbiosis with rhizobia or arbuscular mycorrhizal fungi under P-limited conditions.

  11. Gene Expression Profiles of Human Phosphotyrosine Phosphatases Consequent to Th1 Polarisation and Effector Function

    PubMed Central

    Castro-Sánchez, Patricia; Ramirez-Munoz, Rocio

    2017-01-01

    Phosphotyrosine phosphatases (PTPs) constitute a complex family of enzymes that control the balance of intracellular phosphorylation levels to allow cell responses while avoiding the development of diseases. Despite the relevance of CD4 T cell polarisation and effector function in human autoimmune diseases, the expression profile of PTPs during T helper polarisation and restimulation at inflammatory sites has not been assessed. Here, a systematic analysis of the expression profile of PTPs has been carried out during Th1-polarising conditions and upon PKC activation and intracellular raise of Ca2+ in effector cells. Changes in gene expression levels suggest a previously nonnoted regulatory role of several PTPs in Th1 polarisation and effector function. A substantial change in the spatial compartmentalisation of ERK during T cell responses is proposed based on changes in the dose of cytoplasmic and nuclear MAPK phosphatases. Our study also suggests a regulatory role of autoimmune-related PTPs in controlling T helper polarisation in humans. We expect that those PTPs that regulate T helper polarisation will constitute potential targets for intervening CD4 T cell immune responses in order to generate new therapies for the treatment of autoimmune diseases. PMID:28393080

  12. Molecular characterization and expression analysis of purple acid phosphatase gene from pearl oyster Pinctada martensii.

    PubMed

    Wang, Q H; Jiao, Y; Du, X D; Zhao, X X; Huang, R L; Deng, Y W; Yan, F

    2015-01-26

    Purple acid phosphatases (PAPs), also known as type 5 acid phosphatases, are widely present in animals, plants, and fungi. In mammal, PAP was reported to participate in immune defense and bone resorption. In this study, the characteristics and potential functions of a PAP gene from pearl oyster Pinctada martensii (pm-PAP) were examined. The Pm-PAP cDNA was found to be 2777 base pairs, containing a 1581-base pair open reading fragment encoding for 526 amino acids with an estimated molecular mass of 60.1 kDa and theoretical isoelectric point of 5.82. One signal peptide and five conserved motifs [GDXX/GDXXY/GNH(D/E)/XXXH/(A/G)HXH] were present in the entire sequence. Tissue expression profile analysis showed that pm-PAP mRNA was constitutively expressed in all tissues studied with abundant mRNA found in mollusk defense system, including hepatopancreas, gill, and hemocytes. After lipopolysaccharide stimulation, the expression of pm-PAP mRNA in hemocytes was dramatically upregulated at 2 h and achieved the highest level at 36 h. Additionally, pm-PAP mRNA expression was significantly increased and achieved the highest level at 2 days after the surgical implantation during pearl production. These results suggest that pm-PAP is a constitutive and inducible protein that may be involved in the immune defense of pearl oyster.

  13. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization1[OPEN

    PubMed Central

    2017-01-01

    Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events. PMID:28034953

  14. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases

    PubMed Central

    2012-01-01

    Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs), symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs) has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication), by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in adaptation to host targets. PMID

  15. Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter.

    PubMed

    Reddy, S V; Hundley, J E; Windle, J J; Alcantara, O; Linn, R; Leach, R J; Boldt, D H; Roodman, G D

    1995-04-01

    Tartrate-resistant acid phosphatase (TRAP) is an iron-binding protein that is highly expressed in osteoclasts. To characterize the regulation of TRAP gene expression, progressive 5' and 3' deletions of a 1.8 kb fragment containing the 5'-flanking sequence were fused to a luciferase reporter gene. Two nonoverlapping regions of this 1.8 kb fragment had promoter activity. The upstream promoter (P1) was located within the region from -881 bp to -463 bp relative to the ATG, while the downstream promoter (P2) was located between -363 bp to -1 bp in a region we have previously shown to be an intron in transcripts originating from the upstream promoter. A putative repressor region for the P2 promoter at -1846 bp to -1240 bp and a putative enhancer region at -962 bp to -881 bp relative to the ATG were identified. PCR analysis of promoter-specific transcription of the TRAP gene in various murine tissues showed that both promoters were active in several tissues. Transferrin-bound iron increased P1 promoter activity 2.5-fold and hemin decreased P1 promoter activity, but neither had any effect on P2 activity. These data show that the transcriptional regulation of the TRAP gene is complex and that iron may play a key role in TRAP gene regulation.

  16. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family.

    PubMed

    Zhao, Chaoyang; Shukle, Richard; Navarro-Escalante, Lucio; Chen, Mingshun; Richards, Stephen; Stuart, Jeffrey J

    2016-01-01

    The genetic tractability of the Hessian fly (HF, Mayetiola destructor) provides an opportunity to investigate the mechanisms insects use to induce plant gall formation. Here we demonstrate that capacity using the newly sequenced HF genome by identifying the gene (vH24) that elicits effector-triggered immunity in wheat (Triticum spp.) seedlings carrying HF resistance gene H24. vH24 was mapped within a 230-kb genomic fragment near the telomere of HF chromosome X1. That fragment contains only 21 putative genes. The best candidate vH24 gene in this region encodes a protein containing a secretion signal and a type-2 serine/threonine protein phosphatase (PP2C) domain. This gene has an H24-virulence associated insertion in its promoter that appears to silence transcription of the gene in H24-virulent larvae. Candidate vH24 is a member of a small family of genes that encode secretion signals and PP2C domains. It belongs to the fraction of genes in the HF genome previously predicted to encode effector proteins. Because PP2C proteins are not normally secreted, our results suggest that these are PP2C effectors that HF larvae inject into wheat cells to redirect, or interfere, with wheat signal transduction pathways.

  17. Genetics in Parkinson disease: Mendelian vs. non-Mendelian inheritance

    PubMed Central

    Hernandez, Dena G.; Reed, Xylena; Singleton, Andrew B.

    2016-01-01

    Parkinson’s disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically PD is associated with resting tremor, postural instability, rigidity, bradykinesia and a good response to levodopa therapy. Over the last fifteen years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. PMID:27090875

  18. Using genetics to test the causal relationship of total adiposity and periodontitis: Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium

    PubMed Central

    Shungin, Dmitry; Cornelis, Marilyn C; Divaris, Kimon; Holtfreter, Birte; Shaffer, John R; Yu, Yau-Hua; Barros, Silvana P; Beck, James D; Biffar, Reiner; Boerwinkle, Eric A; Crout, Richard J.; Ganna, Andrea; Hallmans, Goran; Hindy, George; Hu, Frank B; Kraft, Peter; McNeil, Daniel W; Melander, Olle; Moss, Kevin L; North, Kari E; Orho-Melander, Marju; Pedersen, Nancy L; Ridker, Paul M; Rimm, Eric B; Rose, Lynda M; Rukh, Gull; Teumer, Alexander; Weyant, Robert J; Chasman, Daniel I; Joshipura, Kaumudi; Kocher, Thomas; Magnusson, Patrik KE; Marazita, Mary L; Nilsson, Peter; Offenbacher, Steve; Davey Smith, George; Lundberg, Pernilla; Palmer, Tom M; Timpson, Nicholas J; Johansson, Ingegerd; Franks, Paul W

    2015-01-01

    Background: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI). Methods: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49 066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17 672/31 394 with/without periodontitis); 68 761 participants with BMI and genotype data; and 57 871 participants (18 881/38 990 with/without periodontitis) with data on BMI and periodontitis. Results: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI:1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data. Conclusions: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide

  19. Using genetics to test the causal relationship of total adiposity and periodontitis: Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium.

    PubMed

    Shungin, Dmitry; Cornelis, Marilyn C; Divaris, Kimon; Holtfreter, Birte; Shaffer, John R; Yu, Yau-Hua; Barros, Silvana P; Beck, James D; Biffar, Reiner; Boerwinkle, Eric A; Crout, Richard J; Ganna, Andrea; Hallmans, Goran; Hindy, George; Hu, Frank B; Kraft, Peter; McNeil, Daniel W; Melander, Olle; Moss, Kevin L; North, Kari E; Orho-Melander, Marju; Pedersen, Nancy L; Ridker, Paul M; Rimm, Eric B; Rose, Lynda M; Rukh, Gull; Teumer, Alexander; Weyant, Robert J; Chasman, Daniel I; Joshipura, Kaumudi; Kocher, Thomas; Magnusson, Patrik K E; Marazita, Mary L; Nilsson, Peter; Offenbacher, Steve; Davey Smith, George; Lundberg, Pernilla; Palmer, Tom M; Timpson, Nicholas J; Johansson, Ingegerd; Franks, Paul W

    2015-04-01

    The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI). We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49,066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17,672/31,394 with/without periodontitis); 68,761 participants with BMI and genotype data; and 57,871 participants (18,881/38,990 with/without periodontitis) with data on BMI and periodontitis. In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI:1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data. Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide confidence intervals. © The Author 2015; all rights reserved

  20. Isolation and characterization of four cell wall purple acid phosphatase genes from tobacco cells.

    PubMed

    Kaida, Rumi; Sage-Ono, Kimiyo; Kamada, Hiroshi; Okuyama, Hidetoshi; Syono, Kunihiko; Kaneko, Takako S

    2003-01-27

    Four full-length cDNAs were isolated from a cDNA library prepared from tobacco cultured cells and designated NtPAP4, NtPAP12, NtPAP19 and NtPAP21, which could correspond to purple acid phosphatase (PAP). Levels of both NtPAP12 and NtPAP21 mRNA in the protoplasts immediately increased after the protoplasts were transferred to a medium for cell wall regeneration, and the accumulation of the mRNA was correlated with cell wall regeneration for 3 h. It is likely that the NtPAP12 and NtPAP21 gene products are wall-bound PAPs at the early stage of regenerating walls in tobacco protoplasts.

  1. The polymorphism of protein phosphatase Z1 gene in Candida albicans.

    PubMed

    Kovács, László; Farkas, Ilona; Majoros, László; Miskei, Márton; Pócsi, István; Dombrádi, Viktor

    2010-12-01

    The gene of protein phosphatase Z1 (CaPPZ1) that codes a fungus specific regulatory enzyme was investigated in Candida albicans. After cloning and sequencing CaPPZ1 we revealed the heterozygous nature of the ATCC 10231 reference strain, and identified two new alleles termed CaPPZ1-2 and CaPPZ1-3. The genetic polymorphism in CaPPZ1 was extended by finding a fourth allele CaPPZ1-4 in a clinical isolate. Single nucleotide replacements and short in/del mutations were identified in the gene, some of which resulted in amino acid changes in the protein. The analysis of the hypervariable 3'-noncoding gene region in 27 DNA sequences obtained from reference strains and clinical samples confirmed the presence of four distinct DNA sequence-groups that correspond to the four main alleles of CaPPZ1. In addition to the allelic combinations, we detected individual mutations elevating genetic variability of the opportunistic pathogen. We utilized the hypervariable gene region for genotyping C. albicans in clinical isolates by sequencing the cloned amplified region, by direct sequencing of the PCR products, or by RFLP analysis. The comparison of the genotypes of the strains originating from different body parts of the same patient proved to be useful in delineating the origin of the infection.

  2. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls.

    PubMed

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H M; Gurjar, Suraj K; Gupta, I D; Verma, Archana

    2017-02-01

    This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Genomic DNA was isolated by phenol-chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5'UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible.

  3. Protein phosphatase 2A subunit gene haplotypes and proliferative breast disease modify breast cancer risk

    PubMed Central

    Dupont, William D.; Breyer, Joan P.; Bradley, Kevin M.; Schuyler, Peggy A.; Plummer, W. Dale; Sanders, Melinda E.; Page, David L.; Smith, Jeffrey R.

    2009-01-01

    BACKGROUND Protein phosphatase 2A (PP2A) is a major cellular phosphatase and plays key regulatory roles in growth, differentiation, and apoptosis. Women diagnosed with benign proliferative breast disease are at increased risk for the subsequent development of breast cancer. METHODS We evaluated genetic variation of PP2A holoenzyme subunits for potential contribution to breast cancer risk. We performed a nested case-control investigation of a cohort of women with a history of benign breast disease. Subjects were followed for an average of 18 years; DNA prepared from the original archival benign breast biopsy (1954 – 1995) was available for 450 women diagnosed with breast cancer on follow-up, and for 890 of their 900 controls who were matched on race, age, and year of entry biopsy. RESULTS Single allele- and haplotype-based tests of association were conducted, with assessment of significance by permutation testing. We identified significant risk and protective haplotypes of PPP2R1A, giving odds ratios of 1.63 (95% CI 1.3 – 2.1) and 0.55 (95% CI 0.41 – 0.76), respectively. These odds ratios remained significant upon adjustment for multiple comparisons. Women with both the risk PPP2R1A haplotype and a history of proliferative breast disease had an odds ratio of 2.44 (95% CI 1.7 – 3.5) for the subsequent development of breast cancer. The effects of haplotypes for two regulatory subunit genes, PPP2R2A and PPP2R5E on breast cancer risk were nominally significant, but did not remain significant upon adjustment for multiple comparisons. CONCLUSION This evidence supports the previously hypothesized role of PP2A as a tumor suppressor gene in breast cancer. PMID:19890961

  4. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis.

    PubMed

    Vandesteene, Lies; López-Galvis, Lorena; Vanneste, Kevin; Feil, Regina; Maere, Steven; Lammens, Willem; Rolland, Filip; Lunn, John E; Avonce, Nelson; Beeckman, Tom; Van Dijck, Patrick

    2012-10-01

    Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-β-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.

  5. Psy2 Targets the PP4 Family Phosphatase Pph3 To Dephosphorylate Mth1 and Repress Glucose Transporter Gene Expression

    PubMed Central

    Ma, Hui; Han, Bong-Kwan; Guaderrama, Marisela; Aslanian, Aaron; Yates, John R.; Hunter, Tony

    2014-01-01

    The reversible nature of protein phosphorylation dictates that any protein kinase activity must be counteracted by protein phosphatase activity. How phosphatases target specific phosphoprotein substrates and reverse the action of kinases, however, is poorly understood in a biological context. We address this question by elucidating a novel function of the conserved PP4 family phosphatase Pph3-Psy2, the yeast counterpart of the mammalian PP4c-R3 complex, in the glucose-signaling pathway. Our studies show that Pph3-Psy2 specifically targets the glucose signal transducer protein Mth1 via direct binding of the EVH1 domain of the Psy2 regulatory subunit to the polyproline motif of Mth1. This activity is required for the timely dephosphorylation of the downstream transcriptional repressor Rgt1 upon glucose withdrawal, a critical event in the repression of HXT genes, which encode glucose transporters. Pph3-Psy2 dephosphorylates Mth1, an Rgt1 associated corepressor, but does not dephosphorylate Rgt1 at sites associated with inactivation, in vitro. We show that Pph3-Psy2 phosphatase antagonizes Mth1 phosphorylation by protein kinase A (PKA), the major protein kinase activated in response to glucose, in vitro and regulates Mth1 function via putative PKA phosphorylation sites in vivo. We conclude that the Pph3-Psy2 phosphatase modulates Mth1 activity to facilitate precise regulation of HXT gene expression by glucose. PMID:24277933

  6. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    SciTech Connect

    Grempler, Rolf . E-mail: rolfgrempler@yahoo.de; Guenther, Susanne; Steffensen, Knut R.; Nilsson, Maria; Barthel, Andreas; Schmoll, Dieter

    2005-12-16

    Liver X receptor (LXR) paralogues {alpha} and {beta} (LXR{alpha} and LXR{beta}) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXR{alpha} or LXR{beta} suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors.

  7. Intrauterine growth restriction affects hippocampal dual specificity phosphatase 5 gene expression and epigenetic characteristics

    PubMed Central

    Ke, Xingrao; McKnight, Robert A.; Caprau, Diana; O'Grady, Shannon; Fu, Qi; Yu, Xing; Callaway, Christopher W.; Albertine, Kurt H.

    2011-01-01

    Intrauterine growth retardation (IUGR) predisposes humans toward hippocampal morbidities, such as impaired learning and memory. Hippocampal dual specificity phosphatase 5 (DUSP5) may be involved in these morbidities because DUSP5 regulates extracellular signal-regulated kinase phosphorylation (Erk). In the rat, IUGR causes postnatal changes in hippocampal gene expression and epigenetic characteristics. However, the impact of IUGR upon hippocampal DUSP5 expression and epigenetic characteristics is not known. We therefore hypothesized that IUGR affects hippocampal 1) DUSP5 expression, DNA CpG methylation, and histone code, and 2) erk1/2 phosphorylation in a well-characterized rat model of IUGR. We found that IUGR significantly decreased DUSP5 expression in the day of life (DOL) 0 and 21 male rat, while decreasing only DUSP5 protein levels in the DOL21 female rat. Fluorescent in situ hybridization and immunohistochemistry analyses localized the changes in DUSP5 mRNA and protein, many of which occurred in the dentate gyrus. IUGR also caused sex-specific differences in DNA CpG methylation and histone code in two sites of the hippocampal DUSP5 gene, a 5′-flanking specificity protein-1 (SP1) site and exon 2. Finally, when IUGR decreased DUSP5 protein levels, Erk phosphorylation increased. We conclude that IUGR affects hippocampal DUSP5 expression and epigenetic characteristics in a sex-specific manner. PMID:21828247

  8. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls

    PubMed Central

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana

    2017-01-01

    Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410

  9. A novel type heterozygous mutation in the glucose-6-phosphatase gene in a Chinese patient with glycogen storage disease Ia.

    PubMed

    Zhu, Jie; Xing, Yan; Xing, Xuenong; Ren, An; Ye, Shandong; He, Guoping

    2012-12-10

    Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). By genotype analysis of the affected pedigree, we identified a novel type mutation in a Chinese patient with GSD Ia. Mutation analysis was performed for the coding region of G6Pase gene using DNA sequencing and TaqMan gene expression assay was used to further confirm the novel mutation. The proband was compound heterozygous for c.311A>T/c.648G>T. Our report expands the spectrum of G6Pase gene mutation in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Responses of phosphate transporter gene and alkaline phosphatase in Thalassiosira pseudonana to phosphine.

    PubMed

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton.

  11. Responses of Phosphate Transporter Gene and Alkaline Phosphatase in Thalassiosira pseudonana to Phosphine

    PubMed Central

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton. PMID:23544096

  12. PHO8 gene coding alkaline phosphatase of Saccharomyces cerevisiae is involved in polyphosphate metabolism.

    PubMed

    Kizawa, Keiko; Aono, Toshihiro; Ohtomo, Ryo

    2017-01-25

    It has been argued for a long time whether alkaline phosphatase (ALP) is involved in polyphosphate (polyP) metabolism in arbuscular mycorrhizal fungi. In the present study, we have analyzed the effects of disrupting the PHO8 gene, which encodes phosphate (Pi)-deficiency-inducible ALP, on the polyP contents of Saccharomyces cerevisiae. The polyP content of the Δpho8 mutant was higher than the wild type strain in the logarithmic phase under Pi-sufficient conditions. On the contrary, the chain length of polyP extracted from the Δpho8 mutant did not differ from the wild type strain. When cells in Pi-deficient conditions were supplemented with Pi, the increase of the polyP amounts in the Δpho8 mutant was similar to that in the wild type strain. These results suggest that ALP, which is encoded by PHO8, affects the polyP content, but not the chain length, and participates in polyP homeostasis in Pi-sufficient conditions.

  13. Protection of epithelial barrier function by the Crohn's disease associated gene protein tyrosine phosphatase n2.

    PubMed

    Scharl, Michael; Paul, Gisela; Weber, Achim; Jung, Barbara C; Docherty, Michael J; Hausmann, Martin; Rogler, Gerhard; Barrett, Kim E; McCole, Declan F

    2009-12-01

    Protein tyrosine phosphatase N2 (PTPN2) has been identified as a Crohn's disease (CD) candidate gene. However, a role for PTPN2 in the pathogenesis of CD has not been identified. Increased permeability of the intestinal epithelium is believed to contribute prominently to CD. The aim of this study was to determine a possible role for PTPN2 in CD pathogenesis. Intestinal epithelial cell (IEC) lines T(84) and HT29cl.19a were used in all studies. Protein analysis was performed by Western blotting, and protein knockdown was induced by small interfering RNA. Primary samples were from control and CD patients. Here, we demonstrate increased PTPN2 expression in CD intestinal biopsy specimens and that the proinflammatory cytokine interferon (IFN)-gamma increases PTPN2 expression and activity in IEC. Moreover, IFN-gamma-induced STAT1 and STAT3 phosphorylation in IEC is enhanced by PTPN2 knockdown. The cellular energy sensor adenosine monophosphate-activated protein kinase partially regulates the IFN-gamma-induced effects on PTPN2. Additionally, PTPN2 knockdown potentiates IFN-gamma-induced increases in epithelial permeability, accompanied by elevated expression of the pore-forming protein claudin-2. PTPN2 is activated by IFN-gamma and limits IFN-gamma-induced signalling and consequent barrier defects. These data suggest a functional role for PTPN2 in maintaining the intestinal epithelial barrier and in the pathophysiology of CD.

  14. The effects of retinoic acid on alkaline phosphatase activity and tissue-non-specific alkaline phosphatase gene expression in human periodontal ligament cells and gingival fibroblasts.

    PubMed

    San Miguel, S M; Goseki-Sone, M; Sugiyama, E; Watanabe, H; Yanagishita, M; Ishikawa, I

    1998-10-01

    Alkaline phosphatase (ALP) in human periodontal ligament (HPDL) cells is classified as a tissue-non-specific alkaline phosphatase (TNSALP) by its enzymatic and immunological properties. Since retinoic acid (RA) has been shown as a potent inducer of TNSALP expression in various osteoblastic and fibroblastic cells, we investigated the effects of RA on the level of ALP activity and expression of TNSALP mRNAs in HPDL cells. Cultured cells were treated with desired RA concentrations (0, 10(-7), 10(-6), 10(-5) M) in medium containing 1% bovine serum albumin without serum. ALP activity was determined by the rate of hydrolysis of p-nitrophenyl phosphate and was also assayed in the presence of specific inhibitors. In order to identify the TNSALP mRNA type expressed by HPDL, a set of oligonucleotide primers corresponding to 2 types of human TNSALP mRNA (i.e. bone-type and liver-type) were designed, and mRNA isolated from HPDL was amplified by means of reverse transcription-polymerase chain reaction (RT-PCR). After treatment with RA (10(-6) M) for 4 d, there was a significant increase in the ALP activity of HPDL cells. The use of inhibitors and thermal inactivation experiments showed that the increased ALP activity had properties of the TNSALP type. RT-PCR analysis revealed that bone-type mRNA was highly stimulated in HPDL cells by RA treatment, but the expression of liver-type mRNA was not detected. These results indicated that the upregulation of ALP activity in HPDL cells by RA was due to the increased transcription of bone-type mRNA of the TNSALP gene.

  15. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing.

    PubMed

    Xue, Yuan; Ankala, Arunkanth; Wilcox, William R; Hegde, Madhuri R

    2015-06-01

    Next-generation sequencing is changing the paradigm of clinical genetic testing. Today there are numerous molecular tests available, including single-gene tests, gene panels, and exome sequencing or genome sequencing. As a result, ordering physicians face the conundrum of selecting the best diagnostic tool for their patients with genetic conditions. Single-gene testing is often most appropriate for conditions with distinctive clinical features and minimal locus heterogeneity. Next-generation sequencing-based gene panel testing, which can be complemented with array comparative genomic hybridization and other ancillary methods, provides a comprehensive and feasible approach for heterogeneous disorders. Exome sequencing and genome sequencing have the advantage of being unbiased regarding what set of genes is analyzed, enabling parallel interrogation of most of the genes in the human genome. However, current limitations of next-generation sequencing technology and our variant interpretation capabilities caution us against offering exome sequencing or genome sequencing as either stand-alone or first-choice diagnostic approaches. A growing interest in personalized medicine calls for the application of genome sequencing in clinical diagnostics, but major challenges must be addressed before its full potential can be realized. Here, we propose a testing algorithm to help clinicians opt for the most appropriate molecular diagnostic tool for each scenario.

  16. Linguistic Challenges in Mendelian Genetics: Teachers' Talk in Action

    ERIC Educational Resources Information Center

    Thörne, Karin; Gericke, Niklas M.; Hagberg, Mariana

    2013-01-01

    This study investigates Swedish teachers' use of language when teaching Mendelian genetics in compulsory school. The primary objective of the study is to explore how teachers use the related concepts "gene," "allele," and "anlag" (a Swedish variant of the German word "anlage") and how these are related to…

  17. Linguistic Challenges in Mendelian Genetics: Teachers' Talk in Action

    ERIC Educational Resources Information Center

    Thörne, Karin; Gericke, Niklas M.; Hagberg, Mariana

    2013-01-01

    This study investigates Swedish teachers' use of language when teaching Mendelian genetics in compulsory school. The primary objective of the study is to explore how teachers use the related concepts "gene," "allele," and "anlag" (a Swedish variant of the German word "anlage") and how these are related to…

  18. Transcriptional regulation of the tartrate-resistant acid phosphatase (TRAP) gene by iron.

    PubMed

    Alcantara, O; Reddy, S V; Roodman, G D; Boldt, D H

    1994-03-01

    Tartrate-resistant acid phosphatase (TRAP) was first identified in cells from patients with hairy cell leukaemia. Subsequently, it has been found in other leukaemias, B-lymphoblastoid cell lines, osteoclasts and subsets of normal lymphocytes, macrophages, and granulocytes. Recent data indicate that TRAP and porcine uteroferrin, a placental iron-transport protein, represent a single gene product. However, the intracellular role of TRAP is unknown. We used a full-length human placental TRAP cDNA probe to examine TRAP expression in human peripheral mononuclear cells (PMCs). TRAP mRNA increased 50-75-fold after 24 h in unstimulated PMC cultures. Cell-fractionation experiments indicated that monocytes were the main cell population accounting for increased TRAP mRNA transcripts, and this was confirmed by histochemical staining for TRAP enzyme activity. Because expression of other iron-binding and -transport proteins is controlled by iron availability, we examined the role of iron in regulating TRAP expression. Increase of TRAP mRNA transcripts in PMCs was inhibited by 50 microM desferrioxamine, a potent iron chelator. The 5' flanking region of the TRAP gene was cloned from a mouse genomic library. In preliminary transient transfection experiments, it was determined that the 5'-flanking region of the TRAP gene contained iron-responsive elements. Therefore, a series of stably transfected HRE H9 cell lines was developed bearing genetic constructs containing various segments of the murine TRAP 5' promoter region driving a luciferase reporter gene. Treatment of transfectants with 100 micrograms/ml iron-saturated human transferrin (FeTF) was performed to assess iron responsiveness of the constructs. Constructs containing a full-length TRAP promoter (comprising base pairs -1846 to +2) responded to FeTF with a 4-5-fold increase of luciferase activity whereas constructs containing only base pairs -363 to +2 of the TRAP promoter did not respond. Constructs containing 1240 or 881

  19. Transcriptional regulation of the tartrate-resistant acid phosphatase (TRAP) gene by iron.

    PubMed Central

    Alcantara, O; Reddy, S V; Roodman, G D; Boldt, D H

    1994-01-01

    Tartrate-resistant acid phosphatase (TRAP) was first identified in cells from patients with hairy cell leukaemia. Subsequently, it has been found in other leukaemias, B-lymphoblastoid cell lines, osteoclasts and subsets of normal lymphocytes, macrophages, and granulocytes. Recent data indicate that TRAP and porcine uteroferrin, a placental iron-transport protein, represent a single gene product. However, the intracellular role of TRAP is unknown. We used a full-length human placental TRAP cDNA probe to examine TRAP expression in human peripheral mononuclear cells (PMCs). TRAP mRNA increased 50-75-fold after 24 h in unstimulated PMC cultures. Cell-fractionation experiments indicated that monocytes were the main cell population accounting for increased TRAP mRNA transcripts, and this was confirmed by histochemical staining for TRAP enzyme activity. Because expression of other iron-binding and -transport proteins is controlled by iron availability, we examined the role of iron in regulating TRAP expression. Increase of TRAP mRNA transcripts in PMCs was inhibited by 50 microM desferrioxamine, a potent iron chelator. The 5' flanking region of the TRAP gene was cloned from a mouse genomic library. In preliminary transient transfection experiments, it was determined that the 5'-flanking region of the TRAP gene contained iron-responsive elements. Therefore, a series of stably transfected HRE H9 cell lines was developed bearing genetic constructs containing various segments of the murine TRAP 5' promoter region driving a luciferase reporter gene. Treatment of transfectants with 100 micrograms/ml iron-saturated human transferrin (FeTF) was performed to assess iron responsiveness of the constructs. Constructs containing a full-length TRAP promoter (comprising base pairs -1846 to +2) responded to FeTF with a 4-5-fold increase of luciferase activity whereas constructs containing only base pairs -363 to +2 of the TRAP promoter did not respond. Constructs containing 1240 or 881

  20. Women as Mendelians and Geneticists

    ERIC Educational Resources Information Center

    Richmond, Marsha L.

    2015-01-01

    After the rediscovery of Mendel's laws of heredity in 1900, the biologists who began studying heredity, variation, and evolution using the new Mendelian methodology--performing controlled hybrid crosses and statistically analyzing progeny to note the factorial basis of characters--made great progress. By 1910, the validity of Mendelism was…

  1. Women as Mendelians and Geneticists

    ERIC Educational Resources Information Center

    Richmond, Marsha L.

    2015-01-01

    After the rediscovery of Mendel's laws of heredity in 1900, the biologists who began studying heredity, variation, and evolution using the new Mendelian methodology--performing controlled hybrid crosses and statistically analyzing progeny to note the factorial basis of characters--made great progress. By 1910, the validity of Mendelism was…

  2. Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene.

    PubMed

    Bellazi, L; Mornet, E; Meurice, G; Pata-Merci, N; De Mazancourt, P; Dieudonné, M-N

    2011-10-01

    During pregnancy, placental growth allows the adaptation of the feto-maternal unit to fetal requirements. Placental alkaline phosphatase (PLAP) is a phosphomonoesterase produced increasingly until term by the placenta and also ectopically in some tumors. To precise the role of this enzyme in the placenta, we analyzed the genome wide expression profile of HTR-8/Svneo trophoblastic cells after overexpression of the alkaline phosphatase gene (ALPP). We showed that ALPP overexpression mainly altered expression of genes implicated in cellular growth and proliferation. These results were confirmed by the study of cellular effects in HTR-8/Svneo cells overexpressing ALPP and in HTR-8/Svneo cells in which ALPP expression was suppressed by siRNA. We showed that PLAP exerts a positive effect on DNA replication and acts as a proliferative factor in trophoblastic cells.

  3. Associations between serum bone-specific alkaline phosphatase activity, biochemical parameters, and functional polymorphisms of the tissue-nonspecific alkaline phosphatase gene in a Japanese population.

    PubMed

    Sogabe, Natsuko; Tanabe, Rieko; Haraikawa, Mayu; Maruoka, Yutaka; Orimo, Hideo; Hosoi, Takayuki; Goseki-Sone, Masae

    2013-01-01

    We had demonstrated that single nucleotide polymorphism (787T>C) in the tissue-nonspecific ALP (TNSALP) gene was associated with the bone mineral density (BMD). BMD was the lowest among TNSALP 787T homozygotes (TT-type) and highest among TNSALP 787T>C homozygotes (CC-type) in postmenopausal women. In the present study, we investigated the effects of the TNSALP genotype on associations among serum bonespecific alkaline phosphatase (BAP), serum calcium, and phosphorus in healthy young Japanese subjects. Young healthy adult subjects (n=193) were genotyped for the polymorphism, and we measured the levels of serum BAP, serum calcium, and phosphorus. Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Grouped by the TNSALP genotype, a significant negative correlation between serum BAP and phosphorus was observed in 787T>C homozygotes (CC-type), but not in heterozygotes (TCtype), nor in 787T homozygotes (TT-type). In the present study, we revealed that the single nucleotide polymorphism 787T>C in the TNSALP gene had effects on the correlation between serum BAP and phosphorus in young adult subjects. These results suggest that variation in TNSALP may be an important determinant of phosphate metabolism. Our data may be useful for planning strategies to prevent osteoporosis.

  4. Cloning, sequencing and characterization of a novel phosphatase gene, phoI, from soil bacterium Enterobacter sp. 4.

    PubMed

    Kang, Seung Ha; Cho, Kwang Keun; Bok, Jin Duck; Kim, Sung Chan; Cho, Jaie Soon; Lee, Peter Chang-Whan; Kang, Sang Kee; Lee, Hong Gu; Woo, Jung Hee; Lee, Hyun Jeong; Lee, Sang Cheol; Choi, Yun Jaie

    2006-04-01

    A gene, phoI, coding for a phosphatase from Enterobacter sp. 4 was cloned in Escherichia coli and sequenced. Analysis of the sequence revealed one open reading frame (ORF) that encodes a 269-amino acid protein with a calculated molecular mass of 29 kDa. PhoI belongs to family B acid phosphatase and exhibits 49.4% identity and 62.4% homology to the hel gene from Heamophilus influenzae, which encoded an outer membrane protein (P4). The optimum pH and temperature for phosphatase activity were pH 5.5 and 40 degrees C, respectively. Its specific activity on rho-nitrophenyl phosphatate was 70 U/mg at pH 5.5 and 40 degrees C. Enzyme activity was inhibited by Al3+, EDTA, and DTT, but fivefold activated by Cu2+ ion (350 U/mg). PhoI showed a strong synergistic effect when used with a purified E. coli phytase, AppA, to estimate combination effects.

  5. MKP-7, a JNK phosphatase, blocks ERK-dependent gene activation by anchoring phosphorylated ERK in the cytoplasm

    SciTech Connect

    Masuda, Kouhei; Katagiri, Chiaki; Nomura, Miyuki; Sato, Masami; Kakumoto, Kyoko; Akagi, Tsuyoshi; Kikuchi, Kunimi; Tanuma, Nobuhiro; Shima, Hiroshi

    2010-03-05

    MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localized with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.

  6. DNA polymorphism of alkaline phosphatase isozyme genes: Linkage disequilibria between placental and germ-cell alkaline phosphotase alleles

    SciTech Connect

    Beckman, G.; Beckman, L.; Sikstroem, C. ); Millan, J.L. )

    1992-11-01

    The use of human placental alkaline phosphatase (PLAP) cDNA as a probe allows the detection and identification of restriction DNA fragments derived from three homologous genes, i.e., intestinal alkaline phosphatase (AP), germ-cell AP (GCAP), and PLAP. In previous RFLP studies the authors have reported linkage disequilibria between an RsaI and two PstI (a and b) polymorphic restriction sites and electrophoretic types of PLAP. In this report they present evidence that, in spite of the strong correlation with PLAP types, PstI(b) is an RFLP of GCAP. The data indicate close linkage between the PLAP and GCAP loci. 18 refs., 2 figs., 3 tabs.

  7. Phosphatase and tensin homolog (PTEN) gene mutations and autism: literature review and a case report of a patient with Cowden syndrome, autistic disorder, and epilepsy.

    PubMed

    Conti, Sara; Condò, Maria; Posar, Annio; Mari, Francesca; Resta, Nicoletta; Renieri, Alessandra; Neri, Iria; Patrizi, Annalisa; Parmeggiani, Antonia

    2012-03-01

    Phosphatase and tensin homolog (PTEN) gene mutations are associated with a spectrum of clinical disorders characterized by skin lesions, macrocephaly, hamartomatous overgrowth of tissues, and an increased risk of cancers. Autism has rarely been described in association with these variable clinical features. At present, 24 patients with phosphatase and tensin homolog gene mutation, autism, macrocephaly, and some clinical findings described in phosphatase and tensin homolog syndromes have been reported in the literature. We describe a 14-year-old boy with autistic disorder, focal epilepsy, severe and progressive macrocephaly, and multiple papular skin lesions and palmoplantar punctate keratoses, characteristic of Cowden syndrome. The boy has a de novo phosphatase and tensin homolog gene mutation. Our patient is the first case described to present a typical Cowden syndrome and autism associated with epilepsy.

  8. Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection.

    PubMed

    Hanaoka, Nozomu; Takano, Yukie; Shibuya, Kazutoshi; Fugo, Hajime; Uehara, Yoshimasa; Niimi, Masakazu

    2008-10-01

    Protein phosphatases are critical for the regulation of many cellular processes. Null mutants of 21 putative protein phosphatases of Candida albicans were constructed by consecutive allele replacement using the URA3 and ARG4 marker genes. A simple silkworm model of C. albicans infection was used to screen the panel of mutants. Four null mutant (cmp1Delta, yvh1Delta, sit4Delta, and ptc1Delta) strains showed attenuated virulence in the silkworm model relative to that of control and parental strains. Three of the mutants, the cmp1Delta, yvh1Delta, and sit4Delta mutants, had previously been identified as affecting virulence in a conventional mouse model, indicating the validity of the silkworm model screen. Disruption of the putative protein phosphatase gene PTC1 of C. albicans, which has 52% identity to the Saccharomyces cerevisiae type 2C protein phosphatase PTC1, significantly reduced virulence in the silkworm model. The mutant was also avirulent in a mouse model of disseminated candidiasis. Reintroducing either of the C. albicans PTC1 alleles into the disruptant strain, using a cassette containing either allele under the control of a constitutive ACT1 promoter, restored virulence in both infection models. Characterization of ptc1Delta revealed other phenotypic traits, including reduced hyphal growth in vitro and in vivo, and reduced extracellular proteolytic activity. We conclude that PTC1 may contribute to pathogenicity in C. albicans.

  9. Copy number alterations of chromosomal regions enclosing protein tyrosine phosphatase receptor-like genes in colorectal cancer.

    PubMed

    Laczmanska, Izabela; Karpinski, Pawel; Kozlowska, Joanna; Bebenek, Marek; Ramsey, David; Sedziak, Tomasz; Ziolkowski, Piotr; Sasiadek, Maria M

    2014-12-01

    Protein tyrosine phosphatases that act in different cellular pathways are described most commonly as tumor suppressors, but also as oncogenes. Their role has previously been described in colorectal cancer, as well as in gastric, breast, thyroid, prostate, ovarian, pancreatic, glioma, liver, leukemia and many other cancers. In a previous study, we have described protein tyrosine phosphatase receptor type T, M, Z1 and Q genes (PTPRT, PTPRM, PTPRZ1 and PTPRQ) hypermethylated in sporadic colorectal cancer. Thus, in this study, we examined the relation of unbalanced chromosomal alterations within regions covering these four protein tyrosine phosphatase genes with this cancer. One hundred and two cancer tissues were molecularly characterized, including analysis of the BRAF and K-ras mutations and methylator phenotype. The analysis of chromosomal aberrations was performed using Comparative Genomic Hybridization. We observed amplification of three regions containing genes coding for PTPs, such as PTPRZ1 (7q31.3, amplified in 23.5% of cases), PTPRQ (12q21.2, amplified in 5.9% of cases), PTPRT (20q12, amplified in 29.4% of cases), along with deletions in the region of PTPRM (18p11.2, deleted in 21.6% of cases). These data may suggest that in sporadic colorectal cancer PTPRZ1, PTPRT, PTPRQ probably act as oncogenes, while PTPRM acts as a tumor suppressor gene. Our study also revealed that gains on chromosome 20q12 and losses on chromosome 18p11.2 are connected with the absence of the BRAF mutation and the conventional adenocarcinoma pathway. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation

    PubMed Central

    Chen, Yupeng; Zhang, Lirong; Estarás, Conchi; Choi, Seung H.; Moreno, Luis; Karn, Jonathan; Moresco, James J.; Yates, John R.

    2014-01-01

    HIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity. We found that Ssu72 is essential for Tat:P-TEFb-mediated phosphorylation of the S5P-CTD in vitro. Interestingly, Ssu72 also stimulates nascent HIV-1 transcription in a phosphatase-dependent manner in vivo. Chromatin immunoprecipitation (ChIP) experiments reveal that Ssu72, like P-TEFb and AFF4, is recruited by Tat to the integrated HIV-1 proviral promoter in TNF-α signaling 2D10 T cells and leaves the elongation complex prior to the termination site. ChIP-seq (ChIP combined with deep sequencing) and GRO-seq (genome-wide nuclear run-on [GRO] combined with deep sequencing) analysis further reveals that Ssu72 predominantly colocalizes with S5P–RNAPII (RNA polymerase II) at promoters in human embryonic stem cells, with a minor peak in the terminator region. A few genes, like NANOG, also have high Ssu72 at the terminator. Ssu72 is not required for transcription at most cellular genes but has a modest effect on cotranscriptional termination. We conclude that Tat alters the cellular function of Ssu72 to stimulate viral gene expression and facilitate the early S5P–S2P transition at the integrated HIV-1 promoter. PMID:25319827

  11. Association between Phosphatase Related Gene Variants and Coronary Artery Disease: Case-Control Study and Meta-Analysis

    PubMed Central

    Han, Xia; Zhang, Lijun; Zhang, Zhiqiang; Zhang, Zengtang; Wang, Jianchun; Yang, Jun; Niu, Jiamin

    2014-01-01

    Recent studies showed that the serum alkaline phosphatase is an independent predictor of the coronary artery disease (CAD). In this work, we aimed to summarize the association between three phosphatase related single nucleotide polymorphisms (rs12526453, rs11066301 and rs3828329) and the risk of CAD in Han Chinese. Our results showed that the rs3828329 of the ACP1 gene was closely related to the risk of CAD in Han Chinese (OR = 1.45, p = 0.0006). This significant association of rs3828329 with CAD was only found in the females (Additive model: OR = 1.80, p = 0.001; dominant model: OR = 1.69, p = 0.03; recessive model: OR = 1.96, p = 0.0008). Moreover, rs3828329 was likely to exert its effect in females aged 65 years and older (OR = 2.27, p = 0.001). Further meta-analyses showed that the rs12526453 of PHACTR11 gene (OR = 1.14, p < 0.0001, random-effect method) and the rs11066301 of PTPN11 gene (OR = 1.15, p < 0.0001, fixed-effects method) were associated with CAD risk in multiple populations. Our results showed that the polymorphisms rs12526453 and rs11066301 are significantly associated with the CAD risk in multiple populations. The rs3828329 of ACP1 gene is also a risk factor of CAD in Han Chinese females aged 65 years and older. PMID:25123136

  12. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    USDA-ARS?s Scientific Manuscript database

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  13. The pgpA and pgpB genes of Escherichia coli are not essential: evidence for a third phosphatidylglycerophosphate phosphatase.

    PubMed Central

    Funk, C R; Zimniak, L; Dowhan, W

    1992-01-01

    To further define the genes and gene products responsible for the in vivo conversion of phosphatidylglycerophosphate to phosphatidylglycerol in Escherichia coli, we disrupted two genes (pgpA and pgpB) which had previously been shown to encode gene products which carried out this reaction in vitro (T. Icho and C. R. H. Raetz, J. Bacteriol. 153:722-730, 1983). Strains with either gene or both genes disrupted had the same properties as the original mutants isolated with mutations in these genes, i.e., reduced in vitro phospholipid phosphatase activities, normal growth properties, and an increase in the level of phosphatidylglycerophosphate (1.6% versus less than 0.1% in wild-type strains). These results demonstrate that these genes are not required for either normal cell growth or the biosynthesis of phosphatidylglycerol in vivo. In addition, the total phosphatidylglycerophosphate phosphatase activity in the doubly disrupted mutant was reduced by only 50%, which indicates that there is at least one other gene that encodes such an activity and thus accounts for the lack of a dramatic effect on the biosynthesis of anionic phospholipids in these mutant strains. The phosphatidic acid and lysophosphatidic acid phosphatase activities of the pgpB gene product were also significantly reduced in gene-interrupted mutants, but the detection of residual phosphatase activities in these mutants indicated that additional genes encoding such phosphatases exist. The lack of a significant phenotype resulting from disruption of the pgpA and pgpB genes indicates that these genes may be required only for nonessential cell function and leaves the biosynthesis of phosphatidylglycerophosphate as the only step in E. coli phospholipid biosynthesis for which a gene locus has not been identified. Images PMID:1309518

  14. Chromosomal mapping of the gene (INPP5A) encoding the 43-kDa membrane-associated inositol polyphosphate 5-phosphatase to 10q26.3 by fluorescence in situ hybridization

    SciTech Connect

    Mitchell, C.A.; Speed, C.J.; Nicholl, J.; Sutherland, G.R.

    1996-01-01

    This report discusses the localization of a membrane-associated inositol polyphosphate 5-phosphatase gene to human chromosome 10q26.3 using fluorescence in situ hybridization. This 43-kDa 5-phosphatase does not map to the same location as any other 5-phosphatase enzymes. 13 refs., 1 fig.

  15. Mendelian genetics of rare--and not so rare--cancers.

    PubMed

    Eng, Charis

    2010-12-01

    Mendelian genetics forms the basis for gene-informed risk assessment and management for the patient and family, and should be at the very foundation of 21st century personalization of healthcare. Yet this is an underutilized commodity. Identification and characterization of germline mutations in the RET proto-oncogene, encoding a receptor tyrosine kinase, as causing >90% of multiple endocrine neoplasia type 2 (MEN 2), an autosomal dominant disorder characterized by medullary thyroid cancer, pheochromocytoma, and hyperparathyroidism, heralded the era of evidence-based molecular diagnosis, predictive testing, genetic counseling, gene-informed cancer risk assessment, and preventative medicine. Since then, many syndromic endocrine neoplasias have proven to fall under this clinically utile and actionable model, such as those caused by mutations in RET, VHL, or SDHB-D. The familial risk associated with epithelial (nonmedullary) thyroid carcinoma is among the highest of all solid tumors, yet only a few highly penetrant heritable epithelial thyroid cancer syndrome exist. This is illustrated by Cowden syndrome, a difficult-to-recognize autosomal dominant disorder characterized by breast, thyroid, and other cancers, caused by germline mutations in PTEN, encoding a phosphatase, and minorly, SDHB/SDHD variants. © 2010 New York Academy of Sciences.

  16. Women as Mendelians and Geneticists

    NASA Astrophysics Data System (ADS)

    Richmond, Marsha L.

    2015-01-01

    After the rediscovery of Mendel's laws of heredity in 1900, the biologists who began studying heredity, variation, and evolution using the new Mendelian methodology—performing controlled hybrid crosses and statistically analyzing progeny to note the factorial basis of characters—made great progress. By 1910, the validity of Mendelism was widely recognized and the field William Bateson christened `genetics' was complemented by the chromosome theory of heredity of T. H. Morgan and his group in the United States. Historians, however, have largely overlooked an important factor in the early establishment of Mendelism and genetics: the large number of women who contributed to the various research groups. This article examines the social, economic, and disciplinary context behind this new wave of women's participation in science and describes the work of women Mendelians and geneticists employed at three leading experimental research institutes, 1900-1940. It argues that the key to more women working in science was the access to higher education and the receptivity of emerging interdisciplinary fields such as genetics to utilize the expertise of women workers, which not only advanced the discipline but also provided new opportunities for women's employment in science.

  17. Mendelian bases of myopathies, cardiomyopathies, and neuromyopathies

    PubMed Central

    Piluso, G; Aurino, S; Cacciottolo, M; Del Vecchio Blanco, F; Lancioni, A; Rotundo, IL; Torella, A; Nigro, V

    2010-01-01

    Summary A second genetic revolution is approaching thanks to next-generation DNA sequencing technologies. In the next few years, the 1,000$-genome sequencing promises to reveal every individual variation of DNA. There is, however, a major problem: the identification of thousands of nucleotide changes per individual with uncertain pathological meaning. This is also an ethical issue. In the middle, there is today the possibility to address the sequencing analysis of genetically heterogeneous disorders to selected groups of genes with defined mutation types. This will be cost-effective and safer. We assembled an easy-to manage overview of most Mendelian genes involved in myopathies, cardiomyopathies, and neuromyopathies. This was entirely put together using a number of open access web resources that are listed below. During this effort we realized that there are unexpected countless sources of data, but the confusion is huge. In some cases, we got lost in the validation of disease genes and in the difficulty to discriminate between polymorphisms and disease-causing alleles. In the table are the annotated genes, their associated disorders, genomic, mRNA and coding sizes. We also counted the number of pathological alleles so far reported and the percentage of single nucleotide mutations. PMID:22029103

  18. The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway.

    PubMed

    Nozawa, S R; Ferreira-Nozawa, M S; Martinez-Rossi, N M; Rossi, A

    2003-08-01

    In this communication, we show that the pacC(c)14 mutation drastically reduced the mannose and N-acetylglycosamine content of the pacA-encoded acid phosphatase secreted by the fungus Aspergillus nidulans when grown at 22 degrees C, pH 5.0, compared to a control strain. The staining after PAGE was not observed for the pacA-encoded acid phosphatase, while the palD-encoded Pi-repressible alkaline phosphatase had an altered electrophoretic mobility. In addition, the secreted acid phosphatase also had a reduced number of isoforms visualized by staining after IEF and glycosylation had a protective effect against its heat inactivation. We also show that a full-length version of gene pacC-1 cloned from Neurospora crassa complemented the pacC(c)14 mutation of A. nidulans, including the remediation of both the acid and alkaline Pi-repressible phosphatases secreted at pH 5.0, which indicates that glycosylation of secreted phosphatases is mediated in A. nidulans by the conserved PacC pathway that governs pH-responsive gene expression.

  19. Membrane-bound phosphatases in Escherichia coli: sequence of the pgpB gene and dual subcellular localization of the pgpB product.

    PubMed Central

    Icho, T

    1988-01-01

    The phosphatidyl glycerophosphate B phosphatase of Escherichia coli has a multiple substrate specificity and a peculiar dual subcellular localization in the envelope. Its phosphatidyl glycerophosphate phosphatase activity is higher in the cytoplasmic membrane, while phosphatidic acid and lysophosphatidic acid phosphatase activities are higher in the outer membrane. The DNA sequencing of the pgpB gene revealed a protein of 251 amino acids which had at least five hydrophobic membrane-spanning regions. About 37 hydrophilic residues in the middle of the sequence had considerable homology with the C-terminal conserved region of the ras family genes in eucaryotes. A protein of 28,000 daltons was expressed from the pgpB gene under a tac promoter in a runaway replication plasmid. This overproduced protein also revealed the dual subcellular localization. Images PMID:2846511

  20. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA

    PubMed Central

    Hoang, Ky Van; Chen, Carolyn G.; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E.; Gunn, John S.

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  1. Trichostrongylus vitrinus (Nematoda: Strongylida): molecular characterization and transcriptional analysis of Tv-stp-1, a serine/threonine phosphatase gene.

    PubMed

    Hu, Min; Abs EL-Osta, Youssef G; Campbell, Bronwyn E; Boag, Peter R; Nisbet, Alasdair J; Beveridge, Ian; Gasser, Robin B

    2007-09-01

    A full-length cDNA (Tv-stp-1) encoding a serine/threonine protein phosphatase (Tv-STP-1) was isolated from Trichostrongylus vitrinus (order Strongylida), an economically important parasitic nematode of small ruminants. The uninterrupted open reading frame (ORF) of 951 nucleotides encoded a predicted protein of 316 amino acids (aa), containing the characteristic motif [LIVMN]-[KR]-G-N-H-E. Comparison with other sequences in non-redundant databases showed that Tv-STP-1 had significant identities/similarities to those from a range of metazoans and protists. Sequence similarity was most pronounced in the central region of the protein, in which the catalytic activity is inferred to be modulated by eight conserved residues (Asp 61, His 63, Asp 92, Asp 95, Asn 121, His 171, His 246 and Tyr 270), known to coordinate the binding of two metal ions (Mn2+ and Fe2+) in various organisms. Phylogenetic analyses of selected amino acid sequence data using the neighbor-joining and maximum parsimony methods revealed Tv-STP-1 to be most closely related to the glc seven-like phosphatases inferred for genes from the free-living nematode Caenorhabditis elegans and the parasitic nematode Oesophagostomum dentatum (order Strongylida). Comparison of the genomic organization of the full-length Tv-stp-1 gene with related molecules from other nematodes revealed substantial variation in the lengths and numbers of the exons and introns. The entire genes Tv-stp-1 (5041-5362 bp; 10 exons and 9 introns) and Od-mpp-1 (10,271 bp; 8 exons and 9 introns) from the parasitic nematodes T. vitrinus and O. dentatum were considerably longer than the C. elegans genes (1222-1603 bp; 3-7 exons and 2-6 introns). Transcriptional analysis by reverse transcription polymerase chain reaction (RT-PCR) showed that Tv-stp-1 was transcribed in adult males of T. vitrinus, but not in the adult female or in any larval stages of this species. In spite of considerable variation at the genomic level, the findings of the present

  2. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae.

    PubMed

    Bostian, K A; Lemire, J M; Halvorson, H O

    1983-05-01

    We have examined the regulation of repressible acid phosphatase (APase; orthophosphoric-monoester phosphohydrolase [acid optimum], EC 3.1.3.2) in Saccharomyces cerevisiae at the physiological and molecular levels, through a series of repression and derepression experiments. We demonstrated that APase synthesis is tightly regulated throughout the growth phase and is influenced by exogenous and endogenous Pi pools. During growth in a nonlimiting Pi medium, APase is repressed. When external Pi becomes limiting, there is a biphasic appearance of APase mRNA and enzyme. Our data on APase mRNA half-lives and on the flux of intracellular Pi and polyphosphate during derepression are consistent with a mechanism of transcriptional autoregulation for the biphasic appearance of APase mRNA. Accordingly, preculture concentrations of Pi control the level of corepressor generated from intracellular polyphosphate degradation. When cells are fully derepressed, APase mRNA levels are constant, and the maximal linear accumulation rate of APase is observed. A scheme to integrate phosphorus metabolism and phosphatase regulation in S. cerevisiae is proposed.

  3. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae.

    PubMed Central

    Bostian, K A; Lemire, J M; Halvorson, H O

    1983-01-01

    We have examined the regulation of repressible acid phosphatase (APase; orthophosphoric-monoester phosphohydrolase [acid optimum], EC 3.1.3.2) in Saccharomyces cerevisiae at the physiological and molecular levels, through a series of repression and derepression experiments. We demonstrated that APase synthesis is tightly regulated throughout the growth phase and is influenced by exogenous and endogenous Pi pools. During growth in a nonlimiting Pi medium, APase is repressed. When external Pi becomes limiting, there is a biphasic appearance of APase mRNA and enzyme. Our data on APase mRNA half-lives and on the flux of intracellular Pi and polyphosphate during derepression are consistent with a mechanism of transcriptional autoregulation for the biphasic appearance of APase mRNA. Accordingly, preculture concentrations of Pi control the level of corepressor generated from intracellular polyphosphate degradation. When cells are fully derepressed, APase mRNA levels are constant, and the maximal linear accumulation rate of APase is observed. A scheme to integrate phosphorus metabolism and phosphatase regulation in S. cerevisiae is proposed. Images PMID:6346058

  4. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1.

    PubMed

    Takahashi, Shouji; Katanuma, Hiroshi; Abe, Katsumasa; Kera, Yoshio

    2017-03-01

    Tris(2-chloroethyl) phosphate (TCEP) is a haloalkyl phosphate flame retardant and plasticizer that has been recognized as a global environmental contaminant. Sphingobium sp. strain TCM1 can utilize TCEP as a phosphorus source. To identify the phosphomonoesterase involved in TCEP utilization, we identified four putative alkaline phosphatase (APase) genes, named SbphoA, SbphoD1, SbphoD2, and SbphoX-II, in the genome sequence. Following expression of these genes in Escherichia coli, APase activity was confirmed for the SbphoA and SbphoX-II gene products but was not clearly observed for the SbphoD1 and SbphoD2 gene products, owing to their accumulation in inclusion bodies. The single deletion of either SbphoA or SbphoX-II retarded the growth and reduced the APase activity of strain TCM1 cells on medium containing TCEP as the sole phosphorus source; these changes were more marked in cells with the SbphoX-II gene deletion. In contrast, the deletion of either SbphoD1 or SbphoD2 had no effect on cell growth or APase activity. The double deletion of SbphoA and SbphoX-II resulted in the complete loss of cell growth on TCEP. These results show that SbPhoA and SbPhoX-II are involved in the utilization of TCEP as a phosphorus source and that SbPhoX-II is the major phosphomonoesterase involved in TCEP utilization.

  5. Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity.

    PubMed

    Rodríguez, H; Rossolini, G M; Gonzalez, T; Li, J; Glick, B R

    2000-06-01

    A genomic library from Burkholderia cepacia IS-16 was constructed in Escherichia coli by partial Sau3AI digestion of the chromosomal DNA, with the plasmid vector Bluescript SK. This library was screened for clones able to grow as green stained colonies on selective medium developed for detecting phosphatase-positive colonies. Three green-stained clones (pFS1, pFS2, and pFS3) carried recombinant plasmids harboring DNA inserts of 5.0, 8.0, and 0.9 kb, respectively. DNA hybridization experiments demonstrated the presence of overlapping DNA fragments in the three clones and that these three clones were all derived from Burkholderia cepacia IS-16 genomic DNA. DNA sequence analysis, together with polyacrylamide gels of proteins encoded by E. coli containing pFS3, suggested that the isolated 0. 9-kb DNA fragment encodes the functional portion of a phosphate transport protein.

  6. The SH2 domain-containing tyrosine phosphatase PTP1D is required for interferon alpha/beta-induced gene expression.

    PubMed

    David, M; Zhou, G; Pine, R; Dixon, J E; Larner, A C

    1996-07-05

    Interferons (IFNs) induce early response genes by stimulating Janus family (Jak) tyrosine kinases, leading to tyrosine phosphorylation of Stat (signal transducer and activator of transcription) proteins. Previous studies demonstrated that a protein-tyrosine phosphatase (PTP) is required for activation of the ISGF3 transcription complex by IFNalpha/beta, but the specific PTP responsible remained unidentified. We now show that the SH2 domain containing tyrosine phosphatase PTP1D (also designated as SHPTP2, SHPTP3, PTP2C, or Syp) is constitutively associated with the IFNalpha/beta receptor and becomes tyrosine-phosphorylated in response to ligand. Furthermore, transient expression of a phosphatase-inactive mutant or the COOH-terminal SH2 domain of PTP1D causes a dominant negative effect on IFNalpha/beta-induced early response gene expression. These results provide strong evidence that PTP1D functions as a positive regulator of the IFNalpha/beta-induced Jak/Stat signal transduction pathway.

  7. Mendelian genetics of apomixis in plants.

    PubMed

    Ozias-Akins, Peggy; van Dijk, Peter J

    2007-01-01

    Apomixis, asexual reproduction through seeds, has the potential to revolutionize agriculture if its genetic basis can be elucidated. However, the genetic control of natural apomixis has remained obscure until quite recently, owing to all the complications of Mendelian genetics, such as epistatic gene interactions, components that are expressed sporophytically and gametophytically, expression modifiers, polyploidy, aneuploidy, segregation distortion, suppressed recombination, etc., that seem to have accumulated during the evolution of apomixis. In this review we show how molecular markers and superior phenotypic methods have been used to clarify the genetics of apomixis in monocots as well as dicots during the past 15 years. Many of the complexities in the genetics of apomixis are likely secondary and have evolved as a consequence of the reproductive process. New mapping techniques, such as comparative mapping, linkage disequilibrium mapping, and deletion mapping, and new high-throughput sequencing methods, will help to penetrate the core of apomixis chromosomal regions. If the evolutionary genetic load can be exposed and removed, the apomixis genes may be used in agriculture as a tool to fix elite genotypes.

  8. The Mendelian disorders of the epigenetic machinery

    PubMed Central

    Bjornsson, Hans Tomas

    2015-01-01

    The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a common phenotype; however, this is often seen in association with other more specific features in respective disorders. The specificity of some of the clinical features raises the question whether specific cell types are particularly sensitive to the loss of these factors. Most of these disorders demonstrate dosage sensitivity as loss of a single allele appears to be sufficient to cause the observed phenotypes. Although the pathogenic sequence is unknown for most of these disorders, there are several examples where disrupted expression of downstream target genes accounts for a substantial portion of the phenotype; hence, it may be useful to systematically map such disease-relevant target genes. Finally, two of these disorders (Rubinstein-Taybi and Kabuki syndromes) have shown post-natal rescue of markers of the neurological dysfunction with drugs that lead to histone deacetylase inhibition, indicating that some of these disorders may be treatable causes of intellectual disability. PMID:26430157

  9. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes.

    PubMed

    Bataille, Alain R; Jeronimo, Célia; Jacques, Pierre-Étienne; Laramée, Louise; Fortin, Marie-Ève; Forest, Audrey; Bergeron, Maxime; Hanes, Steven D; Robert, François

    2012-01-27

    Transcription by RNA polymerase II (RNAPII) is coupled to mRNA processing and chromatin modifications via the C-terminal domain (CTD) of its largest subunit, consisting of multiple repeats of the heptapeptide YSPTSPS. Pioneering studies showed that CTD serines are differentially phosphorylated along genes in a prescribed pattern during the transcription cycle. Genome-wide analyses challenged this idea, suggesting that this cycle is not uniform among different genes. Moreover, the respective role of enzymes responsible for CTD modifications remains controversial. Here, we systematically profiled the location of the RNAPII phosphoisoforms in wild-type cells and mutants for most CTD modifying enzymes. Together with results of in vitro assays, these data reveal a complex interplay between the modifying enzymes, and provide evidence that the CTD cycle is uniform across genes. We also identify Ssu72 as the Ser7 phosphatase and show that proline isomerization is a key regulator of CTD dephosphorylation at the end of genes. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia

    SciTech Connect

    Epstein, L.M.; Forney, J.D.

    1984-08-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei.

  11. Protein Phosphatase 5 Contributes to the Overexpression of Epigenetically Regulated T-Lymphocyte Genes in Patients with Lupus

    PubMed Central

    Patel, D; Gorelik, G; Richardson, B

    2017-01-01

    Objective Lupus develops when genetically predisposed people encounter certain drugs or environmental agents causing oxidative stress such as infections and sun exposure, and then typically follows a chronic relapsing course with flares triggered by the exogenous stressors. Current evidence indicates that these environmental agents can trigger lupus flares by inhibiting the replication of DNA methylation patterns during mitosis in CD4+ T cells, altering the expression of genes suppressed by this mechanism that convert normal “helper” cells into auto reactive cells which promote lupus flares. How environmental stressors inhibit T cell DNA methylation though is incompletely understood. Protein phosphatase 5 (PP5) is a stress induced inhibitor of T cell ERK and JNK signaling in “senescent” CD4+CD28− T cells, also characterized by DNA demethylation and altered expression of genes that promote atherosclerosis. We tested if PP5 is increased in CD4+CD28+ T cells by oxidative stress, if PP5 transfection causes overexpression of methylation sensitive genes in T cells, and if PP5 is overexpressed in lupus T cells. Results PP5 was found to be overexpressed in CD4+CD28+ T cells treated with H2O2 and ONOO− and in T cells from lupus patients. Conclusion The results indicate that PP5 increases expression of methylation sensitive T cell genes, and may contribute to the aberrant gene expression in CD4+CD28+ T cells that characterize lupus flares as well as the aberrant gene expression in CD4+CD28− T cells that promote atherosclerosis. PMID:28239687

  12. Hereditary kidney diseases: highlighting the importance of classical Mendelian phenotypes.

    PubMed

    Benoit, Geneviève; Machuca, Eduardo; Heidet, Laurence; Antignac, Corinne

    2010-12-01

    A Mendelian inheritance underlies a nonnegligible proportion of hereditary kidney diseases, suggesting that the encoded proteins are essential for maintenance of the renal function. The identification of genes involved in congenital anomalies of the kidney and in familial forms of nephrotic syndrome significantly increased our understanding of the renal development and kidney filtration barrier physiology. This review will focus on the classical phenotype and clinical heterogeneity observed in the monogenic forms of these disorders. In addition, the role of susceptibility genes in kidney diseases with a complex inheritance will also be discussed.

  13. Polymorphism of the phosphoserine phosphatase gene in Streptococcus thermophilus and its potential use for typing and monitoring of population diversity.

    PubMed

    Ricciardi, Annamaria; De Filippis, Francesca; Zotta, Teresa; Facchiano, Angelo; Ercolini, Danilo; Parente, Eugenio

    2016-11-07

    The phosphoserine phosphatase gene (serB) of Streptococcus thermophilus is the most polymorphic gene among those used in Multilocus Sequence Typing schemes for this species and has been used for both genotyping of isolates and for evaluation of population diversity. However, the information on the potential of this gene as a marker for diversity in S. thermophilus species is still fragmentary. In this study, we evaluated serB nucleotide polymorphism and its potential impact on protein structure using data from traditional sequencing. In addition we evaluated the ability of serB targeted high-throughput sequencing in studying the diversity of S. thermophilus populations in cheese and starter cultures. Data based on traditional cultivation based techniques and sequencing provided evidence that the distribution of serB alleles varies significantly in some environments (commercial starter cultures, traditional starter cultures, cheese). Mutations had relatively little impact on predicted protein structure and were not found in domains that are predicted to be important for its functionality. Cultivation independent, serB targeted high-throughput sequencing provided evidence for significantly different alleles distribution in different cheese types and detected fluctuations in alleles abundance in a mixed strain starter reproduced by backslopping. Notwithstanding some shortcomings of this method that are discussed here, the cultivation independent approach appears to be more sensitive than cultivation based approaches based on isolation and traditional sequencing.

  14. A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability.

    PubMed Central

    Parish, T; Liu, J; Nikaido, H; Stoker, N G

    1997-01-01

    A bacteriophage infection mutant (strain LIMP7) of Mycobacterium smegmatis was isolated following transposon mutagenesis. The mutant showed an unusual phenotype, in that all phages tested produced larger plaques on this strain compared to the parent strain. Other phenotypic characteristics of the mutant were slower growth, increased clumping in liquid culture, increased resistance to chloramphenicol and erythromycin, and increased sensitivity to isoniazid and several beta-lactam antibiotics. Permeability studies showed decreases in the accumulation of lipophilic molecules (norfloxacin and chenodeoxycholate) and a small increase with hydrophilic molecules (cephaloridine); taken together, these characteristics indicate an altered cell envelope. The DNA adjacent to the transposon in LIMP7 was cloned and was shown to be highly similar to genes encoding bacterial and mammalian inositol monophosphate phosphatases. Inositol is important in mycobacteria as a component of the major thiol mycothiol and also in the cell wall, with phosphatidylinositol anchoring lipoarabinomannan (LAM) in the cell envelope. In LIMP7, levels of phosphatidylinositol dimannoside, the precursor of LAM, were less than half of those in the wild-type strain, confirming that the mutation had affected the synthesis of inositol-containing molecules. The impA gene is located within the histidine biosynthesis operon in both M. smegmatis and Mycobacterium tuberculosis, lying between the hisA and hisF genes. PMID:9401044

  15. Assignment of the human protein tyrosine phosphatase epsilon (PTPRE) gene to chromosome 10q26 by fluorescence in situ hybridization

    SciTech Connect

    Maagdenberg, A.M.J.M. van den; Hurk, H.H. van den; Wieringa, B.

    1995-11-01

    Phosphorylation of cellular protein tyrosine residues is an important mechanism for the transduction of external signals to the intracellular compartment. Protein tyrosine phosphatases (PTPases) act in concert with protein tyrosine kinases (PTKs) to regulate the level of tyrosine phosphorylation in these proteins. PTKs have been studied in detail, and many have been shown to be proto-oncogenes. Because PTPases can be considered functional antagonists of PTKs it has been postulated that these PTPases might act as tumor suppressors. Over 30 different PTPase genes have been isolated so far, and the chromosomal localization has been determined for many of them. Comparison of such mapping data with temporal and spatial expression patterns of individual PTPase genes and losses of heterozygosity (LOH) in relevant tumor types could be indicative of their proposed tumor suppressive activity. Until now, chromosomal deletions have been reported only for the PTPRG gene in primary renal and lung carcinomas and cancer-derived cell lines, but a causal role for a loss of PTPase activity in tumor formation remains to be determined. 15 refs., 1 fig.

  16. [Delivery of secreted placental alkaline phosphatase (SEAP) gene in vitro and in vivo as a component of recombinant avian adenovirus (CELO)].

    PubMed

    Logunov, D Iu; Cherenova, L V; Shmarov, M M; Shashkova, E V; Verkhovskaia, L V; Doronin, K K; Naroditskiĭ, B S

    2002-01-01

    Recombinant adenoviruses capable of expressing the gene of secreted placentary alkaline phosphatase (SEAP) under control of CMV-promoter was obtained on the basis of CELO avian adenovirus and human adenovirus-5 (Ad5) genomes. The efficiency of the CELO vector was determined in experiments with transduction of human (293, A549, and H1299), mouse (B16), and avian (LMH) cell cultures. It was shown in C57BL/6 mice in vivo that SEAP gene is expressed under conditions of intravenous, intranasal, and intratumoral application of recombinant adenovirus CELO-SEAP. The duration of expression of the alkaline phosphatase CELO = SEAP gene in immunocompetent mouse body was 21 days. The level of SEAP gene expression was measured in the allantois fluid of chicken embryo infected with recombinant adenovirus CELO-SEAP.

  17. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress.

    PubMed

    Babula-Skowrońska, Danuta; Ludwików, Agnieszka; Cieśla, Agata; Olejnik, Anna; Cegielska-Taras, Teresa; Bartkowiak-Broda, Iwona; Sadowski, Jan

    2015-07-01

    In this report we characterized the Arabidopsis ABI1 gene orthologue and Brassica napus gene paralogues encoding protein phosphatase 2C (PP2C, group A), which is known to be a negative regulator of the ABA signaling pathway. Six homologous B. napus sequences were identified and characterized as putative PP2C group A members. To gain insight into the conservation of ABI1 function in Brassicaceae, and understand better its regulatory effects in the drought stress response, we generated transgenic B. napus plants overexpressing A. thaliana ABI1. Transgenic plants subjected to drought showed a decrease in relative water content, photosynthetic pigments content and expression level of RAB18- and RD19A-drought-responsive marker genes relative to WT plants. We present the characterization of the drought response of B. napus with the participation of ABI1-like paralogues. The expression pattern of two evolutionarily distant paralogues, BnaA01.ABI1.a and BnaC07.ABI1.b in B. napus and their promoter activity in A. thaliana showed differences in the induction of the paralogues under dehydration stress. Comparative sequence analysis of both BnaABI1 promoters showed variation in positions of cis-acting elements that are especially important for ABA- and stress-inducible expression. Together, these data reveal that subfunctionalization following gene duplication may be important in the maintenance and functional divergence of the BnaABI1 paralogues. Our results provide a framework for a better understanding of (1) the role of ABI1 as a hub protein regulator of the drought response, and (2) the differential involvement of the duplicated BnaABI1 genes in the response of B. napus to dehydration-related stresses.

  18. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress

    PubMed Central

    Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue

    2014-01-01

    Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523

  19. Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions.

    PubMed Central

    Prinz, W A; Beckwith, J

    1994-01-01

    To compare two approaches to analyzing membrane protein topology, a number of alkaline phosphatase fusions to membrane proteins were converted to beta-lactamase fusions. While some alkaline phosphatase fusions near the N terminus of cytoplasmic loops of membrane proteins have anomalously high levels of activity, the equivalent beta-lactamase fusions do not. This disparity may reflect differences in the folding of beta-lactamase and alkaline phosphatase in the cytoplasm. PMID:7929016

  20. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice.

    PubMed

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Kim, Hakbum; Eun, Moo-Young; Jin, Il-Doo; Cha, Young-Soon; Yun, Doh-Won; Ahn, Byung-Ohg; Lee, Myung Chul; Lee, Gang-Seob; Yoon, Ung-Han; Lee, Jung-Sook; Lee, Yeon-Hee; Suh, Seok-Cheol; Jiang, Wenzhu; Yang, Jung-Il; Jin, Ping; McCouch, Susan R; An, Gynheung; Koh, Hee-Jong

    2010-01-01

    Although susceptibility to seed shattering causes severe yield loss during cereal crop harvest, it is an adaptive trait for seed dispersal in wild plants. We previously identified a recessive shattering locus, sh-h, from the rice shattering mutant line Hsh that carries an enhanced abscission layer. Here, we further mapped sh-h to a 34-kb region on chromosome 7 by analyzing 240 F(2) plants and five F(3) lines from the cross between Hsh and Blue&Gundil. Hsh had a point mutation at the 3' splice site of the seventh intron within LOC_Os07g10690, causing a 15-bp deletion of its mRNA as a result of altered splicing. Two transferred DNA (T-DNA) insertion mutants and one point mutant exhibited the enhanced shattering phenotype, confirming that LOC_Os07g10690 is indeed the sh-h gene. RNA interference (RNAi) transgenic lines with suppressed expression of this gene exhibited greater shattering. This gene, which encodes a protein containing a conserved carboxy-terminal domain (CTD) phosphatase domain, was named Oryza sativa CTD phosphatase-like 1 (OsCPL1). Subcellular localization and biochemical analysis revealed that the OsCPL1 protein is a nuclear phosphatase, a common characteristic of metazoan CTD phosphatases involved in cell differentiation. These results demonstrate that OsCPL1 represses differentiation of the abscission layer during panicle development.

  1. Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae.

    PubMed

    Sharmin, Dilruba; Sasano, Yu; Sugiyama, Minetaka; Harashima, Satoshi

    2014-10-01

    A key mechanism of signal transduction in eukaryotes is reversible protein phosphorylation, mediated through protein kinases and protein phosphatases (PPases). Modulation of signal transduction by this means regulates many biological processes. Saccharomyces cerevisiae has 40 PPases, including seven protein phosphatase 2C (PP2C PPase) genes (PTC1-PTC7). However, their precise functions remain poorly understood. To elucidate their cellular functions and to identify those that are redundant, we constructed 127 strains with deletions of all possible combinations of the seven PP2C PPase genes. All 127 disruptants were viable under nutrient-rich conditions, demonstrating that none of the combinations induced synthetic lethality under these conditions. However, several combinations exhibited novel phenotypes, e.g. the Δptc5Δptc7 double disruptant and the Δptc2Δptc3Δptc5Δptc7 quadruple disruptant exhibited low (13°C) and high (37°C) temperature-sensitive growth, respectively. Interestingly, the septuple disruptant Δptc1Δptc2Δptc3Δptc4Δptc5Δptc6Δptc7 showed an essentially normal growth phenotype at 37°C. The Δptc2Δptc3Δptc5Δptc7 quadruple disruptant was sensitive to LiCl (0.4 m). Two double disruptants, Δptc1Δptc2 and Δptc1Δptc4, displayed slow growth and Δptc1Δptc2Δptc4 could not grow on medium containing 1.5 m NaCl. The Δptc1Δptc6 double disruptant showed increased sensitivity to caffeine, congo red and calcofluor white compared to each single deletion. Our observations indicate that S. cerevisiae PP2C PPases have a shared and important role in responses to environmental stresses. These disruptants also provide a means for exploring the molecular mechanisms of redundant PTC gene functions under defined conditions.

  2. Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase.

    PubMed Central

    Dickinson, Robin J; Williams, David J; Slack, David N; Williamson, Jill; Seternes, Ole-Morten; Keyse, Stephen M

    2002-01-01

    Mitogen-activated protein kinases (MAPKs) play a vital role in cellular growth control, but far less is known about these signalling pathways in the context of embryonic development. Duration and magnitude of MAPK activation are crucial factors in cell fate decisions, and reflect a balance between the activities of upstream activators and specific MAPK phosphatases (MKPs). Here, we report the isolation and characterization of the murine Pyst3 gene, which encodes a cytosolic dual-specificity MKP. This enzyme selectively interacts with, and is catalytically activated by, the 'classical' extracellular signal-regulated kinases (ERKs) 1 and 2 and, to a lesser extent, the stress-activated MAPK p38alpha. These properties define the ability of this enzyme to dephosphorylate and inactivate ERK1/2 and p38alpha, but not JNK (c-Jun N-terminal kinase) in vivo. When expressed in mammalian cells, the Pyst3 protein is predominantly cytoplasmic. Furthermore, leptomycin B causes a complete redistribution of the protein to the nucleus, implicating a CRM (chromosomal region maintenance)1/exportin 1-dependent nuclear export signal in determining the subcellular localization of this enzyme. Finally, whole-mount in situ hybridization studies in mouse embryos reveal that the Pyst3 gene is expressed specifically in the placenta, developing liver and in migratory muscle cells. Our results suggest that this enzyme may have a critical role in regulating the activity of MAPK signalling during early development and organogenesis. PMID:11988087

  3. Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana.

    PubMed

    Zhang, Jihong; Li, Xiushan; He, Zhimin; Zhao, Xiaoying; Wang, Qiming; Zhou, Bo; Yu, Dashi; Huang, Xinqun; Tang, Dongying; Guo, Xinhong; Liu, Xuanming

    2013-03-01

    Protein phosphatases type 2C (PP2Cs) from group A, which includes the ABI1/HAB1 and PP2CA branches, are key negative regulators of ABA signaling. HAI-1 gene had been shown to affect both seed and vegetative responses to ABA, which is one of PP2Cs clade A in Arabidopsis thaliana. Transgenic plants containing pHAI-1::GUS (β-glucuronidase) displayed GUS activity existing in the vascular system of leave veins, stems and petioles. Green fluorescent protein fused HAI-1 (HAI-1-GFP) was found in the nucleus through transient transformation assays with onion epidermal cells. The water-loss assays indicated the loss-of-function mutants did not show symptoms of wilting and they had still turgid green rosette leaves. The assays of seed germination by exogenous ABA and NaCl manifested that the loss-of-function mutants displayed higher insensitivity than wild-type plants. Taken together, the final results suggest that the HAI-1 (AT5G59220) encoded a nuclear protein and it can be highly induced by ABA and wound in Arabidposis, the stress-tolerance phenotype showed a slightly improvement when HAI-1 gene was disrupted.

  4. Comparative analysis of alkaline phosphatase-encoding genes (phoX) in two contrasting zones of Lake Taihu.

    PubMed

    Dai, Jiangyu; Chen, Dan; Wu, Shiqiang; Wu, Xiufeng; Zhou, Jie; Tang, Xiangming; Shao, Keqiang; Gao, Guang

    2015-03-01

    Limnetic habitats that are dominated by either algae or macrophytes represent the 2 dominant ecosystems in shallow lakes. We assessed seasonal variations in the diversity and abundance of alkaline phosphate-encoding genes (phoX) in these 2 zones of Lake Taihu, which is a large, shallow, eutrophic lake in China. There was no significant difference in seasonal mean phoX diversity between the 2 zones, whereas the seasonal mean phoX abundance in the macrophyte-dominated region was higher than that in the algae-dominated region. The bulk of the genotypes in the 2 regions were most similar to the alphaproteobacterial and betaproteobacterial phoX. Genotypes most similar to phoX affiliated with Betaproteobacteria were present with greater diversity in the macrophyte-dominated zone than in the algae-dominated zone. In the algae-dominated zone, the relative proportion of genotypes most similar to cyanobacterial phoX was highest (38.8%) in summer. In addition to the different genotype structures and environmental factors between the 2 stable states, the lower gene abundances and higher alkaline phosphatase activities in Meiliang Bay in summer than those in Xukou Bay reveals different organophosphate-mineralizing modes in these 2 contrasting habitats.

  5. Phosphatase and tensin homologue and pituitary tumor-transforming gene in pituitary adenomas. Clinical-pathologic and immunohistochemical analysis.

    PubMed

    Tena-Suck, Martha Lilia; Ortiz-Plata, Alma; de la Vega, Horacio Astudillo

    2008-08-01

    Pituitary tumor-transforming gene (PTTG) is also known to induce angiogenesis during pituitary tumorigenesis. It has not been clarified whether PTTG functions as a cytoplasmic or a nuclear protein. Pituitary tumor-transforming gene-1 is usually expressed in most pituitary tumors, and little is known about phosphatase and tensin homologue (PTEN). In our knowledge, it has not been studied in pituitary tumors. The aim of this study was to determine the correlation between proliferating cell nuclear antigen (PCNA) labeling index (LI), PTEN, and PTTG-1 immunoexpression in pituitary adenomas. Forty-five pituitary adenomas were included-46.7% were males and 53.7% were females. The mean age was 43.18 +/- 9.42 years (27-70 years). For functional pituitary adenoma (PA), it was 41.92 +/- 6.63, and for nonfunctional pituitary adenomas, it was 44.62 +/- 11.85 (P = .003). Proliferating cell nuclear antigen LI range was 19.42 +/- 5.49; in functional pituitary adenomas, it was 41.92 +/- 6.63, and in nonfunctional adenomas, it was 44.62 +/- 11.85 (P = .081). The PTEN immunoreaction was positive-weak in 21 (47%), moderate in 19 (42%), and strong in 5 (11%; P = .000). The PTTG-1 gene was positive-weak in 18 (41%), moderate in 19 (41%), and strong in 6 (13%; P = .000). When we correlated PTEN + PCNA, it was P =.004, and PTEN + PTTG-1, it was P = .019. And when we correlated PCNA + PTGG-1, it was P = .262. In our results, we observed higher expression of PCNA-LI and PTTG-1 and loss of expression of PTEN. Nonfunctional hypophysis adenomas presented a higher PCNA, PTTG-1, and PTEN expression than functional ones. There was no difference between single-hormone-producing hypophysis adenomas or multiple-hormone-producing ones. Necrosis and hemorrhage were associated with PTEN expression, whereas atypias and mitosis figures were associated to PTTG-1 expression.

  6. Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells.

    PubMed

    Castilla, Carolina; Flores, M Luz; Conde, José M; Medina, Rafael; Torrubia, Francisco J; Japón, Miguel A; Sáez, Carmen

    2012-04-01

    PTPL1, a non-receptor type protein tyrosine phosphatase, has been involved in the regulation of apoptosis and invasiveness of various tumour cell types, but its role in prostate cancer remained to be investigated. We report here that downregulation of PTPL1 by small interfering RNA in PC3 cells decreases cell proliferation and concomitantly reduces the expression of cell cycle-related proteins such as cyclins E and B1, PCNA, PTTG1 and phospho-histone H3. PTPL1 downregulation also increases the invasion ability of PC3 cells through Matrigel coated membranes. cDNA array of PTPL1-silenced PC3 cells versus control cells showed an upregulation of invasion-related genes such as uPA, uPAR, tPA, PAI-1, integrin α6 and osteopontin. This increased expression was also confirmed in PTPL1-silenced DU145 prostate cancer cells by quantitative real time PCR and western blot. These findings suggest that PTPL1 is an important mediator of central cellular processes such as proliferation and invasion.

  7. Evolution of Bacterial-Like Phosphoprotein Phosphatases in Photosynthetic Eukaryotes Features Ancestral Mitochondrial or Archaeal Origin and Possible Lateral Gene Transfer1[C][W][OPEN

    PubMed Central

    Uhrig, R. Glen; Kerk, David; Moorhead, Greg B.

    2013-01-01

    Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins. PMID:24108212

  8. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer.

    PubMed

    Uhrig, R Glen; Kerk, David; Moorhead, Greg B

    2013-12-01

    Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.

  9. The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages

    PubMed Central

    Thiel, Nadine; Keyser, Kirsten A.; Oduro, Jennifer D.; Wagner, Karen; Halenius, Anne; Lenac Roviš, Tihana; Brinkmann, Melanie M.; Jonjić, Stipan; Cicin-Sain, Luka

    2016-01-01

    The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tail-anchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction. PMID:27926943

  10. Exome Sequencing Identifies Potential Risk Variants for Mendelian Disorders at High Prevalence in Qatar

    PubMed Central

    Rodriguez-Flores, Juan L.; Fakhro, Khalid; Hackett, Neil R.; Salit, Jacqueline; Fuller, Jennifer; Agosto-Perez, Francisco; Gharbiah, Maey; Malek, Joel A.; Zirie, Mahmoud; Jayyousi, Amin; Badii, Ramin; Al-Marri, Ajayeb Al-Nabet; Chouchane, Lotfi; Stadler, Dora J.; Hunter-Zinck, Haley; Mezey, Jason G.; Crystal, Ronald G.

    2013-01-01

    Exome sequencing of families of related individuals has been highly successful in identifying genetic polymorphisms responsible for Mendelian disorders. Here, we demonstrate the value of the reverse approach, where we use exome sequencing of a sample of unrelated individuals to analyze allele frequencies of known causal mutations for Mendelian diseases. We sequenced the exomes of 100 individuals representing the three major genetic subgroups of the Qatari population (Q1 Bedouin, Q2 Persian-South Asian, Q3 African) and identified 37 variants in 33 genes with effects on 36 clinically significant Mendelian diseases. These include variants not present in 1000 Genomes and variants at high frequency when compared to 1000 Genomes populations. Several of these Mendelian variants were only segregating in one Qatari subpopulation, where the observed subpopulation specificity trends were confirmed in an independent population of 386 Qataris. Pre-marital genetic screening in Qatar tests for only 4 out of the 37, such that this study provides a set of Mendelian disease variants with potential impact on the epidemiological profile of the population that could be incorporated into the testing program if further experimental and clinical characterization confirms high penetrance. PMID:24123366

  11. Gene deletion of protein tyrosine phosphatase 1B protects against sepsis-induced cardiovascular dysfunction and mortality.

    PubMed

    Coquerel, David; Neviere, Remi; Delile, Eugenie; Mulder, Paul; Marechal, Xavier; Montaigne, David; Renet, Sylvanie; Remy-Jouet, Isabelle; Gomez, Elodie; Henry, Jean-Paul; do Rego, Jean-Claude; Richard, Vincent; Tamion, Fabienne

    2014-05-01

    Cardiovascular dysfunction is a major cause of mortality in patients with sepsis. Recently, we showed that gene deletion or pharmacological inhibition of protein tyrosine phosphatase 1B (PTP1B) improves endothelial dysfunction and reduces the severity of experimental heart failure. However, the cardiovascular effect of PTP1B invalidation in sepsis is unknown. Thus, we explored the beneficial therapeutic effect of PTP1B gene deletion on lipopolysaccharide (LPS)-induced cardiovascular dysfunction, inflammation, and mortality. PTP1B(-/-) or wild-type mice received LPS (15 mg/kg) or vehicle followed by subcutaneous fluid resuscitation (saline, 30 mL/kg). α-1-dependent constriction and endothelium-dependent dilatation, assessed on isolated perfused mesenteric arteries, were impaired 8 hours after LPS and significantly improved in PTP1B(-/-) mice. This was associated with reduced vascular expression of interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, cyclooxygenase-2, and inducible nitric oxide synthase mRNA. PTP1B gene deletion also limited LPS-induced cardiac dysfunction assessed by echocardiography, left ventricular pressure-volume curves, and in isolated perfused hearts. PTP1B(-/-) mice also displayed reduced LPS-induced cardiac expression of tumor necrosis factor-α, interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and Gp91phox, as well as of several markers of cellular infiltration. PTP1B deficiency also reduced cardiac P38 and extracellular signal-regulated protein kinase 1 and 2 phosphorylation and increased phospholamban phosphorylation. Finally, PTP1B(-/-) mice displayed a markedly reduced LPS-induced mortality, an effect also observed using a pharmacological PTP1B inhibitor. PTP1B deletion also improved survival in a cecal ligation puncture model of sepsis. PTP1B gene deletion protects against septic shock-induced cardiovascular dysfunction and mortality, and this may be the result of

  12. Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a.

    PubMed Central

    Lei, K J; Pan, C J; Shelly, L L; Liu, J L; Chou, J Y

    1994-01-01

    Glycogen storage disease (GSD) type 1a is an autosomal recessive inborn error of metabolism caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Southern blot hybridization analysis using a panel of human-hamster hybrids showed that human G6Pase is a single-copy gene located on chromosome 17. To correlate specific defects with clinical manifestations of this disorder, we identified mutations in the G6Pase gene of GSD type 1a patients. In the G6Pase gene of a compound heterozygous patient (LLP), two mutations in exon 2 of one allele and exon 5 of the other allele were identified. The exon 2 mutation converts an arginine at codon 83 to a cysteine (R83C). This mutation, previously identified by us in another GSD type 1a patient, was shown to have no detectable phosphohydrolase activity. The exon 5 mutation in the G6Pase gene of LLP converts a glutamine codon at 347 to a stop (Q347SP). This Q347SP mutation was also detected in all exon 5 subclones (five for each patient) of two homozygous patients, KB and CB, siblings of the same parents. The predicted Q347SP mutant G6Pase is a truncated protein of 346 amino acids, 11 amino acids shorter than the wild type G6Pase of 357 residues. Site-directed mutagenesis and transient expression assays demonstrated that G6Pase-Q347SP was devoid of G6Pase activity. G6Pase is an endoplasmic reticulum (ER) membrane-associated protein containing an ER retention signal, two lysines (KK), located at residues 354 and 355. We showed that the G6Pase-K355SP mutant containing a lysine-355 to stop codon mutation is enzymatically active. Our data demonstrate that the ER protein retention signal in human G6Pase is not essential for activity. However, residues 347-354 may be required for optimal G6Pase catalysis. Images PMID:8182131

  13. Teaching Mendelian Genetics with the Computer.

    ERIC Educational Resources Information Center

    Small, James W., Jr.

    Students in general undergraduate courses in both biology and genetics seem to have great difficulty mastering the basic concepts of Mendelian Genetics and solving even simple problems. In an attempt to correct this situation, students in both courses at Rollins College were introduced to three simulation models of the genetics of the fruit…

  14. Teaching Mendelian Genetics with the Computer.

    ERIC Educational Resources Information Center

    Small, James W., Jr.

    Students in general undergraduate courses in both biology and genetics seem to have great difficulty mastering the basic concepts of Mendelian Genetics and solving even simple problems. In an attempt to correct this situation, students in both courses at Rollins College were introduced to three simulation models of the genetics of the fruit…

  15. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity

    PubMed Central

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    Background and Aims: In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. Methods: The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Results: Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p < 0.05) in the rhizosphere of TI. The populations and diversities of PSB, PMB, and ALP genes increased significantly in the rhizosphere of TI, compared to the rhizosphere of TM. Conclusion: The results indicated that intercropping with potato onion promoted the growth and P

  16. Avirulence gene mapping in the Hessian fly (Mayetiola destructor) reveals a protein phosphatase 2C effector gene family

    USDA-ARS?s Scientific Manuscript database

    The genetic tractability of the Hessian fly (HF, Mayetiola destructor) provides an opportunity to investigate the mechanisms insects use to induce plant gall formation. Here we demonstrate that capacity using the newly sequenced HF genome to identify the gene (vH24) that elicits the effector-trigger...

  17. Arabidopsis phosphatase under-producer mutants pup1 and pup3 contain mutations in the AtPAP10 and AtPAP26 genes.

    PubMed

    Zhang, Ye; Wang, Xiaoyue; Liu, Dong

    2015-01-01

    Production and secretion of acid phosphatases (APases) is a hallmark adaptive response of plants to phosphate (Pi) deprivation. Researchers have long hypothesized that Pi starvation-induced APases are involved in internal Pi recycling and remobilization as well as in external Pi utilization. Two phosphatase under-producer (pup) mutants, pup1 and pup3, were previously isolated in Arabidopsis. Characterization of these 2 pup mutants provided the first genetic evidence for the above hypothesis. To date, however, the molecular lesions in these 2 pup mutants remain unknown. In this work, we demonstrate that pup1 and pup3 contain point mutations in the Arabidopsis purple acid phosphatase gene AtPAP10 and AtPAP26, respectively. Our results answer a long-standing question about the molecular identity of the PUP1 and PUP3 genes and corroborate the conclusions from previous studies regarding the function of AtPAP10 and AtPAP26 in plant acclimation to Pi deprivation.

  18. Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5'-flanking sequence.

    PubMed

    Argaud, D; Zhang, Q; Pan, W; Maitra, S; Pilkis, S J; Lange, A J

    1996-11-01

    The mRNA level of the catalytic subunit of rat liver glucose-6-phosphatase (Glu-6-Pase) was regulated by hormones commensurate with activity changes in vivo. Insulin exerts a dominant negative effect on the mRNA levels of Glu-6-Pase. Both mRNA levels and activities of the enzyme are low in the fed and refed state where insulin levels are elevated. Insulin administration to diabetic rats also decreases levels of mRNA and Glu-6-Pase activity. Insulin at a concentration of 1 nmol/l completely overcomes the stimulatory effect of glucocorticoids on Glu-6-Pase message levels in FAO hepatoma cells. The stimulatory response to glucocorticoid in FAO cells is biphasic, with maxima seen at 3 and 18 h after hormone addition (respectively 1.6- and 3.3-fold). 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) causes a fourfold increase in Glu-6-Pase mRNA at 3 h in FAO cells. The gene of rat liver Glu-6-Pase is 13 kilobases in length and comprised of 5 exons. The exon-intron structure is completely conserved when compared with the mouse and human genes. A 0.5-kb 3'-untranslated region, which is present in rat and mouse liver Glu-6-Pase cDNA, is absent in the Glu-6-Pase gene reported here, indicating the possible duplication of either the terminal fifth exon or the entire gene. The promoter region contains a consensus core CCAAT element at position -207 and a TATAAA at position -31. Several possible response elements have been identified in the 5'-flanking region (from a HindIII site at position -1641). A consensus glucocorticoid response element is located at base pair -1552, a 9/10 match of the insulin response sequence is located at position -1449, and a 7/8 match of the cAMP response element is located at position -164.

  19. A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding.

    PubMed

    Hirota, Keiko; Sakamaki, Jun-ichi; Ishida, Junji; Shimamoto, Yoko; Nishihara, Shigeki; Kodama, Norio; Ohta, Kazuhide; Yamamoto, Masayuki; Tanimoto, Keiji; Fukamizu, Akiyoshi

    2008-11-21

    Glucokinase (GK) and glucose-6-phosphatase (G6Pase) regulate rate-limiting reactions in the physiologically opposed metabolic cascades, glycolysis and gluconeogenesis, respectively. Expression of these genes is conversely regulated in the liver in response to fasting and feeding. We explored the mechanism of transcriptional regulation of these genes by nutritional condition and found that reciprocal function of HNF-4 and Foxo1 plays an important role in this process. In the GK gene regulation, Foxo1 represses HNF-4-potentiated transcription of the gene, whereas it synergizes with HNF-4 in activating the G6Pase gene transcription. These opposite actions of Foxo1 concomitantly take place in the cells under no insulin stimulus, and such gene-specific action was promoter context-dependent. Interestingly, HNF-4-binding elements (HBEs) in the GK and G6Pase promoters were required both for the insulin-stimulated GK gene activation and insulin-mediated G6Pase gene repression. Indeed, mouse in vivo imaging showed that mutating the HBEs in the GK and G6Pase promoters significantly impaired their reactivity to the nutritional states, even in the presence of intact Foxo1-binding sites (insulin response sequences). Thus, in the physiological response of the GK and G6Pase genes to fasting/feeding conditions, Foxo1 distinctly decodes the promoter context of these genes and differently modulates the function of HBE, which then leads to opposite outcomes of gene transcription.

  20. Inactivation of LAR family phosphatase genes Ptprs and Ptprf causes craniofacial malformations resembling Pierre-Robin sequence.

    PubMed

    Stewart, Katherine; Uetani, Noriko; Hendriks, Wiljan; Tremblay, Michel L; Bouchard, Maxime

    2013-08-01

    Leukocyte antigen related (LAR) family receptor protein tyrosine phosphatases (RPTPs) regulate the fine balance between tyrosine phosphorylation and dephosphorylation that is crucial for cell signaling during development and tissue homeostasis. Here we show that LAR RPTPs are required for normal development of the mandibular and maxillary regions. Approximately half of the mouse embryos lacking both Ptprs (RPTPσ) and Ptprf (LAR) exhibit micrognathia (small lower jaw), cleft palate and microglossia/glossoptosis (small and deep tongue), a phenotype closely resembling Pierre-Robin sequence in humans. We show that jaw bone and cartilage patterning occurs aberrantly in LAR family phosphatase-deficient embryos and that the mandibular arch harbors a marked decrease in cell proliferation. Analysis of signal transduction in embryonic tissues and mouse embryonic fibroblast cultures identifies an increase in Bmp-Smad signaling and an abrogation of canonical Wnt signaling associated with loss of the LAR family phosphatases. A reactivation of β-catenin signaling by chemical inhibition of GSK3β successfully resensitizes LAR family phosphatase-deficient cells to Wnt induction, indicating that RPTPs are necessary for normal Wnt/β-catenin pathway activation. Together these results identify LAR RPTPs as important regulators of craniofacial morphogenesis and provide insight into the etiology of Pierre-Robin sequence.

  1. Usefulness of Mendelian Randomization in Observational Epidemiology

    PubMed Central

    Bochud, Murielle; Rousson, Valentin

    2010-01-01

    Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. In observational epidemiology, this refers to the use of genetic variants to estimate a causal effect between a modifiable risk factor and an outcome of interest. In this review, we recall the principles of a “Mendelian randomization” approach in observational epidemiology, which is based on the technique of instrumental variables; we provide simulations and an example based on real data to demonstrate its implications; we present the results of a systematic search on original articles having used this approach; and we discuss some limitations of this approach in view of what has been found so far. PMID:20616999

  2. A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN

    PubMed Central

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-01-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways. PMID:25318938

  3. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data.

    PubMed

    Yavorska, Olena O; Burgess, Stephen

    2017-04-07

    MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the Mendelian Rand omization package are released under GNU General Public Licenses (GPL-2|GPL-3).

  4. An in vivo mouse reporter gene (human secreted alkaline phosphatase) model to monitor ovarian tumor growth and response to therapeutics.

    PubMed

    Nilsson, Eric E; Westfall, Suzanne D; McDonald, Claudia; Lison, Tiffany; Sadler-Riggleman, Ingrid; Skinner, Michael K

    2002-02-01

    Developing new anticancer therapeutic regimens requires the measurement of tumor cell growth in response to treatment. This is often accomplished by injecting immunocompromised mice with cells from cancer tissue or cell lines. After treating the animals, tumor weight or volume is measured. Such methods are complicated by inaccuracies in measuring tumor mass and often animals must be killed to measure tumor burden. An in vivo tumor model system is presented in which the tumor cell line was stably transfected with a constitutively expressed marker gene: secreted human placental alkaline phosphatase protein (SEAP). The SEAP gene codes for a heat-stable protein that is produced at levels proportional to the amount of tumor cells in the animal. The SEAP protein is detectable in small blood samples so that animals can be repeatedly sampled over the trial period to monitor the course of tumor progression. OCC1 ovarian carcinoma cells were stably transfected with pCMV-SEAP. The OCC1-SEAP cells were maintained in vitro to monitor the relationship between cell number and SEAP production. Experiments were performed in vivo to determine whether SEAP levels in blood corresponded to tumor burden. OCC1-SEAP cells were injected s.c. or intraperitoneally into nude mice and tumor volume was measured as well as plasma SEAP levels as the tumors developed. S.c. tumor volume correlated well with plasma SEAP levels ( R(2)=0.95). OCC1-SEAP cells were also injected intraperitoneally into nude mice and grown as abdominal tumors. After 3 weeks the animals were killed and the tumors were dissected and weighed. SEAP levels in plasma samples from the time of death correlated with intraperitoneal tumor weight ( R(2)=0.87). Experiments were performed to determine whether measuring SEAP levels could be used to monitor ovarian carcinoma cell response to platinum-containing chemotherapeutic drugs. OCC1-SEAP cells cultured in vitro were treated with the platinum-containing drug carboplatin

  5. Antagonistic coevolution between quantitative and Mendelian traits.

    PubMed

    Yamamichi, Masato; Ellner, Stephen P

    2016-03-30

    Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator-prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species. © 2016 The Author(s).

  6. Antagonistic coevolution between quantitative and Mendelian traits

    PubMed Central

    Ellner, Stephen P.

    2016-01-01

    Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator–prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species. PMID:27009218

  7. Molecular cloning, structural analysis and tissue expression of protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene in Tianfu goat muscle.

    PubMed

    Wan, Lu; Ma, Jisi; Xu, Gangyi; Wang, Daihua; Wang, Nianlu

    2014-02-07

    Calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase, plays a critical role in controlling skeletal muscle fiber type. However, little information is available concerning the expression of calcineurin in goat. Therefore, protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene, also called calcineurin Aα, was cloned and its expression characterized in Tianfu goat muscle. Real time quantitative polymerase chain reaction (RT-qPCR) analyses revealed that Tianfu goat PPP3CA was detected in cardiac muscle, biceps femoris muscle, abdominal muscle, longissimus dors muscle, and soleus muscle. High expression levels were found in biceps femoris muscle, longissimus muscle and abdominal muscle (p < 0.01), and low expression levels were seen in cardiac muscle and soleus muscle (p > 0.05). In addition, the spatial-temporal mRNA expression levels showed different variation trends in different muscles with the age of the goats. Western blotting further revealed that PPP3CA protein was expressed in the above-mentioned tissues, with the highest level in biceps femoris muscle, and the lowest level in soleus muscle. In this study, we isolated the full-length coding sequence of Tianfu goat PPP3CA gene, analyzed its structure, and investigated its expression in different muscle tissues from different age stages. These results provide a foundation for understanding the function of the PPP3CA gene in goats.

  8. Assessing the biological activity of the glucan phosphatase laforin

    PubMed Central

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S.; Sanz, Pascual

    2017-01-01

    Summary Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin’s unique glycogen phosphatase activity. PMID:27514803

  9. Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population.

    PubMed

    Douroudis, K; Prans, E; Haller, K; Nemvalts, V; Rajasalu, T; Tillmann, V; Kisand, K; Uibo, R

    2008-11-01

    Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is considered an important regulator of T-cell activation. Polymorphisms within the PTPN22 gene have been suggested to confer susceptibility to autoimmune endocrine disorders. To evaluate the impact of a functional variation in the PTPN22 gene in type 1 (T1D) and type 2 diabetes (T2D), the PTPN22 C1858T single nucleotide polymorphism (SNP) was studied in the population of Estonian origin, including 170 T1D patients, 244 T2D patients and 230 controls. Using two methods for PTPN22 C1858T detection in parallel, we found that not only T1D but also T2D is associated with the PTPN22 1858T allele. The role of PTPN22 gene in the pathogenesis of T2D is yet unclear and needs further investigation.

  10. Mendelian and non-Mendelian inheritance of newly-arisen chromosome rearrangements.

    PubMed

    Wilby, A S; Parker, J S

    1988-04-01

    Seven centric shifts and three reciprocal interchanges, all newly-arisen in natural populations, have been tested for their inheritance in the dioecious flowering plant Rumex acetosa. In backcrosses between the heterozygote and standard plants transmissions ranged from 0.36 to 0.85 per gamete for the novel chromosome. The inheritance of only four rearrangements correspond to Mendelian expectations while others exhibited either drive or drag. Drive was observed both through the egg and through the pollen indicating heterogeneity of mechanisms in the generation of non-Mendelian patterns of inheritance. This suggests that accumulation may play a significant role in the establishment of chromosomal variants in natural populations.

  11. Improved student linkage of Mendelian and molecular genetic concepts through a yeast-based laboratory module.

    PubMed

    Wolyniak, Michael J

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to present classical and molecular genetic concepts together as an inquiry-based exploration appropriate for high school or introductory undergraduate students. Using the non-essential APQ12 gene in the budding yeast Saccharomyces cerevisiae, students perform PCR, selective growth, and sporulation experiments to establish the ploidy and APQ12 zygosity of a series of unknown strains. Each experiment contributes data to characterize the unknown strains, but complete characterization is not possible without assimilating the data from all of the experiments. The module allows students to consider concepts normally introduced and emphasized in Mendelian genetics and explore them using molecular and experimental tools. Comparison of pre-module and post-module assessment surveys show an increase in student ability to link Mendelian concepts to experimental procedures relying on DNA analysis. The development of modules such as these provides students of all backgrounds with the tools to engage the complexities and issues that constitute modern principles of inheritance.

  12. Effect of phosphatase and tensin homology deleted on chromosome 10 (PTEN) gene transfection on reversal of multidrug resistance in K562/ADM cells.

    PubMed

    Cheng, Zhiyong; Yang, Ning; Liang, Wentong; Yan, Xiaoyan; Li, Lin; Pan, Ling

    2012-07-01

    The phosphatase and tensin homology deleted on chromosome 10 (PTEN) gene is a novel tumor suppressor gene of the phosphatase family. Studies have shown that the PTEN gene is probably involved in human malignant disease pathogenesis, multidrug resistance, angiogenesis and extramedullary infiltration. This study was designed to investigate the effect of wild-type PTEN gene transfection on drug resistance reversal in K562/ADM leukemia cells in vitro and the possible mechanism. A recombinant adenovirus containing green fluorescent protein gene and wild-type PTEN gene (Ad-PTEN-GFP) or a recombined adenovirus containing green fluorescent protein gene only (Ad-GFP) was transfected into K562/ADM cells. These cells were then treated with different concentrations of adriamycin, cytarabine or arsenic trioxide, respectively. The half-maximal inhibitory concentration (IC(50)) of each drug was detected by MTT assay and the drug resistance reversal factor (RF) was calculated. The proliferation inhibition rate of these K562/ADM cells treated with or without the above-mentioned drugs was determined by MTT assay and the apoptosis rate was evaluated by flow cytometry. PTEN, nuclear factor-κB (NF-κB), I-κB, p53, multidrug resistance genes MDR1 and MRP, and apoptosis related genes Bcl-2, Bcl-xL and Bax mRNA levels were detected by real-time fluorescence relative-quantification reverse transcription polymerase chain reaction (FQ-PCR). PTEN, Akt, p-Akt and NF-κB (p65) protein levels were detected by Western blot. Results showed that PTEN gene transfection could increase the sensitivity of K562/ADM cells to chemotherapeutic drugs. The drug resistance reversal index of adriamycin, cytarabine and arsenic trioxide was 3.8-fold, 2.65-fold and 2.64-fold, respectively, after PTEN gene transfection. NF-κB, MDR1, Bcl-2 and Bcl-xL mRNA levels as well as p-Akt and NF-κB (p65) protein levels were down-regulated, while p53 and Bax mRNA levels were up-regulated in K562/ADM cells after

  13. A paralogue of the phosphomutase-like gene family in Candida glabrata, CgPmu2, gained broad-range phosphatase activity due to a small number of clustered substitutions.

    PubMed

    Orlando, Kelly A; Iosue, Christine L; Leone, Sarah G; Davies, Danielle L; Wykoff, Dennis D

    2015-10-15

    Inorganic phosphate is required for a range of cellular processes, such as DNA/RNA synthesis and intracellular signalling. The phosphate starvation-inducible phosphatase activity of Candida glabrata is encoded by the gene CgPMU2 (C. glabrata phosphomutase-like protein). CgPMU2 is part of a three-gene family (∼75% identical) created through gene duplication in the C. glabrata clade; only CgPmu2 is a PHO-regulated broad range acid phosphatase. We identified amino acids that confer broad range phosphatase activity on CgPmu2 by creating fusions of sections of CgPMU2 with CgPMU1, a paralogue with little broad range phosphatase activity. We used site-directed mutagenesis on various fusions to sequentially convert CgPmu1 to CgPmu2. Based on molecular modelling of the Pmu proteins on to a histidine phosphatase crystal structure, clusters of amino acids were found in two distinct regions that were able to confer phosphatase activity. Substitutions in these two regions together conferred broad phosphatase activity on CgPmu1. Interestingly, one change is a histidine adjacent to the active site histidine of CgPmu2 and it exhibits a novel ability to partially replace the conserved active site histidine in CgPmu2. Additionally, a second amino acid change was able to confer nt phosphatase activity to CgPmu1, suggesting single amino acid changes neofunctionalize CgPmu2. © 2015 Authors; published by Portland Press Limited.

  14. Mendelian randomization of serum urate and parkinson disease progression.

    PubMed

    Simon, Kelly Claire; Eberly, Shirley; Gao, Xiang; Oakes, David; Tanner, Caroline M; Shoulson, Ira; Fahn, Stanley; Schwarzschild, Michael A; Ascherio, Alberto

    2014-12-01

    Higher serum urate concentrations predict more favorable prognosis in individuals with Parkinson disease (PD). The purpose of this study was to test the causality of this association using a Mendelian randomization approach. The study was conducted among participants in DATATOP and PRECEPT, 2 randomized trials among patients with early PD. The 808 patients with available DNA were genotyped for 3 SLC2A9 single nucleotide polymorphisms (SNPs) that identify an allele associated with lower urate concentrations, and for selected SNPs in other genes encoding urate transporters that have modest or no effect on serum urate levels. An SLC2A9 score was created based on the total number of minor alleles at the 3 SLC2A9 loci. Primary outcome was disability requiring dopaminergic treatment. Serum urate concentrations were 0.69mg/dl lower among individuals with ≥4 SLC2A9 minor alleles as compared to those with ≤2 (p = 0.0002). The hazard ratio (HR) for progression to disability requiring dopaminergic treatment increased with increasing SLC2A9 score (HR = 1.16, 95% confidence interval [CI] = 1.00-1.35, p = 0.056). In a comparative analysis, the HR was 1.27 (95% CI = 1.00-1.61, p = 0.0497) for a 0.5mg/dl genetically conferred decrease in serum urate, and 1.05 (95% CI = 1.01-1.10, p = 0.0133) for a 0.5mg/dl decrease in measured serum urate. No associations were found between polymorphisms in other genes associated with urate that do not affect serum urate and PD progression. This Mendelian randomization analysis adds to the evidence of a causal protective effect of high urate levels. © 2014 American Neurological Association.

  15. Dephosphorylation of Tyrosine 393 in Argonaute 2 by Protein Tyrosine Phosphatase 1B Regulates Gene Silencing in Oncogenic RAS-Induced Senescence

    PubMed Central

    Yang, Ming; Haase, Astrid D.; Huang, Fang-Ke; Coulis, Gérald; Rivera, Keith D.; Dickinson, Bryan C.; Chang, Christopher J.; Pappin, Darryl J.; Neubert, Thomas A.; Hannon, Gregory J.; Boivin, Benoit; Tonks, Nicholas K.

    2014-01-01

    SUMMARY Oncogenic RAS (H-RASV12) induces premature senescence in primary cells by triggering production of reactive oxygen species (ROS), but the molecular role of ROS in senescence remains elusive. We investigated whether inhibition of protein tyrosine phosphatases by ROS contributed to H-RASV12-induced senescence. We identified protein tyrosine phosphatase 1B (PTP1B) as a major target of H-RASV12-induced ROS. Inactivation of PTP1B was necessary and sufficient to induce premature senescence in H-RASV12-expressing IMR90 fibroblasts. We identified phospho-Tyr 393 of argonaute 2 (AGO2) as a direct substrate of PTP1B. Phosphorylation of AGO2 at Tyr 393 inhibited loading with microRNAs (miRNA) and thus miRNA-mediated gene silencing, which counteracted the function of H-RASV12-induced oncogenic miRNAs. Overall, our data illustrate that premature senescence in H-RASV12-transformed primary cells is a consequence of oxidative inactivation of PTP1B and inhibition of miRNA-mediated gene silencing. PMID:25175024

  16. Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73.

    PubMed

    Wu, Jin-Ru; Shien, Jui-Hung; Shieh, Happy K; Hu, Chung-Chi; Gong, Shuen-Rong; Chen, Ling-Yun; Chang, Poa-Chun

    2007-02-01

    We have identified a new phoX gene encoding the monomeric alkaline phosphatase from Pasteurella multocida X-73. This gene was not found in the published genome sequence of Pasteurella multocida pm70. Characterization of the recombinant PhoX of Pasteurella multocida X-73 showed that it is a monomeric enzyme, activated by Ca(2+) and possibly secreted by the Tat pathway. These features distinguish phosphatases of the PhoX family from those of the PhoA family. All proteins of the PhoX family were found to contain a conserved motif that shares significant sequence homology with the calcium-binding site of a phosphotriesterase known as diisopropylfluorophosphatase. Site-directed mutagenesis revealed that D527 of PhoX might be the ligand bound to the catalytic calcium. This is the first report on identification of homologous sequences between PhoX and the phosphotriesterase and on the potential calcium-binding site of PhoX.

  17. The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae.

    PubMed

    Ruan, Haihua; Yan, Zhihui; Sun, Hao; Jiang, Linghuo

    2007-03-01

    Type 2C protein phosphatase (PP2C) is a monomeric enzyme and requires Mg(2+) or Mn(2+) for its activity. Up to now, seven PP2C-like genes have been identified in the genome of Saccharomyces cerevisiae. However, the protein encoded by the sixth PP2C-like gene, YCR079w, has not been demonstrated to have PP2C activity. In this study, we show that YCR079w confers a rapamycin-resistant function in yeast cells, and we also demonstrate that the YCR079w-encoded protein exhibits characteristics of a typical PP2C. Therefore, YCR079w encodes the sixth PP2C, PTC6, in budding yeast.

  18. A mutation in the PP2C phosphatase gene in a Staphylococcus aureus USA300 clinical isolate with reduced susceptibility to vancomycin and daptomycin.

    PubMed

    Passalacqua, Karla D; Satola, Sarah W; Crispell, Emily K; Read, Timothy D

    2012-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains with reduced susceptibility to vancomycin (MIC of 4 to 8 μg/ml) are referred to as vancomycin-intermediate S. aureus (VISA). In this study, we characterized two isogenic USA300 S. aureus isolates collected sequentially from a single patient with endocarditis where the S. aureus isolate changed from being susceptible to vancomycin (VSSA) (1 μg/ml) to VISA (8 μg/ml). In addition, the VISA isolate lost beta-lactamase activity and showed increased resistance to daptomycin and linezolid. The two strains did not differ in growth rate, but the VISA isolate had a thickened cell wall and was less autolytic. Transcriptome sequencing (RNA-seq) analysis comparing the two isolates grown to late exponential phase showed significant differences in transcription of cell surface protein genes (spa, SBI [second immunoglobulin-binding protein of S. aureus], and fibrinogen-binding proteins), regulatory genes (agrBCA, RNAIII, sarT, and saeRS), and others. Using whole-genome shotgun resequencing, we identified 6 insertion/deletion mutations between the VSSA and VISA isolates. A protein phosphatase 2C (PP2C) family phosphatase had a 6-bp (nonframeshift) insertion mutation in a highly conserved metal binding domain. Complementation of the clinical VISA isolate with a wild-type copy of the PP2C gene reduced the vancomycin and daptomycin MICs and increased autolytic activity, suggesting that this gene contributed to the reduced vancomycin susceptibility phenotype acquired in vivo. Creation of de novo mutants from the VSSA strain resulted in different mutations, demonstrating that reduced susceptibility to vancomycin in USA300 strains can occur via multiple routes, highlighting the complex nature of the VISA phenotype.

  19. MAP kinase phosphatase-1 gene transcription in rat neuroendocrine cells is modulated by a calcium-sensitive block to elongation in the first exon.

    PubMed

    Ryser, S; Tortola, S; van Haasteren, G; Muda, M; Li, S; Schlegel, W

    2001-09-07

    Transcriptional elongation of many eukaryotic, prokaryotic, and viral genes is tightly controlled, which contributes to gene regulation. Here we describe this phenomenon for the MAP kinase phosphatase 1 (MKP-1) immediate early gene. In rat GH4C1 pituitary cells, MKP-1 mRNA is rapidly and transiently induced by the thyrotropin-releasing hormone (TRH) and the epidermal growth factor EGF via transcriptional activation of the gene. Ca(2+) signals are necessary for the induction of MKP-1 in response to TRH but not to EGF. Reporter gene analysis with the newly cloned rat promoter sequence shows only limited induction in response to various stimuli, including TRH or EGF. By nuclear run-on assays we demonstrate that in basal conditions, a strong block to elongation in the first exon regulates the MKP-1 gene and that stimulation with either TRH or EGF overcomes the block. Ca(2+) signals are important to release the MKP-1 elongation block in a manner similar to the c-fos oncogene. These results suggest that a common mechanism of intragenic regulation may be conserved between MKP-1 and c-fos in mammalian cells.

  20. Beyond the simplicity of Mendelian inheritance.

    PubMed

    Schacherer, Joseph

    2016-01-01

    Elucidating the underlying rules that govern the phenotypic diversity observed in natural populations is an old but still unaccomplished goal in biology. In 1865, Gregor Mendel paved the way for the dissection of the underlying genetic basis of traits by setting out to understand the principles of heredity. To date, we still lack a global overview of the spectrum and continuum existing between Mendelian and complex traits within any natural population. In this respect, we recently performed a species-wide survey of Mendelian traits across a large population of isolates using the yeast Saccharomyces cerevisiae. By analyzing the distribution and the inheritance patterns of the trait, we have clearly shown that monogenic mutations can display a significant, variable, and continuous expressivity across different genetic backgrounds. Our study also demonstrated that combining the elegancy of both classical genetics and high-throughput genomics is more than valuable to dissect the genotype-phenotype relationship in natural populations. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. On the Evolutionary Stability of Mendelian Segregation

    PubMed Central

    Úbeda, Francisco; Haig, David

    2005-01-01

    We present a model of a primary locus subject to viability selection and an unlinked locus that causes sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if reciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting, it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population. These results raise questions about the reasons for the ubiquity of Mendelian segregation. PMID:15911587

  2. On the evolutionary stability of Mendelian segregation.

    PubMed

    Ubeda, Francisco; Haig, David

    2005-07-01

    We present a model of a primary locus subject to viability selection and an unlinked locus that causes sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if reciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting, it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population. These results raise questions about the reasons for the ubiquity of Mendelian segregation.

  3. The Effects of Tissue-Nonspecific Alkaline Phosphatase Gene Therapy on Craniosynostosis and Craniofacial Morphology in the FGFR2C342Y/+ Mouse Model of Crouzon Craniosynostosis

    PubMed Central

    Wang, E; Nam, HK; Liu, J; Hatch, NE

    2015-01-01

    Objectives Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-nonspecific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Material & Methods Neonatal Crouzon (FGFRC342Y/+) and wild type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at four weeks post-natal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology was assessed by micro-computed tomography. Results Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphologic analysis revealed craniofacial form differences for inferior surface (p=.023) and cranial height (p=.014) regions between TNAP lentivirus injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=.068). Conclusion These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. PMID:25865549

  4. Regulation of cell cycle-specific gene expression in fission yeast by the Cdc14p-like phosphatase Clp1p.

    PubMed

    Papadopoulou, Kyriaki; Chen, Jun-Song; Mead, Emma; Feoktistova, Anna; Petit, Claudia; Agarwal, Monica; Jamal, Mohhammed; Malik, Asrar; Spanos, Adonis; Sedgwick, Steven G; Karagiannis, Jim; Balasubramanian, Mohan K; Gould, Kathleen L; McInerny, Christopher J

    2010-12-15

    Regulated gene expression makes an important contribution to cell cycle control mechanisms. In fission yeast, a group of genes is coordinately expressed during a late stage of the cell cycle (M phase and cytokinesis) that is controlled by common cis-acting promoter motifs named pombe cell cycle boxes (PCBs), which are bound by a trans-acting transcription factor complex, PCB binding factor (PBF). PBF contains at least three transcription factors, a MADS box protein Mbx1p and two forkhead transcription factors, Sep1p and Fkh2p. Here we show that the fission yeast Cdc14p-like phosphatase Clp1p (Flp1p) controls M-G1 specific gene expression through PBF. Clp1p binds in vivo both to Mbx1p, a MADS box-like transcription factor, and to the promoters of genes transcribed at this cell cycle time. Because Clp1p dephosphorylates Mbx1p in vitro, and is required for Mbx1p cell cycle-specific dephosphorylation in vivo, our observations suggest that Clp1p controls cell cycle-specific gene expression through binding to and dephosphorylating Mbx1p.

  5. Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower.

    PubMed

    Zhu, Huifen; Qian, Weiqiang; Lu, Xuzhong; Li, Dongping; Liu, Xin; Liu, Kunfan; Wang, Daowen

    2005-11-01

    Purple acid phosphatases (PAPs) are metallo-phosphoesterases. Their expression and function have not been systematically investigated in higher plants. In this work, we compared the transcript levels of 28 Arabidopsis PAP (AtPAP) genes in five Arabidopsis organs. The 28 members, although differed in their expression patterns in vegetative organs, were all transcribed in flower. Furthermore, the transcription of seven members (AtPAPs 6, 11, 14, 19, 23, 24 and 25) occurred predominantly in the flower. To begin dissecting the role of AtPAP genes in flower development, further expression and functional analyses were conducted using AtPAP23. Histochemical staining of transgenic plants expressing AtPAP23 promoter-beta-glucuronidase (GUS) gene construct revealed that AtPAP23 transcription was strong in flower apical meristems, but became restricted to petals and anther filaments in fully developed flower. A GST (glutathione S-transferase) fusion protein of AtPAP23 (GST:AtPAP23) was expressed in bacterial cells, and was found to contain significant amounts of Fe and Mn (whereas the control GST protein contained none). In biochemical tests, GST:AtPAP23 showed typical acid phosphatase activities. The fusion protein was also highly active on phosphoserine, but not phosphotyrosine. Despite its highly specific expression pattern and the demonstrated biochemical function of its protein product, the RNAi (RNA interference), T-DNA knock-out and overexpression lines of AtPAP23 were indistinguishable from wild type plants in the development of flower (or other organs). Interestingly, the Fe and Mn contents were found significantly increased in AtPAP23 overexpression lines, which may offer a new direction for further functional studies of AtPAPs in Arabidopsis.

  6. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana.

    PubMed

    Kong, Youbin; Li, Xihuan; Ma, Jun; Li, Wenlong; Yan, Guijun; Zhang, Caiying

    2014-04-01

    GmPAP4 , a novel plant PAP gene in soybean, has phytase activity. Over-expressing GmPAP4 can enhance Arabidopsis growth when phytate is the sole P source in culture. Phosphorus (P) is an important macronutrient for plant growth and development. However, most of the total P in soils is fixed into organic phosphate (Po). Purple acid phosphatase (PAP) can hydrolyze Po in the soil to liberate inorganic phosphate and enhance plant P utilization. We isolated a novel PAP gene, GmPAP4, from soybean (Glycine max). It had an open reading frame of 1,329 bp, encoding 442 amino acid residues. Sequence alignment and phylogenetics analysis indicated that GmPAP4 was similar to other plant PAPs with large molecular masses. Quantitative real-time PCR analysis showed that the induced expression of GmPAP4 was greater in P-efficient genotype Zhonghuang15 (ZH15) than in P-inefficient genotype Niumaohuang (NMH) during the periods of flowering (28-35 days post phytate stress; DPP) and pod formation (49-63 DPP). Moreover, peak expression, at 63 DPP, was about 3-fold higher in 'ZH15' than in 'NMH'. Sub-cellular localization showed that GmPAP4 might be on plasma membrane or in cytoplasm. Over-expressing GmPAP4 in Arabidopsis resulted in significant rises in P acquisition and utilization compared with the wild-type (WT). Under phytate condition, transgenic Arabidopsis plants showed increases of approximately 132.7 % in dry weight and 162.6 % in shoot P content compared with the WT. Furthermore, when phytate was added as the sole P source in cultures, the activity of acid phosphatase was significantly higher in transgenic plants. Therefore, GmPAP4 is a novel PAP gene that functions in plant's utilization of organic phosphate especially under phytate condition.

  7. Segregation analysis of smoking-associated malignancies: evidence for Mendelian inheritance.

    PubMed

    Sellers, T A; Chen, P L; Potter, J D; Bailey-Wilson, J E; Rothschild, H; Elston, R C

    1994-09-01

    Tobacco consumption is an established risk factor for cancer at a number of sites: oral cavity, esophagus, nasopharynx, lung, larynx, pancreas, bladder, kidney, and uterine cervix. These sites also demonstrate familial aggregation. To determine if evidence exists for a major gene controlling susceptibility to smoking-associated cancers, maximum likelihood segregation analyses were performed on 337 families (3,276 individuals) ascertained through a deceased lung cancer proband. Models were fitted that allowed for personal tobacco use and variable age of onset. The hypotheses of environmental transmission and no major gene were rejected (P < 0.005), but none of the Mendelian models could be distinguished. According to Akaike's Information Criterion, Mendelian dominant inheritance of an allele that produces cancer at an earlier age of onset provided the best fit to the data. The model suggests that 62% of the population are susceptible, and that the mean age-of-onset differs for men and women: at the mean level of tobacco exposure, female gene carriers are affected, on average, 24 years earlier than non-carriers (77 vs. 101), while in males the difference was 20 years (71 vs. 91). These findings extend our earlier observations on the genetic epidemiology of lung cancer and suggest that Mendelian factors may influence the risk of cancers that are known to be smoking associated.

  8. Segregation analysis of smoking-associated malignancies: Evidence for Mendelian inheritance

    SciTech Connect

    Sellers, T.A.; Chen, Ping-Ling; Potter, J.D.; Bailey-Wilson, J.E.; Elston, R.C.; Rothschild, H.

    1994-09-01

    Tobacco consumption is an established risk factor for cancer at a number of sites: oral cavity, esophagus, nasopharynx, lung, larynx, pancreas, bladder, kidney, and uterine cervix. These sites also demonstrate familial aggregation. To determine if evidence exists for a major gene controlling susceptibility to smoking-associated cancers, maximum likelihood segregation analyses were performed on 337 families (3,276 individuals) ascertained through a decreased lung cancer proband. Models were fitted that allowed for personal tobacco use and variable age of onset. The hypotheses of environmental transmission and no major gene were rejected (P < 0.005), but none of the Mendelian models could be distinguished. According to Akaike`s Information Criterion, Mendelian dominant inheritance of an allele that produces cancer at an earlier age of onset provided the best fit to the data. The model suggests that 62% of the population are susceptible, and that the mean age-of-onset differs for men and women: at the mean level of tobacco exposure, female gene carriers are affected, on average, 24 years earlier than non-carriers (77 vs. 101), while in males the difference was 20 years (71 vs. 91). These findings extend our earlier observations on the genetic epidemiology of lung cancer and suggest that Mendelian factors may influence the risk of cancers that are known to be smoking associated. 48 refs., 3 tabs.

  9. Lipin-1 phosphatidic phosphatase activity modulates phosphatidate levels to promote peroxisome proliferator-activated receptor γ (PPARγ) gene expression during adipogenesis.

    PubMed

    Zhang, Peixiang; Takeuchi, Kazuharu; Csaki, Lauren S; Reue, Karen

    2012-01-27

    Adipose tissue plays a key role in metabolic homeostasis. Disruption of the Lpin1 gene encoding lipin-1 causes impaired adipose tissue development and function in rodents. Lipin-1 functions as a phosphatidate phosphatase (PAP) enzyme in the glycerol 3-phosphate pathway for triglyceride storage and as a transcriptional coactivator/corepressor for metabolic nuclear receptors. Previous studies established that lipin-1 is required at an early step in adipocyte differentiation for induction of the adipogenic gene transcription program, including the key regulator peroxisome proliferator-activated receptor γ (PPARγ). Here, we investigate the requirement of lipin-1 PAP versus coactivator function in the establishment of Pparg expression during adipocyte differentiation. We demonstrate that PAP activity supplied by lipin-1, lipin-2, or lipin-3, but not lipin-1 coactivator activity, can rescue Pparg gene expression and lipogenesis during adipogenesis in lipin-1-deficient preadipocytes. In adipose tissue from lipin-1-deficient mice, there is an accumulation of phosphatidate species containing a range of medium chain fatty acids and an activation of the MAPK/extracellular signal-related kinase (ERK) signaling pathway. Phosphatidate inhibits differentiation of cultured adipocytes, and this can be rescued by the expression of lipin-1 PAP activity or by inhibition of ERK signaling. These results emphasize the importance of lipid intermediates as choreographers of gene regulation during adipogenesis, and the results highlight a specific role for lipins as determinants of levels of a phosphatidic acid pool that influences Pparg expression.

  10. Protein tyrosine phosphatases from amphioxus, hagfish, and ray: divergence of tissue-specific isoform genes in the early evolution of vertebrates.

    PubMed

    Ono-Koyanagi, K; Suga, H; Katoh, K; Miyata, T

    2000-03-01

    Since separation from fungi and plants, multicellular animals evolved a variety of gene families involved in cell-cell communication from a limited number of ancestral precursors by gene duplications in two separate periods of animal evolution. In the very early evolution of animals before the separation of parazoans and eumetazoans, animals underwent extensive gene duplications by which different subtypes (subfamilies) with distinct functions diverged. The multiplicity of members (isoforms) in the same subtype increased by further gene duplications (isoform duplications) in the first half of chordate evolution before the fish-tetrapod split; different isoforms are virtually identical in structure and function but differ in tissue distribution. From cloning and phylogenetic analyses of four subfamilies of the protein tyrosine kinase (PTK) family, we recently showed extensive isoform duplications in a limited period around or just before the cyclostome-gnathostome split. To obtain a reliable estimate for the divergence time of vertebrate isoforms, we have conducted isolation of cDNAs encoding the protein tyrosine phosphatases (PTPs) from Branchiostoma belcheri, an amphioxus, Eptatretus burgeri, a hagfish, and Potamotrygon motoro, a ray. We obtained 33 different cDNAs in total, most of which belong to known PTP subfamilies. The phylogenetic analyses of five subfamilies based on the maximum likelihood method revealed frequent isoform duplications in a period around or just before the gnathostome-cyclostome split. An evolutionary implication was discussed in relation to the Cambrian explosion.

  11. De novo synthesis and functional analysis of the phosphatase-encoding gene acI-B of uncultured Actinobacteria from Lake Stechlin (NE Germany).

    PubMed

    Srivastava, Abhishek; McMahon, Katherine D; Stepanauskas, Ramunas; Grossart, Hans-Peter

    2015-12-01

    The National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov/guide/taxonomy/] database enlists more than 15,500 bacterial species. But this also includes a plethora of uncultured bacterial representations. Owing to their metabolism, they directly influence biogeochemical cycles, which underscores the the important status of bacteria on our planet. To study the function of a gene from an uncultured bacterium, we have undertaken a de novo gene synthesis approach. Actinobacteria of the acI-B subcluster are important but yet uncultured members of the bacterioplankton in temperate lakes of the northern hemisphere such as oligotrophic Lake Stechlin (NE Germany). This lake is relatively poor in phosphate (P) and harbors on average ~1.3 x 10 6 bacterial cells/ml, whereby Actinobacteria of the ac-I lineage can contribute to almost half of the entire bacterial community depending on seasonal variability. Single cell genome analysis of Actinobacterium SCGC AB141-P03, a member of the acI-B tribe in Lake Stechlin has revealed several phosphate-metabolizing genes. The genome of acI-B Actinobacteria indicates potential to degrade polyphosphate compound. To test for this genetic potential, we targeted the exoP-annotated gene potentially encoding polyphosphatase and synthesized it artificially to examine its biochemical role. Heterologous overexpression of the gene in Escherichia coli and protein purification revealed phosphatase activity. Comparative genome analysis suggested that homologs of this gene should be also present in other Actinobacteria of the acI lineages. This strategic retention of specialized genes in their genome provides a metabolic advantage over other members of the aquatic food web in a P-limited ecosystem. [Int Microbiol 2016; 19(1):39-47].

  12. Mendelian inheritance, linkage and genotypic disequilibrium in microsatellite loci isolated from Hymenaea courbaril (Leguminosae).

    PubMed

    Carneiro, F S; Lacerda, A E B; Lemes, M R; Gribel, R; Kanashiro, M; Sebbenn, A M

    2012-07-19

    The Neotropical tree Hymenaea courbaril, locally known as Jatobá, is a valuable source of lumber and also produces comestible and medicinal fruit. We characterized Mendelian inheritance, linkage and genotypic disequilibrium at nine microsatellite loci isolated from H. courbaril, in order to determine if they would provide accurate estimates of population genetic parameters of this important Amazon species. The study was made on 250 open-pollinated offspring originated from 14 seed trees. Only one of nine loci presented significant deviation from the expected Mendelian segregation (1:1). Genotypic disequilibrium between pairwise loci was investigated based on samples from 55 adult and 56 juvenile trees. No genetic linkage between any paired loci was observed. After Bonferroni's corrections for multiple tests, we found no evidence of genotypic disequilibrium between pairs of loci. We conclude that this set of loci can be used for genetic diversity/ structure, mating system, gene flow, and parentage analyses in H. courbaril populations.

  13. Finding Disease Variants in Mendelian Disorders By Using Sequence Data: Methods and Applications

    PubMed Central

    Ionita-Laza, Iuliana; Makarov, Vlad; Yoon, Seungtai; Raby, Benjamin; Buxbaum, Joseph; Nicolae, Dan L.; Lin, Xihong

    2011-01-01

    Many sequencing studies are now underway to identify the genetic causes for both Mendelian and complex traits. Via exome-sequencing, genes harboring variants implicated in several Mendelian traits have already been identified. The underlying methodology in these studies is a multistep algorithm based on filtering variants identified in a small number of affected individuals and depends on whether they are novel (not yet seen in public resources such as dbSNP), shared among affected individuals, and other external functional information on the variants. Although intuitive, these filter-based methods are nonoptimal and do not provide any measure of statistical uncertainty. We describe here a formal statistical approach that has several distinct advantages: (1) it provides fast computation of approximate p values for individual genes, (2) it adjusts for the background variation in each gene, (3) it allows for incorporation of functional or linkage-based information, and (4) it accommodates designs based on both affected relative pairs and unrelated affected individuals. We show via simulations that the proposed approach can be used in conjunction with the existing filter-based methods to achieve a substantially better ranking of a gene relevant for disease when compared to currently used filter-based approaches, this is especially so in the presence of disease locus heterogeneity. We revisit recent studies on three Mendelian diseases and show that the proposed approach results in the implicated gene being ranked first in all studies, and approximate p values of 10−6 for the Miller Syndrome gene, 1.0 × 10−4 for the Freeman-Sheldon Syndrome gene, and 3.5 × 10−5 for the Kabuki Syndrome gene. PMID:22137099

  14. Statistical Guidance for Experimental Design and Data Analysis of Mutation Detection in Rare Monogenic Mendelian Diseases by Exome Sequencing

    PubMed Central

    Zhi, Degui; Chen, Rui

    2012-01-01

    Recently, whole-genome sequencing, especially exome sequencing, has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases. However, it is unclear whether this approach can be generalized and effectively applied to other Mendelian diseases with high locus heterogeneity. Moreover, the current exome sequencing approach has limitations such as false positive and false negative rates of mutation detection due to sequencing errors and other artifacts, but the impact of these limitations on experimental design has not been systematically analyzed. To address these questions, we present a statistical modeling framework to calculate the power, the probability of identifying truly disease-causing genes, under various inheritance models and experimental conditions, providing guidance for both proper experimental design and data analysis. Based on our model, we found that the exome sequencing approach is well-powered for mutation detection in recessive, but not dominant, Mendelian diseases with high locus heterogeneity. A disease gene responsible for as low as 5% of the disease population can be readily identified by sequencing just 200 unrelated patients. Based on these results, for identifying rare Mendelian disease genes, we propose that a viable approach is to combine, sequence, and analyze patients with the same disease together, leveraging the statistical framework presented in this work. PMID:22348076

  15. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  16. Alternative splicing regulates the production of ARD-1 endoribonuclease and NIPP-1, an inhibitor of protein phosphatase-1, as isoforms encoded by the same gene.

    PubMed

    Chang, A C; Sohlberg, B; Trinkle-Mulcahy, L; Claverie-Martin, F; Cohen, P; Cohen, S N

    1999-11-15

    ARD-1 is an endoribonuclease identified initially as the product of a human cDNA that complements mutations in rne, a gene that encodes Escherichia coli ribonuclease E. NIPP-1 was identified in bovine nuclear extracts as an inhibitor of protein phosphatase-1. Earlier work has shown that the protein-coding sequence of ARD-1 is identical to the carboxy-terminal third of NIPP-1. However, whether ARD-1 is present in eukaryotes as a distinct entity has been unclear, as neither ARD-1-specific transcripts nor ARD-1 protein were detected in mammalian cells in earlier studies. Here we show that ARD-1 exists in human cells as a discrete protein, and that the ARD-1 and NIPP-1 peptides are isoforms encoded by a single gene and the same alternatively spliced precursor RNA. A retained intron containing multiple translation stop codons that are configured to terminate translation and initiate nonsense-mediated decay, limits the production of cellular ARD-1 protein. Our results establish the process by which functionally disparate ARD-1 and NIPP-1 peptides are generated from the protein-coding sequence of the same gene in human cells.

  17. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought.

    PubMed

    Liu, Lixia; Hu, Xiaoli; Song, Jian; Zong, Xiaojuan; Li, Dapeng; Li, Dequan

    2009-03-15

    ZmPP2C (AY621066) is a protein phosphatase type-2c previously isolated from roots of Zea mays (LD9002). In this study, constitutive expression of ZmPP2C in Arabidopsis thaliana under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter decreased plant tolerance to salt and drought during seed germination and vegetative growth. When growing on media with NaCl or mannitol, the ZmPP2C-overexpressed plants displayed more severe damages, with weaker growth phenotypes corresponding to a series of physiological changes: lower net photosynthesis rate (Pn) and free proline content, higher malondialdehyde (MDA) level, higher relative membrane permeability (RMP), and water loss. Under these stress conditions, they also showed decreased transcription of the stress-related genes RD29A, RD29B, P5CS1, and P5CS2, and ABA-related genes ABI1 and ABI2. Further, the transgenic plants became less sensitive to abscisic acid (ABA). ZmPP2C over-expression significantly attenuated ABA inhibition on seed germination and root growth of the transgenic plants. These results demonstrate that ZmPP2C is involved in plant stress signal transduction, and ZmPP2C gene over-expression in Arabidopsis thaliana may be exploited to study its potential roles in stress-induced signaling pathway.

  18. Dephosphorylation of pCREB by protein serine/threonine phosphatases is involved in inactivation of Aanat gene transcription in rat pineal gland.

    PubMed

    Koch, Marco; Mauhin, Viviane; Stehle, Jörg H; Schomerus, Christof; Korf, Horst-Werner

    2003-04-01

    The rat pineal gland is a suitable model to investigate neurotransmitter-controlled gene expression, because it is well established that the stimulation of melatonin biosynthesis by norepinephrine (NE) depends on the activation of the gene that encodes arylalkylamine N-acetyltransferase (AANAT), the melatonin rhythm enzyme. The mechanisms responsible for downregulation of Aanat transcription are less clear. In this in vitro study we investigated the role of pCREB dephosphorylation for termination of Aanat gene transcription. Immunosignals for pCREB, strongly induced after NE stimulation, rapidly decreased after withdrawal of NE. The immunoreactivity of the inhibitory transcription factor ICER increased twofold after NE treatment for 6 h, but did not change within 30 min after removal of the stimulus. Application of protein serine/threonine phosphatase (PSP) inhibitors prevented pCREB dephosphorylation and blocked the decreases in Aanat mRNA levels, AANAT protein amount and melatonin biosynthesis all of which occurred rapidly after NE withdrawal. PSPs in the rat pineal gland were characterized by immunocytochemistry and immunoblotting. NE-stimulation for 8 h induced accumulation of PSP1-catalytic subunit (CSU) in pinealocyte nuclei, but did not affect the distribution of PSP2A-CSU. The results identify dephosphorylation of pCREB by PSPs as an essential mechanism for downregulation of Aanat transcription in the rat pineal gland.

  19. The effects of tissue-non-specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis.

    PubMed

    Wang, E; Nam, H K; Liu, J; Hatch, N E

    2015-04-01

    Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-non-specific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Neonatal Crouzon (FGFRC342Y/+) and wild-type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at 4 weeks postnatal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology were assessed by micro-computed tomography. Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphological analysis revealed craniofacial form differences for inferior surface (p=0.023) and cranial height (p=0.014) regions between TNAP lentivirus-injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=0.068). These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    PubMed Central

    Brinch-Pedersen, Henrik

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a. PMID:23918958

  1. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene.

    PubMed

    Madsen, Claus Krogh; Dionisio, Giuseppe; Holme, Inger Bæksted; Holm, Preben Bach; Brinch-Pedersen, Henrik

    2013-08-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a.

  2. Teaching resources. Protein phosphatases.

    PubMed

    Salton, Stephen R

    2005-03-01

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.

  3. Exon redefinition by a point mutation within exon 5 of the glucose-6-phosphatase gene is the major cause of glycogen storage disease type 1a in Japan

    SciTech Connect

    Kajihara, Susumu; Yamamoto, Kyosuke; Kido, Keiko

    1995-09-01

    Glycogen storage disease (GSD) type 1a (von Gierke disease) is an autosomal recessive disorder caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase). We have identified a novel mutation in the G6Pase gene of a individual with GSD type 1a. The cDNA from the patient`s liver revealed a 91-nt deletion in exon 5. The genomic DNA from the patient`s white blood cells revealed no deletion or mutation at the splicing junction of intron 4 and exon 5. The 3{prime} splicing occurred 91 bp from the 5{prime} site of exon 5 (at position 732 in the coding region), causing a substitution of a single nucleotide (G to T) at position 727 in the coding region. Further confirmation of the missplicing was obtained by transient expression of allelic minigene constructs into animal cells. Another eight unrelated families of nine Japanese patients were all found to have this mutation. This mutation is a new type of splicing mutation in the G6Pase gene, and 91% of patients and carriers suffering from GSD1a in Japan are detectable with this splicing mutation. 28 refs., 5 figs., 2 tabs.

  4. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    PubMed

    Hu, Wei; Yan, Yan; Hou, Xiaowan; He, Yanzhen; Wei, Yunxie; Yang, Guangxiao; He, Guangyuan; Peng, Ming

    2015-01-01

    Group A protein phosphatases 2Cs (PP2Cs) are essential components of abscisic acid (ABA) signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA) and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS) accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.

  5. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco

    PubMed Central

    Hu, Wei; Yan, Yan; Hou, Xiaowan; He, Yanzhen; Wei, Yunxie; Yang, Guangxiao; He, Guangyuan; Peng, Ming

    2015-01-01

    Group A protein phosphatases 2Cs (PP2Cs) are essential components of abscisic acid (ABA) signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA) and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS) accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process. PMID:26057628

  6. Foxa2 and MafA Regulate Islet-specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein (IGRP/G6PC2) Gene Expression

    PubMed Central

    Martin, Cyrus C.; Flemming, Brian P.; Wang, Yingda; Oeser, James K.; O’Brien, Richard M.

    2008-01-01

    Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP/G6PC2) is a major autoantigen in both mouse and human type 1 diabetes. IGRP is selectively expressed in islet beta cells and polymorphisms in the IGRP gene have recently been associated with variations in fasting blood glucose levels and cardiovascular-associated mortality in humans. Chromatin immunoprecipitation (ChIP) assays have shown that the IGRP promoter binds the islet-enriched transcription factors Pax-6 and BETA2. We show here, again using ChIP assays, that the IGRP promoter also binds the islet-enriched transcription factors MafA and Foxa2. Single binding sites for these factors were identified in the proximal IGRP promoter, mutation of which resulted in decreased IGRP fusion gene expression in βTC-3, HIT and Min6 cells. ChiP assays have shown that the islet-enriched transcription factor Pdx-1 also binds the IGRP promoter but mutational analysis of four Pdx-1 binding sites in the proximal IGRP promoter revealed surprisingly little effect of Pdx-1 binding on IGRP fusion gene expression in βTC-3 cells. In contrast, in both HIT and Min6 cells mutation of these four Pdx-1 binding sites resulted in an ~50% reduction in fusion gene expression. These data suggest that the same group of islet-enriched transcription factors, namely Pdx-1, Pax-6, MafA, BETA2 and Foxa2 directly or indirectly regulate expression of the two major autoantigens in type 1 diabetes. PMID:18753309

  7. Mutations in the glucose-6-phosphatase gene are associated with glycogen storage disease types 1a and 1aSP but not 1b and 1c.

    PubMed

    Lei, K J; Shelly, L L; Lin, B; Sidbury, J B; Chen, Y T; Nordlie, R C; Chou, J Y

    1995-01-01

    Glycogen storage disease (GSD) type 1, which is caused by the deficiency of glucose-6-phosphatase (G6Pase), is an autosomal recessive disease with heterogenous symptoms. Two models of G6Pase catalysis have been proposed to explain the observed heterogeneities. The translocase-catalytic unit model proposes that five GSD type 1 subgroups exist which correspond to defects in the G6Pase catalytic unit (1a), a stabilizing protein (1aSP), the glucose-6-P (1b), phosphate/pyrophosphate (1c), and glucose (1d) translocases. Conversely, the conformation-substrate-transport model suggests that G6Pase is a single multifunctional membrane channel protein possessing both catalytic and substrate (or product) transport activities. We have recently demonstrated that mutations in the G6Pase catalytic unit cause GSD type 1a. To elucidate whether mutations in the G6Pase gene are responsible for other GSD type 1 subgroups, we characterized the G6Pase gene of GSD type 1b, 1c, and 1aSP patients. Our results show that the G6Pase gene of GSD type 1b and 1c patients is normal, consistent with the translocase-catalytic unit model of G6Pase catalysis. However, a mutation in exon 2 that converts an Arg at codon 83 to a Cys (R83C) was identified in both G6Pase alleles of the type 1aSP patient. The R83C mutation was also demonstrated in one homozygous and five heterogenous GSD type 1a patients, indicating that type 1aSP is a misclassification of GSD type 1a. We have also analyzed the G6Pase gene of seven additional type 1a patients and uncovered two new mutations that cause GSD type 1a.

  8. Obesity and cancer: Mendelian randomization approach utilizing the FTO genotype.

    PubMed

    Brennan, Paul; McKay, James; Moore, Lee; Zaridze, David; Mukeria, Anush; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Chow, Wong-Ho; Rothman, Nathaniel; Chabrier, Amélie; Gaborieau, Valérie; Timpson, Nic; Hung, Rayjean J; Smith, George Davey

    2009-08-01

    Obesity is a risk factor for several cancers although appears to have an inverse association with cancers strongly related to tobacco. Studying obesity is difficult due to numerous biases and confounding. To avoid these biases we used a Mendelian randomization approach incorporating an analysis of variants in the FTO gene that are strongly associated with BMI levels among 7000 subjects from a study of lung, kidney and upper-aerodigestive cancer. The FTO A allele which is linked with increased BMI was associated with a decreased risk of lung cancer (allelic odds ratio (OR) = 0.92, 95% confidence interval (CI) 0.84-1.00). It was also associated with a weak increased risk of kidney cancer, which was more apparent before the age of 50 (OR = 1.44, CI 1.09-1.90). Our results highlight the potential for genetic variation to act as an unconfounded marker of environmentally modifiable factors, and offer the potential to obtain estimates of the causal effect of obesity. However, far larger sample sizes than studied here will be required to undertake this with precision.

  9. Glucocorticoid regulation of mouse and human dual specificity phosphatase 1 (DUSP1) genes: unusual cis-acting elements and unexpected evolutionary divergence.

    PubMed

    Tchen, Carmen R; Martins, Joana R S; Paktiawal, Nasren; Perelli, Roberta; Saklatvala, Jeremy; Clark, Andrew R

    2010-01-22

    Anti-inflammatory effects of glucocorticoids (GCs) are partly mediated by up-regulation of DUSP1 (dual specificity phosphatase 1), which dephosphorylates and inactivates mitogen-activated protein kinases. We identified putative GC-responsive regions containing GC receptor (GR) binding site consensus sequences that are well conserved between human and mouse DUSP1 loci in position, orientation, and sequence (at least 11 of 15 positions identical) and lie within regions of extended sequence conservation (minimum 65% identity over at least 100 bp). These were located approximately 29, 28, 24, 4.6, and 1.3 kb upstream of the DUSP1 transcription start site. The homology-based approach successfully identified four cis-acting regions that mediated transcriptional responses to dexamethasone. However, there was surprising interspecies divergence in site usage. This could not be explained by variations of the GR binding sites themselves. Instead, variations in flanking sequences appear to have driven the evolutionary divergence in mechanisms of regulation of mouse and human DUSP1 genes. There was a good correlation between the ability of cis-acting elements to respond to GC in transiently transfected reporter constructs and their ability to recruit GR in the context of intact chromatin. We propose that divergence of gene regulation has involved the loss or gain of binding sites for accessory transcription factors that assist in GR recruitment. Finally, a novel GC-responsive region of the human DUSP1 gene contains a highly unusual element, in which three closely spaced GR half-sites are required for potent transcriptional activation by GC.

  10. Genetic Determinism in the Genetics Curriculum - An Exploratory Study of the Effects of Mendelian and Weldonian Emphases

    NASA Astrophysics Data System (ADS)

    Jamieson, Annie; Radick, Gregory

    2017-07-01

    Twenty-first-century biology rejects genetic determinism, yet an exaggerated view of the power of genes in the making of bodies and minds remains a problem. What accounts for such tenacity? This article reports an exploratory study suggesting that the common reliance on Mendelian examples and concepts at the start of teaching in basic genetics is an eliminable source of support for determinism. Undergraduate students who attended a standard `Mendelian approach' university course in introductory genetics on average showed no change in their determinist views about genes. By contrast, students who attended an alternative course which, inspired by the work of a critic of early Mendelism, W. F. R. Weldon (1860-1906), replaced an emphasis on Mendel's peas with an emphasis on developmental contexts and their role in bringing about phenotypic variability, were less determinist about genes by the end of teaching. Improvements in both the new Weldonian curriculum and the study design are in view for the future.

  11. MAP Kinase Phosphatase 3 (MKP3) Preserves Norepinephrine Transporter Activity by Modulating ERK1/2 Kinase-Mediated Gene Expression

    PubMed Central

    Mortensen, Ole V.; Larsen, Mads B.; Amara, Susan G.

    2017-01-01

    The norepinephrine transporter (NET) mediates the clearance of norepinephrine (NE) from the extracellular space and is a target of therapeutic antidepressants and psychostimulants. Previously we identified a MAP kinase phosphatase 3 (MKP3), as an important modulator of protein kinase C (PKC) mediated internalization of the related dopamine transporter (DAT). Here we show that MKP3 decreases PKC-mediated down regulation of NET expressed in PC12 cells. We demonstrate that this process involves a PKC-stimulated decrease of NET surface expression that is dependent on dynamin. Surprisingly, MAP kinase inhibitors have no effect on the PKC-mediated regulation of NET activity, suggesting that, like PKC-mediated regulation of the DAT, the acute activation of MAP kinases is not likely to be involved. To elucidate potential mechanisms we used a substrate trap-based assay to identify extracellular-signal-regulated kinase (ERK)1/2 as the predominant substrate of MKP3. Furthermore we also established that brief chemical stabilization of a modified destabilized MKP3 does not alter PKC-mediated down regulation of NET. Finally, the expression of a dominant negative version of H-Ras, an upstream activator of ERK1/2, abolishes phorbol 12-myristate 13-acetate (PMA)-mediated down regulation of NET in a manner similar to MKP3. Taken together we propose that chronic MKP3 expression regulates surface NET through the sustained inhibition of ERK1/2 MAP kinase signaling that alters gene expression in PC12 cells. This is supported by gene expression data from naïve and MKP3-expressing PC12 cells that reveal robust decreases in gene expression of several genes in the MKP3-tranfected cells. Interestingly, caveolin-1, a protein with a critical role in membrane protein trafficking is down regulated by MKP3 expression. We further show that selective silencing of the caveolin-1 gene in naïve PC12 cells attenuates PKC-mediated downregulation of NET activity, consistent with a potential role for

  12. Investigation of genetic variation across the protein tyrosine phosphatase gene in patients with rheumatoid arthritis in the UK

    PubMed Central

    Hinks, Anne; Eyre, Steve; Barton, Anne; Thomson, Wendy; Worthington, Jane

    2007-01-01

    Objective To investigate single‐nucleotide polymorphisms (SNPs) across the PTPN22 gene region in a UK cohort of patients with rheumatoid arthritis (RA), to look for evidence of disease associations independent of the well‐characterised R620W variant (rs2476601). Methods 951 RA cases in the UK satisfying American Rheumatism Association (ARA) criteria and 448 population controls were genotyped for 11 SNPs across the PTPN22 gene region using the Sequenom MassArray MassEXTEND technology. Allele, genotype and estimated haplotype frequencies of cases and controls were compared. Results In addition to the R620W (rs2476601) SNP, three SNPs were associated with RA in this study. The sole haplotype on which the associated T allele of R620W occurred was associated with RA; no other haplotypes showed a significant difference in frequencies between RA cases and controls. Conclusion In contrast with a study of American patients with RA no evidence of association with PTPN22 independent of the well‐characterised R620W variant was found, suggesting that in these patients this variant alone explains the association with the PTPN22 gene. PMID:17170052

  13. Evaluation of Anti-aging Compounds Using the Promoters of Elastin and Fibrillin-1 Genes Combined with a Secreted Alkaline Phosphatase Reporter in Normal Human Fibroblasts.

    PubMed

    Lin, Chih-Chien; Yang, Chao-Hsun; Kuo, Wan-Ting; Chen, Cheng-Yu

    2015-01-01

    Elastic fibers are major constituents of the extracellular matrix (ECM) in dynamic tissues in the human body, and regulation of elastin and fibrillin-1 expression mediates the formation of these fibers. Traditional assays for the measurement of elastin and fibrillin-1, such as western blotting, Luna staining and immunostaining, are relatively complex and time-consuming. Thus, a relatively simple assay system that also provides rational results is urgently needed. In the study, we aimed to develop a human cell-based assay system that can be used to analyze functional compounds using the promoters of elastin (ELN) and fibrillin-1 (FBN1) genes integrated with a secreted alkaline phosphatase (SEAP) reporter in normal human fibroblast cells. We used this system to assess anti-aging compounds. We used several regulators of elastinogenesis, including retinol, coenzyme Q10, deoxyArbutin and Elestan(TM) (Manilkara multinervis leaf extract), to verify the efficacy of this assay system. Our results demonstrate that this assay system can be used as a fast and realistic method for identifying anti-aging components for future use in foods, cosmetics and drugs.

  14. Protein tyrosine phosphatase non-receptor 22 and C-Src tyrosine kinase genes are down-regulated in patients with rheumatoid arthritis.

    PubMed

    Remuzgo-Martínez, Sara; Genre, Fernanda; Castañeda, Santos; Corrales, Alfonso; Moreno-Fresneda, Pablo; Ubilla, Begoña; Mijares, Verónica; Portilla, Virginia; González-Vela, Jesús; Pina, Trinitario; Ocejo-Vinyals, Gonzalo; Irure-Ventura, Juan; Blanco, Ricardo; Martín, Javier; Llorca, Javier; López-Mejías, Raquel; González-Gay, Miguel A

    2017-09-05

    Several protein tyrosine phosphatase non-receptor 22 (PTPN22) single-nucleotide polymorphisms (SNPs) have been significantly related with rheumatoid arthritis (RA) susceptibility. Nevertheless, its potential influence on PTPN22 expression in RA has not been completely elucidated. Furthermore, PTPN22 binds to C-Src tyrosine kinase (CSK) forming a key complex in autoimmunity. However, the information of CSK gene in RA is scarce. In this study, we analyzed the relative PTPN22 and CSK expression in peripheral blood from 89 RA patients and 43 controls to determine if the most relevant PTPN22 (rs2488457, rs2476601 and rs33996649) and CSK (rs34933034 and rs1378942) polymorphisms may influence on PTPN22 and CSK expression in RA. The association between PTPN22 and CSK expression in RA patients and their clinical characteristics was also evaluated. Our study shows for the first time a marked down-regulation of PTPN22 expression in RA patients carrying the risk alleles of PTPN22 rs2488457 and rs2476601 compared to controls (p = 0.004 and p = 0.007, respectively). Furthermore, CSK expression was significantly lower in RA patients than in controls (p < 0.0001). Interestingly, a reduced PTPN22 expression was disclosed in RA patients with ischemic heart disease (p = 0.009). The transcriptional suppression of this PTPN22/CSK complex may have a noteworthy clinical relevance in RA patients.

  15. A new electrochemical assay method for gene expression using HeLa cells with a secreted alkaline phosphatase (SEAP) reporter system.

    PubMed

    Şen, Mustafa; Ino, Kosuke; Shiku, Hitoshi; Matsue, Tomokazu

    2012-08-01

    A new electrochemical assay for the detection of secreted alkaline phosphatase (SEAP) from transfectant HeLa cells is proposed using a microarray device and scanning electrochemical microscopy (SECM). The assay consists of two steps: the first is the incubation of a transfected cell in a microarray culture device covered with a substrate modified with anti-SEAP under physiological conditions without any additives. The array device consists of a 4 × 4 array of microwells having a size of 100 µm × 100 µm (diameter × depth). The second step is SECM measurement of secreted SEAP at the antibody-immobilized substrate. This assay ensures accuracy and intactness because the undesired influence of endogeneous ALP is eliminated and the transfected cells are incubated in a culture device under suitable conditions. We successfully detected the expression of SEAP from intact cells at the single-cell level using this assay. The system is useful as a cell-based gene-expression assay. Copyright © 2012 Wiley Periodicals, Inc.

  16. On the origins of the Mendelian laws.

    PubMed

    Monaghan, F; Corcos, A

    1984-01-01

    The two laws usually attributed to Mendel were not considered as laws by him. The first law, the law of independent segregation occurs in Mendel's paper as an assumption or hypothesis. Hugo de Vries refers to this as a law discovered by Mendel. This appears to be the first use of an expression equivalent to Mendel's law. In his paper de Vries did not associate the observable characters with structures having a causitive role. That was done by Correns, who transformed the law of segregation of characters into a law of the segregation of anlagen. The second law, the law of independent assortment, is present in embryonic form in Mendel's paper. Here the independent assortment of characters appears as a secondary conclusion to a series of experiments involving several pairs of traits. Mendel repeats the primary conclusion later in the paper but not the secondary one. This leads us to believe that he considered the secondary conclusion as of lesser importance. We note in this context that the 9:3:3:1 ratio commonly associated with the idea of independent assortment, and attributed to Mendel, also does not occur in his paper. A careful reading of the papers of his discoverers shows it was Correns who first drew attention to this ratio. However, he did not formulate the second Mendelian law even though it was clearly implied. Neither was it stated by de Vries. Indeed, the first clear separation of the two laws and the naming of the second law was by T. H. Morgan some 13 years later.

  17. Myeloid-Specific Gene Deletion of Protein Phosphatase 2A Magnifies MyD88- and TRIF-Dependent Inflammation following Endotoxin Challenge.

    PubMed

    Sun, Lei; Pham, Tiffany T; Cornell, Timothy T; McDonough, Kelli L; McHugh, Walker M; Blatt, Neal B; Dahmer, Mary K; Shanley, Thomas P

    2017-01-01

    Protein phosphatase 2A (PP2A) is a member of the intracellular serine/threonine phosphatases. Innate immune cell activation triggered by pathogen-associated molecular patterns is mediated by various protein kinases, and PP2A plays a counter-regulatory role by deactivating these kinases. In this study, we generated a conditional knockout of the α isoform of the catalytic subunit of PP2A (PP2ACα). After crossing with myeloid-specific cre-expressing mice, effective gene knockout was achieved in various myeloid cells. The myeloid-specific knockout mice (lyM-PP2A(fl/fl)) showed higher mortality in response to endotoxin challenge and bacterial infection. Upon LPS challenge, serum levels of TNF-α, KC, IL-6, and IL-10 were significantly increased in lyM-PP2A(fl/fl) mice, and increased phosphorylation was observed in MAPK pathways (p38, ERK, JNK) and the NF-κB pathway (IKKα/β, NF-κB p65) in bone marrow-derived macrophages (BMDMs) from knockout mice. Heightened NF-κB activation was not associated with degradation of IκBα; instead, enhanced phosphorylation of the NF-κB p65 subunit and p38 phosphorylation-mediated TNF-α mRNA stabilization appear to contribute to the increased TNF-α expression. In addition, increased IL-10 expression appears to be due to PP2ACα-knockout-induced IKKα/β hyperactivation. Microarray experiments indicated that the Toll/IL-1R domain-containing adaptor inducing IFN-β/ TNFR-associated factor 3 pathway was highly upregulated in LPS-treated PP2ACα-knockout BMDMs, and knockout BMDMs had elevated IFN-α/β production compared with control BMDMs. Serum IFN-β levels from PP2ACα-knockout mice treated with LPS were also greater than those in controls. Thus, we demonstrate that PP2A plays an important role in regulating inflammation and survival in the setting of septic insult by targeting MyD88- and Toll/IL-1R domain-containing adaptor inducing IFN-β-dependent pathways.

  18. Protein Tyrosine Phosphatase 2 (SHP-2) Moderates Signaling by gp130 but Is Not Required for the Induction of Acute-Phase Plasma Protein Genes in Hepatic Cells

    PubMed Central

    Kim, Hongkyun; Hawley, Teresa S.; Hawley, Robert G.; Baumann, Heinz

    1998-01-01

    Signals propagated via the gp130 subunit of the interleukin-6 (IL-6)-type cytokine receptors mediate, among various cellular responses, proliferation of hematopoietic cells and induction of acute-phase plasma protein (APP) genes in hepatic cells. Hematopoietic growth control by gp130 is critically dependent on activation of both STAT3 and protein tyrosine phosphatase 2 (SHP-2). To investigate whether induction of APP genes has a similar requirement for SHP-2, we constructed two chimeric receptors, G-gp130 and G-gp130(Y2F), consisting of the transmembrane and cytoplasmic domains of gp130 harboring either a wild-type or a mutated SHP-2 binding site, respectively, fused to the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor. Rat hepatoma H-35 cells stably expressing the chimeric receptors were generated by retroviral transduction. Both chimeric receptors transmitted a G-CSF-induced signal characteristic of that triggered by IL-6 through the endogenous gp130 receptor; i.e., both activated the appropriate JAK, induced DNA binding activity by STAT1 and STAT3, and up-regulated expression of the target APP genes, those for α-fibrinogen and haptoglobin. Notwithstanding these similarities in the patterns of signaling responses elicited, mutation of the SHP-2 interaction site in G-gp130(Y2F) abrogated ligand-activated receptor recruitment of SHP-2 as expected. Moreover, the tyrosine phosphorylation state of the chimeric receptor, the associated JAK activity, and the induced DNA binding activity of STAT1 and STAT3 were maintained at elevated levels and for an extended period of time in G-gp130(Y2F)-expressing cells following G-CSF treatment compared to that in cells displaying the G-gp130 receptor. H-35 cells ectopically expressing G-gp130(Y2F) were also found to display an enhanced sensitivity to G-CSF and a higher level of induction of APP genes. Overexpression of the enzymatically inactive SHP-2 enhanced the signaling by the wild-type but

  19. Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE 12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure.

    PubMed

    Lu, Kun; Chai, You-Rong; Zhang, Kai; Wang, Rui; Chen, Li; Lei, Bo; Lu, Jun; Xu, Xin-Fu; Li, Jia-Na

    2008-10-01

    Purple acid phosphatase (PAP) is important for phosphorus assimilation and in planta redistribution. In this study, seven Brassica napus PAP12 (BnPAP12) genes orthologous to Arabidopsis thaliana PAP12 (AtPAP12) are isolated and characterized. NCBI BLASTs, multi-alignments, conserved domain prediction, and featured motif/residue characterization indicate that all BnPAP12 members encode dimeric high molecular weight plant PAPs. BnPAP12-1, BnPAP12-2, BnPAP12-3 and BnPAP12-7 (Group I) have six introns and encode 469-aa polypeptides structurally comparable to AtPAP12. BnPAP12-4 and BnPAP12-6 (Group II) have seven introns and encode 526-aa PAP12s. Encoding a 475-aa polypeptide, BnPAP12-5 (Group III) is evolved from a chimera of 5' part of Group I and 3' part of Group II. Sequence characterization and Southern detection suggest that there are about five BnPAP12 alleles. Homoeologous non-allelic fragment exchanges exist among BnPAP12 genes. BnPAP12-4 and BnPAP12-6 are imprinted with a Tourist-like miniature inverted-repeat transposable element (MITE) which is tightly associated with a novel minisatellite composed of four 36-bp tandem repeats. Existing solely in B. rapa/oleracea lineage, this recently evolved MITE-minisatellite twin structure does not impair transcription and coding capacity of the imprinted genes, and could be used to identify close relatives of B. rapa/oleracea lineage within Brassica. It is also useful for studying MITE activities especially possible involvement in minisatellite formation and gene structure evolution. BnPAP12-6 is silent in transcription. All other BnPAP12 genes basically imitate AtPAP12 in tissue specificity and Pi-starvation induced expression pattern, but divergence and complementation are distinct among them. Alternative polyadenylation and intron retention also exist in BnPAP12 mRNAs.

  20. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.

    PubMed

    Kerk, David; Silver, Dylan; Uhrig, R Glen; Moorhead, Greg B G

    2015-01-01

    Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class ("PP2C7s") which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key evolutionary

  1. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases

    PubMed Central

    Kerk, David; Silver, Dylan; Uhrig, R. Glen; Moorhead, Greg B. G.

    2015-01-01

    Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class (“PP2C7s”) which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key

  2. Down Regulation of a Gene for Cadherin, but Not Alkaline Phosphatase, Associated with Cry1Ab Resistance in the Sugarcane Borer Diatraea saccharalis

    PubMed Central

    Yang, Yunlong; Zhu, Yu Cheng; Ottea, James; Husseneder, Claudia; Leonard, B. Rogers; Abel, Craig; Luttrell, Randall; Huang, Fangneng

    2011-01-01

    The sugarcane borer, Diatraea saccharalis, is a major target pest of transgenic corn expressing Bacillus thuringiensis (Bt) proteins (i.e., Cry1Ab) in South America and the mid-southern region of the United States. Evolution of insecticide resistance in such target pests is a major threat to the durability of transgenic Bt crops. Understanding the pests' resistance mechanisms will facilitate development of effective strategies for delaying or countering resistance. Alterations in expression of cadherin- and alkaline phosphatase (ALP) have been associated with Bt resistance in several species of pest insects. In this study, neither the activity nor gene regulation of ALP was associated with Cry1Ab resistance in D. saccharalis. Total ALP enzymatic activity was similar between Cry1Ab-susceptible (Cry1Ab-SS) and -resistant (Cry1Ab-RR) strains of D. saccharalis. In addition, expression levels of three ALP genes were also similar between Cry1Ab-SS and -RR, and cDNA sequences did not differ between susceptible and resistant larvae. In contrast, altered expression of a midgut cadherin (DsCAD1) was associated with the Cry1Ab resistance. Whereas cDNA sequences of DsCAD1 were identical between the two strains, the transcript abundance of DsCAD1 was significantly lower in Cry1Ab-RR. To verify the involvement of DsCAD1 in susceptibility to Cry1Ab, RNA interference (RNAi) was employed to knock-down DsCAD1 expression in the susceptible larvae. Down-regulation of DsCAD1 expression by RNAi was functionally correlated with a decrease in Cry1Ab susceptibility. These results suggest that down-regulation of DsCAD1 is associated with resistance to Cry1Ab in D. saccharalis. PMID:21991350

  3. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets.

    PubMed

    Yang, Changwei; Zhu, Xi; Liu, Ni; Chen, Yue; Gan, Hexia; Troy, Frederic A; Wang, Bing

    2014-08-01

    The molecular mechanisms underlying how dietary lactoferrin (Lf) impacts gut development and maturation and protects against early weaning diarrhea are not well understood. In this study, we supplemented postnatal piglets with an Lf at a dose level of 155 and 285 mg/kg/day from 3 to 38 days following birth. Our findings show that the high dose of Lf up-regulated messenger RNA expression levels of genes encoding brain-derived neurotrophic factor (BDNF) and ubiquitin carboxy-terminal hydrolase L1 (ubiquitin thiolesterase (UCHL1) and, to a lesser extent, glial cell line-derived neurotrophic factor, in the duodenum (P<.05). Piglets in the high and low Lf group had 30% and 7% larger jejunal crypts compared with the control group (P<.05). Escherichia coli 16S rRNA copy number per gram of ascending colon contents was significantly reduced (P=.001), while the copy number of Bifidobacteria and Lactobacillus spp. was not affected. In addition, Lf increased intestinal alkaline phosphatase activity (P<.05) and delayed the onset of food transitional diarrhea, reducing its frequency and duration (P<.05). The incidence of diarrhea in the high and low Lf groups was decreased 54% and 15%, respectively, compared with the control group (P=.035). In summary, these findings provide new evidence that dietary Lf supplementation up-regulated gene expression of BDNF and UCHL1, decreased the colon microbiota of E. coli, improved gut maturation and reduced early weaning diarrhea in piglets. The molecular basis underlying these findings suggests that Lf may enhance gut development and immune function by providing new insight into the gut-brain-microbe axis that has not been previously reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis.

    PubMed

    Jawhar, M; Schwaab, J; Hausmann, D; Clemens, J; Naumann, N; Henzler, T; Horny, H-P; Sotlar, K; Schoenberg, S O; Cross, N C P; Fabarius, A; Hofmann, W-K; Valent, P; Metzgeroth, G; Reiter, A

    2016-12-01

    We evaluated the impact of clinical and molecular characteristics on overall survival (OS) in 108 patients with indolent (n=41) and advanced systemic mastocytosis (SM) (advSM, n=67). Organomegaly was measured by magnetic resonance imaging-based volumetry of the liver and spleen. In multivariate analysis of all patients, an increased spleen volume ⩾450 ml (hazard ratio (HR), 5.2; 95% confidence interval (CI), (2.1-13.0); P=0.003) and an elevated alkaline phosphatase (AP; HR 5.0 (1.1-22.2); P=0.02) were associated with adverse OS. The 3-year OS was 100, 77, and 39%, respectively (P<0.0001), for patients with 0 (low risk, n=37), 1 (intermediate risk, n=32) or 2 (high risk, n=39) parameters. For advSM patients with fully available clinical and molecular data (n=60), univariate analysis identified splenomegaly ⩾1200 ml, elevated AP and mutations in the SRSF2/ASXL1/RUNX1 (S/A/R) gene panel as significant prognostic markers. In multivariate analysis, mutations in S/A/R (HR 3.2 (1.1-9.6); P=0.01) and elevated AP (HR 2.6 (1.0-7.1); P=0.03) remained predictive adverse prognostic markers for OS. The 3-year OS was 76 and 38%, respectively (P=0.0003), for patients with 0-1 (intermediate risk, n=28) or 2 (high risk, n=32) parameters. We conclude that splenomegaly, elevated AP and mutations in the S/A/R gene panel are independent of the World Health Organization classification and provide the most relevant prognostic information in SM patients.

  5. Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2) from Zygosaccharomyces rouxii.

    PubMed

    Kwon, Hawk-Bin; Yeo, Eun-Taeg; Hahn, Sang-Eun; Bae, Shin-Chul; Kim, Dool-Yi; Byun, Myung-Ok

    2003-06-01

    In many organisms, trehalose protects against several environmental stresses, such as heat, desiccation, and salt, probably by stabilizing protein structures and lipid membranes. Trehalose synthesis in yeast is mediated by a complex of trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2). In this study, genes encoding TPS1 and TPS2 were isolated from Zygosaccharomyces rouxii (designated ZrTPS1 and ZrTPS2, respectively). They were functionally identified by their complementation of the tps1 and tps2 yeast deletion mutants, which are unable to grow on glucose medium and with heat, respectively. Full-length ZrTPS1 cDNA is composed of 1476 nucleotides encoding a protein of 492 amino acids with a molecular mass of 56 kDa. ZrTPS2 cDNA consists of 2843 nucleotides with an open reading frame of 2700 bp, which encodes a polypeptide of 900 amino acids with a molecular mass of 104 kDa. The amino acid sequence encoded by ZrTPS1 has relatively high homology with TPS1 of Saccharomyces cerevisiae and Schizosaccharomyces pombe, compared with TPS2. Western blot analysis showed that the antibody against S. cerevisiae TPS1 recognizes ZrTPS1. Under normal growth conditions, ZrTPS1 and ZrTPS2 were highly and constitutively expressed, unlike S. cerevisiae TPS1 and TPS2. Salt stress and heat stress reduced the expression of the ZrTPS1 and ZrTPS2 genes, respectively.

  6. Structure of Acid phosphatases.

    PubMed

    Araujo, César L; Vihko, Pirkko T

    2013-01-01

    Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis. The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609-2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes. Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation. Phosphate monoester + H2O -->/<-- alcohol + phosphate. The general classification "acid phosphatase" relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by L-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important

  7. Searching Online Mendelian Inheritance in Man (OMIM) for information on genetic loci involved in human disease.

    PubMed

    Borate, Bhavesh; Baxevanis, Andreas D

    2009-09-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive compendium of information on human genes and genetic disorders, with a particular emphasis on the interplay between observed phenotypes and underlying genotypes. This unit focuses on the basic methodology for formulating OMIM searches and illustrates the types of information that can be retrieved from OMIM, including descriptions of clinical manifestations resulting from genetic abnormalities. This unit also provides information on additional relevant medical and molecular biology databases. A basic knowledge of OMIM should be part of the armamentarium of physicians and scientists with an interest in research on and clinical aspects of genetic disorders.

  8. Searching Online Mendelian Inheritance in Man (OMIM) for information on genetic loci involved in human disease.

    PubMed

    Baxevanis, Andreas D

    2012-04-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive compendium of information on human genes and genetic disorders, with a particular emphasis on the interplay between observed phenotypes and underlying genotypes. This unit focuses on the basic methodology for formulating OMIM searches and illustrates the types of information that can be retrieved from OMIM, including descriptions of clinical manifestations resulting from genetic abnormalities. This unit also provides information on additional relevant medical and molecular biology databases. A basic knowledge of OMIM should be part of the armamentarium of physicians and scientists with an interest in research on the clinical aspects of genetic disorders.

  9. Molecular Evolution of Phosphoprotein Phosphatases in Drosophila

    PubMed Central

    Miskei, Márton; Ádám, Csaba; Kovács, László; Karányi, Zsolt; Dombrádi, Viktor

    2011-01-01

    Phosphoprotein phosphatases (PPP), these ancient and important regulatory enzymes are present in all eukaryotic organisms. Based on the genome sequences of 12 Drosophila species we traced the evolution of the PPP catalytic subunits and noted a substantial expansion of the gene family. We concluded that the 18–22 PPP genes of Drosophilidae were generated from a core set of 8 indispensable phosphatases that are present in most of the insects. Retropositons followed by tandem gene duplications extended the phosphatase repertoire, and sporadic gene losses contributed to the species specific variations in the PPP complement. During the course of these studies we identified 5, up till now uncharacterized phosphatase retrogenes: PpY+, PpD5+, PpD6+, Pp4+, and Pp6+ which are found only in some ancient Drosophila. We demonstrated that all of these new PPP genes exhibit a distinct male specific expression. In addition to the changes in gene numbers, the intron-exon structure and the chromosomal localization of several PPP genes was also altered during evolution. The G−C content of the coding regions decreased when a gene moved into the heterochromatic region of chromosome Y. Thus the PPP enzymes exemplify the various types of dynamic rearrangements that accompany the molecular evolution of a gene family in Drosophilidae. PMID:21789237

  10. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    PubMed

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. OMIA (Online Mendelian Inheritance in Animals): an enhanced platform and integration into the Entrez search interface at NCBI.

    PubMed

    Lenffer, Johann; Nicholas, Frank W; Castle, Kao; Rao, Arjun; Gregory, Stefan; Poidinger, Michael; Mailman, Matthew D; Ranganathan, Shoba

    2006-01-01

    Online Mendelian Inheritance in Animals (OMIA) is a comprehensive, annotated catalogue of inherited disorders and other familial traits in animals other than humans and mice. Structured as a comparative biology resource, OMIA is a comprehensive resource of phenotypic information on heritable animal traits and genes in a strongly comparative context, relating traits to genes where possible. OMIA is modelled on and is complementary to Online Mendelian Inheritance in Man (OMIM). OMIA has been moved to a MySQL database at the Australian National Genomic Information Service (ANGIS) and can be accessed at http://omia.angis.org.au/. It has also been integrated into the Entrez search interface at the National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=omia). Curation of OMIA data by researchers working on particular species and disorders has also been enabled.

  12. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  13. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  14. Disruption of the murine intestinal alkaline phosphatase gene Akp3 impairs lipid transcytosis and induces visceral fat accumulation and hepatic steatosis.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Koyama, Iwao; Kanazawa, Kenta; Nakamura, Koh-Ichi; Narisawa, Sonoko; Tanaka, Kayoko; Akita, Masumi; Masuyama, Taku; Seo, Makoto; Hokari, Shigeru; Katayama, Shigehiro; Alpers, David H; Millán, José Luis; Komoda, Tsugikazu

    2007-05-01

    Intestinal alkaline phosphatase (IAP) is involved in the process of fat absorption, a conclusion confirmed by an altered lipid transport and a faster body weight gain from 10 to 30 wk in both male and female mice with a homozygous null mutation of the IAP coding gene (Akp3(-/-) mice). This study was aimed to delineate morphologically and quantitatively the accelerated lipid absorption in male Akp3(-/-) mice. Feeding a corn oil bolus produced an earlier peak of triacylglycerol in serum (2 vs. 4 h for Akp3(-/-) and wild-type mice, respectively) and an approximately twofold increase in serum triacylglycerol concentration in Akp3(-/-) mice injected with a lipolysis inhibitor, Triton WR-1339. A corn oil load induced the threefold enlargement of the Golgi vacuoles in male wild-type mice but not in Akp3(-/-) mice, indicating that absorbed lipids rarely reached the Golgi complex and that the transcytosis of lipid droplets does not follow the normal pathway in male Akp3(-/-) mice. Force feeding an exaggerated fat intake by a 30% fat chow for 10 wk induced obesity in both male Akp3(-/-) and wild-type mice, and therefore no phenotypic difference was observed between the two. On the other hand, the forced high-fat chow induced an 18% greater body weight gain, hepatic steatosis, and visceral fat accumulation in female Akp3(-/-) mice but not in female wild-type controls. These results provide further evidence that IAP is involved in the regulation of the lipid absorption process and that its absence leads to progressive metabolic abnormalities in certain fat-forced conditions.

  15. Mendelian randomization suggests non-causal associations of testosterone with cardiometabolic risk factors and mortality.

    PubMed

    Haring, R; Teumer, A; Völker, U; Dörr, M; Nauck, M; Biffar, R; Völzke, H; Baumeister, S E; Wallaschofski, H

    2013-01-01

    Prospective studies showed that low serum testosterone concentrations are associated with various cardiometabolic risk factors and mortality. However, the causal nature of these associations is controversial. We studied 1 882 men aged 20-79 years with serum testosterone concentrations and genotyping data from the longitudinal population-based Study of Health in Pomerania. Testosterone concentrations were cross-sectionally associated with cardiometabolic risk factors, including anthropometric, lipid, blood pressure and glycaemic parameters; and prospectively with all-cause mortality (277 deaths, 14.7%) during the 10-year follow-up. To overcome problems of residual confounding, reverse causation, or regression dilution bias in the investigated testosterone-outcome associations, we used two-stage least square regression models with previously identified polymorphisms at the SHBG gene (rs12150660) and X chromosome (rs5934505) as multiple genetic instruments in an instrumental variable (IV) approach, also known as Mendelian randomization. In standard regression analyses, testosterone was robustly associated with a wide range of cardiometabolic risk factors. In subsequent IV analyses, no such significant associations were observed. Similarly, prospective analyses showed a consistent association of low testosterone concentrations with increased all-cause mortality risk, which was not apparent in subsequent IV analyses. The present Mendelian randomization analyses did not detect any evidence for causal associations of testosterone concentrations with cardiometabolic risk factors and mortality, suggesting that previously reported associations might largely result from residual confounding or reverse causation. Although testosterone assessment might improve risk prediction, implementation of testosterone replacement therapy requires further evidence of a direct effect on cardiometabolic outcomes from double-blinded randomized controlled trials and large-scale Mendelian

  16. Viability effects and not meoitic drive cause dramatic departures from Mendelian inheritance for malic enzyme in hybrids of Tigriopus californicus populations.

    PubMed

    Willett, C S; Berkowitz, J N

    2007-05-01

    The genetic basis of post-zygotic reproductive isolation is beginning to be untangled in closely related species, but less is known about the genetics of reproductive isolation between divergent populations. Here, two genes encoding malic enzyme (ME) are isolated from the copepod Tigriopus californicus and their influence upon lowered viability in F(2) hybrids of genetically divergent populations is determined. Each ME gene has diverged extensively between T. californicus populations and one gene shows evidence for a recent selective sweep. Segregation patterns of genotypes for both ME genes in adult F(2) hybrids reveal dramatic departures from Mendelian inheritance, deviations that are not seen in F(2) nauplii implying that selection is acting during development based upon the genotype at these ME genes. These results imply that selection against deleterious gene combinations and not aberrant segregation (i.e. meiotic drive) is likely to lead to dramatic departures from Mendelian inheritance observed in these crosses.

  17. Mendelian inheritance, genetic linkage, and genotypic disequilibrium for nine microsatellite loci in Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae).

    PubMed

    Kubota, T Y K; Silva, A M; Cambuim, J; Silva, A A; Pupin, S; Silva, M S; Moraes, M A; Moraes, M L T; Sebbenn, A M

    2017-05-04

    Cariniana estrellensis is one of the largest trees found in Brazilian tropical forests. The species is typical of advanced stages of succession, characteristic of climax forests, and essential in genetic conservation and environmental restoration plans. In this study, we assessed Mendelian inheritance, genetic linkage, and genotypic disequilibrium in nine microsatellite loci for a C. estrellensis population. We sampled and genotyped 285 adult trees and collected seeds from 20 trees in a fragmented forest landscape in Brazil. Based on maternal genotypes and their seeds, we found no deviation from the expected 1:1 Mendelian segregation and no genetic linkage between pairwise loci. However, for adults, genotypic disequilibrium was detected for four pairs of loci, suggesting that this result was not caused by genetic linkage. Based on these results, we analyzed microsatellite loci that are suitable for use in population genetic studies assessing genetic diversity, mating system, and gene flow in C. estrellensis populations.

  18. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes.

    PubMed

    Ge, Liang-Fa; Chao, Dai-Yin; Shi, Min; Zhu, Mei-Zhen; Gao, Ji-Ping; Lin, Hong-Xuan

    2008-06-01

    Trehalose plays a protective role in yeast and microorganisms under abiotic stresses. However, little is known about its role in higher plants when subjected to environmental challenges. A systematic search of rice databases discovered a large TPS/TPP gene family in the rice genome, which is similar to that found in Arabidopsis thaliana, especially in the gene family structure. Expression analysis demonstrated that OsTPP1 was initially and transiently up-regulated after salt, osmotic and abscisic acid (ABA) treatments but slowly up-regulated under cold stress. OsTPP1 overexpression in rice enhanced tolerance to salt and cold stress. Analysis of the overexpression lines revealed that OsTPP1 triggered abiotic stress response genes, which suggests a possible transcriptional regulation pathway in stress induced reprogramming initiated by OsTPP1. The current study revealed the mechanism of an OsTPP gene involved in stress tolerance in rice and also suggested the use of OsTPP1 in abiotic stress engineering of crops.

  19. Systematic large-scale study of the inheritance mode of Mendelian disorders provides new insight into human diseasome.

    PubMed

    Hao, Dapeng; Wang, Guangyu; Yin, Zuojing; Li, Chuanxing; Cui, Yan; Zhou, Meng

    2014-11-01

    One important piece of information about the human Mendelian disorders is the mode of inheritance. Recent studies of human genetic diseases on a large scale have provided many novel insights into the underlying molecular mechanisms. However, most successful analyses ignored the mode of inheritance of diseases, which severely limits our understanding of human disease mechanisms relating to the mode of inheritance at the large scale. Therefore, we here conducted a systematic large-scale study of the inheritance mode of Mendelian disorders, to bring new insight into human diseases. Our analyses include the comparison between dominant and recessive disease genes on both genomic and proteomic characteristics, Mendelian mutations, protein network properties and disease connections on both the genetic and the population levels. We found that dominant disease genes are more functionally central, topological central and more sensitive to disease outcome. On the basis of these findings, we suggested that dominant diseases should have higher genetic heterogeneity and should have more comprehensive connections with each other compared with recessive diseases, a prediction we confirm by disease network and disease comorbidity.

  20. Phosphoinositide phosphatases: just as important as the kinases.

    PubMed

    Dyson, Jennifer M; Fedele, Clare G; Davies, Elizabeth M; Becanovic, Jelena; Mitchell, Christina A

    2012-01-01

    Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.

  1. Childhood adiposity and risk of type 1 diabetes: A Mendelian randomization study.

    PubMed

    Censin, J C; Nowak, Christoph; Cooper, Nicholas; Bergsten, Peter; Todd, John A; Fall, Tove

    2017-08-01

    The incidence of type 1 diabetes (T1D) is increasing globally. One hypothesis is that increasing childhood obesity rates may explain part of this increase, but, as T1D is rare, intervention studies are challenging to perform. The aim of this study was to assess this hypothesis with a Mendelian randomization approach that uses genetic variants as instrumental variables to test for causal associations. We created a genetic instrument of 23 single nucleotide polymorphisms (SNPs) associated with childhood adiposity in children aged 2-10 years. Summary-level association results for these 23 SNPs with childhood-onset (<17 years) T1D were extracted from a meta-analysis of genome-wide association study with 5,913 T1D cases and 8,828 reference samples. Using inverse-variance weighted Mendelian randomization analysis, we found support for an effect of childhood adiposity on T1D risk (odds ratio 1.32, 95% CI 1.06-1.64 per standard deviation score in body mass index [SDS-BMI]). A sensitivity analysis provided evidence of horizontal pleiotropy bias (p = 0.04) diluting the estimates towards the null. We therefore applied Egger regression and multivariable Mendelian randomization methods to control for this type of bias and found evidence in support of a role of childhood adiposity in T1D (odds ratio in Egger regression, 2.76, 95% CI 1.40-5.44). Limitations of our study include that underlying genes and their mechanisms for most of the genetic variants included in the score are not known. Mendelian randomization requires large sample sizes, and power was limited to provide precise estimates. This research has been conducted using data from the Early Growth Genetics (EGG) Consortium, the Genetic Investigation of Anthropometric Traits (GIANT) Consortium, the Tobacco and Genetics (TAG) Consortium, and the Social Science Genetic Association Consortium (SSGAC), as well as meta-analysis results from a T1D genome-wide association study. This study provides genetic support for a link

  2. Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOGR1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens

    PubMed Central

    Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad

    2015-01-01

    DOGR1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l-1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm. PMID:26442041

  3. Protein Tyrosine Phosphatase Non-receptor 22 Gene C1858T Polymorphism in Patients with Coexistent Type 2 Diabetes and Hashimoto’s Thyroiditis

    PubMed Central

    Bulut, Funda; Erol, Deniz; Elyas, Halit; Doğan, Halil; Özdemir, Fethi Ahmet; Keskin, Lezan

    2014-01-01

    Background: A protein tyrosine phosphatase non-receptor type 22 (PTPN22) C1858T gene polymorphism has been reported to be associated with both Type 2 diabetes mellitus (T2DM) and Hashimoto’s thyroiditis (HT) separately. However, no study has been conducted to explore the C1858T polymorphism in T2DM and HT coexistent cases up to now. Aims: The study aimed to determine whether a relationship exists or not between the PTPN22 C1858T polymorphism and this coexistent patient group. Study Design: Case-control study. Methods: Peripheral blood samples from 135 T2DM patients, 102 patients with coexistent T2DM+HT, 71 HT patients and 135 healthy controls were collected into ethylenediaminetetraacetic acid (EDTA) anticoagulant tubes and genomic DNA was extracted. The PTPN22 C1858T polymorphism was analyzed using polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) methods. Results: Statistically significant differences were not observed between the patient and control groups. This study demonstrated a statistically significant association between both the CT genotype and the T allele in the female patient group with coexistent T2DM+HT (CT genotype: p=0.04; T allele: p=0.045) with a statistically significant association between the CT genotype and the mean values of body mass index (BMI) and free T3 levels (FT3) (BMI: p=0.044 and FT3: p=0.021) that was detected in the patient group with coexistent T2DM+HT. The minor genotype TT was observed in none of the groups in this study. The CT genotype frequency was [number (frequency): 5 (3.8%), 7 (6.86%), 5 (7.04%), 3 (2.22%), while the T allele frequency was 5 (1.86%), 7 (3.44%), 5 (3.53%) and 3 (1.12%)] in the T2DM, T2DM+HT, HT and control groups, respectively. Conclusion: Our data suggest that the PTPN22 1858T allele and the CT genotype are associated with increased risk in female patients for coexistent T2DM+HT. The CT genotype was associated with high mean BMI and free T3 values in the patient group

  4. Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana.

    PubMed

    Reddy, Venky Sreedhar; Rao, D K Venkata; Rajasekharan, Ram

    2010-04-01

    Lysophosphatidic acid (LPA) acts as a signaling molecule that regulates diverse cellular processes and it can rapidly be metabolized by phosphatase and acyltransferase. LPA phosphatase gene has not been identified and characterized in plants so far. The BLAST search revealed that the At3g03520 is similar to phospholipase family, and distantly related to bacterial phosphatases. The conserved motif, (J)4XXXNXSFD, was identified in both At3g03520 like phospholipases and acid phosphatases. In silico expression analysis of At3g03520 revealed a high expression during phosphate starvation and abiotic stresses. This gene was overexpressed in Escherichia coli and shown to posses LPA specific phosphatase activity. These results suggest that this gene possibly plays a role in signal transduction and storage lipid synthesis.

  5. Inorganic Phosphate as an Important Regulator of Phosphatases

    PubMed Central

    Dick, Claudia Fernanda; Dos-Santos, André Luiz Araújo; Meyer-Fernandes, José Roberto

    2011-01-01

    Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate (Pi). Pi starvation-responsive genes appear to be involved in multiple metabolic pathways, implying a complex Pi regulation system in microorganisms and plants. A group of enzymes is required for absorption and maintenance of adequate phosphate levels, which is released from phosphate esters and anhydrides. The phosphatase system is particularly suited for the study of regulatory mechanisms because phosphatase activity is easily measured using specific methods and the difference between the repressed and derepressed levels of phosphatase activity is easily detected. This paper analyzes the protein phosphatase system induced during phosphate starvation in different organisms. PMID:21755037

  6. 3-Phosphoglycerate Phosphatase in Plants

    PubMed Central

    Randall, D. D.; Tolbert, N. E.; Gremel, D.

    1971-01-01

    3-Phosphoglycerate phosphatase and phosphoglycolate phosphatase were found in leaves of all 52 plants examined. Activities of both phosphatases varied widely between 1 to 20 micromoles per minute per milligram chlorophyll. Plants were grouped into two categories based upon the relative ratio of activity of 3-phosphoglycerate phosphatase to phosphoglycolate phosphatase. This ratio varied between 2:1 to 4:1 in the C4-plants except corn leaves which had a low level of 3-phosphoglycerate phosphatase. This ratio was reversed and varied between 1:2 to 1:6 in all C3-plants except one bean variety which had large amounts of both phosphatases. By differential grinding procedures for C4 plants a major part of the 3-phosphoglycerate phosphatase was found in the mesophyll cells and P-glycolate phosphatase in the bundle sheath cells. Phosphoglycolate phosphatase, but not 3-phosphoglycerate phosphatase, was located in chloroplasts of C3- and C4- plants. Formation of 3-phosphoglycerate phosphatase increased 4- to 12-fold during greening of etiolated sugarcane leaves. This cytosol phosphatase displayed a diurnal variation in sugarcane leaves by increasing 50% during late daylight hours and early evening. It is proposed that the soluble form of 3-phosphoglycerate phosphatase is necessary for carbon transport between the bundle sheath and mesophyll cells during photosynthesis by C4-plants. In C3- and C4-plants this phosphatase initiates the conversion of 3-phosphoglycerate to serine which is an alternate metabolic pathway to glycolate metabolism and photorespiration. PMID:16657822

  7. The canonical equation of adaptive dynamics for Mendelian diploids and haplo-diploids.

    PubMed

    Metz, Johan A J; de Kovel, Carolien G F

    2013-12-06

    One of the powerful tools of adaptive dynamics is its so-called canonical equation (CE), a differential equation describing how the prevailing trait vector changes over evolutionary time. The derivation of the CE is based on two simplifying assumptions, separation of population dynamical and mutational time scales and small mutational steps. (It may appear that these two conditions rarely go together. However, for small step sizes the time-scale separation need not be very strict.) The CE was derived in 1996, with mathematical rigour being added in 2003. Both papers consider only well-mixed clonal populations with the simplest possible life histories. In 2008, the CE's reach was heuristically extended to locally well-mixed populations with general life histories. We, again heuristically, extend it further to Mendelian diploids and haplo-diploids. Away from strict time-scale separation the CE does an even better approximation job in the Mendelian than in the clonal case owing to gene substitutions occurring effectively in parallel, which obviates slowing down by clonal interference.

  8. The canonical equation of adaptive dynamics for Mendelian diploids and haplo-diploids

    PubMed Central

    Metz, Johan A. J.; de Kovel, Carolien G. F.

    2013-01-01

    One of the powerful tools of adaptive dynamics is its so-called canonical equation (CE), a differential equation describing how the prevailing trait vector changes over evolutionary time. The derivation of the CE is based on two simplifying assumptions, separation of population dynamical and mutational time scales and small mutational steps. (It may appear that these two conditions rarely go together. However, for small step sizes the time-scale separation need not be very strict.) The CE was derived in 1996, with mathematical rigour being added in 2003. Both papers consider only well-mixed clonal populations with the simplest possible life histories. In 2008, the CE's reach was heuristically extended to locally well-mixed populations with general life histories. We, again heuristically, extend it further to Mendelian diploids and haplo-diploids. Away from strict time-scale separation the CE does an even better approximation job in the Mendelian than in the clonal case owing to gene substitutions occurring effectively in parallel, which obviates slowing down by clonal interference. PMID:24516713

  9. Targeted Next-Generation Sequencing for Clinical Diagnosis of 561 Mendelian Diseases

    PubMed Central

    Kong, Xiangdong; Guo, Xueqin; Sun, Yan; Man, Jianfen; Du, Lique; Zhu, Hui; Qu, Zelan; Tian, Ping; Mao, Bing; Yang, Yun

    2015-01-01

    Background Targeted next-generation sequencing (NGS) is a cost-effective approach for rapid and accurate detection of genetic mutations in patients with suspected genetic disorders, which can facilitate effective diagnosis. Methodology/Principal Findings We designed a capture array to mainly capture all the coding sequence (CDS) of 2,181 genes associated with 561 Mendelian diseases and conducted NGS to detect mutations. The accuracy of NGS was 99.95%, which was obtained by comparing the genotypes of selected loci between our method and SNP Array in four samples from normal human adults. We also tested the stability of the method using a sample from normal human adults. The results showed that an average of 97.79% and 96.72% of single-nucleotide variants (SNVs) in the sample could be detected stably in a batch and different batches respectively. In addition, the method could detect various types of mutations. Some disease-causing mutations were detected in 69 clinical cases, including 62 SNVs, 14 insertions and deletions (Indels), 1 copy number variant (CNV), 1 microdeletion and 2 microduplications of chromosomes, of which 35 mutations were novel. Mutations were confirmed by Sanger sequencing or real-time polymerase chain reaction (PCR). Conclusions/Significance Results of the evaluation showed that targeted NGS enabled to detect disease-causing mutations with high accuracy, stability, speed and throughput. Thus, the technology can be used for the clinical diagnosis of 561 Mendelian diseases. PMID:26274329

  10. Alkaline phosphatase: an overview.

    PubMed

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  11. Instrumental variables and Mendelian randomization with invalid instruments

    NASA Astrophysics Data System (ADS)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with

  12. Mendelian Randomization versus Path Models: Making Causal Inferences in Genetic Epidemiology.

    PubMed

    Ziegler, Andreas; Mwambi, Henry; König, Inke R

    2015-01-01

    The term Mendelian randomization is popular in the current literature. The first aim of this work is to describe the idea of Mendelian randomization studies and the assumptions required for drawing valid conclusions. The second aim is to contrast Mendelian randomization and path modeling when different 'omics' levels are considered jointly. We define Mendelian randomization as introduced by Katan in 1986, and review its crucial assumptions. We introduce path models as the relevant additional component to the current use of Mendelian randomization studies in 'omics'. Real data examples for the association between lipid levels and coronary artery disease illustrate the use of path models. Numerous assumptions underlie Mendelian randomization, and they are difficult to be fulfilled in applications. Path models are suitable for investigating causality, and they should not be mixed up with the term Mendelian randomization. In many applications, path modeling would be the appropriate analysis in addition to a simple Mendelian randomization analysis. Mendelian randomization and path models use different concepts for causal inference. Path modeling but not simple Mendelian randomization analysis is well suited to study causality with different levels of 'omics' data. 2015 S. Karger AG, Basel.

  13. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012

    PubMed Central

    Nicholas, Frank W; Hobbs, Matthew

    2014-01-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556

  14. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012.

    PubMed

    Nicholas, Frank W; Hobbs, Matthew

    2014-04-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). © 2013 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  15. Mendelian randomization studies of biomarkers and type 2 diabetes

    PubMed Central

    Abbasi, Ali

    2015-01-01

    Many biomarkers are associated with type 2 diabetes (T2D) risk in epidemiological observations. The aim of this study was to identify and summarize current evidence for causal effects of biomarkers on T2D. A systematic literature search in PubMed and EMBASE (until April 2015) was done to identify Mendelian randomization studies that examined potential causal effects of biomarkers on T2D. To replicate the findings of identified studies, data from two large-scale, genome-wide association studies (GWAS) were used: DIAbetes Genetics Replication And Meta-analysis (DIAGRAMv3) for T2D and the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) for glycaemic traits. GWAS summary statistics were extracted for the same genetic variants (or proxy variants), which were used in the original Mendelian randomization studies. Of the 21 biomarkers (from 28 studies), ten have been reported to be causally associated with T2D in Mendelian randomization. Most biomarkers were investigated in a single cohort study or population. Of the ten biomarkers that were identified, nominally significant associations with T2D or glycaemic traits were reached for those genetic variants related to bilirubin, pro-B-type natriuretic peptide, delta-6 desaturase and dimethylglycine based on the summary data from DIAGRAMv3 or MAGIC. Several Mendelian randomization studies investigated the nature of associations of biomarkers with T2D. However, there were only a few biomarkers that may have causal effects on T2D. Further research is needed to broadly evaluate the causal effects of multiple biomarkers on T2D and glycaemic traits using data from large-scale cohorts or GWAS including many different genetic variants. PMID:26446360

  16. Using Mendelian inheritance to improve high-throughput SNP discovery.

    PubMed

    Chen, Nancy; Van Hout, Cristopher V; Gottipati, Srikanth; Clark, Andrew G

    2014-11-01

    Restriction site-associated DNA sequencing or genotyping-by-sequencing (GBS) approaches allow for rapid and cost-effective discovery and genotyping of thousands of single-nucleotide polymorphisms (SNPs) in multiple individuals. However, rigorous quality control practices are needed to avoid high levels of error and bias with these reduced representation methods. We developed a formal statistical framework for filtering spurious loci, using Mendelian inheritance patterns in nuclear families, that accommodates variable-quality genotype calls and missing data--both rampant issues with GBS data--and for identifying sex-linked SNPs. Simulations predict excellent performance of both the Mendelian filter and the sex-linkage assignment under a variety of conditions. We further evaluate our method by applying it to real GBS data and validating a subset of high-quality SNPs. These results demonstrate that our metric of Mendelian inheritance is a powerful quality filter for GBS loci that is complementary to standard coverage and Hardy-Weinberg filters. The described method, implemented in the software MendelChecker, will improve quality control during SNP discovery in nonmodel as well as model organisms.

  17. Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases

    PubMed Central

    Smedley, Damian; Köhler, Sebastian; Czeschik, Johanna Christina; Amberger, Joanna; Bocchini, Carol; Hamosh, Ada; Veldboer, Julian; Zemojtel, Tomasz; Robinson, Peter N.

    2014-01-01

    Motivation: Whole-exome sequencing (WES) has opened up previously unheard of possibilities for identifying novel disease genes in Mendelian disorders, only about half of which have been elucidated to date. However, interpretation of WES data remains challenging. Results: Here, we analyze protein–protein association (PPA) networks to identify candidate genes in the vicinity of genes previously implicated in a disease. The analysis, using a random-walk with restart (RWR) method, is adapted to the setting of WES by developing a composite variant-gene relevance score based on the rarity, location and predicted pathogenicity of variants and the RWR evaluation of genes harboring the variants. Benchmarking using known disease variants from 88 disease-gene families reveals that the correct gene is ranked among the top 10 candidates in ≥50% of cases, a figure which we confirmed using a prospective study of disease genes identified in 2012 and PPA data produced before that date. We implement our method in a freely available Web server, ExomeWalker, that displays a ranked list of candidates together with information on PPAs, frequency and predicted pathogenicity of the variants to allow quick and effective searches for candidates that are likely to reward closer investigation. Availability and implementation: http://compbio.charite.de/ExomeWalker Contact: peter.robinson@charite.de PMID:25078397

  18. Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases

    SciTech Connect

    Smedley, Damian; Kohler, Sebastian; Czeschik, Johanna Christina; Amberger, Joanna; Bocchini, Carol; Hamosh, Ada; Veldboer, Julian; Zemojtel, Tomasz; Robinson, Peter N.

    2014-07-30

    Here, whole-exome sequencing (WES) has opened up previously unheard of possibilities for identifying novel disease genes in Mendelian disorders, only about half of which have been elucidated to date. However, interpretation of WES data remains challenging. As a result, we analyze protein–protein association (PPA) networks to identify candidate genes in the vicinity of genes previously implicated in a disease. The analysis, using a random-walk with restart (RWR) method, is adapted to the setting of WES by developing a composite variant-gene relevance score based on the rarity, location and predicted pathogenicity of variants and the RWR evaluation of genes harboring the variants. Benchmarking using known disease variants from 88 disease-gene families reveals that the correct gene is ranked among the top 10 candidates in ≥50% of cases, a figure which we confirmed using a prospective study of disease genes identified in 2012 and PPA data produced before that date. In conclusion, we implement our method in a freely available Web server, ExomeWalker, that displays a ranked list of candidates together with information on PPAs, frequency and predicted pathogenicity of the variants to allow quick and effective searches for candidates that are likely to reward closer investigation.

  19. Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases

    DOE PAGES

    Smedley, Damian; Kohler, Sebastian; Czeschik, Johanna Christina; ...

    2014-07-30

    Here, whole-exome sequencing (WES) has opened up previously unheard of possibilities for identifying novel disease genes in Mendelian disorders, only about half of which have been elucidated to date. However, interpretation of WES data remains challenging. As a result, we analyze protein–protein association (PPA) networks to identify candidate genes in the vicinity of genes previously implicated in a disease. The analysis, using a random-walk with restart (RWR) method, is adapted to the setting of WES by developing a composite variant-gene relevance score based on the rarity, location and predicted pathogenicity of variants and the RWR evaluation of genes harboring themore » variants. Benchmarking using known disease variants from 88 disease-gene families reveals that the correct gene is ranked among the top 10 candidates in ≥50% of cases, a figure which we confirmed using a prospective study of disease genes identified in 2012 and PPA data produced before that date. In conclusion, we implement our method in a freely available Web server, ExomeWalker, that displays a ranked list of candidates together with information on PPAs, frequency and predicted pathogenicity of the variants to allow quick and effective searches for candidates that are likely to reward closer investigation.« less

  20. Management of mendelian traits in breeding programs by gene editing

    USDA-ARS?s Scientific Manuscript database

    High-density single nucleotide polymorphism genotypes have recently been used to identify a number of novel recessive mutations that adversely affect fertility in dairy cattle, as well as to track conditions such as polled. Recent findings suggest that the use of sequential mate allocation strategie...

  1. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors.

    PubMed

    Burgess, Stephen; Scott, Robert A; Timpson, Nicholas J; Davey Smith, George; Thompson, Simon G

    2015-07-01

    Finding individual-level data for adequately-powered Mendelian randomization analyses may be problematic. As publicly-available summarized data on genetic associations with disease outcomes from large consortia are becoming more abundant, use of published data is an attractive analysis strategy for obtaining precise estimates of the causal effects of risk factors on outcomes. We detail the necessary steps for conducting Mendelian randomization investigations using published data, and present novel statistical methods for combining data on the associations of multiple (correlated or uncorrelated) genetic variants with the risk factor and outcome into a single causal effect estimate. A two-sample analysis strategy may be employed, in which evidence on the gene-risk factor and gene-outcome associations are taken from different data sources. These approaches allow the efficient identification of risk factors that are suitable targets for clinical intervention from published data, although the ability to assess the assumptions necessary for causal inference is diminished. Methods and guidance are illustrated using the example of the causal effect of serum calcium levels on fasting glucose concentrations. The estimated causal effect of a 1 standard deviation (0.13 mmol/L) increase in calcium levels on fasting glucose (mM) using a single lead variant from the CASR gene region is 0.044 (95 % credible interval -0.002, 0.100). In contrast, using our method to account for the correlation between variants, the corresponding estimate using 17 genetic variants is 0.022 (95 % credible interval 0.009, 0.035), a more clearly positive causal effect.

  2. Acid phosphatase/phosphotransferases from enteric bacteria.

    PubMed

    Mihara, Y; Utagawa, T; Yamada, H; Asano, Y

    2001-01-01

    We have investigated the enzymatic phosphorylation of nucleosides and found that Morganella morganii phoC acid phosphatase exhibits regioselective pyrophosphate (PP(i))-nucleoside phosphotransferase activity. In this study, we isolated genes encoding an acid phosphatase with regioselective phosphotransferase activity (AP/PTase) from Providencia stuartii, Enterobacter aerogenes, Escherichia blattae and Klebsiella planticola, and compared the primary structures and enzymatic characteristics of these enzymes with those of AP/PTase (PhoC acid phosphatase) from M. morganii. The enzymes were highly homologous in primary structure with M. morganii AP/PTase, and are classified as class A1 acid phosphatases. The synthesis of inosine-5'-monophosphate (5'-IMP) by E. coli overproducing each acid phosphatase was investigated. The P. stuartii enzyme, which is most closely related to the M. morganii enzyme, exhibited high 5'-IMP productivity, similar to the M. morganii enzyme. The 5'-IMP productivities of the E. aerogenes, E. blattae and K. planticola enzymes were inferior to those of the former two enzymes. This result underlines the importance of lower K(m) values for efficient nucleotide production. As these enzymes exhibited a very high degree of homology at the amino acid sequence level, it is likely that local sequence differences in the binding pocket are responsible for the differences in the nucleoside-PP(i) phosphotransferase reaction.

  3. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato.

    PubMed

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Liu, Shixia; Tian, Limei; Dai, Yi; Cao, Zhongye; Huang, Lihong; Li, Dayong; Song, Fengming

    2016-01-01

    Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

  4. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

    PubMed Central

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Liu, Shixia; Tian, Limei; Dai, Yi; Cao, Zhongye; Huang, Lihong; Li, Dayong; Song, Fengming

    2016-01-01

    Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato. PMID:27540389

  5. Rules for resolving Mendelian inconsistencies in nuclear pedigrees typed for two-allele markers.

    PubMed

    Khan, Sajjad Ahmad; Manzoor, Sadaf; Alamgir; Ali, Amjad; Khan, Dost Muhammad; Khalil, Umair

    2017-01-01

    Gene-mapping studies, regularly, rely on examination for Mendelian transmission of marker alleles in a pedigree as a way of screening for genotyping errors and mutations. For analysis of family data sets, it is, usually, necessary to resolve or remove the genotyping errors prior to consideration. At the Center of Inherited Disease Research (CIDR), to deal with their large-scale data flow, they formalized their data cleaning approach in a set of rules based on PedCheck output. We scrutinize via carefully designed simulations that how well CIDR's data cleaning rules work in practice. We found that genotype errors in siblings are detected more often than in parents for less polymorphic SNPs and vice versa for more polymorphic SNPs. Through computer simulations, we conclude that some of the CIDR's rules work poorly in some circumstances, and we suggest a set of modified data cleaning rules that may work better than CIDR's rules.

  6. Rules for resolving Mendelian inconsistencies in nuclear pedigrees typed for two-allele markers

    PubMed Central

    Khan, Sajjad Ahmad; Manzoor, Sadaf; Alamgir; Ali, Amjad; Khan, Dost Muhammad; Khalil, Umair

    2017-01-01

    Gene-mapping studies, regularly, rely on examination for Mendelian transmission of marker alleles in a pedigree as a way of screening for genotyping errors and mutations. For analysis of family data sets, it is, usually, necessary to resolve or remove the genotyping errors prior to consideration. At the Center of Inherited Disease Research (CIDR), to deal with their large-scale data flow, they formalized their data cleaning approach in a set of rules based on PedCheck output. We scrutinize via carefully designed simulations that how well CIDR’s data cleaning rules work in practice. We found that genotype errors in siblings are detected more often than in parents for less polymorphic SNPs and vice versa for more polymorphic SNPs. Through computer simulations, we conclude that some of the CIDR’s rules work poorly in some circumstances, and we suggest a set of modified data cleaning rules that may work better than CIDR’s rules. PMID:28253278

  7. Phosphatidyl glycerophosphate phosphatase.

    PubMed

    Chang, Y Y; Kennedy, E P

    1967-09-01

    An enzyme (phosphatidyl glycerophosphate phosphatase) that catalyzes the formation of phosphatidyl glycerol from phosphatidyl glycerophosphate has been rendered soluble by treatment of the particulate fraction of E. coli with Triton X-100 in the presence of EDTA, and has been partially purified. The enzyme is specific for phosphatidyl glycerophosphate and does not catalyze the hydrolysis of other simple phosphomonoesters. It requires Mg(++) for activity and is inhibited by sulfhydryl agents. Some other properties of the enzyme are also described.

  8. Improved Student Linkage of Mendelian and Molecular Genetic Concepts through a Yeast-Based Laboratory Module

    ERIC Educational Resources Information Center

    Wolyniak, Michael J.

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to…

  9. Using Mendelian inheritance errors as quality control criteria in whole genome sequencing data set

    PubMed Central

    2014-01-01

    Although the technical and analytic complexity of whole genome sequencing is generally appreciated, best practices for data cleaning and quality control have not been defined. Family based data can be used to guide the standardization of specific quality control metrics in nonfamily based data. Given the low mutation rate, Mendelian inheritance errors are likely as a result of erroneous genotype calls. Thus, our goal was to identify the characteristics that determine Mendelian inheritance errors. To accomplish this, we used chromosome 3 whole genome sequencing family based data from the Genetic Analysis Workshop 18. Mendelian inheritance errors were provided as part of the GAW18 data set. Additionally, for binary variants we calculated Mendelian inheritance errors using PLINK. Based on our analysis, nonbinary single-nucleotide variants have an inherently high number of Mendelian inheritance errors. Furthermore, in binary variants, Mendelian inheritance errors are not randomly distributed. Indeed, we identified 3 Mendelian inheritance error peaks that were enriched with repetitive elements. However, these peaks can be lessened with the inclusion of a single filter from the sequencing file. In summary, we demonstrated that erroneous sequencing calls are nonrandomly distributed across the genome and quality control metrics can dramatically reduce the number of mendelian inheritance errors. Appropriate quality control will allow optimal use of genetic data to realize the full potential of whole genome sequencing. PMID:25519373

  10. Improved Student Linkage of Mendelian and Molecular Genetic Concepts through a Yeast-Based Laboratory Module

    ERIC Educational Resources Information Center

    Wolyniak, Michael J.

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to…

  11. The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach.

    PubMed

    Binder, Alexandra M; Michels, Karin B

    2013-12-04

    Investigation of the biological mechanism by which folate acts to affect fetal development can inform appraisal of expected benefits and risk management. This research is ethically imperative given the ubiquity of folic acid fortified products in the US. Considering that folate is an essential component in the one-carbon metabolism pathway that provides methyl groups for DNA methylation, epigenetic modifications provide a putative molecular mechanism mediating the effect of folic acid supplementation on neonatal and pediatric outcomes. In this study we use a Mendelian Randomization Unnecessary approach to assess the effect of red blood cell (RBC) folate on genome-wide DNA methylation in cord blood. Site-specific CpG methylation within the proximal promoter regions of approximately 14,500 genes was analyzed using the Illumina Infinium Human Methylation27 Bead Chip for 50 infants from the Epigenetic Birth Cohort at Brigham and Women's Hospital in Boston. Using methylenetetrahydrofolate reductase genotype as the instrument, the Mendelian Randomization approach identified 7 CpG loci with a significant (mostly positive) association between RBC folate and methylation level. Among the genes in closest proximity to this significant subset of CpG loci, several enriched biologic processes were involved in nucleic acid transport and metabolic processing. Compared to the standard ordinary least squares regression method, our estimates were demonstrated to be more robust to unmeasured confounding. To the authors' knowledge, this is the largest genome-wide analysis of the effects of folate on methylation pattern, and the first to employ Mendelian Randomization to assess the effects of an exposure on epigenetic modifications. These results can help guide future analyses of the causal effects of periconceptional folate levels on candidate pathways.

  12. Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability

    PubMed Central

    Kernohan, Kristin D.; Tétreault, Martine; Liwak-Muir, Urszula; Geraghty, Michael T.; Qin, Wen; Venkateswaran, Sunita; Davila, Jorge; Holcik, Martin; Majewski, Jacek; Richer, Julie; Boycott, Kym M.

    2015-01-01

    Protein translation is an essential cellular process initiated by the association of a methionyl–tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B–PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases. PMID:26307080

  13. Using zebrafish to learn statistical analysis and Mendelian genetics.

    PubMed

    Lindemann, Samantha; Senkler, Jon; Auchter, Elizabeth; Liang, Jennifer O

    2011-06-01

    This project was developed to promote understanding of how mathematics and statistical analysis are used as tools in genetic research. It gives students the opportunity to carry out hypothesis-driven experiments in the classroom: students generate hypotheses about Mendelian and non-Mendelian inheritance patterns, gather raw data, and test their hypotheses using chi-square statistical analysis. In the first protocol, students are challenged to analyze inheritance patterns using GloFish, brightly colored, commercially available, transgenic zebrafish that express Green, Yellow, or Red Fluorescent Protein throughout their muscles. In the second protocol, students learn about genetic screens, microscopy, and developmental biology by analyzing the inheritance patterns of mutations that cause developmental defects. The difficulty of the experiments can be adapted for middle school to upper level undergraduate students. Since the GloFish experiments use only fish and materials that can be purchased from pet stores, they should be accessible to many schools. For each protocol, we provide detailed instructions, ideas for how the experiments fit into an undergraduate curriculum, raw data, and example analyses. Our plan is to have these protocols form the basis of a growing and adaptable educational tool available on the Zebrafish in the Classroom Web site.

  14. Bilirubin and Stroke Risk Using a Mendelian Randomization Design.

    PubMed

    Lee, Sun Ju; Jee, Yon Ho; Jung, Keum Ji; Hong, Seri; Shin, Eun Soon; Jee, Sun Ha

    2017-05-01

    Circulating bilirubin, a natural antioxidant, is associated with decreased risk of stroke. However, the nature of the relationship between the two remains unknown. We used a Mendelian randomization analysis to assess the causal effect of serum bilirubin on stroke risk in Koreans. The 14 single-nucleotide polymorphisms (SNPs) (<10(-7)) including rs6742078 of uridine diphosphoglucuronyl-transferase were selected from genome-wide association study of bilirubin level in the KCPS-II (Korean Cancer Prevention Study-II) Biobank subcohort consisting of 4793 healthy Korean and 806 stroke cases. Weighted genetic risk score was calculated using 14 SNPs selected from the top SNPs. Both rs6742078 (F statistics=138) and weighted genetic risk score with 14 SNPs (F statistics=187) were strongly associated with bilirubin levels. Simultaneously, serum bilirubin level was associated with decreased risk of stroke in an ordinary least-squares analysis. However, in 2-stage least-squares Mendelian randomization analysis, no causal relationship between serum bilirubin and stroke risk was found. There is no evidence that bilirubin level is causally associated with risk of stroke in Koreans. Therefore, bilirubin level is not a risk determinant of stroke. © 2017 American Heart Association, Inc.

  15. A review of instrumental variable estimators for Mendelian randomization.

    PubMed

    Burgess, Stephen; Small, Dylan S; Thompson, Simon G

    2015-08-17

    Instrumental variable analysis is an approach for obtaining causal inferences on the effect of an exposure (risk factor) on an outcome from observational data. It has gained in popularity over the past decade with the use of genetic variants as instrumental variables, known as Mendelian randomization. An instrumental variable is associated with the exposure, but not associated with any confounder of the exposure-outcome association, nor is there any causal pathway from the instrumental variable to the outcome other than via the exposure. Under the assumption that a single instrumental variable or a set of instrumental variables for the exposure is available, the causal effect of the exposure on the outcome can be estimated. There are several methods available for instrumental variable estimation; we consider the ratio method, two-stage methods, likelihood-based methods, and semi-parametric methods. Techniques for obtaining statistical inferences and confidence intervals are presented. The statistical properties of estimates from these methods are compared, and practical advice is given about choosing a suitable analysis method. In particular, bias and coverage properties of estimators are considered, especially with weak instruments. Settings particularly relevant to Mendelian randomization are prioritized in the paper, notably the scenario of a continuous exposure and a continuous or binary outcome. © The Author(s) 2015.

  16. A novel X‐linked recessive form of Mendelian susceptibility to mycobaterial disease

    PubMed Central

    Bustamante, Jacinta; Picard, Capucine; Fieschi, Claire; Filipe‐Santos, Orchidée; Feinberg, Jacqueline; Perronne, Christian; Chapgier, Ariane; de Beaucoudrey, Ludovic; Vogt, Guillaume; Sanlaville, Damien; Lemainque, Arnaud; Emile, Jean‐François; Abel, Laurent; Casanova, Jean‐Laurent

    2007-01-01

    Background Mendelian susceptibility to mycobacterial disease (MSMD) is associated with infection caused by weakly virulent mycobacteria in otherwise healthy people. Causal germline mutations in five autosomal genes (IFNGR1, IFNGR2, STAT1, IL12RB1, IL12B) and one X‐linked (NEMO) gene have been described. The gene products are physiologically related, as they are involved in interleukin 12/23‐dependent, interferon γ‐mediated immunity. However, no genetic aetiology has yet been identified for about half the patients with MSMD. Methods A large kindred was studied, including four male maternal relatives with recurrent mycobacterial disease, suggesting X‐linked recessive inheritance. Three patients had recurrent disease caused by the bacille Calmette–Guérin vaccine, and the fourth had recurrent tuberculosis. The infections showed tropism for the peripheral lymph nodes. Results Known autosomal and X‐linked genetic aetiologies of MSMD were excluded through genetic and immunological investigations. Genetic linkage analysis of the X‐chromosome identified two candidate regions, on Xp11.4–Xp21.2 and Xq25–Xq26.3, with a maximum LOD score of 2. Conclusion A new X‐linked recessive form of MSMD is reported, paving the way for the identification of a new MSMD‐causing gene. PMID:17293536

  17. Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13.

    PubMed

    Wiggins, R C; Wiggins, J E; Goyal, M; Wharram, B L; Thomas, P E

    1995-05-01

    Human glomerular epithelial protein 1 (GLEPP1), a receptor-like membrane protein tyrosine phosphatase (PTPase), was cloned and sequenced from a human renal cortical cDNA library. The human nucleotide and derived amino acid sequences were, respectively, 90 and 97% identical to those of rabbit. Human GLEPP1 is predicted to contain 1188 amino acids. The predicted mature protein is 1159 amino acids long and contains a large extracellular domain, a single transmembrane domain, and a single intracellular PTPase domain. Monoclonal and polyclonal antibodies raised against a human GLEPP1 fusion protein recognized a protein with distribution restricted to the glomerulus in human kidney and with an apparent molecular weight of approximately 200 kDa. The GLEPP1 gene was assigned to human chromosome 12p12-p13 by fluorescence in situ hybridization.

  18. The arabidopsis RNA binding protein with K homology motifs, SHINY1, interacts with the C-terminal domain phosphatase-like 1 (CPL1) to repress stress-inducible gene expression.

    PubMed

    Jiang, Jiafu; Wang, Bangshing; Shen, Yun; Wang, Hui; Feng, Qing; Shi, Huazhong

    2013-01-01

    The phosphorylation state of the C-terminal domain (CTD) of the RNA polymerase II plays crucial roles in transcription and mRNA processing. Previous studies showed that the plant CTD phosphatase-like 1 (CPL1) dephosphorylates Ser-5-specific CTD and regulates abiotic stress response in Arabidopsis. Here, we report the identification of a K-homology domain-containing protein named SHINY1 (SHI1) that interacts with CPL1 to modulate gene expression. The shi1 mutant was isolated from a forward genetic screening for mutants showing elevated expression of the luciferase reporter gene driven by a salt-inducible promoter. The shi1 mutant is more sensitive to cold treatment during vegetative growth and insensitive to abscisic acid in seed germination, resembling the phenotypes of shi4 that is allelic to the cpl1 mutant. Both SHI1 and SHI4/CPL1 are nuclear-localized proteins. SHI1 interacts with SHI4/CPL1 in vitro and in vivo. Loss-of-function mutations in shi1 and shi4 resulted in similar changes in the expression of some stress-inducible genes. Moreover, both shi1 and shi4 mutants display higher mRNA capping efficiency and altered polyadenylation site selection for some of the stress-inducible genes, when compared with wild type. We propose that the SHI1-SHI4/CPL1 complex inhibits transcription by preventing mRNA capping and transition from transcription initiation to elongation.

  19. Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOG(R)1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens.

    PubMed

    Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad

    2015-01-01

    DOG(R)1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOG(R)1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l(-1) 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOG(R)1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOG(R)1 gene and 2-DOG for regenerating transgenic oil palm.

  20. Phosphatase activities analyzed by in vivo expressions.

    PubMed

    Schweighofer, Alois; Ayatollahi, Zahra; Meskiene, Irute

    2009-01-01

    Protein phosphatases act to reverse phosphorylation-related modifications induced by protein kinases. Type 2C protein phosphatases (PP2C) are monomeric Ser/Thr phosphatases that require a metal for their activity and are abundant in prokaryotes and eukaryotes. In plants, such as Medicago and Arabidopsis PP2Cs control several essential processes, including ABA signaling, development, and wound-induced mitogen-activated protein kinase (MAPK) pathways. In vitro assays with recombinant proteins and yeast two-hybrid systems usually provide initial information about putative PP2C substrates; however, these observations have to be verified in vivo. Therefore, a method for transient expression in isolated Arabidopsis suspension cell protoplasts was developed to assay PP2C action in living cells. This system has proven to be very useful in producing active enzymes and their substrates and in performing enzymatic reactions in vivo. Transient gene expression in isolated cells enabled assembly of functional protein kinase cascades and the creation of phosphorylated targets for PP2Cs. The method is based on the co-transformation and transient co-expression of different PP2C proteins with MAPK. It shows that epitope-tagged PP2C and MAPK proteins exhibit high enzymatic activities and produce substantial protein amounts easily monitored by Western blot analysis. Additionally, PP2C phosphatase activities can be directly tested in protein extracts from protoplasts, suggesting a possibility for analysis of activities of new PP2C family members.

  1. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  2. Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase.

    PubMed

    Hoopman, Todd C; Wang, Wei; Brautigam, Chad A; Sedillo, Jennifer L; Reilly, Thomas J; Hansen, Eric J

    2008-02-01

    Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.

  3. Selective intestinal malabsorption of vitamin B12 displays recessive Mendelian inheritance: Assignment of a locus to chromosome 10 by linkage

    SciTech Connect

    Aminoff, M.; Tahvanainen, E.; Chapelle, A. de la

    1995-10-01

    Juvenile megaloblastic anemia caused by selective intestinal malabsorption of vitamin B12 has been considered a distinct condition displaying autosomal recessive inheritance. It appears to have a worldwide distribution, and comparatively high incidences were reported 30 years ago in Finland and Norway. More recently, the Mendelian inheritance of the condition has been questioned because almost no new cases have occurred in these populations. Here we report linkage studies assigning a recessive-gene locus for the disease to chromosome 10 in previously diagnosed multiplex families from Finland and Norway, proving the Mendelian mode of inheritance. The locus is tentatively assigned to the 6-cM interval between markers D10S548 and D10S466, with a multipoint maximum lod score (Z{sub max}) of 5.36 near marker D10S1477. By haplotype analysis, the healthy sibs in these families did not appear to constitute any examples of nonpenetrance. We hypothesize that the paucity of new cases in these populations is due either to a dietary effect on the gene penetrance that has changed with time, or to a drop in the birth rate in subpopulations showing enrichment of the mutation, or to both of these causes. 38 refs., 4 figs., 2 tabs.

  4. Selective intestinal malabsorption of vitamin B12 displays recessive mendelian inheritance: assignment of a locus to chromosome 10 by linkage.

    PubMed Central

    Aminoff, M; Tahvanainen, E; Gräsbeck, R; Weissenbach, J; Broch, H; de la Chapelle, A

    1995-01-01

    Juvenile megaloblastic anemia caused by selective intestinal malabsorption of vitamin B12 has been considered a distinct condition displaying autosomal recessive inheritance. It appears to have a worldwide distribution, and comparatively high incidences were reported 30 years ago in Finland and Norway. More recently, the Mendelian inheritance of the condition has been questioned because almost no new cases have occurred in these populations. Here we report linkage studies assigning a recessive-gene locus for the disease to chromosome 10 in previously diagnosed multiplex families from Finland and Norway, proving the Mendelian mode of inheritance. The locus is tentatively assigned to the 6-cM interval between markers D10S548 and D10S466, with a multipoint maximum lod score (Zmax) of 5.36 near marker D10S1477. By haplotype analysis, the healthy sibs in these families did not appear to constitute any examples of nonpenetrance. We hypothesize that the paucity of new cases in these populations is due either to a dietary effect on the gene penetrance that has changed with time, or to a drop in the birth rate in subpopulations showing enrichment of the mutation, or to both of these causes. PMID:7573042

  5. Education and coronary heart disease: mendelian randomisation study.

    PubMed

    Tillmann, Taavi; Vaucher, Julien; Okbay, Aysu; Pikhart, Hynek; Peasey, Anne; Kubinova, Ruzena; Pajak, Andrzej; Tamosiunas, Abdonas; Malyutina, Sofia; Hartwig, Fernando Pires; Fischer, Krista; Veronesi, Giovanni; Palmer, Tom; Bowden, Jack; Davey Smith, George; Bobak, Martin; Holmes, Michael V

    2017-08-30

    Objective To determine whether educational attainment is a causal risk factor in the development of coronary heart disease.Design Mendelian randomisation study, using genetic data as proxies for education to minimise confounding.Setting The main analysis used genetic data from two large consortia (CARDIoGRAMplusC4D and SSGAC), comprising 112 studies from predominantly high income countries. Findings from mendelian randomisation analyses were then compared against results from traditional observational studies (164 170 participants). Finally, genetic data from six additional consortia were analysed to investigate whether longer education can causally alter the common cardiovascular risk factors.Participants The main analysis was of 543 733 men and women (from CARDIoGRAMplusC4D and SSGAC), predominantly of European origin.Exposure A one standard deviation increase in the genetic predisposition towards higher education (3.6 years of additional schooling), measured by 162 genetic variants that have been previously associated with education.Main outcome measure Combined fatal and non-fatal coronary heart disease (63 746 events in CARDIoGRAMplusC4D).Results Genetic predisposition towards 3.6 years of additional education was associated with a one third lower risk of coronary heart disease (odds ratio 0.67, 95% confidence interval 0.59 to 0.77; P=3×10(-8)). This was comparable to findings from traditional observational studies (prevalence odds ratio 0.73, 0.68 to 0.78; incidence odds ratio 0.80, 0.76 to 0.83). Sensitivity analyses were consistent with a causal interpretation in which major bias from genetic pleiotropy was unlikely, although this remains an untestable possibility. Genetic predisposition towards longer education was additionally associated with less smoking, lower body mass index, and a favourable blood lipid profile.Conclusions This mendelian randomisation study found support for the hypothesis that low education is a causal risk factor in the

  6. Cystatin C and Cardiovascular Disease: A Mendelian Randomization Study.

    PubMed

    van der Laan, Sander W; Fall, Tove; Soumaré, Aicha; Teumer, Alexander; Sedaghat, Sanaz; Baumert, Jens; Zabaneh, Delilah; van Setten, Jessica; Isgum, Ivana; Galesloot, Tessel E; Arpegård, Johannes; Amouyel, Philippe; Trompet, Stella; Waldenberger, Melanie; Dörr, Marcus; Magnusson, Patrik K; Giedraitis, Vilmantas; Larsson, Anders; Morris, Andrew P; Felix, Janine F; Morrison, Alanna C; Franceschini, Nora; Bis, Joshua C; Kavousi, Maryam; O'Donnell, Christopher; Drenos, Fotios; Tragante, Vinicius; Munroe, Patricia B; Malik, Rainer; Dichgans, Martin; Worrall, Bradford B; Erdmann, Jeanette; Nelson, Christopher P; Samani, Nilesh J; Schunkert, Heribert; Marchini, Jonathan; Patel, Riyaz S; Hingorani, Aroon D; Lind, Lars; Pedersen, Nancy L; de Graaf, Jacqueline; Kiemeney, Lambertus A L M; Baumeister, Sebastian E; Franco, Oscar H; Hofman, Albert; Uitterlinden, André G; Koenig, Wolfgang; Meisinger, Christa; Peters, Annette; Thorand, Barbara; Jukema, J Wouter; Eriksen, Bjørn Odvar; Toft, Ingrid; Wilsgaard, Tom; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Debette, Stéphanie; Kumari, Meena; Svensson, Per; van der Harst, Pim; Kivimaki, Mika; Keating, Brendan J; Sattar, Naveed; Dehghan, Abbas; Reiner, Alex P; Ingelsson, Erik; den Ruijter, Hester M; de Bakker, Paul I W; Pasterkamp, Gerard; Ärnlöv, Johan; Holmes, Michael V; Asselbergs, Folkert W

    2016-08-30

    Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 × 10(-14)). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 × 10(-211)), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0.994), which was statistically different from the observational estimate (p = 1.6 × 10(-5)). A causal effect of cystatin C was not detected for any individual component of CVD. Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Mendelian Diseases and Conditions in Croatian Island Populations: Historic Records and New Insights

    PubMed Central

    Saftić, Vanja; Rudan, Diana; Zgaga, Lina

    2006-01-01

    Among Croatian islands, there are several which are known for unusual autochthonous diseases and specific medical conditions that result from the reproductive isolation and specific population genetic structure. These populations are characterized by high degree of genetic isolation, consanguinity, and inbreeding. The reported diseases include Mal de Meleda on Mljet island, hereditary dwarfism on Krk island, familial learning disability on Susak island, familial ovarian cancer on Lastovo island, and several other rare diseases and conditions inherited in Mendelian fashion. We present a historical perspective on how these conditions were first described, interpreted, and assessed. We reviewed the information obtained through genetic research in the past several years, when the genetic etiology of some of these conditions was explained. The disease gene causing Mal de Meleda was first localized at 8q chromosome, and mutations in the ARS (component B) gene encoding SLURP-1 (secreted mammalian Ly-6/uPAR-related protein 1) protein were identified subsequently. The genetic etiology of dwarfism on the island of Krk is explained by a mutation in the PROP1 gene, responsible for the short stature. The search for mutations underlying other monogenic diseases in Croatian islands is under way. PMID:16909451

  8. DWARF50 (D50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5-phosphatase, is required for proper development of intercalary meristem.

    PubMed

    Sato-Izawa, Kanna; Nakaba, Satoshi; Tamura, Katsunori; Yamagishi, Yusuke; Nakano, Yoshimi; Nishikubo, Nobuyuki; Kawai, Shinya; Kajita, Shinya; Ashikari, Motoyuki; Funada, Ryo; Katayama, Yoshihiro; Kitano, Hidemi

    2012-11-01

    Rice internodes are vital for supporting high-yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell-producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5-phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.

  9. 'Mendelian randomization': an approach for exploring causal relations in epidemiology.

    PubMed

    Gupta, V; Walia, G K; Sachdeva, M P

    2017-04-01

    To assess the current status of Mendelian randomization (MR) approach in effectively influencing the observational epidemiology for examining causal relationships. Narrative review on studies related to principle, strengths, limitations, and achievements of MR approach. Observational epidemiological studies have repeatedly produced several beneficiary associations which were discarded when tested by standard randomized controlled trials (RCTs). The technique which is more feasible, highly similar to RCTs, and has the potential to establish a causal relationship between modifiable exposures and disease outcomes is known as MR. The technique uses genetic variants related to modifiable traits/exposures as instruments for detecting causal and directional associations with outcomes. In the last decade, the approach of MR has methodologically developed and progressed to a stage of high acceptance among the epidemiologists and is gradually expanding the landscape of causal relationships in non-communicable chronic diseases. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  10. Detection of Mendelian consistent genotyping errors in pedigrees.

    PubMed

    Cheung, Charles Y K; Thompson, Elizabeth A; Wijsman, Ellen M

    2014-05-01

    Detection of genotyping errors is a necessary step to minimize false results in genetic analysis. This is especially important when the rate of genotyping errors is high, as has been reported for high-throughput sequence data. To detect genotyping errors in pedigrees, Mendelian inconsistent (MI) error checks exist, as do multi-point methods that flag Mendelian consistent (MC) errors for sparse multi-allelic markers. However, few methods exist for detecting MC genotyping errors, particularly for dense variants on large pedigrees. Here, we introduce an efficient method to detect MC errors even for very dense variants (e.g., SNPs and sequencing data) on pedigrees that may be large. Our method first samples inheritance vectors (IVs) using a moderately sparse but informative set of markers using a Markov chain Monte Carlo-based sampler. Using sampled IVs, we considered two test statistics to detect MC genotyping errors: the percentage of IVs inconsistent with observed genotypes (A1) or the posterior probability of error configurations (A2). Using simulations, we show that this method, even with the simpler A1 statistic, is effective for detecting MC genotyping errors in dense variants, with sensitivity almost as high as the theoretical best sensitivity possible. We also evaluate the effectiveness of this method as a function of parameters, when including the observed pattern for genotype, density of framework markers, error rate, allele frequencies, and number of sampled inheritance vectors. Our approach provides a line of defense against false findings based on the use of dense variants in pedigrees. © 2014 WILEY PERIODICALS, INC.

  11. The Effect of Iron Status on Risk of Coronary Artery Disease: A Mendelian Randomization Study-Brief Report.

    PubMed

    Gill, Dipender; Del Greco M, Fabiola; Walker, Ann P; Srai, Surjit K S; Laffan, Michael A; Minelli, Cosetta

    2017-09-01

    Iron status is a modifiable trait that has been implicated in cardiovascular disease. This study uses the Mendelian randomization technique to investigate whether there is any causal effect of iron status on risk of coronary artery disease (CAD). A 2-sample Mendelian randomization approach is used to estimate the effect of iron status on CAD risk. Three loci (rs1800562 and rs1799945 in the HFE gene and rs855791 in TMPRSS6) that are each associated with serum iron, transferrin saturation, ferritin, and transferrin in a pattern suggestive of an association with systemic iron status are used as instruments. SNP (single-nucleotide polymorphism)-iron status association estimates are based on a genome-wide association study meta-analysis of 48 972 individuals. SNP-CAD estimates are derived by combining the results of a genome-wide association study meta-analysis of 60 801 CAD cases and 123 504 controls with those of a meta-analysis of 63 746 CAD cases and 130 681 controls obtained from Metabochip and genome-wide association studies. Combined Mendelian randomization estimates are obtained for each marker by pooling results across the 3 instruments. We find evidence of a protective effect of higher iron status on CAD risk (iron odds ratio, 0.94 per SD unit increase; 95% confidence interval, 0.88-1.00; P=0.039; transferrin saturation odds ratio, 0.95 per SD unit increase; 95% confidence interval, 0.91-0.99; P=0.027; log-transformed ferritin odds ratio, 0.85 per SD unit increase; 95% confidence interval, 0.73-0.98; P=0.024; and transferrin odds ratio, 1.08 per SD unit increase; 95% confidence interval, 1.01-1.16; P=0.034). This Mendelian randomization study supports the hypothesis that higher iron status reduces CAD risk. These findings may highlight a therapeutic target. © 2017 American Heart Association, Inc.

  12. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  13. Exome-based mapping and variant prioritization for inherited Mendelian disorders.

    PubMed

    Koboldt, Daniel C; Larson, David E; Sullivan, Lori S; Bowne, Sara J; Steinberg, Karyn M; Churchill, Jennifer D; Buhr, Aimee C; Nutter, Nathan; Pierce, Eric A; Blanton, Susan H; Weinstock, George M; Wilson, Richard K; Daiger, Stephen P

    2014-03-06

    Exome sequencing in families affected by rare genetic disorders has the potential to rapidly identify new disease genes (genes in which mutations cause disease), but the identification of a single causal mutation among thousands of variants remains a significant challenge. We developed a scoring algorithm to prioritize potential causal variants within a family according to segregation with the phenotype, population frequency, predicted effect, and gene expression in the tissue(s) of interest. To narrow the search space in families with multiple affected individuals, we also developed two complementary approaches to exome-based mapping of autosomal-dominant disorders. One approach identifies segments of maximum identity by descent among affected individuals; the other nominates regions on the basis of shared rare variants and the absence of homozygous differences between affected individuals. We showcase our methods by using exome sequence data from families affected by autosomal-dominant retinitis pigmentosa (adRP), a rare disorder characterized by night blindness and progressive vision loss. We performed exome capture and sequencing on 91 samples representing 24 families affected by probable adRP but lacking common disease-causing mutations. Eight of 24 families (33%) were revealed to harbor high-scoring, most likely pathogenic (by clinical assessment) mutations affecting known RP genes. Analysis of the remaining 17 families identified candidate variants in a number of interesting genes, some of which have withstood further segregation testing in extended pedigrees. To empower the search for Mendelian-disease genes in family-based sequencing studies, we implemented them in a cross-platform-compatible software package, MendelScan, which is freely available to the research community.

  14. Exome-Based Mapping and Variant Prioritization for Inherited Mendelian Disorders

    PubMed Central

    Koboldt, Daniel C.; Larson, David E.; Sullivan, Lori S.; Bowne, Sara J.; Steinberg, Karyn M.; Churchill, Jennifer D.; Buhr, Aimee C.; Nutter, Nathan; Pierce, Eric A.; Blanton, Susan H.; Weinstock, George M.; Wilson, Richard K.; Daiger, Stephen P.

    2014-01-01

    Exome sequencing in families affected by rare genetic disorders has the potential to rapidly identify new disease genes (genes in which mutations cause disease), but the identification of a single causal mutation among thousands of variants remains a significant challenge. We developed a scoring algorithm to prioritize potential causal variants within a family according to segregation with the phenotype, population frequency, predicted effect, and gene expression in the tissue(s) of interest. To narrow the search space in families with multiple affected individuals, we also developed two complementary approaches to exome-based mapping of autosomal-dominant disorders. One approach identifies segments of maximum identity by descent among affected individuals; the other nominates regions on the basis of shared rare variants and the absence of homozygous differences between affected individuals. We showcase our methods by using exome sequence data from families affected by autosomal-dominant retinitis pigmentosa (adRP), a rare disorder characterized by night blindness and progressive vision loss. We performed exome capture and sequencing on 91 samples representing 24 families affected by probable adRP but lacking common disease-causing mutations. Eight of 24 families (33%) were revealed to harbor high-scoring, most likely pathogenic (by clinical assessment) mutations affecting known RP genes. Analysis of the remaining 17 families identified candidate variants in a number of interesting genes, some of which have withstood further segregation testing in extended pedigrees. To empower the search for Mendelian-disease genes in family-based sequencing studies, we implemented them in a cross-platform-compatible software package, MendelScan, which is freely available to the research community. PMID:24560519

  15. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort.

    PubMed

    Gambin, Tomasz; Akdemir, Zeynep C; Yuan, Bo; Gu, Shen; Chiang, Theodore; Carvalho, Claudia M B; Shaw, Chad; Jhangiani, Shalini; Boone, Philip M; Eldomery, Mohammad K; Karaca, Ender; Bayram, Yavuz; Stray-Pedersen, Asbjørg; Muzny, Donna; Charng, Wu-Lin; Bahrambeigi, Vahid; Belmont, John W; Boerwinkle, Eric; Beaudet, Arthur L; Gibbs, Richard A; Lupski, James R

    2016-12-14

    We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17-50% of pathogenic CNVs in different disease cohorts where 7.1-11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses.

  16. Mendelian Randomisation study of the influence of eGFR on coronary heart disease

    PubMed Central

    Charoen, Pimphen; Nitsch, Dorothea; Engmann, Jorgen; Shah, Tina; White, Jonathan; Zabaneh, Delilah; Jefferis, Barbara; Wannamethee, Goya; Whincup, Peter; Mulick Cassidy, Amy; Gaunt, Tom; Day, Ian; McLachlan, Stela; Price, Jacqueline; Kumari, Meena; Kivimaki, Mika; Brunner, Eric; Langenberg, Claudia; Ben-Shlomo, Yoav; Hingorani, Aroon; Whittaker, John; Pablo Casas, Juan; Dudbridge, Frank; Dale, Caroline; Finan, Chris; Wong, Andrew; Ong, Ken; Drenos, Fotios; Cooper, Jackie; Sofat, Reecha; Schmidt, Floriaan; Lawlor, Debbie A.; Talmud, Philippa J.; Humphries, Steve E.; Hardy, Rebecca; Kuh, Diana; Wareham, Nicholas; Morris, Richard; Plagno, Vincent

    2016-01-01

    Impaired kidney function, as measured by reduced estimated glomerular filtration rate (eGFR), has been associated with increased risk of coronary heart disease (CHD) in observational studies, but it is unclear whether this association is causal or the result of confounding or reverse causation. In this study we applied Mendelian randomisation analysis using 17 genetic variants previously associated with eGFR to investigate the causal role of kidney function on CHD. We used 13,145 participants from the UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium and 194,427 participants from the Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus Coronary Artery Disease (CARDIoGRAMplusC4D) consortium. We observed significant association of an unweighted gene score with CHD risk (odds ratio = 0.983 per additional eGFR-increasing allele, 95% CI = 0.970–0.996, p = 0.008). However, using weights calculated from UCLEB, the gene score was not associated with disease risk (p = 0.11). These conflicting results could be explained by a single SNP, rs653178, which was not associated with eGFR in the UCLEB sample, but has known pleiotropic effects that prevent us from drawing a causal conclusion. The observational association between low eGFR and increased CHD risk was not explained by potential confounders, and there was no evidence of reverse causation, therefore leaving the remaining unexplained association as an open question. PMID:27338949

  17. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort

    PubMed Central

    Gambin, Tomasz; Akdemir, Zeynep C.; Yuan, Bo; Gu, Shen; Chiang, Theodore; Carvalho, Claudia M.B.; Shaw, Chad; Jhangiani, Shalini; Boone, Philip M.; Eldomery, Mohammad K.; Karaca, Ender; Bayram, Yavuz; Stray-Pedersen, Asbjørg; Muzny, Donna; Charng, Wu-Lin; Bahrambeigi, Vahid; Belmont, John W.; Boerwinkle, Eric; Beaudet, Arthur L.; Gibbs, Richard A.

    2017-01-01

    Abstract We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor–Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17–50% of pathogenic CNVs in different disease cohorts where 7.1–11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses. PMID:27980096

  18. Identification and characterization of the fusion transcript, composed of the apterous homolog and a putative protein phosphatase gene, generated by 1.5-Mb interstitial deletion in the vestigial (Vg) mutant of Bombyx mori.

    PubMed

    Fujii, T; Abe, H; Katsuma, S; Shimada, T

    2011-05-01

    The vestigial (Vg) mutant is a Z-linked mutant that causes vestigial wings in the silkworm, Bombyx mori. We have previously reported a 1.5-Mb interstitial deletion on the Z chromosome bearing the Vg mutation (Z(Vg) chromosome). In this study, we found that exons 3-8 of a gene named Bmptp-Z encoding a putative tyrosine-specific protein phosphatase are deleted by the 1.5-Mb interstitial deletion. We found that a gene encoding the Bombyx homolog of Drosophila Apterous (BmAp-A) protein is located 4.5 kb downstream of the distal breakpoint of the 1.5-Mb interstitial deletion. Moreover, an in-frame fusion transcript composed of the 5' part of Bmptp-Z and the 3' part of Bmap-A is generated specific to the Z(Vg) chromosome. Effects of the in-frame fusion transcript on the vestigial phenotype are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Type 2C Protein Phosphatases in Fungi ▿ †

    PubMed Central

    Ariño, Joaquín; Casamayor, Antonio; González, Asier

    2011-01-01

    Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi. PMID:21076010

  20. Association of C-reactive protein with blood pressure and hypertension: life course confounding and mendelian randomization tests of causality.

    PubMed

    Davey Smith, George; Lawlor, Debbie A; Harbord, Roger; Timpson, Nic; Rumley, Ann; Lowe, Gordon D O; Day, Ian N M; Ebrahim, Shah

    2005-05-01

    C-reactive protein (CRP) has repeatedly been associated with blood pressure and prevalent and incident hypertension, but whether a causal link exists is uncertain. We assessed the cross-sectional relations of CRP to systolic blood pressure, pulse pressure, and prevalent hypertension in a representative sample of >3500 British women aged 60 to 79 years. For both outcomes, substantial associations were observed. However, these associations were greatly attenuated by adjustment for a wide range of confounding factors acting over the life course. We further investigated causality using a Mendelian randomization approach by examining the association of the 1059G/C polymorphism in the human CRP gene with CRP and with blood pressure, pulse pressure, and hypertension. The polymorphism was associated with a robust difference in CRP, and the expectation would be for higher blood pressure and pulse pressure and greater prevalence of hypertension among those carrying the genetic variant associated with higher CRP levels. This was not observed, and the predicted causal effects of CRP on blood pressure, pulse pressure, and hypertension using instrumental variables methods were close to 0, although with wide CIs. CRP levels are associated with blood pressure, pulse pressure, and hypertension, but adjustment for life course confounding and a Mendelian randomization approach suggest the elevated CRP levels do not lead to elevated blood pressure.

  1. Exploring causal associations of alcohol with cardiovascular and metabolic risk factors in a Chinese population using Mendelian randomization analysis

    PubMed Central

    Taylor, Amy E.; Lu, Feng; Carslake, David; Hu, Zhibin; Qian, Yun; Liu, Sijun; Chen, Jiaping; Shen, Hongbing; Smith, George Davey

    2015-01-01

    Observational studies suggest that moderate alcohol consumption may be protective for cardiovascular disease, but results may be biased by confounding and reverse causality. Mendelian randomization, which uses genetic variants as proxies for exposures, can minimise these biases and therefore strengthen causal inference. Using a genetic variant in the ALDH2 gene associated with alcohol consumption, rs671, we performed a Mendelian randomization analysis in 1,712 diabetes cases and 2,076 controls from Nantong, China. Analyses were performed using linear and logistic regression, stratified by sex and diabetes status. The A allele of rs671 was strongly associated with reduced odds of being an alcohol drinker in all groups, but prevalence of alcohol consumption amongst females was very low. The A allele was associated with reduced systolic and diastolic blood pressure and decreased total and HDL cholesterol in males. The A allele was also associated with decreased triglyceride levels, but only robustly in diabetic males. There was no strong evidence for associations between rs671 and any outcomes in females. Our results suggest that associations of alcohol consumption with blood pressure and HDL-cholesterol are causal. Alcohol also appeared to have adverse effects on triglyceride levels, although this may be restricted to diabetics. PMID:26364564

  2. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms.

    PubMed

    Paterson, A H; Lander, E S; Hewitt, J D; Peterson, S; Lincoln, S E; Tanksley, S D

    1988-10-20

    The conflict between the Mendelian theory of particulate inheritance and the observation of continuous variation for most traits in nature was resolved in the early 1900s by the concept that quantitative traits can result from segregation of multiple genes, modified by environmental effects. Although pioneering experiments showed that linkage could occasionally be detected to such quantitative trait loci (QTLs), accurate and systematic mapping of QTLs has not been possible because the inheritance of an entire genome could not be studied with genetic markers. The use of restriction fragment length polymorphisms (RFLPs) has made such investigations possible, at least in principle. Here, we report the first use of a complete RFLP linkage map to resolve quantitative traits into discrete Mendelian factors, in an interspecific back-cross of tomato. Applying new analytical methods, we mapped at least six QTLs controlling fruit mass, four QTLs for the concentration of soluble solids and five QTLs for fruit pH. This approach is broadly applicable to the genetic dissection of quantitative inheritance of physiological, morphological and behavioural traits in any higher plant or animal.

  3. Exploring causal associations of alcohol with cardiovascular and metabolic risk factors in a Chinese population using Mendelian randomization analysis.

    PubMed

    Taylor, Amy E; Lu, Feng; Carslake, David; Hu, Zhibin; Qian, Yun; Liu, Sijun; Chen, Jiaping; Shen, Hongbing; Smith, George Davey

    2015-09-14

    Observational studies suggest that moderate alcohol consumption may be protective for cardiovascular disease, but results may be biased by confounding and reverse causality. Mendelian randomization, which uses genetic variants as proxies for exposures, can minimise these biases and therefore strengthen causal inference. Using a genetic variant in the ALDH2 gene associated with alcohol consumption, rs671, we performed a Mendelian randomization analysis in 1,712 diabetes cases and 2,076 controls from Nantong, China. Analyses were performed using linear and logistic regression, stratified by sex and diabetes status. The A allele of rs671 was strongly associated with reduced odds of being an alcohol drinker in all groups, but prevalence of alcohol consumption amongst females was very low. The A allele was associated with reduced systolic and diastolic blood pressure and decreased total and HDL cholesterol in males. The A allele was also associated with decreased triglyceride levels, but only robustly in diabetic males. There was no strong evidence for associations between rs671 and any outcomes in females. Our results suggest that associations of alcohol consumption with blood pressure and HDL-cholesterol are causal. Alcohol also appeared to have adverse effects on triglyceride levels, although this may be restricted to diabetics.

  4. The restructuring and future of {open_quotes}Mendelian Inheritance in Man{close_quotes} (MIM)

    SciTech Connect

    Pearson, P.L.; Francomano, C.; Antonarakis, S.

    1994-09-01

    Victor McKusick`s catalog {open_quotes}Mendelian Inheritance in Man{close_quotes} represents the most comprehensive compendum of human genetic disease information available today and has appeared as a series in book form for the last 30 years. The 11th edition will contain almost 7000 entries: approximately 2800 descriptions of human genetic disorders, 700 combined disorder/gene descriptions and 3500 pure gene descriptions. Until recently the content of the catalogs was maintained solely by McKusick with a support staff. However, a distributed editing system has now been established with the following primary components. New entries are initiated in Baltimore by science writers under the guidance of the senior editors and McKusick, following which the information is made immediately available to the public through online access. The subject editors can then review and edit the new or modified information without impeding the timeliness of entering new information. Entries are being reconstructured so that clinical disorder and gene information is divided into separate entries which will better represent the frequently complex relationship of gene mutations to individual clinical disorders in the data files. Further, each entry is being subdivided into logical topics which will enhance the power of electronic searching, making links between topics and improving readability. The old division of entries into autosomal dominant and recessive, etc., is being abandoned in favor of clinical disorder (phenotypes) and gene catalogs. The information is maintained in an SGML format which facilitates the production of many different types of output varying from the traditional book form to CD ROMs and various online formats including IRx, WAIS, Gopher and World Wide Web. This latter offers the exciting possibility of making hypertext links between entries and other data resources, including photographic, sound and video clips as part of the total MIM information.

  5. Disease gene identification strategies for exome sequencing

    PubMed Central

    Gilissen, Christian; Hoischen, Alexander; Brunner, Han G; Veltman, Joris A

    2012-01-01

    Next generation sequencing can be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire protein-coding sequence, known as the exome, or even the entire human genome. Identifying the pathogenic mutation amongst thousands to millions of genomic variants is a major challenge, and novel variant prioritization strategies are required. The choice of these strategies depends on the availability of well-phenotyped patients and family members, the mode of inheritance, the severity of the disease and its population frequency. In this review, we discuss the current strategies for Mendelian disease gene identification by exome resequencing. We conclude that exome strategies are successful and identify new Mendelian disease genes in approximately 60% of the projects. Improvements in bioinformatics as well as in sequencing technology will likely increase the success rate even further. Exome sequencing is likely to become the most commonly used tool for Mendelian disease gene identification for the coming years. PMID:22258526

  6. Phosphoserine phosphatase deficiency in a patient with Williams syndrome.

    PubMed Central

    Jaeken, J; Detheux, M; Fryns, J P; Collet, J F; Alliet, P; Van Schaftingen, E

    1997-01-01

    Decreased serine levels were found in plasma and cerebrospinal fluid (CSF) of a boy with pre- and postnatal growth retardation, moderate psychomotor retardation, and facial dysmorphism suggestive of Williams syndrome. Fluorescence in situ hybridisation with an elastin gene probe indicated the presence of a submicroscopic 7q11.23 deletion, confirming this diagnosis. Further investigation showed that the phosphoserine phosphatase (EC 3.1.3.3.) activity in lymphoblasts and fibroblasts amounted to about 25% of normal values. Oral serine normalised the plasma and CSF levels of this amino acid and seemed to have some clinical effect. These data suggest that the elastin gene and the phosphoserine phosphatase gene might be closely linked. This seems to be the first report of phosphoserine phosphatase deficiency. PMID:9222972

  7. Molecular immunity to mycobacteria: knowledge from the mutation and phenotype spectrum analysis of Mendelian susceptibility to mycobacterial diseases

    PubMed Central

    Qu, Hui-Qi; Fisher-Hoch, Susan P.; McCormick, Joseph B.

    2011-01-01

    Summary Understanding molecular immunity against mycobacterial infection is critical for the development of effective strategies to control tuberculosis (TB), which is a major health issue in the developing world. Host immunogenetic studies represent an indispensable approach to understand the molecular mechanisms against mycobacterial infection. A superb paradigm is the identification of rare mutations causing Mendelian susceptibility to mycobacterial diseases (MSMD). Mutations in the interferon-gamma (IFN-γ) receptor genes are highly specific (although not exclusive) for mycobacterial infection. Only dominant negative mutations of STAT1 have specific susceptibility to mycobacterial infection. Mutations in the interleukin-12 (IL-12) signaling genes have phenotypes with non-specificity. Current studies highlight a complex molecular network in antimycobacterial immunity, centered on IFN-γ signaling. PMID:21330176

  8. Soybean root nodule acid phosphatase.

    PubMed Central

    Penheiter, A R; Duff, S M; Sarath, G

    1997-01-01

    Acid phosphatases are ubiquitous enzymes that exhibit activity against a variety of substrates in vitro, although little is known about their intracellular function. In this study, we report the isolation, characterization, and partial sequence of the major acid phosphatase from soybean (Glycine max L.) root nodules. The phosphatase was purified predominantly as a heterodimer with subunits of 28 and 31 kD; homodimers of both subunits were also observed and exhibited phosphatase activity. In addition to the general phosphatase substrate, p-nitrophenyl phosphate, the heterodimeric form of the enzyme readily hydrolyzed 5'-nucleotides, flavin mononucleotide, and O-phospho-L-Tyr. Low or negligible activity was observed with ATP or polyphosphate. Purified nodule acid phosphatase was stimulated by magnesium, inhibited by calcium and EDTA, and competitively inhibited by cGMP and cAMP with apparent Ki values of 7 and 12 microM, respectively. Partial N-terminal and internal sequencing of the nodule acid phosphatase revealed homology to the soybean vegetative storage proteins. There was a 17-fold increase in enzyme activity and a noticeable increase in protein levels detected by immunoblotting methods during nodule development. Both of these parameters were low in young nodules and reached a peak in mature, functional nodules, suggesting that this enzyme is important for efficient nodule metabolism. PMID:9193092

  9. How-to-Do-It: Hands-on Activities that Relate Mendelian Genetics to Cell Division.

    ERIC Educational Resources Information Center

    McKean, Heather R.; Gibson, Linda S.

    1989-01-01

    Presented is an activity designed to connect Mendelian laws with the physical processes of cell division. Included are materials production, procedures and worksheets for the meiosis-mitosis game and a genetics game. (CW)

  10. Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. Design: Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable...

  11. How-to-Do-It: Hands-on Activities that Relate Mendelian Genetics to Cell Division.

    ERIC Educational Resources Information Center

    McKean, Heather R.; Gibson, Linda S.

    1989-01-01

    Presented is an activity designed to connect Mendelian laws with the physical processes of cell division. Included are materials production, procedures and worksheets for the meiosis-mitosis game and a genetics game. (CW)

  12. Liver Enzymes and Risk of Ischemic Heart Disease and Type 2 Diabetes Mellitus: A Mendelian Randomization Study

    PubMed Central

    Liu, Junxi; Au Yeung, Shiu Lun; Lin, Shi Lin; Leung, Gabriel M.; Schooling, C. Mary

    2016-01-01

    We used Mendelian randomization to estimate the causal effects of the liver enzymes, alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyltransferase (GGT), on diabetes and cardiovascular disease, using genetic variants predicting these liver enzymes at genome wide significance applied to extensively genotyped case-control studies of diabetes (DIAGRAM) and coronary artery disease (CAD)/myocardial infarction (MI) (CARDIoGRAMplusC4D 1000 Genomes). Genetically higher ALT was associated with higher risk of diabetes, odds ratio (OR) 2.99 per 100% change in concentration (95% confidence interval (CI) 1.62 to 5.52) but ALP OR 0.92 (95% CI 0.71 to 1.19) and GGT OR 0.88 (95% CI 0.75 to 1.04) were not. Genetically predicted ALT, ALP and GGT were not clearly associated with CAD/MI (ALT OR 0.74, 95% CI 0.54 to 1.01, ALP OR 0.86, 95% CI 0.64 to 1.16 and GGT OR 1.08, 95% CI 0.97 to 1.19). We confirm observations of ALT increasing the risk of diabetes, but cannot exclude the possibility that higher ALT may protect against CAD/MI. We also cannot exclude the possibility that GGT increases the risk of CAD/MI and reduces the risk of diabetes. Informative explanations for these potentially contradictory associations should be sought. PMID:27996050

  13. The five glucose-6-phosphatase paralogous genes are differentially regulated by insulin alone or combined with high level of amino acids and/or glucose in trout hepatocytes.

    PubMed

    Lucie, Marandel; Weiwei, Dai; Stéphane, Panserat; Sandrine, Skiba-Cassy

    2016-04-01

    A recent analysis of the newly sequenced rainbow trout (Oncorhynchus mykiss) genome suggested that duplicated gluconeogenic g6pc paralogues, fixed in this genome after the salmonid-specific 4th whole genome duplication, may have a role in the setting up of the glucose-intolerant phenotype in this carnivorous species. This should be due to the sub- or neo-functionalization of their regulation. In the present short communication we thus addressed the question of the regulation of these genes by insulin, hormone involved in the glucose homeostasis, and its interaction with glucose and amino acids in vitro. The stimulation of trout hepatocytes with insulin revealed an atypical up-regulation of g6pcb2 ohnologues and confirmed the sub- or neo-functionalization of the five g6pc genes at least at the regulatory level. Intriguingly, when hepatocytes were cultured with high levels of glucose and/or AAs in presence of insulin, most of the g6pc paralogues were up-regulated. It strongly suggested a cross-talk between insulin and nutrients for the regulation of these genes. Moreover these results strengthened the idea that g6pc duplicated genes may significantly contribute to the setting up of the glucose-intolerant phenotype in trout via their atypical regulation by insulin alone or in interaction with nutrients. These findings open new perspectives to better understand in vivo glucose-intolerant phenotype in trout fed a high carbohydrate diet.

  14. Multisystemic functions of alkaline phosphatases.

    PubMed

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  15. Role of Protein Tyrosine Phosphatases in Plants

    PubMed Central

    Shankar, Alka; Agrawal, Nisha; Sharma, Manisha; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development. PMID:26962298

  16. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth.

    PubMed Central

    Frederick, D L; Tatchell, K

    1996-01-01

    The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase. PMID:8649403

  17. Mendelian randomization of blood lipids for coronary heart disease

    PubMed Central

    Holmes, Michael V.; Asselbergs, Folkert W.; Palmer, Tom M.; Drenos, Fotios; Lanktree, Matthew B.; Nelson, Christopher P.; Dale, Caroline E.; Padmanabhan, Sandosh; Finan, Chris; Swerdlow, Daniel I.; Tragante, Vinicius; van Iperen, Erik P.A.; Sivapalaratnam, Suthesh; Shah, Sonia; Elbers, Clara C.; Shah, Tina; Engmann, Jorgen; Giambartolomei, Claudia; White, Jon; Zabaneh, Delilah; Sofat, Reecha; McLachlan, Stela; Doevendans, Pieter A.; Balmforth, Anthony J.; Hall, Alistair S.; North, Kari E.; Almoguera, Berta; Hoogeveen, Ron C.; Cushman, Mary; Fornage, Myriam; Patel, Sanjay R.; Redline, Susan; Siscovick, David S.; Tsai, Michael Y.; Karczewski, Konrad J.; Hofker, Marten H.; Verschuren, W. Monique; Bots, Michiel L.; van der Schouw, Yvonne T.; Melander, Olle; Dominiczak, Anna F.; Morris, Richard; Ben-Shlomo, Yoav; Price, Jackie; Kumari, Meena; Baumert, Jens; Peters, Annette; Thorand, Barbara; Koenig, Wolfgang; Gaunt, Tom R.; Humphries, Steve E.; Clarke, Robert; Watkins, Hugh; Farrall, Martin; Wilson, James G.; Rich, Stephen S.; de Bakker, Paul I.W.; Lange, Leslie A.; Davey Smith, George; Reiner, Alex P.; Talmud, Philippa J.; Kivimäki, Mika; Lawlor, Debbie A.; Dudbridge, Frank; Samani, Nilesh J.; Keating, Brendan J.; Hingorani, Aroon D.; Casas, Juan P.

    2015-01-01

    Aims To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization. Methods and results We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 × 10−6); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P ≤ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95% CI: 0.59, 1.75). Conclusion The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain. PMID:24474739

  18. Metabolic Signatures of Adiposity in Young Adults: Mendelian Randomization Analysis and Effects of Weight Change

    PubMed Central

    Würtz, Peter; Wang, Qin; Kangas, Antti J.; Richmond, Rebecca C.; Skarp, Joni; Tiainen, Mika; Tynkkynen, Tuulia; Soininen, Pasi; Havulinna, Aki S.; Kaakinen, Marika; Viikari, Jorma S.; Savolainen, Markku J.; Kähönen, Mika; Lehtimäki, Terho; Männistö, Satu; Blankenberg, Stefan; Zeller, Tanja; Laitinen, Jaana; Pouta, Anneli; Mäntyselkä, Pekka; Vanhala, Mauno; Elliott, Paul; Pietiläinen, Kirsi H.; Ripatti, Samuli; Salomaa, Veikko; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Smith, George Davey; Ala-Korpela, Mika

    2014-01-01

    Background Increased adiposity is linked with higher risk for cardiometabolic diseases. We aimed to determine to what extent elevated body mass index (BMI) within the normal weight range has causal effects on the detailed systemic metabolite profile in early adulthood. Methods and Findings We used Mendelian randomization to estimate causal effects of BMI on 82 metabolic measures in 12,664 adolescents and young adults from four population-based cohorts in Finland (mean age 26 y, range 16–39 y; 51% women; mean ± standard deviation BMI 24±4 kg/m2). Circulating metabolites were quantified by high-throughput nuclear magnetic resonance metabolomics and biochemical assays. In cross-sectional analyses, elevated BMI was adversely associated with cardiometabolic risk markers throughout the systemic metabolite profile, including lipoprotein subclasses, fatty acid composition, amino acids, inflammatory markers, and various hormones (p<0.0005 for 68 measures). Metabolite associations with BMI were generally stronger for men than for women (median 136%, interquartile range 125%–183%). A gene score for predisposition to elevated BMI, composed of 32 established genetic correlates, was used as the instrument to assess causality. Causal effects of elevated BMI closely matched observational estimates (correspondence 87%±3%; R2 = 0.89), suggesting causative influences of adiposity on the levels of numerous metabolites (p<0.0005 for 24 measures), including lipoprotein lipid subclasses and particle size, branched-chain and aromatic amino acids, and inflammation-related glycoprotein acetyls. Causal analyses of certain metabolites and potential sex differences warrant stronger statistical power. Metabolite changes associated with change in BMI during 6 y of follow-up were examined for 1,488 individuals. Change in BMI was accompanied by widespread metabolite changes, which had an association pattern similar to that of the cross-sectional observations, yet with greater metabolic

  19. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  20. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies

    PubMed Central

    Swerdlow, Daniel I; Kuchenbaecker, Karoline B; Shah, Sonia; Sofat, Reecha; Holmes, Michael V; White, Jon; Mindell, Jennifer S; Kivimaki, Mika; Brunner, Eric J; Whittaker, John C; Casas, Juan P; Hingorani, Aroon D

    2016-01-01

    Mendelian randomization (MR) studies typically assess the pathogenic relevance of environmental exposures or disease biomarkers, using genetic variants that instrument these exposures. The approach is gaining popularity—our systematic review reveals a greater than 10-fold increase in MR studies published between 2004 and 2015. When the MR paradigm was first proposed, few biomarker- or exposure-related genetic variants were known, most having been identified by candidate gene studies. However, genome-wide association studies (GWAS) are now providing a rich source of potential instruments for MR analysis. Many early reviews covering the concept, applications and analytical aspects of the MR technique preceded the surge in GWAS, and thus the question of how best to select instruments for MR studies from the now extensive pool of available variants has received insufficient attention. Here we focus on the most common category of MR studies—those concerning disease biomarkers. We consider how the selection of instruments for MR analysis from GWAS requires consideration of: the assumptions underlying the MR approach; the biology of the biomarker; the genome-wide distribution, frequency and effect size of biomarker-associated variants (the genetic architecture); and the specificity of the genetic associations. Based on this, we develop guidance that may help investigators to plan and readers interpret MR studies. PMID:27342221

  1. A Mendelian trait for olfactory sensitivity affects odor experience and food selection.

    PubMed

    Jaeger, Sara R; McRae, Jeremy F; Bava, Christina M; Beresford, Michelle K; Hunter, Denise; Jia, Yilin; Chheang, Sok Leang; Jin, David; Peng, Mei; Gamble, Joanna C; Atkinson, Kelly R; Axten, Lauren G; Paisley, Amy G; Tooman, Leah; Pineau, Benedicte; Rouse, Simon A; Newcomb, Richard D

    2013-08-19

    Humans vary in acuity to many odors [1-4], with variation within olfactory receptor (OR) genes contributing to these differences [5-9]. How such variation also affects odor experience and food selection remains uncertain [10], given that such effects occur for taste [11-15]. Here we investigate β-ionone, which shows extreme sensitivity differences [4, 16, 17]. β-ionone is a key aroma in foods and beverages [18-21] and is added to products in order to give a pleasant floral note [22, 23]. Genome-wide and in vitro assays demonstrate rs6591536 as the causal variant for β-ionone odor sensitivity. rs6591536 encodes a N183D substitution in the second extracellular loop of OR5A1 and explains >96% of the observed phenotypic variation, resembling a monogenic Mendelian trait. Individuals carrying genotypes for β-ionone sensitivity can more easily differentiate between food and beverage stimuli with and without added β-ionone. Sensitive individuals typically describe β-ionone in foods and beverages as "fragrant" and "floral," whereas less-sensitive individuals describe these stimuli differently. rs6591536 genotype also influences emotional associations and explains differences in food and product choices. These studies demonstrate that an OR variant that influences olfactory sensitivity can affect how people experience and respond to foods, beverages, and other products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mendelian randomisation: a tool for assessing causality in observational epidemiology.

    PubMed

    Sheehan, Nuala A; Meng, Sha; Didelez, Vanessa

    2011-01-01

    Detection and assessment of the effect of a modifiable risk factor on a disease with view to informing public health intervention policies are of fundamental concern in aetiological epidemiology. In order to have solid evidence that such a public health intervention has the desired effect, it is necessary to ascertain that an observed association or correlation between a risk factor and a disease means that the risk factor is causal for the disease. Inferring causality from observational data is difficult, typically due to confounding by social, behavioural, or physiological factors which are difficult to control for and particularly difficult to measure accurately. A possible approach to inferring causality when confounding is believed to be present but unobservable, as it may not even be fully understood, is based on the method of instrumental variables and is known under the name of Mendelian randomisation if the instrument is a genetic variant. While testing for the presence of a causal effect using this method is generally straightforward, point estimates of such an effect are only obtainable under additional parametric assumptions. This chapter introduces the concept and illustrates the method and its assumptions with simple real-life examples. It concludes with a brief discussion on pitfalls and limitations.

  3. A Mendelian randomization study of testosterone and cognition in men

    PubMed Central

    Zhao, Jie V.; Lam, Tai Hing; Jiang, Chaoqiang; Cherny, Stacey S.; Liu, Bin; Cheng, Kar Keung; Zhang, Weisen; Leung, Gabriel M.; Schooling, C Mary

    2016-01-01

    Testosterone replacement for older men is increasingly common, with some observations suggesting a protective effect on cognitive function. We examined the association of endogenous testosterone with cognitive function among older men in a Mendelian randomization study using a separate-sample instrumental variable (SSIV) analysis estimator to minimize confounding and reverse causality. A genetic score predicting testosterone was developed in 289 young Chinese men from Hong Kong, based on selected testosterone-related single nucleotide polymorphisms (rs10046, rs1008805 and rs1256031). The association of genetically predicted testosterone with delayed 10-word recall score and Mini-Mental State Examination (MMSE) score was assessed at baseline and follow-up using generalized estimating equation among 4,212 older Chinese men from the Guangzhou Biobank Cohort Study. Predicted testosterone was not associated with delayed 10-word recall score (−0.02 per nmol/L testosterone, 95% confidence interval (CI) −0.06–0.02) or MMSE score (0.06, 95% CI −0.002–0.12). These estimates were similar after additional adjustment for age, education, smoking, use of alcohol, body mass index and the Framingham score. Our findings do not corroborate observed protective effects of testosterone on cognitive function among older men. PMID:26864717

  4. A Mendelian Randomization Study of Plasma Homocysteine and Multiple Myeloma

    PubMed Central

    Xuan, Yang; Li, Xiao-Hong; Hu, Zhong-Qian; Teng, Zhi-Mei; Hu, Dao-Jun

    2016-01-01

    Observational studies have demonstrated an association between elevated homocysteine (Hcy) level and risk of multiple myeloma (MM). However, it remains unclear whether this relationship is causal. We conducted a Mendelian randomization (MR) study to evaluate whether genetically increased Hcy level influences the risk of MM. We used the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism as an instrumental variable, which affects the plasma Hcy levels. Estimate of its effect on plasma Hcy level was based on a recent genome-wide meta-analysis of 44,147 individuals, while estimate of its effect on MM risk was obtained through meta-analysis of case-control studies with 2,092 cases and 4,954 controls. By combining these two estimates, we found that per one standard-deviation (SD) increase in natural log-transformed plasma Hcy levels conferred a 2.67-fold increase in risk for MM (95% confidence interval (CI): 1.12–6.38; P = 2.7 × 10−2). Our study suggests that elevated Hcy levels are causally associated with an increased risk of developing MM. Whether Hcy-lowering therapy can prevent MM merits further investigation in long-term randomized controlled trials (RCTs). PMID:27126524

  5. Missing data methods in Mendelian randomization studies with multiple instruments.

    PubMed

    Burgess, Stephen; Seaman, Shaun; Lawlor, Debbie A; Casas, Juan P; Thompson, Simon G

    2011-11-01

    Mendelian randomization studies typically have low power. Where there are several valid candidate genetic instruments, precision can be gained by using all the instruments available. However, sporadically missing genetic data can offset this gain. The authors describe 4 Bayesian methods for imputing the missing data based on a missing-at-random assumption: multiple imputations, single nucleotide polymorphism (SNP) imputation, latent variables, and haplotype imputation. These methods are demonstrated in a simulation study and then applied to estimate the causal relation between C-reactive protein and each of fibrinogen and coronary heart disease, based on 3 SNPs in British Women's Heart and Health Study participants assessed at baseline between May 1999 and June 2000. A complete-case analysis based on all 3 SNPs was found to be more precise than analyses using any 1 SNP alone. Precision is further improved by using any of the 4 proposed missing data methods; the improvement is equivalent to about a 25% increase in sample size. All methods gave similar results, which were apparently not overly sensitive to violation of the missing-at-random assumption. Programming code for the analyses presented is available online.

  6. Body mass index and psychiatric disorders: a Mendelian randomization study

    PubMed Central

    Hartwig, Fernando Pires; Bowden, Jack; Loret de Mola, Christian; Tovo-Rodrigues, Luciana; Davey Smith, George; Horta, Bernardo Lessa

    2016-01-01

    Obesity is a highly prevalent risk factor for cardiometabolic diseases. Observational studies suggest that obesity is associated with psychiatric traits, but causal inference from such studies has several limitations. We used two-sample Mendelian randomization methods (inverse variance weighting, weighted median and MR-Egger regression) to evaluate the association of body mass index (BMI) with three psychiatric traits using data from the Genetic Investigation of Anthropometric Traits and Psychiatric Genomics consortia. Causal odds ratio estimates per 1-standard deviation increment in BMI ranged from 0.88 (95% CI: 0.62; 1.25) to 1.23 (95% CI: 0.65; 2.31) for bipolar disorder; 0.93 (0.78; 1.11) to 1.41 (0.87; 2.27) for schizophrenia; and 1.15 (95% CI: 0.92; 1.44) to 1.40 (95% CI: 1.03; 1.90) for major depressive disorder. Analyses removing potentially influential SNPs suggested that the effect estimates for depression might be underestimated. Our findings do not support the notion that higher BMI increases risk of bipolar disorder and schizophrenia. Although the point estimates for depression were consistent in all sensitivity analyses, the overall statistical evidence was weak. However, the fact that SNP-depression associations were estimated in relatively small samples reduced power to detect causal effects. This should be re-addressed when SNP-depression associations from larger studies become available. PMID:27601421

  7. Protein phosphatase-1 modulates the function of Pax-6, a transcription factor controlling brain and eye development.

    PubMed

    Yan, Qin; Liu, Wen-Bin; Qin, Jichao; Liu, Jinping; Chen, He-Ge; Huang, Xiaoqin; Chen, Lili; Sun, Shuming; Deng, Mi; Gong, Lili; Li, Yong; Zhang, Lan; Liu, Yan; Feng, Hao; Xiao, Yamei; Liu, Yun; Li, David W-C

    2007-05-11

    Pax-6 is an evolutionarily conserved transcription factor and acts high up in the regulatory hierarchy controlling eye and brain development in humans, mice, zebrafish, and Drosophila. Previous studies have shown that Pax-6 is a phosphoprotein, and its phosphorylation by ERK, p38, and homeodomain-interacting protein kinase 2 greatly enhances its transactivation activity. However, the protein phosphatases responsible for the dephosphorylation of Pax-6 remain unknown. Here, we present both in vitro and in vivo evidence to show that protein serine/threonine phosphatase-1 is a major phosphatase that directly dephosphorylates Pax-6. First, purified protein phosphatase-1 directly dephosphorylates Pax-6 in vitro. Second, immunoprecipitation-linked Western blot revealed that both protein phosphatase-1alpha and protein phosphatase-1beta interact with Pax-6. Third, overexpression of protein phosphatase-1 in human lens epithelial cells leads to dephosphorylation of Pax-6. Finally, inhibition of protein phosphatase-1 activity by calyculin A or knockdown of protein phosphatase-1alpha and protein phosphatase-1beta by RNA interference leads to enhanced phosphorylation of Pax-6. Moreover, our results also demonstrate that dephosphorylation of Pax-6 by protein phosphatase-1 significantly modulates its function in regulating expression of both exogenous and endogenous genes. These results demonstrate that protein phosphatase 1 acts as a major phosphatase to dephosphorylate Pax-6 and modulate its function.

  8. [Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

    PubMed

    Beniaminov, A D; Krasnov, G S; Dmitriev, A A; Puzanov, G A; Snopok, B A; Senchenko, V N; Kashuba, V I

    2016-01-01

    Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation.

  9. Genotype-Phenotype Associations of the CD-Associated Single Nucleotide Polymorphism within the Gene Locus Encoding Protein Tyrosine Phosphatase Non-Receptor Type 22 in Patients of the Swiss IBD Cohort

    PubMed Central

    Biedermann, Luc; Rossel, Jean-Benoit; Sulz, Michael C.; Frei, Pascal; Scharl, Sylvie; Vavricka, Stephan R.; Fried, Michael; Rogler, Gerhard; Scharl, Michael

    2016-01-01

    Background Protein tyrosine phosphatase non-receptor type 22 (PTPN22) plays an important role in immune cell function and intestinal homeostasis. The single nucleotide polymorphism (SNP) rs2476601 within the PTPN22 gene locus results in aberrant function of PTPN22 protein and protects from Crohn’s disease (CD). Here, we investigated associations of PTPN22 SNP rs2476601 in inflammatory bowel disease (IBD) patients in the Swiss IBD Cohort Study (SIBDCS). Methods 2’028 SIBDCS patients (1173 CD and 855 ulcerative colitis (UC) patients) were included. The clinical characteristics were analysed for an association with the presence of the PTPN22 SNP rs2476601 genotypes ‘homozygous variant’ (AA), ‘heterozygous’ (GA) and ‘homozygous wild-type’ (GG). Results 13 patients (0.6%) were homozygous variant (AA) for the PTPN22 polymorphism, 269 (13.3%) heterozygous variant (GA) and 1’746 (86.1%) homozygous wild-type (GG). In CD, AA and GA genotypes were associated with less use of steroids and antibiotics, and reduced prevalence of vitamin D and calcium deficiency. In UC the AA and GA genotype was associated with increased use of azathioprine and anti-TNF antibodies, but significantly less patients with the PTPN22 variant featured malabsorption syndrome (p = 0.026). Conclusion Our study for the first time addressed how presence of SNP rs2476601 within the PTPN22 gene affects clinical characteristics in IBD-patients. Several factors that correlate with more severe disease were found to be less common in CD patients carrying the A-allele, pointing towards a protective role for this variant in affected CD patients. In UC patients however, we found the opposite trend, suggesting a disease-promoting effect of the A-allele. PMID:27467733

  10. Morgan’s Legacy: Fruit Flies and the Functional Annotation of Conserved Genes

    PubMed Central

    Bellen, Hugo J.; Yamamoto, Shinya

    2016-01-01

    In 1915, “The Mechanism of Mendelian Heredity” was published by four prominent Drosophila geneticists. They discovered that genes form linkage groups on chromosomes inherited in a Mendelian fashion and laid the genetic foundation that promoted Drosophila as a model organism. Flies continue to offer great opportunities, including studies in the field of functional genomics. PMID:26406362

  11. Causal relationship between body mass index and fetuin-A level in the asian population: a bidirectional Mendelian randomization study.

    PubMed

    Thakkinstian, Ammarin; Chailurkit, Laor; Warodomwichit, Daruneewan; Ratanachaiwong, Wipa; Yamwong, Sukit; Chanprasertyothin, Suwannee; Attia, John; Sritara, Piyamitr; Ongphiphadhanakul, Boonsong

    2014-08-01

    Fetuin-A is associated with body mass index (BMI) as well as components of the metabolic syndrome. However, it is unclear if fetuin-A affects BMI or the other way around. We therefore assessed the causal association between fetuin-A and BMI or vice versa, utilizing a bidirectional Mendelian randomization approach. This was a study of 2558 subjects from the Electricity Generating Authority of Thailand (EGAT) cohort. Two polymorphisms, that is, rs2248690 in the alpha2-Hereman-Schmid glycoprotein (AHSG) gene and rs9939609 in the fat mass and obesity-associated (FTO) gene were genotyped. Bidirectional causal models were constructed using a two-stage least-square instrumental variable (IV) regression. First, rs2248690 locus was used as the instrumental variable for the effect of circulating fetuin-A on BMI, and then, the FTO rs9939609 locus was used as the instrumental variable for the effect of BMI on circulating fetuin-A. Among the 2558 subjects, the prevalence of the minor AHSG (T) and FTO (A) alleles was 17.9% and 22.1%, respectively. The AHSG rs2248690 locus was highly related to serum fetuin-A levels (P < 0.001). Likewise, the FTO rs9939609 locus and BMI were highly associated (P < 0.001). Mendelian randomization analyses showed that circulating fetuin-A, instrumented by the AHSG rs2248690 locus, was associated with BMI (coefficient = 2.26; 95% CI: 0.39, 4.12). In contrast, BMI, instrumented by the FTO rs9939609 locus, was not associated with circulating fetuin-A (coefficient = 0.0007; 95% CI: -0.0242, 0.0256). Our findings suggest a causal association leading from circulating fetuin-A to BMI. There was no evidence of reverse causality from BMI to fetuin-A. © 2013 John Wiley & Sons Ltd.

  12. Mendelian randomization study of height and risk of colorectal cancer

    PubMed Central

    Thrift, Aaron P; Gong, Jian; Peters, Ulrike; Chang-Claude, Jenny; Rudolph, Anja; Slattery, Martha L; Chan, Andrew T; Esko, Tonu; Wood, Andrew R; Yang, Jian; Vedantam, Sailaja; Gustafsson, Stefan; Pers, Tune H; Baron, John A; Bezieau, Stéphane; Küry, Sébastien; Ogino, Shuji; Berndt, Sonja I; Casey, Graham; Haile, Robert W; Du, Mengmeng; Harrison, Tabitha A; Thornquist, Mark; Duggan, David J; Le Marchand, Loic; Lemire, Mathieu; Lindor, Noralane M; Seminara, Daniela; Song, Mingyang; Thibodeau, Stephen N; Cotterchio, Michelle; Win, Aung Ko; Jenkins, Mark A; Hopper, John L; Ulrich, Cornelia M; Potter, John D; Newcomb, Polly A; Schoen, Robert E; Hoffmeister, Michael; Brenner, Hermann; White, Emily; Hsu, Li; Campbell, Peter T

    2015-01-01

    Background: For men and women, taller height is associated with increased risk of all cancers combined. For colorectal cancer (CRC), it is unclear whether the differential association of height by sex is real or is due to confounding or bias inherent in observational studies. We performed a Mendelian randomization study to examine the association between height and CRC risk. Methods: To minimize confounding and bias, we derived a weighted genetic risk score predicting height (using 696 genetic variants associated with height) in 10 226 CRC cases and 10 286 controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for associations between height, genetically predicted height and CRC. Results: Using conventional methods, increased height (per 10-cm increment) was associated with increased CRC risk (OR = 1.08, 95% CI = 1.02–1.15). In sex-specific analyses, height was associated with CRC risk for women (OR = 1.15, 95% CI = 1.05–1.26), but not men (OR = 0.98, 95% CI = 0.92–1.05). Consistent with these results, carrying greater numbers of (weighted) height-increasing alleles (per 1-unit increase) was associated with higher CRC risk for women and men combined (OR = 1.07, 95% CI = 1.01–1.14) and for women (OR = 1.09, 95% CI = 1.01–1.19). There was weaker evidence of an association for men (OR = 1.05, 95% CI = 0.96–1.15). Conclusion: We provide evidence for a causal association between height and CRC for women. The CRC-height association for men remains unclear and warrants further investigation in other large studies. PMID:25997436

  13. Serum calcium and risk of migraine: a Mendelian randomization study

    PubMed Central

    Yin, Peter; Anttila, Verneri; Siewert, Katherine M.; Palotie, Aarno; Davey Smith, George

    2017-01-01

    Abstract Migraine affects ∼14% of the world’s population, though not all predisposing causal risk factors are known. We used electronic health records, genetic co-heritability analysis, and a two-sample Mendelian Randomization (MR) design to determine if elevated serum calcium levels were associated with risk of migraine headache. Co-morbidity was evaluated using electronic health records obtained from the PennOmics database comprising >1 million patient entries. Genetic co-heritability and causality via MR was assessed using data from the International Headache Consortium (23,285 cases, 95,425 controls) and circulating serum calcium levels (39,400 subjects). We observed co-occurrence of migraine and hypercalcaemia ICD-9 diagnoses (OR = 1.58, P = 4 × 10−13), even after inclusion of additional risk factors for migraine (OR = 1.23, P = 2 × 10−3). Second, we observed co-heritability (rg = 0.191, P = 0.03) between serum calcium and migraine headache, indicating that these traits have a genetic basis in common. Finally, we found that elevation of serum calcium levels by 1 mg/dl resulting from our genetic score was associated with an increase in risk of migraine (OR = 1.80, 95% CI: 1.31–2.46, P = 2.5 × 10−4), evidence supporting a causal hypothesis. We also present multiple MR sensitivity analyses in support of this central finding. Our results provide evidence that hypercalcaemia is comorbid with migraine headache diagnoses, and that genetically elevated serum calcium over lifetime appears to increase risk for migraine. Further studies will be required to understand the biological mechanism, pathways, and clinical implication for risk management. PMID:28025330

  14. Thyroid function and ischemic heart disease: a Mendelian randomization study.

    PubMed

    Zhao, Jie V; Schooling, C Mary

    2017-08-17

    To clarify the role of thyroid function in ischemic heart disease (IHD) we assessed IHD risk and risk factors according to genetically predicted thyroid stimulating hormone (TSH), free thyroxine (FT4) and thyroid peroxidase antibody (TPOAb) positivity. Separate-sample instrumental variable analysis with genetic instruments (Mendelian randomization) was used in an extensively genotyped case (n = 64,374)-control (n = 130,681) study, CARDIoGRAMplusC4D. Associations with lipids, diabetes and adiposity were assessed using the Global Lipids Genetics Consortium Results (n = 196,475), the DIAbetes Genetics Replication And Meta-analysis case (n = 34,380)-control (n = 114,981) study, and the Genetic Investigation of ANthropometric Traits (body mass index in 152,893 men and 171,977 women, waist-hip ratio in 93,480 men and 116,741 women). Genetically predicted thyroid function was not associated with IHD (odds ratio (OR) per standard deviation for TSH 1.05, 95% confidence interval (CI) 0.97 to 1.12; for FT4 1.01, 95% CI 0.91 to 1.12; for TPOAb positivity 1.10, 95% CI 0.83 to 1.46) or after Bonferroni correction with risk factors, except for an inverse association of FT4 with low-density lipoprotein-cholesterol. The associations were generally robust to sensitivity analyses using a weighted median method and MR Egger. This novel study provides little indication that TSH, FT4 or TPOAb positivity affects IHD, despite potential effects on its risk factors.

  15. Biology of tartrate-resistant acid phosphatase.

    PubMed

    Lamp, E C; Drexler, H G

    2000-11-01

    Tartrate-resistant acid phosphatase (TRAP) is a member of the ubiquitously expressed enzyme family of the acid phosphatases. Nearly 30 years ago, TRAP became known to hematologists as cytochemical marker enzyme of hairy cell leukemia. Physiologically, TRAP is primarily a cytochemical marker of macrophages, osteoclasts and dendritic cells. TRAP is localized intracellularly in the lysosomal compartment. Recent data suggest also secretion of TRAP by some cell types, in particular by osteoclasts. Human, mouse and rat TRAP are biochemically well characterized. While the complete genomic sequence of TRAP has been elucidated, only limited information on the genetic details of the gene and its regulation is available. It appears that the intracellular iron content is involved in the regulation of the enzyme. The physiological substrates for this enzyme have not been identified yet and consequently the functional role of TRAP remains completely unknown, though some hypotheses have been forwarded, e.g. involvement in bone resorption and iron homeostasis (transport, metabolism). Taken together, research on the biology of TRAP has been intensive and has led to considerable progress on a number of fronts, including the cloning of the gene. Further studies are, however, still required to determine the role of TRAP in vivo.

  16. A history of plant virology. Mendelian genetics and resistance of plants to viruses.

    PubMed

    Pennazio, S; Roggero, P; Conti, M

    2001-10-01

    Virology was borne at the end of the nineteenth century, some years before the re-discovery of the so-called "Mendel's Laws". The rapid development of genetics was helpful to horticulturists and plant pathologists to produce hybrids of important cropping species resistant to several virus diseases. The concepts of Mendelian genetics were applied to plant virology by Francis Oliver Holmes, an American scientist who must be considered a pioneer in several fields of modern plant virology. During the Thirties, Holmes studied in particular the hypersensitive response of solanaceous plants to TMV and discovered the N dominant gene of tobacco hypersensitive to this virus. After the Second World War, the theoretic and practical support given by geneticists assisted plant virologists in better understanding the mechanism of inheritance of the character "resistance". The major problems posed by breeding for plant resistance were detected and critically discussed in several reviews published between the Fifties and the Sixties. These results, together with the discovery of the genetic functions of RNA virus raised interest on the possible relations between viral and plant genes. This fundamental subject saw the entry into the virological scene of molecular genetics, and in 1970 the Russian virologist Joseph Atabekov introduced host specificity to viruses as a central point of plant virology. From the mid 1980s, this point attracted the interest of several virologists, and many results led to several theoretic models of genetic interactions between plant and virus products. In the last fifteen years, the introduction of transgenic plants has given a remarkable contribution to the question of host specificity, which, however, still awaits a general explanation.

  17. Serum Iron Levels and the Risk of Parkinson Disease: A Mendelian Randomization Study

    PubMed Central

    Gögele, Martin; Lill, Christina M.; Bertram, Lars; Do, Chuong B.; Eriksson, Nicholas; Foroud, Tatiana; Myers, Richard H.; Nalls, Michael; Keller, Margaux F.; Benyamin, Beben; Whitfield, John B.; Pramstaller, Peter P.; Hicks, Andrew A.; Thompson, John R.; Minelli, Cosetta

    2013-01-01

    Background Although levels of iron are known to be increased in the brains of patients with Parkinson disease (PD), epidemiological evidence on a possible effect of iron blood levels on PD risk is inconclusive, with effects reported in opposite directions. Epidemiological studies suffer from problems of confounding and reverse causation, and mendelian randomization (MR) represents an alternative approach to provide unconfounded estimates of the effects of biomarkers on disease. We performed a MR study where genes known to modify iron levels were used as instruments to estimate the effect of iron on PD risk, based on estimates of the genetic effects on both iron and PD obtained from the largest sample meta-analyzed to date. Methods and Findings We used as instrumental variables three genetic variants influencing iron levels, HFE rs1800562, HFE rs1799945, and TMPRSS6 rs855791. Estimates of their effect on serum iron were based on a recent genome-wide meta-analysis of 21,567 individuals, while estimates of their effect on PD risk were obtained through meta-analysis of genome-wide and candidate gene studies with 20,809 PD cases and 88,892 controls. Separate MR estimates of the effect of iron on PD were obtained for each variant and pooled by meta-analysis. We investigated heterogeneity across the three estimates as an indication of possible pleiotropy and found no evidence of it. The combined MR estimate showed a statistically significant protective effect of iron, with a relative risk reduction for PD of 3% (95% CI 1%–6%; p = 0.001) per 10 µg/dl increase in serum iron. Conclusions Our study suggests that increased iron levels are causally associated with a decreased risk of developing PD. Further studies are needed to understand the pathophysiological mechanism of action of serum iron on PD risk before recommendations can be made. Please see later in the article for the Editors' Summary PMID:23750121

  18. Adeno-Associated Virus Type 2-Mediated Gene Transfer: Role of Cellular T-Cell Protein Tyrosine Phosphatase in Transgene Expression in Established Cell Lines In Vitro and Transgenic Mice In Vivo

    PubMed Central

    Qing, Keyun; Li, Weiming; Zhong, Li; Tan, Mengqun; Hansen, Jonathan; Weigel-Kelley, Kirsten A.; Chen, Linyuan; Yoder, Mervin C.; Srivastava, Arun

    2003-01-01

    The use of adeno-associated virus type 2 (AAV) vectors has gained attention as a potentially useful alternative to the more commonly used retrovirus and adenovirus vectors for human gene therapy. However, the transduction efficiency of AAV vectors varies greatly in different cells and tissues in vitro and in vivo. We have documented that a cellular protein that binds the immunosuppressant drug FK506, termed the FK506-binding protein (FKBP52), interacts with the single-stranded D sequence within the AAV inverted terminal repeats, inhibits viral second-strand DNA synthesis, and consequently limits high-efficiency transgene expression (K. Qing, J. Hansen, K. A. Weigel-Kelley, M. Tan, S. Zhou, and A. Srivastava, J. Virol., 75: 8968-8976, 2001). FKBP52 can be phosphorylated at both tyrosine and serine/threonine residues, but only the phosphorylated forms of FKBP52 interact with the D sequence. Furthermore, the tyrosine-phosphorylated FKBP52 inhibits AAV second-strand DNA synthesis by greater than 90%, and the serine/threonine-phosphorylated FKBP52 causes ∼40% inhibition, whereas the dephosphorylated FKBP52 has no effect on AAV second-strand DNA synthesis. In the present study, we have identified that the tyrosine-phosphorylated form of FKBP52 is a substrate for the cellular T-cell protein tyrosine phosphatase (TC-PTP). Deliberate overexpression of the murine wild-type (wt) TC-PTP gene, but not that of a cysteine-to-serine (C-S) mutant, caused tyrosine dephosphorylation of FKBP52, leading to efficient viral second-strand DNA synthesis and resulting in a significant increase in AAV-mediated transduction efficiency in HeLa cells in vitro. Both wt and C-S mutant TC-PTP expression cassettes were also used to generate transgenic mice. Primitive hematopoietic stem/progenitor cells from wt TC-PTP-transgenic mice, but not from C-S mutant TC-PTP-transgenic mice, could be successfully transduced by recombinant AAV vectors. These studies corroborate the fact that tyrosine

  19. Adeno-associated virus type 2-mediated gene transfer: role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo.

    PubMed

    Qing, Keyun; Li, Weiming; Zhong, Li; Tan, Mengqun; Hansen, Jonathan; Weigel-Kelley, Kirsten A; Chen, Linyuan; Yoder, Mervin C; Srivastava, Arun

    2003-02-01

    The use of adeno-associated virus type 2 (AAV) vectors has gained attention as a potentially useful alternative to the more commonly used retrovirus and adenovirus vectors for human gene therapy. However, the transduction efficiency of AAV vectors varies greatly in different cells and tissues in vitro and in vivo. We have documented that a cellular protein that binds the immunosuppressant drug FK506, termed the FK506-binding protein (FKBP52), interacts with the single-stranded D sequence within the AAV inverted terminal repeats, inhibits viral second-strand DNA synthesis, and consequently limits high-efficiency transgene expression (K. Qing, J. Hansen, K. A. Weigel-Kelley, M. Tan, S. Zhou, and A. Srivastava, J. Virol., 75: 8968-8976, 2001). FKBP52 can be phosphorylated at both tyrosine and serine/threonine residues, but only the phosphorylated forms of FKBP52 interact with the D sequence. Furthermore, the tyrosine-phosphorylated FKBP52 inhibits AAV second-strand DNA synthesis by greater than 90%, and the serine/threonine-phosphorylated FKBP52 causes approximately 40% inhibition, whereas the dephosphorylated FKBP52 has no effect on AAV second-strand DNA synthesis. In the present study, we have identified that the tyrosine-phosphorylated form of FKBP52 is a substrate for the cellular T-cell protein tyrosine phosphatase (TC-PTP). Deliberate overexpression of the murine wild-type (wt) TC-PTP gene, but not that of a cysteine-to-serine (C-S) mutant, caused tyrosine dephosphorylation of FKBP52, leading to efficient viral second-strand DNA synthesis and resulting in a significant increase in AAV-mediated transduction efficiency in HeLa cells in vitro. Both wt and C-S mutant TC-PTP expression cassettes were also used to generate transgenic mice. Primitive hematopoietic stem/progenitor cells from wt TC-PTP-transgenic mice, but not from C-S mutant TC-PTP-transgenic mice, could be successfully transduced by recombinant AAV vectors. These studies corroborate the fact that

  20. Effects of Fok-I polymorphism in vitamin D receptor gene on serum 25-hydroxyvitamin D, bone-specific alkaline phosphatase and calcaneal quantitative ultrasound parameters in young adults.

    PubMed

    Tanabe, Rieko; Kawamura, Yuka; Tsugawa, Naoko; Haraikawa, Mayu; Sogabe, Natsuko; Okano, Toshio; Hosoi, Takayuki; Goseki-Sone, Masae

    2015-01-01

    Several genes have been implicated as genetic determinants of osteoporosis. Vitamin D receptor (VDR) is an intracellular hormone receptor that specifically binds to the biologically active form of vitamin D, 1-alpha, 25- dihydroxyvitamin D3 [1, 25(OH)2D], and mediates its effects. One of the most frequently studied single nucleotide polymorphisms is the restriction fragment length polymorphism (RFLP) Fok-I (rs2228570). The presence of a Fok-I site, designated f, allows protein translation to initiate from the first ATG. An allele lacking the site (ATG>ACG: designated F), initiates from a second ATG site. In the present study, we explored the effect of the VDR Fok-I genotype on associations among serum bone-specific alkaline phosphatase (ALP), 25- hydroxyvitamin D3 [25(OH)D], 1, 25(OH)2D, and the dietary nutrient intake in healthy young Japanese subjects (n=193). Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Quantitative ultrasound (QUS) parameters at the right calcaneus (heel bone) were measured. The allele frequencies were 0.622 for the F allele and 0.378 for the f allele in all subjects. Grouped by the VDR genotype, a significant positive correlation between the levels of serum bone-specific ALP and 25(OH)D was observed in the FF-type (p=0.005), but not in the ff-type. In addition, there was a significant positive correlation between the level of serum 25(OH)D and osteo-sono assessment index (OSI) in the FF-type (p=0.008), but not in the ff-type. These results suggest that the level of circulating 25(OH)D is an important factor when assessing the VDR Fok-I polymorphism to prevent osteoporosis.

  1. Deletion of the G6pc2 Gene Encoding the Islet-Specific Glucose-6-Phosphatase Catalytic Subunit–Related Protein Does Not Affect the Progression or Incidence of Type 1 Diabetes in NOD/ShiLtJ Mice

    PubMed Central

    Oeser, James K.; Parekh, Vrajesh V.; Wang, Yingda; Jegadeesh, Naresh K.; Sarkar, Suparna A.; Wong, Randall; Lee, Catherine E.; Pound, Lynley D.; Hutton, John C.; Van Kaer, Luc; O’Brien, Richard M.

    2011-01-01

    OBJECTIVE Islet-specific glucose-6-phosphatase catalytic subunit–related protein (IGRP), now known as G6PC2, is a major target of autoreactive T cells implicated in the pathogenesis of type 1 diabetes in both mice and humans. This study aimed to determine whether suppression of G6p2 gene expression might therefore prevent or delay disease progression. RESEARCH DESIGN AND METHODS G6pc2−/− mice were generated on the NOD/ShiLtJ genetic background, and glycemia was monitored weekly up to 35 weeks of age to determine the onset and incidence of diabetes. The antigen specificity of CD8+ T cells infiltrating islets from NOD/ShiLtJ G6pc2+/+ and G6pc2−/− mice at 12 weeks was determined in parallel. RESULTS The absence of G6pc2 did not affect the time of onset, incidence, or sex bias of type 1 diabetes in NOD/ShiLtJ mice. Insulitis was prominent in both groups, but whereas NOD/ShiLtJ G6pc2+/+ islets contained CD8+ T cells reactive to the G6pc2 NRP peptide, G6pc2 NRP-reactive T cells were absent in NOD/ShiLtJ G6pc2−/− islets. CONCLUSIONS These results demonstrate that G6pc2 is an important driver for the selection and expansion of islet-reactive CD8+ T cells infiltrating NOD/ShiLtJ islets. However, autoreactivity to G6pc2 is not essential for the emergence of autoimmune diabetes. The results remain consistent with previous studies indicating that insulin may be the primary autoimmune target, at least in NOD/ShiLtJ mice. PMID:21896930

  2. An alkaline phosphatase reporter for use in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Pascual, Ricardo A; Childress, Kevin O; Nawrocki, Kathryn L; Woods, Emily C; McBride, Shonna M

    2015-04-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae

    PubMed Central

    Steidle, Elizabeth A.; Chong, Lucy S.; Wu, Mingxuan; Crooke, Elliott; Fiedler, Dorothea; Resnick, Adam C.; Rolfes, Ronda J.

    2016-01-01

    Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, the Saccharomyces cerevisiae homolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5 or IP7) in vitro. In vivo, siw14Δ yeast mutants possess increased IP7 levels, whereas heterologous SIW14 overexpression eliminates IP7 from cells. IP7 levels increased proportionately when siw14Δ was combined with ddp1Δ or vip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7 isoform 5PP-IP5 to IP6. PMID:26828065

  4. Obesity and Multiple Sclerosis: A Mendelian Randomization Study

    PubMed Central

    Davey Smith, George; Richards, J. Brent

    2016-01-01

    Background Observational studies have reported an association between obesity, as measured by elevated body mass index (BMI), in early adulthood and risk of multiple sclerosis (MS). However, bias potentially introduced by confounding and reverse causation may have influenced these findings. Therefore, we elected to perform Mendelian randomization (MR) analyses to evaluate whether genetically increased BMI is associated with an increased risk of MS. Methods and Findings Employing a two-sample MR approach, we used summary statistics from the Genetic Investigation of Anthropometric Traits (GIANT) consortium and the International MS Genetics Consortium (IMSGC), the largest genome-wide association studies for BMI and MS, respectively (GIANT: n = 322,105; IMSGC: n = 14,498 cases and 24,091 controls). Seventy single nucleotide polymorphisms (SNPs) were genome-wide significant (p < 5 x 10−8) for BMI in GIANT (n = 322,105) and were investigated for their association with MS risk in the IMSGC. The effect of each SNP on MS was weighted by its effect on BMI, and estimates were pooled to provide a summary measure for the effect of increased BMI upon risk of MS. Our results suggest that increased BMI influences MS susceptibility, where a 1 standard deviation increase in genetically determined BMI (kg/m2) increased odds of MS by 41% (odds ratio [OR]: 1.41, 95% CI 1.20–1.66, p = 2.7 x 10−5, I2 = 0%, 95% CI 0–29). Sensitivity analyses, including MR-Egger regression, and the weighted median approach provided no evidence of pleiotropic effects. The main study limitations are that, while these sensitivity analyses reduce the possibility that pleiotropy influenced our results, residual pleiotropy is difficult to exclude entirely. Conclusion Genetically elevated BMI is associated with risk of MS, providing evidence for a causal role for obesity in MS etiology. While obesity has been associated with many late-life outcomes, these findings suggest an important consequence of

  5. Moderate alcohol drinking in pregnancy increases risk for children's persistent conduct problems: causal effects in a Mendelian randomisation study.

    PubMed

    Murray, Joseph; Burgess, Stephen; Zuccolo, Luisa; Hickman, Matthew; Gray, Ron; Lewis, Sarah J

    2016-05-01

    Heavy alcohol use during pregnancy can cause considerable developmental problems for children, but effects of light-moderate drinking are uncertain. This study examined possible effects of moderate drinking in pregnancy on children's conduct problems using a Mendelian randomisation design to improve causal inference. A prospective cohort study (ALSPAC) followed children from their mother's pregnancy to age 13 years. Analyses were based on 3,544 children whose mothers self-reported either not drinking alcohol during pregnancy or drinking up to six units per week without binge drinking. Children's conduct problem trajectories were classified as low risk, childhood-limited, adolescence-onset or early-onset-persistent, using six repeated measures of the Strengths and Difficulties Questionnaire between ages 4-13 years. Variants of alcohol-metabolising genes in children were used to create an instrumental variable for Mendelian randomisation analysis. Children's genotype scores were associated with early-onset-persistent conduct problems (OR = 1.29, 95% CI = 1.04-1.60, p = .020) if mothers drank moderately in pregnancy, but not if mothers abstained from drinking (OR = 0.94, CI = 0.72-1.25, p = .688). Children's genotype scores did not predict childhood-limited or adolescence-onset conduct problems. This quasi-experimental study suggests that moderate alcohol drinking in pregnancy contributes to increased risk for children's early-onset-persistent conduct problems, but not childhood-limited or adolescence-onset conduct problems. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.

  6. Complex segregation analysis of pedigrees from the Gilda Radner Familial Ovarian Cancer Registry reveals evidence for mendelian dominant inheritance.

    PubMed

    Tayo, Bamidele O; DiCioccio, Richard A; Liang, Yulan; Trevisan, Maurizio; Cooper, Richard S; Lele, Shashikant; Sucheston, Lara; Piver, Steven M; Odunsi, Kunle

    2009-06-17

    Familial component is estimated to account for about 10% of ovarian cancer. However, the mode of inheritance of ovarian cancer remains poorly understood. The goal of this study was to investigate the inheritance model that best fits the observed transmission pattern of ovarian cancer among 7669 members of 1919 pedigrees ascertained through probands from the Gilda Radner Familial Ovarian Cancer Registry at Roswell Park Cancer Institute, Buffalo, New York. Using the Statistical Analysis for Genetic Epidemiology program, we carried out complex segregation analyses of ovarian cancer affection status by fitting different genetic hypothesis-based regressive multivariate logistic models. We evaluated the likelihood of sporadic, major gene, environmental, general, and six types of Mendelian models. Under each hypothesized model, we also estimated the susceptibility allele frequency, transmission probabilities for the susceptibility allele, baseline susceptibility and estimates of familial association. Comparisons between models were carried out using either maximum likelihood ratio test in the case of hierarchical models, or Akaike information criterion for non-nested models. When assessed against sporadic model without familial association, the model with both parent-offspring and sib-sib residual association could not be rejected. Likewise, the Mendelian dominant model that included familial residual association provided the best-fitting for the inheritance of ovarian cancer. The estimated disease allele frequency in the dominant model was 0.21. This report provides support for a genetic role in susceptibility to ovarian cancer with a major autosomal dominant component. This model does not preclude the possibility of polygenic inheritance of combined effects of multiple low penetrance susceptibility alleles segregating dominantly.

  7. MDP-1: A novel eukaryotic magnesium-dependent phosphatase.

    PubMed

    Selengut, J D; Levine, R L

    2000-07-18

    We report here the purification, cloning, expression, and characterization of a novel phosphatase, MDP-1. In the course of investigating the reported acid phosphatase activity of carbonic anhydrase III preparations, several discrete phosphatases were discerned. One of these, a magnesium-dependent species of 18.6 kDa, was purified to homogeneity and yielded several peptide sequences from which the parent gene was identified by database searching. Although orthologous genes were identified in fungi and plants as well as mammalian species, there was no apparent homology to any known family of phosphatases. The enzyme was expressed in Escherichia coli with a fusion tag and purified by affinity methods. The recombinant enzyme showed magnesium-dependent acid phosphatase activity comparable to the originally isolated rabbit protein. The enzyme catalyzes the rapid hydrolysis of p-nitrophenyl phosphate, ribose-5-phosphate, and phosphotyrosine. The selectivity for phosphotyrosine over phosphoserine or phosphothreonine is considerable, but the enzyme did not show activity toward five phosphotyrosine-containing peptides. None of the various substrates assayed (including various nucleotide, sugar, amino acid and peptide phosphates, phosphoinositides, and phosphodiesters) exhibited K(M) values lower than 1 mM, and many showed negligible rates of hydrolysis. The enzyme is inhibited by vanadate and fluoride but not by azide, cyanide, calcium, lithium, or tartaric acid. Chemical labeling, refolding, dialysis, and mutagenesis experiments suggest that the enzymatic mechanism is not dependent on cysteine, histidine, or nonmagnesium metal ions. In recognition of these observations, the enzyme has been given the name magnesium-dependent phosphatase-1 (MDP-1).

  8. Alkaline Phosphatase in Normal Infants

    PubMed Central

    Stephen, Joan M. L.; Stephenson, Pearl

    1971-01-01

    Alkaline phosphatase was measured in plasma from children receiving vitamin D supplements in day nurseries in the London area, and from children exposed to sunlight in the West Indies. The distribution of values showed that there was no precise upper limit which could be used in the diagnosis of subclinical vitamin D deficiency. PMID:5576029

  9. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

    PubMed

    O'Brien, P J; Herschlag, D

    2001-05-15

    sulfatase activity, further establishing the functional interrelationships among the sulfatases, phosphatases, and phosphodiesterases within the evolutionarily related AP superfamily. The catalytic promiscuity of AP could have facilitated divergent evolution via gene duplication by providing a selective advantage upon which natural selection could have acted.

  10. Why the Rediscoverer Ended up on the Sidelines: Hugo De Vries's Theory of Inheritance and the Mendelian Laws

    NASA Astrophysics Data System (ADS)

    Stamhuis, Ida H.

    2015-01-01

    Eleven years before the `rediscovery' in 1900 of Mendel's work, Hugo De Vries published his theory of heredity. He expected his theory to become a big success, but it was not well-received. To find supporting evidence for this theory De Vries started an extensive research program. Because of the parallels of his ideas with the Mendelian laws and because of his use of statistics, he became one of the rediscoverers. However, the Mendelian laws, which soon became the foundation of a new discipline of genetics, presented a problem. De Vries was the only one of the early Mendelians who had developed his own theory of heredity. His theory could not be brought in line with the Mendelian laws. But because his original theory was still very dear to him, something important was at stake and he was unwilling to adapt his ideas to the new situation. He belittled the importance of the Mendelian laws and ended up on the sidelines.

  11. Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study.

    PubMed

    Cuellar-Partida, Gabriel; Williams, Katie M; Yazar, Seyhan; Guggenheim, Jeremy A; Hewitt, Alex W; Williams, Cathy; Wang, Jie Jin; Kho, Pik-Fang; Saw, Seang Mei; Cheng, Ching-Yu; Wong, Tien Yin; Aung, Tin; Young, Terri L; Tideman, J Willem L; Jonas, Jost B; Mitchell, Paul; Wojciechowski, Robert; Stambolian, Dwight; Hysi, Pirro; Hammond, Christopher J; Mackey, David A; Lucas, Robyn M; MacGregor, Stuart

    2017-06-06

    Myopia prevalence has increased in the past 20 years, with many studies linking the increase to reduced time spent outdoors. A number of recent observational studies have shown an inverse association between vitamin D [25(OH)D] serum levels and myopia. However, in such studies it is difficult to separate the effects of time outdoors and vitamin D levels. In this work we use Mendelian randomization (MR) to assess if genetically determined 25(OH)D levels contribute to the degree of myopia. We performed MR using results from a meta-analysis of refractive error (RE) genome-wide association study (GWAS) that included 37 382 and 8 376 adult participants of European and Asian ancestry, respectively, published by the Consortium for Refractive Error And Myopia (CREAM). We used single nucleotide polymorphisms (SNPs) in the DHCR7 , CYP2R1, GC and CYP24A1 genes with known effects on 25(OH)D concentration as instrumental variables (IV). We estimated the effect of 25(OH)D on myopia level using a Wald-type ratio estimator based on the effect estimates from the CREAM GWAS. Using the combined effect attributed to the four SNPs, the estimate for the effect of 25(OH)D on refractive error was -0.02 [95% confidence interval (CI) -0.09, 0.04] dioptres (D) per 10 nmol/l increase in 25(OH)D concentration in Caucasians and 0.01 (95% CI -0.17, 0.19) D per 10 nmol/l increase in Asians. The tight confidence intervals on our estimates suggest the true contribution of vitamin D levels to degree of myopia is very small and indistinguishable from zero. Previous findings from observational studies linking vitamin D levels to myopia were likely attributable to the effects of confounding by time spent outdoors.

  12. Role of Adiponectin in Coronary Heart Disease Risk: A Mendelian Randomization Study.

    PubMed

    Borges, Maria Carolina; Lawlor, Debbie A; de Oliveira, Cesar; White, Jon; Horta, Bernardo Lessa; Barros, Aluísio J D

    2016-07-22

    Hypoadiponectinemia correlates with several coronary heart disease (CHD) risk factors. However, it is unknown whether adiponectin is causally implicated in CHD pathogenesis. We aimed to investigate the causal effect of adiponectin on CHD risk. We undertook a Mendelian randomization study using data from genome-wide association studies consortia. We used the ADIPOGen consortium to identify genetic variants that could be used as instrumental variables for the effect of adiponectin. Data on the association of these genetic variants with CHD risk were obtained from CARDIoGRAM (22 233 CHD cases and 64 762 controls of European ancestry) and from CARDIoGRAMplusC4D Metabochip (63 746 cases and 130 681 controls; ≈ 91% of European ancestry) consortia. Data on the association of genetic variants with adiponectin levels and with CHD were combined to estimate the influence of blood adiponectin on CHD risk. In the conservative approach (restricted to using variants within the adiponectin gene as instrumental variables), each 1 U increase in log blood adiponectin concentration was associated with an odds ratio for CHD of 0.83 (95% confidence interval, 0.68-1.01) in CARDIoGRAM and 0.97 (95% confidence interval, 0.84-1.12) in CARDIoGRAMplusC4D Metabochip. Findings from the liberal approach (including variants in any locus across the genome) indicated a protective effect of adiponectin that was attenuated to the null after adjustment for known CHD predictors. Overall, our findings do not support a causal role of adiponectin levels in CHD pathogenesis. © 2016 The Authors.

  13. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk

    PubMed Central

    Rhead, Brooke; Bäärnhielm, Maria; Gianfrancesco, Milena; Mok, Amanda; Shao, Xiaorong; Quach, Hong; Shen, Ling; Schaefer, Catherine; Link, Jenny; Gyllenberg, Alexandra; Hedström, Anna Karin; Olsson, Tomas; Hillert, Jan; Kockum, Ingrid; Glymour, M. Maria; Alfredsson, Lars

    2016-01-01

    Objective: We sought to estimate the causal effect of low serum 25(OH)D on multiple sclerosis (MS) susceptibility that is not confounded by environmental or lifestyle factors or subject to reverse causality. Methods: We conducted mendelian randomization (MR) analyses using an instrumental variable (IV) comprising 3 single nucleotide polymorphisms found to be associated with serum 25(OH)D levels at genome-wide significance. We analyzed the effect of the IV on MS risk and both age at onset and disease severity in 2 separate populations using logistic regression models that controlled for sex, year of birth, smoking, education, genetic ancestry, body mass index at age 18–20 years or in 20s, a weighted genetic risk score for 110 known MS-associated variants, and the presence of one or more HLA-DRB1*15:01 alleles. Results: Findings from MR analyses using the IV showed increasing levels of 25(OH)D are associated with a decreased risk of MS in both populations. In white, non-Hispanic members of Kaiser Permanente Northern California (1,056 MS cases and 9,015 controls), the odds ratio (OR) was 0.79 (p = 0.04, 95% confidence interval (CI): 0.64–0.99). In members of a Swedish population from the Epidemiological Investigation of Multiple Sclerosis and Genes and Environment in Multiple Sclerosis MS case-control studies (6,335 cases and 5,762 controls), the OR was 0.86 (p = 0.03, 95% CI: 0.76–0.98). A meta-analysis of the 2 populations gave a combined OR of 0.85 (p = 0.003, 95% CI: 0.76–0.94). No association was observed for age at onset or disease severity. Conclusions: These results provide strong evidence that low serum 25(OH)D concentration is a cause of MS, independent of established risk factors. PMID:27652346

  14. Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis

    PubMed Central

    Yajnik, Chittaranjan S; Chandak, Giriraj R; Joglekar, Charudatta; Katre, Prachi; Bhat, Dattatray S; Singh, Suraj N; Janipalli, Charles S; Refsum, Helga; Krishnaveni, Ghattu; Veena, Sargoor; Osmond, Clive; Fall, Caroline HD

    2014-01-01

    Background: Disturbed one-carbon (1-C) metabolism in the mother is associated with poor fetal growth but causality of this relationship has not been established. Methods: We studied the association between maternal total homocysteine and offspring birthweight in the Pune Maternal Nutrition Study (PMNS, Pune, India) and Parthenon Cohort Study (Mysore, India). We tested for evidence of causality within a Mendelian randomization framework, using a methylenetetrahydrofolatereductase (MTHFR) gene variant rs1801133 (earlier known as 677C→T) by instrumental variable and triangulation analysis, separately and using meta-analysis. Results: Median (IQR) homocysteine concentration and mean (SD) birthweight were 8.6 µmol/l (6.7,10.8) and 2642 g (379) in the PMNS and 6.0 µmol/l (5.1,7.1) and 2871 g (443) in the Parthenon study. Offspring birthweight was inversely related to maternal homocysteine concentration—PMNS: –22 g/SD [95% confidence interval (CI): (–50, 5), adjusted for gestational age and offspring gender]; Parthenon: –57 g (–92, –21); meta-analysis: –40 g (–62, –17)]. Maternal risk genotype at rs1801133 predicted higher homocysteine concentration [PMNS: 0.30 SD/allele (0.14, 0.46); Parthenon: 0.21 SD (0.02, 0.40); meta-analysis: 0.26 SD (0.14, 0.39)]; and lower birthweight [PMNS: –46 g (–102, 11, adjusted for gestational age, offspring gender and rs1801133 genotype); Parthenon: –78 g (–170, 15); meta-analysis: –61 g (–111, –10)]. Instrumental variable and triangulation analysis supported a causal association between maternal homocysteine concentration and offspring birthweight. Conclusions: Our findings suggest a causal role for maternal homocysteine (1-C metabolism) in fetal growth. Reducing maternal homocysteine concentrations may improve fetal growth. PMID:25052622

  15. Associations of triglyceride levels with longevity and frailty: A Mendelian randomization analysis

    PubMed Central

    Liu, Zuyun; Burgess, Stephen; Wang, Zhengdong; Deng, Wan; Chu, Xuefeng; Cai, Jian; Zhu, Yinsheng; Shi, Jianming; Xie, Xuejuan; Wang, Yong; Jin, Li; Wang, Xiaofeng

    2017-01-01

    Observational studies suggest associations of triglyceride levels with longevity and frailty. This study aimed to test whether the associations are causal. We used data from the Rugao Longevity and Ageing Study, a population-based cohort study performed in Rugao, China. A variant in the APOA5 gene region (rs662799) was used as the genetic instrument. Mendelian randomization (MR) analyses were performed to examine the associations of genetically predicted triglycerides with two ageing phenotypes – longevity ( ≥95 years) and frailty (modified Fried frailty phenotype and Rockwood frailty index). C allele of rs662799 was robustly associated with higher triglyceride levels in the comparison group (β = 0.301 mmol/L per allele, p < 0.001), with an F statistic of 95.3 and R2 = 0.040. However MR analysis did not provide strong evidence for an association between genetically predicted triglyceride levels and probability of longevity (OR: 0.61; 95% CI: 0.35, 1.07 per 1 mmol/L increase in triglycerides). In the ageing arm (70–84 years), genetically predicted triglyceride levels were not associated with the frailty index (β = 0.008; 95% CI: −0.013, 0.029) or the frailty phenotype (OR: 1.91; 95% CI: 0.84, 4.37). In conclusion, there is currently a lack of sufficient evidence to support causal associations of triglyceride levels with longevity and frailty in elderly populations. PMID:28134330

  16. Circulating interleukin-6 and cancer: A meta-analysis using Mendelian randomization

    PubMed Central

    Tian, Geng; Mi, Jia; Wei, Xiaodan; Zhao, Dongmei; Qiao, Lingyan; Yang, Chunhua; Li, Xianglin; Zhang, Shuping; Li, Xuri; Wang, Bin

    2015-01-01

    Interleukin-6 (IL-6) plays a contributory role in the progression and severity of many forms of cancer; it however remains unclear whether the relevance between circulating IL-6 and cancer is causal. We therefore meta-analyzed published articles in this regard using IL-6 gene -174G/C variant as an instrument. Seventy-eight and six articles were eligible for the association of -174G/C variant with cancer and circulating IL-6, respectively. Overall analyses failed to identify any significance between -174G/C and cancer risk. In Asians, carriers of the -174CC genotype had an 1.95-fold increased cancer risk compared with the -174GG genotype carriers (P = 0.009). By cancer type, significance was only attained for liver cancer with the -174C allele conferring a reduced risk under allelic (odds ratio or OR = 0.74; P = 0.001), homozygous genotypic (OR = 0.59; P = 0.029) and dominant (OR = 0.67; P = 0.004) models. Carriers of the -174CC genotype (weighted mean difference or WMD = −4.23 pg/mL; P < 0.001) and -174C allele (WMD = −3.43 pg/mL; P < 0.001) had circulating IL-6 reduced significantly compared with the non-carriers. In further Mendelian randomization analysis, a reduction of 1 pg/mL in circulating IL-6 was significantly associated with an 12% reduced risk of liver cancer. Long-term genetically-reduced circulating IL-6 might be causally associated with a lower risk of liver cancer. PMID:26096712

  17. Investigating causality in associations between smoking initiation and schizophrenia using Mendelian randomization

    PubMed Central

    Gage, Suzanne H.; Jones, Hannah J.; Taylor, Amy E.; Burgess, Stephen; Zammit, Stanley; Munafò, Marcus R.

    2017-01-01

    Smoking is strongly associated with schizophrenia. Although it has been widely assumed that this reflects self-medication, recent studies suggest that smoking may be a risk factor for schizophrenia. We performed two-sample bi-directional Mendelian randomization using summary level genomewide association data from the Tobacco And Genetics Consortium and Psychiatric Genomics Consortium. Variants associated with smoking initiation and schizophrenia were combined using an inverse-variance weighted fixed-effects approach. We found evidence consistent with a causal effect of smoking initiation on schizophrenia risk (OR 1.73, 95% CI 1.30–2.25, p < 0.001). However, after relaxing the p-value threshold to include variants from more than one gene and minimize the potential impact of pleiotropy, the association was attenuated (OR 1.03, 95% CI 0.97–1.09, p = 0.32). There was little evidence in support of a causal effect of schizophrenia on smoking initiation (OR 1.01, 95% CI 0.98–1.04, p = 0.32). MR Egger regression sensitivity analysis indicated no evidence for pleiotropy in the effect of schizophrenia on smoking initiation (intercept OR 1.01, 95% CI 0.99–1.02, p = 0.49). Our findings provide little evidence of a causal association between smoking initiation and schizophrenia, in either direction. However, we cannot rule out a causal effect of smoking on schizophrenia related to heavier, lifetime exposure, rather than initiation. PMID:28102331

  18. Mosaic Tetrasomy 9p: A Mendelian Condition Associated With Pediatric-Onset Overlap Myositis.

    PubMed

    Frémond, Marie-Louise; Gitiaux, Cyril; Bonnet, Damien; Guiddir, Tamazoust; Crow, Yanick J; de Pontual, Loïc; Bader-Meunier, Brigitte

    2015-08-01

    Pediatric-onset inflammatory myositis (IM) and systemic lupus erythematosus (SLE) are rare inflammatory diseases. Both result from the complex interaction of genetic and environmental factors. An increasing number of Mendelian conditions predisposing to the development of SLE have been recently identified. These include monogenic conditions, referred to as the type I interferonopathies, associated with a primary upregulation of type I interferon (IFN), a key cytokine in the pathogenesis of SLE and some cases of IM. Here, we report on a pediatric-onset inflammatory overlap phenotype in a 6-year-old girl who was shown to carry mosaic tetrasomy 9p. The patient presented with myositis overlapping with lupuslike features. Myositis was characterized by a proximal muscular weakness and HLA class I antigen myofiber overexpression on muscle biopsy. Lupus-like manifestations consisted of pericarditis, pleuritis, and positive antinuclear and anti-SSA (Sjögren-syndrome A) antibodies. Complete remission was achieved with corticosteroids and mycophenolate mofetyl. Analysis of tetrasomy 9p showed mosaic tetrasomy in the 9p24.3q12 region, including the type I IFN cluster, and increased expression of IFN-stimulated genes. These data suggest that mosaic tetrasomy 9p can be associated with an upregulation of type I IFN signaling, predisposing to inflammatory myositis and lupus-like features. Thus, unexplained muscle or other organ involvement in patients carrying mosaic tetrasomy of the type IFN cluster of chromosome 9p should lead to the search for IM and/or lupuslike disease, and karyotype should be performed in patients with SLE or IM with mental retardation. Copyright © 2015 by the American Academy of Pediatrics.

  19. Association of Mycobacterium infections in patients with Mendelian susceptibility to mycobacterial disease with venous thromboembolism.

    PubMed

    Alinejad Dizaj, Maryam; Mahdaviani, Seyed Alireza; Tabarsi, Payam; Ahari, Hamed; Ebrahimi, Ahmad; Nadji, Seyed Alireza; Emami, Habib; Mortaz, Esmaeil

    2016-10-01

    An association between a hypercoagulable state and Mendelian susceptibility to mycobacterial disease (MSMD) has been established in a few studies; resultant thrombosis is considered rare. In a case-control study, the prevalence of factor V Leiden, prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C mutations were investigated in mycobacterium-infected patients. The study comprised 30 patients with mycobacterial infections (invasive, disseminated and/or recurrent infections with Bacille Calmette-Guerin or non-tuberculosis mycobacteria and Mycobacterium Tuberculosis with positive results for acid-fast bacilli and tuberculin skin tests) and 30 normal healthy controls. Forty female (66.7%) and 20 male subjects (33.3%) aged from 3 to 70 years were recruited into this study. Genotyping of targeted genes was performed by RT-PCR and cytokine TNF-α concentrations were quantified using a commercially available ELISA kit. Significant associations between mycobacterial infection and TNF-α production after stimulating peripheral blood mononuclear cells with LPS alone and with IFN-γ plus LPS were identified. Moreover, genotyping analysis in the studied population revealed a significant association between MTHFR c.677C>T (OR, 3.28; 95% CI, 1.35-7.92; P < 0.05), MTHFR c.1298A>C (OR, 2.33; 95% CI, 1.10-4.93; P < 0.05) and mycobacterial infection in affected patients, indicating susceptibility to venous thromboembolism according to previous studies. Additionally, mycobacterium-infected patients had a significantly greater prevalence of MTHFR C677T and A1298C mutations than controls.

  20. Generation of sequence-based data for pedigree-segregating Mendelian or Complex traits.

    PubMed

    Li, Biao; Wang, Gao T; Leal, Suzanne M

    2015-11-15

    There is great interest in analyzing next generation sequence data that has been generated for pedigrees. However, unlike for population-based data there are only a limited number of rare variant methods to analyze pedigree data. One limitation is the ability to evaluate type I and II errors for family-based methods, due to lack of software that can simulate realistic sequence data for pedigrees. We developed RarePedSim (Rare-variant Pedigree-based Simulator), a program to simulate region/gene-level genotype and phenotype data for complex and Mendelian traits for any given pedigree structure. Using a genetic model, sequence variant data can be generated either conditionally or unconditionally on pedigree members' qualitative or quantitative phenotypes. Additionally, qualitative or quantitative traits can be generated conditional on variant data. Sequence data can either be simulated using realistic population demographic models or obtained from sequence-based studies. Variant sites can be annotated with positions, allele frequencies and functionality. For rare variants, RarePedSim is the only program that can efficiently generate both genotypes and phenotypes, regardless of pedigree structure. Data generated by RarePedSim are in standard Linkage file (.ped) and Variant Call (.vcf) formats, ready to be used for a variety of purposes, including evaluation of type I error and power, for association methods including mixed models and linkage analysis methods. bioinformatics.org/simped/rare sleal@bcm.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B

    PubMed Central

    Fan, Junping; Jiang, Daohua; Zhao, Yan; Liu, Jianfeng; Zhang, Xuejun Cai

    2014-01-01

    Membrane-integrated type II phosphatidic acid phosphatases (PAP2s) are important for numerous bacterial to human biological processes, including glucose transport, lipid metabolism, and signaling. Escherichia coli phosphatidylglycerol-phosphate phosphatase B (ecPgpB) catalyzes removing the terminal phosphate group from a lipid carrier, undecaprenyl pyrophosphate, and is essential for transport of many hydrophilic small molecules across the membrane. We determined the crystal structure of ecPgpB at a resolution of 3.2 Å. This structure shares a similar folding topology and a nearly identical active site with soluble PAP2 enzymes. However, the substrate binding mechanism appears to be fundamentally different from that in soluble PAP2 enzymes. In ecPgpB, the potential substrate entrance to the active site is located in a cleft formed by a V-shaped transmembrane helix pair, allowing lateral movement of the lipid substrate entering the active site from the membrane lipid bilayer. Activity assays of point mutations confirmed the importance of the catalytic residues and potential residues involved in phosphate binding. The structure also suggests an induced-fit mechanism for the substrate binding. The 3D structure of ecPgpB serves as a prototype to study eukaryotic PAP2 enzymes, including human glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentrations. PMID:24821770

  2. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B.

    PubMed

    Fan, Junping; Jiang, Daohua; Zhao, Yan; Liu, Jianfeng; Zhang, Xuejun Cai

    2014-05-27

    Membrane-integrated type II phosphatidic acid phosphatases (PAP2s) are important for numerous bacterial to human biological processes, including glucose transport, lipid metabolism, and signaling. Escherichia coli phosphatidylglycerol-phosphate phosphatase B (ecPgpB) catalyzes removing the terminal phosphate group from a lipid carrier, undecaprenyl pyrophosphate, and is essential for transport of many hydrophilic small molecules across the membrane. We determined the crystal structure of ecPgpB at a resolution of 3.2 Å. This structure shares a similar folding topology and a nearly identical active site with soluble PAP2 enzymes. However, the substrate binding mechanism appears to be fundamentally different from that in soluble PAP2 enzymes. In ecPgpB, the potential substrate entrance to the active site is located in a cleft formed by a V-shaped transmembrane helix pair, allowing lateral movement of the lipid substrate entering the active site from the membrane lipid bilayer. Activity assays of point mutations confirmed the importance of the catalytic residues and potential residues involved in phosphate binding. The structure also suggests an induced-fit mechanism for the substrate binding. The 3D structure of ecPgpB serves as a prototype to study eukaryotic PAP2 enzymes, including human glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentrations.

  3. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study.

    PubMed

    Vimaleswaran, Karani S; Cavadino, Alana; Berry, Diane J; Jorde, Rolf; Dieffenbach, Aida Karina; Lu, Chen; Alves, Alexessander Couto; Heerspink, Hiddo J Lambers; Tikkanen, Emmi; Eriksson, Joel; Wong, Andrew; Mangino, Massimo; Jablonski, Kathleen A; Nolte, Ilja M; Houston, Denise K; Ahluwalia, Tarunveer Singh; van der Most, Peter J; Pasko, Dorota; Zgaga, Lina; Thiering, Elisabeth; Vitart, Veronique; Fraser, Ross M; Huffman, Jennifer E; de Boer, Rudolf A; Schöttker, Ben; Saum, Kai-Uwe; McCarthy, Mark I; Dupuis, Josée; Herzig, Karl-Heinz; Sebert, Sylvain; Pouta, Anneli; Laitinen, Jaana; Kleber, Marcus E; Navis, Gerjan; Lorentzon, Mattias; Jameson, Karen; Arden, Nigel; Cooper, Jackie A; Acharya, Jayshree; Hardy, Rebecca; Raitakari, Olli; Ripatti, Samuli; Billings, Liana K; Lahti, Jari; Osmond, Clive; Penninx, Brenda W; Rejnmark, Lars; Lohman, Kurt K; Paternoster, Lavinia; Stolk, Ronald P; Hernandez, Dena G; Byberg, Liisa; Hagström, Emil; Melhus, Håkan; Ingelsson, Erik; Mellström, Dan; Ljunggren, Osten; Tzoulaki, Ioanna; McLachlan, Stela; Theodoratou, Evropi; Tiesler, Carla M T; Jula, Antti; Navarro, Pau; Wright, Alan F; Polasek, Ozren; Wilson, James F; Rudan, Igor; Salomaa, Veikko; Heinrich, Joachim; Campbell, Harry; Price, Jacqueline F; Karlsson, Magnus; Lind, Lars; Michaëlsson, Karl; Bandinelli, Stefania; Frayling, Timothy M; Hartman, Catharina A; Sørensen, Thorkild I A; Kritchevsky, Stephen B; Langdahl, Bente Lomholt; Eriksson, Johan G; Florez, Jose C; Spector, Tim D; Lehtimäki, Terho; Kuh, Diana; Humphries, Steve E; Cooper, Cyrus; Ohlsson, Claes; März, Winfried; de Borst, Martin H; Kumari, Meena; Kivimaki, Mika; Wang, Thomas J; Power, Chris; Brenner, Hermann; Grimnes, Guri; van der Harst, Pim; Snieder, Harold; Hingorani, Aroon D; Pilz, Stefan; Whittaker, John C; Järvelin, Marjo-Riitta; Hyppönen, Elina

    2014-09-01

    Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0

  4. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study

    PubMed Central

    Vimaleswaran, Karani S; Cavadino, Alana; Berry, Diane J; Jorde, Rolf; Dieffenbach, Aida Karina; Lu, Chen; Alves, Alexessander Couto; Heerspink, Hiddo J Lambers; Tikkanen, Emmi; Eriksson, Joel; Wong, Andrew; Mangino, Massimo; Jablonski, Kathleen A; Nolte, Ilja M; Houston, Denise K; Ahluwalia, Tarunveer Singh; van der Most, Peter J; Pasko, Dorota; Zgaga, Lina; Thiering, Elisabeth; Vitart, Veronique; Fraser, Ross M; Huffman, Jennifer E; de Boer, Rudolf A; Schöttker, Ben; Saum, Kai-Uwe; McCarthy, Mark I; Dupuis, Josée; Herzig, Karl-Heinz; Sebert, Sylvain; Pouta, Anneli; Laitinen, Jaana; Kleber, Marcus E; Navis, Gerjan; Lorentzon, Mattias; Jameson, Karen; Arden, Nigel; Cooper, Jackie A; Acharya, Jayshree; Hardy, Rebecca; Raitakari, Olli; Ripatti, Samuli; Billings, Liana K; Lahti, Jari; Osmond, Clive; Penninx, Brenda W; Rejnmark, Lars; Lohman, Kurt K; Paternoster, Lavinia; Stolk, Ronald P; Hernandez, Dena G; Byberg, Liisa; Hagström, Emil; Melhus, Håkan; Ingelsson, Erik; Mellström, Dan; Ljunggren, Östen; Tzoulaki, Ioanna; McLachlan, Stela; Theodoratou, Evropi; Tiesler, Carla M T; Jula, Antti; Navarro, Pau; Wright, Alan F; Polasek, Ozren; Hayward, Caroline; Wilson, James F; Rudan, Igor; Salomaa, Veikko; Heinrich, Joachim; Campbell, Harry; Price, Jacqueline F; Karlsson, Magnus; Lind, Lars; Michaëlsson, Karl; Bandinelli, Stefania; Frayling, Timothy M; Hartman, Catharina A; Sørensen, Thorkild I A; Kritchevsky, Stephen B; Langdahl, Bente Lomholt; Eriksson, Johan G; Florez, Jose C; Spector, Tim D; Lehtimäki, Terho; Kuh, Diana; Humphries, Steve E; Cooper, Cyrus; Ohlsson, Claes; März, Winfried; de Borst, Martin H; Kumari, Meena; Kivimaki, Mika; Wang, Thomas J; Power, Chris; Brenner, Hermann; Grimnes, Guri; van der Harst, Pim; Snieder, Harold; Hingorani, Aroon D; Pilz, Stefan; Whittaker, John C; Järvelin, Marjo-Riitta; Hyppönen, Elina

    2015-01-01

    Summary Background Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. Methods In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. Findings In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, −0·12 mm Hg, 95% CI −0·20 to −0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97−0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, −0·02 mm Hg, −0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of −0·10 mm Hg in systolic blood pressure (−0·21 to −0·0001; p=0·0498) and a change of −0·08 mm Hg in diastolic blood pressure (−0·15 to −0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated

  5. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study

    PubMed Central

    Voight, Benjamin F; Peloso, Gina M; Orho-Melander, Marju; Frikke-Schmidt, Ruth; Barbalic, Maja; Jensen, Majken K; Hindy, George; Hólm, Hilma; Ding, Eric L; Johnson, Toby; Schunkert, Heribert; Samani, Nilesh J; Clarke, Robert; Hopewell, Jemma C; Thompson, John F; Li, Mingyao; Thorleifsson, Gudmar; Newton-Cheh, Christopher; Musunuru, Kiran; Pirruccello, James P; Saleheen, Danish; Chen, Li; Stewart, Alexandre FR; Schillert, Arne; Thorsteinsdottir, Unnur; Thorgeirsson, Gudmundur; Anand, Sonia; Engert, James C; Morgan, Thomas; Spertus, John; Stoll, Monika; Berger, Klaus; Martinelli, Nicola; Girelli, Domenico; McKeown, Pascal P; Patterson, Christopher C; Epstein, Stephen E; Devaney, Joseph; Burnett, Mary-Susan; Mooser, Vincent; Ripatti, Samuli; Surakka, Ida; Nieminen, Markku S; Sinisalo, Juha; Lokki, Marja-Liisa; Perola, Markus; Havulinna, Aki; de Faire, Ulf; Gigante, Bruna; Ingelsson, Erik; Zeller, Tanja; Wild, Philipp; de Bakker, Paul I W; Klungel, Olaf H; Maitland-van der Zee, Anke-Hilse; Peters, Bas J M; de Boer, Anthonius; Grobbee, Diederick E; Kamphuisen, Pieter W; Deneer, Vera H M; Elbers, Clara C; Onland-Moret, N Charlotte; Hofker, Marten H; Wijmenga, Cisca; Verschuren, WM Monique; Boer, Jolanda MA; van der Schouw, Yvonne T; Rasheed, Asif; Frossard, Philippe; Demissie, Serkalem; Willer, Cristen; Do, Ron; Ordovas, Jose M; Abecasis, Gonçalo R; Boehnke, Michael; Mohlke, Karen L; Daly, Mark J; Guiducci, Candace; Burtt, Noël P; Surti, Aarti; Gonzalez, Elena; Purcell, Shaun; Gabriel, Stacey; Marrugat, Jaume; Peden, John; Erdmann, Jeanette; Diemert, Patrick; Willenborg, Christina; König, Inke R; Fischer, Marcus; Hengstenberg, Christian; Ziegler, Andreas; Buysschaert, Ian; Lambrechts, Diether; Van de Werf, Frans; Fox, Keith A; El Mokhtari, Nour Eddine; Rubin, Diana; Schrezenmeir, Jürgen; Schreiber, Stefan; Schäfer, Arne; Danesh, John; Blankenberg, Stefan; Roberts, Robert; McPherson, Ruth; Watkins, Hugh; Hall, Alistair S; Overvad, Kim; Rimm, Eric; Boerwinkle, Eric; Tybjaerg-Hansen, Anne; Cupples, L Adrienne; Reilly, Muredach P; Melander, Olle; Mannucci, Pier M; Ardissino, Diego; Siscovick, David; Elosua, Roberto; Stefansson, Kari; O'Donnell, Christopher J; Salomaa, Veikko; Rader, Daniel J; Peltonen, Leena; Schwartz, Stephen M; Altshuler, David; Kathiresan, Sekar

    2012-01-01

    Summary Background High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal. Methods We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol. Findings Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10−13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol

  6. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3.

    PubMed Central

    Zhou, P; Derkatch, I L; Uptain, S M; Patino, M M; Lindquist, S; Liebman, S W

    1999-01-01

    The yeast non-Mendelian factor [ETA+] is lethal in the presence of certain mutations in the SUP35 and SUP45 genes, which code for the translational release factors eRF3 and eRF1, respectively. One such mutation, sup35-2, is now shown to contain a UAG stop codon prior to the essential region of the gene. The non-Mendelian inheritance of [ETA+] is reminiscent of the yeast [PSI+] element, which is due to a self-propagating conformation of Sup35p. Here we show that [ETA+] and [PSI+] share many characteristics. Indeed, like [PSI+], the maintenance of [ETA+] requires the N-terminal region of Sup35p and depends on an appropriate level of the chaperone protein Hsp104. Moreover, [ETA+] can be induced de novo by excess Sup35p, and [ETA+] cells have a weak nonsense suppressor phenotype characteristic of weak [PSI+]. We conclude that [ETA+] is actually a weak, unstable variant of [PSI+]. We find that although some Sup35p aggregates in [ETA+] cells, more Sup35p remains soluble in [ETA+] cells than in isogenic strong [PSI+] cells. Our data suggest that the amount of soluble Sup35p determines the strength of translational nonsense suppression associated with different [PSI+] variants. PMID:10064585

  7. Mendelian Randomization as an Approach to Assess Causality Using Observational Data.

    PubMed

    Sekula, Peggy; Del Greco M, Fabiola; Pattaro, Cristian; Köttgen, Anna

    2016-11-01

    Mendelian randomization refers to an analytic approach to assess the causality of an observed association between a modifiable exposure or risk factor and a clinically relevant outcome. It presents a valuable tool, especially when randomized controlled trials to examine causality are not feasible and observational studies provide biased associations because of confounding or reverse causality. These issues are addressed by using genetic variants as instrumental variables for the tested exposure: the alleles of this exposure-associated genetic variant are randomly allocated and not subject to reverse causation. This, together with the wide availability of published genetic associations to screen for suitable genetic instrumental variables make Mendelian randomization a time- and cost-efficient approach and contribute to its increasing popularity for assessing and screening for potentially causal associations. An observed association between the genetic instrumental variable and the outcome supports the hypothesis that the exposure in question is causally related to the outcome. This review provides an overview of the Mendelian randomization method, addresses assumptions and implications, and includes illustrative examples. We also discuss special issues in nephrology, such as inverse risk factor associations in advanced disease, and outline opportunities to design Mendelian randomization studies around kidney function and disease. Copyright © 2016 by the American Society of Nephrology.

  8. Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

    USDA-ARS?s Scientific Manuscript database

    This study examined whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. A Mendelian randomization study was employed, using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental var...

  9. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology?

    PubMed

    Ebrahim, Shah; Davey Smith, George

    2008-02-01

    Establishing causal relationships between environmental exposures and common diseases is beset with problems of unresolved confounding, reverse causation and selection bias that may result in spurious inferences. Mendelian randomization, in which a functional genetic variant acts as a proxy for an environmental exposure, provides a means of overcoming these problems as the inheritance of genetic variants is independent of-that is randomized with respect to-the inheritance of other traits, according to Mendel's law of independent assortment. Examples drawn from exposures and outcomes as diverse as milk and osteoporosis, alcohol and coronary heart disease, sheep dip and farm workers' compensation neurosis, folate and neural tube defects are used to illustrate the applications of Mendelian randomization approaches in assessing potential environmental causes of disease. As with all genetic epidemiology studies there are problems associated with the need for large sample sizes, the non-replication of findings, and the lack of relevant functional genetic variants. In addition to these problems, Mendelian randomization findings may be confounded by other genetic variants in linkage disequilibrium with the variant under study, or by population stratification. Furthermore, pleiotropy of effect of a genetic variant may result in null associations, as may canalisation of genetic effects. If correctly conducted and carefully interpreted, Mendelian randomization studies can provide useful evidence to support or reject causal hypotheses linking environmental exposures to common diseases.

  10. Mendelian randomization in (epi)genetic epidemiology: an effective tool to be handled with care.

    PubMed

    Latvala, Antti; Ollikainen, Miina

    2016-07-14

    A study examining blood lipid traits takes epigenomics approaches to the next level by using carefully performed Mendelian randomization to assess causality rather than simply reporting associations.See related research article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1000-6.

  11. Power and sample size calculations for Mendelian randomization studies using one genetic instrument.

    PubMed

    Freeman, Guy; Cowling, Benjamin J; Schooling, C Mary

    2013-08-01

    Mendelian randomization, which is instrumental variable analysis using genetic variants as instruments, is an increasingly popular method of making causal inferences from observational studies. In order to design efficient Mendelian randomization studies, it is essential to calculate the sample sizes required. We present formulas for calculating the power of a Mendelian randomization study using one genetic instrument to detect an effect of a given size, and the minimum sample size required to detect effects for given levels of significance and power, using asymptotic statistical theory. We apply the formulas to some example data and compare the results with those from simulation methods. Power and sample size calculations using these formulas should be more straightforward to carry out than simulation approaches. These formulas make explicit that the sample size needed for Mendelian randomization study is inversely proportional to the square of the correlation between the genetic instrument and the exposure and proportional to the residual variance of the outcome after removing the effect of the exposure, as well as inversely proportional to the square of the effect size.

  12. Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects

    PubMed Central

    Burgess, Stephen; Thompson, Simon G.

    2015-01-01

    A conventional Mendelian randomization analysis assesses the causal effect of a risk factor on an outcome by using genetic variants that are solely associated with the risk factor of interest as instrumental variables. However, in some cases, such as the case of triglyceride level as a risk factor for cardiovascular disease, it may be difficult to find a relevant genetic variant that is not also associated with related risk factors, such as other lipid fractions. Such a variant is known as pleiotropic. In this paper, we propose an extension of Mendelian randomization that uses multiple genetic variants associated with several measured risk factors to simultaneously estimate the causal effect of each of the risk factors on the outcome. This “multivariable Mendelian randomization” approach is similar to the simultaneous assessment of several treatments in a factorial randomized trial. In this paper, methods for estimating the causal effects are presented and compared using real and simulated data, and the assumptions necessary for a valid multivariable Mendelian randomization analysis are discussed. Subject to these assumptions, we demonstrate that triglyceride-related pathways have a causal effect on the risk of coronary heart disease independent of the effects of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. PMID:25632051

  13. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects.

    PubMed

    Burgess, Stephen; Thompson, Simon G

    2015-02-15

    A conventional Mendelian randomization analysis assesses the causal effect of a risk factor on an outcome by using genetic variants that are solely associated with the risk factor of interest as instrumental variables. However, in some cases, such as the case of triglyceride level as a risk factor for cardiovascular disease, it may be difficult to find a relevant genetic variant that is not also associated with related risk factors, such as other lipid fractions. Such a variant is known as pleiotropic. In this paper, we propose an extension of Mendelian randomization that uses multiple genetic variants associated with several measured risk factors to simultaneously estimate the causal effect of each of the risk factors on the outcome. This "multivariable Mendelian randomization" approach is similar to the simultaneous assessment of several treatments in a factorial randomized trial. In this paper, methods for estimating the causal effects are presented and compared using real and simulated data, and the assumptions necessary for a valid multivariable Mendelian randomization analysis are discussed. Subject to these assumptions, we demonstrate that triglyceride-related pathways have a causal effect on the risk of coronary heart disease independent of the effects of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol.

  14. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator

    PubMed Central

    Bowden, Jack; Davey Smith, George; Haycock, Philip C.

    2016-01-01

    ABSTRACT Developments in genome‐wide association studies and the increasing availability of summary genetic association data have made application of Mendelian randomization relatively straightforward. However, obtaining reliable results from a Mendelian randomization investigation remains problematic, as the conventional inverse‐variance weighted method only gives consistent estimates if all of the genetic variants in the analysis are valid instrumental variables. We present a novel weighted median estimator for combining data on multiple genetic variants into a single causal estimate. This estimator is consistent even when up to 50% of the information comes from invalid instrumental variables. In a simulation analysis, it is shown to have better finite‐sample Type 1 error rates than the inverse‐variance weighted method, and is complementary to the recently proposed MR‐Egger (Mendelian randomization‐Egger) regression method. In analyses of the causal effects of low‐density lipoprotein cholesterol and high‐density lipoprotein cholesterol on coronary artery disease risk, the inverse‐variance weighted method suggests a causal effect of both lipid fractions, whereas the weighted median and MR‐Egger regression methods suggest a null effect of high‐density lipoprotein cholesterol that corresponds with the experimental evidence. Both median‐based and MR‐Egger regression methods should be considered as sensitivity analyses for Mendelian randomization investigations with multiple genetic variants. PMID:27061298

  15. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis.

    PubMed

    Nikolopoulos, Georgios K; Bagos, Pantelis G; Tsangaris, Iraklis; Tsiara, Chrissa G; Kopterides, Petros; Vaiopoulos, Aristides; Kapsimali, Violetta; Bonovas, Stefanos; Tsantes, Argirios E

    2014-07-01

    The circulating levels of plasminogen activator inhibitor type 1 (PAI-1) are increased in individuals carrying the 4G allele at position -675 of the PAI-1 gene. In turn, overexpression of PAI-1 has been found to affect both atheroma and thrombosis. However, the association between PAI-1 levels and the incidence of myocardial infarction (MI) is complicated by the potentially confounding effects of well-known cardiovascular risk factors. The current study tried to investigate in parallel the association of PAI-1 activity with the PAI-1 4G/5G polymorphism, with MI, and some components of metabolic syndrome (MetS). Using meta-analytical Mendelian randomization approaches, genotype-disease and genotype-phenotype associations were modeled simultaneously. According to an additive model of inheritance and the Mendelian randomization approach, the MI-related odd ratio for individuals carrying the 4G allele was 1.088 with 95% confidence interval (CI) 1.007, 1.175. Moreover, the 4G carriers had, on average, higher PAI-1 activity than 5G carriers by 1.136 units (95% CI 0.738, 1.533). The meta-regression analyses showed that the levels of triglycerides (p=0.005), cholesterol (p=0.037) and PAI-1 (p=0.021) in controls were associated with the MI risk conferred by the 4G carriers. The Mendelian randomization meta-analysis confirmed previous knowledge that the PAI-1 4G allele slightly increases the risk for MI. In addition, it supports the notion that PAI-1 activity and established cardiovascular determinants, such as cholesterol and triglyceride levels, could lie in the etiological pathway from PAI-1 4G allele to the occurrence of MI. Further research is warranted to elucidate these interactions.

  16. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity

    PubMed Central

    Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Abel, Laurent; Casanova, Jean-Laurent

    2014-01-01

    Mendelian susceptibility to mycobacterial disease (MSMD) is a rare condition characterized by predisposition to clinical disease caused by weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria, in otherwise healthy individuals with no overt abnormalities in routine hematological and immunological tests. MSMD designation does not recapitulate all the clinical features, as patients are also prone to salmonellosis, candidiasis and tuberculosis, and more rarely to infections with other intramacrophagic bacteria, fungi, or parasites, and even, perhaps, a few viruses. Since 1996, nine MSMD-causing genes, including seven autosomal (IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, ISG15, and IRF8) and two X-linked (NEMO, CYBB) genes have been discovered. The high level of allelic heterogeneity has already led to the definition of 18 different disorders. The nine gene products are physiologically related, as all are involved in IFN-γ-dependent immunity. These disorders impair the production of (IL12B, IL12RB1, IRF8, ISG15, NEMO) or the response to (IFNGR1, IFNGR2, STAT1, IRF8, CYBB) IFN-γ. These defects account for only about half the known MSMD cases. Patients with MSMD-causing genetic defects may display other infectious diseases, or even remain asymptomatic. Most of these inborn errors do not show complete clinical penetrance for the case-definition phenotype of MSMD. We review here the genetic, immunological, and clinical features of patients with inborn errors of IFN-γ-dependent immunity. PMID:25453225

  17. Identification and characterization of a pyridoxal 5'-phosphate phosphatase in the silkworm (Bombyx mori).

    PubMed

    Huang, ShuoHao; Han, CaiYun; Ma, ZhenQiao; Zhou, Jie; Zhang, JianYun; Huang, LongQuan

    2017-03-01

    Vitamin B6 comprises six interconvertible pyridine compounds, among which pyridoxal 5'-phosphate (PLP) is a coenzyme for over 140 enzymes. PLP is also a very reactive aldehyde. The most well established mechanism for maintaining low levels of free PLP is its dephosphorylation by phosphatases. A human PLP-specific phosphatase has been identified and characterized. However, very little is known about the phosphatase in other living organisms. In this study, a cDNA clone of putative PLP phosphatase was identified from B. mori and characterized. The cDNA encodes a polypeptide of 343 amino acid residues, and the recombinant enzyme purified from E. coli exhibited properties similar to that of human PLP phosphatase. B. mori has a single copy of the PLPP gene, which is located on 11th chromosome, spans a 5.7kb region and contains five exons and four introns. PLP phosphatase transcript was detected in every larva tissue except hemolymph, and was most highly represented in Malpighian tube. We further down-regulated the gene expression of the PLP phosphatase in 5th instar larvae with the RNA interference. However, no significant changes in the gene expression of PLP biosynthetic enzymes and composition of B6 vitamers were detected as compared with the control. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis.

    PubMed

    White, Jon; Sofat, Reecha; Hemani, Gibran; Shah, Tina; Engmann, Jorgen; Dale, Caroline; Shah, Sonia; Kruger, Felix A; Giambartolomei, Claudia; Swerdlow, Daniel I; Palmer, Tom; McLachlan, Stela; Langenberg, Claudia; Zabaneh, Delilah; Lovering, Ruth; Cavadino, Alana; Jefferis, Barbara; Finan, Chris; Wong, Andrew; Amuzu, Antoinette; Ong, Ken; Gaunt, Tom R; Warren, Helen; Davies, Teri-Louise; Drenos, Fotios; Cooper, Jackie; Ebrahim, Shah; Lawlor, Debbie A; Talmud, Philippa J; Humphries, Steve E; Power, Christine; Hypponen, Elina; Richards, Marcus; Hardy, Rebecca; Kuh, Diana; Wareham, Nicholas; Ben-Shlomo, Yoav; Day, Ian N; Whincup, Peter; Morris, Richard; Strachan, Mark W J; Price, Jacqueline; Kumari, Meena; Kivimaki, Mika; Plagnol, Vincent; Whittaker, John C; Smith, George Davey; Dudbridge, Frank; Casas, Juan P; Holmes, Michael V; Hingorani, Aroon D

    2016-04-01

    Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04-1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08-1·29), 1·10 (1·00-1·22), and 1·05 (0·92-1·20), respectively, per 1 SD increment in plasma urate. Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be

  19. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis

    PubMed Central

    White, Jon; Sofat, Reecha; Hemani, Gibran; Shah, Tina; Engmann, Jorgen; Dale, Caroline; Shah, Sonia; Kruger, Felix A; Giambartolomei, Claudia; Swerdlow, Daniel I; Palmer, Tom; McLachlan, Stela; Langenberg, Claudia; Zabaneh, Delilah; Lovering, Ruth; Cavadino, Alana; Jefferis, Barbara; Finan, Chris; Wong, Andrew; Amuzu, Antoinette; Ong, Ken; Gaunt, Tom R; Warren, Helen; Davies, Teri-Louise; Drenos, Fotios; Cooper, Jackie; Ebrahim, Shah; Lawlor, Debbie A; Talmud, Philippa J; Humphries, Steve E; Power, Christine; Hypponen, Elina; Richards, Marcus; Hardy, Rebecca; Kuh, Diana; Wareham, Nicholas; Ben-Shlomo, Yoav; Day, Ian N; Whincup, Peter; Morris, Richard; Strachan, Mark W J; Price, Jacqueline; Kumari, Meena; Kivimaki, Mika; Plagnol, Vincent; Whittaker, John C; Smith, George Davey; Dudbridge, Frank; Casas, Juan P; Holmes, Michael V; Hingorani, Aroon D

    2016-01-01

    Summary Background Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. Methods We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. Findings In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04–1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08–1·29), 1·10 (1·00–1·22), and 1·05 (0·92–1·20), respectively, per 1 SD increment in plasma urate. Interpretation Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for

  20. Identification of Mendelian inconsistencies between SNP and pedigree information of sibs

    PubMed Central

    2011-01-01

    Background Using SNP genotypes to apply genomic selection in breeding programs is becoming common practice. Tools to edit and check the quality of genotype data are required. Checking for Mendelian inconsistencies makes it possible to identify animals for which pedigree information and genotype information are not in agreement. Methods Straightforward tests to detect Mendelian inconsistencies exist that count the number of opposing homozygous marker (e.g. SNP) genotypes between parent and offspring (PAR-OFF). Here, we develop two tests to identify Mendelian inconsistencies between sibs. The first test counts SNP with opposing homozygous genotypes between sib pairs (SIBCOUNT). The second test compares pedigree and SNP-based relationships (SIBREL). All tests iteratively remove animals based on decreasing numbers of inconsistent parents and offspring or sibs. The PAR-OFF test, followed by either SIB test, was applied to a dataset comprising 2,078 genotyped cows and 211 genotyped sires. Theoretical expectations for distributions of test statistics of all three tests were calculated and compared to empirically derived values. Type I and II error rates were calculated after applying the tests to the edited data, while Mendelian inconsistencies were introduced by permuting pedigree against genotype data for various proportions of animals. Results Both SIB tests identified animal pairs for which pedigree and genomic relationships could be considered as inconsistent by visual inspection of a scatter plot of pairwise pedigree and SNP-based relationships. After removal of 235 animals with the PAR-OFF test, SIBCOUNT (SIBREL) identified 18 (22) additional inconsistent animals. Seventeen animals were identified by both methods. The numbers of incorrectly deleted animals (Type I error), were equally low for both methods, while the numbers of incorrectly non-deleted animals (Type II error), were considerably higher for SIBREL compared to SIBCOUNT. Conclusions Tests to remove

  1. Identification of Mendelian inconsistencies between SNP and pedigree information of sibs.

    PubMed

    Calus, Mario P L; Mulder, Han A; Bastiaansen, John W M

    2011-10-11

    Using SNP genotypes to apply genomic selection in breeding programs is becoming common practice. Tools to edit and check the quality of genotype data are required. Checking for Mendelian inconsistencies makes it possible to identify animals for which pedigree information and genotype information are not in agreement. Straightforward tests to detect Mendelian inconsistencies exist that count the number of opposing homozygous marker (e.g. SNP) genotypes between parent and offspring (PAR-OFF). Here, we develop two tests to identify Mendelian inconsistencies between sibs. The first test counts SNP with opposing homozygous genotypes between sib pairs (SIBCOUNT). The second test compares pedigree and SNP-based relationships (SIBREL). All tests iteratively remove animals based on decreasing numbers of inconsistent parents and offspring or sibs. The PAR-OFF test, followed by either SIB test, was applied to a dataset comprising 2,078 genotyped cows and 211 genotyped sires. Theoretical expectations for distributions of test statistics of all three tests were calculated and compared to empirically derived values. Type I and II error rates were calculated after applying the tests to the edited data, while Mendelian inconsistencies were introduced by permuting pedigree against genotype data for various proportions of animals. Both SIB tests identified animal pairs for which pedigree and genomic relationships could be considered as inconsistent by visual inspection of a scatter plot of pairwise pedigree and SNP-based relationships. After removal of 235 animals with the PAR-OFF test, SIBCOUNT (SIBREL) identified 18 (22) additional inconsistent animals.Seventeen animals were identified by both methods. The numbers of incorrectly deleted animals (Type I error), were equally low for both methods, while the numbers of incorrectly non-deleted animals (Type II error), were considerably higher for SIBREL compared to SIBCOUNT. Tests to remove Mendelian inconsistencies between sibs should

  2. Protein tyrosine phosphatase: enzymatic assays.

    PubMed

    Montalibet, Jacqueline; Skorey, Kathryn I; Kennedy, Brian P

    2005-01-01

    Activity assays for tyrosine phosphatases are based on the hydrolysis of a arylphosphate moiety from a synthetic substrate yielding a spectroscopically active product. Many different substrates can be used for these assays with p-nitrophenyl phosphate (pNPP), fluorescein diphosphate (FDP), and 6,8-difluoro-4-methylumbellyferyl phosphate (DiFMUP) being the most efficient and versatile. Equally, larger molecules such as phosphotyrosyl peptides can also be used to mimic more natural substrates. Activity assays include the determinations of the rate of dephosphorylation and calculations of kinetic constants such as k(cat) and K(M). These assays are useful to identify and characterize tyrosine phosphatases and are commonly used to evaluate the efficiency of inhibitors.

  3. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  4. Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse

    PubMed Central

    Forrest, Alistair R.R.; Ravasi, Timothy; Taylor, Darrin; Huber, Thomas; Hume, David A.; Grimmond, Sean

    2003-01-01

    With the completion of the human and mouse genome sequences, the task now turns to identifying their encoded transcripts and assigning gene function. In this study, we have undertaken a computational approach to identify and classify all of the protein kinases and phosphatases present in the mouse gene complement. A nonredundant set of these sequences was produced by mining Ensembl gene predictions and publicly available cDNA sequences with a panel of InterPro domains. This approach identified 561 candidate protein kinases and 162 candidate protein phosphatases. This cohort was then analyzed using TribeMCL protein sequence similarity clustering followed by CLUSTALV alignment and hierarchical tree generation. This approach allowed us to (1) distinguish between true members of the protein kinase and phosphatase families and enzymes of related biochemistry, (2) determine the structure of the families, and (3) suggest functions for previously uncharacterized members. The classifications obtained by this approach were in good agreement with previous schemes and allowed us to demonstrate domain associations with a number of clusters. Finally, we comment on the complementary nature of cDNA and genome-based gene detection and the impact of the FANTOM2 transcriptome project. PMID:12819143

  5. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study.

    PubMed

    Schmidt, Amand F; Swerdlow, Daniel I; Holmes, Michael V; Patel, Riyaz S; Fairhurst-Hunter, Zammy; Lyall, Donald M; Hartwig, Fernando Pires; Horta, Bernardo Lessa; Hyppönen, Elina; Power, Christine; Moldovan, Max; van Iperen, Erik; Hovingh, G Kees; Demuth, Ilja; Norman, Kristina; Steinhagen-Thiessen, Elisabeth; Demuth, Juri; Bertram, Lars; Liu, Tian; Coassin, Stefan; Willeit, Johann; Kiechl, Stefan; Willeit, Karin; Mason, Dan; Wright, John; Morris, Richard; Wanamethee, Goya; Whincup, Peter; Ben-Shlomo, Yoav; McLachlan, Stela; Price, Jackie F; Kivimaki, Mika; Welch, Catherine; Sanchez-Galvez, Adelaida; Marques-Vidal, Pedro; Nicolaides, Andrew; Panayiotou, Andrie G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Matullo, Giuseppe; Fiorito, Giovanni; Guarrera, Simonetta; Sacerdote, Carlotta; Wareham, Nicholas J; Langenberg, Claudia; Scott, Robert; Luan, Jian'an; Bobak, Martin; Malyutina, Sofia; Pająk, Andrzej; Kubinova, Ruzena; Tamosiunas, Abdonas; Pikhart, Hynek; Husemoen, Lise Lotte Nystrup; Grarup, Niels; Pedersen, Oluf; Hansen, Torben; Linneberg, Allan; Simonsen, Kenneth Starup; Cooper, Jackie; Humphries, Steve E; Brilliant, Murray; Kitchner, Terrie; Hakonarson, Hakon; Carrell, David S; McCarty, Catherine A; Kirchner, H Lester; Larson, Eric B; Crosslin, David R; de Andrade, Mariza; Roden, Dan M; Denny, Joshua C; Carty, Cara; Hancock, Stephen; Attia, John; Holliday, Elizabeth; O'Donnell, Martin; Yusuf, Salim; Chong, Michael; Pare, Guillaume; van der Harst, Pim; Said, M Abdullah; Eppinga, Ruben N; Verweij, Niek; Snieder, Harold; Christen, Tim; Mook-Kanamori, Dennis O; Gustafsson, Stefan; Lind, Lars; Ingelsson, Erik; Pazoki, Raha; Franco, Oscar; Hofman, Albert; Uitterlinden, Andre; Dehghan, Abbas; Teumer, Alexander; Baumeister, Sebastian; Dörr, Marcus; Lerch, Markus M; Völker, Uwe; Völzke, Henry; Ward, Joey; Pell, Jill P; Smith, Daniel J; Meade, Tom; Maitland-van der Zee, Anke H; Baranova, Ekaterina V; Young, Robin; Ford, Ian; Campbell, Archie; Padmanabhan, Sandosh; Bots, Michiel L; Grobbee, Diederick E; Froguel, Philippe; Thuillier, Dorothée; Balkau, Beverley; Bonnefond, Amélie; Cariou, Bertrand; Smart, Melissa; Bao, Yanchun; Kumari, Meena; Mahajan, Anubha; Ridker, Paul M; Chasman, Daniel I; Reiner, Alex P; Lange, Leslie A; Ritchie, Marylyn D; Asselbergs, Folkert W; Casas, Juan-Pablo; Keating, Brendan J; Preiss, David; Hingorani, Aroon D; Sattar, Naveed

    2017-02-01

    Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk. In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight (1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). Based on the collected data, we did not identify associations with HbA1c (0·03%, -0·01 to 0·08), fasting insulin (0·00%, -0·06 to 0·07), and BMI (0·11 kg/m(2), -0·09 to 0·30). PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefits of PCSK9 inhibitor treatment, as was

  6. Interdomain Communication in the Mycobacterium tuberculosis Environmental Phosphatase Rv1364c*

    PubMed Central

    Greenstein, Andrew E.; Hammel, Michal; Cavazos, Alexandra; Alber, Tom

    2009-01-01

    An “environmental phosphatase” controls bacterial transcriptional responses through alternative sigma factor subunits of RNA polymerase and a partner switching mechanism has been proposed to mediate phosphatase regulation. In many bacteria, the environmental phosphatase and multiple regulators are encoded in separate genes whose products form transient complexes. In contrast, in the Mycobacterium tuberculosis homolog, Rv1364c, the phosphatase is fused to two characteristic regulatory modules with sequence similarities to anti-sigma factor kinases and anti-anti-sigma factor proteins. Here we exploit this fusion to explore interactions between the phosphatase and the regulatory domains. We show quantitatively that the anti-sigma factor kinase domain activates the phosphatase domain, the kinase-phosphatase fusion protein autophosphorylates in Escherichia coli, and phosphorylation is antagonized by the phosphatase activity. Small angle x-ray scattering defines solution structures consistent with the interdomain communication observed biochemically. Taken together, these data indicate that Rv1364c provides a single chain framework to understand the structure, function, and regulation of environmental phosphatases throughout the bacterial kingdom. PMID:19700407

  7. Inositol polyphosphate phosphatases in human disease.

    PubMed

    Hakim, Sandra; Bertucci, Micka C; Conduit, Sarah E; Vuong, David L; Mitchell, Christina A

    2012-01-01

    Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only

  8. Three Phosphatidylglycerol-phosphate Phosphatases in the Inner Membrane of Escherichia coli*

    PubMed Central

    Lu, Yi-Hsueh; Guan, Ziqiang; Zhao, Jinshi; Raetz, Christian R. H.

    2011-01-01

    The phospholipids of Escherichia coli consist mainly of phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin. PG makes up ∼25% of the cellular phospholipid and is essential for growth in wild-type cells. PG is synthesized on the inner surface of the inner membrane from cytidine diphosphate-diacylglycerol and glycerol 3-phosphate, generating the precursor phosphatidylglycerol-phosphate (PGP). This compound is present at low levels (∼0.1% of the total lipid). Dephosphorylation of PGP to PG is catalyzed by several PGP-phosphatases. The pgpA and pgpB genes, which encode structurally distinct PGP-phosphatases, were identified previously. Double deletion mutants lacking pgpA and pgpB are viable and still make PG, suggesting the presence of additional phosphatase(s). We have identified a third PGP-phosphatase gene (previously annotated as yfhB but renamed pgpC) using an expression cloning strategy. A mutant with deletions in all three phosphatase genes is not viable unless covered by a plasmid expressing either pgpA, pgpB, or pgpC. When the triple mutant is covered with the temperature-sensitive plasmid pMAK705 expressing any one of the three pgp genes, the cells grow at 30 but not 42 °C. As growth slows at 42 °C, PGP accumulates to high levels, and the PG content declines. PgpC orthologs are present in many other bacteria. PMID:21148555

  9. Inositol phosphatase activity of the Escherichia coli agp-encoded acid glucose-1-phosphatase.

    PubMed

    Cottrill, Michael A; Golovan, Serguei P; Phillips, John P; Forsberg, Cecil W

    2002-09-01

    When screening an Escherichia coli gene library for myo-inositol hexakisphosphate (InsP6) phosphatases (phytases), we discovered that the agp-encoded acid glucose-1-phosphatase also possesses this activity. Purified Agp hydrolyzes glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6 with pH optima, 6.5, 3.5, and 4.5, respectively, and was stable when incubated at pH values ranging from 3 to 10. Glucose-1-phosphate was hydrolyzed most efficiently at 55 degrees C. while InsP6 and p-nitrophenyl phosphate were hydrolyzed maximally at 60 degrees C. The Agp exhibited Km values of (0.39 mM, 13 mM, and 0.54 mM for the hydrolysis of glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6, respectively. High-pressure liquid chromatography (HPLC) analysis of inositol phosphate hydrolysis products of Agp demonstrated that the enzyme catalyzes the hydrolysis of phosphate from each of InsP6, D-Ins(1,2,3,4,5)P5, Ins(1,3,4,5,6)P5, and Ins(1,2,3,4,6)P5, producing D/L-Ins(1,2,4,5,6)P5. D-Ins(1,2,4,5)P4, D/L-Ins(1,4,5,6)P4 and D/L-Ins(1,2,4,6)P4, respectively. These data support the contention that Agp is a 3-phosphatase.

  10. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  11. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  12. [Protein phosphatases: structure and function].

    PubMed

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  13. Phosphatidylinositolphosphate phosphatase activities and cancer

    PubMed Central

    Rudge, Simon A.; Wakelam, Michael J. O.

    2016-01-01

    Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy. PMID:26302980

  14. Biochemistry and structure of phosphoinositide phosphatases.

    PubMed

    Kim, Young Jun; Jahan, Nusrat; Bahk, Young Yil

    2013-01-01

    Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.

  15. Mendelian Genetics of Human Susceptibility to Fungal Infection

    PubMed Central

    Lionakis, Michail S.; Netea, Mihai G.; Holland, Steven M.

    2014-01-01

    A recent surge in newly described inborn errors of immune function-related genes that result in susceptibility to fungal disease has greatly enhanced our understanding of the cellular and molecular basis of antifungal immune responses. Characterization of single-gene defects that predispose to various combinations of superficial and deep-seated infections caused by yeasts, molds, and dimorphic fungi has unmasked the critical role of novel molecules and signaling pathways in mucosal and systemic antifungal host defense. These experiments of nature offer a unique opportunity for developing new knowledge in immunological research and form the foundation for devising immune-based therapeutic approaches for patients infected with fungal pathogens. PMID:24890837

  16. Inflammation, Insulin Resistance, and Diabetes—Mendelian Randomization Using CRP Haplotypes Points Upstream

    PubMed Central

    Brunner, Eric J; Kivimäki, Mika; Witte, Daniel R; Lawlor, Debbie A; Smith, George Davey; Cooper, Jackie A; Miller, Michelle; Lowe, Gordon D. O; Rumley, Ann; Casas, Juan P; Shah, Tina; Humphries, Steve E; Hingorani, Aroon D; Marmot, Michael G; Timpson, Nicholas J; Kumari, Meena

    2008-01-01

    Background Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables. Methods and Findings We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29–1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p = 0.52–0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p = 0.007–0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p = 0.25–0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight

  17. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data

    PubMed Central

    Holmes, Michael V; Dale, Caroline E; Zuccolo, Luisa; Silverwood, Richard J; Guo, Yiran; Ye, Zheng; Prieto-Merino, David; Dehghan, Abbas; Trompet, Stella; Wong, Andrew; Cavadino, Alana; Drogan, Dagmar; Padmanabhan, Sandosh; Yesupriya, Ajay; Leusink, Maarten; Sundstrom, Johan; Hubacek, Jaroslav A; Pikhart, Hynek; Swerdlow, Daniel I; Panayiotou, Andrie G; Borinskaya, Svetlana A; Finan, Chris; Shah, Sonia; Kuchenbaecker, Karoline B; Shah, Tina; Engmann, Jorgen; Folkersen, Lasse; Eriksson, Per; Ricceri, Fulvio; Melander, Olle; Sacerdote, Carlotta; Gamble, Dale M; Rayaprolu, Sruti; Ross, Owen A; McLachlan, Stela; Vikhireva, Olga; Sluijs, Ivonne; Scott, Robert A; Adamkova, Vera; Flicker, Leon; van Bockxmeer, Frank M; Power, Christine; Marques-Vidal, Pedro; Meade, Tom; Marmot, Michael G; Ferro, Jose M; Paulos-Pinheiro, Sofia; Humphries, Steve E; Talmud, Philippa J; Leach, Irene Mateo; Verweij, Niek; Linneberg, Allan; Skaaby, Tea; Doevendans, Pieter A; Cramer, Maarten J; van der Harst, Pim; Klungel, Olaf H; Dowling, Nicole F; Dominiczak, Anna F; Kumari, Meena; Nicolaides, Andrew N; Weikert, Cornelia; Boeing, Heiner; Ebrahim, Shah; Gaunt, Tom R; Price, Jackie F; Lannfelt, Lars; Peasey, Anne; Kubinova, Ruzena; Pajak, Andrzej; Malyutina, Sofia; Voevoda, Mikhail I; Tamosiunas, Abdonas; Maitland-van der Zee, Anke H; Norman, Paul E; Hankey, Graeme J; Bergmann, Manuela M; Hofman, Albert; Franco, Oscar H; Cooper, Jackie; Palmen, Jutta; Spiering, Wilko; de Jong, Pim A; Kuh, Diana; Hardy, Rebecca; Uitterlinden, Andre G; Ikram, M Arfan; Ford, Ian; Hyppönen, Elina; Almeida, Osvaldo P; Wareham, Nicholas J; Khaw, Kay-Tee; Hamsten, Anders; Husemoen, Lise Lotte N; Tjønneland, Anne; Tolstrup, Janne S; Rimm, Eric; Beulens, Joline W J; Verschuren, W M Monique; Onland-Moret, N Charlotte; Hofker, Marten H; Wannamethee, S Goya; Whincup, Peter H; Morris, Richard; Vicente, Astrid M; Watkins, Hugh; Farrall, Martin; Jukema, J Wouter; Meschia, James; Cupples, L Adrienne; Sharp, Stephen J; Fornage, Myriam; Kooperberg, Charles; LaCroix, Andrea Z; Dai, James Y; Lanktree, Matthew B; Siscovick, David S; Jorgenson, Eric; Spring, Bonnie; Coresh, Josef; Buxbaum, Sarah G; Schreiner, Pamela J; Ellison, R Curtis; Tsai, Michael Y; Patel, Sanjay R; Redline, Susan; Johnson, Andrew D; Hoogeveen, Ron C; Hakonarson, Hakon; Rotter, Jerome I; Boerwinkle, Eric; de Bakker, Paul I W; Kivimaki, Mika; Asselbergs, Folkert W; Sattar, Naveed; Lawlor, Debbie A; Whittaker, John; Davey Smith, George; Mukamal, Kenneth; Psaty, Bruce M; Wilson, James G; Lange, Leslie A; Hamidovic, Ajna; Hingorani, Aroon D; Nordestgaard, Børge G; Bobak, Martin; Leon, David A; Langenberg, Claudia; Palmer, Tom M; Reiner, Alex P; Keating, Brendan J; Dudbridge, Frank

    2014-01-01

    Objective To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. Design Mendelian randomisation meta-analysis of 56 epidemiological studies. Participants 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers. Main outcome measures Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption. Results Carriers of the A-allele of ADH1B rs1229984 consumed 17.2% fewer units of alcohol per week (95% confidence interval 15.6% to 18.9%), had a lower prevalence of binge drinking (odds ratio 0.78 (95% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (−0.88 (−1.19 to −0.56) mm Hg), interleukin-6 levels (−5.2% (−7.8 to −2.4%)), waist circumference (−0.3 (−0.6 to −0.1) cm), and body mass index (−0.17 (−0.24 to −0.10) kg/m2). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P=0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)). Conclusions Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for

  18. Does High Tobacco Consumption Cause Psychological Distress? A Mendelian Randomization Study.

    PubMed

    Skov-Ettrup, Lise S; Nordestgaard, Børge G; Petersen, Christina B; Tolstrup, Janne S

    2017-01-01

    Increasing evidence suggests that smoking influences mental health negatively. This study investigated whether high tobacco consumption is causally related to psychological distress in a Mendelian randomization design, using a variant in the nicotine acetylcholine receptor gene CHRNA3-known to influence individual tobacco consumption-as instrumental variable for tobacco consumption. Data from 90 108 participants in the Copenhagen General Population Study was used. Exposures included self-reported cigarettes/day and pack years and the CHRNA3 rs1051730 genotype as instrumental variable for tobacco consumption. Three dimensions of psychological distress were studied: Stress, fatigue, and hopelessness. Analyses with the CHRNA3 genotype were stratified by smoking status. Self-reported amount of smoking was associated with all three dimensions of psychological distress. For instance among participants smoking 30 cigarettes/day or more, the odds ratio (OR) for stress was 1.67 (95% confidence interval [CI] 1.47-1.89) compared to never-smokers. Corresponding ORs for fatigue and hopelessness were 2.18 (95% CI 1.92-2.47) and 3.08 (95% CI 2.62-3.62). Among current smokers, homozygotes and heterozygotes for the CHRNA3 genotype had higher tobacco consumption than noncarriers. Nevertheless, the CHRNA3 genotype was not associated with psychological distress neither in current nor in former or never-smokers. For instance among current smokers, the OR for stress was 1.02 (95% CI 0.91-1.15) among homozygotes compared to noncarriers of the CHRNA3 genotype. Though a strong association between tobacco consumption and psychological distress was found, there was no clear evidence that high tobacco consumption was causally related to psychological distress. Smoking is associated with several mental health outcomes and smoking cessation is associated with improved mental health. Causality in the association between smoking and mental health is difficult to establish using observational data

  19. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study.

    PubMed

    Nordestgaard, Ask Tybjærg; Thomsen, Mette; Nordestgaard, Børge Grønne

    2015-04-01

    Coffee is one of the most widely consumed beverages. We tested the hypothesis that genetically high coffee intake is associated with low risk of obesity, metabolic syndrome and type 2 diabetes, and with related components thereof. We included 93,179 individuals from two large general population cohorts in a Mendelian randomization study. We tested first whether high coffee intake is associated with low risk of obesity, metabolic syndrome and type 2 diabetes, and with related components thereof, in observational analyses; second, whether five genetic variants near the CYP1A1, CYP1A2 and AHR genes are associated with coffee intake; and third, whether the genetic variants are associated with obesity, metabolic syndrome and type 2 diabetes, and with related components thereof. Finally, we tested the genetic association with type 2 diabetes in a meta-analysis including up to 78,021 additional individuals from the DIAGRAM consortium. Observationally, high coffee intake was associated with low risk of obesity, metabolic syndrome and type 2 diabetes. Further, high coffee intake was associated with high body mass index, waist circumference, weight, height, systolic/diastolic blood pressure, triglycerides and total cholesterol and with low high-density lipoprotein cholesterol, but not with glucose levels. In genetic analyses, 9-10 vs 0-3 coffee-intake alleles were associated with 29% higher coffee intake. However, genetically derived high coffee intake was not associated convincingly with obesity, metabolic syndrome, type 2 diabetes, body mass index, waist circumference, weight, height, systolic/diastolic blood pressure, triglycerides, total cholesterol, high-density lipoprotein cholesterol or glucose levels. Per-allele meta-analysed odds ratios for type 2 diabetes were 1.01 (0.98-1.04) for AHR rs4410790, 0.98 (0.95-1.01) for AHR rs6968865, 1.01 (0.99-1.03) for CYP1A1/2 rs2470893, 1.01 (0.98-1.03) for CYP1A1/2 rs2472297 and 0.98 (0.95-1.01) for CYP1A1 rs2472299. High coffee

  20. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus.

    PubMed

    Weinberg, R A; Zusman, D R

    1990-05-01

    One of the signals that has been reported to be important in stimulating fruiting body formation of Myxococcus xanthus is starvation for phosphate. We therefore chose to study phosphatase activity during M. xanthus development. Many phosphatases can cleave the substrate p-nitrophenol phosphate. Using this substrate in buffers at various pHs, we obtained a profile of phosphatase activities during development and germination of M. xanthus. These experiments indicated that there are five patterns of phosphatase activity in M. xanthus: two vegetative and three developmental. The two uniquely vegetative activities have pH optima at 7.2 and 8.5. Both require magnesium and both are inhibited by the reducing agent dithiothreitol. The developmental (spores) patterns of activity have pH optima of 5.2, 7.2, and 8.5. All three activities are Mg independent. Only the alkaline phosphatase activity is inhibited by dithiothreitol. The acid phosphatase activity is induced very early in development, within the first 2 to 4 h. Both the neutral and alkaline phosphatase Mg-independent activities are induced much later, about the time that myxospores become evident (24 to 30 h). The three activities are greatly diminished upon germination; however, the kinetics of loss differ for all three. The acid phosphatase activity declines very rapidly, the neutral activity begins to decline only after spores begin to convert to rods, and the alkaline phosphatase activity remains high until the time the cells begin to divide. All three developmental activities were measured in the developmental signalling mutants carrying asg, csg, and dsg. The pattern of expression obtained in the mutants was consistent with that of other developmentally regulated genes which exhibit similar patterns of expression during development. The ease with which phosphatases can be assayed should make the activities described in this report useful biochemical markers of stages of both fruiting body formation and

  1. Insulin-receptor phosphotyrosyl-protein phosphatases.

    PubMed Central

    King, M J; Sale, G J

    1988-01-01

    Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition

  2. Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results.

    PubMed

    Tabor, Holly K; Auer, Paul L; Jamal, Seema M; Chong, Jessica X; Yu, Joon-Ho; Gordon, Adam S; Graubert, Timothy A; O'Donnell, Christopher J; Rich, Stephen S; Nickerson, Deborah A; Bamshad, Michael J

    2014-08-07

    Exome sequencing (ES) is rapidly being deployed for use in clinical settings despite limited empirical data about the number and types of incidental results (with potential clinical utility) that could be offered for return to an individual. We analyzed deidentified ES data from 6,517 participants (2,204 African Americans and 4,313 European Americans) from the National Heart, Lung, and Blood Institute Exome Sequencing Project. We characterized the frequencies of pathogenic alleles in genes underlying Mendelian conditions commonly assessed by newborn-screening (NBS, n = 39) programs, genes associated with age-related macular degeneration (ARMD, n = 17), and genes known to influence drug response (PGx, n = 14). From these 70 genes, we identified 10,789 variants and curated them by manual review of OMIM, HGMD, locus-specific databases, or primary literature to a total of 399 validated pathogenic variants. The mean number of risk alleles per individual was 15.3. Every individual had at least five known PGx alleles, 99% of individuals had at least one ARMD risk allele, and 45% of individuals were carriers for at least one pathogenic NBS allele. The carrier burden for severe recessive childhood disorders was 0.57. Our results demonstrate that risk alleles of potential clinical utility for both Mendelian and complex traits are detectable in every individual. These findings highlight the necessity of developing guidelines and policies that consider the return of results to all individuals and underscore the need to develop innovative approaches and tools that enable individuals to exercise their choice about the return of incidental results.

  3. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    PubMed Central

    Hadler, Kieran S; Huber, Thomas; Cassady, A Ian; Weber, Jane; Robinson, Jodie; Burrows, Allan; Kelly, Gregory; Guddat, Luke W; Hume, David A; Schenk, Gerhard; Flanagan, Jack U

    2008-01-01

    Background Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism. PMID:18771593

  4. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    PubMed

    Hadler, Kieran S; Huber, Thomas; Cassady, A Ian; Weber, Jane; Robinson, Jodie; Burrows, Allan; Kelly, Gregory; Guddat, Luke W; Hume, David A; Schenk, Gerhard; Flanagan, Jack U

    2008-09-04

    Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.

  5. Protein phosphatases and Alzheimer's disease.

    PubMed

    Braithwaite, Steven P; Stock, Jeffry B; Lombroso, Paul J; Nairn, Angus C

    2012-01-01

    Alzheimer's Disease (AD) is characterized by progressive loss of cognitive function, linked to marked neuronal loss. Pathological hallmarks of the disease are the accumulation of the amyloid-β (Aβ) peptide in the form of amyloid plaques and the intracellular formation of neurofibrillary tangles (NFTs). Accumulating evidence supports a key role for protein phosphorylation in both the normal and pathological actions of Aβ as well as the formation of NFTs. NFTs contain hyperphosphorylated forms of the microtubule-binding protein tau, and phosphorylation of tau by several different kinases leads to its aggregation. The protein kinases involved in the generation and/or actions of tau or Aβ are viable drug targets to prevent or alleviate AD pathology. However, it has also been recognized that the protein phosphatases that reverse the actions of these protein kinases are equally important. Here, we review recent advances in our understanding of serine/threonine and tyrosine protein phosphatases in the pathology of AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Non-Mendelian Inheritance of DNA-Induced Inositol Independence in Neurospora

    PubMed Central

    Mishra, N. C.; Tatum, E. L.

    1973-01-01

    Inositol-independent (inos+) revertants of Neurospora induced in inositol-requiring mutants by treatment with wild-type DNA in previous studies were found to be stable and to grow well in the absence of inositol. Genetic data presented in this paper show that a major proportion of these induced revertants rarely transmitted the inositol independence character (inos+) to their sexual progeny. Non-Mendelian transmission of the transformed character (inos+) was also found to occur in some of the sexual progeny in subsequent generations. These genetic data support the idea that the transforming DNA pieces carrying the genetic information (called exosomes) are not readily integrated into the host genome. It is suggested that elimination of most exosomes during meiosis causes a loss of the genetic information and leads to non-Mendelian transmission of the induced revertant character (inos+). PMID:4521213

  7. Regulation of the Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase by zinc.

    PubMed

    Han, G S; Johnston, C N; Chen, X; Athenstaedt, K; Daum, G; Carman, G M

    2001-03-30

    The DPP1 gene, encoding diacylglycerol pyrophosphate (DGPP) phosphatase from Saccharomyces cerevisiae, has recently been identified as a zinc-regulated gene, and it contains a putative zinc-responsive element (UAS(ZRE)) in its promoter. In this work we examined the hypothesis that expression of DGPP phosphatase was regulated by zinc availability. The deprivation of zinc from the growth medium resulted in a time- and dose-dependent induction of beta-galactosidase activity driven by a P(DPP1)-lacZ reporter gene. This regulation was dependent on the UAS(ZRE) in the DPP1 promoter and was mediated by the Zap1p transcriptional activator. Induction of the DGPP phosphatase protein and activity by zinc deprivation was demonstrated by immunoblot analysis and measurement of the dephosphorylation of DGPP. The regulation pattern of DGPP phosphatase in mutants defective in plasma membrane (Zrt1p and Zrt2p) and vacuolar membrane (Zrt3p) zinc transporters indicated that enzyme expression was sensitive to the cytoplasmic levels of zinc. DGPP phosphatase activity was inhibited by zinc by a mechanism that involved formation of DGPP-zinc complexes. Studies with well characterized subcellular fractions and by indirect immunofluorescence microscopy revealed that the DGPP phosphatase enzyme was localized to the vacuolar membrane.

  8. Mendel Lives: The Survival of Mendelian Genetics in the Lysenkoist Classroom, 1937-1964

    ERIC Educational Resources Information Center

    Peacock, Margaret

    2015-01-01

    The demise of Soviet genetics in the 1930s, 40s, and 50s has stood for many as a prime example of the damage that social and political dogmatism can do when allowed to meddle in the workings of science. In particular, the story of Trofim Lysenko's rise to preeminence and the fall of Mendelian genetics in the Soviet Union has become a lasting…

  9. Using Mendelian randomisation to infer causality in depression and anxiety research.

    PubMed

    Gage, Suzanne H; Smith, George Davey; Zammit, Stanley; Hickman, Matthew; Munafò, Marcus R

    2013-12-01

    Depression and anxiety co-occur with substance use and abuse at a high rate. Ascertaining whether substance use plays a causal role in depression and anxiety is difficult or impossible with conventional observational epidemiology. Mendelian randomisation uses genetic variants as a proxy for environmental exposures, such as substance use, which can address problems of reverse causation and residual confounding, providing stronger evidence about causality. Genetic variants can be used instead of directly measuring exposure levels, in order to gain an unbiased estimate of the effect of various exposures on depression and anxiety. The suitability of the genetic variant as a proxy can be ascertained by confirming that there is no relationship between variant and outcome in those who do not use the substance. At present, there are suitable instruments for tobacco use, so we use that as a case study. Proof-of-principle Mendelian randomisation studies using these variants have found evidence for a causal effect of smoking on body mass index. Two studies have investigated tobacco and depression using this method, but neither found strong evidence that smoking causes depression or anxiety; evidence is more consistent with a self-medication hypothesis. Mendelian randomisation represents a technique that can aid understanding of exposures that may or may not be causally related to depression and anxiety. As more suitable instruments emerge (including the use of allelic risk scores rather than individual single nucleotide polymorphisms), the effect of other substances can be investigated. Linkage disequilibrium, pleiotropy, and population stratification, which can distort Mendelian randomisation studies, are also discussed.

  10. Mendel Lives: The Survival of Mendelian Genetics in the Lysenkoist Classroom, 1937-1964

    ERIC Educational Resources Information Center

    Peacock, Margaret

    2015-01-01

    The demise of Soviet genetics in the 1930s, 40s, and 50s has stood for many as a prime example of the damage that social and political dogmatism can do when allowed to meddle in the workings of science. In particular, the story of Trofim Lysenko's rise to preeminence and the fall of Mendelian genetics in the Soviet Union has become a lasting…

  11. Assessing the Causality between Blood Pressure and Retinal Vascular Caliber through Mendelian Randomisation.

    PubMed

    Li, Ling-Jun; Liao, Jiemin; Cheung, Carol Yim-Lui; Ikram, M Kamran; Shyong, Tai E; Wong, Tien-Yin; Cheng, Ching-Yu

    2016-02-25

    We aimed to determine the association between blood pressure (BP) and retinal vascular caliber changes that were free from confounders and reverse causation by using Mendelian randomisation. A total of 6528 participants from a multi-ethnic cohort (Chinese, Malays, and Indians) in Singapore were included in this study. Retinal arteriolar and venular caliber was measured by a semi-automated computer program. Genotyping was done using Illumina 610-quad chips. Meta-analysis of association between BP, and retinal arteriolar and venular caliber across three ethnic groups was performed both in conventional linear regression and Mendelian randomisation framework with a genetic risk score of BP as an instrumental variable. In multiple linear regression models, each 10 mm Hg increase in systolic BP, diastolic BP, and mean arterial BP (MAP) was associated with significant decreases in retinal arteriolar caliber of a 1.4, 3.0, and 2.6 μm, and significant decreases in retinal venular caliber of a 0.6, 0.7, and 0.9 μm, respectively. In a Mendelian randomisation model, only associations between DBP and MAP and retinal arteriolar narrowing remained yet its significance was greatly reduced. Our data showed weak evidence of a causal relationship between elevated BP and retinal arteriolar narrowing.

  12. Assessing the Causality between Blood Pressure and Retinal Vascular Caliber through Mendelian Randomisation

    NASA Astrophysics Data System (ADS)

    Li, Ling-Jun; Liao, Jiemin; Cheung, Carol Yim-Lui; Ikram, M. Kamran; Shyong, Tai E.; Wong, Tien-Yin; Cheng, Ching-Yu

    2016-02-01

    We aimed to determine the association between blood pressure (BP) and retinal vascular caliber changes that were free from confounders and reverse causation by using Mendelian randomisation. A total of 6528 participants from a multi-ethnic cohort (Chinese, Malays, and Indians) in Singapore were included in this study. Retinal arteriolar and venular caliber was measured by a semi-automated computer program. Genotyping was done using Illumina 610-quad chips. Meta-analysis of association between BP, and retinal arteriolar and venular caliber across three ethnic groups was performed both in conventional linear regression and Mendelian randomisation framework with a genetic risk score of BP as an instrumental variable. In multiple linear regression models, each 10 mm Hg increase in systolic BP, diastolic BP, and mean arterial BP (MAP) was associated with significant decreases in retinal arteriolar caliber of a 1.4, 3.0, and 2.6 μm, and significant decreases in retinal venular caliber of a 0.6, 0.7, and 0.9 μm, respectively. In a Mendelian randomisation model, only associations between DBP and MAP and retinal arteriolar narrowing remained yet its significance was greatly reduced. Our data showed weak evidence of a causal relationship between elevated BP and retinal arteriolar narrowing.

  13. Mendelian inheritance in Germany between 1900 and 1910. The case of Carl Correns (1864-1933).

    PubMed

    Rheinberger, H J

    2000-12-01

    Carl Correns (1864-1933) came to recognize Mendel's rules between 1894 and 1900 while trying to find out the mechanism of xenia, that is, the direct influence of the fertilizing pollen on the mother plant in maize and peas among other species. In this paper, I am concerned with the ten years of Correns' work after the annus mirabilis of 1900 until 1910, when the main outlines of the new science of genetics had been established. It is generally assumed that after 1900 Correns quickly began probing the limits of Mendelian inheritance, both as far as the explanatory force of formal transmission genetics and the generality of Mendel's laws are concerned. A careful examination of his papers however shows that he was much more interested in the scope of Mendelian inheritance than in its limits. Even his work with variegated Mirabilis plants, which historiographical folklore still presents as a result of Correns' growing interest in cytoplasmic inheritance, can be shown to have been conducted to corroborate just the opposite, namely, the validity of the nuclear paradigm. The paper will show that Correns' research results in those years (among them the Mendelian inheritance of sex in higher plants) were the outcome of a complex experimental program which involved breeding experiments with dozens of different species.

  14. The causal roles of vitamin B(12) and transcobalamin in prostate cancer: can Mendelian randomization analysis provide definitive answers?

    PubMed

    Collin, Simon M; Metcalfe, Chris; Palmer, Tom M; Refsum, Helga; Lewis, Sarah J; Smith, George Davey; Cox, Angela; Davis, Michael; Marsden, Gemma; Johnston, Carole; Lane, J Athene; Donovan, Jenny L; Neal, David E; Hamdy, Freddie C; Smith, A David; Martin, Richard M

    2011-01-01

    Circulating vitamin B(12) (cobalamin/B(12)) and total transcobalamin (tTC) have been associated with increased and reduced risk, respectively, of prostate cancer. Mendelian randomization has the potential to determine whether these are causal associations. We estimated associations of single nucleotide polymorphisms in B(12)-related genes (MTR, MTRR, FUT2, TCN2, TCN1, CUBN, and MUT) with plasma concentrations of B(12), tTC, holo-transcobalamin, holo-haptocorrin, folate, and homocysteine and with prostate cancer risk in a case-control study (913 cases, 895 controls) nested within the UK-wide population-based ProtecT study of prostate cancer in men age 45-69 years. Instrumental variable (IV) analysis was used to estimate odds ratios for effects of B(12) and tTC on prostate cancer. We observed that B(12) was lower in men with FUT2 204G>A (rs492602), CUBN 758C>T (rs1801222) and MUT 1595G>A (rs1141321) alleles (P(trend)<0.001); tTC was lower in men with the TCN2 776C>G (rs1801198) allele (P(trend)<0.001). FUT2 204G>A and CUBN 758C>T were selected as instruments for B(12); TCN2 776C>G for tTC. Conventional and IV estimates for the association of log(e)(B(12)) with prostate cancer were: OR=1.17 (95% CI 0.90-1.51), P=0.2 and OR=0.60 (0.16-2.15), P=0.4, respectively. Conventional and IV estimates for the association of loge(tTC) with prostate cancer were: OR=0.81 (0.54-1.20), P=0.3 and OR=0.41 (0.13-1.32), P=0.1, respectively. Confidence intervals around the IV estimates in our study were too wide to allow robust inference. Sample size estimates based on our data indicated that Mendelian randomization in this context requires much larger studies or multiple genetic variants that explain all of the variance in the intermediate phenotype.

  15. The causal roles of vitamin B12 and transcobalamin in prostate cancer: can Mendelian randomization analysis provide definitive answers?

    PubMed Central

    Collin, Simon M; Metcalfe, Chris; Palmer, Tom M; Refsum, Helga; Lewis, Sarah J; Smith, George Davey; Cox, Angela; Davis, Michael; Marsden, Gemma; Johnston, Carole; Lane, J Athene; Donovan, Jenny L; Neal, David E; Hamdy, Freddie C; Smith, A David; Martin, Richard M

    2011-01-01

    Circulating vitamin B12 (cobalamin/B12) and total transcobalamin (tTC) have been associated with increased and reduced risk, respectively, of prostate cancer. Mendelian randomization has the potential to determine whether these are causal associations. We estimated associations of single nucleotide polymorphisms in B12-related genes (MTR, MTRR, FUT2, TCN2, TCN1, CUBN, and MUT) with plasma concentrations of B12, tTC, holo-transcobalamin, holo-haptocorrin, folate, and homocysteine and with prostate cancer risk in a case-control study (913 cases, 895 controls) nested within the UK-wide population-based ProtecT study of prostate cancer in men age 45-69 years. Instrumental variable (IV) analysis was used to estimate odds ratios for effects of B12 and tTC on prostate cancer. We observed that B12 was lower in men with FUT2 204G>A (rs492602), CUBN 758C>T (rs1801222) and MUT 1595G>A (rs1141321) alleles (Ptrend<0.001); tTC was lower in men with the TCN2 776C>G (rs1801198) allele (Ptrend<0.001). FUT2 204G>A and CUBN 758C>T were selected as instruments for B12; TCN2 776C>G for tTC. Conventional and IV estimates for the association of loge(B12) with prostate cancer were: OR=1.17 (95% CI 0.90-1.51), P=0.2 and OR=0.60 (0.16-2.15), P=0.4, respectively. Conventional and IV estimates for the association of loge(tTC) with prostate cancer were: OR=0.81 (0.54-1.20), P=0.3 and OR=0.41 (0.13-1.32), P=0.1, respectively. Confidence intervals around the IV estimates in our study were too wide to allow robust inference. Sample size estimates based on our data indicated that Mendelian randomization in this context requires much larger studies or multiple genetic variants that explain all of the variance in the intermediate phenotype. PMID:22199995

  16. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer's disease and Parkinson's disease: Mendelian randomisation study.

    PubMed

    Benn, Marianne; Nordestgaard, Børge G; Frikke-Schmidt, Ruth; Tybjærg-Hansen, Anne

    2017-04-24

    Objective To test the hypothesis that low density lipoprotein (LDL) cholesterol due to genetic variation in the genes responsible for LDL cholesterol metabolism and biosynthesis(PCSK9 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), respectively) is associated with a high risk of Alzheimer's disease, vascular dementia, any dementia, and Parkinson's disease in the general population.Design Mendelian randomisation study.Setting Copenhagen General Population Study and Copenhagen City Heart Study.Participants 111 194 individuals from the Danish general population.Main outcome measures Risk of Alzheimer's disease, vascular dementia, all dementia, and Parkinson's disease.Results In observational analyses, the multifactorially adjusted hazard ratio for Parkinson's disease in participants with an LDL cholesterol level <1.8 mmol/L versus ≥4.0 mmol/L was 1.70 (95% confidence interval 1.03 to 2.79), whereas the corresponding hazard ratios for Alzheimer's disease, vascular dementia, or any dementia did not differ from 1.0. PCSK9 and HMGCR variants combined were associated with a 9.3% lower LDL cholesterol level. In genetic, causal analyses adjusted for age, sex, and year of birth, the risk ratios for a lifelong 1 mmol/L lower LDL cholesterol level were 0.57 (0.27 to 1.17) for Alzheimer's disease, 0.81 (0.34 to 1.89) for vascular dementia, 0.66 (0.34 to 1.26) for any dementia, and 1.02 (0.26 to 4.00) for Parkinson's disease. Summary level data from the International Genomics of Alzheimer's Project using Egger Mendelian randomisation analysis gave a risk ratio for Alzheimer's disease of 0.24 (0.02 to 2.79) for 26 PCSK9 and HMGCR variants, and of 0.64 (0.52 to 0.79) for 380 variants of LDL cholesterol level lowering.Conclusion Low LDL cholesterol levels due to PCSK9 and HMGCR variants had no causal effect on high risk of Alzheimer's disease, vascular dementia, any dementia, or Parkinson's disease; however, low LDL cholesterol levels may have a causal effect in

  17. Segregation analysis of Alzheimer pedigrees: Rare Mendelian dominant mutation(s) explain a minority of early-onset cases

    SciTech Connect

    Martinez, M.; Campion, D.; Babron, M.C.; Darpoux, F.C.

    1996-02-16

    Segregation analysis of Alzheimer disease (AD) in 92 families ascertained through early-onset ({le}age 60 years) AD (EOAD) probands has been carried out, allowing for a mixture in AD inheritance among probands. The goal was to quantify the proportion of probands that could be explained by autosomal inheritance of a rare disease allele {open_quotes}a{close_quotes} at a Mendelian dominant gene (MDG). Our data provide strong evidence for a mixture of two distributions; AD transmission is fully explained by MDG inheritance in <20% of probands. Male and female age-of-onset distributions are significantly different for {open_quotes}AA{close_quote} but not for {open_quotes}aA{close_quote} subjects. For {open_quotes}aA{close_quote} subjects the estimated penetrance value was close to 1 by age 60. For {open_quotes}AA{close_quotes} subjects, it reaches, by age 90, 10% (males) and 30% (females). We show a clear cutoff in the posterior probability of being an MDG case. 10 refs., 1 tab.

  18. Therapeutic insulin and hepatic glucose-6-phosphatase activity in preterm infants

    PubMed Central

    Burchell, A; McGeechan, A; Hume, R

    2000-01-01

    BACKGROUND—Hepatic glucose-6-phosphatase activity is low at birth, and in term infants rises rapidly to adult levels. In contrast, in most preterm infants, it remains low postnatally making them vulnerable to repeated hypoglycaemic episodes, resultant cerebral damage, or risk of sudden and unexpected death.
AIMS—To investigate the clinical features of preterm infants with low glucose-6-phosphatase enzyme activity to determine the influencing factors.
METHODS—Clinical data from 36 preterm infants were correlated by stepwise multiple regression analysis with Vmax of hepatic glucose-6-phosphatase as the dependent variable.
RESULTS—The most significant correlation was with the administration of insulin (units/kg/h postnatal life) with lesser effects of respiratory distress syndrome and dopamine administration. The Vmax changes reflected changes in the level of expression of the glucose-6-phosphatase protein.
CONCLUSION—In a variety of animal models, hepatic glucose-6-phosphatase levels have been shown to decrease in response to insulin, which also decreases transcription of the glucose-6-phosphatase gene. The association of insulin administration with high levels of hepatic glucose-6-phosphatase activity and protein expression was therefore most unexpected. Results from model systems, or adults, must be extrapolated to the metabolism of preterm infants with caution.

 PMID:10794792

  19. Mendel,MD: A user-friendly open-source web tool for analyzing WES and WGS in the diagnosis of patients with Mendelian disorders.

    PubMed

    G C C L Cardenas, Raony; D Linhares, Natália; L Ferreira, Raquel; Pena, Sérgio D J

    2017-06-01

    Whole exome and whole genome sequencing have both become widely adopted methods for investigating and diagnosing human Mendelian disorders. As pangenomic agnostic tests, they are capable of more accurate and agile diagnosis compared to traditional sequencing methods. This article describes new software called Mendel,MD, which combines multiple types of filter options and makes use of regularly updated databases to facilitate exome and genome annotation, the filtering process and the selection of candidate genes and variants for experimental validation and possible diagnosis. This tool offers a user-friendly interface, and leads clinicians through simple steps by limiting the number of candidates to achieve a final diagnosis of a medical genetics case. A useful innovation is the "1-click" method, which enables listing all the relevant variants in genes present at OMIM for perusal by clinicians. Mendel,MD was experimentally validated using clinical cases from the literature and was tested by students at the Universidade Federal de Minas Gerais, at GENE-Núcleo de Genética Médica in Brazil and at the Children's University Hospital in Dublin, Ireland. We show in this article how it can simplify and increase the speed of identifying the culprit mutation in each of the clinical cases that were received for further investigation. Mendel,MD proved to be a reliable web-based tool, being open-source and time efficient for identifying the culprit mutation in different clinical cases of patients with Mendelian Disorders. It is also freely accessible for academic users on the following URL: https://mendelmd.org.

  20. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  1. Cheaters sometimes prosper: distortion of mendelian segregation by meiotic drive.

    PubMed

    Lyttle, T W

    1993-06-01

    Two of Mendel's three laws were quickly discarded as information on the organization and transmission of genes accumulated at the beginning of this century, but his law of segregation has shown remarkable staying power. In fact, within most of population genetic theory for sexual diploids is buried the tacit assumption that heterozygous alleles are represented in gametes in a 1:1 ratio. Nevertheless, there is a small, but important, group of genetic systems that subvert the law of segregation, and show 'meiotic drive'.

  2. HuPho: the human phosphatase portal.

    PubMed

    Liberti, Susanna; Sacco, Francesca; Calderone, Alberto; Perfetto, Livia; Iannuccelli, Marta; Panni, Simona; Santonico, Elena; Palma, Anita; Nardozza, Aurelio P; Castagnoli, Luisa; Cesareni, Gianni

    2013-01-01

    Phosphatases and kinases contribute to the regulation of protein phosphorylation homeostasis in the cell. Phosphorylation is a key post-translational modification underlying the regulation of many cellular processes. Thus, a comprehensive picture of phosphatase function and the identification of their target substrates would aid a systematic approach to a mechanistic description of cell signalling. Here we present a website designed to facilitate the retrieval of information about human protein phosphatases. To this end we developed a search engine to recover and integrate information annotated in several publicly available web resources. In addition we present a text-mining-assisted annotation effort aimed at extracting phosphatase related data reported in the scientific literature. The HuPho (human phosphatases) website can be accessed at http://hupho.uniroma2.it.

  3. Evidence for Mendelian inheritance of serum IgE levels in Hispanic and non-Hispanic white families

    SciTech Connect

    Martinez, F.D.; Holberg, C.J.; Halonen, M.; Morgan, W.J.; Wright, A.L.; Taussig, L.M.

    1994-09-01

    Considerable evidence is available suggesting a significant genetic component in the pathogenesis of asthma, but the mechanism of inheritance is not well understood. The main objective of this study was to assess if total serum IgE level, a known intermediate phenotype for asthma, is under the control of a major autosomal gene. The authors studied nuclear families participating in the Tucson Children`s Respiratory Study in Tucson and originally selected because they belonged to a health maintenance organization. One hundred twenty-five Hispanic and 673 non-Hispanic White nuclear families were eligible; 50 Hispanic families (with 191 subjects) and 241 non-Hispanic White families (with 886 subjects) were included. Prevalence of asthma, hay fever, and parental smoking was similar among eligible families who were included and those who were not. Segregation analyses using regressive models for continuous traits showed that the best fit to the data was given by a model of Mendelian codominant inheritance of a major autosomal gene associated with higher serum IgE level. Log-likelihood for this model was not significantly different from that of the best-fitting ({open_quotes}unrestricted{close_quotes}) model (P=.3) and was significantly better than log-likelihood for a dominant model (P<.0001) and a recessive model (<.0001). An environmental model showed significant departure (P<.0001) from the unrestricted model. Tests for genetic heterogeneity showed no significant difference between the two ethnic groups. The data strongly suggests that total serum IgE levels are controlled by a major autosomal codominant gene. 35 refs., 5 tabs.

  4. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus.

    PubMed

    Kumari, Renu; Yadav, Gitanjali; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv 'Nirmal' (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine ethylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus.

  5. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  6. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  7. Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2011-05-01

    The X-ray crystal structure of human dual-specificity phosphatase 27 (DUSP27) is reported at 2.38 Å resolution. There are over 100 genes in the human genome that encode protein tyrosine phosphatases (PTPs) and approximately 60 of these are classified as dual-specificity phosphatases (DUSPs). Although many dual-specificity phosphatases are still not well characterized, novel functions have been discovered for some of them that have led to new insights into a variety of biological processes and the molecular basis for certain diseases. Indeed, as the functions of DUSPs continue to be elucidated, a growing number of them are emerging as potential therapeutic targets for diseases such as cancer, diabetes and inflammatory disorders. Here, the overexpression, purification and structure determination of DUSP27 at 2.38 Å resolution are presented.

  8. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  9. Functional characterization of two members of histidine phosphatase superfamily in Mycobacterium tuberculosis

    PubMed Central

    2013-01-01

    Background Functional characterization of genes in important pathogenic bacteria such as Mycobacterium tuberculosis is imperative. Rv2135c, which was originally annotated as conserved hypothetical, has been found to be associated with membrane protein fractions of H37Rv strain. The gene appears to contain histidine phosphatase motif common to both cofactor-dependent phosphoglycerate mutases and acid phosphatases in the histidine phosphatase superfamily. The functions of many of the members of this superfamily are annotated based only on similarity to known proteins using automatic annotation systems, which can be erroneous. In addition, the motif at the N-terminal of Rv2135c is ‘RHA’ unlike ‘RHG’ found in most members of histidine phosphatase superfamily. These necessitate the need for its experimental characterization. The crystal structure of Rv0489, another member of the histidine phosphatase superfamily in M. tuberculosis, has been previously reported. However, its biochemical characteristics remain unknown. In this study, Rv2135c and Rv0489 from M. tuberculosis were cloned and expressed in Escherichia coli with 6 histidine residues tagged at the C terminal. Results Characterization of the purified recombinant proteins revealed that Rv0489 possesses phosphoglycerate mutase activity while Rv2135c does not. However Rv2135c has an acid phosphatase activity with optimal pH of 5.8. Kinetic parameters of Rv2135c and Rv0489 are studied, confirming that Rv0489 is a cofactor dependent phosphoglycerate mutase of M. tuberculosis. Additional characterization showed that Rv2135c exists as a tetramer while Rv0489 as a dimer in solution. Conclusion Most of the proteins orthologous to Rv2135c in other bacteria are annotated as phosphoglycerate mutases or hypothetical proteins. It is possible that they are actually phosphatases. Experimental characterization of a sufficiently large number of bacterial histidine phosphatases will increase the accuracy of the automatic

  10. Proteomic analysis of protein phosphatase Z1 from Candida albicans.

    PubMed

    Márkus, Bernadett; Szabó, Krisztina; Pfliegler, Walter P; Petrényi, Katalin; Boros, Enikő; Pócsi, István; Tőzsér, József; Csősz, Éva; Dombrádi, Viktor

    2017-01-01

    Protein phosphatase Z is a "novel type" fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for Ca

  11. Rapid detection of fetal Mendelian disorders: Tay-Sachs disease.

    PubMed

    Guetta, Esther; Peleg, Leah

    2008-01-01

    Tay-Sachs disease is an autosomal recessive storage disease caused by the impaired activity of the lysosomal enzyme hexosaminidase A. In this fatal disease, the sphingolipid GM2 ganglioside accumulates in the neurons. Due to high carrier rates and the severity of the disease, population screening and prenatal diagnosis of Tay-Sachs disease are routinely carried out in Israel. Laboratory diagnosis of Tay-Sachs is carried out with biochemical and DNA-based methods in peripheral and umbilical cord blood, amniotic fluid, and chorionic villi samples. The assay of hexosaminidase A (Hex A) activity is carried out with synthetic substrates, 4-methylumbelliferyl-6-sulfo-N-acetyl-beta-glucosaminide (4-MUGS) and 4-methylumbelliferil-N-acetyl-beta-glucosamine (4-MUG), and the DNA-based analysis involves testing for the presence of specific known mutations in the alpha-subunit gene of Hex A. Prenatal diagnosis of Tay-Sachs disease is accomplished within 24-48 h from sampling. The preferred strategy is to simultaneously carry out enzymatic analysis in the amniotic fluid supernatant or in chorionic villi and molecular DNA-based testing in an amniotic fluid cell-pellet or in chorionic villi.

  12. The Hartnup phenotype: Mendelian transport disorder, multifactorial disease.

    PubMed

    Scriver, C R; Mahon, B; Levy, H L; Clow, C L; Reade, T M; Kronick, J; Lemieux, B; Laberge, C

    1987-05-01

    The Hartnup mutation affects an amino acid transport system of intestine and kidney used by a large group of neutral charge alpha-amino acids (six essential and several nonessential). We compared developmental outcomes and medical histories of 21 Hartnup subjects, identified through newborn screening, with those of 19 control sibs. We found no significant differences in means of growth percentiles and IQ scores between Hartnup and control groups (but all low academic performance scores were found in the Hartnup group, and various skin lesions occurred in five Hartnup subjects), no significant difference between means of the summed plasma values for amino acids affected by the Hartnup gene in Hartnup and control groups, two Hartnup subjects with clinical manifestations--impaired somatic growth and IQ in one, impaired growth and a "pellagrin" episode in the other--who had the lowest summed plasma amino acid values in the Hartnup group; the corresponding values for their sibs were the low outliers in the control group, and two tissue-specific forms of the Hartnup (transport) phenotype: renal and intestinal involvement (15 families) and renal involvement alone (one family), both forms having been inherited as autosomal recessives (the symptomatic probands had the usual form). Whereas deficient activity of the "Hartnup" transport system is monogenic, the associated plasma amino acid value (measured genotype) is polygenic. The latter describes the parameter of homeostasis and liability to disease. Cause of Hartnup disease is multifactorial.

  13. The Hartnup phenotype: Mendelian transport disorder, multifactorial disease.

    PubMed Central

    Scriver, C R; Mahon, B; Levy, H L; Clow, C L; Reade, T M; Kronick, J; Lemieux, B; Laberge, C

    1987-01-01

    The Hartnup mutation affects an amino acid transport system of intestine and kidney used by a large group of neutral charge alpha-amino acids (six essential and several nonessential). We compared developmental outcomes and medical histories of 21 Hartnup subjects, identified through newborn screening, with those of 19 control sibs. We found no significant differences in means of growth percentiles and IQ scores between Hartnup and control groups (but all low academic performance scores were found in the Hartnup group, and various skin lesions occurred in five Hartnup subjects), no significant difference between means of the summed plasma values for amino acids affected by the Hartnup gene in Hartnup and control groups, two Hartnup subjects with clinical manifestations--impaired somatic growth and IQ in one, impaired growth and a "pellagrin" episode in the other--who had the lowest summed plasma amino acid values in the Hartnup group; the corresponding values for their sibs were the low outliers in the control group, and two tissue-specific forms of the Hartnup (transport) phenotype: renal and intestinal involvement (15 families) and renal involvement alone (one family), both forms having been inherited as autosomal recessives (the symptomatic probands had the usual form). Whereas deficient activity of the "Hartnup" transport system is monogenic, the associated plasma amino acid value (measured genotype) is polygenic. The latter describes the parameter of homeostasis and liability to disease. Cause of Hartnup disease is multifactorial. PMID:3578280

  14. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  15. Mendel,MD: A user-friendly open-source web tool for analyzing WES and WGS in the diagnosis of patients with Mendelian disorders

    PubMed Central

    D. Linhares, Natália; Pena, Sérgio D. J.

    2017-01-01

    Whole exome and whole genome sequencing have both become widely adopted methods for investigating and diagnosing human Mendelian disorders. As pangenomic agnostic tests, they are capable of more accurate and agile diagnosis compared to traditional sequencing methods. This article describes new software called Mendel,MD, which combines multiple types of filter options and makes use of regularly updated databases to facilitate exome and genome annotation, the filtering process and the selection of candidate genes and variants for experimental validation and possible diagnosis. This tool offers a user-friendly interface, and leads clinicians through simple steps by limiting the number of candidates to achieve a final diagnosis of a medical genetics case. A useful innovation is the “1-click” method, which enables listing all the relevant variants in genes present at OMIM for perusal by clinicians. Mendel,MD was experimentally validated using clinical cases from the literature and was tested by students at the Universidade Federal de Minas Gerais, at GENE–Núcleo de Genética Médica in Brazil and at the Children’s University Hospital in Dublin, Ireland. We show in this article how it can simplify and increase the speed of identifying the culprit mutation in each of the clinical cases that were received for further investigation. Mendel,MD proved to be a reliable web-based tool, being open-source and time efficient for identifying the culprit mutation in different clinical cases of patients with Mendelian Disorders. It is also freely accessible for academic users on the following URL: https://mendelmd.org. PMID:28594829

  16. Dolichyl-phosphate phosphatase and dolichyl-diphosphate phosphatase in rat-liver microsomes.

    PubMed

    Belocopitow, E; Boscoboinik, D

    1982-06-15

    Dolichyl-phosphate phosphatase and dolichyl-diphosphate phosphatase activities of a liver-cell microsomal preparation were solubilized by treatment with Triton X-100. The 100,000 X g supernatant was then passed through a column of Sepharose-4B--concanavalin A. Both enzyme activities were found in the percolate. This treatment eliminated inhibition by ATP and glucose 6-phosphate in both phosphatase activities. In each case the activities were inhibited by higher concentrations of enzyme preparation due to the presence of phospholipids. The inhibitory effects of either phosphatidylcholine or phosphatidylethanolamine were due to competition for detergent. On the other hand, the effect produced by phosphatidic acid appeared to be different, since it did not change the optimal concentration of Triton X-100 for the two enzymes. Dolichyl-phosphate phosphatase was strongly inhibited by both Pi and PPi, whereas dolichyl-diphosphate phosphatase was only slightly inhibited by Pi and not at all by