Science.gov

Sample records for phosphate 3d scaffold

  1. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility

  2. 3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration

    PubMed Central

    Inzana, Jason A.; Olvera, Diana; Fuller, Seth M.; Kelly, James P.; Graeve, Olivia A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.

    2014-01-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1–2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing. PMID:24529628

  3. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

    PubMed

    Inzana, Jason A; Olvera, Diana; Fuller, Seth M; Kelly, James P; Graeve, Olivia A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2014-04-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.

  4. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.

    PubMed

    Castilho, Miguel; Moseke, Claus; Ewald, Andrea; Gbureck, Uwe; Groll, Jürgen; Pires, Inês; Teßmar, Jörg; Vorndran, Elke

    2014-03-01

    The 3D printing technique based on cement powders is an excellent method for the fabrication of individual and complex bone substitutes even in the case of large defects. The outstanding bone remodeling capacity of biphasic calcium phosphates (BCPs) containing hydroxyapatite (HA) as well as tricalcium phosphate (TCP) in varying ratios makes the adaption of powder systems resulting in BCP materials to this fabrication technique a desirable aim. This study presents the synthesis and characterization of a novel powder system for the 3D printing process, intended for the production of complexly shaped BCP scaffolds by a hydraulic setting reaction of calcium carbonate and TCP with phosphoric acid. The HA/TCP ratio in the specimens could be tailored by the calcium/phosphate ratio of the starting powder. The scaffolds could be fabricated with a dimensional accuracy of >96.5% and a minimal macro pore size of 300 µm. Independent of the phase composition the printed specimens showed a microporosity of approximately 68%, while the compressive strength strongly depended on the chemical composition and increased with rising TCP content in the scaffolds to a maximum of 1.81 MPa. Post-treatment of the scaffolds with a polylactic-co-glycolic acid-solution enhanced the mechanical properties by a factor of 8. In vitro studies showed that all BCP scaffolds were cytocompatible and enhanced the cell viability as well as the cell proliferation, as compared with pure TCP. Cell proliferation is even better on BCP when compared to HA and cell viability is in a similar range on these materials.

  5. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays

    PubMed Central

    Chatterjee, Kaushik; Sun, Limin; Chow, Laurence C.; Young, Marian F.; Simon, Carl G.

    2012-01-01

    There is a need for combinatorial and high-throughput methods for screening cell–biomaterial interactions to maximize tissue generation in scaffolds. Current methods employ a flat two-dimensional (2D) format even though three-dimensional (3D) scaffolds are more representative of the tissue environment in vivo and cells are responsive to topographical differences of 2D substrates and 3D scaffolds. Thus, combinatorial libraries of 3D porous scaffolds were developed and used to screen the effect of nano-amorphous calcium phosphate (nACP) particles on osteoblast response. Increasing nACP content in poly (ε-caprolactone) (PCL) scaffolds promoted osteoblast adhesion and proliferation. The nACP-containing scaffolds released calcium and phosphate ions which are known to activate osteoblast function. Scaffold libraries were fabricated in two formats, gradients and arrays, and the magnitude of the effect of nACP on osteoblast proliferation was greater for arrays than gradients. The enhanced response in arrays can be explained by differences in cell culture designs, diffusional effects and differences in the ratio of “scaffold mass to culture medium”. These results introduce a gradient library approach for screening large pore 3D scaffolds and demonstrate that inclusion of the nACP particles enhances osteoblast proliferation in 3D scaffolds. Further, comparison of gradients and arrays suggests that gradients were more sensitive for detecting effects of scaffold composition on cell adhesion (short time points, 1 day) whereas arrays were more sensitive at detecting effects on cell proliferation (longer time points, 14 day). PMID:21074846

  6. Editorial on the original article entitled "3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration" published in the Biomaterials on February 14, 2014.

    PubMed

    Li, Lan; Jiang, Qing

    2015-05-01

    The paper entitled "3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration" published in the Biomaterials recently illuminated the way to make particular scaffolds with calcium phosphate (CaP) powder, phosphoric acid, type I collagen and Tween 80 in low temperature. After the optimal concentration of each component was determined, the scaffolds were evaluated in a critically sized murine femoral defect model and exhibited good material properties. We made some related introduction of materials applied in 3D printing for bone tissue engineering based on this article to demonstrate the current progress in this field of study.

  7. Editorial on the original article entitled “3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration” published in the Biomaterials on February 14, 2014

    PubMed Central

    Li, Lan

    2015-01-01

    The paper entitled “3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration” published in the Biomaterials recently illuminated the way to make particular scaffolds with calcium phosphate (CaP) powder, phosphoric acid, type I collagen and Tween 80 in low temperature. After the optimal concentration of each component was determined, the scaffolds were evaluated in a critically sized murine femoral defect model and exhibited good material properties. We made some related introduction of materials applied in 3D printing for bone tissue engineering based on this article to demonstrate the current progress in this field of study. PMID:26046065

  8. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    PubMed

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p < 0.01) in cells per scaffold mass vs. AD constructs. Collagen was ∼31% greater (p < 0.01) on FDAD compared to AD scaffolds not evident in microscopy of microsphere surfaces. Alternatively, AD scaffolds demonstrated a superior threefold increase in compressive strength over FDAD (12 vs. 4 MPa) with minimal degradation. Inclusion of FD spheres within the FDAD scaffolds allowed increased cellular activity through improved seeding, proliferation, and extracellular matrix production (as collagen), although mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  9. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    PubMed

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.

  10. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

    PubMed

    Tarafder, Solaiman; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis. PMID:25045131

  11. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

    PubMed

    Tarafder, Solaiman; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis.

  12. Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis

    PubMed Central

    2015-01-01

    The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca2+ ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca2+ release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague–Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation. PMID:24826838

  13. Physicomechanical, In Vitro and In Vivo Performance of 3D Printed Doped Tricalcium Phosphate Scaffolds for Bone Tissue Engineering and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Tarafder, Solaiman

    Although tricalcium phosphate (TCP) is widely used in bone tissue engineering, the strength degradation kinetics is not well controlled. This study focuses on the underlying mechanism of strength degradation kinetics by incorporating trace elements in TCP. The objective of this research is to modify the mechanical properties of TCP to achieve the desired degradation rate for the specific need, and improve the in vivo bioactivity for early wound healing by incorporating trace elements such as strontium (Sr2+), magnesium (Mg2+) and silicon (Si4+) as dopants. The hypothesis of this research is that the presence of different trace elements in TCP will influence its phase stability, microstructure, mechanical strength, and both in vitro and in vivo bioactivity. Direct three dimensional printing (3DP) was used to fabricate designed interconnected macroporous pure and doped TCP scaffolds. Microwave sintering as opposed to conventional sintering was also used for better densification and higher mechanical strength. A maximum compressive strength of 10.95 +/- 1.28 MPa and 12.01 +/- 1.56 MPa were achieved for pure and Sr2+-Mg2+ doped TCP scaffolds with 500 microm designed pores (˜400 microm after sintering) sintered in microwave furnace, respectively. Substitution of Mg2+ and Sr2+ into calcium (Ca2+) sites of TCP crystal lattice contributed to phase stability and controlled gradual degradation. On the other hand, Si4+ substitution into phosphorous (P5+) sites destabilized the crystal structure and accelerated degradation of TCP. Interconnected macroporous beta-TCP scaffolds facilitated in vivo guided bone tissue regeneration through infiltration of cells and extracellular matrix into the designed pores. Presence of Sr2+, Mg2+ and Si4+ into beta-TCP induced increased in vivo early bone formation and better bone remodeling through increased extracellular matrix production such as, collagen and osteocalcin, when tested in rat and rabbit distal femur model. The presence of Si4

  14. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

    PubMed

    Zhou, Zuoxin; Buchanan, Fraser; Mitchell, Christina; Dunne, Nicholas

    2014-05-01

    In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p<0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (<20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy. PMID:24656346

  15. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

    PubMed

    Zhou, Zuoxin; Buchanan, Fraser; Mitchell, Christina; Dunne, Nicholas

    2014-05-01

    In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p<0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (<20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy.

  16. 3D braid scaffolds for regeneration of articular cartilage.

    PubMed

    Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol

    2014-06-01

    Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. PMID:24556323

  17. Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture

    PubMed Central

    Modulevsky, Daniel J.; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E.

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment. PMID:24842603

  18. 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures

    PubMed Central

    Hanson Shepherd, Jennifer N.; Parker, Sara T.; Shepherd, Robert F.; Gillette, Martha U.; Lewis, Jennifer A.; Nuzzo, Ralph G.

    2011-01-01

    Three-dimensional (3D) microperiodic scaffolds of poly(2-hydroxyethyl methacrylate) (pHEMA) have been fabricated by direct-write assembly of a photopolymerizable hydrogel ink. The ink is initially composed of physically entangled pHEMA chains dissolved in a solution of HEMA monomer, comonomer, photoinitiator and water. Upon printing 3D scaffolds of varying architecture, the ink filaments are exposed to UV light, where they are transformed into an interpenetrating hydrogel network of chemically cross-linked and physically entangled pHEMA chains. These 3D microperiodic scaffolds are rendered growth compliant for primary rat hippocampal neurons by absorption of polylysine. Neuronal cells thrive on these scaffolds, forming differentiated, intricately branched networks. Confocal laser scanning microscopy reveals that both cell distribution and extent of neuronal process alignment depend upon scaffold architecture. This work provides an important step forward in the creation of suitable platforms for in vitro study of sensitive cell types. PMID:21709750

  19. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    PubMed

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals.

  20. 3D Printing of Scaffolds for Tissue Regeneration Applications

    PubMed Central

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  1. Nanostructured thick 3D nanofibrous scaffold can induce bone.

    PubMed

    Eap, Sandy; Morand, David; Clauss, François; Huck, Olivier; Stoltz, Jean-François; Lutz, Jean-Christophe; Gottenberg, Jacques-Eric; Benkirane-Jessel, Nadia; Keller, Laetitia; Fioretti, Florence

    2015-01-01

    Designing unique nanostructured biomimetic materials is a new challenge in modern regenerative medicine. In order to develop functional substitutes for damaged organs or tissues, several methods have been used to create implants able to regenerate robust and durable bone. Electrospinning produces nonwoven scaffolds based on polymer nanofibers mimicking the fibrillar organization of bone extracellular matrix. Here, we describe a biomimetic 3D thick nanofibrous scaffold obtained by electrospinning of the biodegradable, bioresorbable and FDA-approved polymer, poly(ε-caprolactone). Such scaffold presents a thickness reaching one centimeter. We report here the demonstration that the designed nanostructured implant is able to induce in vivo bone regeneration. PMID:25538059

  2. 3D Printing of Scaffolds for Tissue Regeneration Applications.

    PubMed

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M; Salem, Aliasger K

    2015-08-26

    The current need for organ and tissue replacement, repair, and regeneration for patients is continually growing such that supply is not meeting demand primarily due to a paucity of donors as well as biocompatibility issues leading to immune rejection of the transplant. In order to overcome these drawbacks, scientists have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired an interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity, where fine details can be included at a micrometer level. In this Review, the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering are discussed. Creating biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  3. 3D Printing of Scaffolds for Tissue Regeneration Applications.

    PubMed

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M; Salem, Aliasger K

    2015-08-26

    The current need for organ and tissue replacement, repair, and regeneration for patients is continually growing such that supply is not meeting demand primarily due to a paucity of donors as well as biocompatibility issues leading to immune rejection of the transplant. In order to overcome these drawbacks, scientists have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired an interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity, where fine details can be included at a micrometer level. In this Review, the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering are discussed. Creating biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation.

  4. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  5. Fabricating gradient hydrogel scaffolds for 3D cell culture.

    PubMed

    Chatterjee, Kaushik; Young, Marian F; Simon, Carl G

    2011-05-01

    Optimizing cell-material interactions is critical for maximizing regeneration in tissue engineering. Combinatorial and high-throughput (CHT) methods can be used to systematically screen tissue scaffolds to identify optimal biomaterial properties. Previous CHT platforms in tissue engineering have involved a two-dimensional (2D) cell culture format where cells were cultured on material surfaces. However, these platforms are inadequate to predict cellular response in a three-dimensional (3D) tissue scaffold. We have developed a simple CHT platform to screen cell-material interactions in 3D culture format that can be applied to screen hydrogel scaffolds. Herein we provide detailed instructions on a method to prepare gradients in elastic modulus of photopolymerizable hydrogels.

  6. The medial scaffold of 3D unorganized point clouds.

    PubMed

    Leymarie, Frederic F; Kimia, Benjamin B

    2007-02-01

    We introduce the notion of the medial scaffold, a hierarchical organization of the medial axis of a 3D shape in the form of a graph constructed from special medial curves connecting special medial points. A key advantage of the scaffold is that it captures the qualitative aspects of shape in a hierarchical and tightly condensed representation. We propose an efficient and exact method for computing the medial scaffold based on a notion of propagation along the scaffold itself, starting from initial sources of the flow and constructing the scaffold during the propagation. We examine this method specifically in the context of an unorganized cloud of points in 3D, e.g., as obtained from laser range finders, which typically involve hundreds of thousands of points, but the ideas are generalizable to data arising from geometrically described surface patches. The computational bottleneck in the propagation-based scheme is in finding the initial sources of the flow. We thus present several ideas to avoid the unnecessary consideration of pairs of points which cannot possibly form a medial point source, such as the "visibility" of a point from another given a third point and the interaction of clusters of points. An application of using the medial scaffold for the representation of point samplings of real-life objects is also illustrated.

  7. 3D printing of novel osteochondral scaffolds with graded microstructure.

    PubMed

    Nowicki, Margaret A; Castro, Nathan J; Plesniak, Michael W; Zhang, Lijie Grace

    2016-10-14

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds. PMID:27606933

  8. 3D printing of novel osteochondral scaffolds with graded microstructure

    NASA Astrophysics Data System (ADS)

    Nowicki, Margaret A.; Castro, Nathan J.; Plesniak, Michael W.; Zhang, Lijie Grace

    2016-10-01

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.

  9. 3D printing of novel osteochondral scaffolds with graded microstructure.

    PubMed

    Nowicki, Margaret A; Castro, Nathan J; Plesniak, Michael W; Zhang, Lijie Grace

    2016-10-14

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.

  10. Fabrication of computationally designed scaffolds by low temperature 3D printing.

    PubMed

    Castilho, Miguel; Dias, Marta; Gbureck, Uwe; Groll, Jürgen; Fernandes, Paulo; Pires, Inês; Gouveia, Barbara; Rodrigues, Jorge; Vorndran, Elke

    2013-09-01

    The development of artificial bone substitutes that mimic the properties of bone and simultaneously promote the desired tissue regeneration is a current issue in bone tissue engineering research. An approach to create scaffolds with such characteristics is based on the combination of novel design and additive manufacturing processes. The objective of this work is to characterize the microstructural and the mechanical properties of scaffolds developed by coupling both topology optimization and a low temperature 3D printing process. The scaffold design was obtained using a topology optimization approach to maximize the permeability with constraints on the mechanical properties. This procedure was studied to be suitable for the fabrication of a cage prototype for tibial tuberosity advancement application, which is one of the most recent and promising techniques to treat cruciate ligament rupture in dogs. The microstructural and mechanical properties of the scaffolds manufactured by reacting α/β-tricalcium phosphate with diluted phosphoric acid were then assessed experimentally and the scaffolds strength reliability was determined. The results demonstrate that the low temperature 3D printing process is a reliable option to create synthetic scaffolds with tailored properties, and when coupled with topology optimization design it can be a powerful tool for the fabrication of patient-specific bone implants. PMID:23887064

  11. 3D printing facilitated scaffold-free tissue unit fabrication.

    PubMed

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.

  12. 3D Printing Facilitated Scaffold-free Tissue Unit Fabrication

    PubMed Central

    Tan, Yu; Richards, Dylan J.; Trusk, Thomas C.; Visconti, Richard P.; Yost, Michael J.; Kindy, Mark S.; Drake, Christopher J.; Argraves, William Scott; Markwald, Roger R.; Mei, Ying

    2014-01-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing micro-droplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit micro-droplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation. PMID:24717646

  13. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis.

    PubMed

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-14

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  14. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.

    PubMed

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-12-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (∼100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  15. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  16. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.

    PubMed

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-12-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (∼100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  17. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation.

    PubMed

    Almeida, Catarina R; Serra, Tiziano; Oliveira, Marta I; Planell, Josep A; Barbosa, Mário A; Navarro, Melba

    2014-02-01

    Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed for tissue regeneration is crucial. This work reports on the analysis of the cytokine profile of human monocytes/macrophages in contact with biodegradable 3-D scaffolds with different surface properties, architecture and controlled pore geometry, fabricated by 3-D printing technology. Fabrication processes were optimized to create four different 3-D platforms based on polylactic acid (PLA), PLA/calcium phosphate glass or chitosan. Cytokine secretion and cell morphology of human peripheral blood monocytes allowed to differentiate on the different matrices were analyzed. While all scaffolds supported monocyte/macrophage adhesion and stimulated cytokine production, striking differences between PLA-based and chitosan scaffolds were found, with chitosan eliciting increased secretion of tumor necrosis factor (TNF)-α, while PLA-based scaffolds induced higher production of interleukin (IL)-6, IL-12/23 and IL-10. Even though the material itself induced the biggest differences, the scaffold geometry also impacted on TNF-α and IL-12/23 production, with chitosan scaffolds having larger pores and wider angles leading to a higher secretion of these pro-inflammatory cytokines. These findings strengthen the appropriateness of these 3-D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture). PMID:24211731

  18. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping.

    PubMed

    Fradique, R; Correia, T R; Miguel, S P; de Sá, K D; Figueira, D R; Mendonça, A G; Correia, I J

    2016-04-01

    The incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.

  19. 3D Printing of Octacalcium Phosphate Bone Substitutes

    PubMed Central

    Komlev, Vladimir S.; Popov, Vladimir K.; Mironov, Anton V.; Fedotov, Alexander Yu.; Teterina, Anastasia Yu.; Smirnov, Igor V.; Bozo, Ilya Y.; Rybko, Vera A.; Deev, Roman V.

    2015-01-01

    Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here, we proposed a relatively simple route for 3D printing of octacalcium phosphates (OCP) in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed OCP blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed OCP bone substitutes, which allowed 2.5-time reducing of defect’s diameter at 6.5 months in a region where native bone repair is extremely inefficient. PMID:26106596

  20. 3D Printing of Octacalcium Phosphate Bone Substitutes.

    PubMed

    Komlev, Vladimir S; Popov, Vladimir K; Mironov, Anton V; Fedotov, Alexander Yu; Teterina, Anastasia Yu; Smirnov, Igor V; Bozo, Ilya Y; Rybko, Vera A; Deev, Roman V

    2015-01-01

    Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here, we proposed a relatively simple route for 3D printing of octacalcium phosphates (OCP) in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed OCP blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed OCP bone substitutes, which allowed 2.5-time reducing of defect's diameter at 6.5 months in a region where native bone repair is extremely inefficient.

  1. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study

    PubMed Central

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018

  2. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    PubMed

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  3. Formation of Neural Networks in 3D Scaffolds Fabricated by Means of Laser Microstereolithography.

    PubMed

    Vedunova, M V; Timashev, P S; Mishchenko, T A; Mitroshina, E V; Koroleva, A V; Chichkov, B N; Panchenko, V Ya; Bagratashvili, V N; Mukhina, I V

    2016-08-01

    We developed and tested new 3D scaffolds for neurotransplantation. Scaffolds of predetermined architectonic were prepared using microstereolithography technique. Scaffolds were highly biocompatible with the nervous tissue cells. In vitro studies showed that the material of fabricated scaffolds is not toxic for dissociated brain cells and promotes the formation of functional neural networks in the matrix. These results demonstrate the possibility of fabrication of tissue-engineering constructs for neurotransplantation based on created scaffolds. PMID:27595153

  4. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.

    PubMed

    Ruiz-Cantu, Laura; Gleadall, Andrew; Faris, Callum; Segal, Joel; Shakesheff, Kevin; Yang, Jing

    2016-03-01

    3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an important role in cell ingrowth and nutrition infusion. Although the internal porosity and pore size of 3D printed scaffolds have been frequently studied, the surface porosity and pore size, which are critical for cell infiltration and mass transport, have not been investigated. The surface geometry can differ considerably from the internal scaffold structure depending on the 3D printing process. It is vital to be able to control the surface geometry of scaffolds as well as the internal structure to fabricate optimal architectures. This work presents a method to control the surface porosity and pore size of 3D printed scaffolds. Six scaffold designs have been printed with surface porosities ranging from 3% to 21%. We have characterised the overall scaffold porosity and surface porosity using optical microscopy and microCT. It has been found that surface porosity has a significant impact on cell infiltration and proliferation. In addition, the porosity of the surface has been found to have an effect on mechanical properties and on the forces required to penetrate the scaffold with a surgical suturing needle. To the authors' knowledge, this study is the first to investigate the surface geometry of extrusion-based 3D printed scaffolds and demonstrates the importance of surface geometry in cell infiltration and clinical manipulation. PMID:26930179

  5. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.

    PubMed

    Ruiz-Cantu, Laura; Gleadall, Andrew; Faris, Callum; Segal, Joel; Shakesheff, Kevin; Yang, Jing

    2016-03-01

    3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an important role in cell ingrowth and nutrition infusion. Although the internal porosity and pore size of 3D printed scaffolds have been frequently studied, the surface porosity and pore size, which are critical for cell infiltration and mass transport, have not been investigated. The surface geometry can differ considerably from the internal scaffold structure depending on the 3D printing process. It is vital to be able to control the surface geometry of scaffolds as well as the internal structure to fabricate optimal architectures. This work presents a method to control the surface porosity and pore size of 3D printed scaffolds. Six scaffold designs have been printed with surface porosities ranging from 3% to 21%. We have characterised the overall scaffold porosity and surface porosity using optical microscopy and microCT. It has been found that surface porosity has a significant impact on cell infiltration and proliferation. In addition, the porosity of the surface has been found to have an effect on mechanical properties and on the forces required to penetrate the scaffold with a surgical suturing needle. To the authors' knowledge, this study is the first to investigate the surface geometry of extrusion-based 3D printed scaffolds and demonstrates the importance of surface geometry in cell infiltration and clinical manipulation.

  6. 3D-printed scaffolds based on PLA/HA nanocomposites for trabecular bone reconstruction

    NASA Astrophysics Data System (ADS)

    Niaza, K. V.; Senatov, F. S.; Kaloshkin, S. D.; Maksimkin, A. V.; Chukov, D. I.

    2016-08-01

    In the present work porous PLA scaffolds filled with micro- and nano- HA were studied. Both composites with micro- and nano-HA were obtained by extrusion in the same conditions. Scaffolds were obtained by 3D-printing by fused filament fabrication method. Structure of porous scaffolds was pre-modeled by computer software. Compression and three - point flexural tests were used to study mechanical properties of the scaffolds.

  7. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  8. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  9. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering.

    PubMed

    Chen, Weiming; Ma, Jun; Zhu, Lei; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-06-01

    Fabrication of 3D scaffold to mimic the nanofibrous structure of the nature extracellular matrix (ECM) with appropriate mechanical properties and excellent biocompatibility, remain an important technical challenge in tissue engineering. The present study reports the strategy to fabricate a 3D nanofibrous scaffold with similar structure to collagen in ECM by combining electrospinning and freeze-drying technique. With the technique reported here, a nanofibrous structure scaffold with hydrophilic and superabsorbent properties can be readily prepared by Gelatin and Polylactic acid (PLA). In wet state the scaffold also shows a super-elastic property, which could bear a compressive strain as high as 80% and recovers its original shape afterwards. Moreover, after 6 days of culture, L-929 cells grow, proliferate and infiltrated into the scaffold. The results suggest that this 3D nanofibrous scaffold would be promising for varied field of tissue engineering application.

  10. Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering.

    PubMed

    Chen, Weiming; Chen, Shuai; Morsi, Yosry; El-Hamshary, Hany; El-Newhy, Mohamed; Fan, Cunyi; Mo, Xiumei

    2016-09-21

    Electrospun nanofibers have been used for various biomedical applications. However, electrospinning commonly produces two-dimensional (2D) membranes, which limits the application of nanofibers for the 3D tissue engineering scaffold. In the present study, a porous 3D scaffold (3DS-1) based on electrospun gelatin/PLA nanofibers has been prepared for cartilage tissue regeneration. To further improve the repairing effect of cartilage, a modified scaffold (3DS-2) cross-linked with hyaluronic acid (HA) was also successfully fabricated. The nanofibrous structure, water absorption, and compressive mechanical properties of 3D scaffold were studied. Chondrocytes were cultured on 3D scaffold, and their viability and morphology were examined. 3D scaffolds were also subjected to an in vivo cartilage regeneration study on rabbits using an articular cartilage injury model. The results indicated that 3DS-1 and 3DS-2 exhibited superabsorbent property and excellent cytocompatibility. Both these scaffolds present elastic property in the wet state. An in vivo study showed that 3DS-2 could enhance the repair of cartilage. The present 3D nanofibrous scaffold (3DS-2) would be promising for cartilage tissue engineering application. PMID:27559926

  11. Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering.

    PubMed

    Chen, Weiming; Chen, Shuai; Morsi, Yosry; El-Hamshary, Hany; El-Newhy, Mohamed; Fan, Cunyi; Mo, Xiumei

    2016-09-21

    Electrospun nanofibers have been used for various biomedical applications. However, electrospinning commonly produces two-dimensional (2D) membranes, which limits the application of nanofibers for the 3D tissue engineering scaffold. In the present study, a porous 3D scaffold (3DS-1) based on electrospun gelatin/PLA nanofibers has been prepared for cartilage tissue regeneration. To further improve the repairing effect of cartilage, a modified scaffold (3DS-2) cross-linked with hyaluronic acid (HA) was also successfully fabricated. The nanofibrous structure, water absorption, and compressive mechanical properties of 3D scaffold were studied. Chondrocytes were cultured on 3D scaffold, and their viability and morphology were examined. 3D scaffolds were also subjected to an in vivo cartilage regeneration study on rabbits using an articular cartilage injury model. The results indicated that 3DS-1 and 3DS-2 exhibited superabsorbent property and excellent cytocompatibility. Both these scaffolds present elastic property in the wet state. An in vivo study showed that 3DS-2 could enhance the repair of cartilage. The present 3D nanofibrous scaffold (3DS-2) would be promising for cartilage tissue engineering application.

  12. Fundamental studies on the synthesis, characterization, stabilization, 3-D scaffolds, and trafficking mechanisms of nano-structured calcium phosphates (NanoCaPs) for non-viral gene delivery

    NASA Astrophysics Data System (ADS)

    Olton, Dana

    Non-viral transfer of therapeutic genes into mammalian cells represents a potentially viable approach to (1) treat and cure acute and chronic genetically transferred congenital disorders and to (2) aid in tissue regeneration. Non-viral vectors have been praised for their potential to circumvent some of the limitations associated with viral vectors including immunogenicity, cytotoxicity and insertional mutagenesis. Among the various types of non-viral gene delivery vectors, nano-structured ceramic particles, particularly, particles of calcium phosphate (CaP) remain an attractive option because of their safety, biocompatibility, biodegradability, ease of handling as well as their adsorptive capacity for DNA. CaP-DNA complexes have been used in vitro since the 1970s and have recently been tested in vivo. However, despite CaPs' extensive use, concerns still remain regarding the synthesis and colloidal instability of this vector. Also, towards the development of a more efficient gene delivery agent, there is a need to understand the mechanisms involved in both the cellular uptake as well as in the subsequent intracellular processing of CaP-DNA complexes. Moreover, although significant advances have been made in the synthesis and design of tissue engineered constructs, the development of a safe, effective scaffold has yet to be realized. As such, the focus of this thesis has been to address these four concerns. In this work, we begin by presenting a novel aqueous-based approach to synthesize nano-particles of CaP (NanoCaPs). Our results show that this approach generates nano-crystalline hydroxyapatite particles. When tested in vitro, transfection of these complexes resulted in higher, more consistent levels of gene expression when compared to particles synthesized via manual mixing. The optimized forms of these particles both effectively bound (90% efficient) and condensed (70% efficient) plasmid DNA (pDNA) and possessed negative zeta potentials of approximately -20m

  13. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography

    PubMed Central

    Gauvin, Robert; Chen, Ying-Chieh; Lee, Jin Woo; Soman, Pranav; Zorlutuna, Pinar; Nichol, Jason W.; Bae, Hojae; Chen, Shaochen; Khademhosseini, Ali

    2013-01-01

    The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds. PMID:22365811

  14. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography.

    PubMed

    Gauvin, Robert; Chen, Ying-Chieh; Lee, Jin Woo; Soman, Pranav; Zorlutuna, Pinar; Nichol, Jason W; Bae, Hojae; Chen, Shaochen; Khademhosseini, Ali

    2012-05-01

    The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds.

  15. Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds.

    PubMed

    Park, Young-Ouk; Myung, Sung-Woon; Kook, Min-Suk; Jung, Sang-Chul; Kim, Byung-Hoon

    2016-02-01

    In this study, 3D polycaprolactone (PCL) scaffolds were fabricated by 3D printing technique. The macro/nano morphology of, 3D PCL scaffolds surface was etched with oxygen plasma. Acrylic acid (AA) plasma-polymerization was performed to functionalize the macro/nano surface with carboxyl groups and then collagen was immobilized with plasma-polymerized 3D PCL scaffolds. After O2 plasma and AA plasma-polymerization, contact angles were decreased. The FE-SEM and AFM results showed that O2 plasma is increased the surface roughness. The MTT assay results showed that proliferation of the M3CT3-E1 cells increased on the oxygen plasma treated and collagen immobilized 3D PCL scaffolds. PMID:27433597

  16. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts.

    PubMed

    Wu, Huijun; Fan, Jintu; Chu, Chih-Chang; Wu, Jun

    2010-12-01

    The control of nanofiber orientation in nanofibrous tubular scaffolds can benefit the cell responses along specific directions. For small diameter tubular scaffolds, however, it becomes difficult to engineer nanofiber orientation. This paper reports a novel electrospinning technique for the fabrication of 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations. Synthetic absorbable poly-ε-caprolactone (PCL) was used as the model biomaterial to demonstrate this new electrospinning technique. Electrospun 3-D PCL nanofibrous tubular scaffolds of 4.5 mm in diameter with different nanofiber orientations (viz. circumferential, axial, and combinations of circumferential and axial directions) were successfully fabricated. The degree of nanofiber alignment in the electrospun 3-D tubular scaffolds was quantified by using the fast Fourier transform (FFT) analysis. The results indicated that excellent circumferential nanofiber alignment could be achieved in the 3-D nanofibrous PCL tubular scaffolds. The nanofibrous tubular scaffolds with oriented nanofibers had not only directional mechanical property but also could facilitate the orientation of the endothelial cell attachment on the fibers. Multiple layers of aligned nanofibers in different orientations can produce 3-D nanofibrous tubular scaffolds of different macroscopic properties. PMID:20890639

  17. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    PubMed

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds. PMID:25870955

  18. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    PubMed

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  19. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.

    PubMed

    Gao, Chunxia; Rahaman, Mohamed N; Gao, Qiang; Teramoto, Akira; Abe, Koji

    2013-07-01

    The development of inorganic-organic hybrid scaffolds with controllable degradation and bioactive properties is receiving considerable interest for bone and tissue regeneration. The objective of this study was to create hybrid scaffolds of gelatin and bioactive glass (BG) with a controlled, three-dimensional (3D) architecture by a combined sol-gel and robotic deposition (robocasting) method and evaluate their mechanical response, bioactivity, and response to cells in vitro. Inks for robotic deposition of the scaffolds were prepared by dissolving gelatin in a sol-gel precursor solution of the bioactive glass (70SiO2 -25CaO-5P2 O5 ; mol%) and aging the solution to form a gel with the requisite viscosity. After drying and crosslinking, the gelatin-BG scaffolds, with a grid-like architecture (filament diameter ∼350 µm; pore width ∼550 µm), showed an elasto-plastic response, with a compressive strength of 5.1 ± 0.6 MPa, in the range of values for human trabecular bone (2-12 MPa). When immersed in phosphate-buffered saline, the crosslinked scaffolds rapidly absorbed water (∼440% of its dry weight after 2 h) and showed an elastic response at deformations up to ∼60%. Immersion of the scaffolds in a simulated body fluid resulted in the formation of a hydroxyapatite-like surface layer within 5 days, indicating their bioactivity in vitro. The scaffolds supported the proliferation, alkaline phosphatase activity, and mineralization of osteogenic MC3T3-E1 cells in vitro, showing their biocompatibility. Altogether, the results indicate that these gelatin-BG hybrid scaffolds with a controlled, 3D architecture of inter-connected pores have potential for use as implants for bone regeneration.

  20. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    PubMed

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.

  1. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    PubMed

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field. PMID:26420041

  2. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification.

    PubMed

    Lan, Phung Xuan; Lee, Jin Woo; Seol, Young-Joon; Cho, Dong-Woo

    2009-01-01

    Poly(propylene fumarate) (PPF) is an ultraviolet-curable and biodegradable polymer with potential applications for bone regeneration. In this study, we designed and fabricated three-dimensional (3D) porous scaffolds based on a PPF polymer network using micro-stereolithography (MSTL). The 3D scaffold was well fabricated with a highly interconnected porous structure and porosity of 65%. These results provide a new scaffold fabrication method for tissue engineering. Surface modification is a commonly used and effective method for improving the surface characteristics of biomaterials without altering their bulk properties that avoids the expense and long time associated with the development of new biomaterials. Therefore, we examined surface modification of 3D scaffolds by applying accelerated biomimetic apatite and arginine-glycine-aspartic acid (RGD) peptide coating to promote cell behavior. The apatite coating uniformly covered the scaffold surface after immersion for 24 h in 5-fold simulated body fluid (5SBF) and then the RGD peptide was applied. Finally, the coated 3D scaffolds were seeded with MC3T3-E1 pre-osteoblasts and their biologic properties were evaluated using an MTS assay and histologic staining. We found that 3D PPF/diethyl fumarate (DEF) scaffolds fabricated with MSTL and biomimetic apatite coating can be potentially used in bone tissue engineering.

  3. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  4. An approach in developing 3D fiber-deposited magnetic scaffolds for tissue engineering

    SciTech Connect

    De Santis, R.; Gloria, A.; D'Amora, U.; Zeppetelli, S.; Ambrosio, L.; Russo, T.

    2010-06-02

    Scaffolds should possess suitable properties to play their specific role. In this work, the potential of 3D fiber deposition technique to develop multifunctional and well-defined magnetic poly(epsilon-caprolactone)/iron oxide scaffolds has been highlighted, and the effect of iron oxide nanoparticles on the biological and mechanical performances has been assessed.

  5. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; Jin, Zhongmin

    2015-01-01

    Interface integration between chondral phase and osseous phase is crucial in engineered osteochondral scaffolds. However, the integration was poorly understood and commonly failed to meet the need of osteochondral scaffolds. In this paper, a biphasic polyethylene glycol (PEG)/β-tricalcium phosphate (β-TCP) scaffold with enhanced interfacial integration was developed. The chondral phase was a PEG hydrogel. The osseous phase was a β-TCP ceramic scaffold. The PEG hydrogel was directly cured on the ceramic interface layer by layer to fabricate osteochondral scaffolds by 3D printing technology. Meanwhile, a series of interface structure were designed with different interface pore area percentages (0/10/20/30/40/50/60%), and interfacial shear test was applied for interface structure optimization (n=6 samples/group). The interfacial shear strength of 30% pore area group was nearly three folds improved compared with that of 0% pore area percentage group, and more than fifty folds improved compared with that of traditional integration (5.91±0.59 kPa). In conclusion, the biomimetic PEG/β-TCP scaffolds with interface structure enhanced integration show promising potential application for osteochondral tissue engineering.

  6. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; Jin, Zhongmin

    2015-01-01

    Interface integration between chondral phase and osseous phase is crucial in engineered osteochondral scaffolds. However, the integration was poorly understood and commonly failed to meet the need of osteochondral scaffolds. In this paper, a biphasic polyethylene glycol (PEG)/β-tricalcium phosphate (β-TCP) scaffold with enhanced interfacial integration was developed. The chondral phase was a PEG hydrogel. The osseous phase was a β-TCP ceramic scaffold. The PEG hydrogel was directly cured on the ceramic interface layer by layer to fabricate osteochondral scaffolds by 3D printing technology. Meanwhile, a series of interface structure were designed with different interface pore area percentages (0/10/20/30/40/50/60%), and interfacial shear test was applied for interface structure optimization (n=6 samples/group). The interfacial shear strength of 30% pore area group was nearly three folds improved compared with that of 0% pore area percentage group, and more than fifty folds improved compared with that of traditional integration (5.91±0.59 kPa). In conclusion, the biomimetic PEG/β-TCP scaffolds with interface structure enhanced integration show promising potential application for osteochondral tissue engineering. PMID:25491954

  7. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts.

  8. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. PMID:26652403

  9. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.

    PubMed

    Wang, Martha O; Vorwald, Charlotte E; Dreher, Maureen L; Mott, Eric J; Cheng, Ming-Huei; Cinar, Ali; Mehdizadeh, Hamidreza; Somo, Sami; Dean, David; Brey, Eric M; Fisher, John P

    2015-01-01

    There is an unmet need for a consistent set of tools for the evaluation of 3D-printed constructs. A toolbox developed to design, characterize, and evaluate 3D-printed poly(propylene fumarate) scaffolds is proposed for vascularized engineered tissues. This toolbox combines modular design and non-destructive fabricated design evaluation, evaluates biocompatibility and mechanical properties, and models angiogenesis.

  10. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.

    PubMed

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette; Dolatshahi-Pirouz, Alireza; Trifol, Jon; Thomsen, Peter; Dufva, Martin; Wolff, Anders; Emnéus, Jenny

    2016-04-11

    Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network.

  11. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.

    PubMed

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette; Dolatshahi-Pirouz, Alireza; Trifol, Jon; Thomsen, Peter; Dufva, Martin; Wolff, Anders; Emnéus, Jenny

    2016-04-11

    Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network. PMID:26902925

  12. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.

    PubMed

    Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier

    2016-02-01

    In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds.

  13. Fabrication of a customized bone scaffold using a homemade medical 3D printer for comminuted fractures

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Shin, Han-Back; Kim, Moo-Sub; Choe, Bo-Young; Kim, Sunmi; Suh, Tae Suk; Lee, Keum Sil; Xing, Lei

    2016-09-01

    The purpose of this study was to show a 3D printed reconstruction model of a bone destroyed by a comminuted fracture. After a thoracic limb of a cow with a comminuted fracture was scanned by using computed tomography, a scaffold was designed by using a 3D modeling tool for its reconstruction and fabricated by using a homemade medical 3D printer. The homemade medical 3D printer was designed for medical use. In order to reconstruct the geometry of the destroyed bone, we use the geometry of a similar section (reference geometry) of normal bone in the 3D modeling process. The missing part between the destroyed ridge and the reference geometry was filled with an effective space by using a manual interpolation. Inexpensive materials and free software were used to construct the medical 3D printer system. The fabrication of the scaffold progressed according to the design of reconstructed bone by using this medical 3D printer. The material of the scaffold was biodegradable material, and could be transplanted into the human body. The fabricated scaffold was correctly inserted into the fractured bone in place of the destroyed portion, with good agreement. According to physical stress test results, the performance of printing resolution was 0.1 mm. The average geometrical error of the scaffold was below 0.3 mm. The reconstructed bone by using the fabricated scaffold was able to support the weight of the human body. No process used to obtain the result was complex or required many resources. The methods and results in this study show several possible clinical applications in fields such as orthopedics or oncology without a need to purchase high-price instruments for 3D printing.

  14. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

    PubMed

    Senatov, F S; Niaza, K V; Zadorozhnyy, M Yu; Maksimkin, A V; Kaloshkin, S D; Estrin, Y Z

    2016-04-01

    In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME.

  15. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    PubMed

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-07-03

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  16. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    PubMed Central

    Rosenzweig, Derek H.; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo. PMID:26151846

  17. Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration

    PubMed Central

    Castro, Nathan J.; Patel, Romil; Zhang, Lijie Grace

    2015-01-01

    Chronic and acute osteochondral defects as a result of osteoarthritis and trauma present a common and serious clinical problem due to the tissue's inherent complexity and poor regenerative capacity. In addition, cells within the osteochondral tissue are in intimate contact with a 3D nanostructured extracellular matrix composed of numerous bioactive organic and inorganic components. As an emerging manufacturing technique, 3D printing offers great precision and control over the microarchitecture, shape and composition of tissue scaffolds. Therefore, the objective of this study is to develop a biomimetic 3D printed nanocomposite scaffold with integrated differentiation cues for improved osteochondral tissue regeneration. Through the combination of novel nano-inks composed of organic and inorganic bioactive factors and advanced 3D printing, we have successfully fabricated a series of novel constructs which closely mimic the native 3D extracellular environment with hierarchical nanoroughness, microstructure and spatiotemporal bioactive cues. Our results illustrate several key characteristics of the 3D printed nanocomposite scaffold to include improved mechanical properties as well as excellent cytocompatibility for enhanced human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation in vitro. The present work further illustrates the effectiveness of the scaffolds developed here as a promising and highly tunable platform for osteochondral tissue regeneration. PMID:26366231

  18. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair.

    PubMed

    Ott, Lindsey M; Zabel, Taylor A; Walker, Natalie K; Farris, Ashley L; Chakroff, Jason T; Ohst, Devan G; Johnson, Jed K; Gehrke, Steven H; Weatherly, Robert A; Detamore, Michael S

    2016-04-01

    Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway. Degradation over 12 weeks revealed that scaffolds with the 3D printed rings had superior properties in tensile and radial compression, with at least a three fold improvement and 8.5-fold improvement, respectively, relative to the other scaffold groups. The ringed scaffolds produced tensile moduli, radial compressive forces, and burst pressures similar to or exceeding physiological forces and native tissue data. Scaffolds with a thicker PCL component had better suture retention and tube flattening recovery properties, with the monolayer of PCL (PCL-only group) exhibiting a 2.3-fold increase in suture retention strength (SRS). Tracheal scaffolds with ring reinforcements have improved mechanical properties, while the fibrous component increased porosity and cell infiltration potential. These scaffolds may be used to treat various trachea defects (patch or circumferential) and have the potential to be employed in other tissue engineering applications. PMID:27097554

  19. In-vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing.

    PubMed

    Meseguer-Olmo, Luis; Vicente-Ortega, Vicente; Alcaraz-Baños, Miguel; Calvo-Guirado, José Luis; Vallet-Regí, María; Arcos, Daniel; Baeza, Alejandro

    2013-07-01

    Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone matrix (DBM) is incorporated, the efficacy of the scaffolds is enhanced, as new bone formation occurs not only in the peripheral portions of the scaffolds but also within its pores after 4 months of implantation. This enhanced performance can be explained in terms of the osteoinductive properties of the DBM in the scaffolds, which have been assessed through the new bone tissue formation when the scaffolds are ectopically implanted.

  20. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering

    PubMed Central

    Maji, Kanchan; Dasgupta, Sudip; Pramanik, Krishna; Bissoyi, Akalabya

    2016-01-01

    The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S) in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30) showed a maximum compressive strength of 2.2 ± 0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue. PMID:26884764

  1. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.

    PubMed

    Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong

    2014-09-01

    Porous magnesium has been recently recognized as a biodegradable metal for bone substitute applications. A novel porous Mg scaffold with three-dimensional (3D) interconnected pores and with a porosity of 33-54% was produced by the fiber deposition hot pressing (FDHP) technology. The microstructure and morphologies of the porous Mg scaffold were characterized by scanning electron microscopy (SEM), and the effects of porosities on the microstructure and mechanical properties of the porous Mg were investigated. Experimental results indicate that the measured Young's modulus and compressive strength of the Mg scaffold are ranged in 0.10-0.37 GPa, and 11.1-30.3 MPa, respectively, which are fairly comparable to those of cancellous bone. Such a porous Mg scaffold having a 3D interconnected network structure has the potential to be used in bone tissue engineering.

  2. Finite Element Analysis of Meniscal Anatomical 3D Scaffolds: Implications for Tissue Engineering

    PubMed Central

    Moroni, L; Lambers, F.M; Wilson, W; van Donkelaar, C.C; de Wijn, JR; Huiskesb, R; van Blitterswijk, C.A

    2007-01-01

    Solid Free-Form Fabrication (SFF) technologies allow the fabrication of anatomical 3D scaffolds from computer tomography (CT) or magnetic resonance imaging (MRI) patients’ dataset. These structures can be designed and fabricated with a variable, interconnected and accessible porous network, resulting in modulable mechanical properties, permeability, and architecture that can be tailored to mimic a specific tissue to replace or regenerate. In this study, we evaluated whether anatomical meniscal 3D scaffolds with matching mechanical properties and architecture are beneficial for meniscus replacement as compared to meniscectomy. After acquiring CT and MRI of porcine menisci, 3D fiber-deposited (3DF) scaffolds were fabricated with different architectures by varying the deposition pattern of the fibers comprising the final structure. The mechanical behaviour of 3DF scaffolds with different architectures and of porcine menisci was measured by static and dynamic mechanical analysis and the effect of these tissue engineering templates on articular cartilage was assessed by finite element analysis (FEA) and compared to healthy conditions or to meniscectomy. Results show that 3DF anatomical menisci scaffolds can be fabricated with pore different architectures and with mechanical properties matching those of natural menisci. FEA predicted a beneficial effect of meniscus replacement with 3D scaffolds in different mechanical loading conditions as compared to meniscectomy. No influence of the internal scaffold architecture was found on articular cartilage damage. Although FEA predictions should be further confirmed by in vitro and in vivo experiments, this study highlights meniscus replacement by SFF anatomical scaffolds as a potential alternative to meniscectomy. PMID:19662124

  3. Metabolic alteration of HepG2 in scaffold-based 3-D culture: proteomic approach.

    PubMed

    Pruksakorn, Dumnoensun; Lirdprapamongkol, Kriengsak; Chokchaichamnankit, Daranee; Subhasitanont, Pantipa; Chiablaem, Khajeelak; Svasti, Jisnuson; Srisomsap, Chantragan

    2010-11-01

    3-D cell culture models are important in cancer biology since they provide improved understanding of tumor microenvironment. We have established a 3-D culture model using HepG2 in natural collagen-based scaffold to mimic the development of small avascular tumor in vivo. Morphological characterization showed that HepG2 colonies grew within the interior of the scaffold and showed enhanced extracellular matrix deposition. High levels of cell proliferation in the outermost regions of the scaffold created a hypoxic microenvironment in the 3-D culture system, as indicated by hypoxia-inducible factor-1α stabilization, detectable by Western blotting and immunohistochemistry. Proteomic studies showed decreased expression of several mitochondrial proteins and increased expression of proteins in anaerobic glycolysis under 3-D culture compared to monolayer culture. Creatine kinase was also upregulated in 3-D culture, indicating its possible role as an important energy buffer system under hypoxic microenvironment. Increased levels of proteins in nucleotide metabolism may relate to cellular energy. Thus, our results suggest that HepG2 cells under 3-D culture adapt their energy metabolism in response to hypoxic conditions. Metabolic alterations in the 3-D culture model may relate to physiological changes relevant to development of small avascular tumor in vivo and their study may improve future therapeutic strategies.

  4. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.

    PubMed

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-10-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds' fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields.

  5. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.

    PubMed

    Liu, I-Hsin; Chang, Shih-Hsin; Lin, Hsin-Yi

    2015-05-13

    A 3D plotting system was used to make chitosan-based tissue scaffolds with interconnected pores using pure chitosan (C) and chitosan cross-linked with pectin (CP) and genipin (CG). A freeze-dried chitosan scaffold (CF/D) was made to compare with C, to observe the effects of structural differences. The fiber size, pore size, porosity, compression strength, swelling ratio, drug release efficacy, and cumulative weight loss of the scaffolds were measured. Osteoblasts were cultured on the scaffolds and their proliferation, type I collagen production, alkaline phosphatase activity, calcium deposition, and morphology were observed. C had a lower swelling ratio, degradation, porosity and drug release efficacy and a higher compressional stiffness and cell proliferation compared to CF/D (p < 0.05). Of the 3D-plotted samples, cells on CP exhibited the highest degree of mineralization after 21 d (p < 0.05). CP also had the highest swelling ratio and fastest drug release, followed by C and CG (p < 0.05). Both CP and CG were stiffer and degraded more slowly in saline solution than C (p < 0.05). In summary, 3D-plotted scaffolds were stronger, less likely to degrade and better promoted osteoblast cell proliferation in vitro compared to the freeze-dried scaffolds. C, CP and CG were structurally similar, and the different crosslinking caused significant changes in their physical and biological performances.

  6. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.

    PubMed

    He, Jiankang; Xia, Peng; Li, Dichen

    2016-01-01

    The replication of native hierarchical structures into synthetic scaffolds is important to direct cell growth and tissue regeneration. However, most of the existing scaffold strategies lack the capability to simultaneously realize the controlled fabrication of macroscopic geometries as well as microscale architectures with the scale similar to living cells. Here we developed a melt electrohydrodynamic printing platform and verified its feasibility to fabricate three-dimensional (3D) tissue-engineered scaffolds with complex curved geometries and microscale fibrous structures. Melting temperature was studied to stably print poly (ε-caprolactone) (PCL) filaments with the size of about 10 μm, which was precisely stacked into 3D straight walls with fine surface quality. By adjusting stage moving speed and directions, 3D PCL scaffolds with curved contours and predefined fiber orientations or spacing were successfully printed. Biological experiments showed that the printed microscale scaffolds had good biocompatibility and facilitated cellular proliferation and alignment in vitro. It is envisioned that the melt electrohydrodynamic printing can potentially provide an innovative tool to fabricate hierarchical scaffolds that mimic the native tissue architectures in a multiscale level. PMID:27490377

  7. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.

    PubMed

    He, Jiankang; Xia, Peng; Li, Dichen

    2016-01-01

    The replication of native hierarchical structures into synthetic scaffolds is important to direct cell growth and tissue regeneration. However, most of the existing scaffold strategies lack the capability to simultaneously realize the controlled fabrication of macroscopic geometries as well as microscale architectures with the scale similar to living cells. Here we developed a melt electrohydrodynamic printing platform and verified its feasibility to fabricate three-dimensional (3D) tissue-engineered scaffolds with complex curved geometries and microscale fibrous structures. Melting temperature was studied to stably print poly (ε-caprolactone) (PCL) filaments with the size of about 10 μm, which was precisely stacked into 3D straight walls with fine surface quality. By adjusting stage moving speed and directions, 3D PCL scaffolds with curved contours and predefined fiber orientations or spacing were successfully printed. Biological experiments showed that the printed microscale scaffolds had good biocompatibility and facilitated cellular proliferation and alignment in vitro. It is envisioned that the melt electrohydrodynamic printing can potentially provide an innovative tool to fabricate hierarchical scaffolds that mimic the native tissue architectures in a multiscale level.

  8. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.

    PubMed

    Liu, I-Hsin; Chang, Shih-Hsin; Lin, Hsin-Yi

    2015-06-01

    A 3D plotting system was used to make chitosan-based tissue scaffolds with interconnected pores using pure chitosan (C) and chitosan cross-linked with pectin (CP) and genipin (CG). A freeze-dried chitosan scaffold (CF/D) was made to compare with C, to observe the effects of structural differences. The fiber size, pore size, porosity, compression strength, swelling ratio, drug release efficacy, and cumulative weight loss of the scaffolds were measured. Osteoblasts were cultured on the scaffolds and their proliferation, type I collagen production, alkaline phosphatase activity, calcium deposition, and morphology were observed. C had a lower swelling ratio, degradation, porosity and drug release efficacy and a higher compressional stiffness and cell proliferation compared to CF/D (p < 0.05). Of the 3D-plotted samples, cells on CP exhibited the highest degree of mineralization after 21 d (p < 0.05). CP also had the highest swelling ratio and fastest drug release, followed by C and CG (p < 0.05). Both CP and CG were stiffer and degraded more slowly in saline solution than C (p < 0.05). In summary, 3D-plotted scaffolds were stronger, less likely to degrade and better promoted osteoblast cell proliferation in vitro compared to the freeze-dried scaffolds. C, CP and CG were structurally similar, and the different crosslinking caused significant changes in their physical and biological performances. PMID:25970802

  9. Bottom-up topography assembly into 3D porous scaffold to mediate cell activities.

    PubMed

    Cheng, Delin; Hou, Jie; Hao, Lijing; Cao, Xiaodong; Gao, Huichang; Fu, Xiaoling; Wang, Yingjun

    2016-08-01

    Native cells live in a three-dimensional (3D) extracellular matrix (ECM) capable of regulating cell activities through various physical and chemical factors. Designed topographies have been well proven to trigger significant difference in cell behaviours. However, present topographies are almost all constructed on two-dimensional (2D) substrates like discs and films, which are far from features like 3D and porosity required in application like bone repair. Here we bottom-up assembled poly(lactic-co-glycolic acid)/calcium carbonate (PLGA/CC) microspheres with superficial porous topography intactly into a 3D porous scaffold. Because the scaffold was obtained through a mild technique, the bioactivity of released BMP-2 was well retained. Mouse bone marrow mesenchymal stem cells (mMSCs) were cultured on produced scaffolds having different 3D topographies. It turned out that osteogenic differentiation of mMSCs did respond to the 3D topographies, while proliferation didn't. Gene expression of αv and β1 integrins revealed that adhesion was supposed to be the underlying mechanism for osteogenic response. The study provides insight into enhancing function of practical scaffolds by elaborate topography design. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1056-1063, 2016.

  10. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    NASA Astrophysics Data System (ADS)

    Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi

    2014-03-01

    The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  11. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds.

    PubMed

    Hofmann, Sandra; Stok, Kathryn S; Kohler, Thomas; Meinel, Anne J; Müller, Ralph

    2014-01-01

    The development of porous scaffolds for tissue engineering applications requires the careful choice of properties, as these influence cell adhesion, proliferation and differentiation. Sterilization of scaffolds is a prerequisite for in vitro culture as well as for subsequent in vivo implantation. The variety of methods used to provide sterility is as diverse as the possible effects they can have on the structural and material properties of the three-dimensional (3-D) porous structure, especially in polymeric or proteinous scaffold materials. Silk fibroin (SF) has previously been demonstrated to offer exceptional benefits over conventional synthetic and natural biomaterials in generating scaffolds for tissue replacements. This study sought to determine the effect of sterilization methods, such as autoclaving, heat-, ethylene oxide-, ethanol- or antibiotic-antimycotic treatment, on porous 3-D SF scaffolds. In terms of scaffold morphology, topography, crystallinity and short-term cell viability, the different sterilization methods showed only few effects. Nevertheless, mechanical properties were significantly decreased by a factor of two by all methods except for dry autoclaving, which seemed not to affect mechanical properties compared to the native control group. These data suggest that SF scaffolds are in general highly resistant to various sterilization treatments. Nevertheless, care should be taken if initial mechanical properties are of interest.

  12. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold.

    PubMed

    Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D

    2015-01-01

    An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.

  13. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration.

    PubMed

    Puértolas, J A; Vadillo, J L; Sánchez-Salcedo, S; Nieto, A; Gómez-Barrena, E; Vallet-Regí, M

    2011-02-01

    There is an acknowledged need for shaping 3-D scaffolds with adequate porosity and mechanical properties for biomedical applications. The mechanical properties under static and cyclic compressive testing of dense and designed porous architecture bioceramic scaffolds based on the biphasic calcium phosphate (BCP) systems and BCP-agarose systems have been evaluated. The dense and designed porous architecture scaffolds in BCP systems exhibited a brittle behaviour. Agarose, a biocompatible and biodegradable hydrogel, has been used to shape designed architecture ceramic-agarose scaffolds following a low-temperature shaping method. Agarose conferred toughness, ductility and a rubbery consistency for strains of up to 60% of in ceramic BCP-agarose systems. This combination of ceramic and organic matrix helps to avoid the inherent brittleness of the bioceramic and enhances the compression resistance of hydrogel. The presence of mechanical hysteresis, permanent deformation after the first cycle and recovery of the master monotonous curve indicate a Mullins-like effect such as that observed in carbon-filled rubber systems. We report this type of mechanical behaviour, the Mullins effect, for the first time in bioceramics and bioceramic-agarose systems.

  14. Evaluating 3D Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering

    PubMed Central

    Wang, Martha O.; Vorwald, Charlotte E.; Dreher, Maureen L.; Mott, Eric J.; Cheng, Ming-Huei; Cinar, Ali; Mehdizadeh, Hamidreza; Somo, Sami; Dean, David; Brey, Eric M.; Fisher, John P.

    2015-01-01

    The recent proliferation of three dimensional (3D) printing technologies has allowed the exploration of increasing complex designs, and, furthermore, the consideration of 3D printed constructs for biological applications. However, there is an unmet need for a consistent set of tools for the design and evaluation of these biological 3D printed constructs, particularly as they relate to engineered tissues. For example, identifying the most advantageous construct parameters for the rapid vascularization of an engineered tissue - a critical parameter in regenerative medicine - is difficult without a common group of measures. We demonstrate here a toolbox to design, characterize, and evaluate 3D printed scaffolds for vascularized tissue regenerative medicine. Our toolbox (1) identifies the range of design specifications using a modular design, (2) nondestructively compares the 3D printed scaffolds to the design, (3) evaluates biocompatibility and mechanical properties, and (4) predicts host vessel integration. As a case study, we designed, fabricated, and evaluated polymer scaffolds using a poly(propylene fumarate) based resin. Our work highlights the potential for these tools to be combined as a consistent methodology for the evaluation of porous 3D printed constructs for regenerative medicine. PMID:25387454

  15. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.

    PubMed

    Renghini, Chiara; Komlev, Vladimir; Fiori, Fabrizio; Verné, Enrica; Baino, Francesco; Vitale-Brovarone, Chiara

    2009-05-01

    The aim of this study was the preparation and characterization of bioactive glass-ceramic scaffolds for bone tissue engineering. For this purpose, a glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O (CEL2) was used. The sponge-replication method was adopted to prepare the scaffolds; specifically, a polymeric skeleton was impregnated with a slurry containing CEL2 powder, polyvinyl alcohol (PVA) as a binding agent and distilled water. The impregnated sponge was then thermally treated to remove the polymeric phase and to sinter the inorganic one. The obtained scaffolds possessed an open and interconnected porosity, analogous to cancellous bone texture, and with a mechanical strength above 2 MPa. Moreover, the scaffolds underwent partial bioresorption due to ion-leaching phenomena. This feature was investigated by X-ray computed microcomputed tomography (micro-CT). Micro-CT is a three-dimensional (3-D) radiographic imaging technique, able to achieve a spatial resolution close to 1 microm(3). The use of synchrotron radiation allows the selected photon energy to be tuned to optimize the contrast among the different phases in the investigated samples. The 3-D scaffolds were soaked in a simulated body fluid (SBF) to study the formation of hydroxyapatite microcrystals on the scaffold struts and on the internal pore walls. The 3-D scaffolds were also soaked in a buffer solution (Tris-HCl) for different times to assess the scaffold bioresorption according to the ISO standard. A gradual resorption of the pores walls was observed during the soakings both in SBF and in Tris-HCl.

  16. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.

    PubMed

    Chen, Shangwu; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2015-12-01

    Preparation of three-dimensional (3D) micropatterned porous scaffolds remains a great challenge for engineering of highly organized tissues such as skeletal muscle tissue and cardiac tissue. Two-dimensional (2D) micropatterned surfaces with periodic features (several nanometers to less than 100 μm) are commonly used to guide the alignment of muscle myoblasts and myotubes and lead to formation of pre-patterned cell sheets. However, cell sheets from 2D patterned surfaces have limited thickness, and harvesting the cell sheets for implantation is inconvenient and can lead to less alignment of myotubes. 3D micropatterned scaffolds can promote cell alignment and muscle tissue formation. In this study, we developed a novel type of 3D porous collagen scaffolds with concave microgrooves that mimic muscle basement membrane to engineer skeletal muscle tissue. Highly aligned and multi-layered muscle bundle tissues were engineered by controlling the size of microgrooves and cell seeding concentration. Myoblasts in the engineered muscle tissue were well-aligned and had high expression of myosin heavy chain and synthesis of muscle extracellular matrix. The microgrooved collagen scaffolds could be used to engineer organized multi-layered muscle tissue for implantation to repair/restore the function of diseased tissues or be used to investigate the cell-cell interaction in 3D microscale topography.

  17. Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity evaluation.

    PubMed

    Wang, Jingyu; Chen, Fengling; Liu, Longwei; Qi, Chunxiao; Wang, Bingjie; Yan, Xiaojun; Huang, Chenyu; Hou, Wei; Zhang, Michael Q; Chen, Yang; Du, Yanan

    2016-06-01

    Accompanied by decreased hepatic functions, epithelial-mesenchymal transition (EMT) was observed in two dimensional (2D) cultured hepatocytes with elongated morphology, loss of polarity and weakened cell-cell interaction, while upgrading to 3D culture has been considered as significant improvement of its 2D counterpart for hepatocyte maintenance. Here we hypothesize that 3D culture enhances hepatic functions through regulating the EMT status. Biomaterial-engineered EMT was achieved by culturing HepaRG as 3D spheroids (SP-3D) or 3D stretched cells (ST-3D) in non-adherent and adherent micro-scaffold respectively. In SP-3D, constrained EMT of HepaRG, a hepatic stem cell line, as represented by increased epithelial markers and decreased mesenchymal markers, was echoed by improved hepatic functions. To investigate the relationship between EMT status and hepatic functions, time-series RNA-Seq and gene network analysis were used for comparing different cell culture models, which identified histone deacetylases (HDACs) as key mediating factors. Protein analysis confirmed that high HDAC activity was correlated with high expression of Cadherin-1 (CDH1) and hepatic function genes, which were decreased upon HDAC inhibitor treatment in SP-3D, suggesting HDACs may play positive role in regulating EMT and hepatic functions. To illustrate the application of 3D micro-scaffold culture in drug safety evaluation, hepatotoxicity and metabolism assays of two hepatotoxins (i.e. N-acetyl-p-aminophenol and Doxorubicin) were performed and SP-3D showed more biomimetic toxicity response, indicating regulation of EMT as a vital consideration in designing 3D hepatocyte culture configuration.

  18. Preparation of 3D fibrin scaffolds for stem cell culture applications.

    PubMed

    Kolehmainen, Kathleen; Willerth, Stephanie M

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue. A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the

  19. Preparation of 3D Fibrin Scaffolds for Stem Cell Culture Applications

    PubMed Central

    Kolehmainen, Kathleen; Willerth, Stephanie M.

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche 1. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues 2. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue.3 A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo4. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors 5. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside 6,7. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis

  20. Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna

    2008-09-01

    Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.

  1. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    PubMed Central

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  2. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications.

    PubMed

    Asa'ad, Farah; Pagni, Giorgio; Pilipchuk, Sophia P; Giannì, Aldo Bruno; Giannobile, William V; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on "3D-printed" ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  3. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Dong, Chanjuan; Yang, Li; Lv, Yonggang

    2015-07-29

    A growing body of evidence has shown that extracellular matrix (ECM) stiffness can modulate stem cell adhesion, proliferation, migration, differentiation, and signaling. Stem cells can feel and respond sensitively to the mechanical microenvironment of the ECM. However, most studies have focused on classical two-dimensional (2D) or quasi-three-dimensional environments, which cannot represent the real situation in vivo. Furthermore, most of the current methods used to generate different mechanical properties invariably change the fundamental structural properties of the scaffolds (such as morphology, porosity, pore size, and pore interconnectivity). In this study, we have developed novel three-dimensional (3D) scaffolds with different degrees of stiffness but the same 3D microstructure that was maintained by using decellularized cancellous bone. Mixtures of collagen and hydroxyapatite [HA: Ca10(PO4)6(OH)2] with different proportions were coated on decellularized cancellous bone to vary the stiffness (local stiffness, 13.00 ± 5.55 kPa, 13.87 ± 1.51 kPa, and 37.7 ± 19.6 kPa; bulk stiffness, 6.74 ± 1.16 kPa, 8.82 ± 2.12 kPa, and 23.61 ± 8.06 kPa). Microcomputed tomography (μ-CT) assay proved that there was no statistically significant difference in the architecture of the scaffolds before or after coating. Cell viability, osteogenic differentiation, cell recruitment, and angiogenesis were determined to characterize the scaffolds and evaluate their biological responses in vitro and in vivo. The in vitro results indicate that the scaffolds developed in this study could sustain adhesion and growth of rat mesenchymal stem cells (MSCs) and promote their osteogenic differentiation. The in vivo results further demonstrated that these scaffolds could help to recruit MSCs from subcutaneous tissue, induce them to differentiate into osteoblasts, and provide the 3D environment for angiogenesis. These findings showed that the method we developed can build scaffolds with

  4. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.

    PubMed

    Rajzer, Izabella; Menaszek, Elżbieta; Kwiatkowski, Ryszard; Planell, Josep A; Castano, Oscar

    2014-11-01

    In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold. PMID:25280695

  5. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.

    PubMed

    Rajzer, Izabella; Menaszek, Elżbieta; Kwiatkowski, Ryszard; Planell, Josep A; Castano, Oscar

    2014-11-01

    In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

  6. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.

  7. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT).

  8. Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.

    PubMed

    Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2013-10-10

    Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups.

  9. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT). PMID:25492194

  10. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics.

    PubMed

    Costello, Cait M; Sorna, Rachel M; Goh, Yih-Lin; Cengic, Ivana; Jain, Nina K; March, John C

    2014-07-01

    Biomimetic in vitro intestinal models are becoming useful tools for studying host-microbial interactions. In the past, these models have typically been limited to simple cultures on 2-D scaffolds or Transwell inserts, but it is widely understood that epithelial cells cultured in 3-D environments exhibit different phenotypes that are more reflective of native tissue, and that different microbial species will preferentially adhere to select locations along the intestinal villi. We used a synthetic 3-D tissue scaffold with villous features that could support the coculture of epithelial cell types with select bacterial populations. Our end goal was to establish microbial niches along the crypt-villus axis in order to mimic the natural microenvironment of the small intestine, which could potentially provide new insights into microbe-induced intestinal disorders, as well as enabling targeted probiotic therapies. We recreated the surface topography of the small intestine by fabricating a biodegradable and biocompatible villous scaffold using poly lactic-glycolic acid to enable the culture of Caco-2 with differentiation along the crypt-villus axis in a similar manner to native intestines. This was then used as a platform to mimic the adhesion and invasion profiles of both Salmonella and Pseudomonas, and assess the therapeutic potential of Lactobacillus and commensal Escherichia coli in a 3-D setting. We found that, in a 3-D environment, Lactobacillus is more successful at displacing pathogens, whereas Nissle is more effective at inhibiting pathogen adhesion. PMID:24798584

  11. The Potential of Encapsulating “Raw Materials” in 3D Osteochondral Gradient Scaffolds

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, BanuPriya; Sutherland, Amanda; Detamore, Michael S.

    2015-01-01

    Scaffolds with continuous gradients in material composition and bioactive signals enable a smooth transition of properties at the interface. Components like chondroitin sulfate (CS) and bioactive glass (BG) in 3D scaffolds may serve as “raw materials” for synthesis of new extracellular matrix (ECM), and may have the potential to completely or partially replace expensive growth factors. We hypothesized that scaffolds with gradients of ECM components would enable superior performance of engineered constructs. Raw material encapsulation altered the appearance, structure, porosity, and degradation of the scaffolds. They allowed the scaffolds to better retain their 3D structure during culture and provided a buffering effect to the cells in culture. Following seeding of rat mesenchymal stem cells, there were several instances where glycosaminoglycan (GAG), collagen, or calcium contents were higher with the scaffolds containing raw materials (CS or BG) than with those containing transforming growth factor (TGF)-β3 or bone morphogenetic protein (BMP)-2. It was also noteworthy that a combination of both CS and TGF-β3 increased the secretion of collagen type II. Moreover, cells seeded in scaffolds containing opposing gradients of CS/TGF-β3 and BG/BMP-2 produced clear regional variations in the secretion of tissue-specific ECM. The study demonstrated raw materials have the potential to create a favorable microenvironment for cells; they can significantly enhance the synthesis of certain extracellular matrix (ECM) components when compared to expensive growth factors; either alone or in combination with growth factors they can enhance the secretion of tissue specific matrix proteins. Raw materials are promising candidates that can be used to either replace or be used in combination with growth factors. Success with raw materials in lieu of growth factors could have profound implications in terms of lower cost and faster regulatory approval for more rapid translation of

  12. Evaluation of 3D nano-macro porous bioactive glass scaffold for hard tissue engineering.

    PubMed

    Wang, S; Falk, M M; Rashad, A; Saad, M M; Marques, A C; Almeida, R M; Marei, M K; Jain, H

    2011-05-01

    Recently, nano-macro dual-porous, three-dimensional (3D) glass structures were developed for use as bioscaffolds for hard tissue regeneration, but there have been concerns regarding the interconnectivity and homogeneity of nanopores in the scaffolds, as well as the cytotoxicity of the environment deep inside due to limited fluid access. Therefore, mercury porosimetry, nitrogen absorption, and TEM have been used to characterize nanopore network of the scaffolds. In parallel, viability of MG 63 human osteosarcoma cells seeded on scaffold surface was investigated by fluorescence, confocal and electron microscopy methods. The results show that cells attach, migrate and penetrate inside the glass scaffold with high proliferation and viability rate. Additionally, scaffolds were implanted under the skin of a male New Zealand rabbit for in vivo animal test. Initial observations show the formation of new tissue with blood vessels and collagen fibers deep inside the implanted scaffolds with no obvious inflammatory reaction. Thus, the new nano-macro dual-porous glass structure could be a promising bioscaffold for use in regenerative medicine and tissue engineering for bone regeneration. PMID:21445655

  13. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds.

    PubMed

    Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol, Jon; Szabo, Peter; Burri, Harsha Vardhan Reddy; Canali, Chiara; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2015-10-01

    One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting process. The PVA mould network defines the channels and is dissolved after curing the polymer casted around it. The printing parameters determined the PVA filament density in the sacrificial structure and this density resulted in different stiffness of the corresponding elastomer replica. It was possible to achieve 80% porosity corresponding to about 150 cm(2)/cm(3) surface to volume ratio. The process is easily scalable as demonstrated by fabricating a 75 cm(3) scaffold with about 16,000 interconnected channels (about 1m(2) surface area) and with a channel to channel distance of only 78 μm. To our knowledge this is the largest scaffold ever to be produced with such small feature sizes and with so many structured channels. The fabricated scaffolds were applied for in-vitro culturing of hepatocytes over a 12-day culture period. Smaller scaffolds (6×4 mm) were tested for cell culturing and could support homogeneous cell growth throughout the scaffold. Presumably, the diffusion of oxygen and nutrient throughout the channel network is rapid enough to support cell growth. In conclusion, the described process is scalable, compatible with cell culture, rapid, and inexpensive. PMID:26117791

  14. 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping.

    PubMed

    Lo, Yu-Chen; Senese, Silvia; Damoiseaux, Robert; Torres, Jorge Z

    2016-08-19

    Target identification remains a major challenge for modern drug discovery programs aimed at understanding the molecular mechanisms of drugs. Computational target prediction approaches like 2D chemical similarity searches have been widely used but are limited to structures sharing high chemical similarity. Here, we present a new computational approach called chemical similarity network analysis pull-down 3D (CSNAP3D) that combines 3D chemical similarity metrics and network algorithms for structure-based drug target profiling, ligand deorphanization, and automated identification of scaffold hopping compounds. In conjunction with 2D chemical similarity fingerprints, CSNAP3D achieved a >95% success rate in correctly predicting the drug targets of 206 known drugs. Significant improvement in target prediction was observed for HIV reverse transcriptase (HIVRT) compounds, which consist of diverse scaffold hopping compounds targeting the nucleotidyltransferase binding site. CSNAP3D was further applied to a set of antimitotic compounds identified in a cell-based chemical screen and identified novel small molecules that share a pharmacophore with Taxol and display a Taxol-like mechanism of action, which were validated experimentally using in vitro microtubule polymerization assays and cell-based assays.

  15. Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications.

    PubMed

    Mandal, Biman B; Kundu, Subhas C

    2008-09-01

    This paper describes a new source for fabricating high-strength, non-bioengineered silk gland fibroin 3D scaffolds from Indian tropical tasar silkworm, Antheraea mylitta using SDS for dissolution. The scaffolds were fabricated by freeze drying at different prefreezing temperatures for pore size and porosity optimization. Superior mechanical properties with compressive strength in the range of 972 kPa were observed. The matrices were degraded by proteases within 28 d of incubation. Biocompatibility was assessed by feline fibroblast culture in vitro and confocal microscopy further confirmed adherence, spreading, and proliferation of primary dermal fibroblasts. Results indicate nonmulberry 3D silk gland fibroin protein as an inexpensive, high-strength, slow biodegradable, biocompatible, and alternative natural biomaterial. [Figure: see text]. PMID:18702171

  16. Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Demina, T. S.; Zaytseva-Zotova, D. S.; Timashev, P. S.; Bagratashvili, V. N.; Bardakova, K. N.; Sevrin, Ch; Svidchenko, E. A.; Surin, N. M.; Markvicheva, E. A.; Grandfils, Ch; Akopova, T. A.

    2015-07-01

    Chitosan-g-oligo (L, D-lactide) copolymers were synthesized and assessed to fabricate a number of 3D scaffolds using a variety of technologies such as oil/water emulsion evaporation technique, freeze-drying and two-photon photopolymerization. Solid-state copolymerization method allowed us to graft up to 160 wt-% of oligolactide onto chitosan backbone via chitosan amino group acetylation with substitution degree reaching up to 0.41. Grafting of hydrophobic oligolactide side chains with polymerization degree up to 10 results in chitosan amphiphilic properties. The synthesized chitosan-g-lactide copolymers were used to design 3D scaffolds for tissue engineering such as spherical microparticles and macroporous hydrogels.

  17. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.

    PubMed

    Olubamiji, Adeola D; Izadifar, Zohreh; Si, Jennifer L; Cooper, David M L; Eames, B Frank; Chen, Daniel X B

    2016-06-01

    Three-dimensional (3D)-printed poly(ε)-caprolactone (PCL)-based scaffolds are increasingly being explored for cartilage tissue engineering (CTE) applications. However, ensuring that the mechanical properties of these PCL-based constructs are comparable to that of articular cartilage that they are meant to regenerate is an area that has been under-explored. This paper presents the effects of PCL's molecular weight (MW) and scaffold's pore geometric configurations; strand size (SZ), strand spacing (SS), and strand orientation (SO), on mechanical properties of 3D-printed PCL scaffolds. The results illustrate that MW has significant effect on compressive moduli and yield strength of 3D-printed PCL scaffolds. Specifically, PCL with MW of 45 K was a more feasible choice for fabrication of visco-elastic, flexible and load-bearing PCL scaffolds. Furthermore, pore geometric configurations; SZ, SS, and SO, all significantly affect on tensile moduli of scaffolds. However, only SZ and SS have statistically significant effects on compressive moduli and porosity of these scaffolds. That said, inverse linear relationship was observed between porosity and mechanical properties of 3D-printed PCL scaffolds in Pearson's correlation test. Altogether, this study illustrates that modulating MW of PCL and pore geometrical configurations of the scaffolds enabled design and fabrication of PCL scaffolds with mechanical and biomimetic properties that better mimic mechanical behaviour of human articular cartilage. Thus, the modulated PCL scaffold proposed in this study is a framework that offers great potentials for CTE applications. PMID:27328736

  18. Mastoid obliteration using 3D PCL scaffold in combination with alginate and rhBMP-2.

    PubMed

    Jang, Chul Ho; Kim, Min Seong; Cho, Yong Beom; Jang, Yoon Seok; Kim, Geun Hyung

    2013-11-01

    Various materials, both biological and alloplastic, have been used for mastoid obliteration after canal wall-down mastoidectomy in chronic otitis media. The purpose of this study is to investigate the osteoinductive potential of PCL scaffolds in mastoid obliteration, and to test that osteoinductivity can be enhanced by coating PCL with alginate and rhBMP-2. The in vitro biocompatibilities of the scaffolds were examined using osteoblast-like cells (MG63). Cell-morphology and calcium deposition were assessed. Based on scanning electron microscope (SEM) images, the cells grew sporadically on the surfaces of the struts in the PCL scaffold, while the entire struts of the PCL/alginate/BMP-2 scaffold was covered with the cells. Furthermore, the PCL/alginate/BMP-2 scaffold showed significantly higher calcium deposition than the PCL/alginate scaffold. Micro-CT showed osteogenesis in the pores of the 3D PCL scaffold in the experimental group, compared to the control group. Confocal microscopic findings showed that the honeycomb appearance of the PCL structure remained in the control group (pure PCL), but significant amount of bone remodeling in the experimental group (PCL/alginate/BMP-2). Histomorphometric analysis showed that the experimental group demonstrated a significantly higher amount (p=0.014) of new bone formation with 50.2 ± 6.5% (mean ± SD), compared to 10.2 ± 3.5% for the control group. Based on these in vitro and in vivo results, the use of the PCL/alginate/BMP-2 scaffold seemed to be a promising technique for the mastoid obliteration.

  19. Design of novel 3D gene activated PEG scaffolds with ordered pore structure.

    PubMed

    Orsi, Silvia; Guarnieri, Daniela; Netti, Paolo A

    2010-03-01

    The ability to genetically modify cells seeded inside synthetic hydrogel scaffolds offers a suitable approach to induce and control tissue repair and regeneration guiding cell fate. In fact the transfected cells can act as local in vivo bioreactor, secreting plasmid encoded proteins that augment tissue regeneration processes. We have realized a DNA bioactivated high porous poly(ethylene glycol) (PEG) matrix by polyethyleneimine (PEI)/DNA complexes adsorption. As the design of the microarchitectural features of a scaffold also contributes to promote and influence cell fate, we appropriately designed the inner structure of gene activated PEG hydrogels by gelatine microparticles templating. Microarchitectural properties of the scaffold were analysed by scanning electron microscopy. 3D cell migration and transfection were monitored through time-lapse videomicroscopy and confocal laser scanning microscopy.

  20. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    NASA Astrophysics Data System (ADS)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  1. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    PubMed

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  2. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.

    PubMed

    Wang, Jianglin; Yang, Mingying; Zhu, Ye; Wang, Lin; Tomsia, Antoni P; Mao, Chuanbin

    2014-08-01

    A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs.

  3. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold

    PubMed Central

    Xu, Ruodan; Taskin, Mehmet Berat; Rubert, Marina; Seliktar, Dror; Besenbacher, Flemming; Chen, Menglin

    2015-01-01

    Fibroblasts are ubiquitous cells that constitute the stroma of virtually all tissues and play vital roles in homeostasis. The poor innate healing capacity of fibroblastic tissues is attributed to the scarcity of fibroblasts as collagen-producing cells. In this study, we have developed a functional ECM mimicking scaffold that is capable to supply spatial allocation of stem cells as well as anchorage and storage of growth factors (GFs) to direct stem cells differentiate towards fibroblasts. Electrospun PCL fibers were embedded in a PEG-fibrinogen (PF) hydrogel, which was infiltrated with connective tissue growth factor (CTGF) to form the 3D nanocomposite PFP-C. The human induced pluripotent stem cells derived mesenchymal stem cells (hiPS-MSCs) with an advance in growth over adult MSCs were applied to validate the fibrogenic capacity of the 3D nanocomposite scaffold. The PFP-C scaffold was found not only biocompatible with the hiPS-MSCs, but also presented intriguingly strong fibroblastic commitments, to an extent comparable to the positive control, tissue culture plastic surfaces (TCP) timely refreshed with 100% CTGF. The novel scaffold presented not only biomimetic ECM nanostructures for homing stem cells, but also sufficient cell-approachable bio-signaling cues, which may synergistically facilitate the control of stem cell fates for regenerative therapies. PMID:25684543

  4. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    PubMed

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  5. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity

    PubMed Central

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  6. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    PubMed

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  7. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold.

    PubMed

    Wang, Hai; Wu, Gui; Zhang, Jing; Zhou, Kui; Yin, Bo; Su, Xinlin; Qiu, Guixing; Yang, Guang; Zhang, Xianglin; Zhou, Gang; Wu, Zhihong

    2016-05-01

    Recently, 3D printing as effective technology has been highlighted in the biomedical field. Previously, a porous hydroxyapatite (HA) scaffold with the biocompatibility and osteoconductivity has been developed by this method. However, its osteoinductivity is limited. The main purpose of this study was to improve it by the introduction of recombinant human bone morphogenetic protein-2 (rhBMP-2). This scaffold was developed by coating rhBMP-2-delivery microspheres with collagen. These synthesized scaffolds were characterized by Scanning Electron Microscopy (SEM), a delivery test in vitro, cell culture, and the experiments in vivo by a Micro-computed tomography (μCT) scan and histological evaluation of VanGieson staining. SEM results indicated the surface of scaffolds were more fit for the adhesion of hMSCs to coat collagen/rhBMP-2 microspheres. Biphasic release of rhBMP-2 could continue for more than 21 days, and keep its osteoinductivity to induce osteogenic differentiation of hMSCs in vitro. In addition, the experiments in vivo showed that the scaffold had a good bone regeneration capacity. These findings demonstrate that the HA/Collagen/Chitosan Microspheres system can simultaneously achieve localized long-term controlled release of rhBMP-2 and bone regeneration, which provides a promising route for improving the treatment of bone defects.

  8. Physicochemical properties of 3D collagen-CS scaffolds for potential use in neural tissue engineering.

    PubMed

    Pietrucha, Krystyna

    2015-09-01

    Collagen-based composite scaffolds have considerable potential due to their well-known ability to regenerate skin, bone and cartilage. However, the precise composition and structure of scaffolds that optimize their interaction with neural cells remains incompletely understood and yet to be explored. In the present study, a new family of bi-component 3D scaffolds consisting of collagen (Col) and chondroitin sulphate (CS) were synthesized using a two-stage process: multiple freeze-drying followed by carbodiimide modification. Col-CS matrices had an average pore diameter of 31 μm and a relatively high surface area to pore volume ratio. Importantly, the FTIR data indicated that the ratio between the intensity of amide III and 1452 cm(-1) for Col-CS scaffold was 0.87, which indicates that the Col triple helix was preserved during the formation of the bond between Col and CS. All experiments also clearly showed that the Col-CS matrices have a lower enzyme sensitivity and higher thermal resistance than Col alone. These differences are likely due to the relatively large amount of CS in the collagen sponges, which hinders access for attack at specific active sites of the Col triple helix. Improved binary composite scaffolds were designed for neural tissue engineering applications.

  9. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    PubMed

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-01

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.

  10. Carboxy-Methyl-Cellulose (CMC) hydrogel-filled 3-D scaffold: Preliminary study through a 3-D antiproliferative activity of Centella asiatica extract

    NASA Astrophysics Data System (ADS)

    Aizad, Syazwan; Yahaya, Badrul Hisham; Zubairi, Saiful Irwan

    2015-09-01

    This study focuses on the effects of using the water extract from Centella asiatica on the mortality of human lung cancer cells (A549) with the use of novel 3-D scaffolds infused with CMC hydrogel. A biodegradable polymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used in this study as 3-D scaffolds, with some modifications made by introducing the gel structure on its pore, which provides a great biomimetic microenvironment for cells to grow apart from increasing the interaction between the cells and cell-bioactive extracts. The CMC showed a good hydrophilic characteristic with mean contact angle of 24.30 ± 22.03°. To ensure the CMC gel had good attachments with the scaffolds, a surface treatment was made before the CMC gel was infused into the scaffolds. The results showed that these modified scaffolds contained 42.41 ± 0.14% w/w of CMC gel, which indicated that the gel had already filled up the entire pore of 3-D scaffolds. Besides, the infused hydrogel scaffolds took only 24 hours to be saturated when absorbing the water. The viability of cancer cells by MTS assay after being treated with Centella asiatica showed that the scaffolds infused with CMC hydrogel had the cell viability of 46.89 ± 1.20% followed by porous 3-D model with 57.30 ± 1.60% of cell viability, and the 2-D model with 67.10 ± 1.10% of cell viability. The inhibitory activity in cell viability between 2-D and 3-D models did not differ significantly (p>0.05) due to the limitation of time in incubating the extract with the cell in the 3-D model microenvironment. In conclusion, with the application of 3-D scaffolds infused with CMC hydrogel, the extracts of Centella asiatica has been proven to have the ability to kill cancer cells and have a great potential to become one of the alternative methods in treating cancer patients.

  11. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    PubMed Central

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D’Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs. PMID:25482337

  12. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models.

    PubMed

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D'Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs.

  13. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.

    PubMed

    Mott, Eric J; Busso, Mallory; Luo, Xinyi; Dolder, Courtney; Wang, Martha O; Fisher, John P; Dean, David

    2016-04-01

    Our recent investigations into the 3D printing of poly(propylene fumarate) (PPF), a linear polyester, using a DMD-based system brought us to a resin that used titanium dioxide (TiO2) as an ultraviolet (UV) filter for controlling cure depth. However, this material hindered the 3D printing process due to undesirable lateral or "dark" curing (i.e., in areas not exposed to light from the DMD chip). Well known from its use in sunscreen, another UV filter, oxybenzone, has previously been used in conjunction with TiO2. In this study we hypothesize that combining these two UV filters will result in a synergistic effect that controls cure depth and avoids dark cure. A resin mixture (i.e., polymer, initiator, UV filters) was identified that worked well. The resin was then further characterized through mechanical testing, cure testing, and cytotoxicity testing to investigate its use as a material for bone tissue engineering scaffolds. Results show that the final resin eliminated dark cure as shown through image analysis. Mechanically the new scaffolds proved to be far weaker than those printed from previous resins, with compressive strengths of 7.8 ± 0.5 MPa vs. 36.5 ± 1.6 MPa, respectively. The new scaffolds showed a 90% reduction in elastic modulus and a 74% increase in max strain. These properties may be useful in tissue engineering applications where resorption is required. Initial cytotoxicity evaluation was negative. As hypothesized, the use of TiO2 and oxybenzone showed synergistic effects in the 3D printing of PPF tissue engineering scaffolds. PMID:26838854

  14. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.

    PubMed

    Mott, Eric J; Busso, Mallory; Luo, Xinyi; Dolder, Courtney; Wang, Martha O; Fisher, John P; Dean, David

    2016-04-01

    Our recent investigations into the 3D printing of poly(propylene fumarate) (PPF), a linear polyester, using a DMD-based system brought us to a resin that used titanium dioxide (TiO2) as an ultraviolet (UV) filter for controlling cure depth. However, this material hindered the 3D printing process due to undesirable lateral or "dark" curing (i.e., in areas not exposed to light from the DMD chip). Well known from its use in sunscreen, another UV filter, oxybenzone, has previously been used in conjunction with TiO2. In this study we hypothesize that combining these two UV filters will result in a synergistic effect that controls cure depth and avoids dark cure. A resin mixture (i.e., polymer, initiator, UV filters) was identified that worked well. The resin was then further characterized through mechanical testing, cure testing, and cytotoxicity testing to investigate its use as a material for bone tissue engineering scaffolds. Results show that the final resin eliminated dark cure as shown through image analysis. Mechanically the new scaffolds proved to be far weaker than those printed from previous resins, with compressive strengths of 7.8 ± 0.5 MPa vs. 36.5 ± 1.6 MPa, respectively. The new scaffolds showed a 90% reduction in elastic modulus and a 74% increase in max strain. These properties may be useful in tissue engineering applications where resorption is required. Initial cytotoxicity evaluation was negative. As hypothesized, the use of TiO2 and oxybenzone showed synergistic effects in the 3D printing of PPF tissue engineering scaffolds.

  15. Fabrication of 3D Scaffolds with Nano-Hydroxyapatite for Improving the Preosteoblast Cell-Biological Performance.

    PubMed

    Roh, Hee-Sang; Myung, Sung-Woon; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-08-01

    Three-dimensional (3D) scaffolds fabricated by rapid prototyping techniques have many merits for tissue engineering applications, due to its controllable properties such as porosity, pore size and structural shape. Nonetheless, low cell seeding efficiency remains drawback. In this study, poly-caprolactone (PCL) composite 3D extruded scaffolds were modified with nano hydroxyapatite (n-HAp). PCL/n-HAp 3D scaffold surface was treated with oxygen plasma to improve the preosteoblast cell seeding efficiency and proliferation. The results indicate that oxygen plasma is useful technique to improve the cell affinity.

  16. Electrical and Neurotrophin Enhancement of Neurite Outgrowth within a 3D Collagen Scaffold

    PubMed Central

    Adams, Robert D.; Rendell, Sara R.; Counts, Lauren R.; Papke, Jason B.; Willits, Rebecca K.; Harkins, Amy B.

    2016-01-01

    Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 hrs in culture media containing nerve growth factor (NGF, 10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8–10 V/m DC, then incubated for 24 hrs with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment. PMID:24710795

  17. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    PubMed

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-06-01

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm). PMID:27219645

  18. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold. PMID:25543661

  19. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  20. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds.

    PubMed

    Carlson, Aaron L; Bennett, Neal K; Francis, Nicola L; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C; Hart, Ronald P; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P; Moghe, Prabhas V

    2016-01-01

    Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼ 3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼ 38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594

  1. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds

    PubMed Central

    Carlson, Aaron L.; Bennett, Neal K.; Francis, Nicola L.; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C.; Hart, Ronald P.; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P.; Moghe, Prabhas V.

    2016-01-01

    Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594

  2. Ligand scaffold hopping combining 3D maximal substructure search and molecular similarity

    PubMed Central

    Quintus, Flavien; Sperandio, Olivier; Grynberg, Julien; Petitjean, Michel; Tuffery, Pierre

    2009-01-01

    Background Virtual screening methods are now well established as effective to identify hit and lead candidates and are fully integrated in most drug discovery programs. Ligand-based approaches make use of physico-chemical, structural and energetics properties of known active compounds to search large chemical libraries for related and novel chemotypes. While 2D-similarity search tools are known to be fast and efficient, the use of 3D-similarity search methods can be very valuable to many research projects as integration of "3D knowledge" can facilitate the identification of not only related molecules but also of chemicals possessing distant scaffolds as compared to the query and therefore be more inclined to scaffolds hopping. To date, very few methods performing this task are easily available to the scientific community. Results We introduce a new approach (LigCSRre) to the 3D ligand similarity search of drug candidates. It combines a 3D maximum common substructure search algorithm independent on atom order with a tunable description of atomic compatibilities to prune the search and increase its physico-chemical relevance. We show, on 47 experimentally validated active compounds across five protein targets having different specificities, that for single compound search, the approach is able to recover on average 52% of the co-actives in the top 1% of the ranked list which is better than gold standards of the field. Moreover, the combination of several runs on a single protein target using different query active compounds shows a remarkable improvement in enrichment. Such Results demonstrate LigCSRre as a valuable tool for ligand-based screening. Conclusion LigCSRre constitutes a new efficient and generic approach to the 3D similarity screening of small compounds, whose flexible design opens the door to many enhancements. The program is freely available to the academics for non-profit research at: . PMID:19671127

  3. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth.

    PubMed

    Cooke, Malcolm N; Fisher, John P; Dean, David; Rimnac, Clare; Mikos, Antonios G

    2003-02-15

    A novel approach to the manufacture of biodegradable polymeric scaffolds for tissue-engineering utilizing stereolithography (SLA) is presented. SLA is a three-dimensional (3D) printing method that uses an ultraviolet laser to photo-crosslink a liquid polymer substrate. The current generation of SLA devices provide a 3D printing resolution of 0.1 mm. The experiments utilized a biodegradable resin mixture of diethyl fumarate (DEF), poly(propylene fumarate) (PPF), and a photoinitiator, bisacylphosphine oxide (BAPO). The PPF is crosslinked with the use of the SLA's UV laser (325-nm wavelength). An SLA device was retrofitted with a custom fixture build tank enclosing an elevator-driven build table. A 3D prototype model testing the manufacturing control this device provides was created in a computer-aided-design package. The resulting geometric data were used to drive the SLA process, and a DEF/PPF prototype part was successfully manufactured. These scaffolds have application in the tissue engineering of bony substrates.

  4. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth.

    PubMed

    Cooke, Malcolm N; Fisher, John P; Dean, David; Rimnac, Clare; Mikos, Antonios G

    2003-02-15

    A novel approach to the manufacture of biodegradable polymeric scaffolds for tissue-engineering utilizing stereolithography (SLA) is presented. SLA is a three-dimensional (3D) printing method that uses an ultraviolet laser to photo-crosslink a liquid polymer substrate. The current generation of SLA devices provide a 3D printing resolution of 0.1 mm. The experiments utilized a biodegradable resin mixture of diethyl fumarate (DEF), poly(propylene fumarate) (PPF), and a photoinitiator, bisacylphosphine oxide (BAPO). The PPF is crosslinked with the use of the SLA's UV laser (325-nm wavelength). An SLA device was retrofitted with a custom fixture build tank enclosing an elevator-driven build table. A 3D prototype model testing the manufacturing control this device provides was created in a computer-aided-design package. The resulting geometric data were used to drive the SLA process, and a DEF/PPF prototype part was successfully manufactured. These scaffolds have application in the tissue engineering of bony substrates. PMID:12516080

  5. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  6. Highly Porous Gelatin Reinforced 3D Scaffolds for Articular Cartilage Regeneration.

    PubMed

    Amadori, Sofia; Torricelli, Paola; Panzavolta, Silvia; Parrilli, Annapaola; Fini, Milena; Bigi, Adriana

    2015-07-01

    3D highly porous (93% total porosity) gelatin scaffolds were prepared according to a novel, simple method, which implies gelatin foaming, gelification, soaking into ethanol and successive freeze-drying. Reinforcement of the as-prepared scaffolds (GEL) was performed through immersion in aqueous solutions at different gelatin concentrations. Reinforcement solutions with and without genipin addition allowed to prepare two series of samples:cross-linked and uncross-linked samples, respectively. The amount of gelatin adsorbed onto the reinforced samples increases as a function of gelatin concentration in solution and provokes a drastic improvement of the compressive modulus and collapse strength up to values of about 30 and 4 MPa, respectively. The open and interconnected porosity, although slightly reduced, is still of the order of 80% in the samples reinforced with the highest concentration of gelatin. Water uptake ability evaluated after immersion in PBS for 20 s decreases with gelatin reinforcement. The presence of genipin in cross-linked samples reduces gelatin release and stabilizes the scaffolds in solution. Chondrocytes from human articular cartilage adhere, proliferate, and penetrate into the scaffolds. The evaluation of differentiation markers both on the supernatants of cell culture and by means of quantitative polymerase chain reaction (qPCR) indicates a dose-dependent promotion of cell differentiation.

  7. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    NASA Astrophysics Data System (ADS)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  8. Two-photon polymerization of 3-D zirconium oxide hybrid scaffolds for long-term stem cell growth.

    PubMed

    Skoog, Shelby A; Nguyen, Alexander K; Kumar, Girish; Zheng, Jiwen; Goering, Peter L; Koroleva, Anastasia; Chichkov, Boris N; Narayan, Roger J

    2014-06-01

    Two-photon polymerization is a technique that involves simultaneous absorption of two photons from a femtosecond laser for selective polymerization of a photosensitive material. In this study, two-photon polymerization was used for layer-by-layer fabrication of 3-D scaffolds composed of an inorganic-organic zirconium oxide hybrid material. Four types of scaffold microarchitectures were created, which exhibit layers of parallel line features at various orientations as well as pores between the line features. Long-term cell culture studies involving human bone marrow stromal cells were conducted using these 3-D scaffolds. Cellular adhesion and proliferation were demonstrated on all of the scaffold types; tissuelike structure was shown to span the pores. This study indicates that two-photon polymerization may be used to create microstructured scaffolds out of an inorganic-organic zirconium oxide hybrid material for use in 3-D tissue culture systems.

  9. Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation.

    PubMed

    Marino, Attilio; Barsotti, Jonathan; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Labardi, Massimiliano; Mattoli, Virgilio; Ciofani, Gianni

    2015-11-25

    In this letter, we report on the fabrication, the characterization, and the in vitro testing of structures suitable for cell culturing, prepared through two-photon polymerization of a nanocomposite resist. More in details, commercially available Ormocomp has been doped with piezoelectric barium titanate nanoparticles, and bioinspired 3D structures resembling trabeculae of sponge bone have been fabricated. After an extensive characterization, preliminary in vitro testing demonstrated that both the topographical and the piezoelectric cues of these scaffolds are able to enhance the differentiation process of human SaOS-2 cells. PMID:26548588

  10. Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation.

    PubMed

    Marino, Attilio; Barsotti, Jonathan; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Labardi, Massimiliano; Mattoli, Virgilio; Ciofani, Gianni

    2015-11-25

    In this letter, we report on the fabrication, the characterization, and the in vitro testing of structures suitable for cell culturing, prepared through two-photon polymerization of a nanocomposite resist. More in details, commercially available Ormocomp has been doped with piezoelectric barium titanate nanoparticles, and bioinspired 3D structures resembling trabeculae of sponge bone have been fabricated. After an extensive characterization, preliminary in vitro testing demonstrated that both the topographical and the piezoelectric cues of these scaffolds are able to enhance the differentiation process of human SaOS-2 cells.

  11. Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds.

    PubMed

    Legemate, K; Tarafder, S; Jun, Y; Lee, C H

    2016-07-01

    The temporomandibular joint (TMJ) disc is a heterogeneous fibrocartilaginous tissue positioned between the mandibular condyle and glenoid fossa of the temporal bone, with important roles in TMJ functions. Tissue engineering TMJ discs has emerged as an alternative approach to overcoming limitations of current treatments for TMJ disorders. However, the anisotropic collagen orientation and inhomogeneous fibrocartilaginous matrix distribution present challenges in the tissue engineering of functional TMJ discs. Here, we developed 3-dimensional (3D)-printed anatomically correct scaffolds with region-variant microstrand alignment, mimicking anisotropic collagen alignment in the TMJ disc and corresponding mechanical properties. Connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) were then delivered in the scaffolds by spatially embedding CTGF- or TGFβ3-encapsulated microspheres (µS) to reconstruct the regionally variant fibrocartilaginous matrix in the native TMJ disc. When cultured with human mesenchymal stem/progenitor cells (MSCs) for 6 wk, 3D-printed scaffolds with CTGF/TGFβ3-µS resulted in a heterogeneous fibrocartilaginous matrix with overall distribution of collagen-rich fibrous structure in the anterior/posterior (AP) bands and fibrocartilaginous matrix in the intermediate zone, reminiscent of the native TMJ disc. High dose of CTGF/TGFβ3-µS (100 mg µS/g of scaffold) showed significantly more collagen II and aggrecan in the intermediate zone than a low dose (50 mg µS/g of scaffold). Similarly, a high dose of CTGF/TGFβ3-µS yielded significantly higher collagen I expression in the AP bands compared with the low-dose and empty µS. From stress relaxation tests, the ratio of relaxation modulus to instantaneous modulus was significantly smaller with CTGF/TGFβ3-µS than empty µS. Similarly, a significantly higher coefficient of viscosity was achieved with the high dose of CTGF/TGFβ3-µS compared with the low-dose and empty

  12. Creation of a long-lifespan ciliated epithelial tissue structure using a 3D collagen scaffold

    PubMed Central

    Wang, Yuchi; Wong, Lid B.; Mao, Hua

    2009-01-01

    We describe a method of using a 3D collagen gel scaffold applied at the air-liquid interface to culture dissociated primary tracheal-bronchial ciliated cells into a ciliated epithelial tissue structure (CETS). This 3D collagen gel culture system enables the induction of ciliogenesis and continuously provides support, maintenance, development, differentiation and propagation for the growth of cilia into the CETS. The CETS developed by this system resembles the ciliary metachronal motility and morphological, histological and physiopharmacological characteristics of cells found in native and in vivo ciliated epithelia. The CETS can be sustained for months with a straightforward and simple maintenance protocol. The integrity of the functional ciliary activity of this CETS enables the evaluation of long-term effects of many pulmonary drug candidates without using animals. PMID:19836831

  13. A Tunable Scaffold of Microtubular Graphite for 3D Cell Growth

    PubMed Central

    2016-01-01

    Aerographite (AG) is a novel carbon-based material that exists as a self-supportive 3D network of interconnected hollow microtubules. It can be synthesized in a variety of architectures tailored by the growth conditions. This flexibility in creating structures presents interesting bioengineering possibilities such as the generation of an artificial extracellular matrix. Here we have explored the feasibility and potential of AG as a scaffold for 3D cell growth employing cyclic RGD (cRGD) peptides coupled to poly(ethylene glycol) (PEG) conjugated phospholipids for surface functionalization to promote specific adhesion of fibroblast cells. Successful growth and invasion of the bulk material was followed over a period of 4 days. PMID:27258400

  14. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering.

    PubMed

    Li, Jianhua; Baker, Bryan A; Mou, Xiaoning; Ren, Na; Qiu, Jichuan; Boughton, Robert I; Liu, Hong

    2014-04-01

    With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering.

  15. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  16. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  17. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-09-06

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application.

  18. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration.

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    Osteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented. The variation in pore shape is determined by varying the angle formed by the fibers of two consequent layers. The fiber deposition patterns are 0-90, which generate squared pores, 0-45, 0-30, and 0-15, that generate rhomboidal pores with an increasing major axis as the deposition angle decreases. Within the gradient construct, squared pores support a better chondrogenic differentiation whereas cells residing in the rhomboidal pores display a better osteogenic differentiation. When cultured under osteochondral conditions the trend in both osteogenic and chondrogenic markers is maintained. Engineering the pore shape, thus creating axial gradients in structural properties, seems to be an instructive strategy to fabricate functional 3D scaffolds that are able to influence hMSCs differentiation for osteochondral tissue regeneration. PMID:27109461

  19. Time-Dependent Effects of Pre-Aging 3D Polymer Scaffolds in Cell Culture Medium on Cell Proliferation.

    PubMed

    Chatterjee, Kaushik; Hung, Stevephen; Kumar, Girish; Simon, Carl G

    2012-01-01

    Protein adsorption is known to direct biological response to biomaterials and is important in determining cellular response in tissue scaffolds. In this study we investigated the effect of the duration of protein adsorption to 3D polymer scaffolds on cell attachment and proliferation. 3D macro-porous polymer scaffolds were pre-aged in serum-containing culture medium for 5 min, 1 d or 7 d prior to seeding osteoblasts. The total amount of protein adsorbed was found to increase with pre-ageing time. Cell attachment and proliferation were measured 1 d and 14 d, respectively, after cell seeding. Osteoblast proliferation, but not attachment, increased with scaffold pre-ageing time and amount of adsorbed serum protein. These results demonstrate that the amount of time that scaffolds are exposed to serum-containing medium can affect cell proliferation and suggest that these effects are mediated by differences in the amount of protein adsorption.

  20. Design control for clinical translation of 3D printed modular scaffolds.

    PubMed

    Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E

    2015-03-01

    founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115

  1. Design Control for Clinical Translation of 3D Printed Modular Scaffolds

    PubMed Central

    Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.

    2015-01-01

    founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115

  2. Design control for clinical translation of 3D printed modular scaffolds.

    PubMed

    Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E

    2015-03-01

    founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion.

  3. High thick layer-by-layer 3D multiscale fibrous scaffolds for enhanced cell infiltration and it's potential in tissue engineering.

    PubMed

    Shalumon, K T; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2013-12-01

    This work explains the fabrication and potential applicability of high thick three dimensional (3-D) electrospun multiscale fibrous scaffolds in tissue engineering by focusing on the possible fabrication techniques. Multiscale fibrous scaffold of poly(lactic acid) (PLA) was fabricated by combining nano and micro fibers in optimum concentrations. Finely chopped multiscale fibers were allowed to undergo compression, freeze-drying, resin embedding, cryo-grinding and layering techniques to make 3D scaffolds and the layer-by-layer method was found to be most suitable for 3-D scaffold fabrication. Cell studies in layered 3D scaffolds were performed using MG 63 cells and infiltration was observed using SEM and confocal microscope. Since the layered high thick 3D scaffold perfectly complies with the requirements, this could be proposed as one of the suitable methods for constructing 3D scaffolds for tissue engineering applications. PMID:24266265

  4. Preliminary study of surface modification of 3D Poly (ɛ - caprolactone) scaffolds by ultrashort laser irradiation

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Bliznakova, I.; Iordanova, E.; Yankov, G.; Grozeva, M.; Ostrowska, B.

    2016-02-01

    Three - dimensional poly (e- caprolactone) (PCL) scaffolds as suitable biocompatible material for manufacturing tissue replacements are utilized for tissue engineering purposes. The porous structures are fabricated by rapid prototyping method (Bioscaffolder) based on hypodermic dispensing process. The consecution of experiments demonstrated the possibility on creation of surface micro formations, applying different laser fluences, at 1 kHz repetition rate for fixed time of exposure 1 sec at 800 nm central wavelength. The combination of both methods offers possibilities for successful production of 3D matrices with modified surfaces. The obtained results of laser - induced surface modifications of PCL demonstrate the potential of the method to microprocess this kind of material for possible applications in regenerative medicine.

  5. Tuning the Mechanical Properties of Poly(Ethylene Glycol) Microgel-Based Scaffolds to Increase 3D Schwann Cell Proliferation.

    PubMed

    Zhou, Wenda; Stukel, Jessica M; Cebull, Hannah L; Willits, Rebecca Kuntz

    2016-04-01

    2D in vitro studies have demonstrated that Schwann cells prefer scaffolds with mechanical modulus approximately 10× higher than the modulus preferred by nerves, limiting the ability of many scaffolds to promote both neuron extension and Schwann cell proliferation. Therefore, the goals of this work are to develop and characterize microgel-based scaffolds that are tuned over the stiffness range relevant to neural tissue engineering and investigate Schwann cell morphology, viability, and proliferation within 3D scaffolds. Using thiol-ene reaction, microgels with surface thiols are produced and crosslinked into hydrogels using a multiarm vinylsulfone (VS). By varying the concentration of VS, scaffold stiffness ranges from 0.13 to 0.76 kPa. Cell morphology in all groups demonstrates that cells are able to spread and interact with the scaffold through day 5. Although the viability in all groups is high, proliferation of Schwann cells within the scaffold of G* = 0.53 kPa is significantly higher than other groups. This result is ≈ 5× lower than previously reported optimal stiffnesses on 2D surfaces, demonstrating the need for correlation of 3D cell response to mechanical modulus. As proliferation is the first step in Schwann cell integration into peripheral nerve conduits, these scaffolds demonstrate that the stiffness is a critical parameter to optimizing the regenerative process.

  6. Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds.

    PubMed

    Lu, Hong Fang; Lim, Sze-Xian; Leong, Meng Fatt; Narayanan, Karthikeyan; Toh, Rebecca P K; Gao, Shujun; Wan, Andrew C A

    2012-12-01

    Developing an efficient culture system for controlled human pluripotent stem cell (hPSC) differentiation into selected lineages is a major challenge in realizing stem cell-based clinical applications. Here, we report the use of chitin-alginate 3D microfibrous scaffolds, previously developed for hPSC propagation, to support efficient neuronal differentiation and maturation under chemically defined culture conditions. When treated with neural induction medium containing Noggin/retinoic acid, the encapsulated cells expressed much higher levels of neural progenitor markers SOX1 and PAX6 than those in other treatment conditions. Immunocytochemisty analysis confirmed that the majority of the differentiated cells were nestin-positive cells. Subsequently transferring the scaffolds to neuronal differentiation medium efficiently directed these encapsulated neural progenitors into mature neurons, as detected by RT-PCR and positive immunostaining for neuron markers βIII tubulin and MAP2. Furthermore, flow cytometry confirmed that >90% βIII tubulin-positive neurons was achieved for three independent iPSC and hESC lines, a differentiation efficiency much higher than previously reported. Implantation of these terminally differentiated neurons into SCID mice yielded successful neural grafts comprising MAP2 positive neurons, without tumorigenesis, suggesting a potential safe cell source for regenerative medicine. These results bring us one step closer toward realizing large-scale production of stem cell derivatives for clinical and translational applications. PMID:22998816

  7. Direct laser writing of 3D scaffolds for neural tissue engineering applications.

    PubMed

    Melissinaki, V; Gill, A A; Ortega, I; Vamvakaki, M; Ranella, A; Haycock, J W; Fotakis, C; Farsari, M; Claeyssens, F

    2011-12-01

    This study reports on the production of high-resolution 3D structures of polylactide-based materials via multi-photon polymerization and explores their use as neural tissue engineering scaffolds. To achieve this, a liquid polylactide resin was synthesized in house and rendered photocurable via attaching methacrylate groups to the hydroxyl end groups of the small molecular weight prepolymer. This resin cures easily under UV irradiation, using a mercury lamp, and under femtosecond IR irradiation. The results showed that the photocurable polylactide (PLA) resin can be readily structured via direct laser write (DLW) with a femtosecond Ti:sapphire laser and submicrometer structures can be produced. The maximum resolution achieved is 800 nm. Neuroblastoma cells were grown on thin films of the cured PLA material, and cell viability and proliferation assays revealed good biocompatibility of the material. Additionally, PC12 and NG108-15 neuroblastoma growth on bespoke scaffolds was studied in more detail to assess potential applications for neuronal implants of this material.

  8. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications.

    PubMed

    Walser, Jochen; Stok, Kathryn S; Caversaccio, Marco D; Ferguson, Stephen J

    2016-05-12

    Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.

  9. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening.

    PubMed

    Chatterjee, Kaushik; Lin-Gibson, Sheng; Wallace, William E; Parekh, Sapun H; Lee, Young Jong; Cicerone, Marcus T; Young, Marian F; Simon, Carl G

    2010-07-01

    Cells are known to sense and respond to the physical properties of their environment and those of tissue scaffolds. Optimizing these cell-material interactions is critical in tissue engineering. In this work, a simple and inexpensive combinatorial platform was developed to rapidly screen three-dimensional (3D) tissue scaffolds and was applied to screen the effect of scaffold properties for tissue engineering of bone. Differentiation of osteoblasts was examined in poly(ethylene glycol) hydrogel gradients spanning a 30-fold range in compressive modulus ( approximately 10 kPa to approximately 300 kPa). Results demonstrate that material properties (gel stiffness) of scaffolds can be leveraged to induce cell differentiation in 3D culture as an alternative to biochemical cues such as soluble supplements, immobilized biomolecules and vectors, which are often expensive, labile and potentially carcinogenic. Gel moduli of approximately 225 kPa and higher enhanced osteogenesis. Furthermore, it is proposed that material-induced cell differentiation can be modulated to engineer seamless tissue interfaces between mineralized bone tissue and softer tissues such as ligaments and tendons. This work presents a combinatorial method to screen biological response to 3D hydrogel scaffolds that more closely mimics the 3D environment experienced by cells in vivo.

  10. Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds

    NASA Astrophysics Data System (ADS)

    Balčiūnas, Evaldas; Lukoševičius, Laurynas; Mackevičiūtė, Dovilė; Rekštytė, Sima; Rutkūnas, Vygandas; Paipulas, Domas; Stankevičiūtė, Karolina; Baltriukienė, Daiva; Bukelskienė, Virginija; Piskarskas, Algis P.; Malinauskas, Mangirdas

    2014-03-01

    We present a novel approach to manufacturing 3D microstructured composite scaffolds for tissue engineering applications. A thermal extrusion 3D printer - a simple, low-cost tabletop device enabling rapid materialization of CAD models in plastics - was used to produce cm-scale microporous scaffolds out of polylactic acid (PLA). The fabricated objects were subsequently immersed in a photosensitive monomer solution and direct laser writing technique (DLW) was used to refine its inner structure by fabricating a fine mesh inside the previously produced scaffold. In addition, a composite material structure out of four different materials fabricated via DLW is presented. This technique, empowered by ultrafast lasers allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. A composite scaffold made of distinct materials and periodicities is acquired after the development process used to wash out non-linked monomers. Another way to modify the 3D printed PLA surfaces was also demonstrated - ablation with femtosecond laser beam. Structure geometry on macro- to micro- scales could be finely tuned by combining these fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. To our best knowledge, this is the first experimental demonstration showing the creation of composite 3D scaffolds using convenient 3D printing combined with DLW. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro-featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of tissue engineering, as well as in microelectromechanical systems, microfluidics, microoptics and others.

  11. A 3D similarity method for scaffold hopping from known drugs or natural ligands to new chemotypes.

    PubMed

    Jenkins, Jeremy L; Glick, Meir; Davies, John W

    2004-12-01

    A primary goal of 3D similarity searching is to find compounds with similar bioactivity to a reference ligand but with different chemotypes, i.e., "scaffold hopping". However, an adequate description of chemical structures in 3D conformational space is difficult due to the high-dimensionality of the problem. We present an automated method that simplifies flexible 3D chemical descriptions in which clustering techniques traditionally used in data mining are exploited to create "fuzzy" molecular representations called FEPOPS (feature point pharmacophores). The representations can be used for flexible 3D similarity searching given one or more active compounds without a priori knowledge of bioactive conformations or pharmacophores. We demonstrate that similarity searching with FEPOPS significantly enriches for actives taken from in-house high-throughput screening datasets and from MDDR activity classes COX-2, 5-HT3A, and HIV-RT, while also scaffold or ring-system hopping to new chemical frameworks. Further, inhibitors of target proteins (dopamine 2 and retinoic acid receptor) are recalled by FEPOPS by scaffold hopping from their associated endogenous ligands (dopamine and retinoic acid). Importantly, the method excels in comparison to commonly used 2D similarity methods (DAYLIGHT, MACCS, Pipeline Pilot fingerprints) and a commercial 3D method (Pharmacophore Distance Triplets) at finding novel scaffold classes given a single query molecule.

  12. SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo

    PubMed Central

    Fielding, Gary; Bose, Susmita

    2013-01-01

    Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941

  13. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture.

    PubMed

    Ye, Lin; Cao, Jie; Chen, Lamei; Geng, Xue; Zhang, Ai-Ying; Guo, Lian-Rui; Gu, Yong-Quan; Feng, Zeng-Guo

    2015-12-01

    A continuous electrospinning technique was applied to fabricate double layer tubular tissue engineering vascular graft (TEVG) scaffold. The luminal layer was made from poly(ɛ-caprolac-tone)(PCL) ultrafine fibers via common single axial electrospinning followed by the outer layer of core-shell structured nanofibers via coaxial electrospinning. For preparing the outer layernano-fibers, the PCL was electrospun into the shell and both bovine serum albumin (BSA) and tetrapeptide val-gal-pro-gly (VAPG) were encapsulated into the core. The core-shell structure in the outer layer fibers was observed by transmission electron microscope (TEM). The in vitro release tests exhibited the sustainable release behavior of BSA and VAPG so that they provided a better cell growth environment in the interior of tubular scaffold wall. The in vitro culture of smooth muscle cells (SMCs) demonstrated their potential to penetrate into the scaffold wall for the 3D cell culture. Subsequently, 3D cell coculture was conducted. First, SMCs were seeded on the luminal surface of the scaffold and cultured for 5 days, and then endothelial cells (ECs) were also seeded on the luminal surface and cocultured with SMCs for another 2 days. After stained with antibodies, 3D cell distribution on the scaffold was revealed by confocal laser scanning microscopy (CLSM) where ECs were mainly located on the luminal surface whereas SMCs penetrated into the surface and distributed inside the scaffold wall. This double layer tubular scaffold with 3D cell distribution showed the promise to develop it into a novel TEVG for clinical trials in the near future.

  14. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells

    PubMed Central

    Haneef, Kanwal; Lila, Nermine; Benadda, Samira; Legrand, Fabien; Carpentier, Alain; Chachques, Juan C.

    2012-01-01

    Electrostimulation (ES) can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs) seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 × 25 × 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002) and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01). Immunocytoche mistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and biochemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases. PMID:23185681

  15. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells.

    PubMed

    Haneef, Kanwal; Lila, Nermine; Benadda, Samira; Legrand, Fabien; Carpentier, Alain; Chachques, Juan C

    2012-06-01

    Electrostimulation (ES) can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs) seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 × 25 × 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002) and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01). Immunocytoche mistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and biochemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases.

  16. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.

    PubMed

    Alizadeh, Aliakbar; Moztarzadeh, Fathollah; Ostad, Seyed Naser; Azami, Mahmoud; Geramizadeh, Bita; Hatam, Gholamreza; Bizari, Davood; Tavangar, Seyed Mohammad; Vasei, Mohammad; Ai, Jafar

    2016-01-01

    To address the hypothesis that using a zirconia (ZrO2)/ β-tricalcium phosphate (β-TCP) composite might improve both the mechanical properties and cellular compatibility of the porous material, we fabricated ZrO2/β-TCP composite scaffolds with different ZrO2/β-TCP ratios, and evaluated their physical and mechanical characteristics, also the effect of three-dimensional (3D) culture (ZrO2/β-TCP scaffold) on the behavior of human endometrial stem cells. Results showed the porosity of a ZrO2/β-TCP scaffold can be adjusted from 65% to 84%, and the compressive strength of the scaffold increased from 4.95 to 6.25 MPa when the ZrO2 content increased from 30 to 50 wt%. The cell adhesion and proliferation in the ZrO2/β-TCP scaffold was greatly improved when ZrO2 decreased. Moreover, in vitro study showed that an osteoblasts-loaded ZrO2/β-TCP scaffold provided a suitable 3D environment for osteoblast survival and enhanced bone regeneration. We thus showed that a porous ZrO2/β-TCP composite scaffold has excellent mechanical properties, and cellular/tissue compatibility, and would be a promising substrate to achieve both bone reconstruction and regeneration needed during in vivo study for treatment of large bone defects.

  17. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.

    PubMed

    Temple, Joshua P; Hutton, Daphne L; Hung, Ben P; Huri, Pinar Yilgor; Cook, Colin A; Kondragunta, Renu; Jia, Xiaofeng; Grayson, Warren L

    2014-12-01

    The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts.

  18. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

    PubMed

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  19. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

    PubMed

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  20. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    PubMed

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. PMID:26774563

  1. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    PubMed

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering.

  2. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    NASA Astrophysics Data System (ADS)

    Danilevicius, Paulius; Georgiadi, Leoni; Pateman, Christopher J.; Claeyssens, Frederik; Chatzinikolaidou, Maria; Farsari, Maria

    2015-05-01

    The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds' porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  3. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    NASA Astrophysics Data System (ADS)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  4. Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord.

    PubMed

    López-Dolado, Elisa; González-Mayorga, Ankor; Portolés, María Teresa; Feito, María José; Ferrer, María Luisa; Del Monte, Francisco; Gutiérrez, María Concepción; Serrano, María Concepción

    2015-08-26

    The increasing prevalence and high sanitary costs of lesions affecting the central nervous system (CNS) at the spinal cord are encouraging experts in different fields to explore new avenues for neural repair. In this context, graphene and its derivatives are attracting significant attention, although their toxicity and performance in the CNS in vivo remains unclear. Here, the subacute tissue response to 3D flexible and porous scaffolds composed of partially reduced graphene oxide is investigated when implanted in the injured rat spinal cord. The interest of these structures as potentially useful platforms for CNS regeneration mainly relies on their mechanical compliance with neural tissues, adequate biocompatibility with neural cells in vitro and versatility to carry topographical and biological guidance cues. Early tissue responses are thoroughly investigated locally (spinal cord at C6 level) and in the major organs (i.e., kidney, liver, lung, and spleen). The absence of local and systemic toxic responses, along with the positive signs found at the lesion site (e.g., filler effect, soft interface for no additional scaring, preservation of cell populations at the perilesional area, presence of M2 macrophages), encourages further investigation of these materials as promising components of more efficient material-based platforms for CNS repair.

  5. Bone response to 3-D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2.

    SciTech Connect

    Eurell, Jo Ann; Dellinger, Jennifer Gwynne; Cesarano, Joseph, III; Jamison, Russell D.

    2005-06-01

    The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 {micro}m{sup 2} in quadrant 1, 250 x 500 {micro}m{sup 2} in quadrants 2 and 4, and 500 x 500 {micro}m{sup 2} in quadrant 3. In the second group, HA rods (400 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 {micro}m{sup 2} in quadrant 1, 500 x 750 {micro}m{sup 2} in quadrants 2 and 4, and 750 x 750 {micro}m{sup 2} in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.

  6. Platelet lysate 3D scaffold supports mesenchymal stem cell chondrogenesis: an improved approach in cartilage tissue engineering.

    PubMed

    Moroz, Andrei; Bittencourt, Renata Aparecida Camargo; Almeida, Renan Padron; Felisbino, Sérgio Luis; Deffune, Elenice

    2013-01-01

    Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n = 5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1 × 10(5)) were than encapsulated inside 60 µl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI.

  7. Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds

    PubMed Central

    Kievit, Forrest M.; Florczyk, Stephen J.; Leung, Matthew C.; Wang, Kui; Wu, Jennifer D.; Silber, John R.; Ellenbogen, Richard G.; Lee, Jerry S.H.; Zhang, Miqin

    2014-01-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anticancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies. PMID:25109438

  8. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.

    PubMed

    Wang, Yongzhong; Kim, Ung-Jin; Blasioli, Dominick J; Kim, Hyeon-Joo; Kaplan, David L

    2005-12-01

    Adult cartilage tissue has limited self-repair capacity, especially in the case of severe damages caused by developmental abnormalities, trauma, or aging-related degeneration like osteoarthritis. Adult mesenchymal stem cells (MSCs) have the potential to differentiate into cells of different lineages including bone, cartilage, and fat. In vitro cartilage tissue engineering using autologous MSCs and three-dimensional (3-D) porous scaffolds has the potential for the successful repair of severe cartilage damage. Ideally, scaffolds designed for cartilage tissue engineering should have optimal structural and mechanical properties, excellent biocompatibility, controlled degradation rate, and good handling characteristics. In the present work, a novel, highly porous silk scaffold was developed by an aqueous process according to these criteria and subsequently combined with MSCs for in vitro cartilage tissue engineering. Chondrogenesis of MSCs in the silk scaffold was evident by real-time RT-PCR analysis for cartilage-specific ECM gene markers, histological and immunohistochemical evaluations of cartilage-specific ECM components. Dexamethasone and TGF-beta3 were essential for the survival, proliferation and chondrogenesis of MSCs in the silk scaffolds. The attachment, proliferation, and differentiation of MSCs in the silk scaffold showed unique characteristics. After 3 weeks of cultivation, the spatial cell arrangement and the collagen type-II distribution in the MSCs-silk scaffold constructs resembles those in native articular cartilage tissue, suggesting promise for these novel 3-D degradable silk-based scaffolds in MSC-based cartilage repair. Further in vivo evaluation is necessary to fully recognize the clinical relevance of these observations.

  9. Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering.

    PubMed

    Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai

    2015-01-01

    Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839

  10. Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization.

    PubMed

    Martínez-Vázquez, Francisco J; Perera, Fidel H; van der Meulen, Inge; Heise, Andreas; Pajares, Antonia; Miranda, Pedro

    2013-11-01

    Ring-opening polymerization of ε-caprolactone (ε-CL) and L-lactide (LLA) was performed to impregnate β-tricalcium phosphate (β-TCP) scaffolds fabricated by robocasting. Concentrated colloidal inks prepared from β-TCP commercial powders were used to fabricate porous structures consisting of a 3D mesh of interpenetrating rods. ε-CL and LLA were in situ polymerized within the ceramic structure by using a lipase and stannous octanoate, respectively, as catalysts. The results show that both the macropores inside the ceramic mesh and the micropores within the ceramic rods are full of polymer in either case. The mechanical properties of scaffolds impregnated by in situ polymerization (ISP) are significantly increased over those of the bare structures, exhibiting similar values than those obtained by other, more aggressive, impregnation methods such as melt-immersion (MI). ISP using enzymatic catalysts requires a reduced processing temperature which could facilitate the incorporation of growth factors and other drugs into the polymer composition, thus enhancing the bioactivity of the composite scaffold. The implications of these results for the optimization of the mechanical and biological performance of scaffolds for bone tissue engineering applications are discussed. PMID:23526780

  11. Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering

    PubMed Central

    Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai

    2015-01-01

    Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839

  12. Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering.

    PubMed

    Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai

    2015-01-01

    Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects.

  13. Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization.

    PubMed

    Martínez-Vázquez, Francisco J; Perera, Fidel H; van der Meulen, Inge; Heise, Andreas; Pajares, Antonia; Miranda, Pedro

    2013-11-01

    Ring-opening polymerization of ε-caprolactone (ε-CL) and L-lactide (LLA) was performed to impregnate β-tricalcium phosphate (β-TCP) scaffolds fabricated by robocasting. Concentrated colloidal inks prepared from β-TCP commercial powders were used to fabricate porous structures consisting of a 3D mesh of interpenetrating rods. ε-CL and LLA were in situ polymerized within the ceramic structure by using a lipase and stannous octanoate, respectively, as catalysts. The results show that both the macropores inside the ceramic mesh and the micropores within the ceramic rods are full of polymer in either case. The mechanical properties of scaffolds impregnated by in situ polymerization (ISP) are significantly increased over those of the bare structures, exhibiting similar values than those obtained by other, more aggressive, impregnation methods such as melt-immersion (MI). ISP using enzymatic catalysts requires a reduced processing temperature which could facilitate the incorporation of growth factors and other drugs into the polymer composition, thus enhancing the bioactivity of the composite scaffold. The implications of these results for the optimization of the mechanical and biological performance of scaffolds for bone tissue engineering applications are discussed.

  14. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.

    PubMed

    Baino, Francesco; Ferraris, Monica; Bretcanu, Oana; Verné, Enrica; Vitale-Brovarone, Chiara

    2013-03-01

    Fabrication of 3-D highly porous, bioactive, and mechanically competent scaffolds represents a significant challenge of bone tissue engineering. In this work, Bioglass®-derived glass-ceramic scaffolds actually fulfilling this complex set of requirements were successfully produced through the sponge replication method. Scaffold processing parameters and sintering treatment were carefully designed in order to obtain final porous bodies with pore content (porosity above 70 %vol), trabecular architecture and mechanical properties (compressive strength up to 3 MPa) analogous to those of the cancellous bone. Influence of the Bioglass® particles size on the structural and mechanical features of the sintered scaffolds was considered and discussed. Relationship between porosity and mechanical strength was investigated and modeled. Three-dimensional architecture, porosity, mechanical strength and in vitro bioactivity of the optimized Bioglass®-derived scaffolds were also compared to those of CEL2-based glass-ceramic scaffolds (CEL2 is an experimental bioactive glass originally developed by the authors at Politecnico di Torino) fabricated by the same processing technique, in an attempt at understanding the role of different bioactive glass composition on the major features of scaffolds prepared by the same method.

  15. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Feng; Li, Shuo; Guo, Chang-An; Xu, Du-Liang; Zhang, Feng; Yan, Zuo-Qin; Mo, Xiu-Mei

    2015-08-01

    Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.

  16. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs.

  17. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    PubMed

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-01-01

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting. PMID:26684899

  18. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    PubMed

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-01-01

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.

  19. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges.

    PubMed

    Clarke, S A; Choi, S Y; McKechnie, Melanie; Burke, G; Dunne, N; Walker, G; Cunningham, E; Buchanan, F

    2016-02-01

    Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm(3) were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1 × 10(5) cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction and inductively coupled plasma mass spectrometry showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering. PMID:26704539

  20. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum

    2016-07-01

    Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. PMID:26999521

  1. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    PubMed

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering.

  2. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    PubMed

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. PMID:27524030

  3. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties.

    PubMed

    Kothapalli, Chandrasekhar R; Shaw, Montgomery T; Wei, Mei

    2005-11-01

    Scaffolds comprising poly(lactic acid) and nano-hydroxyapatite (HA) were prepared using the solvent-casting/salt-leaching technique. NaCl was used as the leaching agent. Nano-sized HA was synthesized by a hydrothermal method at 170 degrees C and autogenous pressure. High-resolution TEM imaging revealed that the HA particles were ellipsoidal-shaped with needle-like morphologies. The particles had an average size of approximately 25 nm in width and 150 nm in length with aspect ratios ranging from 6 to 8. As the HA content increased in the scaffold from 0 to 50 wt%, the compression modulus of the scaffolds increased from 4.72+/-1.2 to 9.87+/-1.8 MPa, while the yield strength from 0.29+/-0.03 to 0.44+/-0.01 MPa. Such polymeric scaffolds should be suitable materials for non-load sharing tissue-engineering applications. PMID:16701846

  4. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    PubMed

    Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  5. Characterization of Mechanical and Biological Properties of 3-D Scaffolds Reinforced with Zinc Oxide for Bone Tissue Engineering

    PubMed Central

    Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially. PMID:24498185

  6. Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds.

    PubMed

    Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül

    2015-01-01

    Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures.

  7. Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds.

    PubMed

    Domingos, M; Intranuovo, F; Gloria, A; Gristina, R; Ambrosio, L; Bártolo, P J; Favia, P

    2013-04-01

    Cellular adhesion and proliferation inside three-dimensional synthetic scaffolds represent a major challenge in tissue engineering. Besides the surface chemistry of the polymers, it is well recognized that scaffold internal architecture, namely pore size/shape and interconnectivity, has a strong effect on the biological response of cells. This study reports for the first time how polycaprolactone (PCL) scaffolds with controlled micro-architecture can be effectively produced via bioextrusion and used to enhance the penetration of plasma deposited species. Low-pressure nitrogen-based coatings were employed to augment cell adhesion and proliferation without altering the mechanical properties of the structures. X-ray photoelectron spectroscopy carried out on different sections of the scaffolds indicates a uniform distribution of nitrogen-containing groups throughout the entire porous structure. In vitro biological assays confirm that plasma deposition sensitively promotes the activity of Saos-2 osteoblast cells, leading to a homogeneous colonization of the PCL scaffolds.

  8. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    PubMed

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-01

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction. PMID:26358641

  9. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    PubMed

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-11

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction.

  10. 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis.

    PubMed

    Min, Zhu; Shichang, Zhao; Chen, Xin; Yufang, Zhu; Changqing, Zhang

    2015-08-01

    Angiogenesis-osteogenesis coupling processes are vital in bone tissue engineering. Normal biomaterials implanted in bone defects have issues in the sufficient formation of blood vessels, especially in the central part. Single delivery of vascular endothelial growth factors (VEGF) to foci in previous studies did not show satisfactory results due to low loading doses, a short protein half-life and low efficiency. Development of a hypoxia-mimicking microenvironment for cells by local prolyl-4-hydroxylase inhibitor release, which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression, is an alternative method. The aim of this study was to design a dimethyloxallyl glycine (DMOG) delivering scaffold composed of mesoporous bioactive glasses and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers (MPHS scaffolds), so as to investigate whether the sustained release of DMOG promotes local angiogenesis and bone healing. The morphology and microstructure of composite scaffolds were characterized. The DMOG release patterns from scaffolds loaded with different DMOG dosages were evaluated, and the effects of DMOG delivery on human bone marrow stromal cell (hBMSC) adhesion, viability, proliferation, osteogenic differentiation and angiogenic-relative gene expressions with scaffolds were also investigated. In vivo studies were carried out to observe vascular formations and new bone ingrowth with DMOG-loaded scaffolds. The results showed that DMOG could be released in a sustained manner over 4 weeks from MPHS scaffolds and obviously enhance the angiogenesis and osteogenesis in the defects. Microfil perfusion showed a significantly increased formation of vessels in the defects with DMOG delivery. Furthermore, micro-CT imaging and fluorescence labeling indicated larger areas of bone formation for DMOG-loaded scaffolds. It is concluded that MPHS-DMOG scaffolds are promising for enhancing bone healing of osseous defects. PMID:26222039

  11. Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds.

    PubMed

    Gerardo-Nava, Jose; Hodde, Dorothee; Katona, Istvan; Bozkurt, Ahmet; Grehl, Torsten; Steinbusch, Harry W M; Weis, Joachim; Brook, Gary A

    2014-05-01

    Numerous in-vitro techniques exist for investigating the influence of 3D substrate topography on sensory axon growth. However, simple and cost-effective methods for studying post-natal motor axon interactions with such substrates are lacking. Here, spinal cord organotypic slice cultures (OSC) from post-natal day 7-9 rat pups were presented with spinal nerve roots, or blocks of fibrin hydrogel or 3D microporous collagen scaffolds to investigate motor axon-substrate interactions. By 7-14 days, axons from motor neuronal pools extended into the explanted nerve roots, growing along Schwann cell processes and demonstrating a full range of axon-Schwann cell interactions, from simple ensheathment to concentric wrapping by Schwann cell processes and the formation of compact myelin within a basal lamina sheath. Extensive motor axon regeneration and all stages of axon-Schwann interactions were also supported within the longitudinally orientated microporous framework of the 3D collagen scaffold. In stark contrast, the simple fibrin hydrogel only supported axon growth and cell migration over its surface. The relative ease of demonstrating such motor axon regeneration through the microporous 3D framework by immunofluorescence, two-photon microscopy and transmission electron microscopy strongly supports the adoption of this technique for assaying the influence of substrate topography and functionalization in regenerative bioengineering.

  12. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair.

    PubMed

    Rai, Bina; Oest, Megan E; Dupont, Ken M; Ho, Kee H; Teoh, Swee H; Guldberg, Robert E

    2007-06-15

    Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor or gene delivery significantly improves bone repair. However, given the important role of vascularization during bone regeneration, it may also be beneficial to incorporate factors that promote vascular ingrowth into constructs. In this study, a strategy combining structural polycaprolactone-20% tricalcium phosphate (PCL-TCP) composite scaffolds with platelet-rich plasma (PRP) was tested. Following bilateral implantation of constructs into 8 mm rat nonunion femoral defects, 3D vascular and bone ingrowth were quantified at 3 and 12 weeks using contrast-enhanced microcomputed tomography (micro-CT) imaging. At week 3, PRP-treated femurs displayed 70.3% higher vascular volume fraction than control femurs. Interestingly, bone volume fraction (BVF) was significantly higher for the empty scaffold group at the early time point. At 12 weeks, BVF measurements between the two groups were statistically equivalent. However, a greater proportion of PRP-treated femurs (83%) achieved bone union as compared to empty scaffold controls (33%). Consistent with this observation, biomechanical evaluation of functional integration also revealed a significantly higher torsional stiffness observed for PRP-treated defects compared to empty scaffolds. Ultimate torque at failure was not improved, however, perhaps due to the slow resorption profile of the scaffold material. Histological evaluation illustrated infiltration of vascularized connective tissue and bone in both groups. Given that bone ingrowth into untreated defects in this model is minimal, PCL-TCP scaffolds were clearly able to promote bone ingrowth but failed to consistently bridge the defect. The addition of PRP to PCL-TCP scaffolds accelerated early vascular ingrowth and improved longer-term functional

  13. Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

    PubMed

    Bharatham, B Hemabarathy; Abu Bakar, Md Zuki; Perimal, Enoch Kumar; Yusof, Loqman Mohamed; Hamid, Muhajir

    2014-01-01

    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.

  14. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.

    PubMed

    Liu, Jun; Cheng, Fang; Grénman, Henrik; Spoljaric, Steven; Seppälä, Jukka; E Eriksson, John; Willför, Stefan; Xu, Chunlin

    2016-09-01

    Swollen three-dimensional nanocellulose films and their resultant aerogels were prepared as scaffolds towards tissue engineering application. The nanocellulose hydrogels with various swelling degree (up to 500 times) and the resultant aerogels with desired porosity (porosity up to 99.7% and specific surface area up to 308m(2)/g) were prepared by tuning the nanocellulose charge density, the swelling media conditions, and the material processing approach. Representative cell-based assays were applied to assess the material biocompatibility and efficacy of the human extracellular matrix (ECM)-mimicking nanocellulose scaffolds. The effects of charge density and porosity of the scaffolds on the biological tests were investigated for the first time. The results reveal that the nanocellulose scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells. These results suggest the usefulness of the nanocellulose-based matrices in supporting crucial cellular processes during cell growth and proliferation. PMID:27185139

  15. Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Liau, Jiun-Jia

    2013-10-15

    The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4×10(-2) MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30-60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold. PMID:23987384

  16. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems.

    PubMed

    Abbott, Rosalyn D; Wang, Rebecca Y; Reagan, Michaela R; Chen, Ying; Borowsky, Francis E; Zieba, Adam; Marra, Kacey G; Rubin, J Peter; Ghobrial, Irene M; Kaplan, David L

    2016-07-01

    There is a critical need for monitoring physiologically relevant, sustainable, human adipose tissues in vitro to gain new insights into metabolic diseases. To support long-term culture, a 3D silk scaffold assisted culture system is developed that maintains mature unilocular adipocytes ex vivo in coculture with preadipocytes, endothelial cells, and smooth muscle cells obtained from small volumes of liquefied adipose samples. Without the silk scaffold, adipose tissue explants cannot be sustained in long-term culture (3 months) due to their fragility. Adjustments to media components are used to tune lipid metabolism and proliferation, in addition to responsiveness to an inflammatory stimulus. Interestingly, patient specific responses to TNFα stimulation are observed, providing a proof-of-concept translational technique for patient specific disease modeling in the future. In summary, this novel 3D scaffold assisted approach is required for establishing physiologically relevant, sustainable, human adipose tissue systems from small volumes of lipoaspirate, making this methodology of great value to studies of metabolism, adipokine-driven diseases, and other diseases where the roles of adipocytes are only now becoming uncovered. PMID:27197588

  17. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold.

    PubMed

    Kumar, Sachin; Chatterjee, Kaushik

    2015-02-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration. PMID:25553731

  18. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold.

    PubMed

    Kumar, Sachin; Chatterjee, Kaushik

    2015-02-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.

  19. 3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

    NASA Astrophysics Data System (ADS)

    Scaffaro, Roberto; Lo Re, Giada; Rigogliuso, Salvatrice; Ghersi, Giulio

    2012-08-01

    We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (PLA)-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-based blends, on the simultaneous bulk/surface modifications and pore architectures in the scaffolds, and assessed the effects on human hepatocarcinoma viability and cell adhesion. The influence of PEG molecular weight on the scaffold morphology and cell viability and adhesion were also investigated. Morphological studies indicated that it was possible to obtain scaffolds with well-interconnected pores of assorted sizes. The analysis confirmed that SK-Hep1 cells adhered well to the polymeric support and emitted surface protrusions necessary to grow and differentiate three-dimensional systems. PEGs with higher molecular weight showed the best results in terms of cell adhesion and viability.

  20. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release.

    PubMed

    Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J

    2009-07-01

    Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials. PMID:19182977

  1. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    PubMed

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications.

  2. Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds.

    PubMed

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Wang, Kui; Wu, Jennifer D; Silber, John R; Ellenbogen, Richard G; Lee, Jerry S H; Zhang, Miqin

    2014-11-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anti-cancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies.

  3. Marrow-Derived Stem Cell Motility in 3D Synthetic Scaffold Is Governed by Geometry Along With Adhesivity and Stiffness

    PubMed Central

    Peyton, Shelly R.; Kalcioglu, Z. Ilke; Cohen, Joshua C.; Runkle, Anne P.; Van Vliet, Krystyn J.; Lauffenburger, Douglas A.

    2012-01-01

    Design of 3D scaffolds that can facilitate proper survival, proliferation, and differentiation of progenitor cells is a challenge for clinical applications involving large connective tissue defects. Cell migration within such scaffolds is a critical process governing tissue integration. Here, we examine effects of scaffold pore diameter, in concert with matrix stiffness and adhesivity, as independently tunable parameters that govern marrow-derived stem cell motility. We adopted an “inverse opal” processing technique to create synthetic scaffolds by crosslinking poly(ethylene glycol) at different densities (controlling matrix elastic moduli or stiffness) and small doses of a heterobifunctional monomer (controlling matrix adhesivity) around templating beads of different radii. As pore diameter was varied from 7 to 17 µm (i.e., from significantly smaller than the spherical cell diameter to approximately cell diameter), it displayed a profound effect on migration of these stem cells—including the degree to which motility was sensitive to changes in matrix stiffness and adhesivity. Surprisingly, the highest probability for substantive cell movement through pores was observed for an intermediate pore diameter, rather than the largest pore diameter, which exceeded cell diameter. The relationships between migration speed, displacement, and total path length were found to depend strongly on pore diameter. We attribute this dependence to convolution of pore diameter and void chamber diameter, yielding different geometric environments experienced by the cells within. PMID:21449030

  4. Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects

    PubMed Central

    Sun, Miao; Liu, An; Shao, Huifeng; Yang, Xianyan; Ma, Chiyuan; Yan, Shigui; Liu, Yanming; He, Yong; Gou, Zhongru

    2016-01-01

    Wollastonite (CaSiO3; CSi) ceramic is a promising bioactive material for bone defect repair due to slightly fast degradation of its porous constructs in vivo. In our previous strategy some key features of CSi ceramic have been significantly improved by dilute magnesium doping for regulating mechanical properties and biodegradation. Here we demonstrate that 6 ~ 14% of Ca substituted by Mg in CSi (CSi-Mgx, x = 6, 10, 14) can enhance the mechanical strength (>40 MPa) but not compromise biological performances of the 3D printed porous scaffolds with open porosity of 60‒63%. The in vitro cell culture tests in vitro indicated that the dilute Mg doping into CSi was beneficial for ALP activity and high expression of osteogenic marker genes of MC3T3-E1 cells in the scaffolds. A good bone tissue regeneration response and elastoplastic response in mechanical strength in vivo were determined after implantation in rabbit calvarial defects for 6‒12 weeks. Particularly, the CSi-Mg10 and CSi-Mg14 scaffolds could enhance new bone regeneration with a significant increase of newly formed bone tissue (18 ~ 22%) compared to the pure CSi (~14%) at 12 weeks post-implantation. It is reasonable to consider that, therefore, such CSi-Mgx scaffolds possessing excellent strength and reasonable degradability are promising for bone reconstruction in thin-wall bone defects. PMID:27658481

  5. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo.

    PubMed

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V

    2016-03-01

    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes.

  6. Synthesis of highly interconnected 3D scaffold from Arothron stellatus skin collagen for tissue engineering application.

    PubMed

    Ramanathan, Giriprasath; Singaravelu, Sivakumar; Raja, M D; Sivagnanam, Uma Tiruchirapalli

    2015-11-01

    The substrate which is avidly used for tissue engineering applications should have good mechanical and biocompatible properties, and all these parameters are often considered as essential for dermal reformation. Highly interconnected three dimensional (3D) wound dressing material with enhanced structural integrity was synthesized from Arothron stellatus fish skin (AsFS) collagen for tissue engineering applications. The synthesized 3D collagen sponge (COL-SPG) was further characterized by different physicochemical methods. The scanning electron microscopy analysis of the material demonstrated that well interconnected pores with homogeneous microstructure on the surface aids higher swelling index and that the material also possessed good mechanical properties with a Young's modulus of 0.89±0.2 MPa. Biocompatibility of the 3D COL-SPG showed 92% growth for both NIH 3T3 fibroblasts and keratinocytes. Overall, the study revealed that synthesized 3D COL-SPG from fish skin will act as a promising wound dressing in skin tissue engineering.

  7. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology

    PubMed Central

    Zeng, Shuguang; Liu, Lei; Shi, Yong; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfeng

    2015-01-01

    Bone tissue engineering is a powerful tool to treat bone defects caused by trauma, infection, tumors and other factors. Both silk fibroin (SF) and chitosan (CS) are non-toxic and have good biocompatibility, but are poor biological scaffolds when used alone. In this study, the microscopic structure and related properties of SF/CS composite scaffolds with different component ratios were examined. The scaffold material most suitable for osteoblast growth was determined, and these results offer an experimental basis for the future reconstruction of bone defects. First, via freeze-drying and chemical crosslinking methods, SF/CS composites with different component ratios were prepared and their structure was characterized. Changes in the internal structure of the SF and CS mixture were observed, confirming that the mutual modification between the two components was complete and stable. The internal structure of the composite material was porous and three-dimensional with a porosity above 90%. We next studied the pore size, swelling ratio, water absorption ratio, degradation and in vitro cell proliferation. For the 40% SF-60% CS group, the pore size of the scaffold was suitable for the growth of osteoblasts, and the rate of degradation was steady. This favors the early adhesion, growth and proliferation of MG-63 cells. In addition to good biocompatibility and satisfactory cell affinity, this material promotes the secretion of extracellular matrix materials by osteoblasts. Thus, 40% SF-60% CS is a good material for bone tissue engineering. PMID:26083846

  8. Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

    PubMed

    Bharatham, B Hemabarathy; Abu Bakar, Md Zuki; Perimal, Enoch Kumar; Yusof, Loqman Mohamed; Hamid, Muhajir

    2014-01-01

    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects. PMID:25110655

  9. Osteogenic Differentiation of Human Mesenchymal Stem Cells in 3-D Zr-Si Organic-Inorganic Scaffolds Produced by Two-Photon Polymerization Technique

    PubMed Central

    Koroleva, Anastasia; Deiwick, Andrea; Nguyen, Alexander; Schlie-Wolter, Sabrina; Narayan, Roger; Timashev, Peter; Popov, Vladimir; Bagratashvili, Viktor; Chichkov, Boris

    2015-01-01

    Two-photon polymerization (2PP) is applied for the fabrication of 3-D Zr-Si scaffolds for bone tissue engineering. Zr-Si scaffolds with 150, 200, and 250 μm pore sizes are seeded with human bone marrow stem cells (hBMSCs) and human adipose tissue derived stem cells (hASCs) and cultured in osteoinductive and control media for three weeks. Osteogenic differentiation of hASCs and hBMSCs and formation of bone matrix is comparatively analyzed via alkaline phosphatase activity (ALP), calcium quantification, osteocalcin staining and scanning electron microscopy (SEM). It is observed that the 150 μm pore size Zr-Si scaffolds support the strongest matrix mineralization, as confirmed by calcium deposition. Analysis of ALP activity, osteocalcin staining and SEM observations of matrix mineralization reveal that mesenchymal stem cells cultured on 3-D scaffolds without osteogenic stimulation spontaneously differentiate towards osteogenic lineage. Nanoindentation measurements show that aging of the 2PP-produced Zr-Si scaffolds in aqueous or alcohol media results in an increase in the scaffold Young’s modulus and hardness. Moreover, accelerated formation of bone matrix by hASCs is noted, when cultured on the scaffolds with lower Young’s moduli and hardness values (non aged scaffolds) compared to the cells cultured on scaffolds with higher Young’s modulus and hardness values (aged scaffolds). Presented results support the potential application of Zr-Si scaffolds for autologous bone tissue engineering. PMID:25706270

  10. The influence of plasma technology coupled to chemical grafting on the cell growth compliance of 3D hydroxyapatite scaffolds.

    PubMed

    Russo, Laura; Zanini, Stefano; Giannoni, Paolo; Landi, Elena; Villa, Anna; Sandri, Monica; Riccardi, Claudia; Quarto, Rodolfo; Doglia, Silvia M; Nicotra, Francesco; Cipolla, Laura

    2012-11-01

    The development of advanced materials with biomimetic features in order to elicit desired biological responses and to guarantee tissue biocompatibility is recently gaining attention for tissue engineering applications. Bioceramics, such as hydroxyapatite-based biomaterials are now used in a number of different applications throughout the body, covering all areas of the skeleton, due to their biological and chemical similarity to the inorganic phases of bones. When bioactive sintered hydroxyapatite (HA) is desired, biomolecular modification of these materials is needed. In the present work, we investigated the influence of plasma surface modification coupled to chemical grafting on the cell growth compliance of HA 3D scaffolds.

  11. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds.

    PubMed

    Leferink, A M; Santos, D; Karperien, M; Truckenmüller, R K; van Blitterswijk, C A; Moroni, L

    2015-12-01

    Many studies have shown the influence of soluble factors and material properties on the differentiation capacity of mesenchymal stromal cells (MSCs) cultured as monolayers. These types of two-dimensional (2D) studies can be used as simplified models to understand cell processes related to stem cell sensing and mechano-transduction in a three-dimensional (3D) context. For several other mechanisms such as cell-cell signaling, cell proliferation and cell morphology, it is well-known that cells behave differently on a planar surface compared to cells in 3D environments. In classical tissue engineering approaches, a combination of cells, 3D scaffolds and soluble factors are considered as the key ingredients for the generation of mechanically stable 3D tissue constructs. However, when MSCs are used for tissue engineering strategies, little is known about the maintenance of their differentiation potential in 3D scaffolds after the removal of differentiation soluble factors. In this study, the differentiation potential of human MSCs (hMSCs) into the chondrogenic and osteogenic lineages on two distinct 3D scaffolds, additive manufactured electrospun scaffolds, was assessed and compared to conventional 2D culture. Human MSCs cultured in the presence of soluble factors in 3D showed to differentiate to the same extent as hMSCs cultured as 2D monolayers or as scaffold-free pellets, indicating that the two scaffolds do not play a consistent role in the differentiation process. In the case of phenotypic changes, the achieved differentiated phenotype was not maintained after the removal of soluble factors, suggesting that the plasticity of hMSCs is retained in 3D cell culture systems. This finding can have implications for future tissue engineering approaches in which the validation of hMSC differentiation on 3D scaffolds will not be sufficient to ensure the maintenance of the functionality of the cells in the absence of appropriate differentiation signals. PMID:26566169

  12. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

    PubMed Central

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-01-01

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378

  13. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds.

    PubMed

    Brennan, Meadhbh Á; Renaud, Audrey; Gamblin, Anne-Laure; D'Arros, Cyril; Nedellec, Steven; Trichet, Valerie; Layrolle, Pierre

    2015-08-01

    A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold. The jet-sprayed scaffolds had larger pore diameters, greater porosity, smaller diameter fibers, and more heterogeneous fiber diameter size distribution compared to the electrospun scaffolds. Cells on jet-sprayed constructs exhibited spread morphology with abundant cytoskeleton staining, whereas MSCs on electrospun scaffolds appeared less extended with fewer actin filaments. MSC proliferation and cell infiltration occurred at a faster rate on jet-sprayed compared to electrospun scaffolds. Osteogenic differentiation of MSCs and ECM production as measured by ALP, collagen and calcium deposition was superior on jet-sprayed compared to electrospun scaffolds. The jet-sprayed scaffold which mimics the native ECM and permits homogeneous cell infiltration is important for 3D in vitro applications such as bone cellular interaction studies or drug testing, as well as bone tissue engineering strategies. PMID:26238732

  14. Rapid and low-cost prototyping of 3D nanostructures with multi-layer hydrogen silsesquioxane scaffolds.

    PubMed

    Varghese, Leo T; Fan, Li; Wang, Jian; Xuan, Yi; Qi, Minghao

    2013-12-20

    A layer-by-layer (LBL) method can generate or approximate any three-dimensional (3D) structure, and has been the approach for the manufacturing of complementary metal-oxide-semiconductor (CMOS) devices. However, its high cost precludes the fabrication of anything other than CMOS-compatible devices, and general 3D nanostructures have been difficult to prototype in academia and small businesses, due to the lack of expensive facility and state-of-the-art tools. It is proposed and demonstrated that a novel process that can rapidly fabricate high-resolution three-dimensional (3D) nanostructures at low cost, without requiring specialized equipment. An individual layer is realized through electron-beam lithography patterning of hydrogen silsesquioxane (HSQ) resist, followed by planarization via spinning SU-8 resist and etch-back. A 4-layer silicon inverse woodpile photonic crystal with a period of 650 nm and a 7-layer HSQ scaffold with a period of 300 nm are demonstrated. This process provides a versatile and accessible solution to the fabrication of highly complex 3D nanostructures.

  15. ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration

    PubMed Central

    Rentsch, C.; Rentsch, B.; Heinemann, S.; Bernhardt, R.; Bischoff, B.; Förster, Y.; Scharnweber, D.; Rammelt, S.

    2014-01-01

    Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767

  16. Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin-Biotin Binding System.

    PubMed

    Kim, Min-Chul; Hong, Min-Ho; Lee, Byung-Hyun; Choi, Heon-Jin; Ko, Yeong-Mu; Lee, Yong-Keun

    2015-12-01

    Highly porous and interconnected scaffolds were fabricated using calcium phosphate glass (CPG) for bone tissue engineering. An avidin-biotin binding system was used to improve osteoblast-like cell adhesion to the scaffold. The scaffolds had open macro- and micro-scale pores, and continuous struts without cracks or defects. Scaffolds prepared using a mixture (amorphous and crystalline CPG) were stronger than amorphous group and crystalline group. Cell adhesion assays showed that more cells adhered, with increasing cell seeding efficiency to the avidin-adsorbed scaffolds, and that cell attachment to the highly porous scaffolds significantly differed between avidin-adsorbed scaffolds and other scaffolds. Proliferation was also significantly higher for avidin-adsorbed scaffolds. Osteoblastic differentiation of MG-63 cells was observed at 3 days, and MG-63 cells in direct contact with avidin-adsorbed scaffolds were positive for type I collagen, osteopontin, and alkaline phosphatase gene expression. Osteocalcin expression was observed in the avidin-adsorbed scaffolds at 7 days, indicating that cell differentiation in avidin-adsorbed scaffolds occurred faster than the other scaffolds. Thus, these CPG scaffolds have excellent biological properties suitable for use in bone tissue engineering.

  17. BMP-2 encapsulated polysaccharide nanoparticle modified biphasic calcium phosphate scaffolds for bone tissue regeneration.

    PubMed

    Wang, Zhenming; Wang, Kefeng; Lu, Xiong; Li, Minqi; Liu, Hongrui; Xie, Chaoming; Meng, Fanzhi; Jiang, Ou; Li, Chen; Zhi, Wei

    2015-04-01

    Bone morphology protein-2 (BMP-2) encapsulated chitosan/chondrotin sulfate nanoparticles (CHI/CS NPs) are developed to enhance ectopic bone formation on biphasic calcium phosphate (BCP) scaffolds. BMP-2 contained CHI/CS NPs were prepared by a simple and mild polyelectrolyte complexation process. It does not involve harsh organic solvents and high temperature, and therefore retain growth factors activity. These NPs were immobilized on BCP scaffolds, and realize the sustained release of growth factors from the scaffolds. The bare BCP scaffolds, NP loaded scaffolds (BCP-NP), and NP loaded and polydopamine coated scaffolds (BCP-Dop-NP) were seeded with bone marrow stroma cells (BMSC) to evaluate the osteoinductivity of the scaffolds. BMSC culture results indicate that all scaffolds favor cell adhesion, proliferation, differentiation. Afterwards, the bare BCP, BCP-NP, and BCP-Dop-NP scaffolds were implanted into rabbits intramuscularly to evaluate the ectopic bone formation of scaffolds. In vivo results indicate that the BCP-NP and BCP-Dop-NP scaffolds enhance more ectopic bone formation than the bare BCP scaffolds. Both the in vitro and in vivo results demonstrate that BMP-2 encapsulated polysaccharide NPs are effective to improve the osteoinductivity of the scaffolds. In addition, BCP-NP scaffolds induce more bone formation than BCP-Dop-NP scaffolds. This is because BCP-NP scaffolds harness the intrinsic osteoinductivity BCP and BMP-2, whereas BCP-Dop-NP scaffolds have polydopamine coatings that inhibit the surfaces biological features of BCP scaffolds, and therefore weaken the bone formation ability of scaffolds. PMID:25100662

  18. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.

    PubMed

    Wang, Ling; Wu, Yaobin; Guo, Baolin; Ma, Peter X

    2015-09-22

    Designing scaffolds that can mimic native skeletal muscle tissue and induce 3D cellular alignment and elongated myotube formation remains an ongoing challenge for skeletal muscle tissue engineering. Herein, we present a simple technique to generate core-shell composite scaffolds for mimicking native skeletal muscle structure, which comprise the aligned nanofiber yarn (NFY) core and the photocurable hydrogel shell. The aligned NFYs are prepared by the hybrid composition including poly(caprolactone), silk fibroin, and polyaniline via a developed dry-wet electrospinning method. A series of core-shell column and sheet composite scaffolds are ultimately obtained by encapsulating a piece and layers of aligned NFY cores within the hydrogel shell after photo-cross-linking. C2C12 myoblasts are seeded within the core-shell scaffolds, and the good biocompatibility of these scaffolds and their ability to induce 3D cellular alignment and elongation are successfully demonstrated. Furthermore, the 3D elongated myotube formation within core-shell scaffolds is also performed after long-term cultivation. These data suggest that these core-shell scaffolds combine the aligned NFY core that guides the myoblast alignment and differentiation and the hydrogel shell that provides a suitable 3D environment for nutrition exchange and mechanical protection to perform a great practical application for skeletal muscle regeneration.

  19. Towards the Design of 3D Fiber-Deposited Poly(ε-caprolactone)/lron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration.

    PubMed

    De Santis, Roberta; Russo, Alessandro; Gloria, Antonio; D'Amora, Ugo; Russo, Teresa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Marcacci, Maurilio; Dediu, Valentin A; Wilde, Colin J; Ambrosio, Luigi

    2015-07-01

    In the past few years, researchers have focused on the design and development of three-dimensional (3D) advanced scaffolds, which offer significant advantages in terms of cell performance. The introduction of magnetic features into scaffold technology could offer innovative opportunities to control cell populations within 3D microenvironments, with the potential to enhance their use in tissue regeneration or in cell-based analysis. In the present study, 3D fully biodegradable and magnetic nanocomposite scaffolds for bone tissue engineering, consisting of a poly(ε-caprolactone) (PCL) matrix reinforced with iron-doped hydroxyapatite (FeHA) nanoparticles, were designed and manufactured using a rapid prototyping technique. The performances of these novel 3D PCL/FeHA scaffolds were assessed through a combination of theoretical evaluation, experimental in vitro analyses and in vivo testing in a rabbit animal model. The results from mechanical com- pression tests were consistent with FEM simulations. The in vitro results showed that the cell growth in the magnetized scaffolds was 2.2-fold greater than that in non-magnetized ones. In vivo experiments further suggested that, after only 4 weeks, the PCL/FeHA scaffolds were completely filled with newly formed bone, proving a good level of histocompatibility. All of the results suggest that the introduction of magnetic features into biocompatible materials may confer significant advantages in terms of 3D cell assembly. PMID:26307846

  20. Graded Porous β-Tricalcium Phosphate Scaffolds Enhance Bone Regeneration in Mandible Augmentation

    PubMed Central

    Yang, Jingwen; Kang, Yunqing; Browne, Christopher; Jiang, Ting; Yang, Yunzhi

    2015-01-01

    Abstract Bone augmentation requires scaffold to promote forming of natural bone structure. Currently, most of the reported bone scaffolds are porous solids with uniform pores. The aim of the currentstudy is to evaluate the effect of a graded porous β-tricalcium phosphate scaffolds on alveolar bone augmentation. Three groups of scaffolds were fabricated by a template-casting method: (1) graded porous scaffolds with large pores in the center and small pores at theperiphery, (2) scaffolds with large uniform pores, and (3) scaffolds with small uniform pores. Bone augmentation on rabbit mandible wasinvestigated by microcomputed tomography, sequential fluorescentlabeling, and histologic examination 3 months after implantation.The result presents that all the scaffold groups maintain their augmented bone height after 3-month observation, whereas the autograftinggroup presents an obvious bone resorption. Microcomputed tomography reveals that the graded porous group has significantly greater volume of new bone (P < 0.05) and similar bone density compared with the uniform pores groups. Bone substance distributes unevenly in all the 3 experimental groups. Greater bone volume can be observed in the area closer to the bone bed. The sequential fluorescentlabeling observation reveals robust bone regeneration in the first month and faster bone growth in the graded porous scaffold group than that in the large porous scaffold group. Histologic examinationsconfirm bone structure in the aspect of distribution, activity, and maturity. We conclude that graded porous designed biodegradableβ-tricalcium phosphate scaffolds are beneficial to promote bone augmentation in the aspect of bone volume. PMID:25675019

  1. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  2. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Guo, Weibo; Wang, Shu; Yu, Xin; Qiu, Jichuan; Li, Jianhua; Tang, Wei; Li, Zhou; Mou, Xiaoning; Liu, Hong; Wang, Zhonglin

    2016-01-01

    The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells.The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold

  3. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  4. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  5. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing

    PubMed Central

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C–1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C–1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds

  6. 3D-QSAR study of benzotriazol-1-yl carboxamide scaffold as monoacylglycerol lipase inhibitors

    PubMed Central

    Afzal, Obaid; Kumar, Suresh; Kumar, Rajiv; Jaggi, Manu; Bawa, Sandhya

    2014-01-01

    Purpose: The purpose of this study is to build up the 3D pharmacophore of Monoacylglycerol lipase (MAGL) inhibitor and to provide the basis to design the novel and potent MAGL inhibitors. Material and Method: A 3D-QSAR study on benztriazol-1-yl carboxamide derivatives as monoacylglycerol lipase (MAGL) inhibitors was successfully performed by means of pharmacophore mapping using PHASE 3.5 module of Schrφdinger-9.4. Result: The 3D-QSAR obtained from APRRR-105 hypothesis was found to be statistically good with r2 = 0.9228 and q2 = 0.871, taking PLS factor 4. The statistical significance of the model was also confirmed by a high value of Fisher's ratio of 82.8 and a very low value of root-mean-square error (RMSE) 0.2564. Another parameter which signifies the model predictivity is Pearson R. Its value of 0.9512 showed that the correlation between predicted and observed activities for the test set compounds is excellent. Conclusion: The study suggested that one H-bond acceptor, one positive center, and proper positioning of hydrophobic groups near the distal aromatic ring C are the crucial determinants for MAGL inhibition. Thus, it can be assumed that the present QSAR analysis is enough to demonstrate MAGL inhibition with the help of APRRR-105 hypothesis and will be helpful in designing novel and potent MAGL inhibitors. PMID:25400409

  7. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells.

    PubMed

    Guo, Weibo; Wang, Shu; Yu, Xin; Qiu, Jichuan; Li, Jianhua; Tang, Wei; Li, Zhou; Mou, Xiaoning; Liu, Hong; Wang, Zhonglin

    2016-01-28

    The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells. PMID:26750302

  8. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells.

    PubMed

    Guo, Weibo; Wang, Shu; Yu, Xin; Qiu, Jichuan; Li, Jianhua; Tang, Wei; Li, Zhou; Mou, Xiaoning; Liu, Hong; Wang, Zhonglin

    2016-01-28

    The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells.

  9. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  10. Fabrication of gelatin-strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering.

    PubMed

    Wu, Yu-Chun; Lin, Wei-Yu; Yang, Chyun-Yu; Lee, Tzer-Min

    2015-03-01

    This study fabricated homogeneous gelatin-strontium substituted calcium phosphate composites via coprecipitation in a gelatin solution. Unidirectional porous scaffolds with an oriented microtubular structure were then manufactured using freeze-drying technology. The resulting structure and pore alignment were determined using scanning electron microscopy. The pore size were in the range of 200-400 μm, which is considered ideal for the engineering of bone tissue. The scaffolds were further characterized using energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Hydroxyapatite was the main calcium phosphate compound in the scaffolds, with strontium incorporated into the crystal structure. The porosity of the scaffolds decreased with increasing concentration of calcium-phosphate. The compressive strength in the longitudinal direction was two to threefold higher than that observed in the transverse direction. Our results demonstrate that the composite scaffolds degraded by approximately 20 % after 5 weeks. Additionally, in vitro results reveal that the addition of strontium significantly increased human osteoblastic cells proliferation. Scaffolds containing strontium with a Sr-CaP/(gelatin + Sr-CaP) ratio of 50 % provided the most suitable environment for cell proliferation, particularly under dynamic culture conditions. This study demonstrates the considerable potential of composite scaffolds composed of gelatin-strontium-substituted calcium phosphate for applications in bone tissue engineering.

  11. Fabrication of gelatin-strontium substituted calcium phosphate scaffolds with unidirectional pores for bone tissue engineering.

    PubMed

    Wu, Yu-Chun; Lin, Wei-Yu; Yang, Chyun-Yu; Lee, Tzer-Min

    2015-03-01

    This study fabricated homogeneous gelatin-strontium substituted calcium phosphate composites via coprecipitation in a gelatin solution. Unidirectional porous scaffolds with an oriented microtubular structure were then manufactured using freeze-drying technology. The resulting structure and pore alignment were determined using scanning electron microscopy. The pore size were in the range of 200-400 μm, which is considered ideal for the engineering of bone tissue. The scaffolds were further characterized using energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Hydroxyapatite was the main calcium phosphate compound in the scaffolds, with strontium incorporated into the crystal structure. The porosity of the scaffolds decreased with increasing concentration of calcium-phosphate. The compressive strength in the longitudinal direction was two to threefold higher than that observed in the transverse direction. Our results demonstrate that the composite scaffolds degraded by approximately 20 % after 5 weeks. Additionally, in vitro results reveal that the addition of strontium significantly increased human osteoblastic cells proliferation. Scaffolds containing strontium with a Sr-CaP/(gelatin + Sr-CaP) ratio of 50 % provided the most suitable environment for cell proliferation, particularly under dynamic culture conditions. This study demonstrates the considerable potential of composite scaffolds composed of gelatin-strontium-substituted calcium phosphate for applications in bone tissue engineering. PMID:25773230

  12. Gelatin-layered and multi-sized porous β-tricalcium phosphate for tissue engineering scaffold

    PubMed Central

    2012-01-01

    The multi-sized porous β-tricalcium phosphate scaffolds were fabricated by freeze drying followed by slurry coating using a multi-sized porous sponge as a template. Then, gelatin was dip coated on the multi-sized porous β-tricalcium phosphate scaffolds under vacuum. The mechanical and biological properties of the fabricated scaffolds were evaluated and compared to the uniformly sized porous scaffolds and scaffolds that were not coated by gelatin. The compressive strength was tested by a universal testing machine, and the cell viability and differentiation behavior were measured using a cell counting kit and alkaline phosphatase activity using the MC3T3-E1 cells. In comparison, the gelatin-coated multi-sized porous β-tricalcium phosphate scaffold showed enhanced compressive strength. After 14 days, the multi-sized pores were shown to affect cell differentiation, and gelatin coatings were shown to affect the cell viability and differentiation. The results of this study demonstrated that the multi-sized porous β-tricalcium phosphate scaffold coated by gelatin enhanced the mechanical and biological strengths. PMID:22252276

  13. Using a decellularized splenic matrix as a 3D scaffold for hepatocyte cultivation in vitro: a preliminary trial.

    PubMed

    Zheng, Xing-Long; Xiang, Jun-Xi; Wu, Wan-Quan; Wang, Bo; Liu, Wen-Yan; Gao, Rui; Dong, Ding-Hui; Lv, Yi

    2015-08-01

    Using a decellularized liver matrix (DLM) to reengineer liver tissue is a promising therapy for end-stage liver disease. However, the limited supply of donor organs still hampers its potential clinical application, while a xenogenic decellularized matrix may bring a risk of zoonosis and immunological rejection. Therefore, an appropriate alternative scaffold is needed. In this research, we established a decellularized splenic matrix (DSM) in a rodent model, which preserved the 3D ultrastructure, the components of the extracellular matrix (ECM) and the native vascular network. The DSM and DLM had similar components of ECM, and similar mechanical properties. Hepatocytes were seeded to the DSM and DLM for dynamic culturing up to 6 d, and distributed both in decellularized sinusoidal spaces and around the vessels. The TUNEL-positive cell percentage in a dynamic culturing decellularized splenic matrix (dDSM) was 10.7%  ±  3.6% at 3d and 25.8%  ±  5.6% at 5d, although 14.2%  ±  4.5% and 24.8%  ±  2.9%, respectively, in a dynamic culturing decellularized liver matrix (dDLM) at the same time point (p  >  0.05). Primary hepatocytes in the dDSM and dDLM expressed albumin, G6pc and Ugt1a1. The gene expression of Cyp2b1, Cyp1a2 and HNF1α in the gene transcription level revealed hepatocytes had lower gene expression levels in the dDSM compared with the dDLM at 3d, but better than those in a sandwich culture. The cumulative albumin production at 6 d of culture was 80.7   ±   9.6 μg per million cells in the dDSM and 89.6   ±   4.6 μg per million cells in the dDLM (p  >  0.05). In summary, the DSM is a promising 3D scaffold for hepatocyte cultivation in vitro. PMID:26290516

  14. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    PubMed

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures. PMID:27480606

  15. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    PubMed

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures.

  16. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.

    PubMed

    Wright, L D; Young, R T; Andric, T; Freeman, J W

    2010-10-01

    Electrospinning is a polymer processing technique that produces fibrous structures comparable to the extracellular matrix of many tissues. Electrospinning, however, has been severely limited in its tissue engineering capabilities because this technique has produced few three-dimensional structures. Sintering of electrospun materials provides a method to fabricate unique architectures and allow much larger structures to be made. Electrospun mats were sintered into strips and cylinders, and their tensile and compressive mechanical properties were measured. In addition, electrospun materials with salt pores (salt embedded within the material and then leached out) were fabricated to improve porosity of the electrospun materials for tissue engineering scaffolds. Sintered electrospun poly(D,L-lactide) and poly(L-lactide) (PDLA/PLLA) materials have higher tensile mechanical properties (modulus: 72.3 MPa, yield: 960 kPa) compared to unsintered PLLA (modulus: 40.36 MPa, yield: 675.5 kPa). Electrospun PDLA/PLLA cylinders with and without salt-leached pores had compressive moduli of 6.69 and 26.86 MPa, respectively, and compressive yields of 1.36 and 0.56 MPa, respectively. Sintering of electrospun materials is a novel technique that improves electrospinning application in tissue engineering by increasing the size and types of electrospun structures that can be fabricated.

  17. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.

    PubMed

    Luo, Yongxiang; Lode, Anja; Wu, Chengtie; Chang, Jiang; Gelinsky, Michael

    2015-04-01

    Composite scaffolds, especially polymer/hydroxyapatite (HAP) composite scaffolds with predesigned structures, are promising materials for bone tissue engineering. Various methods including direct mixing of HAP powder with polymers or incubating polymer scaffolds in simulated body fluid for preparing polymer/HAP composite scaffolds are either uncontrolled or require long times of incubation. In this work, alginate/nano-HAP composite scaffolds with designed pore parameters and core/shell structures were fabricated using 3D plotting technique and in situ mineralization under mild conditions (at room temperature and without the use of any organic solvents). Light microscopy, scanning electron microscopy, microcomputer tomography, X-ray diffraction, and Fourier transform infrared spectroscopy were applied to characterize the fabricated scaffolds. Mechanical properties and protein delivery of the scaffolds were evaluated, as well as the cell response to the scaffolds by culturing human bone-marrow-derived mesenchymal stem cells (hBMSC). The obtained data indicate that this method is suitable to fabricate alginate/nano-HAP composite scaffolds with a layer of nano-HAP, coating the surface of the alginate strands homogeneously and completely. The surface mineralization enhanced the mechanical properties and improved the cell attachment and spreading, as well as supported sustaining protein release, compared to pure alginate scaffolds without nano-HAP shell layer. The results demonstrated that the method provides an interesting option for bone tissue engineering application.

  18. Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model

    PubMed Central

    Hartman, Olga; Zhang, Chu; Adams, Elizabeth L.; Farach-Carson, Mary C.; Petrelli, Nicholas J.; Chase, Bruce D.; Rabolt, John F.

    2010-01-01

    Because prostate cancer cells metastasize to bone and exhibit osteoblastic features (osteomimicry), the interrelationships between bone-specific microenvironment and prostate cancer cells at sites of bone metastasis are critical to disease progression. In this work the bone marrow microenvironment in vitro was recreated both by tailoring scaffolds physical properties and by functionalizing electrospun polymer fibers with a bioactive peptide derived from domain IV of perlecan heparan sulfate proteoglycan. Electrospun poly (ε-caprolactone) (PCL) fibers and PCL/gelatin composite scaffolds were modified covalently with perlecan domain IV (PlnDIV) peptide. The expression of tight junction protein (E-cadherin) and focal adhesion kinase (FAK) phosphorylation on tyrosine 397 also were investigated. The described bioactive motif significantly enhanced adherence and infiltration of the metastatic prostate cancer cells on all modified electrospun substrates by day 5 post-seeding. Cells cultured on PlnDIV-modified matrices organized stress fibers and increased proliferation at statistically significant rates. Additional findings suggest that presence of PlnDIV peptide in the matrix reduced expression of tight junction protein and binding to PlnDIV peptide was accompanied by increased focal adhesion kinase (FAK) phosphorylation on tyrosine 397. We conclude that PlnDIV peptide supports key signaling events leading to proliferation, survival, and migration of C4-2B cancer cells; hence its incorporation into electrospun matrix is a key improvement to create a successful three-dimensional (3-D) pharmacokinetic cancer model. PMID:20417554

  19. Image-based analysis of the internal microstructure of bone replacement scaffolds fabricated by 3D printing

    NASA Astrophysics Data System (ADS)

    Irsen, Stephan H.; Leukers, Barbara; Bruckschen, Björn; Tille, Carsten; Seitz, Hermann; Beckmann, Felix; Müller, Bert

    2006-08-01

    Rapid Prototyping and especially the 3D printing, allows generating complex porous ceramic scaffolds directly from powders. Furthermore, these technologies allow manufacturing patient-specific implants of centimeter size with an internal pore network to mimic bony structures including vascularization. Besides the biocompatibility properties of the base material, a high degree of open, interconnected porosity is crucial for the success of the synthetic bone graft. Pores with diameters between 100 and 500 μm are the prerequisite for vascularization to supply the cells with nutrients and oxygen, because simple diffusion transport is ineffective. The quantification of porosity on the macro-, micro-, and nanometer scale using well-established techniques such as Hg-porosimetry and electron microscopy is restricted. Alternatively, we have applied synchrotron-radiation-based micro computed tomography (SRμCT) to determine the porosity with high precision and to validate the macroscopic internal structure of the scaffold. We report on the difficulties in intensity-based segmentation for nanoporous materials but we also elucidate the power of SRμCT in the quantitative analysis of the pores at the different length scales.

  20. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.

    PubMed

    Hejazi, Fatemeh; Mirzadeh, Hamid

    2016-09-01

    Developing three dimensional scaffolds mimicking the nanoscale structure of native extracellular matrix is a key parameter in tissue regeneration. In this study, we aimed to introduce a novel 3D structures composed of nanofibers (NF) and micro particles (MP) and compare their efficiency with 2D nanofibrous scaffold. The conventional nanofibrous PCL scaffolds are 2D mats fabricated by the electrospinning technique, whereas the NF/MP and patterned NF/MP PCL scaffolds are three dimensional structures fabricated by a modified electrospinning/electrospraying technique. The mentioned method was carried out by varying the electrospinning solution parameters and use of a metal mesh as the collector. Detailed fabrication process and morphological properties of the fabricated structures is discussed and porosity, pore size and PBS solution absorption value of the prepared structures are reported. Compared with the 2D structure, 3D scaffolds possessed enhanced porosity and pore size which led to the significant increase in their water uptake capacity. In vitro cell experiments were carried out on the prepared structures by the use of MG-63 osteosarcoma cell line. The fabricated 3D structures offered significantly increased cell attachment, spread and diffusion which were confirmed by SEM analysis. In vitro cytocompatibility assessed by MTT colorimetric assay indicated a continuous cell proliferation over 21 days on the innovative 3D structure, while on 2D mat cell proliferation stopped at early time points. Enhanced osteogenic differentiation of the seeded MG-63 cells on 3D scaffold was confirmed by the remarkable ALP activity together with increased and accelerated calcium deposition on this structure compared to 2D mat. Massive and well distributed bone minerals formed on patterned 3D structure were shown by EDX analysis. In comparison between NF/MP quasi-3D and Patterned NF/MP 3D scaffolds, patterned structures proceeded in all of the above properties. As such, the

  1. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.

    PubMed

    Hejazi, Fatemeh; Mirzadeh, Hamid

    2016-09-01

    Developing three dimensional scaffolds mimicking the nanoscale structure of native extracellular matrix is a key parameter in tissue regeneration. In this study, we aimed to introduce a novel 3D structures composed of nanofibers (NF) and micro particles (MP) and compare their efficiency with 2D nanofibrous scaffold. The conventional nanofibrous PCL scaffolds are 2D mats fabricated by the electrospinning technique, whereas the NF/MP and patterned NF/MP PCL scaffolds are three dimensional structures fabricated by a modified electrospinning/electrospraying technique. The mentioned method was carried out by varying the electrospinning solution parameters and use of a metal mesh as the collector. Detailed fabrication process and morphological properties of the fabricated structures is discussed and porosity, pore size and PBS solution absorption value of the prepared structures are reported. Compared with the 2D structure, 3D scaffolds possessed enhanced porosity and pore size which led to the significant increase in their water uptake capacity. In vitro cell experiments were carried out on the prepared structures by the use of MG-63 osteosarcoma cell line. The fabricated 3D structures offered significantly increased cell attachment, spread and diffusion which were confirmed by SEM analysis. In vitro cytocompatibility assessed by MTT colorimetric assay indicated a continuous cell proliferation over 21 days on the innovative 3D structure, while on 2D mat cell proliferation stopped at early time points. Enhanced osteogenic differentiation of the seeded MG-63 cells on 3D scaffold was confirmed by the remarkable ALP activity together with increased and accelerated calcium deposition on this structure compared to 2D mat. Massive and well distributed bone minerals formed on patterned 3D structure were shown by EDX analysis. In comparison between NF/MP quasi-3D and Patterned NF/MP 3D scaffolds, patterned structures proceeded in all of the above properties. As such, the

  2. Interview: bioreactors and surfaced-modified 3D-scaffolds for stem cell research.

    PubMed

    Weibezahn, Karl-Friedrich

    2008-01-01

    A Nature Editorial in 2003 asked the question "Good-bye, flat biology?" What does this question imply? In the past, many in vitro culture systems, mainly monolayer cultures, often suffered from the disadvantage that differentiated primary cells had a relatively short life-span and de-differentiated during culture. As a consequence, most of their organ-specific functions were lost rapidly. Thus, in order to reproduce better conditions for these cells in vitro, modifications and adaptations have been made to conventional monolayer cultures. The last generation of CellChips--micro-thermoformed containers--a specific technology was developed, which offers the additional possibility to modify the whole surface of the 3D formed containers. This allows a surface-patterning on a submicron scale with distinct signalling molecules. Sensors and signal electrodes may be incorporated. Applications range from basic research in cell biology to toxicology and pharmacology. Using biodegradable polymers, clinical applications become a possibility. Furthermore, the last generation of micro-thermoformed chips has been optimized to allow for cheap mass production.

  3. Interview: Bioreactors and Surfaced-Modified 3D-Scaffolds for Stem Cell Research

    PubMed Central

    Weibezahn, Karl-Friedrich

    2008-01-01

    A Nature Editorial in 2003 asked the question "Good-bye, flat biology?" What does this question imply? In the past, many in vitro culture systems, mainly monolayer cultures, often suffered from the disadvantage that differentiated primary cells had a relatively short life-span and de-differentiated during culture. As a consequence, most of their organ-specific functions were lost rapidly. Thus, in order to reproduce better conditions for these cells in vitro, modifications and adaptations have been made to conventional monolayer cultures. The last generation of CellChips -- micro-thermoformed containers -- a specific technology was developed, which offers the additional possibility to modify the whole surface of the 3D formed containers. This allows a surface-patterning on a submicron scale with distinct signalling molecules. Sensors and signal electrodes may be incorporated. Applications range from basic research in cell biology to toxicology and pharmacology. Using biodegradable polymers, clinical applications become a possibility. Furthermore, the last generation of micro-thermoformed chips has been optimized to allow for cheap mass production. PMID:19066581

  4. Association of electrospinning with electrospraying: a strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering.

    PubMed

    Braghirolli, Daikelly Iglesias; Zamboni, Fernanda; Acasigua, Gerson A X; Pranke, Patricia

    2015-01-01

    In tissue engineering, a uniform cell occupation of scaffolds is crucial to ensure the success of tissue regeneration. However, this point remains an unsolved problem in 3D scaffolds. In this study, a direct method to integrate cells into fiber scaffolds was investigated by combining the methods of electrospinning of fibers and bioelectrospraying of cells. With the associating of these methods, the cells were incorporated into the 3D scaffolds while the fibers were being produced. The scaffolds containing cells (SCCs) were produced using 20% poly(lactide-co-glycolide) solution for electrospinning and mesenchymal stem cells from deciduous teeth as a suspension for bioelectrospraying. After their production, the SCCs were cultivated for 15 days at 37°C with an atmosphere of 5% CO2. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide test demonstrated that the cells remained viable and were able to grow between the fibers. Scanning electron microscopy showed the presence of a high number of cells in the structure of the scaffolds and confocal images demonstrated that the cells were able to adapt and spread between the fibers. Histological analysis of the SCCs after 1 day of cultivation showed that the cells were uniformly distributed throughout the thickness of the scaffolds. Some physicochemical properties of the scaffolds were also investigated. SCCs exhibited good mechanical properties, compatible with their handling and further implantation. The results obtained in the present study suggest that the association of electrospinning and bioelectrospraying provides an interesting tool for forming 3D cell-integrated scaffolds, making it a viable alternative for use in tissue engineering.

  5. Association of electrospinning with electrospraying: a strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering

    PubMed Central

    Braghirolli, Daikelly Iglesias; Zamboni, Fernanda; Acasigua, Gerson AX; Pranke, Patricia

    2015-01-01

    In tissue engineering, a uniform cell occupation of scaffolds is crucial to ensure the success of tissue regeneration. However, this point remains an unsolved problem in 3D scaffolds. In this study, a direct method to integrate cells into fiber scaffolds was investigated by combining the methods of electrospinning of fibers and bioelectrospraying of cells. With the associating of these methods, the cells were incorporated into the 3D scaffolds while the fibers were being produced. The scaffolds containing cells (SCCs) were produced using 20% poly(lactide-co-glycolide) solution for electrospinning and mesenchymal stem cells from deciduous teeth as a suspension for bioelectrospraying. After their production, the SCCs were cultivated for 15 days at 37°C with an atmosphere of 5% CO2. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide test demonstrated that the cells remained viable and were able to grow between the fibers. Scanning electron microscopy showed the presence of a high number of cells in the structure of the scaffolds and confocal images demonstrated that the cells were able to adapt and spread between the fibers. Histological analysis of the SCCs after 1 day of cultivation showed that the cells were uniformly distributed throughout the thickness of the scaffolds. Some physicochemical properties of the scaffolds were also investigated. SCCs exhibited good mechanical properties, compatible with their handling and further implantation. The results obtained in the present study suggest that the association of electrospinning and bioelectrospraying provides an interesting tool for forming 3D cell-integrated scaffolds, making it a viable alternative for use in tissue engineering. PMID:26316747

  6. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers.

    PubMed

    Mohammadi, Zahra; Mesgar, Abdorreza Sheikh-Mehdi; Rasouli-Disfani, Fariba

    2016-08-01

    The composite scaffolds of the chitosan and multiphasic calcium phosphate (HW) short fibers were prepared by freeze drying and characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM and FE-SEM). The mechanical properties of the scaffolds were assessed by compression test. The incorporation of HW fibers consisting three phases of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium pyrophosphate (CPP) into the chitosan matrices was associated with an increase in pore size, density and compressive strength and modulus, and a decrease in porosity and swelling ratio of the scaffolds. The strongest composite scaffolds in this study with a chitosan: HW fibers weight ratio of 1:1 showed a mean porosity of 69% and a mean strength and modulus of 420kPa and 3.87MPa, respectively. The in vitro bioactivity of the composites was confirmed by the formation of a calcium phosphate rich layer on the surface of soaked scaffolds in simulated body fluid. The findings of this initial work indicate that the chitosan-multiphasic calcium phosphate short fibers may be a suitable material for bone scaffolding. PMID:27179144

  7. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells.

    PubMed

    AbdulQader, Sarah Talib; Kannan, Thirumulu Ponnuraj; Rahman, Ismail Ab; Ismail, Hanafi; Mahmood, Zuliani

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.

  8. Custom-Made Computer-Aided-Design/Computer-Aided-Manufacturing Biphasic Calcium-Phosphate Scaffold for Augmentation of an Atrophic Mandibular Anterior Ridge

    PubMed Central

    Mangano, Francesco Guido; van Noort, Ric; Apresyan, Samvel; Piattelli, Adriano; Macchi, Aldo

    2015-01-01

    This report documents the clinical, radiographic, and histologic outcome of a custom-made computer-aided-design/computer-aided-manufactured (CAD/CAM) scaffold used for the alveolar ridge augmentation of a severely atrophic anterior mandible. Computed tomographic (CT) images of an atrophic anterior mandible were acquired and modified into a 3-dimensional (3D) reconstruction model; this was transferred to a CAD program, where a custom-made scaffold was designed. CAM software generated a set of tool-paths for the manufacture of the scaffold on a computer-numerical-control milling machine into the exact shape of the 3D design. A custom-made scaffold was milled from a synthetic micromacroporous biphasic calcium phosphate (BCP) block. The scaffold closely matched the shape of the defect: this helped to reduce the time for the surgery and contributed to good healing. One year later, newly formed and well-integrated bone was clinically available, and two implants (AnyRidge, MegaGen, Gyeongbuk, South Korea) were placed. The histologic samples retrieved from the implant sites revealed compact mature bone undergoing remodelling, marrow spaces, and newly formed trabecular bone surrounded by residual BCP particles. This study demonstrates that custom-made scaffolds can be fabricated by combining CT scans and CAD/CAM techniques. Further studies on a larger sample of patients are needed to confirm these results. PMID:26064701

  9. Activation of Transcription Factor GAX and Concomitant Downregulation of IL-1β and ERK1/2 Modulate Vascular Smooth Muscle Cell Phenotype in 3D Fibrous Scaffolds.

    PubMed

    Lin, Shigang; Mequanint, Kibret

    2015-09-01

    Since vascular smooth muscle cells (VSMCs) display phenotypic plasticity in response to changing environmental cues, understanding the molecular mechanisms underlying the phenotypic modulation mediated by a three-dimensional (3D) scaffold is important to engineer functional vasculature. Following cell seeding into 3D scaffolds, the synthetic phenotype is desired to enable cells to expand rapidly and produce and assemble extracellular matrix components, but must revert to a quiescent contractile phenotype after tissue fabrication to impart the contractile properties found in native blood vessels. This study shows that 3D electrospun fibrous scaffolds regulate human coronary artery smooth muscle cells (HCASMCs) toward a more synthetic phenotype characterized by reduced contractile markers, such as smooth muscle alpha-actin and calponin. The reduction in contractile markers expression was mediated by endogenously expressed proinflammatory cytokine interleukin-1β (IL-1β). 3D topography transiently induces concomitant upregulation of IL-1β and MAPK ERK1/2 through nuclear factor-κB-dependent signaling pathway. An early burst of expression of IL-1β is essential for suppression of the homeobox transcription factor Gax and related cyclin-dependent kinase inhibitor p21(Cip1), which are key regulators for cells exiting from cell cycle. Our findings provide new insights for understanding signaling mechanisms of HCASMCs in electrospun 3D fibrous scaffolds, which have considerable value for application in vascular tissue engineering. PMID:26041434

  10. Calcium Phosphate Based Three-Dimensional Cold Plotted Bone Scaffolds for Critical Size Bone Defects

    PubMed Central

    Bergmann, Christian J. D.; Odekerken, Jim C. E.; Welting, Tim J. M.; Jungwirth, Franz; Devine, Declan; Bouré, Ludovic; Zeiter, Stephan; van Rhijn, Lodewijk W.; Telle, Rainer; Fischer, Horst; Emans, Pieter J.

    2014-01-01

    Bone substitutes, like calcium phosphate, are implemented more frequently in orthopaedic surgery to reconstruct critical size defects, since autograft often results in donor site morbidity and allograft can transmit diseases. A novel bone cement, based on β-tricalcium phosphate, polyethylene glycol, and trisodium citrate, was developed to allow the rapid manufacturing of scaffolds, by extrusion freeform fabrication, at room temperature. The cement composition exhibits good resorption properties and serves as a basis for customised (e.g., drug or growth factor loaded) scaffolds for critical size bone defects. In vitro toxicity tests confirmed proliferation and differentiation of ATDC5 cells in scaffold-conditioned culture medium. Implantation of scaffolds in the iliac wing of sheep showed bone remodelling throughout the defects, outperforming the empty defects on both mineral volume and density present in the defect after 12 weeks. Both scaffolds outperformed the autograft filled defects on mineral density, while the mineral volume present in the scaffold treated defects was at least equal to the mineral volume present in the autograft treated defects. We conclude that the formulated bone cement composition is suitable for scaffold production at room temperature and that the established scaffold material can serve as a basis for future bone substitutes to enhance de novo bone formation in critical size defects. PMID:24719891

  11. Arrangement techniques of proteins and cells using amorphous calcium phosphate nanofiber scaffolds

    NASA Astrophysics Data System (ADS)

    Nonoyama, Takayuki; Kinoshita, Takatoshi; Higuchi, Masahiro; Nagata, Kenji; Tanaka, Masayoshi; Kamada, Mari; Sato, Kimiyasu; Kato, Katsuya

    2012-12-01

    We demonstrate arrangement techniques of proteins and cells using an amorphous calcium phosphate (ACP) nanofiber scaffold. It is well known that protein andosteoblastic cell are preferably adsorbed onto ACP surface. The ACP nanofiber scaffold was prepared by calcium phosphate mineralization on a polypeptide monolayer-coated mica substrate, and ACP nanofibers were oriented unidirectionaly. In a protein system, the ACP nanofiber scaffold was soaked in a fluorescein isothiocyanate conjugated immunoglobulin G (IgG-FITC) aqueous solution. From fluorescence microscopic measurement, the adsorbed IgG-FITC was highly confined and arranged on the ACP nanofiber. In a cell system, a mouse osteoblast-like cell (MC3T3-E1) behavior on the ACP nanofiber scaffold was observed. The cell was elongated unidirectionaly, and its cytoskeletal shape showed high aspect ratio. These results are clearly different from an ACP bulk template or bare mica substrate, and the arrangement technique enable to fabricate a fine-tuned biomaterial template.

  12. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling

    PubMed Central

    Kumar, Raj; Son, Minky; Bavi, Rohit; Lee, Yuno; Park, Chanin; Arulalapperumal, Venkatesh; Cao, Guang Ping; Kim, Hyong-ha; Suh, Jung-keun; Kim, Yong-seong; Kwon, Yong Jung; Lee, Keun Woo

    2015-01-01

    Aim: Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. Methods: The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. Results: The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. Conclusion: Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors. PMID:26051108

  13. Internal structures of scaffold-free 3D cell cultures visualized by synchrotron radiation-based micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Saldamli, Belma; Herzen, Julia; Beckmann, Felix; Tübel, Jutta; Schauwecker, Johannes; Burgkart, Rainer; Jürgens, Philipp; Zeilhofer, Hans-Florian; Sader, Robert; Müller, Bert

    2008-08-01

    Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.

  14. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.

    PubMed

    Strobel, L A; Rath, S N; Maier, A K; Beier, J P; Arkudas, A; Greil, P; Horch, R E; Kneser, U

    2014-03-01

    Bone tissue engineering strategies mainly depend on porous scaffold materials. In this study, novel biphasic calcium phosphate (BCP) matrices were generated by 3D-printing. High porosity was achieved by starch consolidation. This study aimed to characterise the porous BCP-scaffold properties and interactions of osteogenic cells and growth factors under in vivo conditions. Five differently treated constructs were implanted subcutaneously in syngeneic rats: plain BCP constructs (group A), constructs pre-treated with BMP-2 (group B; 1.6 µg BMP-2 per scaffold), seeded with primary osteoblasts (OB) (group C), seeded with OB and BMP-2 (group D) and constructs seeded with OB and pre-cultivated in a flow bioreactor for 6 weeks (group E). After 2, 4 and 6 weeks, specimens were explanted and subjected to histological and molecular biological analyses. Explanted scaffolds were invaded by fibrovascular tissue without significant foreign body reactions. Morphometric analysis demonstrated significantly increased bone formation in samples from group D (OB + BMP-2) compared to all other groups. Samples from groups B-E displayed significant mRNA expression of bone-specific genes after 6 weeks. Pre-cultivation in the flow bioreactor (group E) induced bone formation comparable with group B. In this study, differences in bone distribution between samples with BMP-2 or osteoblasts could be observed. In conclusion, combination of osteoblasts and BMP-2 synergistically enhanced bone formation in novel ceramic scaffolds. These results provide the basis for further experiments in orthotopic defect models with a focus on future applications in orthopaedic and reconstructive surgery.

  15. Use of 3D cartilage scaffolds for the stabilization of implants and bone regeneration with the fit-lock technique.

    PubMed

    Falisi, Giovanni; Galli, Massimo; Vittorini-Velasquez, Pedro; Gallegos-Rivera, Juan C; Minasi, Roberto; De Biase, Alberto; Di Paolo, Carlo

    2013-01-01

    The surgical procedures for implant applications on the lateral-upper areas depend on sinus pneumatization and availability of the residual bone. In these cases, autologous bone grafting remains the gold standard. Nevertheless, because of the morbidity associated to the donor site and the post-surgical complications, several alternative bone substitutes have been introduced, which, however, imply additional costs and show limited osteoinductive properties. Such limitations can be compensated with new regeneration strategies for biological and mechanical tissue restoration, a subject which has been addressed by tissue engineering in recent years. The authors present a new therapeutic option for implant application in the upper maxilla with bone availability less than 4 mm by using 3D scaffolds obtained from antigen-free porcine cartilage in the fit-lock technique. A longitudinal study on 18 consecutive cases was performed, with a 95.2% success rate one year after the implant. The advantages of this new technique are: 1) Functional and anatomical recovery of the maxillary antrum, 2) Immediate application of the implants; 3) Reduction of surgical times; 4) Absence of patient morbidity; 5) Local anesthesia; 6) Use of implants with a diameter > 4 mm.

  16. The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair.

    PubMed

    Pu, Fanrong; Rhodes, Nicholas P; Bayon, Yves; Chen, Rui; Brans, Gerben; Benne, Remco; Hunt, John A

    2010-05-01

    Highly cellularised 3D-tissue constructs designed to repair large, complex abdominal wall defects were prepared using poly (lactic acid) (PLLA)-collagen scaffolds in vitro using a flow perfusion bioreactor. The PLLA-collagen scaffolds had a unique structure consisting of a collagen sponge formed within the pores of a mechanically stable knitted mesh of PLLA. The effect of the flow perfusion bioreactor culturing conditions was investigated in vitro for 0, 7, 14 and 28 days on scaffolds seeded with dermal fibroblasts. The cultured constructs were subsequently studied subcutaneously (SC) in an in vivo animal model. The results of in vitro studies demonstrated that the perfusion system facilitated increased cell proliferation and homogenous distribution in the PLLA-collagen scaffolds compared to static conditions. A highly cellularised 3D-tissue construct was formed by 7 days incubation under perfusion conditions, with increased cellularity by the 28 day time point. The in vivo model demonstrated that implanting constructs with high cellularity resulted in exceptional cell stabilisation, with the survival of implanted cells and expression of the phenotypically-relevant extracellular matrix proteins collagen types I and III, studied by fluorescence in situ hybridisation (FISH) and immunohistochemistry. The implantation of this porous PPLA-collagen scaffold seeded with dermal fibroblasts following in vitro maturation using a flow perfusion bioreactor system suggests a significant advance over current state-of-the-art procedures for the reconstruction of large, complex abdominal wall tissue defects. PMID:20219244

  17. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  18. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    PubMed Central

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-01-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds. PMID:26758780

  19. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.

    PubMed

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-12

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  20. Design, synthesis, and optimization of nanostructured calcium phosphates (NanoCaPs) and natural polymer based 3-D non-viral gene delivery systems

    NASA Astrophysics Data System (ADS)

    Ko, Hsu-Feng

    Sustained delivery of therapeutic genes from a three-dimensional (3-D) scaffold and subsequent gene expression capable of triggering the regeneration of damaged tissues is a tissue engineering strategy that has been gaining increased attention. Nanostructured calcium phosphates (NanoCaPs) are biocompatible and non-toxic biomaterials. Furthermore, their efficient transfection in vitro have rendered them attractive gene delivery carriers compared to other viral- or lipid-based agents that tend to be immunogenic or cytotoxic, leading to undesirable responses when utilized above a critical threshold. However, NanoCaPs are typically characterized by variable transfection and short shelf life due to particle aggregation. A viable solution to this problem is the incorporation of NanoCaPs into 3-D scaffolds. The main objectives of this research are therefore two-fold: (1) Examination of the potential of achieving optimized transfection of NanoCaPs via anionic substitution and (2) high throughput synthesis and screening of non-viral gene delivery systems (GDS) comprised of naturally-derived polymers as scaffolds containing NanoCaPs gene carriers. Results indicated that in addition to the excellent transfection levels exhibited by NanoCaPs in vitro, an additional 20-30% increase was observed for NanoCaPs with 10-25 mol% anion substitution. In contrast, high anion substitution (>60%) yielded a drastic decline in transfection. Structural characterizations verified successful anion substitution with a noticeable increase in lattice parameters indicative of an expanded unit cell due to ionic substitution. All of the anion substituted calcium phosphates exhibited the primary phase of hydroxyapatite. For the first time, GDS composed of various concentrations of alginate (AA), fibronectin (FN), and NanoCaPs-DNA complexes were demonstrated. The presence of AA and FN was effective in immobilizing NanoCaPs and reducing the aggregation. High throughput synthesis and screening

  1. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    PubMed

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold.

  2. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    PubMed

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. PMID:24364970

  3. A salmon DNA scaffold promotes osteogenesis through activation of sodium-dependent phosphate cotransporters.

    PubMed

    Katsumata, Yuri; Kajiya, Hiroshi; Okabe, Koji; Fukushima, Tadao; Ikebe, Tetsuro

    2015-12-25

    We previously reported the promotion of bone regeneration in calvarial defects of both normal and ovariectomy-induced osteoporotic rats, with the use of biodegradable DNA/protamine scaffold. However, the method by which this DNA-containing scaffold promotes bone formation is still not understood. We hypothesize that the salmon DNA, from which this scaffold is derived, has an osteoinductive effect on pre-osteoblasts and osteoblasts. We examined the effects of salmon DNA on osteoblastic differentiation and calcification in MC3T3-E1 cells, mouse osteoblasts, in vitro and bone regeneration in a calvarial defect model of aged mouse in vivo. The salmon DNA fragments (300 bps) upregulated the expression of the osteogenic markers, such as alkaline phosphatase, Runx2, and osterix (Osx) in MC3T3E1 cells compared with incubation with osteogenic induction medium alone. Measurement of phosphate ion concentrations in cultures showed that the DNA scaffold degraded phosphate ions were released to the cell cultures. Interestingly, we found that the inclusion of DNA in osteoblastic cell cultures upregulated the expression of sodium-dependent phosphate (NaPi) cotransporters, SLC20A1 and SLC34A2, in MC3T3-E1 cells in a time dependent manner. Furthermore, the inclusion of DNA in cell cultures increased the transcellular permeability of phosphate. Conversely, the incubation of phosphonoformic acid, an inhibitor of NaPi cotransporters, attenuated the DNA-induced expression and activation of SLC20A1 and SLC34A2 in MC3T3-E1 cells, resulting in suppression of the osteogenic markers. The implantation of a salmon DNA scaffold disk promoted bone regeneration using calvarial defect models in 30-week-old mice. Our results indicate that the phosphate released from salmon DNA upregulated the expression and activation of NaPi cotransporters, resulting in the promotion of bone regeneration. PMID:26551467

  4. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin; Castro, Nathan J.; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-09-01

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.

  5. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes.

    PubMed

    Holmes, Benjamin; Castro, Nathan J; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-09-13

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young's modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.

  6. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold.

    PubMed

    Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L

    2016-02-01

    The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth. PMID:26758425

  7. Net shape fabrication of calcium phosphate scaffolds with multiple material domains.

    PubMed

    Xie, Yangmin; Rustom, Laurence E; McDermott, Anna M; Boerckel, Joel D; Johnson, Amy J Wagoner; Alleyne, Andrew G; Hoelzle, David J

    2016-01-08

    Calcium phosphate (CaP) materials have been proven to be efficacious as bone scaffold materials, but are difficult to fabricate into complex architectures because of the high processing temperatures required. In contrast, polymeric materials are easily formed into scaffolds with near-net-shape forms of patient-specific defects and with domains of different materials; however, they have reduced load-bearing capacity compared to CaPs. To preserve the merits of CaP scaffolds and enable advanced scaffold manufacturing, this manuscript describes an additive manufacturing process that is coupled with a mold support for overhanging features; we demonstrate that this process enables the fabrication of CaP scaffolds that have both complex, near-net-shape contours and distinct domains with different microstructures. First, we use a set of canonical structures to study the manufacture of complex contours and distinct regions of different material domains within a mold. We then apply these capabilities to the fabrication of a scaffold that is designed for a 5 cm orbital socket defect. This scaffold has complex external contours, interconnected porosity on the order of 300 μm throughout, and two distinct domains of different material microstructures.

  8. Role of surfactant during microemulsion photopolymerization for the creation of three-dimensional (3D) liquid crystal elastomer microsphere spatial cell scaffolds

    NASA Astrophysics Data System (ADS)

    Hegmann, Elda; Bera, Tanmay; Malcuit, Christopher; Clements, Robert

    2016-06-01

    Three-dimensional (3D) cell scaffolds based on connected nematic liquid crystal elastomer microsphere architectures support the attachment and proliferation of C2C12 myoblasts, neuroblastomas (SHSY5Y) and human dermal fibroblasts (hDF). The microsphere spatial cell scaffolds were prepared by an oil-in-water microemulsion photopolymerization of reactive nematic mesogens in the presence of various surfactants, and the as-prepared scaffold constructs are composed of smooth surface microspheres with diameter ranging from 10 to 30 μm. We here investigate how the nature and type of surfactant used during the microemulsion photopolymerization impacts both the size and size distribution of the resulting microspheres as well as their surface morphology, i.e. the surface roughness.

  9. Enhancement of cell viability by fabrication of macroscopic 3D hydrogel scaffolds using an innovative cell-dispensing technique supplemented by preosteoblast-laden micro-beads.

    PubMed

    Lee, Hyeongjin; Ahn, Seunghyun; Chun, Wook; Kim, Geunhyung

    2014-04-15

    We propose a new cell-encapsulated dispensing method consisting of hydrogel struts, embedded with cell-laden micro-beads. To develop the scaffolds, we accommodated a three-axis robot dispensing system and aerosol spraying of a cross-linking agent to effect tentative surface gelation of hydrogel alginate struts. To show the feasibility of the method, we used pre-osteoblast (MC3T3-E1) cells. Using this technique, we obtained a reasonable cell viability (>90% after several culture periods) relative to that of a scaffold onto which cells were dispensed in the conventional manner, and successfully fabricated a realistic macroscopic pore-size in a controlled manner with 100% pore-interconnected 3D alginate hydrogel scaffolds of 20 mm × 20 mm × 6 mm.

  10. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation.

    PubMed

    Hirota, Makoto; Hayakawa, Tohru; Shima, Takaki; Ametani, Akihiro; Tohnai, Iwai

    2015-04-01

    We compared osteoblast and osteoclast differentiation when using beta-tricalcium phosphate (βTCP) and titanium scaffolds by investigating human mesenchymal stem cells (hMSCs) and osteoclast progenitor cell activities. hMSCs were cultured for 7, 14, and 21days on titanium scaffolds with 60%, 73%, and 87% porosity and on βTCP scaffolds with 60% and 75% porosity. Human osteoclast progenitor cells were cultured with osteoblast for 14 and 21days on 87% titanium and 75% βTCP scaffolds. Viable cell numbers with 60% and 73% titanium were higher than with 87% titanium and βTCP scaffolds (P<0.05). An 87% titanium scaffold resulted in the highest osteocalcin production with calcification on day 14 (P<0.01) in titanium scaffolds. All titanium scaffolds resulted in higher osteocalcin production on days 7 and 14 compared to βTCP scaffolds (P<0.01). Osteoblasts cultured on 87% titanium scaffolds suppressed osteoclast differentiation on day 7 but enhanced osteoclast differentiation on day 14 compared to 75% βTCP scaffolds (P<0.01). These findings concluded that high porosity titanium scaffolds could enhance progression of hMSC/osteoblast differentiation and regulated osteoclast differentiation cooperating with osteoblast differentiation for calcification as compared with lower porous βTCP.

  11. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds.

    PubMed

    Taboas, J M; Maddox, R D; Krebsbach, P H; Hollister, S J

    2003-01-01

    Precise control over scaffold material, porosity, and internal pore architecture is essential for tissue engineering. By coupling solid free form (SFF) manufacturing with conventional sponge scaffold fabrication procedures, we have developed methods for casting scaffolds that contain designed and controlled locally porous and globally porous internal architectures. These methods are compatible with numerous bioresorbable and non-resorbable polymers, ceramics, and biologic materials. Phase separation, emulsion-solvent diffusion, and porogen leaching were used to create poly(L)lactide (PLA) scaffolds containing both computationally designed global pores (500, 600, or 800 microm wide channels) and solvent fashioned local pores (50-100 microm wide voids or 5-10 microm length plates). Globally porous PLA and polyglycolide/PLA discrete composites were made using melt processing. Biphasic scaffolds with mechanically interdigitated PLA and sintered hydroxyapatite regions were fabricated with 500 and 600 microm wide global pores. PLA scaffolds with complex internal architectures that mimicked human trabecular bone were produced. Our indirect fabrication using casting in SFF molds provided enhanced control over scaffold shape, material, porosity and pore architecture, including size, geometry, orientation, branching, and interconnectivity. These scaffolds that contain concurrent local and global pores, discrete material regions, and biomimetic internal architectures may prove valuable for multi-tissue and structural tissue interface engineering. PMID:12417192

  12. In vivo ossification of a scaffold combining β-tricalcium phosphate and platelet-rich plasma

    PubMed Central

    ZHONG, DA; WANG, CHENG-GONG; YIN, KE; LIAO, QIANDE; ZHOU, XING; LIU, AN-SONG; KONG, LING-YU

    2014-01-01

    Tricalcium phosphate (TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. The aim of the present study was to investigate a composite that combined TCP with PRP and assess its effectiveness in the treatment of bone defects. Cavity-shaped bone defects were established on the tibiae of 27 beagle dogs, and were repaired by pure β-TCP with bone marrow stromal cells (BMSCs), β-TCP/PRP with BMSCs and autogenic ilium. The samples were harvested at 4, 8 and 12 weeks, and bone regeneration was evaluated using X-ray radiography, immunocytochemical staining of osteocalcin (OCN), hematoxylin and eosin staining and reverse transcription-polymerase chain reaction analyses. Biomechanical tests of the scaffolds were performed at the 12th week after scaffold implantation. When using pure β-TCP as a scaffold, the scaffold-bone interface was clear and no material adsorption and bone healing was observed. Substantial bone regeneration was observed when the tibial defects were restored using β-TCP/PRP and autogenic ilium. Furthermore, the mRNA expression levels of OCN, alkaline phosphatase and collagen type I α1 were significantly higher in the animals with β-TCP/PRP scaffolds at 8 and 12 weeks following implantation compared with those in the animals with the pure β-TCP scaffolds. The maximum load and compressive strength of the β-TCP/PRP scaffolds were similar to those of the autogenic ilium; however, they were significantly higher than those of the pure β-TCP scaffold. Thus, the β-TCP/PRP composite may be used as a potential scaffold to carry in vitro cultured BMSCs to treat bone defects. PMID:25289027

  13. Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds

    NASA Astrophysics Data System (ADS)

    Lan, Sheeny K.

    Bone grafts are utilized clinically to guide tissue regeneration. Autologous bone and allogeneic bone are the current clinical standards. However, there are significant limitations to their use. To address the need for alternatives to autograft and allograft, researchers have worked to develop synthetic grafts, also referred to as scaffolds. Despite extensive efforts in this area, a gap persists between basic research and clinical application. In particular, solutions for repairing critical size and/or load-bearing defects are lacking. The aim of this thesis work was to address two critical barriers preventing design of successful tissue engineering constructs for bone regeneration within critical size and/or load-bearing defects. Those barriers are insufficient osteointegration and slow neovascularization. In this work, the effects of scaffold microporosity, recombinant human bone morphogenetic protein-2 delivery and endothelial colony forming cell vasculogenesis were evaluated in the context of bone formation in vivo. This was accomplished to better understand the role of these factors in bone regeneration, which may translate to improvements in tissue engineering construct design. Biphasic calcium phosphate (BCP) scaffolds with controlled macro- and microporosity were implanted in porcine mandibular defects. Evaluation of the BCP scaffolds after in vivo implantation showed, for the first time, osteocytes embedded in bone within scaffold micropores (< 10 microm) as well as the most extensive bone growth into micropores to date with bone penetration throughout rods 394 microm in diameter. The result is the first truly osteointegrated bone scaffolds with integration occurring at both the macro and micro length scales, leaving no "dead space" or discontinuities of bone in the defect site. The scaffold forms a living composite upon integration with regenerating bone and this has significant implications with regard to improved scaffold mechanical properties. The

  14. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Lee, Ok Joo; Lee, Min Chae; Moon, Bo Mi; Ju, Hyung Woo; Lee, Jung min; Kim, Jung-Ho; Kim, Dong Wook; Park, Chan Hum

    2015-01-01

    Silk fibroin is a biomaterial being actively studied in the field of bone tissue engineering. In this study, we aimed to select the best strategy for bone reconstruction on scaffolds by changing various conditions. We compared the characteristics of each scaffold via structural analysis using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), the swelling ratio, water uptake, porosity, compressive strength, cell infiltration and cell viability (CCK-8). The scaffolds had high porosity with good inter pore connectivity and showed high compressive strength and modulus. In addition, to confirm bone reconstruction, animal studies were conducted in which samples were implanted in rat calvaria and investigated by micro-CT scans. In conclusion, the presented study indicates that using sucrose produces scaffolds showing better pore interconnectivity and cell infiltration than scaffolds made by using a salt process. In addition, in vivo experiments showed that hydroxyapatite accelerates bone reconstruction on implanted scaffolds. Accordingly, our scaffold will be expected to have a useful application in bone reconstruction.

  15. Effect of hydroxyapatite-containing microspheres embedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation

    PubMed Central

    Lee, Jongman; Yun, Hui-suk

    2014-01-01

    The functionality of porous three-dimensional (3D) magnesium phosphate (MgP) scaffold was investigated for the development of a novel protein delivery system and biomimetic bone tissue engineering scaffold. This enhancement can be achieved by incorporation of hydroxyapatite (HA)-containing polymeric microspheres (MSs) into a bulk MgP matrix, and a paste-extruding deposition (PED) system. In this work, the amount of MS and HA was precisely controlled when manufacturing MS-embedded MgP (MS/MgP) composite scaffolds. The main influence was researched in terms of in vitro lysozyme-release, in vitro biodegradation, mechanical properties, and in vitro calcification. The controlled release of lysozyme was indicated, while showing graded release patterns according to HA content. The composite scaffolds degraded gradually with MS content and degradation time. Due to the effect of HA inclusion, the higher HA-containing MS/MgP scaffolds could, not only delay the biodegradation process but also, compensate for the possible loss of mechanical properties. In this regard, it is reasonable to confirm the inverse relationship between biodegradation and corresponding compressive properties. In order to encourage bioactivity and osteoconductivity, the MS/MgP composite scaffolds were subjected to simulated body fluid treatment. Calcium deposition was, in turn, improved with increasing MS and HA content over time. This quantitative result was also proved using morphological and elemental analysis. In summary, a significant transformation of a monolithic MgP scaffold was directed toward a multifunctional bone tissue engineering scaffold equipped with controlled protein delivery, biodegradability, and bioactivity. PMID:25214782

  16. Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology.

    PubMed

    Gorgieva, Selestina; Štrancar, Janez; Kokol, Vanja

    2014-11-01

    This article present new insights in complex relation between surface- and interface-related physicochemical properties and microstructuring of three-dimensional (3D) gelatin scaffolds, being fabricated by simultaneous temperature-controlled freeze-thawing cycle and in situ cross-linking using variable conditions (pH) and molarity of carbodiimide reagents, on the seeding and growth of fibroblast cells with subsequent tracking of their spreading and morphology. Rarely populated cells with rounded morphology and small elongations are observed on negative charge-rich scaffold surface with a lower cross-linking degree (CD), and consequently higher molecular mobility and availability of cell-recognition sequences, in comparison with the prominently elongated and densely populated cells on a positively charged scaffold's surface with higher CD and low mobility. Surface microstructure effect was demonstrated by cell vacuolization and their pure intercommunication being present on scaffold's bottom side with smaller pores (25 ± 19 µm) and pore wall thickness (9 ± 5 µm), over the air-exposed side with twice bigger pores (56 ± 38 µm) and pore wall thicknesses (12 ± 6 µm). Strong correlations of CD (r(2) = 0.96) and local molecular mobility (r(2)  = -0.44) with pH and reagents molarity, as well as microstructure features being related to temperature gradient, imply on possibility to modulate scaffold's properties in a direction to guide cell viability and most likely its genotype development.

  17. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(ε-caprolactone) scaffolds

    PubMed Central

    Valonen, P.K.; Moutos, F.T.; Kusanagi, A.; Moretti, M.; Diekman, B.O.; Welter, J.F.; Caplan, A.I.; Guilak, F.

    2009-01-01

    Three-dimensionally woven poly(ε-caprolactone)(PCL) scaffolds were combined with adult human mesenchymal stem cells (hMSC) to engineer mechanically functional cartilage constructs in vitro. The specific objectives were to: (i) produce PCL scaffolds with cartilage-like mechanical properties, (ii) demonstrate that hMSCs formed cartilage after 21-days of culture on PCL scaffolds, and (iii) study effects of scaffold structure (loosely vs. tightly woven), culture vessel (static dish vs. oscillating bioreactor), and medium composition (chondrogenic additives with or without serum). Aggregate moduli of 21-day constructs approached normal articular cartilage for tightly woven PCL cultured in bioreactors, were lower for tightly woven PCL cultured statically, and lowest for loosely woven PCL cultured statically (p<0.05). Construct DNA, total collagen, and glyocosaminoglycans (GAG) increased in a manner dependent on time, culture vessel, and medium composition. Chondrogenesis was verified histologically by rounded cells within a hyaline-like matrix that immunostained for collagen type II but not type I. Bioreactors yielded constructs with higher collagen content (p<0.05) and more homogenous matrix than static controls. Chondrogenic additives yielded constructs with higher GAG (p<0.05) and earlier expression of collagen II mRNA if serum was not present in medium. These results show feasibility of functional cartilage tissue engineering from hMSC and 3D woven PCL scaffolds. PMID:20034665

  18. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

    PubMed

    Poh, Patrina S P; Hutmacher, Dietmar W; Holzapfel, Boris M; Solanki, Anu K; Woodruff, Maria A

    2016-06-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  19. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

    PubMed

    Poh, Patrina S P; Hutmacher, Dietmar W; Holzapfel, Boris M; Solanki, Anu K; Woodruff, Maria A

    2016-06-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period.

  20. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    PubMed Central

    Poh, Patrina S.P.; Hutmacher, Dietmar W.; Holzapfel, Boris M.; Solanki, Anu K.; Woodruff, Maria A.

    2016-01-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  1. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition.

    PubMed

    Chai, Yoke Chin; Kerckhofs, Greet; Roberts, Scott J; Van Bael, Simon; Schepers, Evert; Vleugels, Jozef; Luyten, Frank P; Schrooten, Jan

    2012-06-01

    Successful clinical repair of non-healing skeletal defects requires the use of bone substitutes with robust bone inductivity and excellent biomechanical stability. Thus, three-dimensionally functionalised porous calcium phosphate-Ti6Al4V (CaP-Ti) hybrids were produced by perfusion electrodeposition, and the in vitro and in vivo biological performances were evaluated using human periosteum derived cells (hPDCs). By applying various current densities at the optimised deposition conditions, CaP coatings with sub-micrometer to nano-scale porous crystalline structures and different ion dissolution kinetics were deposited on the porous Ti6Al4V scaffolds. These distinctive physicochemical properties caused a significant impact on in vitro proliferation, osteogenic differentiation, and matrix mineralisation of hPDCs. This includes a potential role of hPDCs in mediating osteoclastogenesis for the resorption of CaP coatings, as indicated by a significant down-regulation of osteoprotegerin (OPG) gene expression and by the histological observation of abundant multi-nucleated giant cells near to the coatings. By subcutaneous implantation, the produced hybrids induced ectopic bone formation, which was highly dependent on the physicochemical properties of the CaP coating (including the Ca(2+) dissolution kinetics and coating surface topography), in a cell density-dependent manner. This study provided further insight on stem cell-CaP biomaterial interactions, and the feasibility to produced bone reparative units that are predictively osteoinductive in vivo by perfusion electrodeposition technology.

  2. Synthesis and Biological Evaluation of Well-Defined Poly(propylene fumarate) Oligomers and Their Use in 3D Printed Scaffolds.

    PubMed

    Luo, Yuanyuan; Dolder, Courtney K; Walker, Jason M; Mishra, Ruchi; Dean, David; Becker, Matthew L

    2016-02-01

    A ring opening polymerization method for synthesizing oligomeric poly(propylene fumarate) (PPF) provides a rapid, and scalable method of synthesizing PPF with well-defined molecular mass, molecular mass distribution (Đm), and viscosity properties suitable for 3D printing. These properties will also reduce the amount of solvent necessary to ensure sufficient flow of material during 3D printing. MALDI mass spectrometry precisely shows the end group fidelity, and size exclusion chromatography (SEC) demonstrates narrow mass distributions (<1.6) of a series of low molecular mass oligomers (700-3000 Da). The corresponding intrinsic viscosities range from 0.0288 ± 0.0009 dL/g to 0.0780 ± 0.0022 dL/g. The oligomers were printed into scaffolds via established photochemical methods and standardized ISO 10993-5 testing shows that the 3D printed materials are nontoxic to both L929 mouse fibroblasts and human mesenchymal stem cells.

  3. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives.

    PubMed

    Bretcanu, Oana; Baino, Francesco; Verné, Enrica; Vitale-Brovarone, Chiara

    2014-05-01

    One of the major challenges of hard tissue engineering research focuses on the development of scaffolds that can match the mechanical properties of the host bone and resorb at the same rate as the bone is repaired. The aim of this work was the synthesis and characterization of a resorbable phosphate glass, as well as its application for the fabrication of three dimensional (3-D) scaffolds for bone regeneration. The glass microstructure and behaviour upon heating were analysed by X-ray diffraction, differential scanning calorimetry and hot stage microscopy. The glass solubility was investigated according to relevant ISO standards using distilled water, simulated body fluid (SBF) and Tris-HCl as testing media. The glass underwent progressive dissolution over time in all three media but the formation of a hydroxyapatite-like layer was also observed on the samples soaked in SBF and Tris-HCl, which demonstrated the bioactivity of the material. The glass powder was used to fabricate 3-D macroporous bone-like glass-ceramic scaffolds by adopting polyethylene particles as pore formers: during thermal treatment, the polymer additive was removed and the sintering of glass particles was allowed. The obtained scaffolds exhibited high porosity (87 vol.%) and compressive strength around 1.5 MPa. After soaking for 4 months in SBF, the scaffolds mass loss was 76 wt.% and the pH of the solution did not exceed the 7.55 value, thereby remaining in a physiological range. The produced scaffolds, being resorbable, bioactive, architecturally similar to trabecular bone and exhibiting interesting mechanical properties, can be proposed as promising candidates for bone repair applications.

  4. Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds

    NASA Astrophysics Data System (ADS)

    Shuai, Cijun; Feng, Pei; Zhang, Liyang; Gao, Chengde; Hu, Huanlong; Peng, Shuping; Min, Anjie

    2013-10-01

    A porous β-tricalcium phosphate (β-TCP) bioceramic scaffold was successfully prepared with our homemade selective laser sintering system. Microstructure observation by a scanning electron microscope showed that the grains grew from 0.21 to 1.32 μm with the decrease of laser scanning speed from 250 to 50 mm min-1. The mechanical properties increased mainly due to the improved apparent density when the laser scanning speed decreased to 150 mm min-1. When the scanning speed was further decreased, the grain size became larger and the mechanical properties severely decreased. The highest Vickers hardness and fracture toughness of the scaffold were 3.59 GPa and 1.16 MPa m1/2, respectively, when laser power was 11 W, spot size was 1 mm in diameter, layer thickness was 0.1-0.2 mm and laser scanning speed was 150 mm min-1. The biocompatibility of these scaffolds was assessed in vitro with MG63 osteoblast-like cells and human bone marrow mesenchymal stem cells. The results showed that all the prepared scaffolds are suitable for cell attachment and differentiation. Moreover, the smaller the grain size, the better the cell biocompatibility. The porous scaffold with a grain size of 0.71 μm was immersed in a simulated body fluid for different days to assess the bioactivity. The surface of the scaffold was covered by a bone-like apatite layer, which indicated that the β-TCP scaffold possesses good bioactivity. These discoveries demonstrated the evolution rule between grain microstructure and the properties that give a useful reference for the fabrication of β-TCP bone scaffolds.

  5. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    PubMed

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose.

  6. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration

    PubMed Central

    Yin, Bo; Ma, Pei; Chen, Jun; Wang, Hai; Wu, Gui; Li, Bo; Li, Qiang; Huang, Zhifeng; Qiu, Guixing; Wu, Zhihong

    2016-01-01

    Porous titanium is a kind of promising material for bone substitution, while its bio-inert property results in demand of modifications to improve the osteointegration capacity. In this study, gelatin (Gel) and nano-hydroxyapatite (nHA) were used to construct 3D micro-scaffolds in the pores of porous titanium in the ratios of Gel:nHA = 1:0, Gel:nHA = 1:1, and Gel:nHA = 1:3, respectively. Cell attachment and proliferation, and gene and protein expression levels of osteogenic markers were evaluated in MC3T3-E1 cells, followed by bone regeneration assessment in a rabbit radius defect model. All hybrid scaffolds with different composition ratio were found to have significant promotional effects in cell adhesion, proliferation and differentiation, in which the group with Gel:nHA = 1:1 showed the best performance in vitro, as well as the most bone regeneration volume in vivo. This 3D micro-scaffolds modification may be an innovative method for porous titanium ornamentation and shows potential application values in clinic. PMID:27092492

  7. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration.

    PubMed

    Yin, Bo; Ma, Pei; Chen, Jun; Wang, Hai; Wu, Gui; Li, Bo; Li, Qiang; Huang, Zhifeng; Qiu, Guixing; Wu, Zhihong

    2016-04-15

    Porous titanium is a kind of promising material for bone substitution, while its bio-inert property results in demand of modifications to improve the osteointegration capacity. In this study, gelatin (Gel) and nano-hydroxyapatite (nHA) were used to construct 3D micro-scaffolds in the pores of porous titanium in the ratios of Gel:nHA = 1:0, Gel:nHA = 1:1, and Gel:nHA = 1:3, respectively. Cell attachment and proliferation, and gene and protein expression levels of osteogenic markers were evaluated in MC3T3-E1 cells, followed by bone regeneration assessment in a rabbit radius defect model. All hybrid scaffolds with different composition ratio were found to have significant promotional effects in cell adhesion, proliferation and differentiation, in which the group with Gel:nHA = 1:1 showed the best performance in vitro, as well as the most bone regeneration volume in vivo. This 3D micro-scaffolds modification may be an innovative method for porous titanium ornamentation and shows potential application values in clinic.

  8. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair.

    PubMed

    Chatzinikolaidou, Maria; Rekstyte, Sima; Danilevicius, Paulius; Pontikoglou, Charalampos; Papadaki, Helen; Farsari, Maria; Vamvakaki, Maria

    2015-03-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2h after seeding, and up to several days, and a proliferation increase after 14 and 21days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell-material combination in bone tissue engineering.

  9. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  10. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation.

    PubMed

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  11. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects.

    PubMed

    Liu, Yihan; Ming, Leiguo; Luo, Hailang; Liu, Wenjia; Zhang, Yongjie; Liu, Hongchen; Jin, Yan

    2013-12-01

    Reconstruction of large area bone defect with mechanical integrity to the skeleton is important for patient's rehabilitation. However with the limitation of scaffold material and suitable seed cell sources, the best treating strategy remains to be identified though various tissue engineering methods were reported. In this study, we investigated the feasibility of applying calcined bovine bone (CBB) which was coated by allograft bone marrow mesenchymal stem cells (BMSC)-sheet as a 3D scaffold material in bone repairing tissue engineering. The new scaffold material was implanted into osteoporosis rat cranial bone defects and repairing critical size bone defects (8 mm diameter). Data showed that CBB-BMSC-sheet combination had a stronger potential in osteogenic differentiation and mineralized formation both in vitro and in vivo than CBB-BMSC combination. In in vitro study BMSC-sheet had a more feasible characteristic upon bone repairing including richer ECM, larger mineralized area and stronger ALP activity in addition with a significant higher mRNA expression of osteogenic maker such as BMP-2, b-FGF, Col 1a1, OSX and Runx-2 than the control group. In in vivo study 3D reconstruction of micro CT, HE staining and bone strength results showed that newly formed bone in CBB-BMSC-sheet group was significant higher than that in CBB-BMSC group at 4, 8 and 12 weeks after transplantation in the aspect of area and volume. What was more, results indicated that allograft BMSC-sheet had survivaled in the scaffold material and participated in the newly formed bone which had the same thickness with surrounding autologous bone tissues after transplantation. Results of our study demonstrated that CBB-BMSC-sheet combination was a promising strategy in healing of large area bone defect in osteoporosis.

  12. Development and molecular characterization of polymeric micro-nanofibrous scaffold of a defined 3-D niche for in vitro chemosensitivity analysis against acute myeloid leukemia cells

    PubMed Central

    Nair, Maya S; Mony, Ullas; Menon, Deepthy; Koyakutty, Manzoor; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar V; Menon, Krishnakumar N

    2015-01-01

    Standard in vitro drug testing employs 2-D tissue culture plate systems to test anti-leukemic drugs against cell adhesion-mediated drug-resistant leukemic cells that harbor in 3-D bone marrow microenvironments. This drawback necessitates the fabrication of 3-D scaffolds that have cell adhesion-mediated drug-resistant properties similar to in vivo niches. We therefore aimed at exploiting the known property of polyurethane (PU)/poly-l-lactic acid (PLLA) in forming a micro-nanofibrous structure to fabricate unique, not presented before, as far as we are aware, 3-D micro-nanofibrous scaffold composites using a thermally induced phase separation technique. Among the different combinations of PU/PLLA composites generated, the unique PU/PLLA 60:40 composite displayed micro-nanofibrous morphology similar to decellularized bone marrow with increased protein and fibronectin adsorption. Culturing of acute myeloid leukemia (AML) KG1a cells in FN-coated PU/PLLA 60:40 shows increased cell adhesion and cell adhesion-mediated drug resistance to the drugs cytarabine and daunorubicin without changing the original CD34+/CD38−/CD33− phenotype for 168 hours compared to fibronectin tissue culture plate systems. Molecularly, as seen in vivo, increased chemoresistance is associated with the upregulation of anti-apoptotic Bcl2 and the cell cycle regulatory protein p27Kip1 leading to cell growth arrest. Abrogation of Bcl2 activity by the Bcl2-specific inhibitor ABT 737 led to cell death in the presence of both cytarabine and daunorubicin, demonstrating that the cell adhesion-mediated drug resistance induced by Bcl2 and p27Kip1 in the scaffold was similar to that seen in vivo. These results thus show the utility of a platform technology, wherein drug testing can be performed before administering to patients without the necessity for stromal cells. PMID:26028971

  13. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae

    PubMed Central

    Itoh, Manabu; Nakayama, Koichi; Noguchi, Ryo; Kamohara, Keiji; Furukawa, Kojirou; Uchihashi, Kazuyoshi; Toda, Shuji; Oyama, Jun-ichi; Node, Koichi; Morita, Shigeki

    2015-01-01

    Background Small caliber vascular prostheses are not clinically available because synthetic vascular prostheses lack endothelial cells which modulate platelet activation, leukocyte adhesion, thrombosis, and the regulation of vasomotor tone by the production of vasoactive substances. We developed a novel method to create scaffold-free tubular tissue from multicellular spheroids (MCS) using a “Bio-3D printer”-based system. This system enables the creation of pre-designed three-dimensional structures using a computer controlled robotics system. With this system, we created a tubular structure and studied its biological features. Methods and Results Using a “Bio-3D printer,” we made scaffold-free tubular tissues (inner diameter of 1.5 mm) from a total of 500 MCSs (2.5× 104 cells per one MCS) composed of human umbilical vein endothelial cells (40%), human aortic smooth muscle cells (10%), and normal human dermal fibroblasts (50%). The tubular tissues were cultured in a perfusion system and implanted into the abdominal aortas of F344 nude rats. We assessed the flow by ultrasonography and performed histological examinations on the second (n = 5) and fifth (n = 5) day after implantation. All grafts were patent and remodeling of the tubular tissues (enlargement of the lumen area and thinning of the wall) was observed. A layer of endothelial cells was confirmed five days after implantation. Conclusions The scaffold-free tubular tissues made of MCS using a Bio-3D printer underwent remodeling and endothelialization. Further studies are warranted to elucidate the underlying mechanism of endothelialization and its function, as well as the long-term results. PMID:26325298

  14. Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering.

    PubMed

    Zhao, Liang; Weir, Michael D; Xu, Hockin H K

    2010-05-01

    Human bone marrow mesenchymal stem cells (hBMSCs) require an invasive procedure to harvest, and have lower self-renewal potential with aging. Umbilical cord mesenchymal stem cells (hUCMSCs) are a relatively new stem cell source; this study reveals a self-setting and load-bearing calcium phosphate construct that encapsulates these stem cells. The flexural strength (mean+/-sd; n=5) of the hUCMSC-encapsulating calcium phosphate cement (CPC) increased from (3.5+/-1.1) MPa without polyglactin fibers, to (11.7+/-2.1) MPa with 20% of polyglactin fibers (p<0.05). hUCMSCs attached to the bone mineral-mimicking scaffold in the osteogenic media and differentiated down the osteogenic lineage, yielding elevated alkaline phosphatase (ALP) and osteocalcin (OC) gene expressions. ALP and OC on the CPC-fiber scaffold was 2-fold those on CPC control without fibers. hUCMSCs encapsulated inside the scaffolds retained excellent viability and cell density. The encapsulated hUCMSCs inside four different constructs successfully differentiated down the osteogenic lineage and synthesized bone minerals, as confirmed by mineral staining, SEM, and XRD. The percentage of mineral area synthesized by the encapsulated hUCMSCs increased from about 3% at day-7, to 12% at day-21 (p<0.05). In conclusion, this study demonstrated that hUCMSCs encapsulated in the bioengineered scaffolds osteo-differentiated and synthesized bone minerals. The self-setting CPC-chitosan-fiber scaffold supported the viability and osteogenic differentiation of the encapsulated hUCMSCs, and had mechanical strength matching that of cancellous bone.

  15. Small is beautiful: the unusual transformation of nanocrystalline layered α-zirconium phosphate into a new 3D structure.

    PubMed

    Pica, Monica; Vivani, Riccardo; Donnadio, Anna; Troni, Elisabetta; Fop, Sacha; Casciola, Mario

    2015-09-21

    Nanosized α-zirconium phosphate, α-ZrP, undergoes a phase transition at 120 °C, which is not observed with microcrystalline α-ZrP in the same conditions, and which leads to a new 3D phase. The new compound, with formula Zr(HPO4)2 (τ'-ZrP), consists of cubelike nanoparticles and has a tetragonal unit cell (space group P43212, a = 7.955 Å, c = 10.744 Å). The structure of τ'-ZrP is in close relationship with that of the already known τ-ZrP. Both structures are made of packed chains of eight-membered rings, composed of Zr atoms connected to bridging HPO4 groups. The main difference between the two structures concerns the different orientation of the uncoordinated P-OH groups, pointing into the channels. The in situ XRPD analysis on nanosized α-ZrP, performed at 120 °C as a function of time, provided information about the kinetics of the formation of τ'-ZrP, showing that the α-ZrP phase is directly transformed into τ'-ZrP. Moreover, τ'-ZrP is converted into α-ZrP at room temperature in the presence of water vapor. It was proved that the free phosphoric acid, which is originally present in small amounts in nanosized α-ZrP and τ'-ZrP, is necessary for the interconversion between the two phases. As a matter of fact, the removal of phosphoric acid, by washing α-ZrP and τ'-ZrP with anhydrous ethanol, inhibits the above conversion.

  16. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.

    PubMed

    Gupta, Vineet; Lyne, Dina V; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-07-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix components relevant to bone tissue compared to the "blank" (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  17. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    PubMed Central

    Sun, Han; Yang, Hui-Lin

    2015-01-01

    Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions. PMID:25881610

  18. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension.

    PubMed

    Parekh, Sapun H; Chatterjee, Kaushik; Lin-Gibson, Sheng; Moore, Nicole M; Cicerone, Marcus T; Young, Marian F; Simon, Carl G

    2011-03-01

    Proliferation and differentiation of cells are known to be influenced by the physical properties of the extracellular environment. Previous studies examining biophysics underlying cell response to matrix stiffness utilized a two-dimensional (2D) culture format, which is not representative of the three-dimensional (3D) tissue environment in vivo. We report on the effect of 3D matrix modulus on human bone marrow stromal cell (hBMSC) differentiation. hBMSCs underwent osteogenic differentiation in poly(ethylene glycol) hydrogels of all modulus (300-fold modulus range, from 0.2 kPa to 59 kPa) in the absence of osteogenic differentiation supplements. This osteogenic differentiation was modulus-dependent and was enhanced in stiffer gels. Osteogenesis in these matrices required integrin-protein ligation since osteogenesis was inhibited by soluble Arginine-Glycine-Aspartate-Serine peptide, which blocks integrin receptors. Immunostained images revealed lack of well-defined actin filaments and microtubules in the encapsulated cells. Disruption of mechanosensing elements downstream of integrin binding that have been identified from 2D culture such as actin filaments, myosin II contraction, and RhoA kinase did not abrogate hBMSC material-driven osteogenic differentiation in 3D. These data show that increased hydrogel modulus enhanced osteogenic differentiation of hBMSCs in 3D scaffolds but that hBMSCs did not use the same mechanosensing pathways that have been identified in 2D culture.

  19. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication.

    PubMed

    Gao, Chengde; Yang, Bo; Hu, Huanlong; Liu, Jinglin; Shuai, Cijun; Peng, Shuping

    2013-10-01

    Biphasic calcium phosphate (BCP), which is composed of hydroxyapatite [HAP, Ca10(PO4)6(OH)2] and β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2], is usually difficult to densify into a solid state with selective laser sintering (SLS) due to the short sintering time. In this study, the sintering ability of BCP ceramics was significantly improved by adding a small amount of polymers, by which a liquid phase was introduced during the sintering process. The effects of the polymer content, laser power and HAP/β-TCP ratios on the microstructure, chemical composition and mechanical properties of the BCP scaffolds were investigated. The results showed that the BCP scaffolds became increasingly more compact with the increase of the poly(l-lactic acid) (PLLA) content (0-1 wt.%) and laser power (6-10 W). The fracture toughness and micro-hardness of the sintered scaffolds were also improved. Moreover, PLLA could be gradually decomposed in the late sintering stages and eliminated from the final BCP scaffolds if the PLLA content was below a certain value (approximately 1 wt.% in this case). The added PLLA could not be completely eliminated when its content was further increased to 1.5 wt.% or higher because an unexpected carbon phase was detected in the sintered scaffolds. Furthermore, many pores were observed due to the removal of PLLA. Micro-cracks and micro-pores occurred when the laser power was too high (12 W). These defects resulted in a deterioration of the mechanical properties. The hardness and fracture toughness reached maximum values of 490.3±10 HV and 1.72±0.10 MPa m(1/2), respectively, with a PLLA content of approximately 1 wt.% and laser power of approximately 10 W. Poly(l-lactic-co-glycolic acid) (PLGA) showed similar effects on the sintering process of BCP ceramics. Rectangular, porous BCP scaffolds were fabricated based on the optimum values of the polymer content and laser power. This work may provide an experimental basis for improving the mechanical

  20. Expansion of Human Mesenchymal Stromal Cells from Fresh Bone Marrow in a 3D Scaffold-Based System under Direct Perfusion

    PubMed Central

    Brachat, Sophie; Braccini, Alessandra; Wendt, David; Barbero, Andrea; Jacobi, Carsten; Martin, Ivan

    2014-01-01

    Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7–8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability and a significant upregulation of multipotency-related gene clusters following 3D-perfusion- as compared to 2D-expansion. Interestingly, the differences in functionality and transcriptomics between MSC expanded in 2D or under 3D-perfusion were only partially captured by cytofluorimetric analysis using conventional surface markers. The described system offers a multidisciplinary approach to study how factors of a 3D engineered niche regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems. PMID:25020062

  1. Preparation and characterization of fibrous chitosan-glued phosphate glass fiber scaffolds for bone regeneration.

    PubMed

    Zheng, Kai; Wu, Zhaoying; Wei, Jie; Rűssel, Christian; Liang, Wen; Boccaccini, Aldo R

    2015-08-01

    Phosphate glass fibers (PGF) have emerged as promising building blocks for constructing bone scaffolds. In this study, fibrous scaffolds (PGFS) were fabricated using a facile binding method at room temperature. PGFS exhibited an extracellular matrix-like morphology and were composed of PGF as matrix and chitosan as the natural binding glue. They showed an interconnected porous structure with a porosity of ~87% and pore size of 100-500 µm. PGFS exhibited the typical compressive stress-strain behaviour of highly porous, low-density, open-cell scaffolds. Their yield stress and modulus were ~0.38 and ~2.84 MPa, respectively, with the strength being higher than the lower bound of the compressive strength of cancellous bone. PGFS were degradable and the weight loss was about 25% after immersion in stimulated body fluid (SBF) for 28 days. In addition, the yield stress and the modulus decreased with increasing immersion time in SBF. Apatite formation could be detected on the surface of PGFS within 7 days of immersion in SBF. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that PGFS were non-cytotoxic against bone marrow stromal cells (bMSCs) after culture for up to 72 h. These results suggest that PGFS could be promising scaffolds for bone regeneration applications. PMID:26271217

  2. Bone substitute: transforming beta-tricalcium phosphate porous scaffolds into monetite.

    PubMed

    Galea, Laëtitia G; Bohner, Marc; Lemaître, Jacques; Kohler, Thomas; Müller, Ralph

    2008-01-01

    The goal of the present study was to assess the possibility to change the composition of a calcium phosphate scaffold from a high-temperature phase to a phase only stable at or close to room temperature without macrostructural changes. For that purpose, macroporous beta-TCP scaffolds were converted into alpha-TCP by high-temperature thermal treatment and then dipped into a phosphoric acid solution to obtain a more acidic calcium phosphate phase called monetite or dicalcium phosphate (DCP; CaHPO4). Two different solid-to-liquid ratios (SLR: 0.067 and 0.200g/mL) and three different temperatures (T: 37, 60 and 80 degrees C) were used. The reaction was followed by measuring the change of sample size and weight, by determining the compositional changes by X-ray diffraction (Rietveld analysis), and by looking at the micro- and macrostructural changes by scanning electron microscopy and micro-computed tomography. The results revealed that the transformation proceeded faster at a higher temperature and a higher SLR value but was achieved within a few days in all cases. Morphologically, the porosity decreased by 10%, the pore size distribution became wider and the mean macro pore size was reduced from 0.28 to 0.19mm. The fastest conversion and the highest compressive strength (9MPa) were measured using an incubation temperature of 80 degrees C and an SLR value of 0.2g/mL.

  3. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing.

    PubMed

    Zhao, Anshun; Zhang, Zhaowei; Zhang, Penghui; Xiao, Shuang; Wang, Lu; Dong, Yue; Yuan, Hao; Li, Peiwu; Sun, Yimin; Jiang, Xueliang; Xiao, Fei

    2016-09-28

    Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM- to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples. PMID:27619087

  4. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing.

    PubMed

    Zhao, Anshun; Zhang, Zhaowei; Zhang, Penghui; Xiao, Shuang; Wang, Lu; Dong, Yue; Yuan, Hao; Li, Peiwu; Sun, Yimin; Jiang, Xueliang; Xiao, Fei

    2016-09-28

    Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM- to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples.

  5. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films.

    PubMed

    Baker, Bryan A; Pine, P Scott; Chatterjee, Kaushik; Kumar, Girish; Lin, Nancy J; McDaniel, Jennifer H; Salit, Marc L; Simon, Carl G

    2014-08-01

    Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-β and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation. PMID:24840613

  6. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors

    PubMed Central

    Smeets, Bart; Odenthal, Tim; Luyten, Frank P.; Ramon, Herman; Papantoniou, Ioannis; Geris, Liesbet

    2016-01-01

    Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell’s micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications. PMID:27658116

  7. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.

    PubMed

    Mehr, Nima Ghavidel; Li, Xian; Chen, Gaoping; Favis, Basil D; Hoemann, Caroline D

    2015-07-01

    Poly(epsilon-caprolactone) (PCL) is a hydrophobic bioplastic under development for bone tissue engineering applications. Limited information is available on the role of internal geometry and cell-surface attachment on osseous integration potential. We tested the hypothesis that human bone marrow mesenchymal stem cells (MSCs) deposit more mineral inside porous 3D PCL scaffolds with fully interconnected 84 or 141 µm pores, when the surfaces are coated with chitosan via Layer-by-Layer (LbL)-deposited polyelectrolytes. Freshly trypsinized MSCs were seeded on PCL 3D cylinders using a novel static cold seeding method in 2% serum to optimally populate all depths of the scaffold discs, followed by 10 days of culture in proliferation medium and 21 additional days in osteogenic medium. MSCs were observed by SEM and histology to spread faster and to proliferate more on chitosan-coated pore surfaces. Most pores, with or without chitosan, became filled by collagen networks sparsely populated with fibroblast-like cells. After 21 days of culture in osteogenic medium, sporadic matrix mineralization was detected histologically and by micro-CT in highly cellular surface layers that enveloped all scaffolds and in cell aggregates in 141 µm pores near the edges. LbL-chitosan promoted punctate mineral deposition on the surfaces of 84 µm pores (p < 0.05 vs. PCL-only) but not the 141 µm pores. This study revealed that LbL-chitosan coatings are sufficient to promote MSC attachment to PCL but only enhance mineral formation in 84 µm pores, suggesting a potential inhibitory role for MSC-derived fibroblasts in osteoblast terminal differentiation. PMID:25504184

  8. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold.

    PubMed

    Moreau, Jennifer L; Xu, Hockin H K

    2009-05-01

    Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, has excellent osteoconductivity, and can be resorbed and replaced by new bone. However, its low strength limits CPC to non-stress-bearing repairs. Chitosan could be used to reinforce CPC, but mesenchymal stem cell (MSC) interactions with CPC-chitosan scaffold have not been examined. The objective of this study was to investigate MSC proliferation and osteogenic differentiation on high-strength CPC-chitosan scaffold. MSCs were harvested from rat bone marrow. At CPC powder/liquid (P/L) mass ratio of 2, flexural strength (mean+/-sd; n=5) was (10.0+/-1.1) MPa for CPC-chitosan, higher than (3.7+/-0.6) MPa for CPC (p<0.05). At P/L of 3, strength was (15.7+/-1.7)MPa for CPC-chitosan, higher than (10.2+/-1.8)MPa for CPC (p<0.05). Percentage of live MSCs attaching to scaffolds increased from 85% at 1 day to 99% at 14 days. There were (180+/-37) cells/mm(2) on scaffold at 1 day; cells proliferated to (1808+/-317) cells/mm(2) at 14 days. SEM showed MSCs with healthy spreading and anchored on nano-apatite crystals via cytoplasmic processes. Alkaline phosphatase activity (ALP) was (557+/-171) (pNPP mM/min)/(microg DNA) for MSCs on CPC-chitosan, higher than (159+/-47) on CPC (p<0.05). Both were higher than (35+/-32) of baseline ALP for undifferentiated MSCs on tissue-culture plastic (p<0.05). In summary, CPC-chitosan scaffold had higher strength than CPC. MSC proliferation on CPC-chitosan matched that of the FDA-approved CPC control. MSCs on the scaffolds differentiated down the osteogenic lineage and expressed high levels of bone marker ALP. Hence, the stronger CPC-chitosan scaffold may be useful for stem cell-based bone regeneration in moderate load-bearing maxillofacial and orthopedic applications.

  9. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.

  10. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. PMID:25809455

  11. Imaging mesenchymal stem cells containing single wall nanotube nanoprobes in a 3D scaffold using photo-thermal optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Connolly, Emma; Subhash, Hrebesh M.; Leahy, Martin; Rooney, Niall; Barry, Frank; Murphy, Mary; Barron, Valerie

    2014-02-01

    Despite the fact, that a range of clinically viable imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), photo emission tomography (PET), ultrasound and bioluminescence imaging are being optimised to track cells in vivo, many of these techniques are subject to limitations such as the levels of contrast agent required, toxic effects of radiotracers, photo attenuation of tissue and backscatter. With the advent of nanotechnology, nanoprobes are leading the charge to overcome these limitations. In particular, single wall nanotubes (SWNT) have been shown to be taken up by cells and as such are effective nanoprobes for cell imaging. Consequently, the main aim of this research is to employ mesenchymal stem cells (MSC) containing SWNT nanoprobes to image cell distribution in a 3D scaffold for cartilage repair. To this end, MSC were cultured in the presence of 32μg/ml SWNT in cell culture medium (αMEM, 10% FBS, 1% penicillin/streptomycin) for 24 hours. Upon confirmation of cell viability, the MSC containing SWNT were encapsulated in hyaluronic acid gels and loaded on polylactic acid polycaprolactone scaffolds. After 28 days in complete chondrogenic medium, with medium changes every 2 days, chondrogenesis was confirmed by the presence of glycosaminoglycan. Moreover, using photothermal optical coherence tomography (PT-OCT), the cells were seen to be distributed through the scaffold with high resolution. In summary, these data reveal that MSC containing SWNT nanoprobes in combination with PT-OCT offer an exciting opportunity for stem cell tracking in vitro for assessing seeding scaffolds and in vivo for determining biodistribution.

  12. Calcium phosphate scaffolds mimicking the gradient architecture of native long bones.

    PubMed

    Lindner, Markus; Bergmann, Christian; Telle, Rainer; Fischer, Horst

    2014-10-01

    The synthesis of beta-tricalcium phosphate (β-TCP) scaffolds offering both the macroporous inner structure required for proper in vivo degradation and a non-macroporous outer structure for the enhancement of mechanical properties continues to be a challenge. The hypothesis of this study was to realize biomimetic β-TCP scaffolds with a macroporous inner structure and a compact outer structure using a lost wax casting technique. The porosity, macropore size, interconnectivity of the inner porous structure, and diameter of the outer compact structure were adjusted to specific values using a three-dimensional wax printer to manufacture the wax molds for the casting process. After the slip casting, the wax was pyrolyzed and the specimens were sintered. The resulting graded β-TCP scaffolds (porous + compact) were characterized and compared with β-TCP scaffolds with overall apparent macropores (only porous) and samples without macropores (only compact). The porosity and the compressive strength of the only compact, porous + compact, and only porous β-TCP samples were 31.4 ± 0.4 vol %, 55.6 ± 0.9 vol %, and 66.9 ± 0.4 vol % and 192 ± 7 MPa, 36 ± 2 MPa, and 9 ± 1 MPa, respectively. The macropore size was 500 µm and the micropore size was up to 10 µm, both featuring a completely open porous structure. From these results, we conclude that the lost wax casting technique offers an excellent method for the fabrication of β-TCP scaffolds with an inner macroporous structure and compact outer structure which mimics the cancellous and cortical structure of natural bone.

  13. 3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy

    PubMed Central

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  14. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles.

    PubMed

    Novajra, G; Boetti, N G; Lousteau, J; Fiorilli, S; Milanese, D; Vitale-Brovarone, C

    2016-10-01

    Novel bone glass fibre scaffolds were developed by thermally bonding phosphate glass fibres belonging to the P2O5-CaO-Na2O-SiO2-MgO-K2O-TiO2 system (TiPS2.5 glass). Scaffolds with fibres of 85 or 110μm diameter were fabricated, showing compressive strength in the range of 2-3.5MPa, comparable to that of the trabecular bone. The effect of different thermal treatments and fibre diameters and length on the final scaffold structure was investigated by means of micro-CT analysis. The change of the sintering time from 30 to 60min led to a decrease in the scaffold overall porosity from 58 to 21vol.% for the 85μm fibre scaffold and from 50 to 40vol.% when increasing the sintering temperature from 490 to 500°C for the 110μm fibre scaffold. The 85μm fibres resulted in an increase of the scaffold overall porosity, increased pore size and lower trabecular thickness; the use of different fibre diameters allowed the fabrication of a scaffold showing a porosity gradient. In order to impart bioactive properties to the scaffold, for the first time in the literature the introduction in these fibre scaffolds of a bioactive phase, a melt-derived bioactive glass (CEL2) powder or spray-dried mesoporous bioactive glass particles (SD-MBG) was investigated. The scaffold bioactivity was assessed through soaking in simulated body fluid. CEL2/glass fibre scaffold did not show promising results due to particle detachment from the fibres during soaking in simulated body fluid. Instead the use of mesoporous bioactive powders showed to be an effective way to impart bioactivity to the scaffold and could be further exploited in the future through the ability of mesoporous particles to act as systems for the controlled release of drugs.

  15. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model.

    PubMed

    Park, Kwang-Won; Yun, Young-Pil; Kim, Sung Eun; Song, Hae-Ryong

    2015-01-01

    This study investigated the effect of alendronate (Aln) released from biphasic calcium phosphate (BCP) scaffolds. We evaluated the in vitro osteogenic differentiation of Aln/BCP scaffolds using MG-63 cells and the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial defect model with radiography, micro-computed tomography (CT), and histological examination. In vitro studies included the surface morphology of BCP and Aln-loaded BCP scaffolds visualized using field-emission scanning electron microscope, release kinetics of Aln from BCP scaffolds, alkaline phosphatase (ALP) activity, calcium deposition, and gene expression. The in vitro studies showed that sustained release of Aln from the BCP scaffolds consisted of porous microstructures, and revealed that MG-63 cells cultured on Aln-loaded BCP scaffolds showed significantly increased ALP activity, calcium deposition, and gene expression compared to cells cultured on BCP scaffolds. The in vivo studies using radiograph and histology examination revealed abundant callus formation and bone maturation at the site in the Aln/BCP groups compared to the control group. However, solid bony bridge formation was not observed at plain radiographs until 8 weeks. Micro-CT analysis revealed that bone mineral density and bone formation volume were increased over time in an Aln concentration-dependent manner. These results suggested that Aln/BCP scaffolds have the potential for controlling the release of Aln and enhance bone formation and mineralization. PMID:26561810

  16. Fabrication of multilayer ZrO₂-biphasic calcium phosphate-poly-caprolactone unidirectional channeled scaffold for bone tissue formation.

    PubMed

    Mondal, Dibakar; So-Ra, Son; Sarkar, Swapan Kumar; Min, Young Ki; Yang, Hun Mo; Lee, Byong Taek

    2013-09-01

    We developed a continuously porous scaffold with laminated matrix and bone-like microstructure by a multi-pass extrusion process. In this scaffold, tetragonal ZrO₂, biphasic calcium phosphate and poly-caprolactone layers were arranged in a co-axially laminated unit cell with a channel in the center. The entire matrix phase had a laminated microstructure of alternate lamina of tetragonal ZrO₂, biphasic calcium phosphate and poly-caprolactone--biphasic calcium phosphate with optimized designed thickness and channeled porosity. Each of the continuous pores was coaxially encircled by the poly-caprolactone--biphasic calcium phosphate layer, biphasic calcium phosphate layer and finally tetragonal ZrO₂ layer, one after the other. Before extrusion, 5 vol% graphite powder was mixed with tetragonal ZrO₂ to ensure pores in the outer layer and connectivity among the lamellas. The design strategy is aimed to incorporate a lamellar microstructure like the natural bone in the macro-scaled ceramic body to investigate the strengthening phenomenon and pave the way for fabricating complex microstructure of natural bone could be applied for whole bone replacement. The final fabricated scaffold had a compressive strength of 12.7 MPa and porosity of 78 vol% with excellent cell viability, cell attachment and osteocalcin and collagen expression from cultured MG63 cells on scaffold.

  17. Dihydropyrrolo[2,3-d]pyrimidines: Selective Toll-Like Receptor 9 Antagonists from Scaffold Morphing Efforts

    PubMed Central

    2014-01-01

    Toll-like receptors (TLRs) play important roles in the innate immune system. In fact, recognition of endogenous immune complexes containing self-nucleic acids as pathogen- or damage-associated molecular patterns contributes to certain autoimmune diseases, and inhibition of these recognition signals is expected to have therapeutic value. We identified dihydropyrrolo[2,3-d]pyrimidines as novel selective TLR9 antagonists with high aqueous solubility. A structure–activity relationship study of a known TLR9 antagonist led to the promising compound 18, which showed potent TLR9 antagonistic activity, sufficient aqueous solubility for parenteral formulation, and druggable properties. Compound 18 suppressed the production of the proinflammatory cytokine IL-6 in CpG-induced mouse model. It is therefore believed that compound 18 has great potential in the treatment of TLR9-mediated systemic uncontrollable inflammatory response like sepsis. PMID:25408837

  18. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    PubMed Central

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differentiation of rat bone marrow–derived stromal cells. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized ECM by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG), collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface. PMID:26191526

  19. Boron Nitride Nanotubes Reinforce Tricalcium Phosphate Scaffolds and Promote the Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Shuai, Cijun; Gao, Chengde; Feng, Pei; Xiao, Tao; Yu, Kun; Deng, Youwen; Peng, Shuping

    2016-05-01

    Incorporating boron nitride nanotubes (BNNTs) into ceramic matrices is a promising strategy for obtaining multifunctional composites. In this study, the application of BNNTs in reinforcing β-tricalcium phosphate (β-TCP) scaffolds manufactured using laser sintering is demonstrated. BNNTs contribute to the effective inhibition of both grain growth and phase transformation in β-TCP. Moreover, they can strengthen the grain boundaries and boost the fracture mode transition from intergranular to transgranular. BNNTs play an active role in reinforcing β-TCP in terms of load transfer and energy absorption by the synergistic mechanisms of pull-out, peel-off, crack bridging and deflection. With a BNNT content of 4 wt%, the elastic modulus, hardness, compressive strength and fracture toughness of β-TCP increase by 46%, 39%, 109% and 35%, respectively. Umbilical cord mesenchymal stem cells (UC-MSCs) were isolated with high purity, and surface molecule characterization revealed that they were CD90+, CD29+, CD73+, CD31-, CD34- and CD45-. UC-MSCs on BNNTs/β-TCP scaffolds were characterized by more positive Alizarin Red staining as well as up-regulated expression of osteoblast markers, as revealed by quantitative real-time reverse transcriptase polymerase chain reaction analysis and immunofluorescence staining. These results are the first to demonstrate that BNNTs promote the osteogenic differentiation of UC-MSCs, indicating good osteoinductive properties for use in bone scaffolds. This study paves the way for the potential use of a BNNT/β-TCP scaffold in bone repair. PMID:27305816

  20. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate.

    PubMed

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J; Detamore, Michael S

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differentiation of rat bone marrow-derived stromal cells. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized ECM by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG), collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface. PMID:26191526

  1. Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering.

    PubMed

    Chai, Yoke Chin; Truscello, Silvia; Bael, Simon Van; Luyten, Frank P; Vleugels, Jozef; Schrooten, Jan

    2011-05-01

    A perfusion electrodeposition (P-ELD) system was reported to functionalize additive manufactured Ti6Al4V scaffolds with a calcium phosphate (CaP) coating in a controlled and reproducible manner. The effects and interactions of four main process parameters - current density (I), deposition time (t), flow rate (f) and process temperature (T) - on the properties of the CaP coating were investigated. The results showed a direct relation between the parameters and the deposited CaP mass, with a significant effect for t (P=0.001) and t-f interaction (P=0.019). Computational fluid dynamic analysis showed a relatively low electrolyte velocity within the struts and a high velocity in the open areas within the P-ELD chamber, which were not influenced by a change in f. This is beneficial for promoting a controlled CaP deposition and hydrogen gas removal. Optimization studies showed that a minimum t of 6 h was needed to obtain complete coating of the scaffold regardless of I, and the thickness was increased by increasing I and t. Energy-dispersive X-ray and X-ray diffraction analysis confirmed the deposition of highly crystalline synthetic carbonated hydroxyapatite under all conditions (Ca/P ratio=1.41). High cell viability and cell-material interactions were demonstrated by in vitro culture of human periosteum derived cells on coated scaffolds. This study showed that P-ELD provides a technological tool to functionalize complex scaffold structures with a biocompatible CaP layer that has controlled and reproducible physicochemical properties suitable for bone engineering.

  2. Differential osteogenicity of multiple donor-derived human mesenchymal stem cells and osteoblasts in monolayer, scaffold-based 3D culture and in vivo.

    PubMed

    Quent, Verena M C; Theodoropoulos, Christina; Hutmacher, Dietmar W; Reichert, Johannes C

    2016-06-01

    We set out to compare the osteogenicity of human mesenchymal stem (hMSCs) and osteoblasts (hOBs). Upon osteogenic induction in monolayer, hMSCs showed superior matrix mineralization expressing characteristic bone-related genes. For scaffold cultures, both cell types presented spindle-shaped, osteoblast-like morphologies forming a dense, interconnected network of high viability. On the scaffolds, hOBs proliferated faster. A general upregulation of parathyroid hormone-related protein (PTHrP), osteoprotegrin (OPG), receptor activator of NF-κB ligand (RANKL), sclerostin (SOST), and dentin matrix protein 1 (DMP1) was observed for both cell types. Simultaneously, PTHrP, RANKL and DMP-1 expression decreased under osteogenic stimulation, while OPG and SOST increased significantly. Following transplantation into NOD/SCID mice, μCT and histology showed increased bone deposition with hOBs. The bone was vascularized, and amounts further increased for both cell types after recombinant human bone morphogenic protein 7 (rhBMP-7) addition also stimulating osteoclastogenesis. Complete bone organogenesis was evidenced by the presence of osteocytes and hematopoietic precursors. Our study results support the asking to develop 3D cellular models closely mimicking the functions of living tissues suitable for in vivo translation.

  3. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control.

    PubMed

    Wagner, Darcy E; Jones, Andrew D; Zhou, Huan; Bhaduri, Sarit B

    2013-04-01

    Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave sintered compacts was confirmed via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Solution pH during crystal growth was found to have a profound effect on particle morphology and post-sintered phases, despite constant sintering temperature. Cytocompatibility assessment using 7F2 cells, corresponding to adult mouse osteoblasts, on microwave and conventional, furnace sintered samples demonstrated that manufacturing method does not impact cellular viability after 24 h or proliferation over 7 days. New CaP deposition and extracellular matrix components were observed in vitro via scanning electron microscopy (SEM). PMID:23827628

  4. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.

    PubMed

    Ke, Dongxu; Dernell, William; Bandyopadhyay, Amit; Bose, Susmita

    2015-11-01

    Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64% ± 3.54% density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2 , pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression, and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity, while maintaining high compressive mechanical strength and excellent bioactivity. Results show that SrO/SiO2 -doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications.

  5. Discrete and polymeric cobalt organophosphates: isolation of a 3-D cobalt phosphate framework exhibiting selective CO2 capture.

    PubMed

    Gupta, Sandeep K; Kuppuswamy, Subramaniam; Walsh, James P S; McInnes, Eric J L; Murugavel, Ramaswamy

    2015-03-28

    Structurally diverse mononuclear, dinuclear, and tetranuclear cobalt organophosphates and a three-dimensional framework based on a D4R cobalt phosphate are reported. The role of auxiliary ligands in determining the nuclearity of the phosphate clusters has further been established. Reaction of cobalt acetate tetrahydrate with 2,6-di-iso-propylphenylphosphate (dippH2) in methanol or DMSO in the presence of ancillary N-donor ligands leads to the formation of mononuclear octahedral cobalt phosphate [Co(dippH)2(py)4] (1), dinuclear octahedral cobalt phosphates [Co(dipp)(NN)(MeOH)2]2·2MeOH (NN = bpy 2; phen 3), tetrahedral cobalt phosphates [Co(dipp)(L)2]2·2(MeOH) (L = imz 4; dmpz 5) and symmetric and asymmetric tetranuclear tetrahedral cobalt phosphates [Co(dipp)(2-apy)]4 (6) and [Co4(dipp)4(2-apy)3(DMSO)]·(DMSO)·(H2O) (7), in nearly quantitative yields. The use of a linear N-donor ditopic linker, 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (dptz), as the ancillary ligand leads to the formation of a robust three dimensional, four-fold interpenetrated network based on the D4R platform, {[Co(dipp)(dptz)0.5]4}n (8), under ambient conditions. The new compounds have been characterized by analytical, thermo-analytical and spectroscopic techniques. Further, the molecular structures of compounds 1-8 have been established using single crystal X-ray diffraction studies. Compound 1 is a mononuclear complex in which the dippH ligands occupy trans-positions around the octahedral cobalt ion. The core structure of compounds 2-5, a Co2P2O4 ring, resembles the S4R (single-4-ring) SBU of zeolites, whereas the Co4P4O12 inorganic core found in compounds 6 and 7 resembles the D4R (double-4-ring) SBU. Cobalt organophosphate framework 8 shows significant CO2 adsorption at 273 K (7.73 wt% at 1 bar and 18.21 wt% at 15.5 bar) with high selectivity to CO2 uptake over N2 and H2 at 273 K. Magnetic studies of these symmetric complexes indicate the presence of weak antiferromagnetic interactions

  6. Discrete and polymeric cobalt organophosphates: isolation of a 3-D cobalt phosphate framework exhibiting selective CO2 capture.

    PubMed

    Gupta, Sandeep K; Kuppuswamy, Subramaniam; Walsh, James P S; McInnes, Eric J L; Murugavel, Ramaswamy

    2015-03-28

    Structurally diverse mononuclear, dinuclear, and tetranuclear cobalt organophosphates and a three-dimensional framework based on a D4R cobalt phosphate are reported. The role of auxiliary ligands in determining the nuclearity of the phosphate clusters has further been established. Reaction of cobalt acetate tetrahydrate with 2,6-di-iso-propylphenylphosphate (dippH2) in methanol or DMSO in the presence of ancillary N-donor ligands leads to the formation of mononuclear octahedral cobalt phosphate [Co(dippH)2(py)4] (1), dinuclear octahedral cobalt phosphates [Co(dipp)(NN)(MeOH)2]2·2MeOH (NN = bpy 2; phen 3), tetrahedral cobalt phosphates [Co(dipp)(L)2]2·2(MeOH) (L = imz 4; dmpz 5) and symmetric and asymmetric tetranuclear tetrahedral cobalt phosphates [Co(dipp)(2-apy)]4 (6) and [Co4(dipp)4(2-apy)3(DMSO)]·(DMSO)·(H2O) (7), in nearly quantitative yields. The use of a linear N-donor ditopic linker, 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (dptz), as the ancillary ligand leads to the formation of a robust three dimensional, four-fold interpenetrated network based on the D4R platform, {[Co(dipp)(dptz)0.5]4}n (8), under ambient conditions. The new compounds have been characterized by analytical, thermo-analytical and spectroscopic techniques. Further, the molecular structures of compounds 1-8 have been established using single crystal X-ray diffraction studies. Compound 1 is a mononuclear complex in which the dippH ligands occupy trans-positions around the octahedral cobalt ion. The core structure of compounds 2-5, a Co2P2O4 ring, resembles the S4R (single-4-ring) SBU of zeolites, whereas the Co4P4O12 inorganic core found in compounds 6 and 7 resembles the D4R (double-4-ring) SBU. Cobalt organophosphate framework 8 shows significant CO2 adsorption at 273 K (7.73 wt% at 1 bar and 18.21 wt% at 15.5 bar) with high selectivity to CO2 uptake over N2 and H2 at 273 K. Magnetic studies of these symmetric complexes indicate the presence of weak antiferromagnetic interactions

  7. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

    PubMed

    Domingos, M; Intranuovo, F; Russo, T; De Santis, R; Gloria, A; Ambrosio, L; Ciurana, J; Bartolo, P

    2013-12-01

    Novel additive manufacturing processes are increasingly recognized as ideal techniques to produce 3D biodegradable structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. With regard to the mechanical and biological performances of 3D scaffolds, pore size and geometry play a crucial role. In this study, a novel integrated automated system for the production and in vitro culture of 3D constructs, known as BioCell Printing, was used only to manufacture poly(ε-caprolactone) scaffolds for tissue engineering; the influence of pore size and shape on their mechanical and biological performances was investigated. Imposing a single lay-down pattern of 0°/90° and varying the filament distance, it was possible to produce scaffolds with square interconnected pores with channel sizes falling in the range of 245-433 µm, porosity 49-57% and a constant road width. Three different lay-down patterns were also adopted (0°/90°, 0°/60/120° and 0°/45°/90°/135°), thus resulting in scaffolds with quadrangular, triangular and complex internal geometries, respectively. Mechanical compression tests revealed a decrease of scaffold stiffness with the increasing porosity and number of deposition angles (from 0°/90° to 0°/45°/90°/135°). Results from biological analysis, carried out using human mesenchymal stem cells, suggest a strong influence of pore size and geometry on cell viability. On the other hand, after 21 days of in vitro static culture, it was not possible to detect any significant variation in terms of cell morphology promoted by scaffold topology. As a first systematic analysis, the obtained results clearly demonstrate the potential of the BioCell Printing process to produce 3D scaffolds with reproducible well organized architectures and tailored mechanical properties.

  8. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.

    PubMed

    Dadsetan, Mahrokh; Guda, Teja; Runge, M Brett; Mijares, Dindo; LeGeros, Racquel Z; LeGeros, John P; Silliman, David T; Lu, Lichun; Wenke, Joseph C; Brown Baer, Pamela R; Yaszemski, Michael J

    2015-05-01

    Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regeneration capacity of biodegradable, porous poly(propylene fumarate) (PPF) scaffolds. PPF scaffolds were coated with three different calcium phosphate formulations: magnesium-substituted β-tricalcium phosphate (β-TCMP), carbonated hydroxyapatite (synthetic bone mineral, SBM) and biphasic calcium phosphate (BCP). In vivo bone regeneration was evaluated by implantation of scaffolds in a critical-sized rabbit calvarial defect loaded with different doses of rhBMP-2. Our data demonstrated that scaffolds with each of the calcium phosphate coatings were capable of sustaining rhBMP-2 release and retained an open porous structure. After 6weeks of implantation, micro-computed tomography revealed that the rhBMP-2 dose had a significant effect on bone formation within the scaffolds and that the SBM-coated scaffolds regenerated significantly greater bone than BCP-coated scaffolds. Mechanical testing of the defects also indicated restoration of strength in the SBM and β-TCMP with rhBMP-2 delivery. Histology results demonstrated bone growth immediately adjacent to the scaffold surface, indicating good osteointegration and osteoconductivity for coated scaffolds. The results obtained in this study suggest that the coated scaffold platform demonstrated a synergistic effect between calcium phosphate coatings and rhBMP-2 delivery and may provide a promising platform for the functional restoration of large bone defects. PMID:25575855

  9. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.

    PubMed

    Dadsetan, Mahrokh; Guda, Teja; Runge, M Brett; Mijares, Dindo; LeGeros, Racquel Z; LeGeros, John P; Silliman, David T; Lu, Lichun; Wenke, Joseph C; Brown Baer, Pamela R; Yaszemski, Michael J

    2015-05-01

    Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regeneration capacity of biodegradable, porous poly(propylene fumarate) (PPF) scaffolds. PPF scaffolds were coated with three different calcium phosphate formulations: magnesium-substituted β-tricalcium phosphate (β-TCMP), carbonated hydroxyapatite (synthetic bone mineral, SBM) and biphasic calcium phosphate (BCP). In vivo bone regeneration was evaluated by implantation of scaffolds in a critical-sized rabbit calvarial defect loaded with different doses of rhBMP-2. Our data demonstrated that scaffolds with each of the calcium phosphate coatings were capable of sustaining rhBMP-2 release and retained an open porous structure. After 6weeks of implantation, micro-computed tomography revealed that the rhBMP-2 dose had a significant effect on bone formation within the scaffolds and that the SBM-coated scaffolds regenerated significantly greater bone than BCP-coated scaffolds. Mechanical testing of the defects also indicated restoration of strength in the SBM and β-TCMP with rhBMP-2 delivery. Histology results demonstrated bone growth immediately adjacent to the scaffold surface, indicating good osteointegration and osteoconductivity for coated scaffolds. The results obtained in this study suggest that the coated scaffold platform demonstrated a synergistic effect between calcium phosphate coatings and rhBMP-2 delivery and may provide a promising platform for the functional restoration of large bone defects.

  10. Polylactic acid-phosphate glass composite foams as scaffolds for bone tissue engineering.

    PubMed

    Georgiou, G; Mathieu, L; Pioletti, D P; Bourban, P-E; Månson, J-A E; Knowles, J C; Nazhat, S N

    2007-02-01

    Phosphate glass (PG) of the composition 0.46(CaO)-0.04(Na(2)O)-0.5(P(2)O(5)) was used as filler in poly-L-lactic acid (PLA) foams developed as degradable scaffolds for bone tissue engineering. The effect of PG on PLA was assessed both in bulk and porous composite foams. Composites with various PG content (0, 5, 10, and 20 wt %) were melt-extruded, and either compression-molded or foamed through supercritical CO(2). Dynamic mechanical analysis on the bulk composites showed that incorporating 20 wt % PG resulted in a significant increase in storage modulus. Aging studies in deionized water in terms of weight loss, pH change, and ion release inferred that the degradation was due to PG dissolution, and dependent on the amount of glass in the composites. Foaming was only possible for composites containing 5 and 10 wt % PG, as an increase in PG increased the foam densities; however, the level of porosity was maintained above 75%. PLA-T(g) in the foams was higher than those obtained for the bulk. Compressive moduli showed no significant reinforcement with glass incorporation in either expansion direction, indicating no anisotropy. Biocompatibility showed that proliferation of human fetal bone cells was more rapid for PLA compared to PLA-PG foams. However, the proliferation rate of PLA-PG foams were similar to those obtained for foams of PLA with either hydroxyapatite or beta-tricalcium phosphate.

  11. Design and application of chitosan/biphasic calcium phosphate porous scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sendemir-Urkmez, Aylin

    For the restoration of maxillofacial bone tissue, design of novel tissue engineering scaffolds capable of inducing bone remodeling through the delivery of mesenchymal stem cells (MSCs) and an angiogenic growth factor, directly at the site of the defect was investigated in order to replace autogenous cancellous bone grafts with synthetic materials. Porous, three dimensional scaffolds were fabricated by a freeze drying method. In culture media, biphasic calcium phosphate particles within chitosan produced a surface reprecipitate of a composition similar to natural apatite that led to a uniform distribution of cells and mineralized ECM through chemotaxis. Further, the reprecipitation regulated the differentiation pathway and phenotype commitment of stem cells by altering the initial cell attachment morphology and actin cytoskeleton organization. In order to induce neovascularization after implantation, constructs were designed to be loaded with gelatin microspheres that delivered basic fibroblast growth factor (bFGF), a potent angiogenic factor. In vitro proliferation tests performed on fibroblastic cells showed no detectible loss of bFGF activity when delivered through enzymatic degradation of gelatin. Laser scanning confocal microscopy was used to demonstrate that gelatin microspheres can be injected evenly into cell-scaffold constructs owing to the spongy characteristics of the scaffold. To examine the binding interactions of bFGF with surface bound gelatin, a label free biosensor system, Biomolecular INteraction Detection sensor (BIND) was used. Results confirm that the principal interaction that takes place between bFGF and gelatin is electrostatic. Cell loaded tissue engineered constructs were produced in vitro at clinically relevant sizes and implanted with and without bFGF into a porcine mandibular defect model. Tissue engineered constructs facilitated the healing of mandibular defects only if combined with delivery of bFGF via gelatin microspheres. b

  12. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate.

    PubMed

    Sriranganathan, Danujan; Kanwal, Nasima; Hing, Karin A; Hill, Robert G

    2016-02-01

    Porous bioactive glasses are attractive for use as bone scaffolds. There is increasing interest in strontium containing bone grafts, since strontium ions are known to up-regulate osteoblasts and down regulate osteoclasts. This paper investigates the influence of partial to full substitution of strontium for calcium on the dissolution and phase formation of a multicomponent high phosphate content bioactive glass. The glasses were synthesised by a high temperature melt quench route and ground to a powder of <38 microns. The dissolution of this powder and its ability to form apatite like phases after immersion in Tris buffer (pH 7.4) and simulated body fluid (SBF) was followed by inductively coupled plasma optical emission spectroscopy (ICP), Fourier transform infra red spectroscopy (FTIR), X-ray powder diffraction (XRD) and (31)P solid state nuclear magnetic resonance spectroscopy up to 42 days of immersion. ICP indicated that all three glasses dissolved at approximately the same rate. The all calcium (SP-0Sr-35Ca) glass showed evidence of apatite like phase formation in both Tris buffer and SBF, as demonstrated after 3 days by FTIR and XRD analysis of the precipitate that formed during the acellular dissolution bioactivity studies. The strontium substituted SP-17Sr-17Ca glass showed no clear evidence of apatite like phase formation in Tris, but evidence of an apatite like phase was observed after 7 days incubation in SBF. The SP-35Sr-0Ca glass formed a new crystalline phase termed "X Phase" in Tris buffer which FTIR indicated was a form of crystalline orthophosphate. The SP-35Sr-0Ca glass appeared to support apatite like phase formation in SBF by 28 days incubation. The results indicate that strontium substitution for calcium in high phosphate content bioactive glasses can retard apatite like phase formation. It is proposed that apatite formation with high phosphate bioactive glasses occurs via an octacalcium phosphate (OCP) precursor phase that subsequently

  13. Studies of a new class of high electro-thermal performing Polyimide embedded with 3D scaffold in the harsh environment of outer space

    NASA Astrophysics Data System (ADS)

    Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong

    The polymer class of Polyimides (PIs) has been wide-spread in the use of outer space coatings due to their chemical stability and flexibility. Nevertheless, their poor thermal conductivity and completely electrically insulating characteristics have caused severe limitations, such as thermal management challenges and spacecraft electrostatic charging, which forces the use of additional materials such as brittle ITO in order to completely resist the harsh environment of space. For this reason, we developed a new composite material via infiltration of PI with a 3D scaffold which improves PIs performance and resilience and enables the use of only a single flexible material to protect spacecraft. Here we present a study of this new material based on outer-space environment simulated on ground. It includes an exhaustive range of tests simulating space environments in accordance with European Cooperation for Space Standard (ECSS), which includes atomic oxygen (AO) etching, Gamma-ray exposure and outgassing properties over extended periods of time and under strenuous mechanical bending and thermal annealing cycles. Measurement methods for the harsh environment of space and the obtained results will be presented.

  14. 45S5-Bioglass®-Based 3D-Scaffolds Seeded with Human Adipose Tissue-Derived Stem Cells Induce In Vivo Vascularization in the CAM Angiogenesis Assay

    PubMed Central

    Handel, Marina; Hammer, Timo R.; Nooeaid, Patcharakamon; Boccaccini, Aldo R.

    2013-01-01

    Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass® was investigated given its potential for applications in bone engineering. Since native Bioglass® shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass®-based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass®-based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass® and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass®, with hASC could be a promising approach for future tissue engineering applications. PMID:23837884

  15. A comparison of 3D poly(ε-caprolactone) tissue engineering scaffolds produced with conventional and additive manufacturing techniques by means of quantitative analysis of SR μ-CT images

    NASA Astrophysics Data System (ADS)

    Brun, F.; Intranuovo, F.; Mohammadi, S.; Domingos, M.; Favia, P.; Tromba, G.

    2013-07-01

    The technique used to produce a 3D tissue engineering (TE) scaffold is of fundamental importance in order to guarantee its proper morphological characteristics. An accurate assessment of the resulting structural properties is therefore crucial in order to evaluate the effectiveness of the produced scaffold. Synchrotron radiation (SR) computed microtomography (μ-CT) combined with further image analysis seems to be one of the most effective techniques to this aim. However, a quantitative assessment of the morphological parameters directly from the reconstructed images is a non trivial task. This study considers two different poly(ε-caprolactone) (PCL) scaffolds fabricated with a conventional technique (Solvent Casting Particulate Leaching, SCPL) and an additive manufacturing (AM) technique (BioCell Printing), respectively. With the first technique it is possible to produce scaffolds with random, non-regular, rounded pore geometry. The AM technique instead is able to produce scaffolds with square-shaped interconnected pores of regular dimension. Therefore, the final morphology of the AM scaffolds can be predicted and the resulting model can be used for the validation of the applied imaging and image analysis protocols. It is here reported a SR μ-CT image analysis approach that is able to effectively and accurately reveal the differences in the pore- and throat-size distributions as well as connectivity of both AM and SCPL scaffolds.

  16. Culture human mesenchymal stem cells with calcium phosphate cement scaffolds for bone repair.

    PubMed

    Weir, Michael D; Xu, Hockin H K

    2010-04-01

    Because of its moldability and excellent osteoconductivity, calcium phosphate cement (CPC) is highly promising for craniofacial and orthopedic applications. The objectives of this study were to investigate the response of human mesenchymal stem cells (hMSCs) to a high-strength CPC-chitosan scaffold and to examine cell proliferation and osteogenic differentiation. hMSCs were seeded onto CPC-chitosan composite, CPC control, and tissue culture polystyrene (TCPS). Alkaline phosphatase activity (ALP) and mineralization of hMSCs were measured. CPC-chitosan had a flexural strength (mean + or - SD; n = 5) of (19.5 + or - 1.4) MPa, higher than (8.0 + or - 1.4) MPa of CPC control (p < 0.05). The percentage of live hMSCs on CPC-chitosan was (90.5 + or - 1.3)% at 8 days, matching (90.7 + or - 3.8)% of CPC control (p > 0.1). The CPC-chitosan surface area covered by the attached hMSCs increased from (51 + or - 11)% at 1 day to (90 + or - 4)% at 8 days (p < 0.05), matching those of CPC control (p > 0.1). Hence, the CPC strength was significantly increased via chitosan without compromising the hMSC response. At 8 days, there was a significant increase in ALP of cells in osteogenic media (10.99 + or - 0.93) [(mM pNpp/min)/(microg DNA)] versus control media (3.62 + or - 0.40) (p < 0.05). hMSCs in osteogenic media exhibited greater mineralization area of (47.5 + or - 19.7)% compared with (6.1 + or - 2.3)% in control medium on TCPS (p < 0.05). In conclusion, hMSCs showed excellent attachment and viability on the strong and tough CPC-chitosan scaffold, matching the hMSC response on CPC control. hMSCs were successfully differentiated down the osteogenic lineage. Hence, the strong, in situ hardening CPC-chitosan scaffold may be useful as a moderate load-bearing vehicle to deliver hMSCs for maxillofacial and orthopedic bone tissue engineering. PMID:20091907

  17. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold

    PubMed Central

    Cao, Lu; Duan, Ping-Guo; Wang, Hui-Ren; Li, Xi-Lei; Yuan, Feng-Lai; Fan, Zhong-Yong; Li, Su-Ming; Dong, Jian

    2012-01-01

    The purpose of this study was to investigate the influence of nano-sized β-tricalcium phosphate (β-TCP) on the biological performance of poly (lactic acid) (PLA) composite scaffolds by using in vitro degradation and an in vivo model of heterotopic bone formation. Nano-sized β-TCP (nβ-TCP) was prepared with a wet grinding method from micro-sized β-TCP (mβ-TCP), and composite scaffolds containing 0, 10, 30, or 50 wt% nβ-TCP or 30 wt% mβ-TCP were generated using a freeze-drying method. Degradation was assessed by monitoring changes in microstructure, pH, weight, and compressive strength over a 26-week period of hydrolysis. Composite scaffolds were processed into blocks, and implanted into muscular pockets of rabbits after loading with recombinant human bone morphogenetic protein-2 (rhBMP-2). New bone formation was evaluated based on histological and immunohistochemical analysis 2, 4, and 8 weeks after implantation. The in vitro results indicated that the buffering effect of nβ-TCP was stronger than mβ-TCP, which was positively correlated with the content of nβ-TCP. The in vivo findings demonstrated that nβ-TCP enhanced the osteoconductivity of the scaffolds. Although composite scaffolds containing 30% nβ-TCP exhibited similar osteoconductivity to 50% nβ-TCP, they had better mechanical properties than the 50% nβ-TCP scaffolds. This study supports the potential application of a composite scaffold containing 30% nβ-TCP as a promising scaffold for bone regeneration. PMID:23226019

  18. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    PubMed Central

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020

  19. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects.

    PubMed

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  20. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    NASA Astrophysics Data System (ADS)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  1. Synthesis and Crystal Structures of Zirconium Phosphate Fluorides with New 2D and 3D Structure Types

    NASA Astrophysics Data System (ADS)

    Wloka, Martin; Troyanov, Sergei I.; Kemnitz, Erhard

    2000-01-01

    Three new zirconium phosphate fluorides, [amH2]0.5 [Zr2(PO4)(HPO4)2F2]·0.5H2O (1), [amH2]1.5[Zr3(PO4)3F6]·1.5H2O (2) (am=trans-1,4-diaminocyclohexane for 1 and 2), and [amH2]0.5[Zr3(PO4)3(HPO4)F2]·1.5H2O (am=2,2-dimethyl-1,3-diaminopropane) (3), were synthesized under hydrothermal conditions and structurally characterized. Zr is octahedrally coordinated in all three structures. In 1, the octahedra consist of ZrO6 and ZrO4F2 units. Compound 2 is made exclusively of ZrO4F2. In 3, there are three different types of Zr-octahedra, namely, ZrO6, ZrO5F, and ZrO4F2. The Zr octahedra and PO4 tetrahedra are connected via non-OH oxygen atoms. In 1 and 2, all F atoms are terminal, whereas in 3, one of the two F atoms bridges between the ZrO5F and ZrO4F2 octahedra. In structures 1 and 2 with higher F/Zr ratios, two-dimensional inorganic networks exist. The inorganic sheets are connected by the protonated templates via N-H···F and in 1 additionally by O-H···F hydrogen bonds. In 3, the lower F/Zr ratio results in the formation of a three-dimensional inorganic framework with characteristic 'double' channels in which the highly disordered templates are located. The existence of several structure types in the ZrPOF-n family is discussed on the basis of different template geometry and F/Zr ratios.

  2. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration.

    PubMed

    Xia, Yan; Zhou, Panyu; Wang, Fei; Qiu, Chao; Wang, Panfeng; Zhang, Yuntong; Zhao, Liming; Xu, Shuogui

    2016-01-01

    In this study, bioactive scaffold of nano magnesium phosphate (nMP)/wheat protein (WP) composite (MWC) was fabricated. The results revealed that the MWC scaffolds had interconnected not only macropores (sized 400-600 μm) but also micropores (sized 10-20 μm) on the walls of macropores. The MWC scaffolds containing 40 w% nMP had an appropriate degradability in phosphate-buffered saline and produced a weak alkaline microenvironment. In cell culture experiments, the results revealed that the MWC scaffolds significantly promoted the MC3T3-E1 cell proliferation, differentiation, and growth into the scaffolds. The results of synchrotron radiation microcomputed tomography and analysis of the histological sections of the in vivo implantation revealed that the MWC scaffolds evidently improved the new bone formation and bone defects repair as compared with WP scaffolds. Moreover, it was found that newly formed bone tissue continued to increase with the gradual reduction of materials residual in the MWC scaffolds. Furthermore, the immunohistochemical analysis further offered the evidence of the stimulatory effects of MWC scaffolds on osteogenic-related cell differentiation and new bone regeneration. The results indicated that MWC scaffolds with good biocompability and degradability could promote osteogenesis in vivo, which would have potential for bone tissue repair. PMID:27555766

  3. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration

    PubMed Central

    Xia, Yan; Zhou, Panyu; Wang, Fei; Qiu, Chao; Wang, Panfeng; Zhang, Yuntong; Zhao, Liming; Xu, Shuogui

    2016-01-01

    In this study, bioactive scaffold of nano magnesium phosphate (nMP)/wheat protein (WP) composite (MWC) was fabricated. The results revealed that the MWC scaffolds had interconnected not only macropores (sized 400–600 μm) but also micropores (sized 10–20 μm) on the walls of macropores. The MWC scaffolds containing 40 w% nMP had an appropriate degradability in phosphate-buffered saline and produced a weak alkaline microenvironment. In cell culture experiments, the results revealed that the MWC scaffolds significantly promoted the MC3T3-E1 cell proliferation, differentiation, and growth into the scaffolds. The results of synchrotron radiation microcomputed tomography and analysis of the histological sections of the in vivo implantation revealed that the MWC scaffolds evidently improved the new bone formation and bone defects repair as compared with WP scaffolds. Moreover, it was found that newly formed bone tissue continued to increase with the gradual reduction of materials residual in the MWC scaffolds. Furthermore, the immunohistochemical analysis further offered the evidence of the stimulatory effects of MWC scaffolds on osteogenic-related cell differentiation and new bone regeneration. The results indicated that MWC scaffolds with good biocompability and degradability could promote osteogenesis in vivo, which would have potential for bone tissue repair. PMID:27555766

  4. Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling.

    PubMed

    Guo, R; Merkel, A R; Sterling, J A; Davidson, J M; Guelcher, S A

    2015-12-01

    The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/β-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing. PMID:26406449

  5. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Freeze-Gelled Chitosan/Nano β-Tricalcium Phosphate Porous Scaffolds Crosslinked with Genipin

    PubMed Central

    Siddiqui, Nadeem; Pramanik, Krishna; Jabbari, Esmaiel

    2015-01-01

    The objective of this work was to investigate material properties and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in genipin (GN) crosslinked chitosan/nano β-tricalcium phosphate (CS/nano β-TCP) scaffolds, and compare the results with tripolyphosphate (TPP) crosslinked scaffolds. Porous crosslinked CS/nano β-TCP scaffolds were produced by freeze-gelation using GN (CBG scaffold) and TPP (CBT scaffold) as crosslinkers. The prepared CBT and CBG scaffolds were characterized with respect to porosity, pore size, water content, wettability, compressive strength, mass loss, and osteogenic differentiation of hMSCs. All scaffolds displayed interconnected honeycomb-like microstructures. There was a significant difference between the average pore size, porosity, contact angle, and percent swelling of CBT and CBG scaffolds. The average pore size of CBG scaffolds was higher than CBT, the porosity of CBG was lower than CBT, the water contact angle of CBG was higher than CBT, and the percent swelling of CBG was lower than CBT. At a given crosslinker concentration, there was not a significant difference in compressive modulus and mass loss of CBG and CBT scaffolds. Metabolic activity of hMSCs seeded in CBG scaffolds was slightly higher than CBT. Furthermore, CBG scaffolds displayed slightly higher extent of mineralization after 21 days incubation in osteogenic medium compared to CBT. PMID:26046270

  6. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin.

    PubMed

    Siddiqui, Nadeem; Pramanik, Krishna; Jabbari, Esmaiel

    2015-09-01

    The objective of this work was to investigate material properties and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in genipin (GN) crosslinked chitosan/nano β-tricalcium phosphate (CS/nano β-TCP) scaffolds, and compare the results with tripolyphosphate (TPP) crosslinked scaffolds. Porous crosslinked CS/nano β-TCP scaffolds were produced by freeze-gelation using GN (CBG scaffold) and TPP (CBT scaffold) as crosslinkers. The prepared CBT and CBG scaffolds were characterized with respect to porosity, pore size, water content, wettability, compressive strength, mass loss, and osteogenic differentiation of hMSCs. All scaffolds displayed interconnected honeycomb-like microstructures. There was a significant difference between the average pore size, porosity, contact angle, and percent swelling of CBT and CBG scaffolds. The average pore size of CBG scaffolds was higher than CBT, the porosity of CBG was lower than CBT, the water contact angle of CBG was higher than CBT, and the percent swelling of CBG was lower than CBT. At a given crosslinker concentration, there was not a significant difference in compressive modulus and mass loss of CBG and CBT scaffolds. Metabolic activity of hMSCs seeded in CBG scaffolds was slightly higher than CBT. Furthermore, CBG scaffolds displayed slightly higher extent of mineralization after 21 days of incubation in osteogenic medium compared to CBT.

  7. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold.

    PubMed

    Yang, Le; Wang, Qinghua; Peng, Lihua; Yue, Hong; Zhang, Zhendong

    2015-08-01

    Ensuring histocompatibility in the tissue engineering of bones is a complex issue. The aim of this study was to observe the feasibility of chitosan-β-tricalcium phosphate composite in repairing limb bone defects, and to evaluate the therapeutic effects on osteogenesis. Beagle mesenchymal stem cells (MSCs) were divided into an experimental group that was cultured with an injectable form of chitosan-β-tricalcium phosphate composite and a control group. The effect of the composite on bone tissue growth was evaluated by MTT assay. In addition, 12-month-old beagles were subjected to 15-mm femur defects and subsequently implanted with scaffolds to observe the effects on osteogenesis and vascularization. The dogs were subdivided into two groups of five animals: Group A, which was implanted with scaffold-MSC compounds, and Group B, which was implanted with scaffolds alone. The dogs were observed on the 2nd, 4th, 8th and 12th weeks post-implantation. Scanning electron microscopy analysis revealed that the composite was compatible with MSCs, with similar outcomes in the control and experimental groups. MTT analysis additionally showed that the MSCs in the experimental group grew in a similar manner to those in the control group. The composite did not significantly affect the MSC growth or proliferation. In combination with MSCs, the scaffold materials were effective in the promotion of osteogenesis and vascularization. In conclusion, the chitosan-β-tricalcium phosphate composite was compatible with the MSCs and did not affect cellular growth or proliferation, therefore proving to be an effective injectable composite for tissue engineered bone. Simultaneous implantation of stem cells with a carrier composite proved to function effectively in the repair of bone defects.

  8. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering.

    PubMed

    Tanase, C E; Sartoris, A; Popa, M I; Verestiuc, L; Unger, R E; Kirkpatrick, C J

    2013-04-01

    This work reports on the physicochemical properties and in vitro cytotoxicity assessment of chitosan-calcium phosphate (Cs-CP) scaffolds for bone tissue engineering, which were synthesized by a novel biomimetic co-precipitation method. X-ray diffraction (XRD) along with scanning electron microscopy (SEM) analysis confirmed the porous morphology of the scaffolds and the amorphous nature of the inorganic phase with different crystallite sizes and the formation of various forms of calcium phosphate. Compressive mechanical testing revealed that the Young's modulus of the biomaterials is in the range of human trabecular bone. In vitro tests were performed on the biomaterials for up to 14 days to study the behavior of the osteoblast-like human cell line (MG63), primary human osteoblasts (HOS) and human dermal microvascular endothelial cells (HDMEC). The cytotoxicity was evaluated by the MTS assay for cell metabolism and the detection of membrane integrity (lactate dehydrogenase-LDH release). An expression of the vascular endothelial growth factor (VEGF) in the cell supernatants was quantified by ELISA. Cell viability gave values close to untreated controls for MG63 and HOS, while in the case of HDMEC the viability after 2 weeks in the cell culture was between 80-90%. The cytotoxicity induced by the Cs-CP scaffolds on MG63, HOS and HDMEC in vitro was evaluated by the amount of LDH released, which is a sensitive and accurate marker for cellular toxicity. The increased levels of VEGF obtained in the osteoblast culture highlights its important role in the regulation of vascularization and bone remodeling. The biological responses of the Cs-CP scaffolds demonstrate a similar proliferation and differentiation characteristics of the cells comparable to the controls. These results reveal that biomimetic Cs-CP composite scaffolds are promising biomaterials for bone tissue engineering; their in vivo response remains to be tested. PMID:23343569

  9. An open source image processing method to quantitatively assess tissue growth after non-invasive magnetic resonance imaging in human bone marrow stromal cell seeded 3D polymeric scaffolds.

    PubMed

    Leferink, Anne M; Fratila, Raluca M; Koenrades, Maaike A; van Blitterswijk, Clemens A; Velders, Aldrik; Moroni, Lorenzo

    2014-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional (3D) scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs) are used, as it could offer a method to understand in real time the dynamics of stromal cell differentiation and eventually steer it into the desired lineage. Magnetic Resonance Imaging (MRI) is a promising tool to overcome the challenge of a limited transparency in opaque 3D scaffolds. Technical limitations of MRI involve non-uniform background intensity leading to fluctuating background signals and therewith complicating quantifications on the retrieved images. We present a post-imaging processing sequence that is able to correct for this non-uniform background intensity. To test the processing sequence we investigated the use of MRI for in vitro monitoring of tissue growth in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Results showed that MRI, without the need to use contrast agents, is a promising non-invasive tool to quantitatively monitor ECM production and cell distribution during in vitro culture in 3D porous tissue engineered constructs. PMID:25502022

  10. An Open Source Image Processing Method to Quantitatively Assess Tissue Growth after Non-Invasive Magnetic Resonance Imaging in Human Bone Marrow Stromal Cell Seeded 3D Polymeric Scaffolds

    PubMed Central

    Leferink, Anne M.; Fratila, Raluca M.; Koenrades, Maaike A.; van Blitterswijk, Clemens A.; Velders, Aldrik; Moroni, Lorenzo

    2014-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional (3D) scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs) are used, as it could offer a method to understand in real time the dynamics of stromal cell differentiation and eventually steer it into the desired lineage. Magnetic Resonance Imaging (MRI) is a promising tool to overcome the challenge of a limited transparency in opaque 3D scaffolds. Technical limitations of MRI involve non-uniform background intensity leading to fluctuating background signals and therewith complicating quantifications on the retrieved images. We present a post-imaging processing sequence that is able to correct for this non-uniform background intensity. To test the processing sequence we investigated the use of MRI for in vitro monitoring of tissue growth in three-dimensional poly(ethylene oxide terephthalate)–poly(butylene terephthalate) (PEOT/PBT) scaffolds. Results showed that MRI, without the need to use contrast agents, is a promising non-invasive tool to quantitatively monitor ECM production and cell distribution during in vitro culture in 3D porous tissue engineered constructs. PMID:25502022

  11. In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds.

    PubMed

    Wolfe, Michael S; Dean, David; Chen, Jeffrey E; Fisher, John P; Han, Seungho; Rimnac, Clare M; Mikos, Antonios G

    2002-07-01

    This study investigated the in vitro degradation of poly(propylene fumarate)/beta-tricalcium phosphate (PPF/beta-TCP) scaffolds in pH 7.4 phosphate-buffered saline at 37 degrees C. Scaffold design consisted of three layers: two solid layers about a central layer of porous PPF foam. Solid PPF with molecular weights of 810 and 1450 Da was crosslinked under UV light. PPF foam was prepared by a photocrosslinking, porogen-leaching method with an initial porogen content of 80 wt % and two sizes, 150-300 and 300-500 microm. Comparison of initial and residual weights demonstrated a 14.3 +/- 2.0% loss of mass at 3 weeks and a 16.6 +/- 1.8% loss of mass at 6 weeks. Observed pH values for all constructs remained stable (7.15-7.40) throughout the 3 to 6 weeks. Scanning electron micrographs of these scaffolds revealed some loss of foam material between 3 and 6 weeks; however, foam microarchitecture was intact. Solid PPF fracture toughness was tested for high and low molecular weight PPF, 0.376 +/- 0.004 and 0.134 +/- 0.015 MPa(m)1/2, respectively. These values are roughly one magnitude less than human cortical bone.

  12. Self-hardening calcium phosphate composite scaffold for bone tissue engineering.

    PubMed

    Xu, Hockin H K; Simon, Carl G

    2004-05-01

    Calcium phosphate cement (CPC) sets in situ to form solid hydroxyapatite, can conform to complex cavity shapes without machining, has excellent osteoconductivity, and is able to be resorbed and replaced by new bone. Therefore, CPC is promising for craniofacial and orthopaedic repairs. However, its low strength and lack of macroporosity limit its use. This study investigated CPC reinforcement with absorbable fibers, the effects of fiber volume fraction on mechanical properties and macroporosity, and the cytotoxicity of CPC-fiber composite. The rationale was that large-diameter absorbable fibers would initially strengthen the CPC graft, then dissolve to form long cylindrical macropores for colonization by osteoblasts. Flexural strength, work-of-fracture (toughness), and elastic modulus were measured vs. fiber volume fraction from 0% (CPC Control without fibers) to 60%. Cell culture was performed with osteoblast-like cells, and cell viability was quantified using an enzymatic assay. Flexural strength (mean+/-SD; n=6) of CPC with 60% fibers was 13.5+/-4.4 MPa, three times higher than 3.9+/-0.5 MPa of CPC Control. Work-of-fracture was increased by 182 times. Long cylindrical macropores 293+/-46 microm in diameter were created in CPC after fiber dissolution, and the CPC-fiber scaffold reached a macroporosity of 55% and a total porosity of 81%. The new CPC-fiber formulation supported cell adhesion, proliferation and viability. The method of using large-diameter absorbable fibers in bone graft for mechanical properties and formation of long cylindrical macropores for bone ingrowth may be applicable to other tissue engineering materials. PMID:15099632

  13. In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds.

    PubMed

    Yan, L-P; Oliveira, J M; Oliveira, A L; Reis, R L

    2015-05-01

    This study evaluates the biological performance of salt-leached macro/microporous silk scaffolds (S16) and silk-nano calcium phosphate scaffolds (SC16), both deriving from a 16 wt % aqueous SF solution. Enzymatic degradation results showed that the silk-based scaffolds presented desirable biostability, and the incorporation of calcium phosphate further improved the scaffolds' biostability. Human adipose tissue derived stromal cells (hASCs) were cultured onto the scaffolds in vitro. The Alamar blue assay and DNA content revealed that both scaffolds were non-cytotoxic and can support the viability and proliferation of the hASCs. Scanning electron microscopy observation demonstrated that the microporous structure was beneficial for the cell adhesion while the macroporous structure favored the cell migration and proliferation. The histological analysis displayed abundant extracellular matrix formed inside the scaffolds, leading to the significant increase of scaffolds' modulus. These results revealed that S16 and SC16 could be promising alternatives for cartilage and bone tissue engineering scaffolding applications, respectively.

  14. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA.

    PubMed

    Lin, Liulan; Gao, Haitao; Dong, Yangyang

    2015-01-01

    To reveal the latent capacity of the growth factor-like low-molecular-weight material OIC-A006 in tissue regeneration, it is essential to design a porous scaffold in order to concurrently accommodate cells and drug release in a controlled manner. Consequently, we fabricated poly (L-lactide-co-glycolide) (PLGA)-based microspheres with an OIC-A006-loaded gradient-structured β-TCP/PLGA scaffold by freeze-drying which could then be used for drug delivery and bone regeneration. The OIC-A006-loaded β-TCP/PLGA scaffold consisted of two parts which loaded different doses of OIC-A006 (6.25 μM, outside; 12.5 μM, inside). The porosity, compressive strength, SEM, degradation, and cumulative amount of drug release in vitro were characterized. Furthermore, we confirmed the incorporation of OIC-A006 into the PLGA-based microspheres within the scaffolds using UV-spectrophotometry, and the amount of drug remaining in the scaffold was maintained by 10 % for up to 28 days. The drug release was slower in the normal-structured drug-loaded scaffold. The OIC-A006 released action from the OIC-A006-loaded β-TCP/PLGA scaffold with ideal therapeutic prospects in tissue regeneration. In vitro cell culture results showed that this gradient-structured composite scaffold can induce the adhesion and proliferation of rat bone marrow stromal cells towards osteoblasts. These results showed that the newly developed OIC-A006-loaded scaffolds with gradient structure can be potentially applied to bone regeneration in clinical applications. PMID:25577209

  15. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo.

  16. A Combination of Biphasic Calcium Phosphate Scaffold with Hyaluronic Acid-Gelatin Hydrogel as a New Tool for Bone Regeneration

    PubMed Central

    Nguyen, Thuy Ba Linh

    2014-01-01

    A novel bone substitute was fabricated to enhance bone healing by combining ceramic and polymer materials. In this study, Hyaluronic acid (HyA)–Gelatin (Gel) hydrogel was loaded into a biphasic calcium phosphate (BCP) ceramic, and the resulting scaffold, with unique micro- and macroporous orientation, was evaluated for bone regeneration applications. The fabricated scaffold showed high interconnected porosity, with an average compressive strength of 2.8±0.15 MPa, which is usually recommended for cancellous bone substitution. In vitro cytocompatibility studies were conducted using bone marrow mesenchymal stem cells. The HyA-Gel–loaded BCP scaffold resulted in a significant increase in cell proliferation at 3 (p<0.05) and 7 days (p<0.001) and high alkaline phosphatase activities at 14 and 21 days. Furthermore, the in vivo studies showed that the implanted HyA-Gel–loaded BCP scaffold begins to degrade within 3 months after implantation. Histological sections also confirmed a rapid new bone formation and a high rate of collagen mineralization. A bone matrix formation was confirmed by positive immunohistochemistry staining of osteopontin, osteocalcin, and collagen type I. In vivo expression of extracellular matrix proteins demonstrated that this novel bone substitute holds great promise for use in stimulating new bone regeneration. PMID:24517159

  17. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo. PMID:25293870

  18. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets.

    PubMed

    Dan, Hongxia; Vaquette, Cédryck; Fisher, Anthony G; Hamlet, Stephen M; Xiao, Yin; Hutmacher, Dietmar W; Ivanovski, Saso

    2014-01-01

    Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation.

  19. Uniform Surface Modification of 3D Bioglass(®)-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability.

    PubMed

    Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A; Beltrán, Ana M; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R

    2015-01-01

    The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape - both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642

  20. Uniform Surface Modification of 3D Bioglass®-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability

    PubMed Central

    Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A.; Beltrán, Ana M.; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R.

    2015-01-01

    The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape – both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642

  1. Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro

    PubMed Central

    Chen, Muwan; Le, Dang Q.S.; Kjems, Jørgen; Bünger, Cody; Lysdahl, Helle

    2015-01-01

    Abstract Bone tissue engineering requires a well-designed scaffold that can be biodegradable, biocompatible, and support the stem cells to osteogenic differentiation. Porous polycaprolactone (PCL) scaffold prepared by fused deposition modeling is an attractive biomaterial that has been used in clinic. However, PCL scaffolds lack biological function and osteoinductivity. In this study, we functionalized the PCL scaffolds by embedding them with a matrix of hyaluronic acid/β-tricalcium phosphate (HA/TCP). Human mesenchymal stem cells (MSCs) were cultured on scaffolds with and without coating to investigate proliferation and osteogenic differentiation. The DNA amount was significantly higher in the HA/TCP-coated scaffold on day 21. At the gene expression level, HA/TCP coating significantly increased the expression of ALP and COLI on day 4. These data correlated with the ALP activity peaking on day 7 in the HA/TCP-coated scaffold. Scanning electron microscope and histological analysis revealed that the cell matrix and calcium deposition were distributed more uniformly in the coated scaffolds compared to scaffolds without coating. In conclusion, the HA/TCP coating improved cellular proliferation, osteogenic differentiation, and uniform distribution of the cellular matrix in vitro. The HA/TCP-PCL scaffold holds great promise to accommodate human bone marrow-derived MSCs for bone reconstruction purposes, which warrants future in vivo studies. PMID:26487981

  2. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts.

    PubMed

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Wang, Tiancong; Lin, Zitong; Cao, Yazhou; Zhang, Junfeng; Dong, Lei; Qin, Haiyan; Hu, Qingang

    2015-08-01

    Hydroxyapatite (HA) is an important component of human bone and bone tissue engineering scaffolds. A plethora of bone tissue engineering scaffolds have been synthesized so far, including nano-HA/chitosan/gelatin (nHA/CG) scaffolds; and for seeding cells, stem cells, especially induced pluripotent stem cells (iPSCs), have been a promising cell source for bone tissue engineering recently. However, the influence of different HA nano-particle morphologies on the osteogenic differentiation of human iPSCs (hiPSCs) from human gingival fibroblasts (hGFs) is unknown. The purpose of this study was to investigate the osteogenic differentiation of hiPSCs from hGFs seeded on nHA/CG scaffolds with 2 shapes (rod and sphere) of nHA particles. Firstly, hGFs isolated from discarded normal gingival tissues were reprogrammed into hiPSCs. Secondly, hiPSCs were seeded on rod-like nHA/CG (rod-nHA/CG) and sphere-shaped nHA/CG (sphere-nHA/CG) scaffolds respectively and then cell/scaffold complexes were cultured in vitro. Scanning electron microscope, hematoxyline and eosin (HE) staining, Masson's staining, and quantitative real-time polymerase chain reaction techniques were used to examine hiPSC morphology, proliferation, and differentiation on rod-nHA/CG and sphere-nHA/CG scaffolds. Finally, hiPSCs composited with 2 kinds of nHA/CG were transplanted in vivo in a subcutaneous implantation model for 12 weeks; pure scaffolds were also transplanted as a blank control. HE, Masson's, and immunohistochemistry staining were applied to detect new bone regeneration ability. The results showed that sphere-nHA/CG significantly increased hiPSCs from hGF proliferation and osteogenic differentiation in vitro. hiPSCs and sphere-nHA/CG composities generated large bone, whereas hiPSCs and rod-nHA/CG composities produced tiny bone in vivo. Moreover, pure scaffolds without cells almost produced no bone. In conclusion, our work provided a potential innovative bone tissue engineering approach using

  3. Effect of grain size and microporosity on the in vivo behaviour of β-tricalcium phosphate scaffolds.

    PubMed

    Lapczyna, H; Galea, L; Wüst, S; Bohner, M; Jerban, S; Sweedy, A; Doebelin, N; van Garderen, N; Hofmann, S; Baroud, G; Müller, R; von Rechenberg, B

    2014-01-01

    Defining the most adequate architecture of a bone substitute scaffold is a topic that has received much attention over the last 40 years. However, contradictory results exist on the effect of grain size and microporosity. Therefore, the aim of this study was to determine the effect of these two factors on the in vivo behaviour of β-tricalcium phosphate (β-TCP) scaffolds. For that purpose, β-TCP scaffolds were produced with roughly the same macropore size (≈ 150 μm), and porosity (≈ 80 %), but two levels of microporosity (low: 10 % / high: ≈ 25 %) and grain size (small: 1.3 μm /large: ≈ 3.3 μm). The sample architecture was characterised extensively using materialography, Hg porosimetry, micro-computed tomography (μCT), and nitrogen adsorption. The scaffolds were implanted for 2, 4 and 8 weeks in a cylindrical 5-wall cancellous bone defect in sheep. The histological, histomorphometrical and μCT analysis of the samples revealed that all four scaffold types were almost completely resorbed within 8 weeks and replaced by new bone. Despite the three-fold difference in microporosity and grain size, very few biological differences were observed. The only significant effect at p < 0.01 was a slightly faster resorption rate and soft tissue formation between 4 and 8 weeks of implantation when microporosity was increased. Past and present results suggest that the biological response of this particular defect is not very sensitive towards physico-chemical differences of resorbable bone graft substitutes. As bone formed not only in the macropores but also in the micropores, a closer study at the microscopic and localised effects is necessary. PMID:25340808

  4. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds

    PubMed Central

    Leferink, Anne M.; Chng, Yhee-Cheng; van Blitterswijk, Clemens A.; Moroni, Lorenzo

    2015-01-01

    One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation. PMID:26557644

  5. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    PubMed

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications. PMID:25822669

  6. Osteochondral Regeneration: Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration (Adv. Healthcare Mater. 14/2016).

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    A combination of human mesenchymal stem cells with additive manufacturing technology for the fabrication of scaffolds with instructive properties is presented by Lorenzo Moroni and co-workers on page 1753. This new fiber deposition pattern allows the generation of pores of different shapes within the same construct. The most rhomboidal pore geometry sustained enhances alkaline phosphatase activity and osteogenic related genes expression with respect to the other gradient zones when the gradient scaffold is cultured in a medium supporting both osteogenic and chondrogenic differentiation. This may contribute to enhance osteochondral regeneration in orthopedic treatments. PMID:27436107

  7. Hierarchical pore structure of calcium phosphate scaffolds by a combination of gel-casting and multiple tape-casting methods.

    PubMed

    Sánchez-Salcedo, S; Werner, J; Vallet-Regí, M

    2008-07-01

    The objective of this work was to design hierarchical pore structure scaffolds with potential applications in bone tissue regeneration. For that purpose, a bioceramic material such as biphasic calcium phosphate, which consists of a mixture of hydroxyapatite and beta-tricalcium phosphate, was selected. Multilayer pieces (MLP) with hierarchical pore structure were developed employing a new technique that combines gel casting and adding porogens, using multiple tape-casting methods. Pieces with functionally graded porosity were fabricated using porogens with different sizes. The porogens used were Porlat K85 and Porlat K86 with diameters <150 microm and 150-300 microm, respectively. Two types of sintered tapes, with different porosity, no cracking and enough interconnection size were selected. MLP with hierarchical pore structure were designed by the multiple tape-casting method. Interconnected pores whose sizes increase from interior tapes (1.6-3.6 microm) towards exterior tapes (20-51.5 microm) and interpenetration between tapes were achieved. Delamination or cracking were not observed after heat treatment. The flexural strength of pieces was investigated by the three-point bending test. This new combination of methods offers the possibility of manufacturing scaffolds with interconnected pore sizes ranging from 1.6 to 51.5 microm.

  8. Multiple silk coatings on biphasic calcium phosphate scaffolds: Effect on physical and mechanical properties, and in vitro osteogenic response of human mesenchymal stem cells

    PubMed Central

    Li, Jiao Jiao; Gil, Eun Seok; Hayden, Rebecca S.; Li, Chunmei; Roohani-Esfahani, Seyed-Iman; Kaplan, David L.; Zreiqat, Hala

    2013-01-01

    Ceramic scaffolds such as biphasic calcium phosphate (BCP) have been widely studied and used for bone regeneration, but their brittleness and low mechanical strength are major drawbacks. We report the first systematic study on the effect of silk coating in improving the mechanical and biological properties of BCP scaffolds, including 1) optimisation of the silk coating process by investigating multiple coatings, and 2) in vitro evaluation of the osteogenic response of human mesenchymal stem cells (hMSCs) on the coated scaffolds. Our results show that multiple silk coatings on BCP ceramic scaffolds can achieve a significant coating effect to approach the mechanical properties of native bone tissue and positively influence osteogenesis by hMSCs over an extended period. The silk coating method developed in this study represents a simple yet effective means of reinforcement that can be applied to other types of ceramic scaffolds with similar microstructure to improve osteogenic outcomes. PMID:23745709

  9. 3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release.

    PubMed

    Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2013-12-10

    An active cell scaffold based on a graphene-polymer hydrogel has been successfully fabricated. The macroporous hydrogel can efficiently capture cells not only through the bioadhesive ligand RGD but also through on-demand release of cells with an NIR light stimulus. The latter process shows better dynamic control over cells than traditional passive-hydrogel-based cell depots.

  10. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects

    PubMed Central

    Zhang, Xiaojin; Li, Yan; Chen, Y. Eugene; Chen, Jihua; Ma, Peter X.

    2016-01-01

    MicroRNAs (miRNAs) are being developed to enhance tissue regeneration. Here we show that a hyperbranched polymer with high miRNA-binding affinity and negligible cytotoxicity can self-assemble into nano-sized polyplexes with a ‘double-shell' miRNA distribution and high transfection efficiency. These polyplexes are encapsulated in biodegradable microspheres to enable controllable two-stage (polyplexes and miRNA) delivery. The microspheres are attached to cell-free nanofibrous polymer scaffolds that spatially control the release of miR-26a. This technology is used to regenerate critical-sized bone defects in osteoporotic mice by targeting Gsk-3β to activate the osteoblastic activity of endogenous stem cells, thus addressing a critical challenge in regenerative medicine of achieving cell-free scaffold-based miRNA therapy for tissue engineering. PMID:26765931

  11. Fabrication and characterization of polycaprolactone cross- linked and highly-aligned 3-D artificial scaffolds for bone tissue regeneration via electrospinning technology

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.

    2015-11-01

    Novel technologies allowed the scientific community to develop scaffolds for regeneration of bone tissue. A successful scaffold should possess specific macroscopic geometry and internal architecture to perform biological and biophysical functions. In this study the process of polycaprolactone microfibrous development with either cross-linked or highly-aligned three-dimensional artificial mats via electrospinning technology for potential application in tissue engineering is described. The morphology and size of electrospun fibers were assessed systematically by varying the rotation speed of grounded collector. It was found that the diameter of the fibers decreased by increasing the rotation speed of collector. The morphology of the fibers changed from cross-linked to highly-aligned at appr. 1000-1100 rpm.

  12. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    PubMed

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  13. Chitosan scaffolds containing calcium phosphate salts and rhBMP-2: in vitro and in vivo testing for bone tissue regeneration.

    PubMed

    Guzmán, Rodrigo; Nardecchia, Stefania; Gutiérrez, María C; Ferrer, María Luisa; Ramos, Viviana; del Monte, Francisco; Abarrategi, Ander; López-Lacomba, José Luis

    2014-01-01

    Numerous strategies that are currently used to regenerate bone depend on employing biocompatible materials exhibiting a scaffold structure. These scaffolds can be manufactured containing particular active compounds, such as hydroxyapatite precursors and/or different growth factors to enhance bone regeneration process. Herein, we have immobilized calcium phosphate salts (CPS) and bone morphogenetic protein 2 (BMP-2)--combined or alone--into chitosan scaffolds using ISISA process. We have analyzed whether the immobilized bone morphogenetic protein preserved its osteoinductive capability after manufacturing process as well as BMP-2 in vitro release kinetic. We have also studied both the in vitro and in vivo biocompatibility of the resulting scaffolds using a rabbit model. Results indicated that rhBMP-2 remained active in the scaffolds after the manufacturing process and that its release kinetic was different depending on the presence of CPS. In vitro and in vivo findings showed that cells grew more in scaffolds with both CPS and rhBMP-2 and that these scaffolds induced more bone formation in rabbit tibia. Thus chitosan scaffolds containing both CPS and rhBMP-2 were more osteoinductive than their counterparts alone indicating that could be useful for bone regeneration purposes, such as some applications in dentistry. PMID:24504411

  14. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways

    PubMed Central

    Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen

    2015-01-01

    The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization. PMID:25797242

  15. Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold prompts the differentiation of human bone marrow stromal cells into osteogenic lineage

    PubMed Central

    Puvaneswary, Subramaniam; Raghavendran, Hanumantharao Balaji; Talebian, Sepehr; Murali, Malliga Raman; A Mahmod, Suhaeb; Singh, Simmrat; Kamarul, Tunku

    2016-01-01

    In our previous study, we reported the fabrication and characterization of a novel tricalcium phosphate-fucoidan-chitosan (TCP-Fu-Ch) biocomposite scaffold. However, the previous report did not show whether the biocomposite scaffold can exhibit osteogenic differentiation of human bone marrow stromal cells in osteogenic media and normal media supplemented with platelet-derived growth factor (PDGF-BB). On day 15, the release of osteocalcin, was significant in the TCP-Fu-Ch scaffold, when compared with that in the TCP-Ch scaffold, and the level of release was approximately 8 and 6 ng/ml in osteogenic and normal media supplemented with PDGF-BB, respectively. Scanning electron microscopy of the TCP-Fu-Ch scaffold demonstrated mineralization and apatite layer formation on day 14, while the addition of PDGF-BB also improved the osteogenic differentiation of the scaffold. An array of gene expression analysis demonstrated that TCP-Fu-Ch scaffold cultured in osteogenic and normal media supplemented with PDGF-BB showed significant improvement in the expression of collagen 1, Runt-related transcription factor 2, osteonectin, bone gamma-carboxyglutamate protein, alkaline phosphatase, and PPA2, but a decline in the expression of integrin. Altogether, the present study demonstrated that fucoidan-incorporated TCP-Ch scaffold could be used in the differentiation of bone marrow stromal cells and can be a potential candidate for the treatment of bone-related ailments through tissue engineering technology. PMID:27068453

  16. Chitosan Scaffolds Containing Calcium Phosphate Salts and rhBMP-2: In Vitro and In Vivo Testing for Bone Tissue Regeneration

    PubMed Central

    Gutiérrez, María C.; Ferrer, María Luisa; Ramos, Viviana; del Monte, Francisco; Abarrategi, Ander; López-Lacomba, José Luis

    2014-01-01

    Numerous strategies that are currently used to regenerate bone depend on employing biocompatible materials exhibiting a scaffold structure. These scaffolds can be manufactured containing particular active compounds, such as hydroxyapatite precursors and/or different growth factors to enhance bone regeneration process. Herein, we have immobilized calcium phosphate salts (CPS) and bone morphogenetic protein 2 (BMP-2) – combined or alone – into chitosan scaffolds using ISISA process. We have analyzed whether the immobilized bone morphogenetic protein preserved its osteoinductive capability after manufacturing process as well as BMP-2 in vitro release kinetic. We have also studied both the in vitro and in vivo biocompatibility of the resulting scaffolds using a rabbit model. Results indicated that rhBMP-2 remained active in the scaffolds after the manufacturing process and that its release kinetic was different depending on the presence of CPS. In vitro and in vivo findings showed that cells grew more in scaffolds with both CPS and rhBMP-2 and that these scaffolds induced more bone formation in rabbit tibia. Thus chitosan scaffolds containing both CPS and rhBMP-2 were more osteoinductive than their counterparts alone indicating that could be useful for bone regeneration purposes, such as some applications in dentistry. PMID:24504411

  17. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways.

    PubMed

    Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen

    2015-01-01

    The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.

  18. Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold prompts the differentiation of human bone marrow stromal cells into osteogenic lineage.

    PubMed

    Puvaneswary, Subramaniam; Raghavendran, Hanumantharao Balaji; Talebian, Sepehr; Murali, Malliga Raman; A Mahmod, Suhaeb; Singh, Simmrat; Kamarul, Tunku

    2016-04-12

    In our previous study, we reported the fabrication and characterization of a novel tricalcium phosphate-fucoidan-chitosan (TCP-Fu-Ch) biocomposite scaffold. However, the previous report did not show whether the biocomposite scaffold can exhibit osteogenic differentiation of human bone marrow stromal cells in osteogenic media and normal media supplemented with platelet-derived growth factor (PDGF-BB). On day 15, the release of osteocalcin, was significant in the TCP-Fu-Ch scaffold, when compared with that in the TCP-Ch scaffold, and the level of release was approximately 8 and 6 ng/ml in osteogenic and normal media supplemented with PDGF-BB, respectively. Scanning electron microscopy of the TCP-Fu-Ch scaffold demonstrated mineralization and apatite layer formation on day 14, while the addition of PDGF-BB also improved the osteogenic differentiation of the scaffold. An array of gene expression analysis demonstrated that TCP-Fu-Ch scaffold cultured in osteogenic and normal media supplemented with PDGF-BB showed significant improvement in the expression of collagen 1, Runt-related transcription factor 2, osteonectin, bone gamma-carboxyglutamate protein, alkaline phosphatase, and PPA2, but a decline in the expression of integrin. Altogether, the present study demonstrated that fucoidan-incorporated TCP-Ch scaffold could be used in the differentiation of bone marrow stromal cells and can be a potential candidate for the treatment of bone-related ailments through tissue engineering technology.

  19. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    PubMed

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics.

  20. In Vivo Bioluminescence Imaging for Prolonged Survival of Transplanted Human Neural Stem Cells Using 3D Biocompatible Scaffold in Corticectomized Rat Model

    PubMed Central

    Lee, Do Hun; Kim, Han Young; Cho, Han Na; Chung, Hye Jin; Park, Yunwoong; Youn, Hyewon; Lee, Seung Jin; Lee, Hong J.; Kim, Seung U.; Wang, Kyu-Chang; Lee, Dong Soo

    2014-01-01

    Stem cell-based treatment of traumatic brain injury has been limited in its capacity to bring about complete functional recovery, because of the poor survival rate of the implanted stem cells. It is known that biocompatible biomaterials play a critical role in enhancing survival and proliferation of transplanted stem cells via provision of mechanical support. In this study, we noninvasively monitored in vivo behavior of implanted neural stem cells embedded within poly-l-lactic acid (PLLA) scaffold, and showed that they survived over prolonged periods in corticectomized rat model. Corticectomized rat models were established by motor-cortex ablation of the rat. F3 cells expressing enhanced firefly luciferase (F3-effLuc) were established through retroviral infection. The F3-effLuc within PLLA was monitored using IVIS-100 imaging system 7 days after corticectomized surgery. F3-effLuc within PLLA robustly adhered, and gradually increased luciferase signals of F3-effLuc within PLLA were detected in a day dependent manner. The implantation of F3-effLuc cells/PLLA complex into corticectomized rats showed longer-lasting luciferase activity than F3-effLuc cells alone. The bioluminescence signals from the PLLA-encapsulated cells were maintained for 14 days, compared with 8 days for the non-encapsulated cells. Immunostaining results revealed expression of the early neuronal marker, Tuj-1, in PLLA-F3-effLuc cells in the motor-cortex-ablated area. We observed noninvasively that the mechanical support by PLLA scaffold increased the survival of implanted neural stem cells in the corticectomized rat. The image-guided approach easily proved that scaffolds could provide supportive effect to implanted cells, increasing their viability in terms of enhancing therapeutic efficacy of stem-cell therapy. PMID:25198726

  1. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Li, Qing; Zhang, Gui-feng; Zhou, Gang; Yu, Xin; Zhang, Jing; Wang, Xiu-mei; Tang, Zhi-hui

    2016-06-01

    Bone scaffolds are critical in current implant and periodontal regeneration approaches. In this study, we prepared a novel composite type-I collagen and hydroxyapatite (HA)/β-tricaleium phosphate (TCP) scaffold (CHTS) by incorporating type-I collagen and bovine calcined bone granules, prepared as a mixture of 50% HA and 50% TCP, by freeze drying. We then characterized the CHTS and determined its cytotoxic effects. Additionally, ridge preservation experiments were carried out to evaluate the clinical effects of the CHTS. The results demonstrated that the composite scaffolds had good surface morphology and no cytotoxicity. Additionally, an in vivo experiment in an animal model showed that the CHTS performed equally as well as Bio-Oss Collagen, a widely used bone graft in ridge preservation. These findings revealed that the CHTS, which contained natural constituents of bone, could be used as a scaffold for bone regeneration and clinical use.

  2. The Role of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Micro-Scaffolds in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Kim, Dong-Hyun; Shin, Keun-Koo; Jung, Jin Sup; Chun, Ho Hwan; Park, Seong Soo; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2015-08-01

    This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14. After in vitro biological tests, Mg-BCP micro-scaffolds with hAT-MSCs showed more enhanced osteogenicity than pure hAT-MSCs as control group by unique biodegradation of TCP phase and influence of substituted Mg2+ ion in biphasic nanostructure. Therefore, these results suggest that Mg-BCP micro-scaffolds promote osteogenic differentiation of hAT-MSCs. PMID:26369111

  3. Coating of ß-tricalcium phosphate scaffolds-a comparison between graphene oxide and poly-lactic-co-glycolic acid.

    PubMed

    Ardjomandi, N; Henrich, A; Huth, J; Klein, C; Schweizer, E; Scheideler, L; Rupp, F; Reinert, S; Alexander, D

    2015-08-04

    Bone regeneration in critical size defects is a major challenge in oral and maxillofacial surgery, and the gold standard for bone reconstruction still requires the use of autologous tissue. To overcome the need for a second intervention and to minimize morbidity, the development of new biomaterials with osteoinductive features is the focus of current research. As a scaffolding material, ß-tricalcium phosphate (ß-TCP) is suitable for bone regeneration purposes, although it does not carry any functional groups for the covalent immobilization of molecules. The aim of the present study was to establish effective coating variants for ß-TCP constructs to enable the biofunctionalization of anorganic blocks with different osteogenic molecules in future studies. We established working protocols for thin surface coatings consisting of polylactic-co-glycolic acid (PLGA) and graphene oxide (GO) by varying parameters. Surface properties such as the angularity and topography of the developed scaffolds were analyzed. To examine biological functionality, the adhesion and proliferation behavior of jaw periosteal cells (JPCs) were tested on the coated constructs. Our results suggest that PLGA is the superior material for surface coating of ß-TCP matrices, leading to higher JPC proliferation rates and providing a more suitable basis for further biofunctionalization in the field of bone tissue engineering.

  4. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration. PMID:25630631

  5. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration.

  6. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor.

    PubMed

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ai, Jafar; Hadjati, Jamshid; Azami, Mahmoud

    2014-02-01

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. PMID:24411394

  7. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  8. Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds.

    PubMed

    Abdel-Fattah, Wafa I; Sallam, Abdel Sattar M; Diab, A M; Ali, Ghareib W

    2015-09-01

    Two novel silk composites of phosphatic phases with nanosilver/chitosan having enhanced biocompatibility were achieved. Hydroxyapatite and octa calcium phosphates were synthesized in situ within silk fibroin/chitosan/nanosilver composites recently studied. Thermo-gravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) verified their thermal behavior. The structural aspects were characterized applying X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) with EDAX. Additionally X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared spectroscopy (FTIR) were applied. Mercury porosimeter was used to verify the pore size distribution. The in vitro degradation was followed in D-MEM for 48 h in a cumulative manner for five successive periods. Biochemical analyses of Ca, P and total protein using relevant chemical kits and atomic absorption for silver were performed. ANOVA statistics was carried out. Phosphatic crystalline phases along with the presence of silk, chitosan and nano-silver were developed. The diameters of hydroxyapatite and octa calcium phosphate particles were ~8-17 nm and 15-22 nm respectively. Comparatively higher degradation of Octa composite possessing higher porosity proved in turn more osteoinduction with in situ apatitic development.

  9. Fabrication of Poly-l-lactic Acid/Dicalcium Phosphate Dihydrate Composite Scaffolds with High Mechanical Strength-Implications for Bone Tissue Engineering.

    PubMed

    Tanataweethum, Nida; Liu, Wai Ching; Goebel, W Scott; Li, Ding; Chu, Tien Min

    2015-11-04

    Scaffolds were fabricated from poly-l-lactic acid (PLLA)/dicalcium phosphate dihydrate (DCPD) composite by indirect casting. Sodium citrate and PLLA were used to improve the mechanical properties of the DCPD scaffolds. The resulting PLLA/DCPD composite scaffold had increased diametral tensile strength and fracture energy when compared to DCPD only scaffolds (1.05 vs. 2.70 MPa and 2.53 vs. 12.67 N-mm, respectively). Sodium citrate alone accelerated the degradation rate by 1.5 times independent of PLLA. Cytocompatibility of all samples were evaluated using proliferation and differentiation parameters of dog-bone marrow stromal cells (dog-BMSCs). The results showed that viable dog-BMSCs attached well on both DCPD and PLLA/DCPD composite surfaces. In both DCPD and PLLA/DCPD conditioned medium, dog-BMSCs proliferated well and expressed alkaline phosphatase (ALP) activity indicating cell differentiation. These findings indicate that incorporating both sodium citrate and PLLA could effectively improve mechanical strength and biocompatibility without increasing the degradation time of calcium phosphate cement scaffolds for bone tissue engineering purposes.

  10. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect

    PubMed Central

    Paul, Kallyanashis; Padalhin, Andrew R.; Linh, Nguyen Thuy Ba; Kim, Boram; Sarkar, Swapan Kumar; Lee, Byong Taek

    2016-01-01

    A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225). PMID:27711142

  11. Fabrication of Poly-l-lactic Acid/Dicalcium Phosphate Dihydrate Composite Scaffolds with High Mechanical Strength—Implications for Bone Tissue Engineering

    PubMed Central

    Tanataweethum, Nida; Liu, Wai Ching; Scott Goebel, W.; Li, Ding; Chu, Tien Min

    2015-01-01

    Scaffolds were fabricated from poly-l-lactic acid (PLLA)/dicalcium phosphate dihydrate (DCPD) composite by indirect casting. Sodium citrate and PLLA were used to improve the mechanical properties of the DCPD scaffolds. The resulting PLLA/DCPD composite scaffold had increased diametral tensile strength and fracture energy when compared to DCPD only scaffolds (1.05 vs. 2.70 MPa and 2.53 vs. 12.67 N-mm, respectively). Sodium citrate alone accelerated the degradation rate by 1.5 times independent of PLLA. Cytocompatibility of all samples were evaluated using proliferation and differentiation parameters of dog-bone marrow stromal cells (dog-BMSCs). The results showed that viable dog-BMSCs attached well on both DCPD and PLLA/DCPD composite surfaces. In both DCPD and PLLA/DCPD conditioned medium, dog-BMSCs proliferated well and expressed alkaline phosphatase (ALP) activity indicating cell differentiation. These findings indicate that incorporating both sodium citrate and PLLA could effectively improve mechanical strength and biocompatibility without increasing the degradation time of calcium phosphate cement scaffolds for bone tissue engineering purposes. PMID:26556380

  12. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering.

    PubMed

    Butscher, A; Bohner, M; Doebelin, N; Galea, L; Loeffel, O; Müller, R

    2013-02-01

    Powder based three-dimensional printing (3DP) allows great versatility in material and geometry. These characteristics make 3DP an interesting method for the production of tissue engineering scaffolds. However, 3DP has major limitations, such as limited resolution and accuracy, hence preventing the widespread application of this method within scaffold engineering [corrected].In order to reduce these limitations deeper understanding of the complex interactions between powder, binder and roller during 3DP is needed. In the past a lot of effort has been invested to optimize the powder properties for 3DP for a certain layer thickness. Using a powder optimized for an 88 μm layer thickness, this study systematically quantifies the surface roughness and geometrical accuracy in printed specimens and assesses their variation upon changes of different critical parameters such as the moisture application time (0, 5, 10 and 20s), layer thickness (44 and 88 μm) and the number of specimens printed per batch (6 and 12). A best surface roughness value of 25 μm was measured with a moisture application time (using a custom made moisture application device mounted on a linear stage carrying the print head) of 5s and a layer thickness of 44 μm. Geometrical accuracy was generally higher for the 88 μm thick layer, due to a less critical powder bed stability. Moisture application enabled 3DP of a 44 μm thick layer and improved the accuracy even for a powder initially optimized for 88 μm. Moreover, recycling of the humidified powder was not only possible but, in terms of reactivity, even beneficial. In conclusion, moisture-based 3DP is a promising approach for high resolution 3DP of scaffolds.

  13. Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration

    PubMed Central

    Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Vallés-Lluch, Ana; Castells-Sala, Cristina; Martínez-Ramos, Cristina; Fernández-Muiños, Teresa; Chachques, Juan Carlos; Pradas, Manuel Monleón; Semino, Carlos E; Bayes-Genis, Antoni

    2014-01-01

    Contractile restoration of myocardial scars remains a challenge with important clinical implications. Here, a combination of porous elastomeric membrane, peptide hydrogel, and subcutaneous adipose tissue-derived progenitor cells (subATDPCs) was designed and evaluated as a bioimplant for cardiac regeneration in a mouse model of myocardial infarction. SubATDPCs were doubly transduced with lentiviral vectors to express bioluminescent-fluorescent reporters driven by constitutively active, cardiac tissue-specific promoters. Cells were seeded into an engineered bioimplant consisting of a scaffold (polycaprolactone methacryloyloxyethyl ester) filled with a peptide hydrogel (PuraMatrix™), and transplanted to cover injured myocardium. Bioluminescence and fluorescence quantifications showed de novo and progressive increases in promoter expression in bioactive implant-treated animals. The bioactive implant was well adapted to the heart, and fully functional vessels traversed the myocardium-bioactive implant interface. Treatment translated into a detectable positive effect on cardiac function, as revealed by echocardiography. Thus, this novel implant is a promising construct for supporting myocardial regeneration. PMID:24936221

  14. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model.

    PubMed

    Li, Yi; Wu, Zhi-gang; Li, Xiao-kang; Guo, Zheng; Wu, Su-hua; Zhang, Yong-quan; Shi, Lei; Teoh, Swee-hin; Liu, Yu-chun; Zhang, Zhi-yong

    2014-07-01

    Titanium (Ti) based spinal fusion cages are frequently used in the clinics for the treatment of spinal degeneration and related diseases, however, their further clinical application is generally harassed by several drawbacks such as stress shielding, non-biodegradability and additional bone grafting procedure. Our earlier work has demonstrated the efficacy of a biodegradable macro-porous polycaprolactone-tricalcium phosphate (PCL-TCP) composite scaffold in promoting bony tissue ingrowth as well as its ability to sustain mechanical loads upon implantation into an orthotopic defect site. In this study, we investigated the use of PCL-TCP scaffold as an autograft-free spinal fusion cage in a preclinical sheep model over 12 months, and compared the fusion efficacy against Ti cages incorporated with autografts. Results showed that despite PCL-TCP scaffold as an autograft-free cage attaining a slower fusion rate at early stage (6 month), it achieved similar degree of spinal fusion efficacy as Ti cages aided with autograft at 12 month post-operation as evidenced by the radiographic and histological evaluation. PCL-TCP cages alone demonstrated better bone ingrowth with 2.6 fold higher bone/interspace ratio (B/I) and more homogeneous bone tissue distribution compared with that of the Ti cages (88.10  ±  3.63% vs. 33.74  ±  2.78%, p < 0.05) as seen from the histological and micro-CT analysis. Moreover, besides the bone tissue ingrowth, a quantitative approach was illustrated to accurately evaluate the osteointegration of fusion cage with surrounding bone tissue, and showed a 1.36 fold higher degree of osteointegration occurred in PCL-TCP cage group than Ti cage group (CS/PC: 79.31  ±  3.15% vs 58.44  ±  2.43%, p < 0.05). Furthermore, biomechanical analysis showed comparable mechanical strength of fused segments in both groups in terms of the range of motion and stiffness at 12 month (p > 0.05). The degradation profile of the PCL-TCP cages was noted

  15. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels.

    PubMed

    van Esterik, Fransisca A S; Zandieh-Doulabi, Behrouz; Kleverlaan, Cornelis J; Klein-Nulend, Jenneke

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  16. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    PubMed Central

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  17. Studies on [5,6]-Fused Bicyclic Scaffolds Derivatives as Potent Dual B-RafV600E/KDR Inhibitors Using Docking and 3D-QSAR Approaches

    PubMed Central

    Liu, Hai-Chun; Tang, San-Zhi; Lu, Shuai; Ran, Ting; Wang, Jian; Zhang, Yan-Min; Xu, An-Yang; Lu, Tao; Chen, Ya-Dong

    2015-01-01

    Research and development of multi-target inhibitors has attracted increasing attention as anticancer therapeutics. B-RafV600E synergistically works with vascular endothelial growth factor receptor 2 (KDR) to promote the occurrence and progression of cancers, and the development of dual-target drugs simultaneously against these two kinds of kinase may offer a better treatment advantage. In this paper, docking and three-dimensional quantitative structure activity relationship (3D-QSAR) studies were performed on a series of dual B-Raf/KDR inhibitors with a novel hinge-binding group, [5,6]-fused bicyclic scaffold. Docking studies revealed optimal binding conformations of these compounds interacting with both B-Raf and KDR. Based on these conformations, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were constructed, and the best CoMFA (q2 = 0.542, r2 = 0.989 for B-Raf; q2 = 0.768, r2 = 0.991 for KDR) and CoMSIA models (q2 = 0.519, r2 = 0.992 for B-Raf; q2 = 0.849, r2 = 0.993 for KDR) were generated. Further external validations confirmed their predictability, yielding satisfactory correlation coefficients (r2pred = 0.764 (CoMFA), r2pred = 0.841 (CoMSIA) for B-Raf, r2pred = 0.912 (CoMFA), r2pred = 0.846 (CoMSIA) for KDR, respectively). Through graphical analysis and comparison on docking results and 3D-QSAR contour maps, key amino acids that affect the ligand-receptor interactions were identified and structural features influencing the activities were discussed. New potent derivatives were designed, and subjected to preliminary pharmacological evaluation. The study may offer useful references for the modification and development of novel dual B-Raf/KDR inhibitors. PMID:26501259

  18. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds.

    PubMed

    Butscher, Andre; Bohner, Marc; Roth, Christian; Ernstberger, Annika; Heuberger, Roman; Doebelin, Nicola; von Rohr, Philipp Rudolf; Müller, Ralph

    2012-01-01

    Three-dimensional printing (3DP) is a versatile method to produce scaffolds for tissue engineering. In 3DP the solid is created by the reaction of a liquid selectively sprayed onto a powder bed. Despite the importance of the powder properties, there has to date been a relatively poor understanding of the relation between the powder properties and the printing outcome. This article aims at improving this understanding by looking at the link between key powder parameters (particle size, flowability, roughness, wettability) and printing accuracy. These powder parameters are determined as key factors with a predictive value for the final 3DP outcome. Promising results can be expected for mean particle size in the range of 20-35 μm, compaction rate in the range of 1.3-1.4, flowability in the range of 5-7 and powder bed surface roughness of 10-25 μm. Finally, possible steps and strategies in pushing the physical limits concerning improved quality in 3DP are addressed and discussed.

  19. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds.

    PubMed

    Wang, Martha O; Piard, Charlotte M; Melchiorri, Anthony; Dreher, Maureen L; Fisher, John P

    2015-05-01

    This study evaluated the structural, mechanical, and cytocompatibility changes of three-dimensional (3D) printed porous polymer scaffolds during degradation. Three porous scaffold designs were fabricated from a poly(propylene fumarate) (PPF) resin. PPF is a hydrolytically degradable polymer that has been well characterized for applications in bone tissue engineering. Over a 224 day period, scaffolds were hydrolytically degraded and changes in scaffold parameters, such as porosity and pore size, were measured nondestructively using micro-computed tomography. In addition, changes in scaffold mechanical properties were also measured during degradation. Scaffold degradation was verified through decreasing pH and increasing mass loss as well as the formation of micropores and surface channels. Current methods to evaluate polymer cytotoxicity have been well established; however, the ability to evaluate toxicity of an absorbable polymer as it degrades has not been well explored. This study, therefore, also proposes a novel method to evaluate the cytotoxicity of the absorbable scaffolds using a combination of degradation extract, phosphate-buffered saline, and cell culture media. Fibroblasts were incubated with this combination media, and cytotoxicity was evaluated using XTT assay and fluorescence imaging. Cell culture testing demonstrated that the 3D-printed scaffold extracts did not induce significant cell death. In addition, results showed that over a 224 day time period, porous PPF scaffolds provided mechanical stability while degrading. Overall, these results show that degradable, 3D-printed PPF scaffolds are suitable for bone tissue engineering through the use of a novel toxicity during degradation assay.

  20. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.

    PubMed

    Vitale-Brovarone, Chiara; Ciapetti, Gabriela; Leonardi, Elisa; Baldini, Nicola; Bretcanu, Oana; Verné, Enrica; Baino, Francesco

    2011-11-01

    Highly porous bioresorbable glass-ceramic scaffolds were prepared via sponge replication method by using an open-cell polyurethane foam as a template and phosphate-based glass powders. The glass, belonging to the P2O5-SiO2-CaO-MgO-Na2O-K2O system, was synthesized by a melting-quenching route, ground, and sieved to obtain powders with a grain size of less than 30 μm. A slurry containing glass powders, polyvinyl alcohol, and water was prepared to coat the polymeric template. The removal of the polymer and the sintering of the glass powders were performed by a thermal treatment, in order to obtain an inorganic replica of the template structure. The structure and properties of the scaffold were investigated from structural, morphological, and mechanical viewpoints by means of X-ray diffraction, scanning electron microscopy, density measurements, image analysis, and compressive tests. The scaffolds exhibited a trabecular architecture that closely mimics the structure of a natural spongy bone. The solubility of the porous structures was assessed by soaking the samples in acellular simulated body fluid (SBF) and Tris-HCl for different time frames and then by assessing the scaffold weight loss. As far as the test in SBF is concerned, the nucleation of hydroxyapatite on the scaffold trabeculae demonstrates the bioactivity of the material. Biological tests were carried out using human bone marrow stromal cells to test the osteoconductivity of the material. The cells adhered to the scaffold struts and were metabolically active; it was found that cell differentiation over proliferation occurred. Therefore, the produced scaffolds, being biocompatible, bioactive, resorbable, and structurally similar to a spongy bone, can be proposed as interesting candidates for bone grafting.

  1. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing.

    PubMed

    Klammert, U; Reuther, T; Jahn, C; Kraski, B; Kübler, A C; Gbureck, U

    2009-02-01

    This study investigated the cytocompatibility of low-temperature direct 3-D printed calcium phosphate scaffolds in vitro. The fabrication of the scaffolds was performed with a commercial 3-D powder printing system. Diluted phosphoric acid was printed into tricalcium phosphate powder, leading to the formation of dicalcium phosphate dihydrate (brushite). Hydrothermal conversion of the brushite matrices led to the formation of dicalcium phosphate anhydrous (monetite). The biocompatibility was investigated using the osteoblastic cell line MC3T3-E1. Cell viability and the expression of alkaline phosphatase served as parameters. The culture medium was analyzed for pH value, concentration of free calcium and phosphate ions and osteocalcin. Both types of scaffolds showed a considerable increase of cell proliferation and viability; the monetite matrices were a little inferior compared with the brushite ones. The activity of alkaline phosphatase showed a similar pattern. Optical and electron microscopy revealed an obvious cell growth on the surface of both materials. Analysis of the culture medium showed minor alterations of pH value within the physiological range. The concentrations of free calcium and phosphate ions were obviously different among brushite and monetite cultures, due to their different solubility. The content of osteocalcin of the culture medium was reduced by the printed scaffolds due to adsorption. We conclude that the powder printed brushite and monetite matrices have a suitable biocompatibility for their use as cell culture scaffolds. Both materials enable osteoblastic cells in vitro to proliferate and differentiate due to the expression of typical osteoblastic markers.

  2. Direct-Write Assembly of Calcium Phosphate Scaffolds Using a Water-Based Hydrogel

    PubMed Central

    Franco, J.; Hunger, P.; Launey, M.E.; Tomsia, A.P.; Saiz, E.

    2009-01-01

    The development of materials to support bone regeneration requires flexible fabrication technologies able to tailor chemistry and architecture for specific applications. In this work, we describe the preparation of ceramic-based inks for robotic-assis