NASA Astrophysics Data System (ADS)
Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu
2011-06-01
In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.
Enteric-coated mycophenolate sodium experience in liver transplant patients.
Cantisani, G P C; Zanotelli, M L; Gleisner, A L M; de Mello Brandão, A; Marroni, C A
2006-04-01
Mycophenolate sodium (EC-MPS) has been shown to be as effective and as safe as mycophenolate mofetil (MMF) in renal transplant patients. Nevertheless, compared to MMF its use in liver transplant patients has been limited. The purpose of this study was to analyze the efficacy of EC-MPS as a primary immunosuppressant or as a replacement for MMF in liver transplant patients. Ninety among 470 liver transplant recipients were receiving or had added an antimetabolite to their immunosuppressant therapy. The most common reason for this change was renal dysfunction (47.8%) or diabetes (32.2%). EC-MPS was started at a median of 30 months after liver transplantation. The mean administered daily dose was 720 mg/d. At least one gastrointestinal symptom was reported by 25 patients. Abdominal pain (16.6%) and diarrhea (14.5%) were the most frequent. EC-MPS had to be discontinued in two patients, while six others required dose reduction to resolve the symptoms. Hematological adverse events were infrequent: three patients had leukopenia and one, anemia, all of which responded to dosage reduction. There was a creatinine reduction within 6 months of drug commencement and maintenance of the lower creatinine levels at 1 year among patients who began EC-MPS for renal dysfunction. Serum low-density lipoprotein cholesterol and triglyceride levels were significantly lower among patients on EC-MPS than on MMF. In conclusion, EC-MPS appears to have a similar efficacy and safety profile as MMF in liver transplant patients. Hematological and gastrointestinal adverse events were infrequent; seldom had the drug to be discontinued.
2010-03-23
Micron 41 (2010) 615–621 619 Fig. 4 . XPS binding energy (eV) versus sputtering time (s) results for the Ti 2p peaks for the titanium samples: (a...improved the IQ values. 4 . Conclusions The electrochemical–mechanical polishing system (ECMP) removed material from titanium and nickel alloys at a...March 2014 4 . TITLE AND SUBTITLE NOVEL AUTOMATIC ELECTROCHEMICAL-MECHANICAL POLISHING (ECMP) OF METALS FOR SCANNING ELECTRON MICROSCOPY
Pape, Lars; Ahlenstiel, Thurid; Kreuzer, Martin; Ehrich, Jochen H H
2008-09-01
It has been shown in adult kidney transplant recipients that a conversion from MMF to EC-MPS significantly reduced the GI related symptom burden. No such study exists on children with GI problems while receiving MMF therapy. Ten paediatric kidney transplant recipients (mean age 14.5 yr, s.d. 4.5) receiving triple immunosuppression (Cyclosporin A or Tacrolimus + MMF + Prednisolone) with severe GI symptoms were converted to an equimolar dose of EC-MPS. The GSRS was completed before and at four wk after the switch, and GFR was determined for a mean period of six months. Values were compared by the paired t-test. Mean GSRS improved significantly after the switch to EC-MPS in all but one patient, from 2.1 (s.d. 0.9) to 1.1 (s.d. 0.6). The differences could be found in all four subscales. Graft function did not change after conversion to EC-MPS. In children with moderate or severe GI symptoms while receiving MMF, conversion to EC-MPS led to significantly reduced GI symptoms.
Segovia, Javier; Gerosa, Gino; Almenar, Luis; Livi, Ugolino; Viganò, Mario; Arizón, Jose Maria; Yonan, Nizar; Di Salvo, Thomas G; Renlund, Dale G; Kobashigawa, Jon A
2008-01-01
Mycophenolic acid (MPA) dose reduction is associated with increased risk of rejection and graft loss in renal transplantation. This analysis investigated the impact of MPA dose changes with enteric-coated mycophenolate sodium (EC-MPS) or mycophenolate mofetil (MMF) in de novo heart transplant recipients. In a 12-month, single-blind trial, 154 patients (EC-MPS, 78; MMF, 76) were randomized to either EC-MPS (1080 mg bid) or MMF (1500 mg bid) in combination with cyclosporine and steroids. The primary efficacy variable was the incidence of treatment failure, comprising a composite of biopsy-proven (BPAR) and treated acute rejection, graft loss or death. Significantly fewer patients receiving EC-MPS required > or =2 dose reductions than patients on MMF (26.9% vs. 42.1% of patients, p = 0.048). Accordingly, the average daily dose of EC-MPS as a percentage of the recommended dose was significantly higher than for MMF (88.4% vs. 79.0%, p = 0.016). Among patients requiring > or =1 dose reduction, the incidence of treated BPAR grade > or =3A was significantly lower with EC-MPS compared with MMF (23.4% vs. 44.0%, p = 0.032). These data suggest that EC-MPS-treated heart transplant patients are less likely to require multiple dose reductions than those on MMF which may be associated with a significantly lower risk of treated BPAR > or =3A.
Rose, Jonathan A; Wanner, Nicholas; Cheong, Hoi I; Queisser, Kimberly; Barrett, Patrick; Park, Margaret; Hite, Corrine; Naga Prasad, Sathyamangla V; Erzurum, Serpil; Asosingh, Kewal
2016-01-01
Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR) dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs) are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC) and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE) in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.
Rose, Jonathan A.; Wanner, Nicholas; Cheong, Hoi I.; Queisser, Kimberly; Barrett, Patrick; Park, Margaret; Hite, Corrine; Naga Prasad, Sathyamangla V.; Erzurum, Serpil; Asosingh, Kewal
2016-01-01
Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR) dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs) are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC) and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE) in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH. PMID:27270458
Azar, Kristen M J; Koliwad, Suneil; Poon, Tak; Xiao, Lan; Lv, Nan; Griggs, Robert; Ma, Jun
2016-05-27
Effective lifestyle interventions targeting high-risk adults that are both practical for use in ambulatory care settings and scalable at a population management level are needed. Our aim was to examine the potential effectiveness, feasibility, and acceptability of delivering an evidence-based Electronic Cardio-Metabolic Program (eCMP) for improving health-related quality of life, improving health behaviors, and reducing cardiometabolic risk factors in ambulatory care high-risk adults. We conducted a randomized, wait-list controlled trial with 74 adults aged ≥18 years recruited from a large multispecialty health care organization. Inclusion criteria were (1) BMI ≥35 kg/m(2) and prediabetes, previous gestational diabetes and/or metabolic syndrome, or (2) BMI ≥30 kg/m(2) and type 2 diabetes and/or cardiovascular disease. Participants had a mean age of 59.7 years (SD 11.2), BMI 37.1 kg/m(2) (SD 5.4) and were 59.5% female, 82.4% white. Participants were randomized to participate in eCMP immediately (n=37) or 3 months later (n=37). eCMP is a 6-month program utilizing video conferencing, online tools, and pre-recorded didactic videos to deliver evidence-based curricula. Blinded outcome assessments were conducted at 3 and 6 months postbaseline. Data were collected and analyzed between 2014 and 2015. The primary outcome was health-related quality of life. Secondary outcomes included biometric cardiometabolic risk factors (eg, body weight), self-reported diet and physical activity, mental health status, retention, session attendance, and participant satisfaction. Change in quality of life was not significant in both immediate and delayed participants. Both groups significantly lost weight and reduced waist circumference at 6 months, with some cardiometabolic factors trending accordingly. Significant reduction in self-reported anxiety and perceived stress was seen in the immediate intervention group at 6 months. Retention rate was 93% at 3 months and 86% at 6 months post-baseline. Overall eCMP attendance was high with 59.5-83.8% of immediate and delayed intervention participants attending 50% of the virtual stress management and behavioral lifestyle sessions and 37.8-62.2% attending at least 4 out of 7 in-person physical activity sessions. The intervention received high ratings for satisfaction. The technology-assisted eCMP is a feasible and well-accepted intervention and may significantly decrease cardiometabolic risk among high-risk individuals. Clinicaltrials.gov NCT02246400; https://clinicaltrials.gov/ct2/show/NCT02246400 (Archived by WebCite at http://www.webcitation.org/6h6mWWokP).
Koliwad, Suneil; Poon, Tak; Xiao, Lan; Lv, Nan; Griggs, Robert; Ma, Jun
2016-01-01
Background Effective lifestyle interventions targeting high-risk adults that are both practical for use in ambulatory care settings and scalable at a population management level are needed. Objective Our aim was to examine the potential effectiveness, feasibility, and acceptability of delivering an evidence-based Electronic Cardio-Metabolic Program (eCMP) for improving health-related quality of life, improving health behaviors, and reducing cardiometabolic risk factors in ambulatory care high-risk adults. Methods We conducted a randomized, wait-list controlled trial with 74 adults aged ≥18 years recruited from a large multispecialty health care organization. Inclusion criteria were (1) BMI ≥35 kg/m2 and prediabetes, previous gestational diabetes and/or metabolic syndrome, or (2) BMI ≥30 kg/m2 and type 2 diabetes and/or cardiovascular disease. Participants had a mean age of 59.7 years (SD 11.2), BMI 37.1 kg/m2 (SD 5.4) and were 59.5% female, 82.4% white. Participants were randomized to participate in eCMP immediately (n=37) or 3 months later (n=37). eCMP is a 6-month program utilizing video conferencing, online tools, and pre-recorded didactic videos to deliver evidence-based curricula. Blinded outcome assessments were conducted at 3 and 6 months postbaseline. Data were collected and analyzed between 2014 and 2015. The primary outcome was health-related quality of life. Secondary outcomes included biometric cardiometabolic risk factors (eg, body weight), self-reported diet and physical activity, mental health status, retention, session attendance, and participant satisfaction. Results Change in quality of life was not significant in both immediate and delayed participants. Both groups significantly lost weight and reduced waist circumference at 6 months, with some cardiometabolic factors trending accordingly. Significant reduction in self-reported anxiety and perceived stress was seen in the immediate intervention group at 6 months. Retention rate was 93% at 3 months and 86% at 6 months post-baseline. Overall eCMP attendance was high with 59.5-83.8% of immediate and delayed intervention participants attending 50% of the virtual stress management and behavioral lifestyle sessions and 37.8-62.2% attending at least 4 out of 7 in-person physical activity sessions. The intervention received high ratings for satisfaction. Conclusions The technology-assisted eCMP is a feasible and well-accepted intervention and may significantly decrease cardiometabolic risk among high-risk individuals. Trial Registration Clinicaltrials.gov NCT02246400; https://clinicaltrials.gov/ct2/show/NCT02246400 (Archived by WebCite at http://www.webcitation.org/6h6mWWokP) PMID:27234480
Head rice rate measurement based on concave point matching
Yao, Yuan; Wu, Wei; Yang, Tianle; Liu, Tao; Chen, Wen; Chen, Chen; Li, Rui; Zhou, Tong; Sun, Chengming; Zhou, Yue; Li, Xinlu
2017-01-01
Head rice rate is an important factor affecting rice quality. In this study, an inflection point detection-based technology was applied to measure the head rice rate by combining a vibrator and a conveyor belt for bulk grain image acquisition. The edge center mode proportion method (ECMP) was applied for concave points matching in which concave matching and separation was performed with collaborative constraint conditions followed by rice length calculation with a minimum enclosing rectangle (MER) to identify the head rice. Finally, the head rice rate was calculated using the sum area of head rice to the overall coverage of rice. Results showed that bulk grain image acquisition can be realized with test equipment, and the accuracy rate of separation of both indica rice and japonica rice exceeded 95%. An increase in the number of rice did not significantly affect ECMP and MER. High accuracy can be ensured with MER to calculate head rice rate by narrowing down its relative error between real values less than 3%. The test results show that the method is reliable as a reference for head rice rate calculation studies. PMID:28128315
Fleming, Denise H; Mathew, Binu S; Prasanna, Samuel; Annapandian, Vellaichamy M; John, George T
2011-04-01
Enteric-coated mycophenolate sodium (EC-MPS) is widely used in renal transplantation. With a delayed absorption profile, it has not been possible to develop limited sampling strategies to estimate area under the curve (mycophenolic acid [MPA] AUC₀₋₁₂), which have limited time points and are completed in 2 hours. We developed and validated simplified strategies to estimate MPA AUC₀₋₁₂ in an Indian renal transplant population prescribed EC-MPS together with prednisolone and tacrolimus. Intensive pharmacokinetic sampling (17 samples each) was performed in 18 patients to measure MPA AUC₀₋₁₂. The profiles at 1 month were used to develop the simplified strategies and those at 5.5 months used for validation. We followed two approaches. In one, the AUC was calculated using the trapezoidal rule with fewer time points followed by an extrapolation. In the second approach, by stepwise multiple regression analysis, models with different time points were identified and linear regression analysis performed. Using the trapezoidal rule, two equations were developed with six time points and sampling to 6 or 8 hours (8hrAUC[₀₋₁₂exp]) after the EC-MPS dose. On validation, the 8hrAUC(₀₋₁₂exp) compared with total measured AUC₀₋₁₂ had a coefficient of correlation (r²) of 0.872 with a bias and precision (95% confidence interval) of 0.54% (-6.07-7.15) and 9.73% (5.37-14.09), respectively. Second, limited sampling strategies were developed with four, five, six, seven, and eight time points and completion within 2 hours, 4 hours, 6 hours, and 8 hours after the EC-MPS dose. On validation, six, seven, and eight time point equations, all with sampling to 8 hours, had an acceptable r with the total measured MPA AUC₀₋₁₂ (0.817-0.927). In the six, seven, and eight time points, the bias (95% confidence interval) was 3.00% (-4.59 to 10.59), 0.29% (-5.4 to 5.97), and -0.72% (-5.34 to 3.89) and the precision (95% confidence interval) was 10.59% (5.06-16.13), 8.33% (4.55-12.1), and 6.92% (3.94-9.90), respectively. Of the eight simplified approaches, inclusion of seven or eight time points improved the accuracy of the predicted AUC compared with the actual and can be advocated based on the priority of the user.
Learn how to do business with EPA's Clean Air Markets, including registering to use the Emissions Collection and Monitoring Plan System (ECMPS), the CAMD Business System (CBS), and learn how to submit monitored emissions data.
Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-31
The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be usedmore » by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-01
The Ecological Monitoring Program (EcMP) was designed to investigate the long-term ecological trends in terrestrial and aquatic ecosystems at the US Department of energy`s (DOE`s) Rocky Flats Environmental Technology Site (Site) (DOE 1993). Field sampling was conducted during 1993, 1994, and 1995, until the program was terminated in late 1995. This report presents the terrestrial vegetation data that were gathered by the EcMP. The site is located on the Colorado Piedmont, east of the Front Range, between Boulder and Golden, approximately 25 km (16 miles) northwest of Denver. The topography and proximity of the Site to the mountain front resultmore » in an interesting mixture of prairie and mountain plant species. The Site is one of the few large, relatively undisturbed areas of its kind that remains along the Colorado Piedmont. Until 1989, the primary mission of the Site was the production of nuclear weapons components (DOE 1993). After production ceased, Site personnel shifted their focus to cleanup and closure.« less
Rajmil, L; Plasencia, A; Borrell, C
1993-11-01
The objective of this study was to verify the reliability of the classifications of perinatal mortality causes. An independent observer coded the cases of perinatal death (n = 152) collected in the Encuesta Confidencial de Mortalidad Perinatal de Barcelona (ECMP, Confidential Perinatal Mortality Inquiry of Barcelona), by using both the Aberdeen classification system (regarding obstetric factors) and the Wigglesworth classification system (according to the initial pathological cause), with the same information used previously by the ECMP Commission. For the Aberdeen classification, the observed concordance index (Po) was 86% and the Kappa coefficient (K) 0.77 (95% CI: 0.68-0.86). For the Wigglesworth classification, the figures were 89% and 0.82 (95% CI: 0.74-0.90), respectively. The disagreement was mainly due to differences in the interpretation of the sequence of death, minimal information available in order to classify the cause of death, and misunderstanding of the existing information. To a lesser extent, the disagreement was caused by a failure to comply with the rules laid down for classifications. The assessment of the causes of death was not significantly influenced by birth weight, gestational age, time of death or the presence of necropsy. These results support the use of classifications of perinatal mortality causes in the context of confidential inquiries.
Electro-Chemical-Mechanical, Low Stress, Automatic Polishing (ECMP) Device (Preprint)
2010-01-01
into models that predict mechanical response [ 4 - 6 ]. In addition, surface preparation steps are critical to the imaging of ceramic and hybrid...2p 3/2 peak in the spectral data found in Figure 4 . The Ti 2p 3/2 peak is initially observed at 458.4 eV indicating that titanium is present in its...above 6 acceptable limits for both (average IQ values were higher than 2000). For the titanium samples, the samples processed without applied
Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*
Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert
2011-01-01
Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106
Electrochemical investigations of advanced materials for microelectronic and energy storage devices
NASA Astrophysics Data System (ADS)
Goonetilleke, Pubudu Chaminda
A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response analysis (employed to study slow reactions such as solid state diffusion of Li). The designs of both the experimental equipment and the control variables change for studying the different aqueous and non-aqueous systems. The protocols for data analysis also change depending on the systems. In addition, it often becomes necessary to combine different aspects of the different experimental methods to obtain the necessary information about the system(s) under study. The experimental strategies and the associated theoretical considerations for developing these strategies are discussed in appropriate contexts of this work. CNT electrodes in combination with IL electrolytes are potentially important for electrochemical super-capacitors. We have carried out electrochemical investigation of such a system involving a paper-electrode of multiwall CNT in the IL of 1-Ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO4). Our study concentrated on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems. (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems have been discussed, focusing in particular, on the effects of faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results have been analyzed using an electrode equivalent circuit model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces. Chemical-mechanical planarization (CMP) of copper has now become an integral part of modern semiconductor fabrication technology. Recently, electrochemical-mechanical planarization (ECMP) has emerged as a possible extension of CMP, where through voltage-activated removal of Cu surface layers, one can substantially minimize the down-force necessary for mechanical polishing However, the detailed electrochemical factors that are central to designing efficient abrasive-free electrolytes for ECMP are not clearly understood at the present time. The present work has addressed this issue by studying the relative electrochemical effects of selected different chemical additives. Controlling the surface reactions (that is controlling the voltage-induced material removal) in ECMP requires a carefully designed combination of a number of electrochemical input variables (voltage activation program and electrolyte composition). We have studied the main experimental factors for designing these parameters, using triangular and rectangular-voltage-pulse modulated dissolution of Cu in electrolytes of different chemical compositions. Applications of rechargeable Li ion batteries have considerably expanded in recent years. As a result, research activities involving material-fabrication and characterization for these batteries also have expanded during this period. The importance of studying these specific materials lies in the fact that the cathode plays a major role in its contribution to the battery performance LiMn2O4 cathodes are being considered for next generation of Li ion batteries. The current work focuses on a specific problem commonly associated with Li cathode systems, namely surface film formation on the cathodes. LiMn2O4 cathodes tend to develop native surface films in carbonate electrolytes. By combining D.C. SSCV with A.C. EIS, we have studied how these films would react with an electrolyte of LiBF4 in ethylene and diethyl carbonates. We have demonstrated that such reactions could affect the measurement of the characteristic electrochemical parameters of the cathode, namely the intercalation capacitance, initial capacity-loss, coulometric titration profiles, and the solid state diffusion coefficient of Li+. A generalized framework for data analysis, based on the considerations of electrode equivalent circuits, has been used to combine the results of the D.C. and A.C. measurements.
Staatz, Christine E; Tett, Susan E
2011-12-01
This review seeks to summarize the available data about Bayesian estimation of area under the plasma concentration-time curve (AUC) and dosage prediction for mycophenolic acid (MPA) and evaluate whether sufficient evidence is available for routine use of Bayesian dosage prediction in clinical practice. A literature search identified 14 studies that assessed the predictive performance of maximum a posteriori Bayesian estimation of MPA AUC and one report that retrospectively evaluated how closely dosage recommendations based on Bayesian forecasting achieved targeted MPA exposure. Studies to date have mostly been undertaken in renal transplant recipients, with limited investigation in patients treated with MPA for autoimmune disease or haematopoietic stem cell transplantation. All of these studies have involved use of the mycophenolate mofetil (MMF) formulation of MPA, rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation. Bias associated with estimation of MPA AUC using Bayesian forecasting was generally less than 10%. However some difficulties with imprecision was evident, with values ranging from 4% to 34% (based on estimation involving two or more concentration measurements). Evaluation of whether MPA dosing decisions based on Bayesian forecasting (by the free website service https://pharmaco.chu-limoges.fr) achieved target drug exposure has only been undertaken once. When MMF dosage recommendations were applied by clinicians, a higher proportion (72-80%) of subsequent estimated MPA AUC values were within the 30-60 mg · h/L target range, compared with when dosage recommendations were not followed (only 39-57% within target range). Such findings provide evidence that Bayesian dosage prediction is clinically useful for achieving target MPA AUC. This study, however, was retrospective and focussed only on adult renal transplant recipients. Furthermore, in this study, Bayesian-generated AUC estimations and dosage predictions were not compared with a later full measured AUC but rather with a further AUC estimate based on a second Bayesian analysis. This study also provided some evidence that a useful monitoring schedule for MPA AUC following adult renal transplant would be every 2 weeks during the first month post-transplant, every 1-3 months between months 1 and 12, and each year thereafter. It will be interesting to see further validations in different patient groups using the free website service. In summary, the predictive performance of Bayesian estimation of MPA, comparing estimated with measured AUC values, has been reported in several studies. However, the next step of predicting dosages based on these Bayesian-estimated AUCs, and prospectively determining how closely these predicted dosages give drug exposure matching targeted AUCs, remains largely unaddressed. Further prospective studies are required, particularly in non-renal transplant patients and with the EC-MPS formulation. Other important questions remain to be answered, such as: do Bayesian forecasting methods devised to date use the best population pharmacokinetic models or most accurate algorithms; are the methods simple to use for routine clinical practice; do the algorithms actually improve dosage estimations beyond empirical recommendations in all groups that receive MPA therapy; and, importantly, do the dosage predictions, when followed, improve patient health outcomes?
Tsai, Yihuan; Cutts, Josh; Kimura, Azuma; Varun, Divya; Brafman, David A
2015-07-01
Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery. Copyright © 2015. Published by Elsevier B.V.
Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young
2000-01-01
Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.
McCarty, Mark F; DiNicolantonio, James J
2014-01-01
Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1989-01-01
Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.
NASA Astrophysics Data System (ADS)
Sulyma, Christopher Michael
This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated here in detail using the electrochemical techniques of cyclic voltammetry, open circuit potential analysis, polarization resistance measurements, and Fourier transform impedance spectroscopy. The results suggest that forming structurally weak oxide layers on the CMP samples is a key to achieving the goal of chemically controlled CMP of Ta/TaN at low down-pressures. (Abstract shortened by UMI.)
Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Lahori, Altaf Hussain; Mahar, Amanullah
2016-09-01
The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hsiang, Hsing-I.; Fan, Liang-Fang; Hung, Jia-Jing
2018-02-01
The phosphoric acid addition effect on phosphate insulation coating microstructure was investigated in this study. The relationships between the phosphate insulation coating microstructure and temperature resistance, corrosion resistance and magnetic properties of iron-based soft magnetic composites (SMCs) were studied by using SEM, TEM/EDS and FTIR. It was observed that an iron phosphate/carbonyl iron core/shell structure is formed with carbonyl iron powder after phosphatizing treatment. The iron phosphate phase was identified as amorphous and its thickness increased from 30 nm to 60 nm as the phosphoric acid concentration was increased from 1 wt% to 2 wt%. When the phosphoric acid concentration was further increased to 5 wt%, the excess iron phosphate precipitates between the soft magnetic composite particles. The temperature and corrosion resistance and resistivity of the iron-based SMCs can be effectively improved using carbonyl iron powders after phosphatizing. The initial permeability of the iron-based SMCs decreased with increasing phosphoric acid concentration due to thicker insulation layer formation. However, the imaginary permeability below the domain wall displacement resonance frequency decreased with increasing phosphoric acid concentration. The DC-bias superposition characteristic can also be improved by increasing the phosphoric acid concentration. Iron-based SMCs with superior temperature and corrosion resistance, initial permeability, magnetic loss and DC-bias superposition characteristics can be obtained by controlling the phosphoric acid concentration during phosphatizing to adjust the iron phosphate precipitate thickness on the iron powder surface.
NASA Astrophysics Data System (ADS)
Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing
2018-03-01
It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.
Remnants of an Ancient Metabolism without Phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldford, Joshua E.; Hartman, Hyman; Smith, Temple F.
Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecksmore » are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a ‘‘metabolic fossil’’ of an early phosphate-free nonenzymatic biochemistry. Thus, our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.« less
Remnants of an Ancient Metabolism without Phosphate
Goldford, Joshua E.; Hartman, Hyman; Smith, Temple F.; ...
2017-03-09
Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecksmore » are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a ‘‘metabolic fossil’’ of an early phosphate-free nonenzymatic biochemistry. Thus, our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.« less
Degradation processes of reinforced concretes by combined sulfate–phosphate attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secco, Michele, E-mail: michele.secco@unipd.it; Department of Civil, Environmental and Architectural Engineering; Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk
2015-02-15
A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associatedmore » with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.« less
Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL
2008-07-22
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.
Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir
2017-01-01
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.
NASA Astrophysics Data System (ADS)
Beasley, M. S.; Tylinski, M.; Chua, Y. Z.; Schick, C.; Ediger, M. D.
2018-05-01
In situ AC nanocalorimetry was used to characterize vapor-deposited glasses of three phosphates with increasing lengths of alkyl side chains: trimethyl phosphate, triethyl phosphate, and tributyl phosphate. The as-deposited glasses were assessed in terms of their reversing heat capacity, onset temperature, and isothermal transformation time. Glasses with a range of kinetic stabilities were prepared, including kinetically stable glasses, as indicated by high onset temperatures and long transformation times. Trimethyl phosphate forms kinetically stable glasses, similar to many other organic molecules, while triethyl phosphate and tributyl phosphate do not. Triethyl phosphate and tributyl phosphate present the first examples of non-hydrogen bonding systems that are unable to form stable glasses via vapor deposition at 0.2 nm/s. Based on experiments utilizing different deposition rates, we conclude that triethyl phosphate and tributyl phosphate lack the surface mobility required for stable glass formation. This may be related to their high enthalpies of vaporization and the internal structure of the liquid state.
The international phosphate resource data base; development and maintenance
Bridges, Nancy J.
1983-01-01
The IPRDB (International Phosphate Resource Data Base) was developed to provide a single computerized source of geologic information about phosphate deposits worldwide. It is expected that this data base will encourage more thorough scientific analyses of phosphate deposits and assessments of undiscovered phosphate resources, and that methods of data collection and storage will be streamlined. Because the database was intended to serve as a repository for diverse and detailed data, a large amount of the early research effort was devoted to the design and development of the system. To date (1982), the file remains incomplete. All development work and file maintenance work on IPRDB was suspended as of October 1, 1982; this paper is intended to document the steps taken up to that date. The computer programs listed in the appendices were written specifically for the IPRDB phosbib file and are of limited future use.
Construction Material And Method
Wagh, Arun S.; Antink, Allison L.
2006-02-21
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
Method of binding structural material
Wagh, Arun S.; Antink, Allison L.
2007-12-25
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.
2017-02-01
The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.
NASA Astrophysics Data System (ADS)
Yuniarti, Anni; Arifin, Mahfud; Sofyan, Emma Trinurasi; Natalie, Betty; Sudirja, Rija; Dahliani, Dewi
2018-02-01
Andisol, soil orders which covers an upland area dominantly. The aim of this research is to know the effect between the ameliorant of Sinabung volcanic ashes with the ameliorant of rock phosphatenanoparticle towards CEC and base saturation exchange (K, Na, Ca, Mg) and the base saturation on Ciater's Andisols, West Java. A randomized complete block design (RCBD) factorial with two factors was used in this research. The first factor is the volcanic ash and the second factor is rock phosphate which consists of four levels each amount of 0%, 2.5%, 5%, 7.5% with three replications. The result showed that there was no interaction between volcanic ash and rock phosphate nanoparticle formed in first month and fourth month towards the improvement of CEC and saturation base exchange rate unless magnesium cation exchange increased in fourth month. There was independent effect of volcanic ash formed nanoparticles towards base saturation exchange increased for 5% dose. There was independent effect of rock phosphate formed nanoparticles towards base saturation exchange and increased for 5% dose. The dose combination of volcanic ashes 7.5% with phosphate rock, 5% increased the base saturation in the first month incubation.
Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming
2015-03-02
In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH. Copyright © 2014 Elsevier B.V. All rights reserved.
Glorieux, Seline; Goemaere, Olivier; Steen, Liselot; Fraeye, Ilse
2017-09-01
Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality.
2017-01-01
Summary Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality. PMID:29089852
Lithium batteries using poly(ethylene oxide)-based non-aqueous electrolytes
Chen, Zonghai; Amine, Khalil
2015-09-08
Lithium-air cells employing poly(ethyleneoxide) phosphate-based electrolytes may be prepared and exhibit improved charge carrying capacity. Such PEO phosphates generally have the formulas IIa, IIb, IIc, where: ##STR00001##
Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don
2013-10-01
The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.
Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank
2016-01-01
Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275
NASA Astrophysics Data System (ADS)
Possenti, Elena; Colombo, Chiara; Conti, Claudia; Gigli, Lara; Merlini, Marco; Plaisier, Jasper Rikkert; Realini, Marco; Gatta, G. Diego
2018-05-01
Diammonium hydrogen phosphate (DAP)-based consolidating treatments react with carbonatic stones and form calcium phosphates phases, whose composition depends on the availability of free calcium ions. In this work, an innovative non-destructive approach based on grazing incidence X-ray diffraction (GIXRD) with synchrotron radiation (SR) is used to investigate DAP-treated Carrara marble specimens and to study the influence of the substrate composition on the crystallization of calcium phosphate phases. The outcomes indicate that the presence of compositional micro-heterogeneity of Carrara marble favours the formation of specific phases. Dicalcium phosphate dihydrate, a calcium phosphate with a low Ca/P molar ratio, is formed on carbonatic phases with a low Ca amount, such as dolomite grains and Mg-containing veins. Furthermore, this study highlights the potentialities of SR-GIXRD as a powerful non-destructive tool for the diagnostic of Cultural Heritage objects since it allows investigating the conservation history of stone materials and their interaction with the environment.
Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.
Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P
2015-07-01
This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses are biocompatible in a rat model. The findings warrant further investigation and will have important clinical implications in the future treatment and management of periodontitis. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Locatelli, Francesco; Del Vecchio, Lucia; Violo, Leano; Pontoriero, Giuseppe
2014-05-01
Hyperphosphatemia is common in the late stages of chronic kidney disease (CKD) and is associated with elevated parathormone levels, abnormal bone mineralization, extraosseous calcification and increased risk of cardiovascular events and death. Several classes of oral phosphate binders are available to help control phosphorus levels. Although effective at lowering serum phosphorus, they all have safety issues that need to be considered when selecting which one to use. This paper reviews the use of phosphate binders in patients with CKD on dialysis, with a focus on safety and tolerability. In addition to the more established agents, a new resin-based phosphate binder, colestilan, is discussed. Optimal phosphate control is still an unmet need in CKD. Nonetheless, we now have an extending range of phosphate binders available. Aluminium has potentially serious toxic risks. Calcium-based binders are still very useful but can lead to hypercalcemia and/or positive calcium balance and cardiovascular calcification. No long-term data are available for the new calcium acetate/magnesium combination product. Lanthanum is an effective phosphate binder, but there is insufficient evidence about possible long-term effects of tissue deposition. The resin-based binders, colestilan and sevelamer, appear to have profiles that would lead to less vascular calcification, and the main adverse events seen with these agents are gastrointestinal effects.
The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride.
Pawluk, K; Booth, S E; Coleman, N J; Nicholson, J W
2008-09-01
The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-betaq(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.
Synthesis of cytidine ribonucleotides by stepwise assembly of the heterocycle on a sugar phosphate.
Ingar, Abdul-Aziz; Luke, Richard W A; Hayter, Barry R; Sutherland, John D
2003-06-06
Although various syntheses of the nucleic acid bases exist and ribose is a product of the formose reaction, no prebiotically plausible methods for attaching pyrimidine bases to ribose to give nucleosides have been described. Kinetic and thermodynamic factors are thought to mitigate against such condensation reactions in aqueous solution. This inability to produce pyrimidine nucleosides and hence nucleotides is a major stumbling block of the "RNA World" hypothesis and has led to suggestions of alternative nucleic acids as evolutionary precursors to RNA. Here, we show that a process in which the base is assembled in stages on a sugar phosphate can produce cytidine nucleotides. The sequential action of cyanamide and cyanoacetylene on arabinose-3-phosphate produces cytidine-2',3'-cyclophosphate and arabinocytidine-3'-phosphate.
2005-01-01
demongtrated the synthesis of degradable scaffolds from PLAGA /calcium phosphate composite microspheres in which an amorphous calcium phosphate is...EXPERIMENTAL DETAILS Scaffold Preparation Scaffolds were prepared as described in detail previously [3]. Briefly, PLAGA /calcium phosphate composite...culture polystyrene (TCPS) 2- pure PLAGA microspheres 64 3- composite microsphere matrices with a low polymer/ceramic ratio 4- composite microsphere
Ezawa, Tatsuhiro; Saito, Katsuharu
2018-04-27
Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Ma, Jun; Marignier, Jean-Louis; Pernot, Pascal; Houée-Levin, Chantal; Kumar, Anil; Sevilla, Michael D; Adhikary, Amitava; Mostafavi, Mehran
2018-05-30
In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.
Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.
Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T
2016-05-05
Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.
Phosphate adsorption using modified iron oxide-based sorbents
Phosphate RemovalThis dataset is associated with the following publication:Lalley , J., C. Han , G. RamMohan , T. Speth , J. Garland , M. Nadagouda , and D. Dionysiou. Phosphate Removal using Modified Bayoxide®E33 Adsorption Media. WATER RESEARCH. Elsevier Science Ltd, New York, NY, USA, issue}: 96-107, (2015).
Aljebab, Fahad; Alanazi, Mofadhi; Choonara, Imti; Conroy, Sharon
2018-01-01
Short-course oral corticosteroids are routinely used to treat acute asthma and croup. We evaluated their tolerability and palatability in Saudi Arabian (SA) and UK children. Prospective observational/interview study (3 months in each country). Palatability was evaluated using a 5-point facial Hedonicscale and tolerability by direct questioning of patient/parents. In SA, of 122 patients (2-10 years) recruited, 52 received prednisolone base tablets, 37 prednisolone sodium phosphate syrup and 33 received dexamethasone elixir. In the UK, of 133 patients (2-16 years), 38 received prednisolone base tablets (mainly crushed and dispersed), 42 prednisolone sodium phosphate soluble tablets and 53 received dexamethasone sodium phosphate oral solution.In both countries, dexamethasone had the highest palatability scores (SA mean: 1.97; UK mean: 3) and prednisolone base tablets had the lowest (SA mean: 1.12; UK mean: 1.39). Palatability scores improved for all formulations of prednisolone with each subsequent daily dose.In SA, prednisolone base tablets were associated with more nausea (24vs7 patients) and vomiting (5vs0 patients) than sodium phosphate syrup (p=0.008 and p=0.073, respectively). In the UK, vomiting occurred more frequently with prednisolone base (8 patients) than sodium phosphate soluble tablets (2 patients) (p=0.041).In both centres, dexamethasone was associated with less side effects. Vomiting (1vs0 patients), nausea (7vs3 patients) and abdominal pain (10vs8 patients) occurred more with dexamethasone sodium phosphate solution than dexamethasone elixir. Dexamethasone sodium phosphate solution was the most palatable preparation. Prednisolone base tablets were rated least palatable and were least well tolerated. Palatability scores improved with each dose taken. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
De Nola, G; Kibby, J; Mazurek, W
2008-07-25
Tricresyl phosphate (TCP) is used as an anti-wear additive in aircraft turbine engine oil. Concerns about its toxicity are largely based on the tri-o-cresyl phosphate isomer content. However, the presence of other and more toxic isomers has been previously suggested. In this work, the structural isomers of TCP have been determined by two methods (experimental and semi-theoretical). First, the TCP isomers were separated by gas chromatography (GC) and identified by mass spectrometry (MS). Second, after base cleavage of TCP, GC was used to quantify the cresol precursors. These results were used to calculate the TCP isomer distribution based on the assumption of a statistical distribution of the TCP isomers. The results from the two determinations showed reasonable agreement for three of the four oils studied. The o-cresyl isomers were found to be present almost exclusively as the more toxic mono-o-cresyl isomers in the concentration range 13-150 mg/L. The ability to analyse for the mono-o-cresyl isomers allows the toxicity of TCP to be based on the latter isomers rather than on the less toxic tri-o-cresyl phosphate isomer.
Measuring phosphate with an inexpensive, easy to build photometer
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Weijs, Steven; Parlange, Marc
2013-04-01
In the context of a course for first year students to get hands-on experience with measuring in the environment, a photometric system for measuring phosphate concentration was developed. The system makes use of a single LED as a light source, a Si photodiode-based light to frequency conversion IC and an Arduino electronic card as acquisition system. The instrument is designed as an easy to assemble system and assembling and alignment is part of the exercise. The phosphate measurement is based on the formation of phosphor-molybdate complex which is eventually reduced to a blue component. The absorbance at 710 nm of a phosphate-containing fluid with added indicator is then measured and calibrated with a known solution. The initial test has demonstrated the ability of the instrument to detect phosphates in tap water. Other components as nitrates or chlorophyll could be easily measured with the instrument using LED emitting at the respective wavelengths.
Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review
Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir
2017-01-01
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848
Pumpable/injectable phosphate-bonded ceramics
Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young
2001-01-01
A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.
Partial reactions of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase
Barnett, J. E. G.; Rasheed, A.; Corina, D. L.
1973-01-01
After removal of tightly bound NAD+ by using charcoal, a preparation of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-3H]NADH to give [5-3H]-glucitol 6-phosphate and [5-3H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [3H]myoinositol 1-phosphate in the presence of [4-3H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH4 in the presence of NAD+. Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD+. There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15×105. PMID:4352864
The contribution of phosphate–phosphate repulsions to the free energy of DNA bending
Range, Kevin; Mayaan, Evelyn; Maher, L. J.; York, Darrin M.
2005-01-01
DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ∼30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle. PMID:15741179
Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang
2015-09-23
Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.
Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B
2013-10-01
There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. © 2013.
Fiber-enriched double-setting calcium phosphate bone cement.
dos Santos, Luís Alberto; Carrodéguas, Raúl Garcia; Boschi, Anselmo Ortega; Fonseca de Arruda, Antônio Celso
2003-05-01
Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. Copyright 2003 Wiley Periodicals, Inc.
Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana
2014-01-01
Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735
Use of phosphorus-sorbing materials to remove phosphate from greenhouse wastewater.
Dunets, C Siobhan; Zheng, Youbin; Dixon, Mike
2015-01-01
High phosphate content in wastewater is currently a major issue faced by the North American greenhouse industry. Phosphate-sorbing material filters could provide a means of removing phosphate from wastewater prior to discharge to the environment, but the characterization of economically viable materials and specific recommendations for greenhouse wastewater are not available. Batch and column experiments were used to examine the capacity of two calcium-based waste materials, basic oxygen furnace slag and a concrete waste material, to remove phosphate from greenhouse nutrient solution at varied operating conditions. Material columns operating at a hydraulic retention time (HRT) of 3 h consistently removed >99% of influent phosphate at a concentration of 60 mg/L over repeated applications and demonstrated high phosphate retention capacity (PRC) of 8.8 and 5.1 g P/kg for slag and concrete waste, respectively. Both materials also provided some removal of the micronutrients Fe, Mn and Zn. Increasing HRT to 24 h increased P retention capacity of slag to >10.5 g P/kg but did not improve retention by concrete waste. Decreasing influent phosphate concentration to 20 mg/L decreased PRC to 1.64 g P/kg in concrete waste columns, suggesting fluctuations in greenhouse wastewater composition will affect filter performance. The pH of filter effluent was closely correlated to final P concentration and can likely be used to monitor treatment effectiveness. This study demonstrated that calcium-based materials are promising for the removal of phosphate from greenhouse wastewater, and worthy of further research on scaling up the application to a full-sized system.
Okumura, M; Tong, L; Fujinaga, K; Seike, Y
2001-05-01
A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters has been developed for field analysis. This method is based on solid-phase extraction on a zirconium-loaded Sep-Pack Accell CM cartridge (Zr-SP) and is applicable to studies in which sampling is performed by use of a graduated syringe to prevent contamination and to ensure easy operation at sampling sites. The Zr-SP cartridge was prepared by passing 0.1 mol L(-1) zirconium solution through a Sep-Pak Accell CM cartridge, packed with cation exchange sorbent based on a silica matrix. The adsorption of phosphate and its desorption depend only on the pH of the solution. A water sample containing phosphate was adjusted to pH 2 and passed through the Zr-SP cartridge to collect it. The retained phosphate was quantitatively eluted with 0.5 mol L(-1) sodium hydroxide solution. The phosphate retained in the Zr-SP cartridge was stable for at least one month. The established preconcentration method was successfully applied to brackish lake waters to investigate seasonal changes in the distribution and behavior of phosphate in a brackish lake.
Yang, Yanqiu; He, Fupo; Ye, Jiandong
2016-12-01
In this study, phosphate-based glass (PG) was used as a sintering aid for freeze-cast porous biphasic calcium phosphate (BCP) ceramic, which was sintered under a lower temperature (1000°C). The phase composition, pore structure, compressive strength, and cytocompatibility of calcium phosphate composite ceramics (PG-BCP) were evaluated. The results indicated that PG additive reacted with calcium phosphate during the sintering process, forming β-Ca2P2O7; the ions of sodium and magnesium from PG partially substituted the calcium sites of β-calcium phosphate in BCP. The PG-BCP showed good cytocompatibility. The pore width of the porous PG-BCP ceramics was around 50μm, regardless of the amount of PG sintering aid. As the content of PG increased from 0wt.% to 15wt.%, the compressive strength of PG-BCP increased from 0.02 MP to 0.28MPa. When the PG additive was 17.5wt.%, the compressive strength of PG-BCP dramatically increased to 5.66MPa. Addition of 15wt.% PG was the critical point for the properties of PG-BCP. PG is considered as an effective sintering aid for freeze-cast porous bioceramics. Copyright © 2016 Elsevier B.V. All rights reserved.
Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber
NASA Astrophysics Data System (ADS)
Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel
2018-02-01
We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.
NASA Astrophysics Data System (ADS)
He, Yinhai; Lin, Hai; Dong, Yingbo; Wang, Liang
2017-12-01
The adsorbent, where lanthanum oxide was incorporated onto porous zeolite (La-Z), of preferable adsorption towards phosphate was prepared by hydrothermal synthesis. Based on pH effect results, La-Z would effectively sequestrate phosphate over wider pH range of 3.0-7.0, alkaline conditions were unfavorable for phosphate. The adsorption of phosphate was not significantly influenced by ionic strength and by coexisting anions of chloride, nitrate and sulfate but bicarbonate showed slightly greater negative effects, indicating La-Z possessed highly selectivity to phosphate. Adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by intra-particle diffusion. Equilibrium adsorption demonstrated that Langmuir model was more suitable than Freundlich model for description phosphate adsorption and the adsorption capacity was 17.2 mg P g-1, which exhibited 95% utilization of incorporated La. Over 95% phosphate was eliminated in real effluent treatment when the dose was 2 g L-1. The underlying mechanism for phosphate capture was probed with Zeta potential and X-ray photoelectron spectroscope analysis, and the formation of La-P inner-sphere complexation was testified to be the dominant pathway. All the results suggested that the porous zeolite-supported lanthanum oxide can serve as a promising adsorbent for phosphate removal in realistic application.
Phosphate-bonded ceramic–wood composites : R&D project overview and invitation to participate
Theodore L. Laufenberg; Matt Aro
2004-01-01
We are developing chemically bonded ceramic phosphate binders for the production of biofiber-based composite materials. These binders promise to have better processing and properties than some current cement and polymer resin binder systems. The ceramic phosphate binders (termed Ceramicrete), if used in place of cement and polymers, will significantly reduce the...
Efficient methods for enol phosphate synthesis using carbon-centred magnesium bases.
Kerr, William J; Lindsay, David M; Patel, Vipulkumar K; Rajamanickam, Muralikrishnan
2015-10-28
Efficient conversion of ketones into kinetic enol phosphates under mild and accessible conditions has been realised using the developed methods with di-tert-butylmagnesium and bismesitylmagnesium. Optimisation of the quench protocol resulted in high yields of enol phosphates from a range of cyclohexanones and aryl methyl ketones, with tolerance of a range of additional functional units.
Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes
NASA Astrophysics Data System (ADS)
Jeong, Seung-Young
1997-11-01
Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.
Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy.
Vogel, Christian; Adam, Christian; McNaughton, Don
2013-09-01
The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 μm(2) easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm(-1). Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm(-1), respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples.
Lead stabilization by phosphate amendments in soil impacted by paint residue.
Schwab, A P; Lewis, K; Banks, M K
2006-01-01
The addition of phosphate was evaluated for contaminant stabilization in soils impacted by lead paint residue. Soils sampled from 15 highway bridge sites in Indiana were screened based on residual lead concentrations from paint contamination. Two appropriate bridge sites were identified in Tippecanoe County, Indiana. Soluble phosphate was added to the soil at a mole ratio of 3:1 P:Pb. The efficacy of phosphate treatment was evaluated by a physiologically based extraction test (PBET), uptake of lead by sunflowers, and leaching of lead from soil columns. Sunflowers were established on both field sites, and the mean Pb concentration in the above-ground biomass indicated that the rate of uptake was similar to plants growing in uncontaminated soil. The second bioavailability assessment was the physiologically based extraction test, designed to evaluate heavy metal availability during ingestion. After 1 year at both sites, the addition of phosphate significantly reduced the concentrations of lead extracted by PBET, indicating that the lead in the amended soils had lower bioavailability than in the unamended soils. In the column study, the contaminated soil produced the highest mass of leached Pb, and the addition of P reduced the mass of Pb in the leachate to similar levels found in the uncontaminated soil. Overall, the addition of soluble phosphate to these soils appears to be an effective approach for immobilizing Pb and reducing the associated bio-accessibility.
This project provided important data on fundamental processes responsible for health and environmental risk reductions and environmental safety of the phosphate-based treatments in metal, specifically Pb, contaminated soils. By an integrated approach of environmental risk asse...
Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.
2013-04-01
Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].
Ben-Nissan, Besim; Macha, Innocent; Cazalbou, Sophie; Choi, Andy H
2016-01-01
During the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated. This review aims to give an update into the advancements of calcium phosphate nanocoatings and thin film nanolaminates. In particular recent research on PLA/hydroxyapatite composite thin films and coatings into the slow drug delivery for the possible treatment of osteomyelitis is covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr; Poienar, Maria; Guesdon, Anne
Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containingmore » phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.« less
Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.
Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María
2013-07-01
Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramakrishnan, Karthik; Braunhofer, Peter; Newsome, Britt; Lubeck, Deborah; Wang, Steven; Deuson, Jennifer; Claxton, Ami J
2014-12-01
Hyperphosphatemia (serum phosphorus >5.5 mg/dL) in hemodialysis patients is a key factor in mineral and bone disorders and is associated with increased hospitalization and mortality risks. Treatment with oral phosphate binders offers limited benefit in achieving target serum phosphorus concentrations due to high daily pill burden (7-10 pills/day) and associated poor medication adherence. The economic value of improving phosphate binder adherence and increasing percent time in range (PTR) for target phosphorus concentrations has not been previously assessed in dialysis patients. The current retrospective analysis was conducted to summarize health care cost savings to United States (US) payers associated with improved phosphate binder adherence and increased PTR for target phosphorus concentrations in adult end-stage renal disease (ESRD) patients receiving hemodialysis therapy. Phosphate binder adherence and PTR were derived from hemodialysis patients who were treated at a large dialysis organization between January 2007 and December 2011. Cost model inputs were derived from US Renal Data System data between July 2007 and December 2009. A cost-offset model was constructed to estimate monthly and annual incremental health care costs (total Medicare; inpatient, outpatient, and Medicare Part B) associated with different levels of phosphate binder adherence and PTR. Model inputs included number of ESRD patients, population adherence to phosphate binders, PTR associated with adherence to phosphate binders, and per-patient per-month cost associated with PTR. A base case model estimated monthly and annual costs of phosphate binder therapy in the population using estimated model inputs. The estimated adherence rate was used to determine number of patients in compliant and noncompliant groups. Monthly costs were calculated as the sum of per-patient per-month cost times the number of patients in adherent and nonadherent groups. Annual costs were monthly costs times 12 and assumed the same level of adherence, PTR, and per-patient per-month costs over time. To study the impact of improving phosphate binder adherence and PTR on cost outcomes, we hypothetically and simultaneously increased both base phosphate binders adherence and PTR for adherent patients (adherence/PTR: 10/20%, 20/40%, 30/60%). Monthly and annual costs were derived for each scenario and compared against the results of the base case model. One-way sensitivity analysis was performed to test model robustness. The base case model estimated total Medicare and inpatient costs of $5,152,342 and $1,435,644, respectively (N = 1,000). When base case model costs were compared to results of each extended model scenario, overall Medicare cost savings (range 0.3-1.9%) and inpatient cost savings (range 1.2-5.7%) were observed. The one-way sensitivity analysis indicated that results were sensitive to PTR for adherent and nonadherent patients and the factor used to increase adherence rate and PTR associated with adherence in the hypothetical scenarios. However, cost savings in overall Medicare costs and inpatient costs were still noted. Increasing phosphate binder adherence and improving phosphorus control were associated with increased cost savings in total Medicare costs and inpatient costs.
Phosphate rock resources of the United States
Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.
1984-01-01
In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern Coastal Plain phosphate province, principally in Florida and North Carolina and offshore in the shallow Atlantic Ocean from North Carolina to southern Florida. This resource is considered to be hypothetical because it is based on geologic inference combined with sparse drilling data. Total resources of phosphate rock in the United States are sufficient to supply domestic demands for the foreseeable future, provided that drilling is done to confirm hypothetical resources and the chemistry of the deposits is determined. Mining and beneficiation techniques will have to be modified or improved, and new techniques will have to be developed so that these deposits can be profitably exploited.
2018-01-01
Electrolysis of toilet wastewater with TiO2-coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm–2 (∼3.4 V), with greater than 20 m2 m–3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer. PMID:29607266
Chen, Yuan-Yuei; Kao, Tung-Wei; Chou, Cheng-Wai; Wu, Chen-Jung; Yang, Hui-Fang; Lai, Ching-Huang; Wu, Li-Wei; Chen, Wei-Liang
2018-02-23
Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.
Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R
2018-03-05
Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.
Polymeric additives to enhance the functional properties of calcium phosphate cements
Perez, Roman A; Kim, Hae-Won
2012-01-01
The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties. PMID:22511991
DOE Office of Scientific and Technical Information (OSTI.GOV)
N'Guessan, L.A.; Elifantz, H.; Nevin, K.P.
2009-09-01
Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G.more » sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.
2010-02-01
Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G.more » sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.« less
Network-level fossil of a phosphate-free biosphere
NASA Astrophysics Data System (ADS)
Goldford, J.; Hartman, H.; Smith, T. F.; Segre, D.
2017-12-01
The emergence of a metabolism capable of sustaining cellular life on early Earth is a major unresolved enigma. Such a transition from prebiotic chemistry to an organized biochemical network seemingly required the concurrent availability of multiple molecular components. One of these components, phosphate, carries several essential functions in present-day metabolism, most notably energy transduction through ATP. However, the ubiquity of phosphate in living systems today stands in sharp contrast with its poor geochemical availability, prompting previous efforts to search for plausible prebiotic sources. The alternative, intriguing possibility is that primitive life did not require phosphate. Here we explore this possibility by determining the feasibility and functional potential of a phosphate-independent metabolism amongst the set of all known biochemical reactions in the biosphere. Surprisingly, we identified a cryptic phosphate-independent core metabolism that can be generated from simple sets of compounds thought to be available on early Earth. This network can support the biosynthesis of a broad category of key biomolecules. The enzymes contained in this network display a striking enrichment for dependence on iron-sulfur and transition metal coenzymes, a fundamental cornerstone of early biochemistry. We furthermore show that phosphate-independent precursors of present-day cofactors could have helped overcome thermodynamic energy barriers, enabling the production of a rich set of biomolecules, including 15 out of the 20 amino acids, vitamins, pentoses and nucleobases. Altogether, our results suggest that present-day biochemical networks may contain vestiges of a very ancient past, and that a complex thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.
Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell.
Happe, Manuel; Sugnaux, Marc; Cachelin, Christian Pierre; Stauffer, Marc; Zufferey, Géraldine; Kahoun, Thomas; Salamin, Paul-André; Egli, Thomas; Comninellis, Christos; Grogg, Alain-François; Fischer, Fabian
2016-01-01
Phosphate remobilization from digested sewage sludge containing iron phosphate was scaled-up in a microbial fuel cell (MFC). A 3litre triple chambered MFC was constructed. This reactor was operated as a microbial fuel cell and later as a microbial electrolysis cell to accelerate cathodic phosphate remobilization. Applying an additional voltage and exceeding native MFC power accelerated chemical base formation and the related phosphate remobilization rate. The electrolysis approach was extended using a platinum-RVC cathode. The pH rose to 12.6 and phosphate was recovered by 67% in 26h. This was significantly faster than using microbial fuel cell conditions. Shrinking core modelling particle fluid kinetics showed that the reaction resistance has to move inside the sewage sludge particle for considerable rate enhancement. Remobilized phosphate was subsequently precipitated as struvite and inductively coupled plasma mass spectrometry indicated low levels of cadmium, lead, and other metals as required by law for recycling fertilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Rongtai; Geng, Jinju; Ren, Hongqiang; Wang, Yanru; Xu, Ke
2012-11-01
Removal of ammonium from wastewater via struvite (MAP) pyrolysate recycling combined with a mixed-base NaOH/Mg(OH)(2) technology was investigated, and the phosphate and magnesium concentration in the supernatant were measured. The optimal parameters for acidolysis were a pH of 1; temperature of 120°C and time of 2h. The presence of derivatives of amorphous magnesium hydrogen phosphate (MgHPO(4)), namely magnesium phosphate (Mg(3)(PO(4))(2)) and magnesium pyrophosphate (Mg(2)P(2)O(7)) were verified by experiment. The ammonium removal ratio in this combined mixed-base technology was 96.8% in the first cycle, 80.6% in the second, and 81.0% after acidolysis. The phosphate and magnesium ions concentration in the supernatant were about 1mg/L and 40 mg/L, respectively. The grain size of MAP was 1.52 nm without seeding and 1.79 nm with seeding, and the growth rate of MAP was 17.6%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong
2013-04-01
Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish
2009-06-08
The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips tomore » the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in the substrate-free conformation. Orientation of the substrate with respect to the active site histidine and serine (in the mutant enzyme) also varies in different subunits. The structures of the C. parvum GAPDH ternary complex and other GAPDH complexes demonstrate the plasticity of the substrate binding site. We propose that the active site of GAPDH can accommodate the substrate in multiple conformations at multiple locations during the initial encounter. However, the C-3 phosphate group clearly prefers the 'new Pi' site for initial binding in the active site.« less
Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution
Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; ...
2015-04-17
We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yan; Guo, Xingming; Wu, Feng
Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbentmore » from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.« less
Pentose phosphates in nucleoside interconversion and catabolism.
Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L
2006-03-01
Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.
2010-01-10
Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphatelimitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducensmore » grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.« less
Miyagawa, Atsumi; Tatsumi, Sawako; Takahama, Wako; Fujii, Osamu; Nagamoto, Kenta; Kinoshita, Emi; Nomura, Kengo; Ikuta, Kayo; Fujii, Toru; Hanazaki, Ai; Kaneko, Ichiro; Segawa, Hiroko; Miyamoto, Ken-Ichi
2018-05-01
Circulating inorganic phosphate exhibits a remarkable daily oscillation based on food intake. In humans and rodents, the daily oscillation in response to food intake may be coordinated to control the intestinal absorption, renal excretion, cellular shifts, and extracellular concentration of inorganic phosphate. However, mechanisms regulating the resulting oscillation are unknown. Here we investigated the roles of the sodium phosphate cotransporter SLC34 (Npt2) family and nicotinamide phosphoribosyltransferase (Nampt) in the daily oscillation of plasma inorganic phosphate levels. First, it is roughly linked to urinary inorganic phosphate excretion. Second, expression of renal Npt2a and Npt2c, and intestinal Npt2b proteins also exhibit a dynamic daily oscillation. Analyses of Npt2a, Npt2b, and Npt2c knockout mice revealed the importance of renal inorganic phosphate reabsorption and cellular inorganic phosphate shifts in the daily oscillation. Third, experiments in which nicotinamide and a specific Nampt inhibitor (FK866) were administered in the active and rest phases revealed that the Nampt/NAD + system is involved in renal inorganic phosphate excretion. Additionally, for cellular shifts, liver-specific Nampt deletion disturbed the daily oscillation of plasma phosphate during the rest but not the active phase. In systemic Nampt +/- mice, NAD levels were significantly reduced in the liver, kidney, and intestine, and the daily oscillation (active and rest phases) of the plasma phosphate concentration was attenuated. Thus, the Nampt/NAD + system for Npt2 regulation and cellular shifts to tissues such as the liver play an important role in generating daily oscillation of plasma inorganic phosphate levels. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tirta, A. P.; Saefumillah, A.; Foliatini
2017-04-01
Eutrophication is one of the environmental problems caused by the excessive nutrients in aquatic ecosystems. In most lakes, phosphate is a limiting nutrient for algae photosynthesis. Even though the concentration of phosphate from external loading into the water body has been reduced, eutrophication could still be occured due to internal mobilization of phosphate from the sediment pore water into the overlying water. Therefore, the released phosphate from sediments and their interaction in the pore water must be included in the monitoring of phosphate concentration in aquatic system. The released phosphate from sediment into pore water has been studied by DGT device with ferrihydrite as binding gel and N-N‧-methylenebisacrylamide as crosslinker. The results showed that DGT with 15% acrylamide; 0.1 % N-N‧-methylenebisacrylamide and ferrihydrite as binding gel was suitable for the measurement of the released phosphate from sediment into pore water. The result of the deployed DGT in oxic and anoxic conditions in seven days incubation showed the released phosphate process from the sediment into pore water was affected by incubation time and the existence of oxygen in the environment. The released phosphate from the sediment into pore water in anoxic condition has a higher value than oxic condition. The experimental results of the deployed DGT in natural sediment core at a depth of 1 to 15 cm from the surface of the water for 7 days showed that the sediment has a different phosphate mass profile based on depth. The concentration of phosphate tends to be increased with depth. The maximum CDGT of phosphate released in oxic and anoxic conditions at 7th day period of incubation are 29.23 μg/L at 14 cm depth and 30.19 μg/L at 8 cm depth, respectively.
Exploring reaction pathways for O-GlcNAc transferase catalysis. A string method study.
Kumari, Manju; Kozmon, Stanislav; Kulhánek, Petr; Štepán, Jakub; Tvaroška, Igor; Koča, Jaroslav
2015-03-26
The inverting O-GlcNAc glycosyltransferase (OGT) is an important post-translation enzyme, which catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to the hydroxyl group of the Ser/Thr of cytoplasmic, nuclear, and mitochondrial proteins. In the past, three different catalytic bases were proposed for the reaction: His498, α-phosphate, and Asp554. In this study, we used hybrid quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello molecular dynamics to investigate reaction paths using α-phosphate and Asp554 as the catalytic bases. The string method was used to calculate the free-energy reaction profiles of the tested mechanisms. During the investigations, an additional mechanism was observed. In this mechanism, a proton is transferred to α-phosphate via a water molecule. Our calculations show that the mechanism with α-phosphate acting as the base is favorable. This reaction has a rate-limiting free-energy barrier of 23.5 kcal/mol, whereas reactions utilizing Asp554 and water-assisted α-phosphate have barriers of 41.7 and 40.9 kcal/mol, respectively. Our simulations provide a new insight into the catalysis of OGT and may thus guide rational drug design of transition-state analogue inhibitors with potential therapeutic use.
NASA Astrophysics Data System (ADS)
Nezhurina, E. K.; Karalkin, P. A.; Komlev, V. S.; Sviridova, I. K.; Kirsanova, V. A.; Akhmedova, S. A.; Shanskiy, Ya D.; Fedotov, A. Yu; Barinov, S. M.; Sergeeva, N. S.
2018-04-01
A creation of personalized implants for regeneration of bone tissue seems to be a very promising biomedical technological approach. We have studied the physicochemical characteristics, cyto- and biocompatibility of three-dimensional constructs based on sodium alginate and gelatin in combination with 2 types of calcium phosphate (tricalcium phosphate or octacalcium phosphate) obtained by inkjet 3D printing. In our experiments, we have studied the physical and chemical properties of the constructs – their porosity, chemical composition, microarchitecture of the surface and mechanical elasticity. The cytocompatibility of 3D constructs and matrix-for-cell properties were investigated in vitro on a model of human osteosarcoma MG-63 cell line by means of MTT assay. The biocompatibility of 3D constructs was studied on the model of subcutaneous implantation in mice up to 12 weeks. All types of 3D constructs were cytocompatible in vitro, demonstrated good matrix-for-cells properties, and had supported cell proliferation for 2 weeks. In results of subcutaneous in vivo test all constructs demonstrated biocompatibility with slow bioresorption of organic and inorganic components. Osteogenesis proceeded more actively in rat tibia model defects (marginal excision), substituted by 3D printed 3-component implants based on alginate, gelatin and octacalcium phosphate.
Kim, Min-Seok; Jeong, Seok Won; Choi, Seong-Jin; Han, Jin-Young; Kim, Sung-Hwan; Yoon, Seokjoo; Oh, Jung-Hwa; Lee, Kyuhong
2017-02-15
The antimicrobial biocide polyhexamethyleneguanidine (PHMG) phosphate is the main ingredient in the commercially available humidifier disinfectant. PHMG phosphate-based humidifier disinfectants can cause pulmonary fibrosis and induce inflammatory and fibrotic responses both in vivo and in vitro. However, toxicological mechanisms including genomic alterations induced by inhalation exposure to PHMG phosphate have not been elucidated. Therefore, this study evaluated the toxicological effects of the PHMG phosphate-containing humidifier disinfectant. We used DNA microarray to identify global gene expression changes in rats treated with PHMG phosphate-containing humidifier disinfectant for 4 weeks and 10 weeks. Functional significance of differentially expressed genes (DEGs) was estimated by gene ontology (GO) analysis. Four weeks post-exposure, 320 and 392 DEGs were identified in female and male rats, respectively (>2-fold, p<0.05). Ten weeks post-exposure, 1290 and 995 DEGs were identified in females and males, respectively. Of these, 119 and 556 genes overlapped between females and males at 4 weeks and 10 weeks, respectively, post-PHMG phosphate exposure. In addition, 21 genes were upregulated and 4 genes were downregulated in response to PHMG phosphate in a time-dependent manner. Thus, we predict that changes in genomic responses could be a significant molecular mechanism underlying PHMG phosphate toxicity. Further studies are required to determine the detailed mechanism of PHMG phosphate-induced pulmonary toxicity. Copyright © 2016. Published by Elsevier B.V.
Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey
2008-12-01
Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.
A Chemist’s Perspective on the Role of Phosphorus at the Origins of Life
Fernández-García, Christian; Coggins, Adam J.
2017-01-01
The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic chemistry, and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation, and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides, amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as a general acid–base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry, provide an increasingly clear message that understanding phosphate chemistry will be a key element in elucidating the origins of life on Earth. PMID:28703763
Indirect estimation of emission factors for phosphate surface mining using air dispersion modeling.
Tartakovsky, Dmitry; Stern, Eli; Broday, David M
2016-06-15
To date, phosphate surface mining suffers from lack of reliable emission factors. Due to complete absence of data to derive emissions factors, we developed a methodology for estimating them indirectly by studying a range of possible emission factors for surface phosphate mining operations and comparing AERMOD calculated concentrations to concentrations measured around the mine. We applied this approach for the Khneifiss phosphate mine, Syria, and the Al-Hassa and Al-Abyad phosphate mines, Jordan. The work accounts for numerous model unknowns and parameter uncertainties by applying prudent assumptions concerning the parameter values. Our results suggest that the net mining operations (bulldozing, grading and dragline) contribute rather little to ambient TSP concentrations in comparison to phosphate processing and transport. Based on our results, the common practice of deriving the emission rates for phosphate mining operations from the US EPA emission factors for surface coal mining or from the default emission factor of the EEA seems to be reasonable. Yet, since multiple factors affect dispersion from surface phosphate mines, a range of emission factors, rather than only a single value, was found to satisfy the model performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Lai-Hao; Li, Wen-Jie
2011-09-06
The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.
Rehman, Andrea Mary; Woodd, Susannah Louise; Heimburger, Douglas Corbett; Koethe, John Robert; Friis, Henrik; PrayGod, George; Kasonka, Lackson; Kelly, Paul; Filteau, Suzanne
2017-03-01
Malnourished HIV-infected patients starting antiretroviral therapy (ART) are at high risk of early mortality, some of which may be attributed to altered electrolyte metabolism. We used data from a randomised controlled trial of electrolyte-enriched lipid-based nutritional supplements to assess the association of baseline and time-varying serum phosphate and K concentrations with mortality within the first 12 weeks after starting ART. Baseline phosphate results were available from 1764 patients and there were 9096 subsequent serum phosphate measurements, a median of 6 per patient. For serum K there were 1701 baseline and 8773 subsequent measures, a median of 6 per patient. Abnormally high or low serum phosphate was more common than high or low serum K. Controlling for other factors found to affect mortality in this cohort, low phosphate which had not changed from the previous time interval was associated with increased mortality; the same was not true for high phosphate or for high or low K. Both increases and decreases in serum electrolytes from the previous time interval were generally associated with increased mortality, particularly in the electrolyte-supplemented group. The results suggest that changes in serum electrolytes, largely irrespective of the starting point and the direction of change, were more strongly associated with mortality than were absolute electrolyte levels. Although K and phosphate are required for tissue deposition during recovery from malnutrition, further studies are needed to determine whether specific supplements exacerbate physiologically adverse shifts in electrolyte levels during nutritional rehabilitation of ill malnourished HIV patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan,K.; Fedorov, A.; Almo, S.
2008-01-01
Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies ofmore » d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate group hydrogen bonds not only with the conserved motif but also with an active site loop following the sixth {beta}-strand, providing a potential structural mechanism for coupling substrate binding with catalysis.« less
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2001-01-01
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2000-01-01
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.
High temperature insulation for ceramic matrix composites
Merrill, Gary B.; Morrison, Jay Alan
2004-01-13
A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.
Park, Haesuk; Rascati, Karen L; Keith, Michael S
2015-06-01
From January 2016, payment for oral-only renal medications (including phosphate binders and cinacalcet) was expected to be included in the new Medicare bundled end-stage renal disease (ESRD) prospective payment system (PPS). The implementation of the ESRD PPS has generated concern within the nephrology community because of the potential for inadequate funding and the impact on patient quality of care. To estimate the potential economic impact of the new Medicare bundled ESRD PPS reimbursement from the perspective of a large dialysis organization in the United States. We developed an interactive budget impact model to evaluate the potential economic implications of Medicare payment changes to large dialysis organizations treating patients with ESRD who are receiving phosphate binders. In this analysis, we focused on the budget impact of the intended 2016 integration of oral renal drugs, specifically oral phosphate binders, into the PPS. We also utilized the model to explore the budgetary impact of a variety of potential shifts in phosphate binder market shares under the bundled PPS from 2013 to 2016. The base model predicts that phosphate binder costs will increase to $34.48 per dialysis session in 2016, with estimated U.S. total costs for phosphate binders of over $682 million. Based on these estimates, a projected Medicare PPS $33.44 reimbursement rate for coverage of all oral-only renal medications (i.e., phosphate binders and cinacalcet) would be insufficient to cover these costs. A potential renal drugs and services budget shortfall for large dialysis organizations of almost $346 million was projected. Our findings suggest that large dialysis organizations will be challenged to manage phosphate binder expenditures within the planned Medicare bundled rate structure. As a result, large dialysis organizations may have to make treatment choices in light of potential inadequate funding, which could have important implications for the quality of care for patients with ESRD.
Structural features of phosphate accumulations in the Gantour basin - Morocco : Application of GIS
NASA Astrophysics Data System (ADS)
Mohamed, Laadraoui; El Hassane, Boumaggard; Essaid, Jourani
2010-05-01
The Moroccan Atlantic margin raises a lot of interest because of its potential resources in phosphates. It also holds in its Mesetien part one of the largest phosphatic deposit in the world. The authors present the results of their researches on structural environments of the phosphatic sedimentary sequences in the Gantour deposit in western Morocco. These investigations are mainly based on field data, data recorded from work done by the OCP (Office Chérifien des Phosphates) group, the interpretation of industrial seismic profiles and the application of GIS. Our aim are devoted to the apprehension of the geometry and the cinematic of these basins which are contemporaneous to the Central Atlantic Rifting, as well as the determination of the list of factors liable to the genesis of these phosphatic basins. Other data of field observations (cartography, study of structural features,...) permit to identify the general structure of the prospect. Sedimentation of phosphated deposits is strained by the presence of two wrench faulting systems oriented N20¬40E, N80¬120E and N140¬160E.
El-Bahi, S M; Sroor, A; Mohamed, Gehan Y; El-Gendy, N S
2017-05-01
In this study, the activity concentrations of the natural radionuclides in phosphate rocks and its products were measured using a high- purity germanium detector (HPGe). The obtained activity results show remarkable wide variation in the radioactive contents for the different phosphate samples. The average activity concentration of 235 U, 238 U, 226 Ra, 232 Th and 40 K was found as (45, 1031, 786, 85 and 765Bq/kg) for phosphate rocks, (28, 1234, 457, 123 and 819Bq/kg) for phosphate fertilizers, (47, 663, 550, 79 and 870Bq/kg) for phosphogypsum and (25, 543, 409, 54 and 897Bq/kg) for single super phosphate respectively. Based on the measured activities, the radiological parameters (activity concentration index, absorbed gamma dose rate in outdoor and indoor and the corresponding annual effective dose rates and total excess lifetime cancer risk) were estimated to assess the radiological hazards. The total excess lifetime cancer risk (ELCR) has been calculated and found to be high in all samples, which related to high radioactivity, representing radiological risk for the health of the population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Hongjuan; Shen, Shaobo; Liu, Longhui; Ji, Yilong; Wang, Fuming
2015-01-01
In order to remove phosphate from wastewater, a large plastic adsorption column filled with big phosphate-adsorbing pellets with diameters of 10 mm, heated by electromagnetic induction coils, was conceived. It was found that the prepared big pellets, which were made of reduced steel slag and iron ore concentrate, contain magnetic Fe and Fe3O4. The thermodynamics and kinetics of adsorption of phosphate from synthetic wastewaters on the pellets were studied in this work. The phosphate adsorption on the pellets followed three models of Freundlich, Langmuir and Dubinin-Kaganer-Radushkevick. The maximum phosphate adsorption capacity Qmax of the pellets were 2.46, 2.74 and 2.77 mg/g for the three temperatures of 20°C, 30°C and 40°C, respectively, based on the Langmuir model. The apparent adsorption energies were -12.9 kJ/mol for the three temperatures. It implied that ion exchange was the main mechanism involved in the adsorption processes. The adsorbed phosphate existed on the pellet surface mainly in the form of Fe3(PO4)2. A reduction pre-treatment of the pellet precursor with H2 greatly enhanced pellet adsorption for phosphate. The adsorption kinetics is better represented by a pseudo-first-order model. The adsorbed phosphate amounts were similar for both real and synthetic wastewaters under similar adsorption conditions. The percentage of adsorbed phosphate for a real wastewater increased with increasing pellet concentration and reached 99.2% at a pellet concentration of 64 (g/L). Some specific phosphate adsorption mechanisms for the pellets were revealed and the pellets showed the potential to efficiently adsorb phosphate from a huge amount of real wastewaters in an industrial scale.
McLaughlin, K.; Paytan, A.; Kendall, C.; Silva, S.
2006-01-01
The phosphate oxygen isotopic composition in naturally occurring particulate phosphatic compounds (??18Op) can be used as a tracer for phosphate sources and to evaluate the cycling of phosphorus (P) in the environment. However, phosphatic compounds must be converted to silver phosphate prior to isotopic analysis, a process that involves digestion of particulate matter in acid. This digestion will hydrolyze some of the phosphatic compounds such that oxygen from the acid solution will be incorporated into the sample as these phosphatic compounds are converted to orthophosphate (PO 43-). To determine the extent of incorporation of reagent oxygen into the sample, we digested various phosphatic compounds in both acid amended with H218O (spiked) and unspiked acid and then converted the samples to silver phosphate for ??18Op analysis. Our results indicate that there is no isotopic fractionation associated with acid digestion at 50??C. Furthermore, we found that reagent oxygen incorporation is a function of the oxygen to phosphorus ratio (O:P) of the digested compound whereby the percentage of reagent oxygen incorporated into the sample is the same as that which is required to convert all of the P-compounds into orthophosphate. Based on these results, we developed a correction for reagent oxygen incorporation using simple mass balance, a procedure that allows for the determination of the ??18O p of samples containing a mixture of phosphatic compounds. We analyzed a variety of environmental samples for ??18O p to demonstrate the utility of this approach for understanding sources and cycling of P. ?? 2005 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savabi, F.; Geiger, P.J.; Bessman, S.P.
1984-03-01
Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphorus-labeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (P/sub i/) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual P/sub i/ is described. 20 references.
NASA Astrophysics Data System (ADS)
Zhang, Xi; Ma, Quanyang; Dai, Yu; Hu, Faping; Liu, Gang; Xu, Zouyuan; Wei, Guobing; Xu, Tiancai; Zeng, Qingwen; Xie, Weidong
2018-01-01
Fiber metal laminates based on magnesium alloys (MgFML) with different surface treatments and different bonding types were tested and analyzed. By using dynamic contact angle measurement and scanning electron microscopy (SEM), it was found that phosphating treatment can significantly improve the surface energy and wettability of magnesium alloy, and the surface energy of phosphated magnesium alloy was approximately 50% higher than that of abraded-only magnesium alloy. The single cantilever beam (SCB) test showed that the interfacial fracture energies of directly bonded MgFMLs based on abraded-only magnesium and abraded + phosphated magnesium were 650 J/m2 and 1030 J/m2, respectively, whereas the interfacial fracture energies of indirectly bonded MgFMLs were 1650 J/m2 and 2260 J/m2, respectively. Phosphating treatment and modified polypropylene interleaf were observed to improve the tensile strength and interfacial fracture toughness of MgFML. In addition, the rougher surface was more conducive to enhance the bonding strength and interfacial fracture toughness of MgFML.
Analysis of organophosphate hydraulic fluids in U.S. Air force base soils
David; Seiber
1999-04-01
Tri-aryl and tri-alkyl organophosphates (TAPs) have been used extensively as flame-retardant hydraulic fluids and fluid additives in commercial and military aircraft. Up to 80% of the consumption of these fluids has been estimated to be lost to unrecovered leakage. Tri-aryl phosphate components of these fluids are resistant to volatilization and solubilization in water, thus, their primary environmental fate pathway is sorption to soils. Environmental audits of military air bases generally do not include quantification of these compounds in soils. We have determined the presence and extent of TAP contamination in soil samples from several U.S. Air Force bases. Soils were collected, extracted, and analyzed using GC/FPD and GC/MS. Tricresyl phosphate was the most frequently found TAP in soil, ranging from 0.02 to 130 ppm. Other TAPs in soils included triphenyl phosphate and isopropylated triphenyl phosphate. Observations are made regarding the distribution, typical concentrations, persistence, and need for further testing of TAPs in soils at military installations. Additionally, GC and mass spectral data for these TAPs are presented, along with methods for their extraction, sample clean-up, and quantification.
Efficacy of tooth whitening with different calcium phosphate-based formulations.
Jin, Jian; Xu, Xiaohui; Lai, Guangyun; Kunzelmann, Karl-Heinz
2013-08-01
The aim of this in-vitro study was to evaluate the efficacy of tooth whitening using different calcium phosphate-based formulations. Teeth were treated with three different hydroxyapatite preparations at different concentrations and with two control preparations; each tooth was treated a total of three times. After application of the last material, hydrodynamic shear force was applied to mimic mechanical loading. After each treatment, tooth color was measured using a dental spectrophotometer, and the mean changes in L*a*b* values between different measurements were expressed as ∆E. The results indicated significant differences between the materials, but neither dose- nor time-dependent associations were found. The suspension containing tricalcium phosphate (10 wt%) showed the most obvious color change (∆E = 2.20 ± 0.90), while the suspension containing zinc-carbonate-apatite (20 wt%) showed the least obvious color change (∆E = 0.91 ± 0.50). Calcium phosphate-based formulations that can adhere to the enamel surface and contribute to tooth whitening have promising tooth-whitening potential. © 2013 Eur J Oral Sci.
Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile
2015-01-01
This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gondolellid conodonts and depositional setting of the Phosphoria Formation
Wardlaw, Bruce R.
2015-01-01
The Phosphoria Formation and related rocks were deposited over an 8.9 m.y. interval beginning approximately 274.0Ma and ending approximately 265.1Ma. The Meade Peak Phosphatic Shale Member was deposited in southeastern Idaho and adjacent Wyoming over 5.4 m.y. from approximately 273.2 to 268.6 Ma. The Retort Phosphatic Shale Member was deposited in southwestern Montana and west-central Wyoming over 1.3 m.y. from approximately 267.4 to 266.1Ma. The base of the Roadian Stage of the Middle Permian occurs within the lower phosphate zone of the Meade Peak. The base of the Wordian Stage occurs within the upper phosphate zone of the Meade Peak. The presence of a cool-water brachiopod fauna, cool-water conodont faunas, and the absence of fusulinids throughout the Phosphoria basin indicate the presence of pervasive cool, upwelling waters. Acritarchs are intimately associated with phosphorites and phosphatic shales and may have been the primary organic producer to help drive phosphate production. The gondolellid conodont fauna of the Phosphoria Formation links a geographic cline of Jinogondolella nankingensis from the Delaware basin, West Texas, to the Sverdrup basin, Canadian Arctic, and shows distinct differentiation in species distribution, as do other conodont groups, within the Phosphoria basin. Ten species and two subspecies of gondolellid conodonts are recognized from the Phosphoria Formation and related rocks that belong to Mesogondolella and Jinogondolella.
Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.
Ermert, Susanne; Marx, Andreas; Hacker, Stephan M
2017-04-01
Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.
Nizio, Katie D; Harynuk, James J
2012-08-24
Alkyl phosphate based gellants used as viscosity builders for fracturing fluids used in the process of hydraulic fracturing have been implicated in numerous refinery-fouling incidents in North America. In response, industry developed an inductively coupled plasma optical emission spectroscopy (ICP-OES) based method for the analysis of total volatile phosphorus in distillate fractions of crude oil; however, this method is plagued by poor precision and a high limit of detection (0.5±1μg phosphorus mL(-1)). Furthermore this method cannot provide speciation information, which is critical for developing an understanding of the challenge of alkyl phosphates at a molecular level. An approach using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection (GC×GC-NPD) and post-column Deans switching is presented. This method provides qualitative and quantitative profiles of alkyl phosphates in industrial petroleum samples with increased precision and at levels comparable to or below those achievable by ICP-OES. A recovery study in a fracturing fluid sample and a profiling study of alkyl phosphates in four recovered fracturing fluid/crude oil mixtures (flowback) are also presented. Copyright © 2012 Elsevier B.V. All rights reserved.
Approach to hypophosphataemia in intensive care units - a nationwide survey.
Geerse, D A; Bindels, A J; Kuiper, M A; Roos, A N; Spronk, P E; Schultz, M J
2012-11-01
Evidence-based guidelines for monitoring of serum phosphate levels and for the treatment of hypophosphataemia in critically ill patients are lacking. The aim of this survey was to evaluate current practice with respect to diagnosis and treatment of hypophosphataemia in critically ill patients among intensive care unit (ICU) physicians in the Netherlands. A survey was conducted among all hospitals with an ICU in the Netherlands. Paediatric ICUs were excluded from participation. A questionnaire was sent, with questions on practice regarding serum phosphate monitoring and treatment of hypophosphataemia. Respondents returned the questionnaire either by mail or through a web-based survey. A response was received from 67÷89 ICUs (75%). Respondents mentioned renal replacement therapy, sepsis and malnutrition, as well as surgery involving cardiopulmonary bypass as the most important causes of hypophosphataemia in intensive care unit patients. Of all respondents, 46% reported to measure serum phosphate levels on a daily basis, whereas in 12% serum phosphate levels were measured only on clinical indication. Less than half of the respondents had some sort of guideline for correction of hypophosphataemia. In a vast majority (79%), correction of hypophosphataemia was reported to start with serum phosphate levels.
Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun
2013-10-01
An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang
2016-02-01
Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.
Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang
2016-01-01
Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711
Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah
2016-07-15
Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Phosphate Remediation and Recovery using Iron Oxide-based Adsorbents
E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-...
DECREASING LEAD BIOAVAILABILITY OF MINE WASTES: TWO PHOSPHATE FIELD STUDIES
Findings from two evaluation studies of phosphate-based in situ treatment of soils for reducing lead (Pb) bioavailability at two lead mining and lead refining Superfund sites will be presented and discussed. These assessments correlated physicochemical data with results obtained...
Mehta, Rupal; Hodakowski, Alexander; Cai, Xuan; Lee, Kris E; Kestenbaum, Bryan R; de Boer, Ian H; Fawzi, Amani; Wong, Tien Yin; Ix, Joachim; Klein, Barbara; Klein, Ronald; Isakova, Tamara
2017-12-01
Higher levels of serum phosphate are strongly linked to increased risk of cardiovascular disease and therapies aimed to lower serum phosphate are employed in the management of patients with chronic kidney disease (CKD). Data are limited, however, on serum phosphate as a risk factor for microvascular disease in community-based populations. It is important to determine the impact of novel risk factors, such as phosphate, on the microvasculature. We conducted a prospective study of 3919 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and 3544 individuals in the Beaver Dam Eye Study (BDES) to test the associations of serum phosphate with retinopathy and retinal vessel caliber, and change in retinopathy severity and change in retinal vessel caliber. Mean (standard deviation) serum phosphate was 3.66 (0.52) mg/dl in the MESA and 3.77 (0.55) mg/dl in the BDES. In multivariable adjusted models, phosphate was significantly associated with prevalent retinopathy in the MESA (Odds Ratio [OR] per 1 mg/dl increase in phosphate, 1.22; Confidence Interval [CI] 1.02-1.47) and the BDES (OR 1.06; CI 1.01-1.11). In stratified analyses, these relationships were even stronger and only seen in individuals with diabetes in both the MESA (OR 1.81; CI 1.30-2.53) and the BDES (OR 1.16; CI 1.05-1.29). Phosphate was not associated with incident or change in retinopathy severity, nor any retinal caliber outcome. Among community-living individuals with low prevalence of CKD, higher serum phosphate was associated with prevalent retinopathy in individuals with diabetes. Further longitudinal assessments in patients with diabetes necessitate further investigation.
el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe
2002-01-01
By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 447-453, 2002
Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing
2016-08-01
Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.
Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands
NASA Astrophysics Data System (ADS)
Choi, J.; Lee, I.; Park, B. K.; Kim, J.
2014-12-01
Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.
Block, Geoffrey A; Ix, Joachim H; Ketteler, Markus; Martin, Kevin J; Thadhani, Ravi I; Tonelli, Marcello; Wolf, Myles; Jüppner, Harald; Hruska, Keith; Wheeler, David C
2013-09-01
Chronic kidney disease (CKD)-mineral and bone disorder is associated with diverse metabolic and endocrine disturbances that ultimately may contribute to further loss of kidney function, bone demineralization, and fatal or nonfatal cardiovascular events. Recent insights into the pathophysiology of the events that unfold during the development of this disorder suggest that disturbances in phosphate metabolism are pivotal. The consequences of abnormal phosphate homeostasis are evident at estimated glomerular filtration rates <70 mL/min/1.73 m(2), long before serum phosphate levels increase. Healthy individuals with blood phosphate levels in the top quartile of the normal range have an increased risk of developing CKD, reaching end-stage renal disease, and experiencing cardiovascular events. Substantial public health consequences may be related to increased dietary phosphorus exposure from additives that contain phosphate in the food supply and from modest increases in serum phosphate levels; however, it remains to be established whether interventions aimed at these targets can impact on the development of adverse clinical outcomes. Current approaches involving dietary intervention and intestinal phosphate binders are based on principles and assumptions that need to be examined more rigorously. Compelling animal, observational, and clinical data indicate that interventions directed at lowering phosphate exposure and serum phosphate levels should be subject to rigorous clinical trials that use appropriate placebo comparators and focus on key clinical outcomes, such as cardiovascular events, progression of CKD, fractures, quality of life, and mortality. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
El Zrelli, Radhouan; Rabaoui, Lotfi; Daghbouj, Nabil; Abda, Heithem; Castet, Sylvie; Josse, Claudie; van Beek, Pieter; Souhaut, Marc; Michel, Sylvain; Bejaoui, Nejla; Courjault-Radé, Pierre
2018-05-01
Since the establishment of the coastal industrial complex in Gabes city (Gulf of Gabes, SE Tunisia), hundred million tons of untreated phosphogypsum have been discharged in the open sea causing serious environmental problems. To better understand the dynamic and behavior of phosphate/phosphogypsum contaminants from raw ores to marine environment, a chemical, organic, mineralogical, and morphological characterization of phosphate rock and phosphogypsum was conducted using several sophisticated techniques. The chemical analysis showed that phosphate and phosphogypsum contain high loads of trace elements and that the transfer factors of pollutants varied from 5.83% (U) to 140% (Hg). Estimated annual flows of phosphogypsum contaminants into the marine environment ranged between 0.05 (Re) and 87,249.60 (F) tons. The phosphate rock was found to be formed by carbonate fluorapatite, calcite, dolomite, natural gypsum, quartz, calcite-Mg, apatite, pyrite, fluorite, and sphalerite-Cd and phosphogypsum by synthetic gypsum and sphalerite-Cd. The phosphate was found to be richer in organic compounds compared to phosphogypsum. Based on this work, the Tunisian phosphogypsum has a high mining potential and encourages the development of an economically beneficial and environmentally friendly phosphogypsum-treating industry.
Steinbacher, Stefan; Schiffmann, Susanne; Bacher, Adelbert; Fischer, Markus
2004-07-01
The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C atoms for the xylene moiety of riboflavin. Three of the four hydroxyl groups of ribulose 5-phosphate were coordinated by the metal ions. Based on crystallographic refinement, the metals were assigned as zinc and calcium, which were present in the crystallization buffer. Neither metal supports the enzymatic reaction. In the present study, the correctness of this assignment is assessed using anomalous diffraction data collected at the high-energy side of the zinc absorption edge (lambda = 1.2823 A). Only the three tentative zinc ions give strong peaks in an anomalous difference Fourier map (>20sigma), whereas the four tentative calcium ions do not show anomalous signals above the noise level. These results confirm the initial assignment. In addition, the resolution was improved to 1.55 A.
Sumida, Takashi; Yamashita, Minoru; Okazaki, Yuka; Kawakita, Hirohisa; Fukutomi, Takashi
2012-01-01
A novel cellulose-based resin functionalized with polyallylamine was synthesized. It was applied to the collection of phosphate in environmental water samples, followed by concentration determination using an inductively coupled plasma-atomic emission spectrometer (ICP/AES). The synthesized resin, cellulose-glycidylmethacrylate-polyallylamine (CGP), showed good adsorption behavior toward trace amounts of phosphate over a wide pH range. The adsorbed-analyte can be easily eluted using 0.5 M hydrochloric acid; its recoveries was found to be 80 - 100%. The CGP resin synthesized was packed in a mini-column, which was then installed in a computer-controlled auto-pretreatment system for on-line collection/concentration and determination of trace phosphate by ICP/AES. The limit of detection for phosphate was found to be 0.6 µg P l(-1). The sample volumes were only 5 ml and the total analysis time was about 4 min. The developed method with CGP resin was successfully applied to the determination of phosphate in river water and tap water samples with satisfactory results. The recovery test showed that common matrices that may exist in environmental waters did not interfere with the determination of phosphate.
Optimal use of phosphate binders in chronic kidney disease.
Sonikian, Makrouhi; Papachristou, Evangelos; Goumenos, Dimitrios S
2013-12-01
Hyperphosphatemia is one of the major factors associated with the development of vascular calcification in patients with chronic kidney disease (CKD). Since phosphate is retained in such patients, pharmacological treatment and other measures are necessary to control hyperphosphatemia. Several phosphate binders (calcium salts, magnesium salts, non-calcium-based binders and aluminium) are available for the treatment of hyperphosphatemia. Nevertheless, none of the above mentioned agents has shown an overall superiority over others, while potency and side effects are quite variable among them creating difficulties in choosing the optimal drug for each patient. The authors discuss the disturbed phosphate metabolism, the available phosphate binders, as well as the general therapeutic principles of treating hyperphosphatemia in CKD patients. The literature used for this review had been retrieved from PubMed and covers a large number of original and retrospective studies as well as prospective cohort studies, meta-analyses and international clinical guidelines. Lowering serum phosphate levels in CKD patients may potentially have a positive impact on cardiovascular morbidity and mortality. Factors that should be taken into consideration when selecting a specific drug include CKD stage, cardiovascular disease, severity of secondary hyperparathyroidism, concomitant medications, life expectancy and patient compliance. Therefore, when selecting a specific phosphate binder, individualisation is mandatory.
Guo, Shaolong; Zhang, Feihu; Zhang, Yong; Luan, Dianrong
2014-01-01
Through the polishing experiments of potassium dihydrogen phosphate (KDP) crystals based on deliquescent action, the effect of several major factors, including crystal's initial surface state, polishing time, and revolution of polishing plate, on material removal was researched. Under certain experimental conditions, the rules of material removal were reached, and experimental results are discussed, which lays the foundation for popularization and application of polishing technology for KDP crystals based on deliquescent action.
As a limiting nutrient in most aquatic ecosystems, increased phosphate (PO43-) concentrations can accelerate eutrophication resulting in the proliferation of potentially toxic harmful algal blooms. In addition to environmental impacts of PO43- pollution, overall reserves of this ...
Cristale, Joyce; Katsoyiannis, Athanasios; Sweetman, Andrew J; Jones, Kevin C; Lacorte, Silvia
2013-08-01
This study presents the occurrence and risk of PBDEs, new brominated and organophosphorus flame retardants along a river affected by urban and industrial pressures (River Aire, UK). Tris(2-choroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris[2-chloro-1-(chloromethyl)ethyl] phosphate (TDCP) and triphenyl phosphate (TPhP) were detected in all samples, with TCPP present at the highest concentrations, ranging from 113 to 26,050 ng L⁻¹. BDE-209 was detected in most of the sampled sites, ranging from 17 to 295 ng L⁻¹, while hexabromobenzene (HBB) and pentabromoethyl benzene (PBEB) were seldom detected. A risk quotients based on predicted no effect concentrations (PNEC) and flame retardants water concentration proved significant risk for adverse effects for algae, Daphnia and fish in sites close to industrial and urban sewage discharges. This study provides a protocol for the risk estimation of priority and new generation flame retardants based on river concentrations and toxicological values. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.
2016-08-01
Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao
2013-12-01
A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.
Meyer, Martha H; Dulde, Emily; Meyer, Ralph A
2004-06-17
The mechanism for the renal adaptation to low-phosphate diets is not well understood. Whether the Hyp mutation of the Phex gene blocks this adaptation is also not clear. To gain further insight into this, 5-wk-old normal and Hyp mice were fed a control (1.0% P) or low-phosphate diet (0.03% P) for 3-5 days. Renal RNA was hybridized to Affymetrix U74Av2 microarrays (5 arrays/group). Of the 5,719 detectable genes on each array, 290 responded significantly (P < 0.01) to low-phosphate diet in normal mice. This was reduced significantly (P < 0.001) to 7 in the Hyp mice. This suggested that the adaptations of the normal kidney to a low-phosphate environment were blocked by the Hyp mutation. The Npt2 phosphate transporter, vitamin D 1alpha- and 24-hydroxylases, and calbindins D9K and D28K responded in the expected fashion. Genes with significant (P < 0.05) diet-by-genotype interaction were analyzed by GenMAPP and MAPPFinder. This revealed a cluster of differentially expressed genes associated with microtubule-based processes. Most alpha- and beta-tubulins and most kinesins had responses to low-phosphate diet in normal mice which were abolished or reversed in Hyp mice. In summary, renal adaptation to low-phosphate diet involved changes in the mRNA expression of specific genes. Disruption of these responses in Hyp mice may contribute to their abnormal phosphate homeostasis.
Kim, Cheon-Jei; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jun; Kim, Hyun-Wook
2015-01-01
The effects of reducing fat levels from 30% to 20% and salt concentrations from 1.5% to 1.0% by partially substituting incorporated phosphate and sea mustard were investigated based on physicochemical properties of reduced-fat / low-NaCl meat emulsion systems. Cooking loss and emulsion stability, hardness, springiness, and cohesiveness for reduced-fat / low-NaCl meat emulsion systems with 20% pork back fat and 1.2% sodium chloride samples with incorporation of phosphate and sea mustard were similar to the control with 30% pork back fat and 1.5% sodium chloride. Results showed that reduced-fat / low-NaCl meat emulsion system samples containing phosphate and sea mustard had higher apparent viscosity. The results of this study show that the incorporation of phosphate and sea mustard in the formulation will successfully reduce fat and salt in the final meat products. PMID:26761874
NASA Technical Reports Server (NTRS)
Kanavarioti, A.; Rosenbach, M. T.
1991-01-01
Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).
Stellmacher, Lena; Sandalova, Tatyana; Schneider, Sarah; Schneider, Gunter; Sprenger, Georg A; Samland, Anne K
2016-04-01
Transaldolase B (TalB) and D-fructose-6-phosphate aldolase A (FSAA) from Escherichia coli are C-C bond-forming enzymes. Using kinetic inhibition studies and mass spectrometry, it is shown that enzyme variants of FSAA and TalB that exhibit D-fructose-6-phosphate aldolase activity are inhibited covalently and irreversibly by D-tagatose 6-phosphate (D-T6P), whereas no inhibition was observed for wild-type transaldolase B from E. coli. The crystal structure of the variant TalB(F178Y) with bound sugar phosphate was solved to a resolution of 1.46 Å and revealed a novel mode of covalent inhibition. The sugar is bound covalently via its C2 atom to the ℇ-NH2 group of the active-site residue Lys132. It is neither bound in the open-chain form nor as the closed-ring form of D-T6P, but has been converted to β-D-galactofuranose 6-phosphate (D-G6P), a five-membered ring structure. The furanose ring of the covalent adduct is formed via a Heyns rearrangement and subsequent hemiacetal formation. This reaction is facilitated by Tyr178, which is proposed to act as acid-base catalyst. The crystal structure of the inhibitor complex is compared with the structure of the Schiff-base intermediate of TalB(E96Q) formed with the substrate D-fructose 6-phosphate determined to a resolution of 2.20 Å. This comparison highlights the differences in stereochemistry at the C4 atom of the ligand as an essential determinant for the formation of the inhibitor adduct in the active site of the enzyme.
Supramolecular structure of the casein micelle.
McMahon, D J; Oommen, B S
2008-05-01
The supramolecular structure of colloidal casein micelles in milk was investigated by using a sample preparation protocol based on adsorption of proteins onto a poly-l-lysine and parlodion-coated copper grid, staining of proteins and calcium phosphate by uranyl oxalate, instantaneous freezing, and drying under a high vacuum. High-resolution transmission electron microscopy stereo-images were obtained showing the interior structure of casein micelles. On the basis of our interpretation of these images, an interlocked lattice model was developed in which both casein-calcium phosphate aggregates and casein polymer chains act together to maintain casein micelle integrity. The caseins form linear and branched chains (2 to 5 proteins long) interlocked by the casein-stabilized calcium phosphate nanoclusters. This model suggests that stabilization of calcium phosphate nanoclusters by phosphoserine domains of alpha(s1)-, alpha(s2)-, or beta-casein, or their combination, would orient their hydrophobic domains outward, allowing interaction and binding to other casein molecules. Other interactions between the caseins, such as calcium bridging, could also occur and further stabilize the supramolecule. The combination of having an interlocked lattice structure and multiple interactions results in an open, sponge-like colloidal supramolecule that is resistant to spatial changes and disintegration. Hydrophobic interactions between caseins surrounding a calcium phosphate nanocluster would prevent complete dissociation of casein micelles when the calcium phosphate nanoclusters are solubilized. Likewise, calcium bridging and other electrostatic interactions between caseins would prevent dissociation of the casein micelles into casein-calcium phosphate nanocluster aggregates when milk is cooled or urea is added to milk, and hydrophobic interactions are reduced. The appearance of both polymer chains and small aggregate particles during milk synthesis would also be expected based on this interlocked lattice model of casein micelles, and its supramolecule structure thus exhibits the principles of self-aggregation, interdependence, and diversity observed in nature.
Su, Guanyong; Letcher, Robert J; Yu, Hongxia
2015-12-24
Organophosphate (OP) diesters in urine samples have potential use as biomarkers of organism exposure to environmentally relevant OP triester precursors and in particular OP triester flame retardants. This present study developed a quantitatively sensitive ultra high pressure liquid chromatography (UHPLC-MS) based method for urine and the determination of OP diesters (i.e. diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), bis(2-chloroisopropyl) phosphate (BDCIPP), di-n-butyl phosphate (DNBP), di(2-ethylhexyl) phosphate (DEHP), bis(1-chloro-2-propyl) phosphate (BCIPP), and bis(2-butoxyethyl) phosphate (BBOEP)). Fortified with the 7 OP diesters, 1mL of human urine sample was cleaned up using weak anion exchange solid phase extraction and eluted with high ionic strength ammonium acetate buffer. Subsequently, 4 non-chlorinated OP diesters were directly determined using UHPLC-electrospray(-)-triple quadrupole-MS (UHPLC-ESI(-)-QqQ-MS), and UHPLC-ESI(+)-QqQ-MS was used for determination of 3 chlorinated OP diesters after methylation using diazomethane. Recovery efficiencies of OP diesters ranged from 88 to 160% at three spiking levels (0.4, 2 and 10ng/mL urine). Matrix effects (MEs) and method limits of quantification (MLOQs) were 15-134% and 0.10-0.32ng/mL urine, respectively. Concentrations of OP diesters in n=12 urine samples (from 4 Canadian residents, 2014) varied as follows, nd-<0.28 (DNBP), nd-1.29 (DPHP), nd-<0.28 (DEHP), <0.16-12.33 (BCEP), nd-1.17 (BCDIPP) and nd-0.68ng/mL (BCIPP). Copyright © 2015. Published by Elsevier B.V.
Short-term implantation effects of a DCPD-based calcium phosphate cement.
Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N
1998-06-01
Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.
Behl, Mamta; Hsieh, Jui-Hua; Shafer, Timothy J; Mundy, William R; Rice, Julie R; Boyd, Windy A; Freedman, Jonathan H; Hunter, E Sidney; Jarema, Kimberly A; Padilla, Stephanie; Tice, Raymond R
2015-01-01
Due to their toxicity and persistence in the environment, brominated flame retardants (BFRs) are being phased out of commercial use, leading to the increased use of alternative chemicals such as the organophosphorus flame retardants (OPFRs). There is, however, limited information on the potential health effects of OPFRs. Due to the structural similarity of the OPFRs to organophosphorus insecticides, there is concern regarding developmental toxicity and neurotoxicity. In response, we evaluated a set of OPFRs (triphenyl phosphate [TPHP]), isopropylated phenyl phosphate [IPP], 2-ethylhexyl diphenyl phosphate [EHDP], tert-butylated phenyl diphenyl phosphate [BPDP], trimethyl phenyl phosphate [TMPP], isodecyl diphenyl phosphate [IDDP], (tris(1,3-dichloroisopropyl) phosphate [TDCIPP], and tris(2-chloroethyl)phosphate [TCEP]) in a battery of cell-based in vitro assays and alternative model organisms and compared the results to those obtained for two classical BFRs (3,3',5,5'-tetrabromobisphenol A [TBBPA] and 2,2'4,4'-brominated diphenyl ether [BDE-47]). The assays used evaluated the effects of chemicals on the differentiation of mouse embryonic stem cells, the proliferation and growth of human neural stem cells, rat neuronal growth and network activity, and development of nematode (Caenorhabditis elegans) and zebrafish (Danio rerio). All assays were performed in a concentration-response format, allowing for the determination of the point of departure (POD: the lowest concentration where a chemically-induced response exceeds background noise). The majority of OPFRs (8/9) were active in multiple assays in the range of 1-10 μM, most of which had comparable activity to the BFRs TBBPA and BDE-47. TCEP was negative in all assays. The results indicate that the replacement OPFRs, with the exception of TCEP, showed comparable activity to the two BFRs in the assays tested. Based on these results, more comprehensive studies are warranted to further characterize the potential hazard of some of these OPFR compounds. Published by Elsevier Inc.
Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging
Ohnishi, Mutsuko; Razzaque, M. Shawkat
2010-01-01
Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho−/−) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho−/− mice. Genetically reducing serum phosphate levels in klotho−/− mice by generating a NaPi2a and klotho double-knockout (NaPi2a−/−/klotho−/−) strain resulted in amelioration of premature aging-like features. The NaPi2a−/−/klotho−/− double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a−/−/klotho−/− mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho−/− mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the aging process and suggest a novel role for phosphate in mammalian aging.—Ohnishi, M., Razzaque, M. S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. PMID:20418498
Single- and multiple-dose pharmacokinetics and absolute bioavailability of tedizolid.
Flanagan, Shawn; Fang, Edward; Muñoz, Kelly A; Minassian, Sonia L; Prokocimer, Philippe G
2014-09-01
Tedizolid phosphate is a novel antibacterial under investigation for the treatment of gram-positive infections. This study was conducted to assess the pharmacokinetics, safety, and tolerability of intravenous tedizolid phosphate as well as the oral bioavailability of tedizolid phosphate. Double-blind, single-ascending dose, multiple-dose pharmacokinetics study, as well as tolerability and open-label crossover studies. Single center in the United States (Covance Clinical Research Unit, Madison, WI) between September 2009 and January 2010. Ninety healthy volunteers. Single intravenous (IV) doses of tedizolid phosphate 50 mg (lead-in) and 100-400 mg. Single oral and IV dose of tedizolid phosphate 200 mg in crossover fashion. Multiple IV doses of tedizolid phosphate 200 and 300 mg for up to 7 days. A dose-dependent increase was observed in the maximum plasma concentration (1.2-5.1 μg/ml) and the area under the concentration-time curve (17.4-58.7 μg × hr/ml) of tedizolid (the microbiologically active moiety of tedizolid phosphate) after single IV doses of tedizolid phosphate 100-400 mg. Administration of IV tedizolid phosphate 200 mg once/day for 7 days resulted in minimal (28%) tedizolid accumulation. The absolute oral bioavailability of tedizolid after a single 200-mg dose of tedizolid phosphate was 91%; pharmacokinetic parameters of tedizolid were similar with oral and IV administration. Treatment-related adverse events occurred in 41% of subjects. Most adverse events were related to infusion site and became more frequent with multiple dosing. In an additional 3-day tolerability study, IV tedizolid phosphate 200 mg and placebo were similarly tolerated, based on visual infusion phlebitis scores. These results from a population of healthy volunteers support once/day dosing of tedizolid phosphate 200 mg with both the oral and IV formulations, without the need for dose adjustment when switching administration routes. © 2014 Cubist Pharmaceuticals. Pharmacotherapy published by Wiley Periodicals, Inc. on behalf of Pharmacotherapy Publications, Inc.
Cone calorimeter evaluation of two flame retardant cotton fabrics
USDA-ARS?s Scientific Manuscript database
Unbleached (grey) cotton needle punched nonwoven (NW) fabrics with 12.5% polypropylene scrim were treated with two phosphate-nitrogen based fire-retardant (FR) formulations, SRRC-1 and SRRC-2. The SRRC-1 formulation contains diammonium phosphate as the flame retardant chemical along with urea and d...
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...
Li, Yujie; He, Xiaoman; Hu, Huimin; Zhang, Tingting; Qu, Jun; Zhang, Qiwu
2018-05-21
Excessive existences of nutrients such as phosphate in the aqueous environment remain as a heavy concern although many researches have been reported for dealing with their removal. Based on the understanding toward the interactions of Fe compounds with phosphate and carbonate from many available researches, we designed a very simple and efficient approach for phosphate removal by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) as FeSO 4 on CaCO 3 . Addition and agitation of Fe(II) and CaCO 3 simultaneously to phosphate solution allowed an amorphous Fe(III)-P or Ca-Fe(III)-P precipitation, with a phosphate removal rate close to 100%, to reduce the residual phosphorus concentration less than 0.03 mg/L from 100 mg/L, reaching the discharge limit, even with the addition amounts of CaCO 3 as low as a stoichiometric ratio of CaCO 3 /PO 4 3- at 0.9 and ratio of Fe(II)/PO 4 3- at 1.5, and the percent of P 2 O 5 in the precipitate was as high as 19.4% enough as phosphate source for fertilizer production. Different from the alkaline process with enough OH - group, the slow hydrolysis of CaCO 3 resulting in low concentration of OH - group for the formation of Fe(OH) 2 , which was oxidized soon by air into trivalent Fe, achieved a continuous generation of fresh ferric composition for phosphate precipitation and could avoid its rapid formation and subsequent transformation into stable FeOOH of large particle size to lose the activity. These results based on the synergistic effect of using CaCO 3 and Fe(II) together may have applications in the treatment of eutrophic wastewater through a process with many advantages of easy operation and low-cost besides the high removal efficiency with phosphate percentage inside the precipitate high enough to serve for fertilizer production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shi, Ying; Gan, Lei; Li, Xibing; He, Suya; Sun, Cheng; Gao, Li
2018-02-01
Phosphate rock in Guiyang (Southwest of China) is used for the phosphate production, and hence generating a by-product phosphogypsum (PG). From 2007, part of the PG was used as main raw material for cemented backfill. The main objective of this paper is to investigate the geochemical evolution of metals before and after the PG inclusion into the backfill matrix. A sequential extraction procedure was selected to determine the chemical speciation of metals in phosphate rock, PG, binder and field backfill samples. Dynamics of metals going from phosphate rock and PG to backfill have been evaluated. The results showed that almost all the metals in the PG and binder had been effectively transferred to the backfill. Furthermore, compared to metals taken out along with phosphate rock exploitation, PG-based cemented backfill might bring some metals back but with only little metals in mobile fraction. Additionally, in order to determine the long-term behavior of metals in PG-based cemented backfill, the field samples which were backfilled from 2007 to 2016 were collected and analyzed. The results showed that total amounts of metals in backfill were all within similar range, indicating that the cemented PG backfill could be an effective method to solidify/stabilize metals in PG. Nevertheless, Due to the high water-soluble fractions detected, the concentrations of As, Mn and Zn should be continuously monitored. Copyright © 2017. Published by Elsevier Ltd.
Lee, Seon-Hwa; Hong, Seung-Hye; An, Jung-Ung; Kim, Kyoung-Rok; Kim, Dong-Eun; Kang, Lin-Woo; Oh, Deok-Kun
2017-05-16
Sugar 4-epimerization reactions are important for the production of rare sugars and their derivatives, which have various potential industrial applications. For example, the production of tagatose, a functional sweetener, from fructose by sugar 4-epimerization is currently constrained because a fructose 4-epimerase does not exist in nature. We found that class II D-fructose-1,6-bisphosphate aldolase (FbaA) catalyzed the 4-epimerization of D-fructose-6-phosphate (F6P) to D-tagatose-6-phosphate (T6P) based on the prediction via structural comparisons with epimerase and molecular docking and the identification of the condensed products of C3 sugars. In vivo, the 4-epimerization activity of FbaA is normally repressed. This can be explained by our results showing the catalytic efficiency of D-fructose-6-phosphate kinase for F6P phosphorylation was significantly higher than that of FbaA for F6P epimerization. Here, we identified the epimerization reactions and the responsible catalytic residues through observation of the reactions of FbaA and L-rhamnulose-1-phosphate aldolases (RhaD) variants with substituted catalytic residues using different substrates. Moreover, we obtained detailed potential epimerization reaction mechanism of FbaA and a general epimerization mechanism of the class II aldolases L-fuculose-1-phosphate aldolase, RhaD, and FbaA. Thus, class II aldolases can be used as 4-epimerases for the stereo-selective synthesis of valuable carbohydrates.
Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.
2010-01-01
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558
Fischer, Fabian; Zufferey, Géraldine; Sugnaux, Marc; Happe, Manuel
2015-01-01
Phosphate was remobilised from iron phosphate contained in digested sewage sludge using a bio-electric cell. A significant acceleration above former results was caused by strongly basic catholytes. For these experiments a dual chambered microbial electrolysis cell with a small cathode (40 mL) and an 80 times larger anode (2.5 L) was equipped with a platinum sputtered reticulated vitreous carbon cathode. Various applied voltages (0.2-6.0 V) generated moderate to strongly basic catholytes using artificial waste water with pH close to neutral. Phosphate from iron phosphate contained in digested sewage sludge was remobilised most effectively at pH ∼13 with up to 95% yield. Beside minor electrochemical reduction, hydroxyl substitution was the dominating remobilisation mechanism. Particle-fluid kinetics using the "shrinking core" model allowed us to determine the reaction controlling step. Reaction rates changed with temperature (15-40 °C) and an activation energy of Ea = 55 kJ mol(-1) was found. These analyses indicated chemical and physical reaction control, which is of interest for future scale-up work. Phosphate remobilisation rates increased significantly, yields doubled and recovered PO4(3-) concentrations increased four times using a task specific bio-electric system. The result is a sustainable process for decentralized phosphate mining and a green chemical base generator useful also for many other sustainable processing needs.
Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud
2016-02-23
(31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.
NASA Astrophysics Data System (ADS)
Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud
2016-02-01
31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.
Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud
2016-01-01
31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733
Wester, Maarten; Simonis, Frank; Gerritsen, Karin G; Boer, Walther H; Wodzig, Will K; Kooman, Jeroen P; Joles, Jaap A
2013-09-01
Continuous dialysis could provide benefit by constant removal of potassium and phosphate. This study investigates the suitability of specific potassium and phosphate sorbents for incorporation in an extracorporeal device by capacity and regenerability testing. Capacity testing was performed in uraemic plasma. Regenerability was tested for potassium sorbents, with adsorption based on cationic exchange for sodium, with 0.1 M and 1.0 M NaCl. To regenerate phosphate sorbents, with adsorption based on anionic exchange, 0.1 M and 1.0 M NaHCO3 and NaOH were used. Subsequently, sodium polystyrene divinylbenzene sulphonate (RES-A) and iron oxide hydroxide (FeOOH) beads were incorporated in a cartridge for testing in bovine blood using a recirculating blood circuit and a dialysis circuit separated by a high-flux dialyzer (dynamic setup). Preloading was tested to assess whether this could limit calcium and magnesium adsorption. In the batch-binding assays, zirconium phosphate most potently adsorbed potassium (0.44 ± 0.05 mmol/g) and RES-A was the best regenerable potassium sorbent (92.9 ± 5.7% with 0.1 M NaCl). Zirconium oxide hydroxide (ZIR-hydr) most potently adsorbed phosphate (0.23 ± 0.05 mmol/g) and the polymeric amine sevelamer carbonate was the best regenerable sorbent (85.7 ± 5.2% with 0.1 M NaHCO3). In the dynamic setup, a potassium adsorption of 10.72 ± 2.06 mmol in 3 h was achieved using 111 g of RES-A and a phosphate adsorption of 4.73 ± 0.53 mmol in 3 h using 55 g of FeOOH. Calcium and magnesium preloading was shown to reduce the net adsorption in 3 h from 3.57 ± 0.91 to -0.29 ± 1.85 and 1.02 ± 0.05 to -0.31 ± 0.18 mmol, respectively. RES-A and FeOOH are suitable, regenerizable sorbents for potassium and phosphate removal in dialysate regeneration. Use of zirconium carbonate and ZIR-hydr may further increase phosphate adsorption, but may compromise sorbent regenerability. Use of polymeric amines for phosphate adsorption may enhance sorbent regenerability. Calcium and magnesium preloading considerably reduced net adsorption of these ions.
Ito, Atsuo; Sogo, Yu; Yamazaki, Atsushi; Aizawa, Mamoru; Osaka, Akiyoshi; Hayakawa, Satoshi; Kikuchi, Masanori; Yamashita, Kimihiro; Tanaka, Yumi; Tadokoro, Mika; de Sena, Lídia Ágata; Buchanan, Fraser; Ohgushi, Hajime; Bohner, Marc
2015-10-01
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells. The evaluation and subsequent optimization of the resorbability of calcium phosphate are crucial in the use of resorbable calcium phosphates. Although the resorbability of calcium phosphates has usually been evaluated in vivo, establishment of a standard in vitro method that can predict in vivo resorption is beneficial for accelerating development and commercialization of new resorbable calcium phosphate materials as well as reducing use of animals. However, there are only a few studies to propose such an in vitro method within which direct comparison was carried out between in vitro and in vivo resorption. We propose here an in vitro method based on measuring dissolution rate. The efficacy and limitations of the method were evaluated by international round-robin tests as well as comparison with in vivo resorption studies for future standardization. This study was carried out as one of Versailles Projects on Advanced Materials and Standards (VAMAS). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tsogas, Ioannis; Tsiourvas, Dimitris; Nounesis, George; Paleos, Constantinos M
2006-12-19
Mixed anionic liposomes consisting of dihexadecyl phosphate, phosphatidylcholine, and cholesterol were employed as model systems for assessing the ability of a series of functionalized dendrimers, bearing a varying number of guanidinium groups at their surface, to translocate across the liposomal bilayers. At low guanidinium/phosphate molar ratios or when weakly guanidinylated dendrimeric derivatives were employed, the dendrimeric derivative acted as a kind of "molecular glue" leading to a simple adhesion of the liposomes. Liposomal fusion occurred to a certain extent at high guanidinium/phosphate molar ratios or when highly guanidinylated dendrimeric derivatives were employed. Furthermore, translocation of these dendrimeric derivatives to the liposomal core was observed for low to medium guanidinylation and at low guanidinium/phosphate molar ratios which was, however, enhanced when the lipid bilayer was in its fluid liquid-crystalline phase. Thus, an optimum balance is required between the binding strength of guanidinium with the phosphate groups and the degree of hydrophilicity of the guanidinylated dendrimers for the transport of the latter to the liposomal core to occur.
da Cruz, Diego Fernandes; Bortoletto-Santos, Ricardo; Guimarães, Gelton Geraldo Fernandes; Polito, Wagner Luiz; Ribeiro, Caue
2017-07-26
The coating of fertilizers with polymers is an acknowledged strategy for controlling the release of nutrients and their availability in soil. However, its effectiveness in the case of soluble phosphate fertilizers is still uncertain, and information is lacking concerning the chemical properties and structures of such coatings. Here, an oil-based hydrophobic polymer system (polyurethane) is proposed for the control of the release of phosphorus from diammonium phosphate (DAP) granules. This material was systematically characterized, with evaluation of the delivery mechanism and the availability of phosphate in an acid soil. The results indicated that thicker coatings can change the maximum nutrient availability toward longer periods, such as 4.5-7.5 wt % DAP coated, that presented the highest concentrations at 336 h, as compared to 168 h for uncoated DAP. In contrast, DAP treated with 9.0 wt % began to increase the concentration after 168 h until it results in maximum release at 672 h. These effects could be attributed to the homogeneity of the polymer and the porosity. The strategy successfully provided long-term availability of a phosphate source.
Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil.
Lamb, Dane T; Kader, Mohammed; Wang, Liang; Choppala, Girish; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Naidu, Ravi
2016-12-06
Phytotoxicity of inorganic contaminants is influenced by the presence of competing ions at the site of uptake. In this study, interaction of soil pore-water constituents with arsenate toxicity was investigated in cucumber (Cucumis sativa L) using 10 contrasting soils. Arsenate phytotoxicity was shown to be related to soluble carbonate and phosphate. The data indicated that dissolved phosphate and carbonate had an antagonistic impact on arsenate toxicity to cucumber. To predict arsenate phytotoxicity in soils with a diverse range of soil solution properties, both carbonate and phosphate were required. The relationship between arsenic and pore-water toxicity parameters was established initially using multiple regression. In addition, based on the relationship with carbonate and phosphate we successively applied a terrestrial biotic ligand-like model (BLM) including carbonate and phosphate. Estimated effective concentrations from the BLM-like parametrization were strongly correlated to measured arsenate values in pore-water (R 2 = 0.76, P < 0.001). The data indicates that an ion interaction model similar to the BLM for arsenate is possible, potentially improving current risk assessments at arsenic and co-contaminated soils.
Shariff, Khairul Anuar; Tsuru, Kanji; Ishikawa, Kunio
2017-06-01
β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanisms of Military Coatings Degradation
2003-08-01
fluoride (DuPont Inc., Buffalo, NY) release film. Additionally a primer and topcoat system were also prepared onto a stainless steel mesh substrate...Based Epoxy Surface Treatment: TT- C-490 Zinc Phosphate on a steel s B=(64159), LOW VOC and Zero HAP ARMY SYSTEM Top Coat: MIL-DTL-64159 Water...Zinc Phosphate on a steel su C=(85285), NAVY CONTROL SYSTEM Top Coat: MIL-C-85285 Solvent based Polyurethane Alip polyols Primer: MIL-P
Polymeric dental composites based on remineralizing amorphous calcium phosphate fillers
Skrtic, Drago; Antonucci, Joseph M.
2017-01-01
For over two decades we have systematically explored structure-composition-property relationships of amorphous calcium phosphate (ACP)-based polymeric dental composites. The appeal of these bioactive materials stems from their intrinsic ability to prevent demineralization and/or restore defective tooth structures via sustained release of remineralizing calcium and phosphate ions. Due to the compositional similarity of the ACP to biological tooth mineral, ACP-based composites should exhibit excellent biocompatibility. Research described in this article has already yielded remineralizing sealants and orthodontic adhesives as well as a prototype root canal sealer. Our work has also contributed to a better understanding on how polymer matrix structure and filler/matrix interactions affect the critical properties of these polymeric composites and their overall performance. The addition of antimicrobial compounds to the formulation of ACP composites could increase their medical and dental regenerative treatment applications, thereby benefiting an even greater number of patients. PMID:29599572
Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu
2012-08-01
The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.
Croteau, Rodney Bruce; Wildung, Mark Raymond; Lange, Bernd Markus; McCaskill, David G.
2001-01-01
cDNAs encoding 1-deoxyxylulose-5-phosphate synthase from peppermint (Mentha piperita) have been isolated and sequenced, and the corresponding amino acid sequences have been determined. Accordingly, isolated DNA sequences (SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) are provided which code for the expression of 1-deoxyxylulose-5-phosphate synthase from plants. In another aspect the present invention provides for isolated, recombinant DXPS proteins, such as the proteins having the sequences set forth in SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8. In other aspects, replicable recombinant cloning vehicles are provided which code for plant 1-deoxyxylulose-5-phosphate synthases, or for a base sequence sufficiently complementary to at least a portion of 1-deoxyxylulose-5-phosphate synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding a plant 1-deoxyxylulose-5-phosphate synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant 1-deoxyxylulose-5-phosphate synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant 1-deoxyxylulose-5-phosphate synthase may be used to obtain expression or enhanced expression of 1-deoxyxylulose-5-phosphate synthase in plants in order to enhance the production of 1-deoxyxylulose-5-phosphate, or its derivatives such as isopentenyl diphosphate (BP), or may be otherwise employed for the regulation or expression of 1-deoxyxylulose-5-phosphate synthase, or the production of its products.
Influence of pH on in vitro disintegration of phosphate binders.
Stamatakis, M K; Alderman, J M; Meyer-Stout, P J
1998-11-01
Hyperphosphatemia, a common complication in patients with end-stage renal disease, is treated with oral phosphate-binding medications that restrict phosphorus absorption from the gastrointestinal (GI) tract. Impaired product performance, such as failure to disintegrate and/or dissolve in the GI tract, could limit the efficacy of the phosphate binder. Disintegration may be as important as dissolution for predicting in vitro product performance for medications that act locally on the GI tract, such as phosphate binders. Furthermore, patients with end-stage renal disease have a wide range in GI pH, and pH can influence a product's performance. The purpose of this study was to determine the effect of pH on in vitro disintegration of phosphate binders. Fifteen different commercially available phosphate binders (seven calcium carbonate tablet formulations, two calcium acetate tablet formulations, three aluminum hydroxide capsule formulations, and three aluminum hydroxide tablet formulations) were studied using the United States Pharmacopeia (USP) standard disintegration apparatus. Phosphate binders were tested in simulated gastric fluid (pH 1.5), distilled water (pH 5.1), and simulated intestinal fluid (pH 7.5). Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within 30 minutes. Results indicate that 9 of the 15 phosphate binders tested showed statistically significant differences in disintegration time (DT) based on pH. The percentage of binders that passed the disintegration study test in distilled water, gastric fluid, and intestinal fluid were 80%, 80%, and 73%, respectively. The findings of this study show that the disintegration of commercially available phosphate binders is highly variable. The pH significantly affected in vitro disintegration in the majority of phosphate binders tested; how significantly this affects in vivo performance has yet to be studied.
NASA Astrophysics Data System (ADS)
Pohlmann, Th.; Raabe, Th.; Doerffer, R.; Beddig, S.; Brockmann, U.; Dick, S.; Engel, M.; Hesse, K.-J.; König, P.; Mayer, B.; Moll, A.; Murphy, D.; Puls, W.; Rick, H.-J.; Schmidt-Nia, R.; Schönfeld, W.; Sündermann, J.
1999-09-01
The intention of this paper is to analyse a specific phenomenon observed during the KUSTOS campaigns in order to demonstrate the general capability of the KUSTOS and TRANSWATT approach, i.e. the combination of field and modelling activities in an interdisciplinary framework. The selected phenomenon is the increase in phosphate concentrations off the peninsula of Eiderstedt on the North Frisian coast sampled during four subsequent station grids of the KUSTOS summer campaign in 1994. First of all, a characterisation of the observed summer situation is given. The phosphate increase is described in detail in relation to the dynamics of other nutrients. In a second step, a first-order estimate of the dispersion of phosphate is discussed. The estimate is based on the box model approach and will focus on the effects of the river Elbe and Wadden Sea inputs on phosphate dynamics. Thirdly, a fully three-dimensional model system is presented, which was implemented in order to analyse the phosphate development. The model system is discussed briefly, with emphasis on phosphorus-related processes. The reliability of one of the model components, i.e. the hydrodynamical model, is demonstrated by means of a comparison of model results with observed current data. Thereafter, results of the German Bight seston model are employed to interpret the observed phosphate increase. From this combined analysis, it was possible to conclude that the phosphate increase during the first three surveys was due to internal transformation processes within the phosphorus cycle. On the other hand, the higher phosphate concentrations measured in the last station grid survey were caused by a horizontal transport of phosphate being remobilised in the Wadden Sea.
Arikan, Hakki; Guler, Derya; Birdal, Gurdal; Nalcaci, Serdar; Aykut, Emre; Ozcan, Ceren; Irmak, Rahmi; Banzragch, Munkhtsetseg; Arzu, Velioglu
2013-07-01
Oral sodium phosphate-based laxatives are frequently used for bowel preparation or relief of constipation in some countries. However, these agents are not without risk. Small and clinical insignificant increments on serum phosphorus levels are observed in almost all individuals after use of oral sodium phosphate. Some patients are prone to severe hyperphosphatemia such as elders, those with chronic or acute renal disease and those with poor bowel motility. Severe hyperphosphatemia accompanied with hypocalcemia may be life-threatening in these patients. We present an 18-year-old woman with neuronal intestinal dysplasia who developed symptomatic and severe hyperphosphatemia after bowel preparation with oral sodium phosphate enema. Urgent hemodialysis was performed two times for severe hyperphosphatemia.
Calcium phosphate-based coatings on titanium and its alloys.
Narayanan, R; Seshadri, S K; Kwon, T Y; Kim, K H
2008-04-01
Use of titanium as biomaterial is possible because of its very favorable biocompatibility with living tissue. Titanium implants having calcium phosphate coatings on their surface show good fixation to the bone. This review covers briefly the requirements of typical biomaterials and narrowly focuses on the works on titanium. Calcium phosphate ceramics for use in implants are introduced and various methods of producing calcium phosphate coating on titanium substrates are elaborated. Advantages and disadvantages of each type of coating from the view point of process simplicity, cost-effectiveness, stability of the coatings, coating integration with the bone, cell behavior, and so forth are highlighted. Taking into account all these factors, the efficient method(s) of producing these coatings are indicated finally.
Aranaz, Inmaculada; Martínez-Campos, Enrique; Moreno-Vicente, Carolina; Civantos, Ana; García-Arguelles, Sara; del Monte, Francisco
2017-01-01
Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA). In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS) and hydroxyapatite (Hap) also containing acetic acid (pH = 4.5). For better characterization of the nature of the inorganic matter entrapped within the resulting composite, we performed either oxygen plasma or calcination processes to remove the organic matter. The nature of the phosphate salts was studied by XRD and NMR studies. Amorphous calcium phosphate (ACP) was identified as the mineral phase in the composites submitted to oxygen plasma, whereas crystalline Hap was obtained after calcination. SEM microscopy revealed the formation of porous structures (porosity around 80–85%) in the original composites, as well as in the inorganic matrices obtained after calcination, with porous channels of up to 50 µm in diameter in the former case and of up to 20 µm in the latter. The biocompatibility of the composites was assessed using two different cell lines: C2C12GFP premyoblastic cells and MC3T3 preosteoblastic cells. PMID:28772874
Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...
Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation
USDA-ARS?s Scientific Manuscript database
A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...
Many water utilities in the United States rely on the addition of phosphate-based corrosion inhibitors to optimize their corrosion control and comply with requirements of the Lead and Copper Rule. Orthophosphate is used on the theory of forming low solubility Pb(II)-orthophosphat...
Hillen, W; Gassen, G
1978-03-29
The ApU analogues ApT, Apcl5U, Apbr5U, Apa5U and Apno5(2)U were synthesized with the aid of ribonuclease U2 starting from 2',3'-cyclic Ap and the respective uridine derivatives. For these compounds the ultraviolet data, the difference spectra, the hypochromism and the temperature dependence of the CD spectra are reported. The dimerisation shifts of the pyrimidine protons which were obtained from the 100 MHz PMR spectra confirm the optical results. The influence of the substituents in the 5 position of the uracil ring on base-base interaction and the conformation of the dinucleoside phosphates is discussed with respect to the van der Waals radii and the electronic effects of these groups. As calculated from the hypochromism the dinucleoside phosphates can be arranged according to decreasing base-base interaction: Apno5(2)U greater than Apbr5U approximately ApT greater than Apcl5U greater than ApU greater than Apa5U.
NASA Astrophysics Data System (ADS)
Gamov, G. A.; Zavalishin, M. N.; Usacheva, T. R.; Sharnin, V. A.
2017-05-01
Thermodynamic characteristics of the formation of the Schiff base between isoniazid and pyridoxal 5'-phosphate in an aqueous solution at different pH values of a medium are determined by means of spectrophotometry and calorimetric titration. The process kinetics is studied spectrophotometrically, and the reaction rate constants for the formation of the imine at different acidities of a medium are determined. Biochemical aspects of the binding of pyridoxal 5'-phosphate into stable compounds are discussed.
Mechanical behaviour of degradable phosphate glass fibres and composites-a review.
Colquhoun, R; Tanner, K E
2015-12-23
Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.
Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C
2014-04-01
The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.
Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John
2017-10-01
Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medvecky, L; Stulajterova, R; Giretova, M; Mincik, J; Vojtko, M; Balko, J; Briancin, J
2018-03-01
To investigate the tubule occlusion and remineralization potential of a novel toothpaste with active tetracalcium phosphate/monetite mixtures under de/remineralization cycling. Dentin de/remineralization cycling protocol consisted of demineralization in 1% citric acid at pH 4.6 with following remineralization with toothpastes and soaking in artificial saliva. Effectiveness of toothpastes to promote remineralization was evaluated by measurement of microhardness recovery, analysis of surface roughness, thickness of coating and scanning electron microscopy. The novel tetracalcium phosphate/monetite dentifrice had comparable remineralization potential as commercial calcium silicate/phosphate (SENSODYNE ® ) and magnesium aluminum silicate (Colgate ® ) toothpastes and significantly higher than control saliva (p<0.02). Surface roughness was significantly lower after treatment with prepared and SENSODYNE ® dentifirice (p<0.05). The coatings on dentin surfaces was significantly thicker after applying toothpastes as compared to negative control (p<0.001). The new fluoride toothpaste formulation with bioactive tetracalcium phosphate/monetite calcium phosphate mixture effectively occluded dentin tubules and showed good dentin remineralization potential under de/remineralization cycling. It could replace professional powder preparation based on this mixture. It was demonstrated that prepared dentifrice had comparable properties with commercial fluoride calcium silicate/phosphate or magnesium aluminum silicate dentifrices. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum
NASA Astrophysics Data System (ADS)
Lin, Na; Li, Jian; Lu, Zhixiang; Bian, Longchun; Zheng, Liyan; Cao, Qiue; Ding, Zhongtao
2015-03-01
Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions.Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions. Electronic supplementary information (ESI) available: Supplementary figures. See DOI: 10.1039/c5nr00515a
Mukhtar, Salma; Shahid, Izzah; Mehnaz, Samina; Malik, Kauser A
2017-12-01
Biofertilizers are usually carrier-based inoculants containing beneficial microorganisms. Incorporation of microorganisms in carrier material enables easy-handling, long-term storage and high effectiveness of biofertilizers. Objective of the present study was to assess enriched biogas sludge and soil as biofertilizer carriers on growth and yield of wheat. Six phosphate solubilizing strains were used in this study. Three phosphate solubilizing strains, 77-NS2 (Bacillus endophyticus), 77-CS-S1 (Bacillus sphaericus) and 77-NS5 (Enterobacter aerogenes) were isolated from the rhizosphere of sugarcane, two strains, PSB5 (Bacillus safensis) and PSB12 (Bacillus megaterium) from the rhizosphere of wheat and one halophilic phosphate solubilizing strain AT2RP3 (Virgibacillus sp.) from the rhizosphere of Atriplex amnicola, were used as bioinoculants. Phosphate solubilization ability of these strains was checked in vitro in Pikovskaya medium, containing rock phosphate (RP) as insoluble P source, individually supplemented with three different carbon sources, i.e., glucose, sucrose and maltose. Maximum phosphate solubilization; 305.6μg/ml, 217.2μg/ml and 148.1μg/ml was observed in Bacillus strain PSB12 in Pikovskaya medium containing sucrose, maltose and glucose respectively. A field experiment and pot experiments in climate control room were conducted to study the effects of biogas sludge and enriched soil based phosphorous biofertilizers on growth of wheat. Bacillus strain PSB12 significantly increased root and shoot dry weights and lengths using biogas sludge as carrier material in climate control room experiments. While in field conditions, significant increase in root and shoot dry weights, lengths and seed weights was seen by PSB12 and PSB5 (Bacillus) and Enterobacter strain 77-NS5 using biogas sludge as carrier. PSB12 also significantly increased both root and shoot dry weights and lengths in field conditions when used as enriched soil based inoculum. These results indicated that bacterial isolates having plant beneficial traits such as P solubilization are more promising candidates as biofertilizer when used with carrier materials. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Scholz, R. W.; Wellmer, F.-W.
2015-01-01
Several recent papers predict a scarcity of phosphate reserves in the near future. The paper by Edixhoven et al. (2014), for instance, expresses the doubts about whether the upward estimate of reserves by the IFDC (2010) and the USGS (2010) provide an accurate, reliable, and comparable picture, as they are based on reports that do not clearly differentiate between phosphate ore and phosphate products (i.e., marketable phosphate rock concentrate). Further the indistinct use of the terms reserves and resources is criticized. Edixhoven et al. ask for a differentiated inventory of world phosphate reserves including "guidelines which determine the appropriate drill hole distances." The claim that humanity is on the safe side with respect to future phosphate is supply is doubted as the validity of the IFDC's upgrading of the Moroccan data to 50 Gt phosphate is questioned. The present paper identifies and discusses basic conceptual errors of the paper by Edixhoven et al. and related papers that predict a short or mid-term phosphorus scarcity. These include the non-acknowledgment of the dynamic nature of reserves (which depends on price, technology, and innovation for exploiting low-grade deposits, etc.), the mixing of finiteness and staticness of the ultimate recoverable resources (i.e., phosphorus that may be mined economically in the long-term future), the improper use of the Hubbert analysis (which, e.g., simply uses the USGS estimates of reserves as a substitute of an estimate of ultimate recoverable resources) and the geostatistical naive/unprofessional demand for fixed drilling plans to assess reserves. We reconstruct the IFDC and USGS estimates and conclude that there is no evidence for considering the 50 Gt phosphate concentrate as an unreasonable estimate for Moroccan reserves. However, the partial mixing of different units (e.g., phosphate ore and phosphate concentrate or marketable product) in the USGS data may be avoided by improving the data base and using proper conversion factors. When applying these factors and assess all reserves in marketable Gt of phosphate rock (PR-M), which is a common scale for measuring annual consumption, the magnitude of the USGS estimates 2014 of 67 Gt PR reserves does not change essentially yet decrease to 64 (IFDC assessment) to 58.3 Gt PR-M (worst case calculation). We argue that, a better harmonization of the (national) classification systems is meaningful. The discussion suggests that the discrepant estimates of resource estimates that can be found in literature are due to different system understandings, different conceptions of sciences, and diverging worldviews. Finally, we discuss in what way an independent and scientifically sound assessment of the phosphate resources can be realized in the long-term. We suggest the establishment of a solidly funded, international standing committee that regularly analyzes global geopotential as the source of future resources and reserves. Such a committee may be hosted by international science associations of geoscientists, given that a comparative assessment with other environmental threats reveals that investments in this field are proportional and meaningful.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.
Lopes, Antonio Alberto; Tong, Lin; Thumma, Jyothi; Li, Yun; Fuller, Douglas S; Morgenstern, Hal; Bommer, Jürgen; Kerr, Peter G; Tentori, Francesca; Akiba, Takashi; Gillespie, Brenda W; Robinson, Bruce M; Port, Friedrich K; Pisoni, Ronald L
2012-07-01
Poor nutritional status and both hyper- and hypophosphatemia are associated with increased mortality in maintenance hemodialysis (HD) patients. We assessed associations of phosphate binder prescription with survival and indicators of nutritional status in maintenance HD patients. Prospective cohort study (DOPPS [Dialysis Outcomes and Practice Patterns Study]), 1996-2008. 23,898 maintenance HD patients at 923 facilities in 12 countries. Patient-level phosphate binder prescription and case-mix-adjusted facility percentage of phosphate binder prescription using an instrumental-variable analysis. All-cause mortality. Overall, 88% of patients were prescribed phosphate binders. Distributions of age, comorbid conditions, and other characteristics showed small differences between facilities with higher and lower percentages of phosphate binder prescription. Patient-level phosphate binder prescription was associated strongly at baseline with indicators of better nutrition, ie, higher values for serum creatinine, albumin, normalized protein catabolic rate, and body mass index and absence of cachectic appearance. Overall, patients prescribed phosphate binders had 25% lower mortality (HR, 0.75; 95% CI, 0.68-0.83) when adjusted for serum phosphorus level and other covariates; further adjustment for nutritional indicators attenuated this association (HR, 0.88; 95% CI, 0.80-0.97). However, this inverse association was observed for only patients with serum phosphorus levels ≥3.5 mg/dL. In the instrumental-variable analysis, case-mix-adjusted facility percentage of phosphate binder prescription (range, 23%-100%) was associated positively with better nutritional status and inversely with mortality (HR for 10% more phosphate binders, 0.93; 95% CI, 0.89-0.96). Further adjustment for nutritional indicators reduced this association to an HR of 0.95 (95% CI, 0.92-0.99). Results were based on phosphate binder prescription; phosphate binder and nutritional data were cross-sectional; dietary restriction was not assessed; observational design limits causal inference due to possible residual confounding. Longer survival and better nutritional status were observed for maintenance HD patients prescribed phosphate binders and in facilities with a greater percentage of phosphate binder prescription. Understanding the mechanisms for explaining this effect and ruling out possible residual confounding require additional research. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina
2014-06-01
Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, Jeffrey G.; Giammar, Daniel E.; Wang, Zheming
Phosphate addition is an in situ remediation approach that may enhance the sequestration of uranium without requiring sustained reducing conditions. However, the geochemical factors that determine the dominant immobilization mechanisms upon phosphate addition are insufficiently understood to design efficient remediation strategies or accurately predict U(VI) transport. The overall objective of our project is to determine the dominant mechanisms of U(VI)-phosphate reactions in subsurface environments. Our research approach seeks to determine the U(VI)-phosphate solid that form in the presence of different groundwater cations, characterize the effects of phosphate on U(VI) adsorption and precipitation on smectite and iron oxide minerals, examples ofmore » two major reactive mineral phases in contaminated sediments, and investigate how phosphate affects U(VI) speciation and fate during water flow through sediments from contaminated sites. The research activities conducted for this project have generated a series of major findings. U(VI) phosphate solids from the autunite mineral family are the sole phases to form during precipitation, with uranyl orthophosphate not occurring despite its predicted greater stability. Calcium phosphates may take up substantial quantities of U(VI) through three different removal processes (adsorption, coprecipitation, and precipitation) but the dominance of each process varies with the pathway of reaction. Phosphate co-adsorbs with U(VI) onto smectite mineral surfaces, forming a mixed uranium-phosphate surface complex over a wide range of conditions. However, this molecular-scale association of uranium and phosphate has not effect on the overall extent of uptake. In contrast, phosphate enhanced U(VI) adsorption to iron oxide minerals at acidic pH conditions but suppresses such adsorption at neutral and alkaline pH, despite forming mixed uranium-phosphate surface complexes during adsorption. Nucleation barriers exist that inhibit U(VI) phosphate solids from precipitating in the presence of smectite and iron oxide minerals as well as sediments from contaminated sites. Phosphate addition enhances retention of U(VI) by sediments from the Rifle, CO and Hanford, WA field research sites, areas containing substantial uranium contamination of groundwater. This enhanced retention is through adsorption processes. Both fast and slow uptake and release behavior is observed, indicating that diffusion of uranium between sediment grains has a substantial effect of U(VI) fate in flowing groundwater systems. This project has revealed the complexity of U(VI)-phosphate reactions in subsurface systems. Distinct chemical processes occur in acidic and alkaline groundwater systems. For the latter, calcium phosphate formation, solution complexation, and competition between phosphate and uranium for adsorption sites may serve to either enhance or inhibit U(VI) removal from groundwater. Under the groundwater conditions present at many contaminated sites in the U.S., phosphate appears to general enhance U(VI) retention and limit transport. However, formation of low-solubility uranium phosphate solids does not occur under field-relevant conditions, despite this being the desired product of phosphate-based remediation approaches. In addition, simple equilibrium approaches fail to well-predict uranium fate in contaminated sediments amended with phosphate, with reactive transport models that include reaction rates and mass transport through occluded domains needed to properly describe the system. Phosphate addition faces challenges to being effective as a stand-alone groundwater treatment approach but would prove beneficial as an add-on to other treatment methods that will further limit uranium migration in the subsurface.« less
Internal loading of phosphate in Lake Erie Central Basin.
Paytan, Adina; Roberts, Kathryn; Watson, Sue; Peek, Sara; Chuang, Pei-Chuan; Defforey, Delphine; Kendall, Carol
2017-02-01
After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake. Copyright © 2016 Elsevier B.V. All rights reserved.
Novello, F.; Gumaa, J. A.; McLean, Patricia
1969-01-01
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known `overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30–40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine–zinc–insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine–zinc–insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding. PMID:5791534
Uranium(VI) Scavenging by Amorphous Iron Phosphate Encrusting Sphaerotilus natans Filaments.
Seder-Colomina, Marina; Morin, Guillaume; Brest, Jessica; Ona-Nguema, Georges; Gordien, Nilka; Pernelle, Jean-Jacques; Banerjee, Dipanjan; Mathon, Olivier; Esposito, Giovanni; van Hullebusch, Eric D
2015-12-15
U(VI) sorption to iron oxyhydroxides, precipitation of phosphate minerals, as well as biosorption on bacterial biomass are among the most reported processes able to scavenge U(VI) under oxidizing conditions. Although phosphates significantly influence bacterially mediated as well as iron oxyhydroxide mediated scavenging of uranium, the sorption or coprecipitation of U(VI) with poorly crystalline nanosized iron phosphates has been scarcely documented, especially in the presence of microorganisms. Here we show that dissolved U(VI) can be bound to amorphous iron phosphate during their deposition on Sphaerotilus natans filamentous bacteria. Uranium LIII-edge EXAFS analysis reveals that the adsorbed uranyl ions share an equatorial oxygen atom with a phosphate tetrahedron of the amorphous iron phosphate, with a characteristic U-P distance of 3.6 Å. In addition, the uranyl ions are connected to FeO6 octahedra with U-Fe distances at ~3.4 Å and at ~4.0 Å. The shortest U-Fe distance corresponds to a bidentate edge-sharing complex often reported for uranyl adsorption onto iron oxyhydroxides, whereas the longest U-Fe and U-P distances can be interpreted as a bidentate corner-sharing complex, in which two adjacent equatorial oxygen atoms are shared with the vertices of a FeO6 octahedron and of a phosphate tetrahedron. Furthermore, based on these sorption reactions, we demonstrate the ability of an attached S. natans biofilm to remove uranium from solution without any filtration step.
Phosphate Remediation and Recovery from Lake Water using Modified Iron Oxide-based Adsorbents
Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffract...
USDA-ARS?s Scientific Manuscript database
A novel plasticizer, epoxidized cardanol diethyl phosphate (ECEP), based on cardanol was synthesized. Chemical structure of ECEP was characterized by fourier transform infrared (FTIR), 1H-nuclear magnetic resonance(1H NMR) and 13C-nuclear magnetic resonance(13C NMR) spectroscopy. Effects of ECEP sub...
Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project
ERIC Educational Resources Information Center
Tribe, Lorena; Barja, Beatriz C.
2004-01-01
A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…
NASA Astrophysics Data System (ADS)
Wang, Liuzheng; He, Xiang; Zhang, Wei; Liu, Yong; Banks, Craig E.; Zhang, Ying
2018-02-01
The structure-property relationship between biomineralized calcium phosphate compounds upon a fluorescent quenching-recovery platform and their distinct crystalline structure and surficial functional groups are investigated. A fluorescence-based sensing platform is shown to be viable for the sensing of 8-hydroxy-2-deoxy-guanosine in simulated systems.
Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru
2013-04-15
A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.
Removal of fluoride ion by bone char produced from animal biomass.
Kawasaki, Naohito; Ogata, Fumihiko; Tominaga, Hisato; Yamaguchi, Isao
2009-01-01
Bone char (BC) was prepared by carbonizing four types of animal biomass, and the adsorption of fluoride ions and elution of phosphate ions were investigated. It was found that the BC yield decreased as carbonization temperature increased, and that carbonization temperature had no significant effect on surface pH, base or acid consumptions. Fluoride ion adsorption was increased in BC produced at a low carbonization temperature. The adsorption mechanism of fluoride ion on BCs might be monolayer adsorption. BC can potentially be used to remove fluoride ions in drinking water. However, it was found that phosphate ions from BC are eluted due to adsorption of fluoride ions, and that ingestion of large amounts of phosphate ions inhibits reabsorption of calcium in the human body. Thus there is a need to study the elution behavior of phosphate ions. The adsorption mechanisms of fluoride ions onto BC would be a physical adsorption onto BC and phosphate ion in BC is exchanged to fluoride ion.
Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio
2017-08-01
Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .
Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I
2015-08-15
Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Extrusion-based, three-dimensional printing of calcium-phosphate scaffolds
NASA Astrophysics Data System (ADS)
Witek, Lukasz
Small or large bone defects, can occur due to a variety of reasons: congenital disorders, infections, tumors, or traumas which can lead to significant disabilities. There is an assortment of bone grafting procedures, each having their own respective advantages and disadvantages and exhibiting certain essential characteristics. Among the available grafts, autogenous (autograft), allograft, xenograft, and alloplasts, all exhibit a minimum of two-thirds of the essential characteristics and have been proven useful in fully or partially repairing skeletal defects. However, different host-to-grafting material responses have been reported and should be taken into consideration when determining treatment options. A large range of physical and chemical properties can be achieved with calcium phosphate based materials, which possess two of the ideal characteristics for grafting procedures: osteoconduction and osseointegration. Calcium phosphate based scaffolds composed of hydroxyapatite (HA), beta-tri-calcium phosphate (beta-TCP), or a combination of both (HA/beta-TCP) were investigated as materials for three-dimensional printing process to create layer-by-layer structures for use as bone regeneration scaffolds. Different calcium-phosphate phases will result in different degrees of in vivo dissolution and/or cell-mediated resorption. There has been a growing interest in BCP because it has been shown that this material improves the formation of new bone inside the implanted scaffold. The literature indicates that the faster dissolution rate of ?-TCP would be greatly responsible of this enhancement. However, in vitro tests indicate that fast dissolution can decrease the mechanical strength of BCP scaffolds. Furthermore, studies reported that HA has higher mechanical strength and lower degradation rate than beta-TCP. Therefore, the HA/beta-TCP ratio is a key parameter controlling the performance of the scaffold for bone repair applications, since it determines degradation rate, calcium (Ca2+) and phosphate (PO4) release and mechanical properties of the material.
Multifunctional phosphate-based inorganic-organic hybrid nanoparticles.
Heck, Joachim G; Napp, Joanna; Simonato, Sara; Möllmer, Jens; Lange, Marcus; Reichardt, Holger M; Staudt, Reiner; Alves, Frauke; Feldmann, Claus
2015-06-17
Phosphate-based inorganic-organic hybrid nanoparticles (IOH-NPs) with the general composition [M](2+)[Rfunction(O)PO3](2-) (M = ZrO, Mg2O; R = functional organic group) show multipurpose and multifunctional properties. If [Rfunction(O)PO3](2-) is a fluorescent dye anion ([RdyeOPO3](2-)), the IOH-NPs show blue, green, red, and near-infrared fluorescence. This is shown for [ZrO](2+)[PUP](2-), [ZrO](2+)[MFP](2-), [ZrO](2+)[RRP](2-), and [ZrO](2+)[DUT](2-) (PUP = phenylumbelliferon phosphate, MFP = methylfluorescein phosphate, RRP = resorufin phosphate, DUT = Dyomics-647 uridine triphosphate). With pharmaceutical agents as functional anions ([RdrugOPO3](2-)), drug transport and release of anti-inflammatory ([ZrO](2+)[BMP](2-)) and antitumor agents ([ZrO](2+)[FdUMP](2-)) with an up to 80% load of active drug is possible (BMP = betamethason phosphate, FdUMP = 5'-fluoro-2'-deoxyuridine 5'-monophosphate). A combination of fluorescent dye and drug anions is possible as well and shown for [ZrO](2+)[BMP](2-)0.996[DUT](2-)0.004. Merging of functional anions, in general, results in [ZrO](2+)([RdrugOPO3]1-x[RdyeOPO3]x)(2-) nanoparticles and is highly relevant for theranostics. Amine-based functional anions in [MgO](2+)[RaminePO3](2-) IOH-NPs, finally, show CO2 sorption (up to 180 mg g(-1)) and can be used for CO2/N2 separation (selectivity up to α = 23). This includes aminomethyl phosphonate [AMP](2-), 1-aminoethyl phosphonate [1AEP](2-), 2-aminoethyl phosphonate [2AEP](2-), aminopropyl phosphonate [APP](2-), and aminobutyl phosphonate [ABP](2-). All [M](2+)[Rfunction(O)PO3](2-) IOH-NPs are prepared via noncomplex synthesis in water, which facilitates practical handling and which is optimal for biomedical application. In sum, all IOH-NPs have very similar chemical compositions but can address a variety of different functions, including fluorescence, drug delivery, and CO2 sorption.
Casacuberta, N; Masqué, P; Garcia-Orellana, J; Bruach, J M; Anguita, M; Gasa, J; Villa, M; Hurtado, S; Garcia-Tenorio, R
2009-10-30
Potentially harmful phosphate-based products derived from the wet acid digestion of phosphate rock represent one of the most serious problems facing the phosphate industry. This is particularly true for dicalcium phosphate (DCP), a food additive produced from either sulphuric acid or hydrochloric acid digestion of raw rock material. This study determined the natural occurring radionuclide concentrations of 12 DCP samples and 4 tricalcium phosphate (TCP) samples used for animal and human consumption, respectively. Metal concentrations (Al, Fe, Zn, Cd, Cr, As, Hg, Pb and Mg) were also determined. Samples were grouped into three different clusters (A, B, C) based on their radionuclide content. Whereas group A is characterized by high activities of 238U, 234U (approximately 10(3) Bq kg(-1)), 210Pb (2 x 10(3) Bq kg(-1)) and (210)Po ( approximately 800 Bq kg(-1)); group B presents high activities of (238)U, (234)U and (230)Th (approximately 10(3) Bq kg(-1)). Group C was characterized by very low activities of all radionuclides (< 50 Bq kg(-1)). Differences between the two groups of DCP samples for animal consumption (groups A and B) were related to the wet acid digestion method used, with group A samples produced from hydrochloric acid digestion, and group B samples produced using sulphuric acid. Group C includes more purified samples required for human consumption. High radionuclide concentrations in some DCP samples (reaching 2 x 10(3) and 10(3) Bq kg(-1) of 210Pb and 210Po, respectively) may be of concern due to direct or indirect radiological exposure via ingestion. Our experimental results based on 210Pb and 210Po within poultry consumed by humans, suggest that the maximum radiological doses are 11 +/- 2 microSv y(-1). While these results suggest that human health risks are small, additional testing should be conducted.
Wolf-Brandstetter, Cornelia; Oswald, Steffen; Bierbaum, Susanne; Wiesmann, Hans-Peter; Scharnweber, Dieter
2014-01-01
Aim of this study was to combine the well-known biocompatibility and ostoeconductivity of thin calcium phosphate coatings on titanium with proangiogenic signals from codeposited copper species. Copper species could be integrated in mineral layers based on hydroxyapatite by means of electrochemically assisted deposition from electrolytes containing calcium, phosphate, and copper ions. Different combinations of duration and intensity of galvanostatic pulses result in different amounts of deposited calcium phosphate and of copper species even for the same applied total charge. Absolute amounts of copper varied between 2.1 and 6.9 μg/cm², and the copper was distributed homogeneously as shown by EDX mapping. The presence of copper did not change the crystalline phase of deposited calcium phosphate (hydroxyapatite) but provoked a significant decrease in deposited amounts by factor 3 to 4. The copper was deposited mainly as Cu(I) species with a minor fraction of basic copper phosphates. Reduction of copper occurred not only at the surface of titanium but also within the hydroxyapatite coating due to the reaction with hydrogen produced by the electrolysis of water during the cathodic polarization of the substrate. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian
2016-05-01
Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix.
Origin of Cretaceous phosphorites from the onshore of Tamil Nadu, India
NASA Astrophysics Data System (ADS)
Purnachandra Rao, V.; Kessarkar, Pratima M.; Nagendra, R.; Babu, E. V. S. S. K.
2007-12-01
Cretaceous phosphorites from the onshore of Tamil Nadu have been investigated for their origin and compared with those in the offshore. Cretaceous phosphorites occur as light brown to yellowish brown or white nodules in Karai Shale of the Uttatur Group in the onshore Cauvery basin. Nodules exhibit phosphatic nucleus encrusted by a chalky shell of carbonate. The nucleus of the nodules consists of light and dark coloured laminae, phosphate peloids/coated grains and detrital particles interspersed between the laminae. Scanning electron microscope (SEM) studies reveal trapping and binding activity of microbial filaments. A mat structure with linearly arranged microbial filaments and hollow, cell-based coccoid cyanobacterial mat are present. Nodules contain abundant carbonate fluorapatite, followed by minor calcite, quartz and feldspar. The P2O5 content of the phosphorites ranges from 18 to 26%. The CaO/P2O5, Sr and F contents are higher than that of pure carbonate fluorapatite. Concentrations of Si, Al, K, Fe, and Ti are low. We suggest that the nuclei of the nodules represent phosphate clasts related to phosphate stromatolites formed at intertidal conditions. At high energy levels the microbial mats were disintegrated into phosphate clasts, coated with carbonate and then reworked into Karai Shale. On the other hand, Quaternary phosphorites occur as irregular to rounded, grey coloured phosphate clasts at water depths between 180 and 320m on the continental shelf of Tamil Nadu. They exhibit grain-supported texture. Despite Quaternary in age, they also resemble phosphate stromatolites of intertidal origin and reworked as phosphate clasts onto the shelf margin depressions. Benthic microbial mats probably supplied high phosphorus to the sediments. Availability of excess phosphorus seems to be a pre-requisite for the formation of phosphate stromatolites.
Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel
2016-02-01
Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.
2007-05-08
deoxynucleotide triphosphates, from Sigma. Sequences for glyceraldehyde-3-phosphate dehydrogenase ( G3PDH ), IL-8,and TNF-a were amplified with primer...This was accomplished by normalizing all samples to the mRNA for the moderately expressed housekeeping function glyceraldehyde-3 -phosphate...without and with isolation of cells before reverse transcription and PCR. G3PDH mRNA target amplifies at 983 base pairs. The 630 base pair band is the
Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.
Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A
2008-07-01
A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.
Method for producing redox shuttles
Pupek, Krzysztof Z.; Dzwiniel, Trevor L.; Krumdick, Gregory K.
2015-03-03
A single step method for producing a redox shuttle having the formula 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate) is provided, the method comprising phosphorylating tert butyl hydroquinone with a phosphate-containing reagent. Also provided is method for producing 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate), the method comprising solubilizing tert-butyl hydroquinone and tetrabutylammonium bromide with methyltetrahydrofuran to create a mixture; heating the mixture while adding base to the mixture in an amount to turn the mixture orange; and adding diethyl chlorophosphate to the orange mixture in an amount to phosphorylate the hydroquinone.
Synthesis of β-tricalcium phosphate.
Chaair, H; Labjar, H; Britel, O
2017-09-01
Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
vom Dorp, Katharina; Hölzl, Georg; Plohmann, Christian; Eisenhut, Marion; Abraham, Marion
2015-01-01
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate. PMID:26452599
Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel
2017-02-01
The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Ma, Chengkun; Chen, Hailong; Wang, Chao; Zhang, Jifeng; Qi, Hui; Zhou, Limin
2017-01-01
Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide (α-Al2O3), etc. and cured at room temperature (RT). Then, nano-aluminum nitride (nano-AlN), nano-Cupric oxide (nano-CuO), and nano-titanium oxide (nano-TiO2) were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO4(11-0500) to the more stable AlPO4(10-0423) structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al3+. PMID:29099812
Thomas L. Eberhardt; Soo-Hong Min; James S. Han
2006-01-01
Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater...
ERIC Educational Resources Information Center
Drossman, Howard
2007-01-01
Students have standardized a sodium hydroxide solution and analyzed commercially available sports drinks by titrimetric analysis of the triprotic citric acid, dihydrogen phosphate, and dihydrogen citrate and by ion chromatography for chloride, total phosphate and citrate. These experiments are interesting examples of analyzing real-world food and…
Cone calorimeter evaluation of two flame retardant cotton fabrics
Robert H. White; Sunghyun Nam; Dharnidhar V. Parikh
2012-01-01
Unbleached (gray) cotton needle-punched nonwoven (NW) fabrics with 12.5% polypropylene scrim were treated with two phosphateânitrogen-based flame retardant (FR) formulations, Southern Regional Research Center (SRRC)-1 and SRRC-2. The SRRC-1 formulation contains diammonium phosphate as the FR chemical along with urea and dimethyloldihydroxyethyleneurea. Because a trace...
Multifunctional cerium-based nanomaterials and methods for producing the same
O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.
2018-01-09
Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.
Wang, Liuzheng; He, Xiang; Zhang, Wei; Liu, Yong; Zhang, Ying
2018-01-01
The structure–property relationship between biomineralized calcium phosphate compounds upon a fluorescent quenching–recovery platform and their distinct crystalline structure and surficial functional groups are investigated. A fluorescence-based sensing platform is shown to be viable for the sensing of 8-hydroxy-2-deoxy-guanosine in simulated systems. PMID:29515827
Uskoković, Vuk; Batarni, Samir Shariff; Schweicher, Julien; King, Andrew; Desai, Tejal A.
2013-01-01
Powders composed of four morphologically different calcium phosphate particles were prepared by precipitation from aqueous solutions: flaky, brick-like, elongated orthogonal, and spherical. The particles were then loaded with either clindamycin phosphate as the antibiotic of choice, or fluorescein, a model molecule used to assess the drug release properties. A comparison was carried out of the comparative effect of such antibiotic-releasing materials on: sustained drug release profiles; Staphylococcus aureus growth inhibition; and osteogenic propensities in vitro. Raman spectroscopic analysis indicated the presence of various calcium phosphate phases, including monetite (flaky and elongated orthogonal particles), octacalcium phosphate (brick-shaped particles) and hydroxyapatite (spherical particles). Testing the antibiotic-loaded calcium phosphate powders for bacterial growth inhibition demonstrated satisfying antibacterial properties both in broths and on agar plates. All four calcium-phosphate-fluorescein powders exhibited sustained drug release over 21 days. The calcium phosphate sample with the highest specific surface area and the smallest, spherical particle size was the most effective in both drug loading and release, consequently having the highest antibacterial efficiency. Moreover, the highest cell viability, the largest gene expression upregulation of three different osteogenic markers – osteocalcin, osteopontin and Runx2 - as well as the least disrupted cell cytoskeleton and cell morphologies were also noticed for the calcium phosphate powder composed of smallest, spherical nanosized particles. Still, all four powders exerted a viable effect on osteoblastic MC3T3-E1 cells in vitro, as evidenced by both morphological assessments on fluorescently stained cells and measurements of their mitochondrial activity. The obtained results suggest that the nanoscale particle size and the corresponding coarseness of the surface of particle conglomerates as the cell attachment points may present a favorable starting point for the development of calcium-phosphate-based osteogenic drug delivery devices. PMID:23484624
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Rong; Pineda, Marco; Ajamian, Eunice
2009-01-15
Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+},more » which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.« less
Design and Synthesis of Phosphotyrosine Peptidomimetic Prodrugs
Garrido-Hernandez, Hugo; Moon, Kyung D.; Geahlen, Robert L.; Borch, Richard F.
2008-01-01
A novel approach to the intracellular delivery of aryl phosphates has been developed that utilizes a phosphoramidate-based prodrug approach. The prodrugs contain an ester group that undergoes reductive activation intracellularly with concomitant expulsion of a phosphoramidate anion. This anion undergoes intramolecular cyclization and hydrolysis to generate aryl phosphate exclusively with a t1/2 = ∼ 20 min. Phosphoramidate prodrugs (8-10) of phosphate-containing peptidomimetics that target the SH2 domain were synthesized. Evaluation of these peptidomimetic prodrugs in a growth inhibition assay and, in a cell-based transcriptional assay, demonstrated that the prodrugs had IC50 values in the low micromolar range. Synthesis of phosphorodiamidate analogs containing a P-NH-Ar linker (16 – 18) was also carried out in the hope that the phosphoramidates released might be phosphatase-resistant. Comparable activation rates and cell-based activities were observed for these prodrugs, but the intermediate phosphoramidate dianion underwent spontaneous hydrolysis with a t1/2 = ∼ 30 min. PMID:16722656
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Muthukumaran, T.; Philip, John
2018-04-01
The effects of initial susceptibility and size polydispersity on magnetic hyperthermia efficiency in two water based ferrofluids containing phosphate and TMAOH coated superparamagnetic Fe3O4 nanoparticles were studied. Experiments were performed at a fixed frequency of 126 kHz on four different concentrations of both samples and under different external field amplitudes. It was observed that for field amplitudes beyond 45.0 kAm-1, the maximum temperature rise was in the vicinity of 42°C (hyperthermia limit) which indicated the suitability of the water based ferrofluids for hyperthermia applications. The maximum temperature rise and specific absorption rate were found to vary linearly with square of the applied field amplitudes, in accordance with theoretical predictions. It was further observed that for a fixed sample concentration, specific absorption rate was higher for the phosphate coated samples which was attributed to the higher initial static susceptibility and lower size polydispersity of phosphate coated Fe3O4.
New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste.
Tarayre, Cédric; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Camargo-Valero, Miller; Delvigne, Frank
2016-04-01
Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hypophosphatemic rickets: Revealing Novel Control Points for Phosphate Homeostasis
White, Kenneth E.; Hum, Julia M.; Econs, Michael J.
2014-01-01
Rapid and somewhat surprising advances have recently been made towards understanding the molecular mechanisms causing heritable disorders of hypophosphatemia. The results of clinical, genetic, and translational studies have interwoven novel concepts underlying the endocrine control of phosphate metabolism, with far-reaching implications for treatment of both rare, Mendelian diseases as well as common disorders of blood phosphate excess such as chronic kidney disease (CKD). In particular, diseases caused by changes in the expression and proteolytic control of the phosphaturic hormone Fibroblast growth factor-23 (FGF23) have come to the forefront in terms of directing new models explaining mineral metabolism. These hypophosphatemic disorders, as well as others resulting from independent defects in phosphate transport or metabolism, will be reviewed herein, and implications for emerging therapeutic strategies based upon these new findings will be discussed. PMID:24980542
Wang, Jing; Zhu, Ting; Ho, Ghim Wei
2016-07-07
Phosphates play significant roles in plant photosynthesis by mediating electron transportation and furnishing energy for CO2 reduction. Motivated by this, we demonstrate herein an artificial solar-to-fuel conversion system, involving versatile copper phosphate microflowers as template and titanium dioxide nanoparticles as host photocatalyst. The elaborate flowerlike architectures, coupled with a unique proton-reduction cycle from interchangeability of different species of orthophosphate ions, not only offer a 2D nanosheet platform for an optimal heterostructure interface but also effectively augment charge-carrier transfer, thereby contributing to enhanced photoactivity and hydrogen generation. These nature-inspired, phosphate-derived nanocomposites advance the synthesis of a large variety of functional materials, which holds great potential for photochemical, photoelectric and catalytic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, W.; Ouyang, S.; Shaw, N.
2011-02-01
The pentose phosphate pathway (PPP) confers protection against oxidative stress by supplying NADPH necessary for the regeneration of glutathione, which detoxifies H{sub 2}O{sub 2} into H{sub 2}O and O{sub 2}. RPE functions in the PPP, catalyzing the reversible conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate and is an important enzyme for cellular response against oxidative stress. Here, using structural, biochemical, and functional studies, we show that human D-ribulose 5-phosphate 3-epimerase (hRPE) uses Fe{sup 2+} for catalysis. Structures of the binary complexes of hRPE with D-ribulose 5-phosphate and D-xylulose 5-phosphate provide the first detailed molecular insights into the binding mode ofmore » physiological ligands and reveal an octahedrally coordinated Fe{sup 2+} ion buried deep inside the active site. Human RPE folds into a typical ({beta}/{alpha}){sub 8} triosephosphate isomerase (TIM) barrel with a loop regulating access to the active site. Two aspartic acids are well positioned to carry out the proton transfers in an acid-base type of reaction mechanism. Interestingly, mutating Ser-10 to alanine almost abolished the enzymatic activity, while L12A and M72A mutations resulted in an almost 50% decrease in the activity. The binary complexes of hRPE reported here will aid in the design of small molecules for modulating the activity of the enzyme and altering flux through the PPP.« less
Acute Phosphate Restriction Leads to Impaired Fracture Healing and Resistance to BMP-2
Wigner, Nathan A; Luderer, Hilary F; Cox, Megan K; Sooy, Karen; Gerstenfeld, Louis C; Demay, Marie B
2010-01-01
Hypophosphatemia leads to rickets and osteomalacia, the latter of which results in decreased biomechanical integrity of bones, accompanied by poor fracture healing. Impaired phosphate-dependent apoptosis of hypertrophic chondrocytes is the molecular basis for rickets. However, the underlying pathophysiology of impaired fracture healing has not been characterized previously. To address the role of phosphate in fracture repair, mice were placed on a phosphate-restricted diet 2 days prior to or 3 days after induction of a mid-diaphyseal femoral fracture to assess the effects of phosphate deficiency on the initial recruitment of mesenchymal stem cells and their subsequent differentiation. Histologic and micro-computed tomographic (µCT) analyses demonstrated that both phosphate restriction models dramatically impaired fracture healing primarily owing to a defect in differentiation along the chondrogenic lineage. Based on Sox9 and Sox5 mRNA levels, neither the initial recruitment of cells to the callus nor their lineage commitment was effected by hypophosphatemia. However, differentiation of these cells was impaired in association with impaired bone morphogenetic protein (BMP) signaling. In vivo ectopic bone-formation assays and in vitro investigations in ST2 stromal cells confirmed that phosphate restriction leads to BMP-2 resistance. Marrow ablation studies demonstrate that hypophosphatemia has different effects on injury-induced intramembranous bone formation compared with endochondral bone formation. Thus phosphate plays an important role in the skeleton that extends beyond mineralized matrix formation and growth plate maturation and is critical for endochondral bone repair. © 2010 American Society for Bone and Mineral Research. PMID:19839770
Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho
Oberlindacher, Peter; Hovland, Robert David
1979-01-01
Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system in this part of the Beaverhead Mountains. Paleozoic, Mesozoic, and Cenozoic rocks are present in the Hawley Creek area. Fold axes and thrust faults have a dominant northwest trend. These thrusts and folds are probably associated with the northeast-oriented stress field that existed in Late Cretaceous time. Evidence of younger, high-angle normal and reverse faults in the area also exists.
Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E
2015-09-01
Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Semiautomated model building for RNA crystallography using a directed rotameric approach.
Keating, Kevin S; Pyle, Anna Marie
2010-05-04
Structured RNA molecules play essential roles in a variety of cellular processes; however, crystallographic studies of such RNA molecules present a large number of challenges. One notable complication arises from the low resolutions typical of RNA crystallography, which results in electron density maps that are imprecise and difficult to interpret. This problem is exacerbated by the lack of computational tools for RNA modeling, as many of the techniques commonly used in protein crystallography have no equivalents for RNA structure. This leads to difficulty and errors in the model building process, particularly in modeling of the RNA backbone, which is highly error prone due to the large number of variable torsion angles per nucleotide. To address this, we have developed a method for accurately building the RNA backbone into maps of intermediate or low resolution. This method is semiautomated, as it requires a crystallographer to first locate phosphates and bases in the electron density map. After this initial trace of the molecule, however, an accurate backbone structure can be built without further user intervention. To accomplish this, backbone conformers are first predicted using RNA pseudotorsions and the base-phosphate perpendicular distance. Detailed backbone coordinates are then calculated to conform both to the predicted conformer and to the previously located phosphates and bases. This technique is shown to produce accurate backbone structure even when starting from imprecise phosphate and base coordinates. A program implementing this methodology is currently available, and a plugin for the Coot model building program is under development.
Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements.
Tibbetts, V R; Schnell, R J; Swartz, M L; Phillips, R W
1976-01-01
Thermal diffusion was measured in vitro and in vivo through amalgam and amalgam underlaid with bases of zinc phosphate, zinc oxide-eugenol, and calcium hydroxide cements. Although the magnitudes differed, there generally was good agreement between in vitro and in vivo data with respect to the relative rates of thermal diffusivity through amalgam restorations underlaid with bases of each of the three materials. In all tests, both in vitro and in vivo, the zinc oxide-eugenol base proved to be the best thermal insulator. Calcium hydroxide was the next best thermal barrier and was followed by zinc phosphate cement. In vitro tests indicated dentin to be a better thermal insulator than zinc phosphate cement but inferior to the zinc oxide-eugenol and calcium hydroxide base materials used here. Although a method has been presented here for the in vivo assessment of the efficacy of thermal insulating bases and a number of in vivo experiments were conducted, much research remains to be done in this area. Additional investigation is needed to better define the parameters of thermal change beneath various types of restoratives and also to establish more exactly the role of base thickness in providing thermal protection beneath clinical metallic restorations.
Roth, Thomas; Urpi Bertran, Raquel; Latza, Andreas; Andörfer-Lang, Katrin; Hügelschäffer, Claudia; Pöhlein, Manfred; Puchta, Ralph; Placht, Christian; Maid, Harald; Bauer, Walter; van Eldik, Rudi
2015-04-01
Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.
Rolland, N; Ruffet, M L; Job, D; Douce, R; Droux, M
1996-02-15
A synthetic gene encoding the mature spinach- chloroplast O-acetylserine (thiol)-lyase was constructed and expressed in an Escherichia coli strain carrying the T7 RNA polymerase system. The pure recombinant protein was obtained at high yield (6 mg/l cell culture) using a new purification procedure that includes affinity chromatography on Green A agarose. Its specific activity was of the order of 1000 U/mg, and its physical properties were similar to those previously reported for the natural enzyme isolated from spinach chloroplasts. In particular the recombinant enzyme, as for the natural enzyme, behaved as a homodimer composed of two identical subunits each of Mr 35000. From steady-state kinetic studies using sulfide or 5-thio(2-nitrobenzoate) (Nbs) as alternative nucleophilic co-substrates, the enzyme exhibited positive kinetic co-operativity with respect to O-acetylserine [Ser(Ac)] in the presence of sulfide and a negative kinetic co-operativity in the presence of Nbs. Binding of Ser(Ac) to the enzyme was also investigated by absorbance and fluorescence measurements to obtain insight into the role of pyridoxal 5'-phosphate and of the single tryptophan residue (Trp176) present in the enzyme molecule. Addition of Ser(Ac) to the enzyme provoked the disappearance of the 409-nm absorbance band of the pyridoxal 5'-phosphate Schiff base and the appearance of two new absorbance bands, the one located between 320 nm and 360 nm and the other centered at 470 nm. Also, the fluorescence emission of the pyridoxal 5'-phosphate Schiff base was quenched upon addition of Ser(Ac) to the enzyme. These changes were most presumably due to the formation of a Schiff base intermediate between alpha-aminoacrylate and the pyridoxal 5'-phosphate cofactor. The fluorescence emission of Trp176 was also quenched upon Ser(Ac) binding to the enzyme. Quantitative analysis of the absorbance and fluorescence equilibrium data disclosed a co-operative behavior in Ser(Ac) binding, in agreement with the steady-state kinetic results. Fluorescence quenching experiments with the acrylamide and iodide revealed that the indole ring of Trp176 was largely exposed and located within the pyridoxal 5'-phosphate active site. These results are consistent with the finding that the native enzyme is composed of two identical subunits. Yet, presumably due to subunit-subunit interactions, the enzyme exhibits two non-equivalent pyridoxal-5'-phosphate-containing active sites.
Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...
Molecular bases of diseases characterized by hypophosphatemia and phosphaturia: new understanding.
Ozono, Keiichi; Michigami, Toshimi; Namba, Noriyuki; Nakajima, Shigeo; Yamamoto, Takehisa
2006-01-01
Serum phosphate levels are regulated in both calcium-dependent and -independent fashions. Active vitamin D increases while PTH decreases serum phosphate levels in association with the elevation of serum calcium. On the other hand, a calcium-independent phosphaturic factor, historically called phosphatonin is believed to exert a physiological function based on findings in hereditary and tumor-induced diseases characterized by hypophosphatemia with normocalcemia. Among them, autosomal dominant hypophosphatemic rickets (ADHR) has contributed greatly to its elucidation because the gene responsible for ADHR encodes fibroblast growth factor 23 (FGF23) that has been found to have a phosphaturic effect. In addition, FGF23 has been proved to be involved in most cases of oncogenic osteomalacia and X-linked hypophosphatemic rickets that are also characterized by hypophosphatemia and normocalcemia. Moreover, familial tumoral calcinosis, which represents the metabolic mirror image of hypophosphatemic conditions, is caused by a loss-of-function mutation in the FGF23 gene in some patients. Very recently, hereditary hypophosphatemic rickets with hypercalciuria has been found to be caused by mutations in the SLC34A1 gene which encodes a type of sodium phosphate cotransporter. These findings may provide new strategies for treating patients with abnormal phosphate metabolism.
Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M
2007-09-15
Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.
Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe
2015-07-07
An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.
NASA Astrophysics Data System (ADS)
Liu, Kan; Wang, Hongyan; Wu, Quanping; Zhao, Jun; Sun, Zhe; Xue, Song
2015-06-01
A thin film of α-Fe2O3 on FTO substrate has been synthesized from hydrothermal process in an aqueous solution of FeCl3 and Na2HPO4. A nanocube structure of α-Fe2O3 is observed within the formed hematite films and coated with phosphate ions on the surface. For comparison, another phosphate modified hematite film has been prepared by soaking the bare hematite film in Na2HPO4 solution. A negative electrostatic field can be built up on the surface of both phosphate modified hematite which will promote charge separation and extraction of photoexcited holes to the electrode surface. It is found that different types of phosphate complex exist in the hematite films, which has been determined by the isoelectric point (IEP) of the hematite films, and consequently influences the formation and strength of the electrostatic field. The effects of phosphate ions on the morphology, surface characteristics and the photoelectrochemical properties of the hematite thin films are investigated and the mechanism is proposed.
Severe hypophosphataemia after intravenous iron administration.
Blazevic, A; Hunze, J; Boots, J M M
2014-01-01
Currently, in many centres, intravenous administration of iron is becoming increasingly popular because of higher efficacy and decreased side effects, mainly gastrointestinal, compared with oral iron therapy. Studies of intravenous ferric carboxymaltose administration in the postpartum setting and in patients with non-dialysis-dependent chronic kidney disease revealed a decrease in serum phosphate levels that was generally asymptomatic and transient. Here, we report four cases of severe and symptomatic hypophosphataemia after intravenous iron administration. All patients received this as therapy for iron deficiency anaemia due to heavy menstrual bleeding. In most cases, a pre-existent disorder in the phosphate homeostasis existed, such as a secondary (cases 3 and 4) or tertiary hyperparathyroidism (case 1). However, in the second case there were no risk factors for a dysregulation of the phosphate homeostasis. Based on these findings, we conclude that severe and symptomatic hypophosphatemia can occur as a side effect of intravenous iron administration and can persist for months after administration. Especially patients with low phosphate levels prior to therapy due to concomitant disorders in phosphate homeostasis (e.g. hyperparathyroidism, vitamin D deficiency) are at risk.
Gabbai-Armelin, Paulo R; Renno, Ana Cm; Crovace, Murilo C; Magri, Angela Mp; Zanotto, Edgar D; Peitl, Oscar; Leeuwenburgh, Sander Cg; Jansen, John A; van den Beucken, Jeroen Jjp
2017-08-01
Calcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles. We hypothesized that combining either material with carboxymethylcellulose-glycerol would improve handling properties, retaining their bioactivity. In addition to scanning electron microscopy, cohesion, mineralization, pH, and viscoelastic properties of the novel formulations, cell culture experiments were performed to evaluate the cytotoxicity and cell proliferation. Putty-like formulations were obtained with improved cohesion and moldability. Remarkably, mineralization in simulated body fluid of hydroxyapatite-tricalcium phosphate/carboxymethylcellulose-glycerol formulations was enhanced compared to pure hydroxyapatite-tricalcium phosphate. Cell experiments showed that all formulations were noncytotoxic and that HA-TCP60 and BGC50 extracts led to an increased cell proliferation. We conclude that combining carboxymethylcellulose-glycerol with either hydroxyapatite-tricalcium phosphate or Biosilicate® allows for the generation of moldable putties, improves handling properties, and retains the ceramic bioactivity.
Wang, Yan-Shuai; Dai, Jian-Guo; Wang, Lei; Tsang, Daniel C W; Poon, Chi Sun
2018-01-01
Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide
NASA Astrophysics Data System (ADS)
Luo, Xin; Wang, Xiurong; Bao, Shaopan; Liu, Xiawei; Zhang, Weicheng; Fang, Tao
2016-12-01
In this account, a one-step green hydrothermal method for zirconium-loaded reduced graphene oxide (RGO-Zr) adsorbent was developed in pure water. It is based on the formation of initially strong-coupling RGO-Zr nanocomposites followed by in situ reduction of GO to RGO during the hydrothermal treatment. The phosphate adsorption performance of the as-prepared nanocomposites was investigated in aqueous environment under various conditions. The characterization results of RGO-Zr nanocomposites showed that ZrO2 was successfully integrated onto the RGO sheets in amorphous. The data from equilibrium phosphate adsorption on RGO-Zr revealed that the adsorption kinetics followed a pseudo-second-order kinetic model, where the adsorption isotherm fitted the Langmuir isotherm model with a maximum adsorption capacity of 27.71 mg P/g at pH 5 and 298 K. The improved phosphate adsorption on RGO-Zr was caused by the dispersion of ZrO2 on the RGO surface. Furthermore, the phosphate adsorption was found insensitive to the increase in pH while it was sensitive to the increase in temperature. The coexisting anions of SO42-, F-, Cl-, NO3- and CO32- affected the phosphate adsorption in a different way. Results suggest that the present RGO-Zr adsorbent has the potential for controlling phosphorus pollution in water.
Vassileva, Maria; Serrano, Mercedes; Bravo, Vicente; Jurado, Encarnación; Nikolaeva, Iana; Martos, Vanessa; Vassilev, Nikolay
2010-02-01
One of the most studied approaches in solubilization of insoluble phosphates is the biological treatment of rock phosphates. In recent years, various techniques for rock phosphate solubilization have been proposed, with increasing emphasis on application of P-solubilizing microorganisms. The P-solubilizing activity is determined by the microbial biochemical ability to produce and release metabolites with metal-chelating functions. In a number of studies, we have shown that agro-industrial wastes can be efficiently used as substrates in solubilization of phosphate rocks. These processes were carried out employing various technologies including solid-state and submerged fermentations including immobilized cells. The review paper deals critically with several novel trends in exploring various properties of the above microbial/agro-wastes/rock phosphate systems. The major idea is to describe how a single P-solubilizing microorganism manifests wide range of metabolic abilities in different environments. In fermentation conditions, P-solubilizing microorganisms were found to produce various enzymes, siderophores, and plant hormones. Further introduction of the resulting biotechnological products into soil-plant systems resulted in significantly higher plant growth, enhanced soil properties, and biological (including biocontrol) activity. Application of these bio-products in bioremediation of disturbed (heavy metal contaminated and desertified) soils is based on another important part of their multifunctional properties.
Saetear, Phoonthawee; Khamtau, Kittiwut; Ratanawimarnwong, Nuanlaor; Sereenonchai, Kamonthip; Nacapricha, Duangjai
2013-10-15
This work presents the simultaneous determination of sucrose and phosphate by using sequential injection (SI) system with a low cost paired emitter-detector diode (PEDD) light sensor. The PEDD uses two 890 nm LEDs. Measurement of sucrose in Brix unit was carried out based on the detection of light refraction occurring at the liquid interface (the schlieren effect) between the sucrose solution and water. Phosphate was measured from the formation of calcium phosphate with turbidimetric detection. With careful design of the loading sequence and volume (sample--precipitating reagent--sample), simultaneous detection of sucrose and phosphate was accomplished with the single PEDD detector. At the optimized condition, linear calibrations from 1 to 7 Brix sucrose and from 50 to 200mg PO4(3-)L(-1) were obtained. Good precision at lower than 2% RSD (n=10) for both analytes with satisfactory throughput of 21 injections h(-1) was achieved. The method was successfully applied for the determination of sucrose and phosphate in cola drinks. The proposed method is readily applicable for automation and is found to be an alternative method to conventional procedures for on-line quality control process in cola drink industry. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Approach to treatment of hypophosphatemia.
Felsenfeld, Arnold J; Levine, Barton S
2012-10-01
Hypophosphatemia can be acute or chronic. Acute hypophosphatemia with phosphate depletion is common in the hospital setting and results in significant morbidity and mortality. Chronic hypophosphatemia, often associated with genetic or acquired renal phosphate-wasting disorders, usually produces abnormal growth and rickets in children and osteomalacia in adults. Acute hypophosphatemia may be mild (phosphorus level, 2-2.5 mg/dL), moderate (1-1.9 mg/dL), or severe (<1 mg/dL) and commonly occurs in clinical settings such as refeeding, alcoholism, diabetic ketoacidosis, malnutrition/starvation, and after surgery (particularly after partial hepatectomy) and in the intensive care unit. Phosphate replacement can be given either orally, intravenously, intradialytically, or in total parenteral nutrition solutions. The rate and amount of replacement are empirically determined, and several algorithms are available. Treatment is tailored to symptoms, severity, anticipated duration of illness, and presence of comorbid conditions, such as kidney failure, volume overload, hypo- or hypercalcemia, hypo- or hyperkalemia, and acid-base status. Mild/moderate acute hypophosphatemia usually can be corrected with increased dietary phosphate or oral supplementation, but intravenous replacement generally is needed when significant comorbid conditions or severe hypophosphatemia with phosphate depletion exist. In chronic hypophosphatemia, standard treatment includes oral phosphate supplementation and active vitamin D. Future treatment for specific disorders associated with chronic hypophosphatemia may include cinacalcet, calcitonin, or dypyrimadole. Published by Elsevier Inc.
Stock, Roberto P; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A
2012-01-01
The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.
Structure-based functional annotation: yeast ymr099c codes for a D-hexose-6-phosphate mutarotase.
Graille, Marc; Baltaze, Jean-Pierre; Leulliot, Nicolas; Liger, Dominique; Quevillon-Cheruel, Sophie; van Tilbeurgh, Herman
2006-10-06
Despite the generation of a large amount of sequence information over the last decade, more than 40% of well characterized enzymatic functions still lack associated protein sequences. Assigning protein sequences to documented biochemical functions is an interesting challenge. We illustrate here that structural genomics may be a reasonable approach in addressing these questions. We present the crystal structure of the Saccharomyces cerevisiae YMR099cp, a protein of unknown function. YMR099cp adopts the same fold as galactose mutarotase and shares the same catalytic machinery necessary for the interconversion of the alpha and beta anomers of galactose. The structure revealed the presence in the active site of a sulfate ion attached by an arginine clamp made by the side chain from two strictly conserved arginine residues. This sulfate is ideally positioned to mimic the phosphate group of hexose 6-phosphate. We have subsequently successfully demonstrated that YMR099cp is a hexose-6-phosphate mutarotase with broad substrate specificity. We solved high resolution structures of some substrate enzyme complexes, further confirming our functional hypothesis. The metabolic role of a hexose-6-phosphate mutarotase is discussed. This work illustrates that structural information has been crucial to assign YMR099cp to the orphan EC activity: hexose-phosphate mutarotase.
Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian
2016-01-01
Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix. PMID:27194462
Rahim, Muhammad Imran; Tavares, Ana; Evertz, Florian; Kieke, Marc; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Willbold, Elmar; Jürgen Maier, Hans; Glasmacher, Birgit; Behrens, Peter; Hauser, Hansjörg; Mueller, Peter P
2017-08-01
Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017. © 2016 Wiley Periodicals, Inc.
Sreenivasu Mummidivarapu, V V; Hinge, Vijaya Kumar; Rao, Chebrolu Pulla
2015-01-21
A triazole-linked hydroxyethylimino conjugate of calix[4]arene () and its cadmium complex have been synthesized and characterized, and their structures have been established. In the complex, both the Cd(2+) centers are bound by an N2O4 core, and one of it is a distorted octahedral, whereas the other is a trigonal anti-prism. The fluorescence intensity of the di-nuclear Cd(ii) complex is quenched only in the presence of phosphates and not with other anions studied owing to their binding affinities and the nature of the interaction of the phosphates with Cd(2+). These are evident even from their absorption spectra. Different phosphates exhibit changes in both their fluorescence as well as absorption spectra to varying extents, suggesting their differential interactions. Among the six phosphates, H2PO4(-) has higher fluorescence quenching even at low equivalents of this ion, whereas P2O7(4-) shows only 50% quenching even at 10 equivalents. The fluorescence quenching is considerable even at 20 ppb (0.2 μM) of H2PO4(-), whereas all other phosphates require a concentration of 50-580 ppb to exhibit the same effect on fluorescence spectra. Thus, the interaction of H2PO4(-) is more effective by ∼30 fold as compared to that of P2O7(4-). Fluorescence quenching by phosphate is due to the release of from its original cadmium complex via the formation of a ternary species followed by the capture of Cd(2+) by the phosphate, as delineated based on the combination of spectral techniques, such as absorption, emission, (1)H NMR and ESI MS. The relative interactive abilities of the six phosphates differ from each other. The removal of Cd(2+) is demonstrated to be reversible by the repeated addition of the phosphate followed by Cd(2+). The characteristics of the ternary species formed in each of these six phosphates have been computationally modeled using molecular mechanics. The computational study revealed that the coordination between cadmium and -CH2-CH2-OH breaks and new coordination is established through the phosphate oxygens, and as a result the Cd(2+) center acquires a distorted octahedral geometry. The utility of the complex was demonstrated in HeLa cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, Robin; Wilson, Christina; Knox, Anna
Heavy metals including lead (Pb) are released continually into the environment as a result of industrial, recreational, and military activities. Lead ranked number two on the CERCLA Priority List of Hazardous Substances and was identified as a major hazardous chemical found on 47% of USEPA's National Priorities List sites (Hettiarachchi and Pierzynski 2004). In-situ remediation of lead (Pb) contaminated soils may be accomplished by changing the soil chemistry and structure with the application of microbial and phosphate amendments. Soil contaminated with lead bullets was collected from the surface of the berm at Savannah River Site (SRS) Small Arms Training Academymore » (SATA) in Aiken, SC. While uncontaminated soils typically have Pb levels ranging from 2 to 200 mg/kg (Berti et al. 1998), previous analysis show Pb levels of the SATA berm to reach 8,673 mg/kg. Biosurfactants are surface-active compounds naturally produced by soil bacteria that can bind metals. Biosurfactants have a wide variety of chemical structures that reduce interfacial surface tensions (Jennings and Tanner 2000) and have demonstrated efficient metal complexion (Lin 1996). Biosurfactants also have the potential to change the availability of natural organic matter (Strong-Gunderson 1995). Two types of bacteria, Alcaligenes piechaudii and Pseudomonas putida, were employed as amendments based on their ability to produce biosurfactants and survive in metal-contaminated soils. Apatites (calcium phosphate compounds) are important in the formation of Pb phosphates. Pb phosphates form rapidly when phosphate is available and are the most stable environmental form of lead in soil (Ruby et al.1998). Pyromorphites in particular remain insoluble under a wide range of environmental conditions (Zhang et al. 1998). The three apatites evaluated in the current study were North Carolina apatite (NCA), Florida apatite (FA), and biological apatite (BA). BA is ground fish bone that has few impurities such as As, Cr, or U and contains about 27% total phosphate, most of which is available. FA and NCA are two types of rock phosphates that release small amounts of phosphate over time. Total phosphate is around 30% with only 1-2% phosphate available (Knox et al. 2005). In this study, we describe the influence of combining the two microbial and three phosphate amendments on reducing lead bioavailability in shooting range soil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R Daher; M Coincon; M Fonvielle
2011-12-31
We report the synthesis and biochemical evaluation of several selective inhibitors of class II (zinc dependent) fructose bis-phosphate aldolases (Fba). The products were designed as transition-state analogues of the catalyzed reaction, structurally related to the substrate fructose bis-phosphate (or sedoheptulose bis-phosphate) and based on an N-substituted hydroxamic acid, as a chelator of the zinc ion present in active site. The compounds synthesized were tested on class II Fbas from various pathogenic microorganisms and, by comparison, on a mammalian class I Fba. The best inhibitor shows Ki against class II Fbas from various pathogens in the nM range, with very highmore » selectivity (up to 105). Structural analyses of inhibitors in complex with aldolases rationalize and corroborate the enzymatic kinetics results. These inhibitors represent lead compounds for the preparation of new synthetic antibiotics, notably for tuberculosis prophylaxis.« less
Paolella, Andrea; Faure, Cyril; Bertoni, Giovanni; Marras, Sergio; Guerfi, Abdelbast; Darwiche, Ali; Hovington, Pierre; Commarieu, Basile; Wang, Zhuoran; Prato, Mirko; Colombo, Massimo; Monaco, Simone; Zhu, Wen; Feng, Zimin; Vijh, Ashok; George, Chandramohan; Demopoulos, George P.; Armand, Michel; Zaghib, Karim
2017-01-01
Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron–hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries. PMID:28393912
NASA Astrophysics Data System (ADS)
Paolella, Andrea; Faure, Cyril; Bertoni, Giovanni; Marras, Sergio; Guerfi, Abdelbast; Darwiche, Ali; Hovington, Pierre; Commarieu, Basile; Wang, Zhuoran; Prato, Mirko; Colombo, Massimo; Monaco, Simone; Zhu, Wen; Feng, Zimin; Vijh, Ashok; George, Chandramohan; Demopoulos, George P.; Armand, Michel; Zaghib, Karim
2017-04-01
Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron-hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries.
Paolella, Andrea; Faure, Cyril; Bertoni, Giovanni; Marras, Sergio; Guerfi, Abdelbast; Darwiche, Ali; Hovington, Pierre; Commarieu, Basile; Wang, Zhuoran; Prato, Mirko; Colombo, Massimo; Monaco, Simone; Zhu, Wen; Feng, Zimin; Vijh, Ashok; George, Chandramohan; Demopoulos, George P; Armand, Michel; Zaghib, Karim
2017-04-10
Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron-hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries.
NASA Astrophysics Data System (ADS)
Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro
2017-05-01
Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnOx (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.
Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro
2017-05-31
Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnO x (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.
Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean
2015-01-01
This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.
Fibroblast growth factor 23 and renal function among young and healthy individuals.
Bernasconi, Raffaele; Aeschbacher, Stefanie; Blum, Steffen; Mongiat, Michel; Girod, Marc; Todd, John; Estis, Joel; Nolan, Niamh; Renz, Harald; Risch, Lorenz; Conen, David; Risch, Martin
2018-05-01
Fibroblast growth factor 23 (FGF-23), an osteocyte hormone involved in the regulation of phosphate metabolism, is associated with incident and progressive chronic kidney disease. We aimed to assess the association of FGF-23 with renal parameters, vascular function and phosphate metabolism in a large cohort of young and healthy individuals. Healthy individuals aged 25-41 years were included in a prospective population-based study. Fasting venous blood and morning urinary samples were used to measure plasma creatinine, cystatin C, endothelin-1, phosphate and plasma FGF-23 as well as urinary creatinine and phosphate. Multivariable regression models were constructed to assess the relationship of FGF-23 with parameters of renal function, endothelin-1 and fractional phosphate excretion. The median age of 2077 participants was 37 years, 46% were males. The mean estimated glomerular filtration rate (eGFR - CKD-EPI creatinine-cystatin C equation) and fractional phosphate excretion were 110 mL/min/1.73 m2 and 8.7%, respectively. After multivariable adjustment, there was a significant inverse relationship of FGF-23 with eGFR (β per 1 log-unit increase -3.81; 95% CI [-5.42; -2.20]; p<0.0001). Furthermore, we found a linear association between FGF-23 and endothelin-1 (β per 1 log-unit increase 0.06; [0.01, 0.11]; p=0.01). In addition, we established a significant relationship of FGF-23 with fractional phosphate excretion (β per 1 log-unit increase 0.62; [0.08, 1.16]; p=0.03). Increasing plasma FGF-23 levels are strongly associated with decreasing eGFR and increasing urinary phosphate excretion, suggesting an important role of FGF-23 in the regulation of kidney function in young and healthy adults.
Inaba, Masaaki; Okuno, Senji; Nagayama, Harumi; Yamada, Shinsuke; Ishimura, Eiji; Imanishi, Yasuo; Shoji, Shigeichi
2015-03-01
Control of phosphate is the most critical in the treatment of chronic kidney disease with mineral and bone disorder (CKD-MBD). Because calcium-containing phosphate binder to CKD patients is known to induce adynamic bone disease with ectopic calcification by increasing calcium load, we examined the effect of lanthanum carbonate (LaC), a non-calcium containing phosphate binder, to restore bone turnover in 27 hemodialysis patients with suppressed parathyroid function (serum intact parathyroid hormone [iPTH] ≦ 150 pg/mL). At the initiation of LaC administration, the dose of calcium-containing phosphate binder calcium carbonate (CaC) was withdrawn or reduced based on serum phosphate. After initiation of LaC administration, serum calcium and phosphate decreased significantly by 4 weeks, whereas whole PTH and iPTH increased. A significant and positive correlation between decreases of serum calcium, but not phosphate, with increases of whole PTH and iPTH, suggested that the decline in serum calcium with reduction of calcium load by LaC might increase parathyroid function. Serum bone resorption markers, such as serum tartrate-resistant acid phosphatase 5b, and N-telopeptide of type I collagen increased significantly by 4 weeks after LaC administration, which was followed by increases of serum bone formation markers including serum bone alkaline phosphatase, intact procollagen N-propeptide, and osteocalcin. Therefore, it was suggested that LaC attenuated CaC-induced suppression of parathyroid function and bone turnover by decreasing calcium load. In conclusion, replacement of CaC with LaC, either partially or totally, could increase parathyroid function and resultant bone turnover in hemodialysis patients with serum iPTH ≦ 150 pg/mL. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Vrdoljak, Ivica; Panjkota Krbavčić, Ines; Bituh, Martina; Leko, Ninoslav; Pavlović, Draško; Vrdoljak Margeta, Tea
2017-04-01
Control of serum phosphate is important for patients on hemodialysis. The aim of the study was to determine if education based on phosphorus-reducing techniques in food preparation and thermal processing, and accordingly prepared and applied diets, will lead to better outcomes than a standard education program to improve phosphate control in patients on hemodialysis. Forty-seven patients on hemodialysis were divided between an intervention and a control group. All subjects received training about nutrition for hemodialysis patients by trained dietitian. In addition, subjects in the intervention group received additional training in phosphorus-reducing techniques in food preparation and received two hospital meals prepared using suggested cooking methods to reduce the phosphate content of food during dialysis treatment. Serum phosphate, serum albumin, and anthropometric parameters were measured, while nPCR was calculated, at the baseline and during the 1-year study. No differences in serum phosphate levels were observed between intervention (1.68 mmol/L [1.48-2.03]) and control group (1.88 mmol/L [1.57-2.2]) at baseline (P = 0.130). Although not statistically significant between groups the mean reduction was more apparent in the intervention group (-0.3 mmol/L (-0.4 to 0.1) vs. -0.2 (-0.5 to 0.1)), and lead to significantly reduction of phosphate binder therapy. During the study, the nPCR and anthropometric status of the patients did not change significantly. Providing additional education to hemodialysis patients on the specific cooking methods and accordingly prepared meals may decrease serum phosphate levels without significantly affecting nutritional status which may be useful in helping to prevent and treat hyperphosphatemia. © 2016 International Society for Hemodialysis.
Rivadeneyra, Almudena; Gonzalez-Martinez, Alejandro; Gonzalez-Lopez, Jesus; Martin-Ramos, Daniel; Martinez-Toledo, Maria Victoria; Rivadeneyra, Maria Angustias
2014-01-01
The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA), the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences). The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX). All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O), bobierrite [Mg3(PO4)2·8H2O] and baricite [(MgFe)3(PO4)2·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors. PMID:24699031
Frayne, Jan; Taylor, Abby; Cameron, Gus; Hadfield, Andrea T.
2009-01-01
Sperm glyceraldehyde-3-phosphate dehydrogenase has been shown to be a successful target for a non-hormonal contraceptive approach, but the agents tested to date have had unacceptable side effects. Obtaining the structure of the sperm-specific isoform to allow rational inhibitor design has therefore been a goal for a number of years but has proved intractable because of the insoluble nature of both native and recombinant protein. We have obtained soluble recombinant sperm glyceraldehyde-3-phosphate dehydrogenase as a heterotetramer with the Escherichia coli glyceraldehyde-3-phosphate dehydrogenase in a ratio of 1:3 and have solved the structure of the heterotetramer which we believe represents a novel strategy for structure determination of an insoluble protein. A structure was also obtained where glyceraldehyde 3-phosphate binds in the Ps pocket in the active site of the sperm enzyme subunit in the presence of NAD. Modeling and comparison of the structures of human somatic and sperm-specific glyceraldehyde-3-phosphate dehydrogenase revealed few differences at the active site and hence rebut the long presumed structural specificity of 3-chlorolactaldehyde for the sperm isoform. The contraceptive activity of α-chlorohydrin and its apparent specificity for the sperm isoform in vivo are likely to be due to differences in metabolism to 3-chlorolactaldehyde in spermatozoa and somatic cells. However, further detailed analysis of the sperm glyceraldehyde-3-phosphate dehydrogenase structure revealed sites in the enzyme that do show significant difference compared with published somatic glyceraldehyde-3-phosphate dehydrogenase structures that could be exploited by structure-based drug design to identify leads for novel male contraceptives. PMID:19542219
Denver, Judith M.; Cravotta,, Charles A.; Ator, Scott W.; Lindsey, Bruce D.
2011-01-01
Phosphorus from natural and human sources is likely to be discharged from groundwater to streams in certain geochemical environments. Water-quality data collected from 1991 through 2007 in paired networks of groundwater and streams in different hydrogeologic and land-use settings of the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces in the eastern United States were compiled and analyzed to evaluate the sources, fate, and transport of phosphorus. The median concentrations of phosphate in groundwater from the crystalline and siliciclastic bedrock settings (0.017 and 0.020 milligrams per liter, respectively) generally were greater than the median for the carbonate setting (less than 0.01 milligrams per liter). In contrast, the median concentrations of dissolved phosphate in stream base flow from the crystalline and siliciclastic bedrock settings (0.010 and 0.014 milligrams per liter, respectively) were less than the median concentration for base-flow samples from the carbonate setting (0.020 milligrams per liter). Concentrations of phosphorus in many of the stream base-flow and groundwater samples exceeded ecological criteria for streams in the region. Mineral dissolution was identified as the dominant source of phosphorus in the groundwater and stream base flow draining crystalline or siliciclastic bedrock in the study area. Low concentrations of dissolved phosphorus in groundwater from carbonate bedrock result from the precipitation of minerals and (or) from sorption to mineral surfaces along groundwater flow paths. Phosphorus concentrations are commonly elevated in stream base flow in areas underlain by carbonate bedrock, however, presumably derived from in-stream sources or from upland anthropogenic sources and transported along short, shallow groundwater flow paths. Dissolved phosphate concentrations in groundwater were correlated positively with concentrations of silica and sodium, and negatively with alkalinity and concentrations of calcium, magnesium, chloride, nitrate, sulfate, iron, and aluminum. These associations can result from the dissolution of alkali feldspars containing phosphorus; the precipitation of apatite; the precipitation of calcite, iron hydroxide, and aluminum hydroxide with associated sorption of phosphate ions; and the potential for release of phosphate from iron-hydroxide and other iron minerals under reducing conditions. Anthropogenic sources of phosphate such as fertilizer and manure and processes such as biological uptake, evapotranspiration, and dilution also affect phosphorus concentrations. The phosphate concentrations in surface water were not correlated with the silica concentration, but were positively correlated with concentrations of major cations and anions, including chloride and nitrate, which could indicate anthropogenic sources and effects of evapotranspiration on surface-water quality. Mixing of older, mineralized groundwater with younger, less mineralized, but contaminated groundwater was identified as a critical factor affecting the quality of stream base flow. In-stream processing of nutrients by biological processes also likely increases the phosphorus concentration in surface waters. Potential geologic contributions of phosphorus to groundwater and streams may be an important watershed-management consideration in certain hydrogeologic and geochemical environments. Geochemical controls effectively limit phosphorus transport through groundwater to streams in areas underlain by carbonate rocks; however, in crystalline and siliciclastic settings, phosphorus from mineral or human sources may be effectively transported by groundwater and contribute a substantial fraction to base-flow stream loads.
Determination of phosphate concentration and pH in artificial tear drops.
de Frutos-Lezaun, M; Martínez-Soroa, I; Ostra Beldarrain, M; Egia Zurutuza, A; Irastorza Larburu, M B; Fernandez Iriarte, A; Bachiller Cacho, M P
2016-08-01
To determine phosphate concentration and pH in artificial tear eye drops commercially available in Spain. A total of 71 examples of artificial tear preparations were identified in a search of Vademecum 2014 and the Spanish Medicines Agency website. In the 24 artificial tear products containing phosphates, quantification of these was performed by ultraviolet molecular absorption spectrophotometry, and the determination of pH was performed using scan image analysis algorithms of pH strips. Of the 71 artificial tears tested, 24 contained phosphate among their excipients in the data sheet, three of which had a concentration level below detection limit (<0.1mM). The mean phosphate concentration was 17.91±23.87mM. The artificial tear sample containing a higher concentration was Colircusi Humectante (87.1mM). Lubricants based on hypromellose showed the highest phosphate concentration (41.59±32.1mM), showing statistically significant differences compared to povidone (P=.0196) and hyaluronate (P=.0067). Statistically significant differences were found between products containing preservatives (32.39±20.91mM), and preservative free ones (8.49±11.98mM) (P=.0498). However, no difference was found between multidose (20.21±26.91mM) and unidose (9.31±14.39mM) samples, or between brand name (15.44±23.3mM) and generic eye drops (20.81mM). The mean pH was 6.93±0.26 (6.2-7.22). No statistical correlation was detected between phosphate concentration and pH (Spearman's Rho -0.1089 and P=.6125). A total of 24 (33.8%) of the 71 artificial tears contained phosphate. We believe identifying the phosphate concentration of artificial tears is useful information in order to avoid complications in high-risk patients. Copyright © 2016. Published by Elsevier España, S.L.U.
Thomas L. Eberhardt; Soo-Hong Min
2008-01-01
Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of...
Wilson, Rosamund J; Copley, J Brian
2017-01-01
Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142
Biomimetic remineralization of dentin
Niu, Li-na; Zhang, Wei; Pashley, David H.; Breschi, Lorenzo; Mao, Jing; Chen, Ji-hua; Tay, Franklin R.
2013-01-01
Objectives Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely-demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. Methods This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid- precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically-sound concept into a clinically-applicable approach are discussed. Results and Significance The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the durability of resin-dentin bonding and remineralizing caries-affected dentin. PMID:23927881
The aluminum phosphate zone in the Peace River area, land-pebble phosphate field, Florida
Cathcart, James B.
1953-01-01
The Peace River area, comprising T. 30 and 31 S., R. 24 and 25 E., contains a thicker and more persistent aluminum phosphate zone, and one that is higher in P2O5 and uranium content than is known elsewhere in the land-pebble phosphate district. This report has been prepared to bring together all of the information on the aluminum phosphate zone in the area where the first plant to treat this material will probably be located. The area may be divided into three physiographic units, (1) the ridge, (2) the flatwoods, and (3) the valley. Maps showing distribution and grade of the aluminum phosphate zone indicate that the zone is thin or absent in the ridge unit, thickest and most persistent, and of the best grade in P2O5 and uranium in the flatwoods unit, and absent or very low in grade in the valley unit. Maps of thickness and of chemical composition show that even in favorable areas there are places where the aluminum phosphate zone is missing or of questionable economic importance. The distribution maps also show that areas of high P2O5 and high uranium content coincide closely. Areas containing thick aluminum phosphate material usually have high uranium and P2O5 contents. It is estimated that an average of 13,000 tons per day of aluminum phosphate material might be mined from this area. This figure is based on the probable amount of time, per year, that mining would be in favorable ground. When all mines in the area are in favorable ground, the tonnage per day might be about 23,000 tons. Tonnages of aluminum phosphate material have been computed for about 36 percent of the area of T. 30 S., R. 25 E., and for 18 percent of the area of T. 31 S., R. 25 E. The total inferred tonnage is about 150,000,000 short tons, with an average grade of 0.012 percent U3O8.
Xu, Canhui; Liao, Lifu; He, Yunfei; Wu, Rurong; Li, Shijun; Yang, Yanyan
2015-01-01
A Schiff base-type fluorescence probe was prepared for the detection of copper (II) in foodstuffs. The probe is N,N'-bis(pyridoxal phosphate)-o-phenylenediamine (BPPP). It was synthesized by utilizing the Schiff base condensation reaction of pyridoxal 5-phosphate with 1,2-phenylenediamine. BPPP has the properties of high fluorescence stability, good water solubility and low toxicity. Its maximum excitation wavelength and maximum fluorescence emission wavelength are at 389 and 448 nm, respectively. When BPPP coexists with copper (II), its fluorescence is dramatically quenched. Under a certain condition, the fluorescence intensity decreased proportionally to the concentration of copper (II) by the quenching effect. Based on this fact, we established a fluorescence quenching method for the determination of copper (II). Under optimal conditions a linear range was found to be 0.5-50 ng/mL with a detection limit of 0.2 ng/mL. The method has been applied to determine copper (II) in foodstuff samples and the analytical results show good agreement with that obtained from atomic absorption spectrometry method. Copyright © 2015 Elsevier B.V. All rights reserved.
Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores.
Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Niemeyer, Christof M; Mafe, Salvador; Ensinger, Wolfgang
2016-04-01
The label-free detection of pyrophosphate (PPi) anions with a nanofluidic sensing device based on asymmetric nanopores is demonstrated. The pore surface is functionalized with zinc complexes based on two di(2-picolyl)amine [bis(DPA)] moieties using carbodiimide coupling chemistry. The complexation of zinc (Zn(2+) ) ion is achieved by exposing the modified pore to a solution of zinc chloride to form bis(Zn(2+) -DPA) complexes. The chemical functionalization is demonstrated by recording the changes in the observed current-voltage (I-V) curves before and after pore modification. The bis(Zn(2+) -DPA) complexes on the pore walls serve as recognition sites for pyrophosphate anion. The experimental results show that the proposed nanofluidic sensor has the ability to sense picomolar concentrations of PPi anion in the surrounding environment. On the contrary, it does not respond to other phosphate anions, including monohydrogen phosphate, dihydrogen phosphate, adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. The experimental results are described theoretically by using a model based on the Poisson-Nernst-Planck equations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Chunyan; Liu, Miaomiao; Wu, Jing; Yang, Xiaolan; Hu, Xiaolei; Pu, Jun; Long, Gaobo; Xie, Yanling; Jiang, Hairong; Yuan, Yonghua; Liao, Fei
2014-12-01
The feasibility for microplate-based screening of inhibitors of isozymes of cyclic nucleotide phosphodiesterase (PDE) was tested via the coupled action of a phosphatase on adenosine-5'-monophosphate and an improved malachite green assay of phosphate. Human full-length PDE4B2 and truncated mutant (152-528aa) were expressed in Escherichia coli via fusion to SUMO, which after purification through Ni-NTA column exhibited specific activities >0.017 U mg(-1). In the presence of proteins <30 mg L(-1), absorbance for 10 µΜ phosphate was measurable; a PDE isozyme of specific activity over 0.008 U mg(-1) after reaction for 20 min thus suited for microplate-based screening of inhibitors. By using Biotek ELX 800 microplate reader, affinities of two forms of PEDE4B2 for cAMP, rolipram and papaverine varied over three magnitudes and were consistent with those by routine assay, respectively. Hence, the proposed method was promising for high-throughput-screening of inhibitors of phosphate-releasing enzymes bearing specific activities over 0.008 U mg(-1).
Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes
2017-01-11
This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.
Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization.
Melo, Mary A S; Weir, Michael D; Passos, Vanara F; Powers, Michael; Xu, Hockin H K
2017-12-01
Enamel demineralization is destructive, esthetically compromised, and costly complications for orthodontic patients. Nano-sized amorphous calcium phosphate (NACP) has been explored to address this challenge. The 20% NACP-loaded ortho-cement notably exhibited favorable behavior on reducing demineralization of enamel around brackets in a caries model designed to simulate the carious attack. The 20% NACP-loaded ortho-cement markedly promotes higher calcium and phosphate release at a low pH, and the mineral loss was almost two fold lower and carious lesion depth decreased the by 1/3. This novel approach is promising co-adjuvant route for prevention of dental caries dissemination in millions of patients under orthodontic treatment.
Secondary Waste Form Down Selection Data Package – Ceramicrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.
2011-08-31
As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less
Use of zinc phosphate cement as a luting agent for Denzir™ copings: an in vitro study
Söderholm, Karl-Johan M; Mondragon, Eduardo; Garcea, Ileana
2003-01-01
Background The clinical success rate with zinc phosphate cemented Procera crowns is high. The objective with this study was to determine whether CADCAM processed and zinc phosphate cemented Denzir copings would perform as well as zinc phosphate cemented Procera copings when tested in vitro in tension. Methods Twelve Procera copings and twenty-four Denzir copings were made. After the copings had been made, twelve of the Denzir copings were sandblasted on their internal surfaces. All copings were then cemented with zinc phosphate cement to carbon steel dies and transferred to water or artificial saliva. Two weeks after cementation, half of the samples were tested. The remaining samples were tested after one year in the storage medium. All tests were done in tension and evaluated with an ANOVA. Results Sandblasted and un-sandblasted Denzir copings performed as well as Procera copings. Storage in water or artificial saliva up to one year did not decrease the force needed to dislodge any of the coping groups. Three copings fractured during testing and one coping developed a crack during testing. The three complete fractures occurred in Procera copings, while the partly cracked coping was a Denzir coping. Conclusion No significant differences existed between the different material groups, and the retentive force increased rather than decreased with time. Fewer fractures occurred in Denzir copings, explained by the higher fracture toughness of the Denzir material. Based on good clinical results with zinc phosphate cemented Procera crowns, we foresee that zinc phosphate cement luted Denzir copings are likely to perform well clinically. PMID:12622874
Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit
2004-02-12
The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.
[Management of hypophosphatemia: a case report].
Huart, J; Dubois, B; Krzesinski, J M; Jouret, F
2015-04-01
Hypophosphatemia is defined by a serum phosphate level lower than 0.8 mmol/l. If hypophosphatemia is chronically maintained, it is associated with muscular, osteous, neurological or cardio-respiratory disorders. We describe a patient with isolated hypophosphatemia, detail the mechanisms of phosphate homeostasis, and envisage the differential diagnosis of hypophosphatemia. Furthermore, we propose a sequential decisional algorithm based on basic biological tests and few complementary investigations. Treatment options are reviewed.
USDA-ARS?s Scientific Manuscript database
Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...
Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder
Wagh, Arun S.; Jeong, Seung-Young
2004-08-17
A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.
NASA Astrophysics Data System (ADS)
Teterina, A. Yu; Fedotov, A. Yu; Zobkov, Yu V.; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Karalkin, P. A.; Komlev, V. S.
2018-04-01
The purpose of this study was to develop hydrogels for 3D printing of sodium alginate/gelatin/octacalcium phosphate-based constructs with antibacterial and antitumor activity intended for bone defects replacement in patients with malignant diseases. In this work, we evaluated the drug release kinetic and physico-chemical characteristics of constructs, as well as their specific activity, biocompatibility and osteoplastic properties by means of in vitro and in vivo tests. The principal possibility of creating the biocompatible bone substitutes with antibacterial/antitumor activity and osteoconductive-retaining properties of 3D printing method was demonstrated.
Khan, Mohammad Mujahid Ali; Rafiuddin; Inamuddin
2013-05-01
The aim of this study was to investigate the preparation of novel membrane and the characterization of their properties. A new class of polyvinyl chloride (PVC) based polyvinyl alcohol Ce(IV) phosphate composite membrane was successfully prepared by solution casting method. The structural formation was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and morphological studies. The thermal property was investigated by thermogravimetry analysis (TGA) method. The order of surface charge density for various electrolytes was found to be LiCl
Corrosion resistant properties of polyaniline acrylic coating on magnesium alloy
NASA Astrophysics Data System (ADS)
Sathiyanarayanan, S.; Azim, S. Syed; Venkatachari, G.
2006-12-01
The performance of the paint coating based on acrylic-polyaniline on magnesium alloy ZM 21 has been studied by electrochemical impedance spectroscopy in 0.5% NaCl solution. The polyaniline was prepared by chemical oxidative method of aniline with ammonium persulphate in phosphoric acid medium. The phosphate-doped polyaniline was characterized by FTIR and XRD methods. Acrylic paint containing the phosphate-doped polyaniline was prepared and coated on magnesium ZM 21 alloy. The coating was able to protect the magnesium alloy and no base metal dissolution was noted even after 75 days exposure to sodium chloride solution.
NASA Astrophysics Data System (ADS)
Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang
2018-01-01
The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.
Liodakis, S; Tsoukala, M
2010-10-01
A serial batch leaching experiment has been carried out to evaluate the release of elements from the ash of Pinus halepensis needles burned under two test conditions-with and without treatment of the forest species with the carbonate minerals (huntite and hydromagnesite) in aqueous solution (pH 6). The ash (before and after leaching) and leachates were analyzed using atomic absorption spectroscopy and X-ray diffraction. Compared with data from samples treated with the commercially available, phosphate-based fire retardant diammonium phosphate (DAP), we found that use of huntite or hydromagnesite was much more successful in obstructing the release of the toxic elements present in the ash, probably because of the alkaline conditions resulting from decomposition of the minerals during burning. In contrast, DAP tended to be more able to facilitate the extraction of some toxic metals (e.g., Zn, Cu, Mn), probably because of the acidic conditions resulting from its decomposition to phosphoric acid. Data from this study thus lend strong support to the use of magnesium carbonate minerals as new wildfire retardants, because they were shown to be more friendly to the environment (e.g., soil, ground, and underground water streams) than those currently in use (e.g., phosphate or sulfate salt type).
NASA Astrophysics Data System (ADS)
Chen, Yong; Chen, Guohua; Liu, Xiangyu; Yuan, Changlai; Zhou, Changrong
2017-11-01
Tm3+/Dy3+ co-doped phosphate glasses for white light-emitting diodes were synthesized by a conventional melting-quenching method. A spectroscopic research based on optical, photoluminescence spectrum and decay time curves in Tm3+/Dy3+ co-doped phosphate glasses was carried out. The color of luminescence could be tuned by altering the concentrations of Tm3+ ions. Under UV light excitation, the CIE chromaticity coordinates (0.3471, 0.3374) and color correlate temperature (CCT = 4866.21 K) close to the standard white-light illumination (0.333, 0.333 and CCT = 5454.12 K) could be achieved in 0.4 Tm3+/0.6 Dy3+ (mol %) co-doped glass sample. The decrease of the Dy3+ emission decay time in existence of Tm3+ ascertained that non-radiative energy transfer from Dy3+ to Tm3+ occurred. Moreover, the research of energy transfers between Dy3+ and Tm3+ based on the Inokuti-Hirayama model revealed that an electric quadrupole-quadrupole interaction might be the predominant mechanism participated in the energy transfer. This finding suggests that the as-prepared Tm3+/Dy3+ co-doped phosphate glasses may be promising candidate for white LEDs and other display devices.
New approaches to enhanced remineralization of tooth enamel.
Cochrane, N J; Cai, F; Huq, N L; Burrow, M F; Reynolds, E C
2010-11-01
Dental caries is a highly prevalent diet-related disease and is a major public health problem. A goal of modern dentistry is to manage non-cavitated caries lesions non-invasively through remineralization in an attempt to prevent disease progression and improve aesthetics, strength, and function. Remineralization is defined as the process whereby calcium and phosphate ions are supplied from a source external to the tooth to promote ion deposition into crystal voids in demineralized enamel, to produce net mineral gain. Recently, a range of novel calcium-phosphate-based remineralization delivery systems has been developed for clinical application. These delivery systems include crystalline, unstabilized amorphous, or stabilized amorphous formulations of calcium phosphate. These systems are reviewed, and the technology with the most scientific evidence to support its clinical use is the remineralizing system utilizing casein phosphopeptides to stabilize and deliver bioavailable calcium, phosphate, and fluoride ions. The recent clinical evidence for this technology is presented and the mechanism of action discussed. Biomimetic approaches to stabilization of bioavailable calcium, phosphate, and fluoride ions and the localization of these ions to non-cavitated caries lesions for controlled remineralization show promise for the non-invasive management of dental caries.
Hsu, Pei-Chun Lisa; Condron, Leo; O'Callaghan, Maureen; Hurst, Mark R H
2015-12-01
The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Scholz, R. W.; Wellmer, F.-W.
2016-02-01
Several recent papers deal with concerns about the longevity of the supply of the mineral phosphorus. The paper by Edixhoven et al. (2014), for instance, expresses doubts about whether the upward estimate of reserves by the IFDC (2006, 2010) and the USGS (2010) provides an accurate, reliable, and comparable picture, as it is based on reports that do not clearly differentiate between phosphate ore and phosphate products (i.e., marketable phosphate rock concentrate). Further, the indistinct use of the terms reserves and resources is criticized. Edixhoven et al. (2014) call for a differentiated inventory of world phosphate reserves including "guidelines which determine the appropriate drill hole distances and a detailed granularity". The claim that "humanity is on the safe side" with respect to future phosphate supply is doubted, as the validity of the IFDC's upgrading of the Moroccan data to 50 Gt phosphate is questioned. The main achievement of Edixhoven et al. (2014) is to elaborate that in the literature frequently used data on phosphate rock ore and phosphate concentrate are not properly distinguished, resulting in incorrect summary figures. In addition, it is commendable to raise the question how transparency concerning reserve and resources data and information on the geopotential of phosphate can be achieved because phosphorus is a special element. As fertilizer, it cannot be substituted and there are no unlimited resources as for the other main nutrients potassium in sea water and nitrogen in the air. However, the paper by Edixhoven et al. (2014) contains in the opinion of the authors some incorrect statements. Our comment elaborates first that several statements, such as that the upgrading of the Moroccan data is "solely based" on one scientific paper, are incorrect. Secondly, the paper comments on and illuminates a set of, in our opinion, misleading statements. These include the fact that the dynamic nature of reserves (which depend on price, technology, innovation for exploiting low-grade deposits, etc.) is acknowledged, but the right conclusions are not drawn, including the mixing of finiteness and staticness, and the way in which the critique of the USGS upgrading of the Moroccan reserves has been linked to Peak P. In particular, we clarify that reserves are primarily company data that serve mining companies for their strategic planning and may, by no means, be used as proxy data for providing global Peak P estimates. Likewise, we elaborate that drilling plans for assessing reserves have to be adjusted to site characteristics, in particular, in the case of four plateaus in Morocco and the Western Sahara comprising an area greater than 10 000 km2. We reconstruct the IFDC and USGS estimates and conclude that there is no evidence for considering the somewhat surprising increase to 50 Gt phosphate concentrate to be an unreasonable estimate for Moroccan reserves. However, the partial mixing of different units (e.g., phosphate ore and phosphate concentrate or marketable product) in the USGS data may be avoided by improving the database and using proper conversion factors. When applying these factors and assessing all reserves of marketable Gt of phosphate rock (PR-M), which is a common scale for measuring annual consumption, the magnitude of the 2014 USGS estimates of 67 Gt PR reserves does not change essentially but decreases from 64 (IFDC assessment) to 57.5 Gt PR-M (a worst-case calculation). We agree that a better harmonization of the (national) classification systems is meaningful. The discussion includes several ideas and thoughts that go beyond the paper by Edixhoven et al. (2014). We suggest that the discrepancies in the resource estimates are often caused by missing system understandings, different conceptions of sciences, and diverging world views. Finally, we suggest the establishment of a solidly funded, international standing committee that regularly analyzes global geopotential for assuring long-term supply security.
Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses
NASA Astrophysics Data System (ADS)
Shaharyar, Yaqoot
The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a first attempt to establish composition-structure-property relationships for these biomaterials.
Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts
Wu, Fan; Zhang, Eric Y; Zhang, Jianyi; Bache, Robert J; Beard, Daniel A
2008-01-01
To understand how cardiac ATP and CrP remain stable with changes in work rate – a phenomenon that has eluded mechanistic explanation for decades – data from 31phosphate-magnetic resonance spectroscopy (31P-MRS) are analysed to estimate cytoplasmic and mitochondrial phosphate metabolite concentrations in the normal state, during high cardiac workstates, during acute ischaemia and reactive hyperaemic recovery. Analysis is based on simulating distributed heterogeneous oxygen transport in the myocardium integrated with a detailed model of cardiac energy metabolism. The model predicts that baseline myocardial free inorganic phosphate (Pi) concentration in the canine myocyte cytoplasm – a variable not accessible to direct non-invasive measurement – is approximately 0.29 mm and increases to 2.3 mm near maximal cardiac oxygen consumption. During acute ischaemia (from ligation of the left anterior descending artery) Pi increases to approximately 3.1 mm and ATP consumption in the ischaemic tissue is reduced quickly to less than half its baseline value before the creatine phosphate (CrP) pool is 18% depleted. It is determined from these experiments that the maximal rate of oxygen consumption of the heart is an emergent property and is limited not simply by the maximal rate of ATP synthesis, but by the maximal rate at which ATP can be synthesized at a potential at which it can be utilized. The critical free energy of ATP hydrolysis for cardiac contraction that is consistent with these findings is approximately −63.5 kJ mol−1. Based on theoretical findings, we hypothesize that inorganic phosphate is both the primary feedback signal for stimulating oxidative phosphorylation in vivo and also the most significant product of ATP hydrolysis in limiting the capacity of the heart to hydrolyse ATP in vivo. Due to the lack of precise quantification of Piin vivo, these hypotheses and associated model predictions remain to be carefully tested experimentally. PMID:18617566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruby, Christian; Naille, Sébastien; Ona-Nguema, Georges
The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is tomore » identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.« less
Pagel, Judith-Irina; Hulde, Nikolai; Kammerer, Tobias; Schwarz, Michaela; Chappell, Daniel; Burges, Alexander; Hofmann-Kiefer, Klaus; Rehm, Markus
2017-07-10
This study aims to investigate the effects of a modified, balanced crystalloid including phosphate in a perioperative setting in order to maintain a stable electrolyte and acid-base homeostasis in the patient. This is a single-centre, open-label, randomized controlled trial involving two parallel groups of female patients comparing a perioperative infusion regime with sodium glycerophosphate and Jonosteril® (treatment group) or Jonosteril® (comparator) alone. The primary endpoint is to maintain a stable concentration of weak acids [A - ] according to the Stewart approach of acid-base balance. Secondary endpoints are measurement of serum phosphate levels, other acid-base parameters such as the strong ion difference (SID), the onset and severity of postoperative nausea and vomiting (PONV), electrolyte levels and their excretion in the urine, monitoring of renal function and glycocalyx components, haemodynamics, amounts of catecholamines and other vasopressors used and the safety of the infusion regime. Perioperative fluid replacement with the use of currently available crystalloid preparations still fail to maintain a stable acid-base balance and experts agree that common balanced solutions are still not ideal. This study aims to investigate the effectivity and safety of a new crystalloid solution by adding sodium glycerophosphate to a standardized crystalloid preparation in order to maintain a balanced perioperative acid-base homeostasis. EudraCT number 201002422520 . Registered on 30 November 2010.
NASA Astrophysics Data System (ADS)
Raşoga, O.; Sima, L.; Chiriţoiu, M.; Popescu-Pelin, G.; Fufǎ, O.; Grumezescu, V.; Socol, M.; Stǎnculescu, A.; Zgurǎ, I.; Socol, G.
2017-09-01
The aim of our research was to synthesize and investigate the physico-chemical and biological features of composite coatings based on poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and commercial calcium phosphates (CaPs), hydroxyapatite and β-tricalcium phosphate, obtained by means of matrix assisted pulsed laser evaporation (MAPLE) technique. In this respect, laser fluence and dropcast studies were performed for pristine polymer and PHBV-CaPs composites. The microstructure of the synthesized coatings was investigated by scanning electron microscopy, while for the chemical structure and functional integrity we performed Fourier transform infrared spectroscopy comparative analysis. By using the X-ray diffraction measurements we experimentally evaluated the crystalline nature of the obtained composite materials, while relevant data regarding the hydrophilic/hydrophobic behavior of the synthesized coatings were obtained by performing static CA measurements. The biocompatibility of PHBV/CaPs coatings was evaluated by performing cellular adhesion and differentiation in vitro assays on mesenchymal stem cells.
Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin
2016-12-01
The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inaba, Iku; Kuramitz, Hideki; Sugawara, Kazuharu
2016-01-01
A reaction to casein, along with β-lactoglobulin, is a main cause of milk allergies, and also is a useful indicator of protein in allergic analyses. In the present study, a simple casein sensor was developed based on the interaction between a phosphate group of casein and electroactive [Ru(NH3)6](3+). We evaluated the voltammetric behavior of a casein-[Ru(NH3)6](3+) complex using a glassy carbon electrode. When the ruthenium(III) complex was combined with the phosphate groups of casein, the structure of the casein was changed. Since the hydrophobicity of casein was increased due to the binding, the casein was adsorbed onto the electrode. Furthermore, we modified an electrode with a ruthenium(III) ions/collagen film. When the sensor was applied to the detection of the casein contained in milk, the values coincided with those indicated by the manufacturer. Accordingly, this electrode could be a powerful sensor for the determination of casein in several foods.
Reinforcement Strategies for Load-Bearing Calcium Phosphate Biocements
Geffers, Martha; Groll, Jürgen; Gbureck, Uwe
2015-01-01
Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement–hydrogel composites with largely unaffected application properties.
Pieralini, Anelise R F; Benjamin, Camila M; Ribeiro, Ricardo Faria; Scaf, Gulnara; Adabo, Gelson Luis
2010-10-01
This study evaluated the effect of pattern coating with spinel-based investment Rematitan Ultra (RU) on the castability and internal porosity of commercially pure (CP) titanium invested into phosphate-bonded investments. The apparent porosity of the investment was also measured. Square patterns (15 × 15 × 0.3 mm(3)) were either coated with RU, or not and invested into the phosphate-bonded investments: Rematitan Plus (RP), Rema Exakt (RE), Castorit Super C (CA), and RU (control group). The castings were made in an Ar-arc vacuum-pressure machine. The castability area (mm(2) ) was measured by an image-analysis system (n = 10). For internal porosity, the casting (12 × 12 × 2 mm(3) ) was studied by the X-ray method, and the projected porous area percentage was measured by an image-analysis system (n = 10). The apparent porosity of the investment (n = 10) was measured in accordance with the ASTM C373-88 standard. Analysis of variance (One-way ANOVA) of castability was significant, and the Tukey test indicated that RU had the highest mean but the investing technique with coating increased the castability for all phosphate-bonded investments. The analysis of the internal porosity of the cast by the nonparametric test demonstrated that the RP, RE, and CA with coating and RP without coating did not differ from the control group (RU), while the CA and RE casts without coating were more porous. The one-way ANOVA of apparent porosity of the investment was significant, and the Tukey test showed that the means of RU (36.10%) and CA (37.22%) were higher than those of RP (25.91%) and RE (26.02%). Pattern coating with spinel-based material prior to phosphate-bonded investments can influence the castability and the internal porosity of CP Ti. © 2010 by The American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Pettegrew, J. W.; Kopp, S. J.; Dadok, J.; Minshew, N. J.; Feliksik, J. M.; Glonek, T.; Cohen, M. M.
A prominent 31P NMR resonance at 3.84 ppm in mammalian brain has been identified as ethanolamine phosphate. The identification was based on 1H and 31P NMR findings (including pH titrations) at 4.7 and 14.1 T, as well as thin-layer chromatography studies. We previously incorrectly assigned the 3.84 ppm resonance to ribose-5-phosphate. The incorrect assignment occurred because the two compounds have very similar 31P chemical shifts, and because we did not carefully consider the effects of counter ions and ionic strengths when interpreting the 31P chemical shifts. In separate preliminary studies we have demonstrated ethanolamine phosphate to be high in immature developing brain and in the degenerating brain of Alzheimer's and Huntington's disease patients. Ethanolamine phosphate may therefore serve as a sensitive marker of membrane phospholipid turnover for both in vitro and in vivo31P NMR studies.
Biomimetic remineralization of dentin.
Niu, Li-Na; Zhang, Wei; Pashley, David H; Breschi, Lorenzo; Mao, Jing; Chen, Ji-Hua; Tay, Franklin R
2014-01-01
Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid-precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically sound concept into a clinically applicable approach are discussed. The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the durability of resin-dentin bonding and remineralizing caries-affected dentin. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Meng, Kang; Lü, Shu-Zheng; Zhu, Hua-Gang; Chen, Xin; Ge, Chang-Jiang; Song, Xian-Tao
2010-12-01
Adenosine phosphate-mediated platelet aggregation is a prognostic factor for major adverse cardiac events in patients who have undergone selective percutaneous coronary interventions. This study aimed to assess whether an adjusted loading dose of clopidogrel could more effectively inhibit platelet aggregation in patients undergoing selected percutaneous coronary intervention. A total of 205 patients undergoing selected percutaneous coronary intervention were enrolled in this multicenter, prospective, randomized study. Patients receiving domestic clopidogrel (n = 104) served as the Talcom (Taijia) group; others (n = 101) received Plavix, the Plavix group. Patients received up to 3 additional 300-mg loading doses of clopidogrel to decrease the adenosine phosphate-mediated platelet aggregation index by more than 50% (the primary endpoint) compared with the baseline. The secondary endpoint was major adverse cardiovascular events at 12 months. Compared with the rational loading dosage, the tailored loading dosage better inhibited platelet aggregation based on a > 50% decrease in adenosine phosphate-mediated platelet aggregation (rational loading dosage vs. tailored loading dosage, 48% vs. 73%, P = 0.028). There was no significant difference in the eligible index between the Talcom and Plavix groups (47% vs. 49% at 300 mg; 62% vs. 59% at 600 mg; 74% vs. 72% at 900 mg; P > 0.05) based on a standard adenosine diphosphate-mediated platelet aggregation decrease of > 50%. After 12 months of follow-up, there were no significant differences in major adverse cardiac events (2.5% vs. 2.9%, P = 5.43). No acute or subacute stent thrombosis events occurred. An adjusted loading dose of clopidogrel could have significant effects on antiplatelet aggregation compared with a rational dose, decreasing 1-year major adverse cardiac events in patients undergoing percutaneous coronary interventions based on adenosine phosphate-mediated platelet aggregation with no increase in bleeding.
Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)
NASA Astrophysics Data System (ADS)
Zhou, Huan
Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized calcium phosphate materials.
Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions
Gerl, Mathias J.; Bittl, Verena; Kirchner, Susanne; Sachsenheimer, Timo; Brunner, Hanna L.; Lüchtenborg, Christian; Özbalci, Cagakan; Wiedemann, Hannah; Wegehingel, Sabine; Nickel, Walter; Haberkant, Per; Schultz, Carsten; Krüger, Marcus; Brügger, Britta
2016-01-01
Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions. PMID:27100999
Evaluation of TIAX High Energy CAM-7/Graphite Lithium-Ion Batteries at High and Low Temperatures
2014-08-01
phosphate ( LiFePO4 or LFP), lithium nickel cobalt manganese oxide (LiNixCoyMnzO2 or NCM), LCO, and NCA, CAM-7 based 18650 cells have a higher specific...electric vehicles HT high temperature Li lithium LiCoO2 or LCO lithium cobalt oxide LiCoPO4 or LCP lithium cobalt phosphate LiFePO4 or LFP lithium
NASA Astrophysics Data System (ADS)
Kurobori, Toshio; Kada, Wataru; Shirao, Taichi; Satoh, Takahiro
2018-02-01
We report a demonstration of microscale patterns in Ag-activated phosphate glass fabricated using a focused proton beam with an energy range of 1-3 MeV. Various microscale patterns are based on blue and orange radiophotoluminescent (RPL) centres. Two- and three-dimensional (2D and 3D) microstructures are visualised by combining two-photon confocal microscopy with femtosecond (fs) laser pulses generated from a mode-locked Ti:sapphire laser operating at 700 nm. The reconstructed images are analytically evaluated using lateral/axial dose mapping and RPL spectra. In addition, the advantages of two-photon excitation applied to Ag-activated phosphate glass are discussed, and this method is compared with single-photon excitation.
Framework influence of erbium doped oxyfluoride glasses on their optical properties
NASA Astrophysics Data System (ADS)
Środa, Marcin; Cholewa-Kowalska, Katarzyna; Różański, Marek; Nocuń, Marek
2011-01-01
Glasses of different matrix (phosphate, borate, silicate and lead-silicate) were studied for their optical properties. The effect of Er dopant on transmittance and luminescence properties was presented. The significant “red shift” and “blue shift” of UV edge absorption were discussed based on the changes in the framework of the borate and phosphate glasses, respectively. It was showed that the integral intensity of the two main optical absorption transitions monotonically increases with the order: phosphate < borate < silicate < lead-silicate. Ellipsometric measurement was applied to obtain the refractive index of the glasses. The correlation between the shift of edge absorption and the change of refractive index was presented. Effect of glassy matrix on luminescence of Er3+ was discussed.
Marzouk, M A; ElBatal, F H; Abdelghany, A M
2013-10-01
The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyasova, Mariya, E-mail: mliyasov@unmc.edu; Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE; Li, Bin, E-mail: binli@unmc.edu
The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such 'fume events'. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serinemore » of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. -- Highlights: Black-Right-Pointing-Pointer Travel on jet airplanes is associated with an illness, aerotoxic syndrome. Black-Right-Pointing-Pointer A possible cause is exposure to tricresyl phosphate in engine lubricating oil. Black-Right-Pointing-Pointer A blood test for exposure to tri-o-cresyl phosphate is reported.« less
Elias, Daniel; Bernot, Melody J.
2014-01-01
Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters. PMID:25275369
DOE Office of Scientific and Technical Information (OSTI.GOV)
V Parvulescu; V Parvulescu; D Ciuparu
In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been usedmore » as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.« less
Wang, Jun Juan; Yan, Ai Hua; Wang, Wei; Li, Ji Quan; Li, Yu Ling
2016-11-18
Two strains of phosphate-solubilizing bacteria were isolated from the rhizosphere of Pinus tabuliformis in iron tailings vegetation restoration areas in Malan Town, Qianan City, Hebei Pro-vince. The bacterial strain D2 with strong phosphate-solubilizing capacity was obtained via screening with plate and shake flask. Based on the morphology, physiology and biochemistry, and the sequence analysis of 16S rDNA, the D2 was identified as a member of Pantoea sp. A fermentation experiment was conducted to investigate the effect of carbon and nitrogen sources on the phosphate-solubilizing capacity of the strain D2; under different nitrogen sources, the organic acids in liquid culture, as well as their types and contents were determined by high performance liquid chromatography. The results showed that the strain D2 was capable of efficiently solubilizing tricalcium phosphate, and the highest value of available phosphorus was up to 392.13 mg·L -1 in liquid culture. The strain D2 displayed the strongest phosphate-solubilizing capability when glucose and ammonium sulfate were used as carbon and nitrogen sources in the culture media, respectively. Under varied nitrogen sources, the resulting organic acids and their types and contents were different. When the nitrogen source in culture media was ammonium sulfate, ammonium chloride, potassium nitrate, sodium nitrate or ammonium nitrate, all four organic acids, including oxalic acid, formic acid, acetic acid and citric acid, were produced. In addition, malic acid was uniquely produced when ammonium sulfate, ammonium chloride or ammonium nitrate was used as the nitrogen source. By Pearson's correlation analysis, a significant positive correlation between the acetic acid content and the available phosphorus content was found (r=0.886, P<0.05), suggesting that acetic acid produced by strain D2 played an important role in promoting inorganic phosphorus dissolution, which was most likely to be one of the important phosphate-solubilizing mechanisms of the strain.
Menon, Leena Unnikrishnan; Varma, R. Balagopal; Kumaran, Parvathy; Xavier, Arun Mamachan; Govinda, Bhat Sangeetha; Kumar, J. Suresh
2018-01-01
Aim: To evaluate and compare the efficacy of “calcium sucrose phosphate” (CaSP) toothpaste (Enafix 5%) with ordinarily used calcium, phosphate-containing toothpaste in elevating the level of calcium, phosphate ions in saliva. Secondary aims were to evaluate substantivity and plaque-reducing ability of CaSP toothpaste. Materials and Methods: Thirty study participants of age group 6–13 years were divided into two groups: Group X (Control group) was made to continue brushing with their regularly used calcium, phosphate-containing toothpaste and Group Y (Test group) was allotted CaSP toothpaste. 1 ml of unstimulated saliva was periodically collected from both groups to determine any alteration in the salivary calcium, phosphate level. Parameters such as substantivity and plaque-reducing ability of CaSP toothpaste were also evaluated. Salivary mineral's intergroup comparison was evaluated by Student's t-test while its intragroup comparison along with the plaque amount variation in Group Y was evaluated by ANOVA and Tukey's post hoc test. Results: Group Y showed an increase in the salivary calcium level though not statistically significant. The increase was pronounced in samples collected on day 1. Group Y showed a consistent level of calcium, phosphate in samples collected immediately and 6 h postbrushing, indicating its substantivity. In addition, Group Y had an impact in reducing the plaque level when the 1st-month plaque score was compared with the 12th-month score. Conclusion: CaSP leads to an increase in the salivary calcium level though it was not statistically significant. Supervised brushing and dietary habits showed a positive effect on both the groups. CaSP toothpaste also showed substantivity and plaque-reducing ability.
Poma, Giulia; Sales, Carlos; Bruyland, Bram; Christia, Christina; Goscinny, Séverine; Van Loco, Joris; Covaci, Adrian
2018-02-20
The occurrence of 14 organophosphorus flame retardants and plasticizers (PFRs) was investigated in 165 composite food samples purchased from the Belgian market and divided into 14 food categories, including fish, crustaceans, mussels, meat, milk, cheese, dessert, food for infants, fats and oils, grains, eggs, potatoes and derived products, other food (stocks), and vegetables. Seven PFRs [namely, tri-n-butyl phosphate (TnBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), triphenyl phosphate (TPHP), 2-ethylhexyldiphenyl phosphate (EHDPHP), and tris(2-ethylhexyl) phosphate (TEHP)] were detected at concentrations above quantification limits. Fats and oils were the most contaminated category, with a total PFR concentration of 84.4 ng/g of wet weight (ww), followed by grains (36.9 ng/g of ww) and cheese (20.1 ng/g of ww). Our results support the hypothesis that PFR contamination may occur during industrial processing and manipulation of food products (e.g., packaging, canning, drying, etc.). Considering the daily average intake of food for the modal adult Belgian (15-64 years of age), the dietary exposure to sum PFRs was estimated to be ≤7500 ± 1550 ng/day [103 ± 21 ng/kg of body weight (bw)/day]. For individual PFRs, TPHP contributed on average 3400 ng/day (46.6 ng/kg of bw/day), TCIPP 1350 ng/day (18.5 ng/kg of bw/day), and EHDPHP 1090 ng/day (15 ng/kg of bw/day), values that were lower than their corresponding health-based reference doses. The mean dietary exposure mainly originated from grains (39%), followed by fats and oils (21%) and dairy products (20%). No significant differences between the intakes of adult men and women were observed.
Role of a ribosomal RNA phosphate oxygen during the EF-G–triggered GTP hydrolysis
Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert
2015-01-01
Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases. PMID:25941362
Exposure to tri-o-cresyl phosphate detected in jet airplane passengers.
Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M; Nachon, Florian; Masson, Patrick; Furlong, Clement E; Lockridge, Oksana
2011-11-01
The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such "fume events". Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. Copyright © 2011 Elsevier Inc. All rights reserved.
Exposure to tri-o-cresyl phosphate detected in jet airplane passengers
Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Furlong, Clement E.; Lockridge, Oksana
2011-01-01
The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such “fume events”. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24–48 hours after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. PMID:21723309
Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B
2016-01-01
The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fan, Xinghua; Kubwabo, Cariton; Rasmussen, Pat E; Wu, Fang
2014-09-01
An analytical method for the simultaneous determination of 13 organophosphate esters (OPEs) in house dust was developed. The method is based on solvent extraction by sonication, sample cleanup by solid phase extraction (SPE), and analysis by gas chromatography-positive chemical ionization-tandem mass spectrometry (GC/PCI-MS/MS). Method detection limits (MDLs) ranged from 0.03 to 0.43 μg/g and recoveries from 60% to 118%. The inter- and intra-day variations ranged from 3% to 23%. The method was applied to dust samples collected using two vacuum sampling techniques from 134 urban Canadian homes: a sample of fresh or "active" dust (FD) collected by technicians and a composite sample taken from the household vacuum cleaner (HD). Results show that the two sampling methods (i.e., FD vs HD) provided comparable results. Tributoxyethyl phosphate (TBEP), triphenyl phosphate (TPhP), tris(chloropropyl) phosphate (TCPP), tri(2-chloroethyl) phosphate (TCEP), tris(dichloro-isopropyl) phosphate (TDCPP), tricresyl phosphate (TCrP), and tri-n-butyl phosphate (TnBP) were detected in the majority of samples. The most predominant OPE was TBEP, with median concentrations of 31.9 μg/g and 22.8 μg/g in FD and HD samples, respectively, 1 to 2 orders of magnitude higher than other OPEs. The method was also applied to the analysis of OPEs in the National Institute of Standards and Technology (NIST) standard reference material (NIST SRM 2585, organic contaminants in house dust). The results from SRM 2585 may contribute to the certification of OPE concentration values in this SRM. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Production of biomass/energy crops on phosphatic clay soils in central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stricker, J.A.; Prine, G.M.; Woodard, K.R.
1993-12-31
Phosphatic clay is a byproduct of phosphate mining. Presently more than 40,470 ha have been created, most in central Florida, and about 810 ha are being added each year. Phosphatic clays have high fertility and high water holding capacity, reducing fertilization costs and producing high yields without irrigation. Based on 10 years of research, scientists have selected tall annual-regenerating perennial C-4 grasses as having the greatest potential for biomass production in Florida. The purpose of this work was to determine the feasibility of growing these tall perennial grasses for biomass on phosphatic clay. Elephantgrass, sugarcane and energycane, and erianthus weremore » planted in duplicate replications on phosphatic clay soil in late August, 1986. yield was measured by one harvest in December or January each year for four years. Nitrogen fertilization included 112 kg ha{sup {minus}1} the first year followed by 134 kg ha{sup {minus}1} for the next three years. Nitrogen is the only supplemental nutrient needed to grow all tall grass crops on phosphatic clay. The average annual oven dry matter yield over the 4-yr period was 36.3 Mg ha{sup {minus}1} for PI 300086 elephantgrass, 45.2 for N51 elephantgrass, 42.5 for L79-1002 energycane, 49.0 for US72-1153 energycane, 49.7 for US78-1009 sugarcane, 52.2 for US56-9 sugarcane, 56.2 for CP72-1210 sugarcane, and 48.8 for 1K-7647 erianthus. More recent work has utilized domestic sewage sludge as a nitrogen source for the tall grasses. Preliminary sugar yields of selected sugarcane accessions & sweet sorghum were 4.7 Mg ha{sup {minus}1} for CP72-1210, 12.5 for US67-2022, 3.4 for US78-1009 and 1.3 Mg ha{sup {minus}1} for sweet sorghum. The high yields of the tall grasses grown on phosphatic clay with low inputs indicate a great potential for these crops as a source of renewable energy. A sustainable cropping system may be maintained by utilizing municipal sewage sludge as a nitrogen source with tall grasses on phosphatic clay.« less
Puts, Johan; de Groot, Monique; Haex, Martin; Jakobs, Bernadette
2015-01-01
Background Vitamin B1 (thiamine-diphosphate) and B6 (pyridoxal-5’phosphate) are micronutrients. Analysis of these micronutrients is important to diagnose potential deficiency which often occurs in elderly people due to malnutrition, in severe alcoholism and in gastrointestinal compromise due to bypass surgery or disease. Existing High Performance Liquid Chromatography (HPLC) based methods include the need for derivatization and long analysis time. We developed an Ultra High Performance Liquid Chromatography Tandem Mass spectrometry (UHPLC-MS/MS) assay with internal standards for simultaneous measurement of underivatized thiamine-diphosphate and pyridoxal-5’phosphate without use of ion pairing reagent. Methods Whole blood, deproteinized with perchloric acid, containing deuterium labelled internal standards thiamine-diphosphate(thiazole-methyl-D3) and pyridoxal-5’phosphate(methyl-D3), was analyzed by UHPLC-MS/MS. The method was validated for imprecision, linearity, recovery and limit of quantification. Alternate (quantitative) method comparisons of the new versus currently used routine HPLC methods were established with Deming regression. Results Thiamine-diphosphate and pyridoxal-5’phosphate were measured within 2.5 minutes instrumental run time. Limits of detection were 2.8 nmol/L and 7.8 nmol/L for thiamine-diphosphate and pyridoxal-5’phosphate respectively. Limit of quantification was 9.4 nmol/L for thiamine-diphosphate and 25.9 nmol/L for pyridoxal-5’phosphate. The total imprecision ranged from 3.5–7.7% for thiamine-diphosphate (44–157 nmol/L) and 6.0–10.4% for pyridoxal-5’phosphate (30–130 nmol/L). Extraction recoveries were 101–102% ± 2.5% (thiamine-diphosphate) and 98–100% ± 5% (pyridoxal-5’phosphate). Deming regression yielded slopes of 0.926 and 0.990 in patient samples (n = 282) and national proficiency testing samples (n = 12) respectively, intercepts of +3.5 and +3 for thiamine-diphosphate (n = 282 and n = 12) and slopes of 1.04 and 0.84, intercepts of -2.9 and +20 for pyridoxal-5’phosphate (n = 376 and n = 12). Conclusion The described UHPLC-MS/MS method allows simultaneous determination of underivatized thiamine-diphosphate and pyridoxal-5’phosphate in whole blood without intensive sample preparation. PMID:26134844
Topp, Heinrich; Hochfeld, Olena; Bark, Staffan; Grossmann, Matthias; Joukhadar, Christian; Westphal, Martin; Straatsma, Harald; Rothenburger, Markus
2011-01-01
The primary aim of the present investigation was to determine and compare the pharmacokinetic (PK) profiles of inorganic phosphate in serum and urine after intravenous administration of sodium glycerophosphate and inorganic sodium phosphate. Additionally, study product safety profiles were evaluated. In total, 27 healthy, white volunteers (17 male/10 female) were enrolled in this double-blinded, randomized, 2-sequence, crossover study and were assigned to receive an organic test drug (sodium glycerophosphate) and an inorganic reference preparation (sodium phosphate) on 2 occasions. Validated analytical methods were used, and concentrations of total inorganic phosphate in serum and urine were determined over 24 h following a single 4-hour continuous intravenous infusion of test and reference drugs at a dose of 80 mmol. Study days were separated by washout periods of 7 days. An analysis of variance, based on population means and 90% confidence intervals (CIs), was used for testing bioequivalence (BE; range 0.8-1.25) between investigational products. The geometric means of the ratio of the point estimates and corresponding 90% CIs for the area under the concentration-versus-time curve of inorganic serum phosphate from 0 to 24 h (AUC(0-24)), the phosphate's maximum concentration in serum (C(max)) and the total amount of inorganic phosphate excreted in urine over 24 h corrected for individual baseline values (Ae(0-24 bc)) were estimated. The test/reference ratios for inorganic phosphate were 1.04 (CI 1.00-1.07), 0.85 (CI 0.84-0.87) and 0.84 (CI 0.77-0.92) for AUC(0-24), C(max) in serum and Ae(0-24 bc) in urine, respectively. Hence, standard BE criteria were met for AUC(0-24) and C(max) in serum, while Ae(0-24 bc) marginally failed to demonstrate BE. After drug administration, a total of 15 subjects reported the occurrence of at least 1 treatment emergent adverse event (AE). All AEs were classified as mild to moderate in severity, and the two treatment groups were equally affected. No serious AEs occurred. The serum PK profiles of inorganic phosphate were almost superimposable following intravenous administration of equimolar doses of test and reference drugs. Thus, we conclude that the two study drugs are essentially similar in terms of serum PK profiles, safety and tolerability. Copyright © 2011 S. Karger AG, Basel.
Wang, Zhengfang; Shi, Mo; Li, Jihua; Zheng, Zheng
2014-03-01
A novel adsorbent based on iron oxide dispersed over activated carbon (AC) were prepared, and used for phosphate removal from aqueous solutions. The influence of pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing AC were determined. Two series of ACs, non-oxidized and oxidized carbon modified by iron (denoted as AC-Fe and AC/O-Fe), resulted in a maximum impregnated iron of 4.03% and 7.56%, respectively. AC/O-Fe showed 34.0%-46.6% higher phosphate removal efficiency than the AC-Fe did. This was first attributed to the moderate pre-oxidation of raw AC by nitric acid, achieved by dosing Fe(II) after a pre-oxidation, to obtain higher iron loading, which is favorable for phosphate adsorption. Additionally, the in-situ formed active site on the surface of carbon, which was derived from the oxidation of Fe(II) by nitric acid dominated the remarkably high efficiency with respect to the removal of phosphate. The activation energy for adsorption was calculated to be 10.53 and 18.88 kJ/mol for AC-Fe and AC/O-Fe, respectively. The results showed that the surface mass transfer and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III).
Gu, Wei; Li, Xiaodi; Xing, Mingchao; Fang, Wenkan; Wu, Deyi
2018-04-01
Eutrophication has become a worldwide environmental problem and removing phosphorus from water/wastewater before discharge is essential. The purpose of our present study was to develop an efficient material in terms of both phosphate adsorption capacity and magnetic separability. To this end, we first compared the performances of four spinel ferrites, including magnesium, zinc, nickel and copper ferrites. Then we developed a copper ferrite-based novel magnetic adsorbent, by synthesizing 1,6-hexamethylenediamine-functionalized copper ferrite(CuFe 2 O 4 ) via a single solvothermal synthesis process followed by LaCl 3 treatment. The materials were characterized with X-ray diffraction, transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra and N 2 adsorption-desorption. The maximum adsorption capacity of our material, calculated from the Langmuir adsorption isotherm model, attained 32.59mg/g with a saturation magnetization of 31.32emu/g. Data of adsorption kinetics were fitted well to the psuedo-second-order model. Effects of solution pH and coexisting anions (Cl - , NO 3 - , SO 4 2- ) on phosphate adsorption were also investigated, showing that our material had good selectivity for phosphate. But OH - competed efficiently with phosphate for adsorption sites. Furthermore, increasing both NaOH concentration and temperature resulted in an enhancement of desorption efficiency. Thus NaOH solution could be used to desorb phosphate adsorbed on the material for reuse, by adopting a high NaOH concentration and/or a high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.
Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew
2012-01-01
The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminated soil would induce Zn phosphate mineral formation and fluid P sources would be more effective than granular P amendments. A combination of different synchrotron-based techniques, namely, spatially resolved micro-X-ray fluorescence (μ-XRF), micro-extended X-ray absorption fine structure spectroscopy (μ-EXAFS), and micro-X-ray diffraction (μ-XRD), were used to speciate Zn at two incubation times in the proximity of application points (0 to 4 mm) for fluid and granular P amendments in a Pb/Zn smelter-contaminated soil. Phosphate rock (PR), triple super phosphate (TSP), monoammonium phosphate (MAP), and fluid ammonium polyphosphate induced Zn phosphate formation. Ammonium polyphosphate was more effective at greater distances (up to 3.7 mm) from the point of P application. Phosphoric acid increased the presence of soluble Zn species because of increased acidity. Soluble Zn has implications with respect to Zn bioavailability, which may negatively impact vegetation and other sensitive organisms. Although additions of P immobilize Pb, this practice needs close monitoring due to potential increases in Zn solubility in a Pb/Zn smelter-contaminated soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Phosphoinositide and Inositol Phosphate Analysis in Lymphocyte Activation
Sauer, Karsten; Huang, Yina Hsing; Lin, Hongying; Sandberg, Mark; Mayr, Georg W.
2015-01-01
Lymphocyte antigen receptor engagement profoundly changes the cellular content of phosphoinositide lipids and soluble inositol phosphates. Among these, the phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) play key signaling roles by acting as pleckstrin homology (PH) domain ligands that recruit signaling proteins to the plasma membrane. Moreover, PIP2 acts as a precursor for the second messenger molecules diacylglycerol and soluble inositol 1,4,5-trisphosphate (IP3), essential mediators of PKC, Ras/Erk, and Ca2+ signaling in lymphocytes. IP3 phosphorylation by IP3 3-kinases generates inositol 1,3,4,5-tetrakisphosphate (IP4), an essential soluble regulator of PH domain binding to PIP3 in developing T cells. Besides PIP2, PIP3, IP3, and IP4, lymphocytes produce multiple other phosphoinositides and soluble inositol phosphates that could have important physiological functions. To aid their analysis, detailed protocols that allow one to simultaneously measure the levels of multiple different phosphoinositide or inositol phosphate isomers in lymphocytes are provided here. They are based on thin layer, conventional and high-performance liquid chromatographic separation methods followed by radiolabeling or non-radioactive metal-dye detection. Finally, less broadly applicable nonchromatographic methods for detection of specific phosphoinositide or inositol phosphate isomers are discussed. Support protocols describe how to obtain pure unstimulated CD4+CD8+ thymocyte populations for analyses of inositol phosphate turnover during positive and negative selection, key steps in T cell development. PMID:19918943
Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase–phosphatase
Das, Ushati; Shuman, Stewart
2013-01-01
T4 polynucleotide kinase–phosphatase (Pnkp) exemplifies a family of enzymes with 5′-kinase and 3′-phosphatase activities that function in nucleic acid repair. The polynucleotide 3′-phosphatase reaction is executed by the Pnkp C-terminal domain, which belongs to the DxDxT acylphosphatase superfamily. The 3′-phosphatase reaction entails formation and hydrolysis of a covalent enzyme-(Asp165)-phosphate intermediate, driven by general acid–base catalyst Asp167. We report that Pnkp also has RNA 2′-phosphatase activity that requires Asp165 and Asp167. The physiological substrate for Pnkp phosphatase is an RNA 2′,3′-cyclic phosphate end (RNA > p), but the pathway of cyclic phosphate removal and its enzymic requirements are undefined. Here we find that Pnkp reactivity with RNA > p requires Asp165, but not Asp167. Whereas wild-type Pnkp transforms RNA > p to RNAOH, mutant D167N converts RNA > p to RNA 3′-phosphate, which it sequesters in the phosphatase active site. In support of the intermediacy of an RNA phosphomonoester, the reaction of mutant S211A with RNA > p results in transient accumulation of RNAp en route to RNAOH. Our results suggest that healing of 2′,3′-cyclic phosphate ends is a four-step processive reaction: RNA > p + Pnkp → RNA-(3′-phosphoaspartyl)-Pnkp → RNA3′p + Pnkp → RNAOH + phosphoaspartyl-Pnkp → Pi + Pnkp. PMID:23118482
Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, L.M.; O'Leary, M.H.
1988-08-09
The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capablemore » of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.« less
NASA Astrophysics Data System (ADS)
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-01
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu2 + ions in the presence of other competitive ions through ;naked eye; in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10 mM, pH = 7.4)). The presence of Cu2 + induce color change from light yellow green to yellow with the appearance of a new band at 450 nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10 μM) was quenched completely in the presence of 2.7 equiv. of Cu2 + ions. Sub-micromolar limit of detection (LOD = 3.4 × 10- 7 M), efficient Stern-Volmer quenching constant (KSV = 1.8 × 105 L mol- 1) and strong binding constant (log Kb = 5.92) has been determined with the help of fluorescence titration profile. Further, 1 - Cu2 + complex was employed for the detection of phosphate ions (PO43 -, HPO42 - and H2PO4-) at micromolar concentrations in EtOH-buffer of pH 7.4 based on fluorescence recovery due to the binding of Cu2 + with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406 nm) and emission wavelength (537 nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging.
Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi
2012-09-01
In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the functional groups but also as a substrate inducing the nucleation of phosphate nanoparticles. Stable nano-sized Yb phosphate precipitates formed on yeast cell surfaces in the present study, which implies that this post-adsorption nano-particle formation process caused by microbial cells should be one of the important processes governing the long-term migration of heavy rare earth elements and presumably trivalent actinides in geological repository.
Long Duration Life Test of Propylene Glycol Water Based Thermal Fluid Within Thermal Control Loop
NASA Technical Reports Server (NTRS)
Le, Hung; Hill, Charles; Stephan, Ryan A.
2010-01-01
Evaluations of thermal properties and resistance to microbial growth concluded that 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture was desirable for use as a fluid within a vehicle s thermal control loop. However, previous testing with a commercial mixture of PG and water containing phosphate corrosion inhibitors resulted in corrosion of aluminum within the test system and instability of the test fluid. This paper describes a follow-on long duration testing and analysis of 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture with inorganic corrosion inhibitors used in place of phosphates. The test evaluates the long-term fluid stability and resistance to microbial and chemical changes
Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna
1989-01-01
Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705
Gopinathan, Gokul; Jin, Tianquan; Liu, Min; Li, Steve; Atsawasuwan, Phimon; Galang, Maria-Therese; Allen, Michael; Luan, Xianghong; Diekwisch, Thomas G. H.
2014-01-01
The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate and apatite, but preferentially to calcium carbonate. Together, these studies highlight the specific binding affinity of the augmented amelogenin polyproline repeat region to calcium phosphates versus calcium carbonate, and its unique role in the growth of thin apatite crystals as they occur in vertebrate biominerals. Our data suggest that the rise of apatite-based biominerals in vertebrates might have been facilitated by a rapid evolution of specialized polyproline repeat proteins flanked by a charged domain, resulting in apatite crystals with reduced width, increased length, and tailored biomechanical properties. PMID:25426079
2015-01-01
Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128
Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A
2014-06-17
Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.
Li, John Wing; Wong, Joseph Ho Sing; Chak, Wai Leung; Chau, Ka Foon
2017-10-18
While studies demonstrated favorable outcomes of nocturnal home hemodialysis (NHHD), direct comparison on employment rate, clinical and laboratory outcomes between the NHHD and continuous ambulatory peritoneal dialysis (CAPD) had not been previously performed. A 1-year retrospective observation study was performed in 20 incidents alternate night NHHD and 81 incident CAPD patients of Chinese ethnicity, who were sex, diabetic status, and Charlson comorbidity index matched, but not age due to our center's age limit for NHHD enrollment. The primary outcome was the difference in employment rate at 1 year. Secondary outcomes included differences in clinical parameters (weight, blood pressure, number of antihypertensive medication, dosage of phosphate binders, and erythropoietin stimulating agent) and laboratory parameters (residual renal function, mineral metabolic markers, hemoglobin). NHHD subjects were 5 years younger than CAPD patients, and they had higher employment rate (80% vs. 33.3%, P < 0.01) at 1 year, with age-adjusted odds ratio for employment was 6.10 (95% confidence interval 1.77-20.99, P = 0.04). They consumed less aluminum-based phosphate binder (0 vs. 1800 mg, P < 0.01), but showed no significant disparities in other clinical parameters. Residual renal function in both groups declined comparably, nonetheless NHHD group had lower serum phosphate (1.37 vs. 1.71 mmol/L, P = 0.01) and calcium phosphate product (3.13 vs. 4.12 mmol 2 /L 2 , P < 0.01), with similar hemoglobin levels. NHHD appeared to offer higher employment rate, lower dosage of aluminum-based phosphate binder and mineral metabolic markers at 1 year compared with CAPD in Hong Kong. © 2017 International Society for Hemodialysis.
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A
2018-06-22
High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
Pandey, Anita; Trivedi, Pankaj; Kumar, Bhavesh; Palni, Lok Man S
2006-08-01
The morphological, biochemical, and physiological characteristics of a phosphate solubilizing and antagonistic bacterial strain, designated as B0, isolated from a sub-alpine Himalayan forest site have been described. The isolate is gram negative, rod shaped, 0.8 x 1.6 microm in size, and psychrotrophic in nature that could grow from 0 to 35 degrees C (optimum temp. 25 degrees C). It exhibited tolerance to a wide pH range (3-12; optimum 8.0) and salt concentration up to 4% (w/v). Although it was sensitive to kanamycin, gentamicin, and streptomycin (<10 microg mL(-1)), it showed resistance to higher concentrations of ampicillin, penicillin, and carbenicillin (>1000 microg mL(-1)). The isolate showed maximum similarity with Pseudomonas putida based on 16S rRNA analysis. It solubilized tricalcium phosphate under in vitro conditions. The phosphate solubilization was estimated along a temperature range (4-28 degrees C), and maximum activity (247 microg mL(-1)) was recorded at 21 degrees C after 15 days of incubation. The phosphate solubilizing activity coincided with a concomitant decrease in pH of the medium. The isolate also exhibited antifungal activity against phytopathogenic fungi in Petri dish assays and produced chitinase, ss-l,3-glucanase, salicylic acid, siderophore, and hydrogen cyanide. The plant growth promotion and antifungal properties were demonstrated through a maize-based bioassay under greenhouse conditions. Although the bacterial inoculation was found to result in significant increment in plant biomass, it stimulated bacterial and suppressed fungal counts in the rhizosphere. The present study is important with respect to enumerating microbial diversity of the colder regions as well as understanding the potential biotechnological applications of native microbes.
Phosphates based pigments for new anti-corrosion application: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Tbib, B.; Eddya, M.; El-Hami, K.
2018-02-01
Our study focused on pyrophosphates SrZn1-xMxP2O7 using four series by substituting M with manganese (Mn), cobalt (Co), nickel (Ni), and copper (Cu). They were prepared by reaction in the solid state at 1000 °C for 24 hours and then characterized by X-ray diffraction, which showed that the obtained products are pure. The characterization by UV-visible spectroscopy was used to explain the color of the obtained materials and the optical properties showing the optical energy gap and disorder of these materials. Potential application could be done using the new anti-corrosion pigments based on phosphates.
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...
Dewi, Novriana; Mi, Peng; Yanagie, Hironobu; Sakurai, Yuriko; Morishita, Yasuyuki; Yanagawa, Masashi; Nakagawa, Takayuki; Shinohara, Atsuko; Matsukawa, Takehisa; Yokoyama, Kazuhito; Cabral, Horacio; Suzuki, Minoru; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Nishiyama, Nobuhiro; Kataoka, Kazunori; Takahashi, Hiroyuki
2016-04-01
A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.
Alizadeh, Taher; Atayi, Khalil
2018-02-01
Herein, a new recipe is introduced for the preparation of hydrogen phosphate ion-imprinted polymer nanoparticles (nano-IIP) in acetonitrile/water (63.5:36.5) using phosphoric acid as the template. The nano-IIP obtained was used as the recognition element of a carbon paste potentiometric sensor. The IIP electrode showed a Nernstian response to hydrogen phosphate anion; whereas, the non-imprinted polymer (NIP)-based electrode had no considerable sensitivity to the anion. The presence of both methacrylic acid and vinyl pyridine in the IIP structure, as well as optimization of the functional monomers-template proportion, was found to be important to observe the sensing capability of the IIP electrode. The nano-IIP electrode showed a dynamic linear range of 1 × 10 -5 -1 × 10 -1 mol L-1, Nernstian slope of 30.6 ± (0.5) mV decade -1 , response time of 25 seconds, and detection limit of 4.0 × 10 -6 mol L -1 . The utility of the electrodes was checked by potentiometric titration of hydrogen phosphate with La 3+ solution. Copyright © 2017 John Wiley & Sons, Ltd.
Adams, L G; Hardy, R M; Weiss, D J; Bartges, J W
1993-01-01
Hypophosphatemia associated with hemolytic anemia was diagnosed in five cats with diabetes mellitus and in one cat with idiopathic hepatic lipidosis. The hematocrit began decreasing within 24 to 48 hours after documented hypophosphatemia in each case. The anemia resolved in all five surviving cats. Because of the temporal relationship and lack of other detectable causes, hemolytic anemia was presumed to be caused by hypophosphatemia. There were increased Heinz bodies in three of six hypophosphatemic cats during episodes of hemolysis. Intravenous potassium phosphate administration corrected the hypophosphatemia in four of five cats. The effective dosages of intravenous phosphate ranged from 0.011 to 0.017 mmol of phosphate/kg/h for 6 to 12 hours. Hypocalcemia (5.4 to 8.7 mg/dL) occurred in four of five cats treated with intravenous phosphate; however, only one cat developed clinical signs attributable to hypocalcemia. Based on this retrospective study, we recommend monitoring serum phosphorus concentration every 6 to 12 hours in cats likely to become hypophosphatemic. Treatment of hypophosphatemia in cats is warranted because of the apparent increased susceptibility of cats to hypophosphatemia-induced hemolysis. Cats with severe hypophosphatemia (< or = 1.5 mg/dL) should be given oral or parenteral phosphate if contraindications do not exist.
Characterization and obtainment of phosphate rock concentrates of Turmequé, Boyacá
NASA Astrophysics Data System (ADS)
Zanguña, S. Quijano; Lozano Gómez, L. F.; Pineda Triana, Y.
2017-12-01
The work focuses on the use and exploitation of the mineral concentrates from phosphate rock (PR) coming from mines with a low percentage of phosphorus. The procedure was based on the collection of a source of phosphate rock from the department of Boyacá (municipality of Turmequé), using a randomized design with three replications. The samples were initially milled and sifted using meshes between 140 and 200 US standard, homogenizing them and improving the process of solubility of the phosphorus in the soil. We conduced Z-potential tests, which show that by performing a prior wash on the mineral and maintaining certain concentrations and pH defined, better results are achieved in terms of the buoyancy of the particles in the flotation process. The results obtained from the microflotation tests; both direct and inverse, and the results of chemical composition, with X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD), before and after the microflotation process, were carried out to obtain of commercial laws grade phosphate rock concentrate, confirm that the protocol used increases by 9% the value of total phosphorus in the collected sample. These concentrates from phosphate rock, could be used in the future for the attainment of simple superphosphate (SSP), with the help of sulphuric acid and ammonium thiosulphate mixtures.
Miyake, Yuichi; Tokumura, Masahiro; Nakayama, Hayato; Wang, Qi; Amagai, Takashi; Ogo, Sayaka; Kume, Kazunari; Kobayashi, Takeshi; Takasu, Shinji; Ogawa, Kumiko; Kannan, Kurunthachalam
2017-12-01
The use of novel brominated flame retardants (BFRs) and phosphate-based flame retardants (PFRs) has increased as substitutes for hexabromocyclododecane (HBCD) in many consumer products. To facilitate collection of data on chemicals used as flame retardants in textiles and fabrics, we developed an analytical method using liquid chromatography interfaced with tandem mass spectrometry (LC-MS/MS). We compared two extraction methods, one involving ultrasonic extraction (traditional method) using dichloromethane, toluene or acetone and the other encompassing complete dissolution of textile with 25% 1,1,1,3,3,3-hexafluoro-2-propanol/chloroform. The dissolution method extracted up to 204 times more BFRs and PFRs than the traditional ultrasonic extraction. Tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), triphenylphosphine oxide (TPhPO), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), tricresyl phosphate (TCsP), and triphenyl phosphate (TPhP) were found in 40 flame-retarded curtain samples purchased from Japanese market in 2014. TDBP-TAZTO was detected in polyester curtains for the first time. Some of the flame-retarded curtain samples did not contain any of the known target analytes, which suggested the presence of other unknown flame retardants in those fabrics. Copyright © 2017. Published by Elsevier B.V.
Zhu, Yuan; Wang, Miaomiao; Zhang, Ya; Zeng, Jin; Omari-Siaw, E; Yu, Jiangnan; Xu, Ximing
2016-10-01
Developing a promising carrier for the delivery of poorly water-soluble drugs, such as silybin, to improve oral absorption has become a very worthy of consideration. The goal of this study was to prepare a novel porous calcium phosphate microparticle using povidone-mixed micelles as template while evaluating its in vitro and in vivo properties with silybin as a model drug. The particle characterization, in vitro drug release behavior, and pharmacokinetic parameters of the prepared silybin-loaded calcium phosphate microparticle were investigated. The mean particle size was found to be 3.54 ± 0.32 μm with a rough surface porous structure. Additionally, the silybin-loaded calcium phosphate microparticle compared with the free silybin showed a prolonged 72-h release in vitro and a higher C max (418.5 ± 23.7 ng mL(-1)) with 167.5% oral relative bioavailability. A level A in vitro-in vivo correlation (IVIVC), established for the first time, demonstrated an excellent IVIVC of the formulated silybin in oral administration. In conclusion, this povidone-mixed micelle-based microparticle was successfully prepared to enhance the oral bioavailability of silybin. Therefore, application of this novel porous calcium phosphate microparticle holds a significant potential for the development of poorly water-soluble drugs.
The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories
Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.
2004-11-09
A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.
Wang, Jun; Wang, Dong; Hou, Deyin
2016-01-01
A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result. Copyright © 2015. Published by Elsevier B.V.
Reis, R L; Cunha, A M; Fernandes, M H; Correia, R N
1997-12-01
In this work, a bioactive glass is used as a percusor of calcium-phosphate (Ca-P) film deposition onto several polymer-based materials. Both bioinert (high molecular weight polyethylene, HMWPE), and biodegradable (corn starch-based blends, SEVA-C) polymers, unreinforced or reinforced with hydroxylapatite (HA), were coated by the very simple proposed route. Also polyurethane (PU) foams, with an open-cell structure, were mineralized by the proposed method. In fact, it was possible to induce the growth of the Ca-P films not only at the surface, but also in the bulk of the PU foam. These cellular materials are intended for cancellous bone replacement applications. The morphology of the formed films was strongly dependent on the used substrate, its polar character, and on the presence of HA in its composition, as observed by SEM. Nevertheless, a well defined needly like structure was observed in all samples at high magnifications. The Ca:P ratios of the films were between 1.5 and 1.7, i.e. in the range of tricalcium phosphate-hydroxylapatite. Raman spectroscopy and thin-film x-ray diffraction (XRD) evidenced the formation of mostly amorphous calcium-phosphate films. After scraping the coating from the polymer surface and heat-treating the resulting powder at 1000 degrees C for 1 h, HA and beta-tricalcium phosphate (TCP) typical peaks were found on XRD patterns.
Starch Turnover and Metabolism during Flower and Early Embryo Development1[CC-BY
Pazmino, Diana; Gagliardini, Valeria
2016-01-01
The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed. PMID:27794100
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...
21 CFR 184.1434 - Magnesium phosphate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No. 7782-0975...
Comparative study of the marginal microleakage of six cements in fixed provisional crowns.
Baldissara, P; Comin, G; Martone, F; Scotti, R
1998-10-01
In many situations, provisional restorations require a long-term permanence in the oral cavity. During this period, the abutments need the best possible biologic and mechanical protection. In this way, the vitality of the pulp and the integrity of mineralized tissues can be preserved. The luting cement used to fix interim restorations should have good mechanical properties, low solubility, and good adhesion to resist bacterial and molecular penetration. However, because of its provisional nature, the prosthesis should be easy to remove from the abutments. These contrasting requirements may lead to a compromise in cement behavior, particularly in its mechanical properties. This in vitro study evaluated the marginal microleakage of 4 provisional cements, a cavity base compound and a zinc-phosphate luting cement in provisional acrylic resin crowns fixed on extracted human teeth. Thirty acrylic resin crowns were made and fitted on intact human premolars with the 6 cements. All restorations were applied in a standardized manner by means of an axial load of 10 kg. Specimens were thermocycled then submerged in a 5% basic fuchsin solution, then sectioned and observed under a light stereomicroscope. A 5-level scale was used to score dye penetration in the tooth/cement interface. A high dye penetration in the tooth/cement interface was present in all 4 provisional cements. Microleakage existed in specimens where zinc-phosphate and cavity base compounds were used; however, it was lower than the other materials. A significant difference (P < .05) was found between zinc-phosphate and one eugenol-free cement and between cavity base and the same eugenol-free cement. All materials tested demonstrated different degrees of microleakage. Zinc-phosphate and cavity base compound cements had the best sealing properties. This latter, even if conceived as a cavity base, may be considered a good provisional cement as far as microleakage is concerned.
Dominant oceanic bacteria secure phosphate using a large extracellular buffer
Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.
2015-01-01
The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420
Can features of phosphate toxicity appear in normophosphatemia?
Osuka, Satoko; Razzaque, Mohammed S
2012-01-01
Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels.
Can features of phosphate toxicity appear in normophosphatemia?
Osuka, Satoko; Razzaque, Mohammed S.
2013-01-01
Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels. PMID:22219005
NASA Astrophysics Data System (ADS)
Hao, Hongxun; Wang, Jingkang; Wang, Yongli
2005-02-01
The induction period of dexamethasone sodium phosphate at different supersaturation was experimentally determined in a methanol-acetone system. The laser monitoring observation technique was used to determine the appearance of the first nucleus in solution. The effect of solution composition on induction period was discussed. Based on classical homogeneous nucleation theory, the solid-liquid interfacial tension and surface entropy factor were calculated from the induction period data. The experimentally determined values of interfacial tension are in agreement with the theoretical values predicted by the Mersmann equation. It was found that the nucleus of dexamethasone sodium phosphate grows continuously in pure methanol and turns from continuous growth to birth and spread growth with increasing acetone content in a methanol-acetone mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn; Jiang, Qi; Li, Xiang
2015-01-12
A considerable number of optical devices have significantly benefited from the development of phosphate glasses as substrate materials. Introducing silica into sodium phosphate is an effective method to enhance its mechanical and optical properties. Through annealing treatment, the tetrahedral silicon oxide network structure (Si{sup (4)}) can be transformed into an octahedral structure (Si{sup (6)}) with more constraints. Here, we use high-temperature Raman and Nuclear Magnetic Resonance to reveal the mechanism of transformation between the Si{sup (4)} and Si{sup (6)} silicon oxide structures. The increase of the Si{sup (6)} content results in the phosphate glasses having higher refractive index and hardness.more » Based on this, the refractive index contribution of SiO{sub 6} is obtained.« less
2016-01-01
For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223
Zeng, Qingwei; Wu, Xiaoqin; Wang, Jiangchuan; Ding, Xiaolei
2017-04-28
Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.
Innovative Microsystems: Novel Nanostructures to Capture Circulating Breast Cancer Cells
2009-05-01
temperature to promote a Schiff-base reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered...recombinant protein G from E . coli (Zymed Lab Inc.), at a concentration of 50 mg ml1 in 1 PBS, is incubated on the activated surface overnight at 4 C...reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered saline (CMF-PBS), is incubated on the
Zhang, Yan; Guo, Xingming; Yao, Ying; ...
2016-09-19
The potential application of a carbon nanocomposite from battery anode materials modified with magnesium (Mg) was explored to remove phosphate from aqueous solutions. Thermogravimetric analysis (TGA) shows that the Mg content of the prepared Mg/C composite is around 23.5%. Laboratory batch adsorption kinetics and equilibrium isotherm experiments demonstrate that the composite has an extremely high phosphate adsorption capacity of 406.3 mg PO 4/g, which is among the highest phosphate removal abilities reported so far. Results from XRD, SEM-EDX, and XPS analyses of the postsorption Mg/C composite indicate that phosphate adsorption is mainly controlled by the precipitation of P to formmore » Mg 3(PO 4) 2·8H 2O and MgHPO 4·1.2H 2O nanocrystals on the surface of the adsorbent. Finally, the approach of synthesizing Mg-enriched carbon-based adsorbent described in this work provides new opportunities for disposing spent batteries and developing a low-cost and high-efficiency adsorbent to mitigate eutrophication.« less
Use of magnesium as a drug in chronic kidney disease
Wilkie, Martin
2012-01-01
From chronic kidney disease (CKD) Stage 4 onwards, phosphate binders are needed in many patients to prevent the development of hyperphosphataemia, which can result in disturbed bone and mineral metabolism, cardiovascular disease and secondary hyperparathyroidism. In this review, we re-examine the use of magnesium-containing phosphate binders for patients with CKD, particularly as their use circumvents problems such as calcium loading, aluminum toxicity and the high costs associated with other agents of this class. The use of magnesium hydroxide in the 1980s has been superseded by magnesium carbonate, as the hydroxide salt was associated with poor gastrointestinal tolerability, whereas studies with magnesium carbonate show much better gastrointestinal profiles. The use of combined magnesium- and calcium-based phosphate binder regimens allows a reduction in the calcium load, and magnesium and calcium regimen comparisons show that magnesium may be as effective a phosphate binder as calcium. A large well-designed trial has recently shown that a drug combining calcium acetate and magnesium carbonate was non-inferior in terms of lowering serum phosphate to sevelamer-HCl and had an equally good tolerability profile. Because of the high cost of sevelamer and lanthanum carbonate, the use of magnesium carbonate could be advantageous and drug acquisition cost savings would compensate for the cost of introducing routine magnesium monitoring, if this is thought to be necessary and not performed anyway. Moreover, given the potential cost savings, it may be time to re-investigate magnesium-containing phosphate binders for CKD patients with further well-designed clinical research using vascular end points. PMID:26069822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, Megan; Tepper, Katharina; Haupt, Caroline
Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects onmore » the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.« less
NASA Astrophysics Data System (ADS)
Pinheiro, Antonio Luiz B.; Soares, Luiz Guilherme P.; Marques, Aparecida Maria C.; Silveira, Landulfo
2016-03-01
This work aimed the assessment of the biochemical changes during bone mineralization induced by laser and LED irradiation in an animal model of bone repair using a spectral model based on Raman spectroscopy. Six groups were studied: Clot, Laser (λ780 nm, 70 mW), LED (λ850 nm +/- 10 nm, 150 mW), Biomaterial (biphasic synthetic microgranular hydroxyapatite (HA) + β-tricalcium phosphate), Laser + Biomaterial and LED + Biomaterial. When indicated, defects were further irradiated at 48 h interval during 2 wks, 20 J/cm2 per session. At 15th and 30th days, femurs were dissected and spectra of the defects were collected. Raman spectra were submitted to a model to estimate the relative amount of collagen, phosphate HA and carbonate HA, by using spectra of pure collagen, biomaterial and basal bone, respectively. At 15th days, the use of biomaterial associated to phototherapy reduced the collagen formation, whereas the amount of carbonate HA was not different in all groups. The phosphate HA was higher in the groups that received biomaterial grafts. At 30th days, it was observed an increase of collagen for the group Laser + Biomaterial, and a reduction in the carbonate HA for the LED + Biomaterial. The phosphate HA was higher for the groups LED + Biomaterial and Laser + Biomaterial, while decreased for the group Biomaterial. These results indicated that the use of Laser and LED phototherapies improved the repair of bone defects grafted with the biomaterial by increasing the collagen deposition and phosphate HA.
Taylor, Scott D; Mirzaei, Farzad; Sharifi, Ali; Bearne, Stephen L
2006-12-08
Cytidine triphosphate synthetase (CTPS) catalyzes the formation of cytidine triphosphate from glutamine, uridine-5'-triphosphate (UTP), and adenosine-5'-triphosphate. Inhibitors of CTPS are of interest because of their potential as therapeutic agents. One approach to potent enzyme inhibitors is to use analogues of high energy intermediates formed during the reaction. The CTPS reaction proceeds via the high energy intermediate UTP-4-phosphate (UTP-4-P). Four novel analogues of uridine-4-phosphate (U-4-P) and 3-deazauridine-4-phosphate (3-deazaU-4-P) were synthesized in which the labile phosphate ester oxygen was replaced with a methylene and difluoromethylene group. The methylene analogue of U-4-P, compound 1, was prepared by a reaction of the sodium salt of tert-butyl diethylphosphonoacetate with protected, 4-O-activated uridine followed by acetate deprotection and decarboxylation. It was found that this compound undergoes relatively facile dephosphonylation presumably via a metaphosphate intermediate. The difluoromethylene derivative, compound 2, was prepared by electrophilic fluorination of protected 1. This compound was stable and did not undergo dephosphonylation. Synthesis of the methylene analogue of 3-deazaU-4-P, compound 3, was achieved by ribosylation of protected 4-(phosphonomethyl)-2-hydroxypyridine. Electrophilic fluorination was also employed in the preparation of protected 4-(phosphonodifluoromethyl)-2-hydroxypyridine which was used as the key building block in the synthesis of difluoro derivative 4. These compounds represent the first examples of a nucleoside in which the base has been chemically modified with a methylene or difluormethylenephosphonate group.
Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.
Wood, C M; Milligan, C L; Walsh, P J
1999-08-01
Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.
Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate
2015-01-01
Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P–O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different. PMID:26574325
Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente
2017-01-01
This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p < 0.05), but large inter-individual differences could be observed. Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p < 0.05). Calcium-phosphate-osteopontin particles may represent a new therapeutic approach to caries control and aim at directly targeting virulence factors involved in the caries process. Further studies are required to determine the effect of particle treatment on more acidogenic/aciduric biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.
DePaoli-Roach, Anna A.; Contreras, Christopher J.; Segvich, Dyann M.; Heiss, Christian; Ishihara, Mayumi; Azadi, Parastoo; Roach, Peter J.
2015-01-01
Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500–2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a−/− and Epm2b−/− mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease. PMID:25416783
Current and potential treatment options for hyperphosphatemia.
Carfagna, Fabio; Del Vecchio, Lucia; Pontoriero, Giuseppe; Locatelli, Francesco
2018-06-01
Hyperphosphatemia is common in late stages of chronic kidney disease and is often associated with elevated parathormone levels, abnormal bone mineralization, extra-osseous calcification, and increased risk of cardiovascular events and death. Several classes of oral phosphate binders are available to help control plasma phosphorus levels. Although effective at lowering serum phosphorus, they all have safety, tolerability, and compliance issues that need to be considered when selecting which one to use. Areas covered: This paper reviews the most established treatment options for hyperphosphatemia, in patients with chronic kidney disease, focusing on the new inhibitors of active phosphate absorption. Expert opinion: The prevention and the treatment of hyperphosphatemia is today far to be satisfactory. Nonetheless, an extending range of phosphate binders are now available. Aluminum has potentially serious toxic risks. Calcium-based binders are very effective but can lead to hypercalcemia and/or positive calcium balance and progression of cardiovascular calcification. No long-term data are available for the new calcium acetate/magnesium combination product. Lanthanum is an effective phosphate binder, and long-term effects of tissue deposition seem clinically irrelevant. Sevelamer, appear to have profiles that would lead to pleiotropic effects and reduced progression of vascular calcification, and the main adverse events seen with these agents are gastrointestinal. Iron has a powerful capability of binding phosphate, thus numerous preparations are available, both with and without significant systemic absorption of the iron component. The inhibitors of active intestinal phosphate transport, with their very selective mechanism of action and low pill burden seem the most interesting approach; however, do not seem at present to be effective alone, in reducing serum phosphorus levels.
40 CFR 422.30 - Applicability; description of the phosphate subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Phosphate..., animal feed grade, calcium phosphate and human food grade calcium phosphate from phosphoric acid. The production of human food grade calcium phosphate creates waste water pollutants not completely amenable to...
Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment.
Suzuki, Yumiko; Matsuya, Shigeki; Udoh, Koh-ichi; Nakagawa, Masaharu; Tsukiyama, Yoshihiro; Koyano, Kiyoshi; Ishikawa, Kunio
2005-12-01
The aim of this study was to evaluate the feasibility of fabricating low-crystalline, porous apatite block using set gypsum as a precursor based on the fact that apatite is thermodynamically more stable than gypsum. When the set gypsum was immersed in 1 mol/L diammonium hydrogen phosphate aqueous solution at 100 degrees C, it transformed to low-crystalline porous apatite retaining its original shape. The transformation reaction caused a release of sulfate ions due to an ion exchange with phosphate ions, thus leading to a decrease in the pH of the solution. Then, due to decreased pH, dicalcium phosphate anhydrous--which has similar thermodynamic stability at lower pH--was also produced as a by-product. Apatite formed in the present method was low-crystalline, porous B-type carbonate apatite that contained approximately 0.5 wt% CO3, even though no carbonate sources--except carbon dioxide from air--were added to the reaction system. We concluded therefore that this is a useful bone filler fabrication method since B-type carbonate apatite is the biological apatite contained in bone.
Nucleotides as nucleophiles: Reactions of nucleotides with phosphoimidazolide activated guanosine
NASA Astrophysics Data System (ADS)
Kanavarioti, Anastassia; Rosenbach, Morgan T.; Brian Hurley, T.
1992-07-01
An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N=guanosine, adenosine and uridine) in the range 6.9 ≤ pH ≤ 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-:k {/n pN}=0.17±0.02 M-1 h-1 for nucleophilic attack andk {/h pN}=0.11±0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare withk p 2=0.415 M-1 h-1 andk_h^{p^2 } =0.217 M-1 h-1 for the reactions of HPO{4/2-}. In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts ≥1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.
Nucleotides as nucleophiles: reactions of nucleotides with phosphoimidazolide activated guanosine
NASA Technical Reports Server (NTRS)
Kanavarioti, A.; Rosenbach, M. T.; Hurley, T. B.
1991-01-01
An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N = guanosine, adenosine and uridine) in the range 6.9 less than or equal to pH less than or equal to 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-: knpN = 0.17 +/- 0.02 M-1 h-1 for nucleophilic attack and khpN = 0.11 +/- 0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare with kp.2 = 0.415 M-1 h-1 and khp2. = 0.217 M-1 h-1 for the reactions of HPO4(2-). In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts greater than or equal to 1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.
NASA Astrophysics Data System (ADS)
Britton, Stephanie Lynne
Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the support. The support is not stable under the reaction conditions, and alternatives should be explored to develop a heterogeneous base catalyst for the production of FAME.
Johnson, Edward A.; Grauch, Richard I.; Herring, James R.
2007-01-01
Based on petrographic observations of 135 thin sections, rocks in the Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation in southeastern Idaho can be placed into one of four major lithofacies: organic claystone, muddy siltstone, peloidal phosphorite, and dolomitized calclithite-in order of decreasing abundance. Organic claystones are the most common lithofacies in the Meade Peak. Many of these rocks contain sufficient amounts of silt to make silty, organic claystones a common subtype. Organic claystones commonly contain crystals of muscovite and bioclasts as accessory components, and they are typically parallel laminated. Muddy siltstones are composed primarily of quartz silt, but some feldspar and rare carbonate silt are also present; some rocks are parallel laminated. Phosphate peloids are composed of varying amounts of opaque, complex, and translucent material, and observed internal structures are classified as simple, banded, cored, zoned, oolitic, nucleated, and polynucleated. Opaque, complex, and translucent peloids form the framework grains of three peloidal phosphorite rocks: wackestone phosphorite, packstone phosphorite, and grainstone phosphorite. Wackestone phosphorite is phosphatic-mud supported and contains more than 10 percent peloids; it is the most common type of phosphorite. Packstone phosphorite is peloid supported and contains interstitial phosphatic mud; it is also a common type. Grainstone phosphorite is peloid supported but lacks phosphatic mud; it is the least common type. Dolomitized calclithites contain three types of carbonate grains: macrocrystalline, microcrystalline, and crystalline with a microcrystalline nuclei-in order of decreasing abundance. Based on chemical staining and X-ray diffraction analyses, most of the carbonate is dolomite. Sufficient amounts of quartz silt or muddy material allow some rocks to be called silty dolomitized calclithite or muddy dolomitized calclithite, respectively. Sedimentary structures are absent except in some muddy dolomitized calclithites. Organic claystones, muddy siltstones, and dolomitized calclithites are detrital deposits. Many rocks in the Meade Peak contain calcite and apatite as fracture fillings and vug linings. As expected, peloidal phosphorites are most common in ore zones, and detrital rocks are most common in waste zones. Mine-specific marker beds are mostly composed of dolomitized calclithite.
Towards Synthesis and Usage of Actinide-Bearing REE Phosphate age Standards: A Progress Report
NASA Astrophysics Data System (ADS)
Pyle, J. M.; Cherniak, D. J.
2006-05-01
Electron microprobe (EMP) dates result from a concentration-time unit conversion, so use of a concentration- based (rather than isotope-ratio based) fictive age standard is warranted. This observation has motivated our mineral synthesis program, aimed at producing actinide-doped REE phosphate EMP dating standards that meet the following criteria: 1) known concentrations of U, Th, and Pb; 2) homogeneous intragrain distribution of all components; 3) of suitable size, either as a single-crystal or polycrystalline sintered ceramic. Single-crystal synthesis of actinide-doped LaPO4 by flux-growth methods results in disproportionation of lanthanide and flux, alkali, and actinide components into phosphate and oxide phases, respectively, and flux- growth methods were abandoned. Actinide-doped La phosphate is successfully prepared by high-T annealing and hydrothermal processing of microcrystalline phosphate; both homogeneity and charge-balance of (Ca, Th, Pb)-bearing LaPO4 increase with increasing solvent acidity during cold-seal hydrothermal synthesis. A combination of pressing and high-T (1400° C) sintering transforms fine-grained (0.1-10 μm) run- products to ceramic pellets with 90-95% theoretical density. Our most recent runs focused on a target composition of La80(CaTh)17(CaU)2(PbTh)1PO4 processed with 6% 2M HCl at 820° C, 0.75 kbar for 1 week. The run products are 0.1-2 μm crystals identified by XRD as La-actinide phosphate solid solution. 2 μm grains (N=16) give a composition (mean±2 sd) of La79.77(1.26)(CaTh)17.87(1.00)(CaU)1.53(0.42)(PbTh)0.82(0.09)PO4. Th (8.07-9.13 wt. %) is homogeneous at the level of analytical precision, and the Pb concentration range (3500-4350 ppm) is restricted relative to untreated precipitate. Uranium concentration values are more variable (6500-10000 ppm). This run yields a fictive age of 702±4 Ma (mean±2 se), compared to the fictive age of 794 Ma for the target composition.
Yandigeri, Mahesh S; Yadav, Arvind K; Meena, Kamlesh Kumar; Pabbi, Sunil
2010-03-01
The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-15
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu 2+ ions in the presence of other competitive ions through "naked eye" in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10mM, pH=7.4)). The presence of Cu 2+ induce color change from light yellow green to yellow with the appearance of a new band at 450nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10μM) was quenched completely in the presence of 2.7 equiv. of Cu 2+ ions. Sub-micromolar limit of detection (LOD=3.4×10 -7 M), efficient Stern-Volmer quenching constant (K SV =1.8×10 5 Lmol -1 ) and strong binding constant (log K b =5.92) has been determined with the help of fluorescence titration profile. Further, 1-Cu 2+ complex was employed for the detection of phosphate ions (PO 4 3- , HPO 4 2- and H 2 PO 4 - ) at micromolar concentrations in EtOH-buffer of pH7.4 based on fluorescence recovery due to the binding of Cu 2+ with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406nm) and emission wavelength (537nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Omoto, M; Imai, T; Seki, K; Nomura, R; Otahara, Y
1997-10-01
Based on the fact that chemical products such as binding agents are produced by mixing three kinds of phosphates with different ratios, we mixed metaphosphate, polyphosphate and pyrophosphate. Each was made to Na-phosphate, K-phosphate, and Ca-phosphate and each was mixed with commercial feeds so that the content of P would be approximately 0.1, 0.15, 0.3, 0.4, 0.6 and 1.0%. The prepared pellets were given to ICR, CF # 1 and AKR strains of mice at 29 days of age for 680 days and observations were made through this experimental period at different stages. The observations were also carried out on the mice administered with the experimental feeds for 1.5 months from 9 to 10.5 months of age. The observations were compared with those of the control group at all times. As a result, plasma 1 α, 25 (OH)(2) D(3) and P levels were always significantly higher in the phosphate administered groups relative to the control. Urine P and Fe increased while urine Ca decreased in the phosphate-treated groups.The effect of phosphates on the bones was studied taking soft X-ray pictures of hind legs and applying microdensitometry to them. Through these observations we recognized thinning of the cortex of bones, reduction of marrow trabecules and development of osteophyte. Histological observations disclosed that changes in knee joint tissues were apparent; that is, a decrease in or an irregular loss of the number of cells in superficial, intermediate, and radial strata of the joint cartilage, proliferation of subchondral bone, and the development of osteophytes were noted. As for muscles, diameters of musclar fibers became smaller; in particular, type II fibers showed greater shrinkage. Regarding kidneys, swelling and atrophy of glomerular capillaries, proliferation of mesangial cells, nephroselerosis, swelling, thinning, and loss of tubular epithelium, interstitial tissue inflammation, development of cylindruria, and deposition of calcium were observed. All these changes seem to be a particularly advanced aspect of the changes which are more pronounced with increasing dose and age.These changes were found even in the group administered with the feed containing 0.1% phosphorus, and, these changes were dependent on the concentration level of P. It was observed that administration to older subjects for a short term (1.5 months) produced effects stronger than those to younger subjects administered for a long term (10.5 months).The effects of condensed Ca-phosphate on bones were similar to those of condensed Na- and K-phosphates, and, hence, it was supposed that these effects were caused by phosphate radicals.
[Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].
Wang, Dan; Zhan, Jing; Sun, Qing-Ye
2014-07-01
The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.
Fan, Qiao; Weinhandl, Eric; Liu, Jiannong
2009-01-01
Background and objectives: A secondary analysis of the Dialysis Clinical Outcomes Revisited (DCOR) trial suggested that sevelamer reduced hospitalizations relative to calcium-based phosphate binders. However, whether changed medical costs associated with reduced hospitalizations or other medical services offset the higher cost of sevelamer is unclear. This DCOR secondary analysis aimed to (1) evaluate Medicare total, inpatient, outpatient, skilled nursing facility, and other costs in sevelamer-treated versus calcium-treated patients; (2) examine Medicare costs in specific categories to determine cost drivers; and (3) estimate and incorporate sevelamer and calcium binder costs. Design, setting, participants, & measurements: DCOR trial participants were linked to the Centers for Medicare & Medicaid Services ESRD database. Medicare costs for 1895 dosed Medicare-primary-payer participants were evaluated. Phosphate binder costs were incorporated. Costs were indexed to 2001 (study base year). Sensitivity analyses were performed with randomized participants, two follow-up periods, and 2004 as index year. Results: Inflation-adjusted Medicare per member per month (PMPM) costs were lower for sevelamer-treated than for calcium-treated participants by a mean differential of $199 PMPM (mean, $5236 versus $5435; median, $4653 versus $4933), mainly because of lower inpatient costs for the sevelamer group (mean, $1461 versus $1644; median, $909 versus $1144). However, after phosphate binder costs were incorporated, costs trended lower for calcium-treated than for sevelamer-treated patients (differential −$81, 95% confidence interval −$321 to $157 PMPM, using average wholesale price; −$25, −$256 to $213 PMPM, using wholesale acquisition cost). Conclusions: Sevelamer reduced inpatient Medicare costs compared with calcium binders. However, when binder costs were added, overall PMPM costs favored calcium-treated over sevelamer-treated participants. PMID:19833904
Liu, Fang; Shokrollahi, Honaz
2015-05-15
Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.
Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F
1986-01-01
Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764
Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne
2009-11-15
Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).
Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis1
Ticconi, Carla A.; Delatorre, Carla A.; Abel, Steffen
2001-01-01
When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mm phosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus. PMID:11706178
Park, Sang-Hyuck; Kyndt, John; Chougule, Kapeel; Park, Jeong-Jin
2018-01-01
Despite the capacity to accumulate ~70% w/w of lipids, commercially produced unicellular green alga A. protothecoides may become compromised due to the high cost of phosphate fertilizers. To address this limitation A. protothecoides was selected for adaptation to conditions of 100× and 5× lower phosphate and peptone, respectively, compared to ‘wild-type media’. The A. protothecoides showed initial signs of adaptation by 45–50 days, and steady state growth at ~100 days. The low phosphate (P)-adapted strain produced up to ~30% greater biomass, while total lipids (~10% w/w) remained about the same, compared to the wild-type strain. Metabolomic analyses indicated that the low P-adapted produced 3.3-fold more saturated palmitic acid (16:0) and 2.2-fold less linolenic acid (18:3), compared to the wild-type strain, resulting in an ~11% increase in caloric value, from 19.5kJ/g for the wild-type strain to 21.6kJ/g for the low P-adapted strain, due to the amounts and composition of certain saturated fatty acids, compared to the wild type strain. Biochemical changes in A. protothecoides adapted to lower phosphate conditions were assessed by comparative RNA-Seq analysis, which yielded 27,279 transcripts. Among them, 2,667 and 15 genes were significantly down- and up-regulated, at >999-fold and >3-fold (adjusted p-value <0.1), respectively. The expression of genes encoding proteins involved in cellular processes such as division, growth, and membrane biosynthesis, showed a trend toward down-regulation. At the genomic level, synonymous SNPs and Indels were observed primarily in coding regions, with the 40S ribosomal subunit gene harboring substantial SNPs. Overall, the adapted strain out-performed the wild-type strain by prioritizing the use of its limited phosphate supply for essential biological processes. The low P-adapted A. protothecoides is expected to be more economical to grow over the wild-type strain, based on overall greater productivity and caloric content, while importantly, also requiring 100-fold less phosphate. PMID:29920531
A phase I study of etoposide phosphate plus paclitaxel.
Brooks, D J; Alberts, D S
1996-12-01
Etoposide phosphate (Etopophos; Bristol-Myers Squibb Company, Princeton, NJ) is a water-soluble derivative of etoposide, a semisynthetic podophyllotoxin that is important in the treatment of a variety of malignancies, including lung cancer, germ cell tumors, non-Hodgkin's lymphoma, Hodgkin's lymphoma, acute leukemia, etc. Because etoposide is poorly water soluble, it must be dissolved in a polysorbate 80-based solvent mixture, which is moderately allergenic and requires a large volume of saline for administration. Etoposide phosphate is water soluble and is rapidly converted in vivo to etoposide by endogenous phosphatases. Because it is water soluble, etoposide phosphate can be administered in volumes much smaller than those required with etoposide therapy, permitting rapid intravenous administration in the outpatient setting. We recently reported the results of a phase I study using etoposide phosphate on a bolus, daily x 5 schedule. Like others, we demonstrated that etoposide phosphate has pharmacokinetic properties virtually identical to those of etoposide. Our dose-finding study indicated that etoposide phosphate can be used in doses up to 100 mg/m2/d x 5 every 3 weeks in patients who have not had extensive prior chemotherapy, and that a dose of 75 mg/m2 would be appropriate for patients who had undergone multiple prior therapies or who had prior radiotherapy. The dose-limiting toxicity was neutropenia. Paclitaxel, a microtubule-stabilizing agent, is active against a variety of solid and hematopoietic malignancies that overlap with those against which etoposide is active. Because the mechanisms of action of these two agents differ, it is logical to suppose that the combination of the two agents might produce some additive effect when used to treat cancers that respond to both individual agents. We therefore undertook a phase I study using paclitaxel as a 3-hour infusion in combination with a 5-minute infusion of etoposide phosphate daily x 3 every 21 days. We used the 3-hour paclitaxel schedule because it has been shown to be less myelotoxic than longer infusions at the same doses. Our goal in this ongoing study is to determine the maximum tolerated doses of the two drugs in combination, to determine the toxicities of the regimen, and to assess its anticancer activity.
Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos
2011-10-30
Apatite II™, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II™ reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd(5)(PO(4))(3)OH(s), Cu(2)(PO(4))OH(s), Ni(3)(PO(4))(2)(s), Co(3)(PO(4))(2)8H(2)O(s) and Hg(3)(PO(4))(2)(s) are proposed as the possible mineral phases responsible for the removal processes. The results of the column experiments show that Apatite II™ is a suitable filling for permeable reactive barriers. Copyright © 2011 Elsevier B.V. All rights reserved.
Is a pre-analytical process for urinalysis required?
Petit, Morgane; Beaudeux, Jean-Louis; Majoux, Sandrine; Hennequin, Carole
2017-10-01
For the reliable urinary measurement of calcium, phosphate and uric acid, a pre-analytical process by adding acid or base to urine samples at laboratory is recommended in order to dissolve precipitated solutes. Several studies on different kind of samples and analysers have previously shown that a such pre-analytical treatment is useless. The objective was to study the necessity of pre-analytical treatment of urine on samples collected using the V-Monovette ® (Sarstedt) system and measured on the analyser Architect C16000 (Abbott Diagnostics). Sixty urinary samples of hospitalized patients were selected (n=30 for calcium and phosphate, and n=30 for uric acid). After acidification of urine samples for measurement of calcium and phosphate, and alkalinisation for measurement of uric acid respectively, differences between results before and after the pre-analytical treatment were compared to acceptable limits recommended by the French society of clinical biology (SFBC). No difference in concentration between before and after pre-analytical treatment of urine samples exceeded acceptable limits from SFBC for measurement of calcium and uric acid. For phosphate, only one sample exceeded these acceptable limits, showing a result paradoxically lower after acidification. In conclusion, in agreement with previous study, our results show that acidification or alkalinisation of urine samples from 24 h urines or from urination is not a pre-analytical necessity for measurement of calcium, phosphate and uric acid.
Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong
Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less
Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces
Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong; ...
2017-09-26
Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less
Prebiotic Evolution of Nitrogen Compounds
NASA Technical Reports Server (NTRS)
Arrhenius, G.
1999-01-01
Support from this four year grant has funded our research on two general problems. One involves attempts to model the abiotic formation of simple source compounds for functional biomolecules, their concentration from dilute state in the hydrosphere and, in several cases, surface induced reactions to form precursor monomers for bioactive end products (refs. 1-5). Because of the pervasiveness and antiquity of phosphate based biochemistry and the catalytic activity of RNA we have exploring the hypothesis of an RNA World as an early stage in the emergence of life. This concept is now rather generally considered, but has been questioned due to the earlier lack of an experimentally demonstrated successful scheme for the spontaneous formation of ribose phosphate, the key backbone molecule in RNA. That impediment has now been removed. This has been achieved by demonstrating probable sources of activated (condensed) highly soluble and strongly sorbed phosphates in nature (Refs. 1,2) and effective condensation of aldehyde phosphates to form ribose phosphate in high yield (ref.6), thereby placing the RNA World concept on a somewhat safer experimental footing. Like all work in this field these experiments are oversimplifications that largely ignore competing side reactions with other compounds expected to be present. None the less our choice of experimental conditions aim at selective processes that eliminate interfering reactions. We have also sought to narrow the credibility gap by simulating geophysically and geochemically plausible conditions surrounding the putative prebiotic reactions.
Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R.; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M.
2015-01-01
Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the ‘PHO regulon’ in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796
Metal sulfide and rare-earth phosphate nanostructures and methods of making same
Wong, Stanislaus; Zhang, Fen
2016-06-28
The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.
Hattori, Masashi; Kamata, Keigo; Hara, Michikazu
2017-02-01
Photo-assisted phosphorylation of an anatase TiO 2 catalyst was examined to improve its catalytic performance for the direct production of 5-(hydroxymethyl)furfural (HMF), a versatile chemical platform, from glucose. In phosphorylation based on simple esterification between phosphoric acid and surface OH groups on anatase TiO 2 with water-tolerant Lewis acid sites, the density of phosphates immobilized on TiO 2 is limited to 2 phosphates nm -2 , which limits selective HMF production. Phosphorylation of the TiO 2 surface under fluorescent light irradiation increases the surface phosphate density to 50%, which is higher than the conventional limit, thus preventing the adsorption of hydrophilic glucose molecules on TiO 2 and resulting in a more selective HMF production over photoassist-phosphorylated TiO 2 .
Arsenyev, P A; Trezvov, V V; Saratovskaya, N V
1997-01-01
This work represents a method, which allows to determine phase composition of calcium hydroxylapatite basing on its infrared spectrum. The method uses factor analysis of the spectral data of calibration set of samples to determine minimal number of factors required to reproduce the spectra within experimental error. Multiple linear regression is applied to establish correlation between factor scores of calibration standards and their properties. The regression equations can be used to predict the property value of unknown sample. The regression model was built for determination of beta-tricalcium phosphate content in hydroxylapatite. Statistical estimation of quality of the model was carried out. Application of the factor analysis on spectral data allows to increase accuracy of beta-tricalcium phosphate determination and expand the range of determination towards its less concentration. Reproducibility of results is retained.
Exposure to triaryl phosphates: metabolism and biomarkers of exposure.
Furlong, Clement E
2011-01-01
The leakage of tricresyl phosphate-containing engine lubricants into aircraft cabin air, either from worn or defective engine seals or under normal operating conditions, is a serious concern for both the health and safety of the cabin occupants, since the oil contains one to five percent tricresyl phosphate (TCP) esters, known neurotoxins. The exposure of pilots is a particular concern since their impairment can affect their safe operation of the aircraft. Mass spectrometric (MS)-based protocols for documenting exposures of individuals are described that entail a rapid purification of the TCP-modified plasma enzyme butyrylcholinesterase (BChE). Following protease digestion of BChE, the modified active site peptide is characterized by MS analysis. Approaches for identifying safer engine oil additives are also described. Some general comments regarding the necessity of improving the quality and safety of the cabin air supply are presented.
NASA Astrophysics Data System (ADS)
Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.
2018-05-01
Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.
Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid.
Heinemann, S; Rössler, S; Lemm, M; Ruhnow, M; Nies, B
2013-04-01
Calcium phosphate cements (CPCs) are highly valuable materials for filling bone defects and bone augmentation by minimal invasive application via percutaneous injection. In the present study some key features were significantly improved by developing a novel injectable ready-to-use calcium phosphate cement based on water-immiscible carrier liquids. A combination of two surfactants was identified to facilitate the targeted discontinuous exchange of the liquid for water after contact with aqueous solutions, enabling the setting reaction to take place at distinct ratios of cement components to water. This prolonged the shelf life of the pre-mixed paste and enhanced reproducibility during application and setting reactions. The developed paste technology is applicable for different CPC formulations. Evaluations were performed for the formulation of an α-TCP-based CPC as a representative example for the preparation of injectable pastes with a powder-to-carrier liquid ratio of up to 85:15. We demonstrate that the resulting material retains the desirable properties of conventional CPC counterparts for fast setting, mechanical strength and biocompatibility, shows improved cohesion and will most probably show a similar degree of resorbability due to identical mineral structure of the set products. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure.
Yaguchi, Atsushi; Tatemichi, Satoshi; Takeda, Hiroo; Kobayashi, Mamoru
2017-01-01
The effects of PA21, a novel iron-based and non-calcium-based phosphate binder, on hyperphosphatemia and its accompanying bone abnormality in chronic kidney disease-mineral and bone disorder (CKD-MBD) were evaluated. Rats with adenine-induced chronic renal failure (CRF) were prepared by feeding them an adenine-containing diet for four weeks. They were also freely fed a diet that contained PA21 (0.5, 1.5, and 5%), sevelamer hydrochloride (0.6 and 2%) or lanthanum carbonate hydrate (0.6 and 2%) for four weeks. Blood biochemical parameters were measured and bone histomorphometry was performed for femurs, which were isolated after drug treatment. Serum phosphorus and parathyroid hormone (PTH) levels were higher in the CRF rats. Administration of phosphate binders for four weeks decreased serum phosphorus and PTH levels in a dose-dependent manner and there were significant decreases in the AUC0-28 day of these parameters in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups compared with that in the CRF control group. Moreover, osteoid volume improved significantly in 5% of the PA21 group, and fibrosis volume and cortical porosity were ameliorated in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups. These results suggest that PA21 is effective against hyperphosphatemia, secondary hyperparathyroidism, and bone abnormalities in CKD-MBD as sevelamer hydrochloride and lanthanum carbonate hydrate are, and that PA21 is a new potential alternative to phosphate binders.
Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity
Brown, Ronald B; Razzaque, Mohammed S
2015-01-01
Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357
NASA Astrophysics Data System (ADS)
Mahaffey, C.; Reynolds, S.; Davis, C. E.; Lohan, M. C.
2016-02-01
Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low in the surface ocean and limit biological activity. In response to phosphate limitation, organisms produce phosphohydrolytic enzymes, such as alkaline phosphatases (AP), that enable them to utilize the more replete dissolved organic phosphorus (DOP) pool to meet their cellular phosphorus demands. Synthesis of data from the surface ocean from 14 open ocean studies reveals an inverse hyperbolic relationship between phosphate and AP, where AP is significantly induced at phosphate concentrations below 50 nM and DOP concentrations decrease as AP increases. AP activity was significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM). While the phosphate concentration may have a first order control on the rates of AP, we demonstrate that other factors influence AP activity. AP are metalloenzymes and zinc and iron are co-factors of the AP proteins PhoA and PhoX, respectively. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increases the rate of AP. To our knowledge, our results are the first direct field-based evidence that AP activity is limited by zinc in the subtropical ocean. In colonies of nitrogen fixer, Trichodesmium, we found enhanced expression of the phoA gene in a region of elevated zinc concentrations and enhanced expression of the phoX gene in a region of elevated iron concentrations around the intertropical convergence zone. Our study highlights the potential link between the phosphorus cycle and trace metals, specifically zinc and iron, and implies that there is potential for zinc-phosphorus and iron-phosphorus co-limitation in the ocean via AP.
NASA Astrophysics Data System (ADS)
Chaudhary, Manchal; Shen, Po-fan; Chang, Sue-min
2018-05-01
Porous tungstated and phosphated TiO2-ZrO2 (TZ) binary oxides with high and strong acidity were successfully prepared by means of sol-gel or impregnation approaches. In addition, the influences of the two types of modifiers on the microstructures and acidity were systematically examined, compared, and clarified. The TZ oxide derived from a surfactant-templating method exhibited a high surface area of 195 m2/g with a pore size of 6.3 nm. Moreover, it had a high acidity of 859 μmol/g with a density of 4.4 μmol/nm2 because of defective surface. Phosphation significantly increased the acidity to 1547 μmol/g and showed the highest acid density of 6.7 μmol/nm2 at a surface P density of 22.7P/nm2. On the other hand, tungstated compounds just showed the highest acidity of 972 μmol/g and the highest acid density of 4.8 μmol/nm2 at 4.7 W/nm2. Compared to tungstate species, phosphate anions are more capable of promoting the acidity because they are able to distort the host network and inhibit elemental rearrangement. While Lewis acidity prevailed in the tungstated compounds, Brønsted acidity was dominant in the phosphated oxides. The Wdbnd O and Psbnd OH groups were responsible for strong acidity in the modified compounds. Phosphated compounds formed strong Brønsted acid sites on the Psbnd OH groups with a particular strength, and tungstation produced Lewis acid sites with a continuous strength on the metal ions adjacent to the tungstate moieties. Cyclic NH3 adsorption-desorption processes revealed that the active sites for NH3 adsorption were stable in both the tungstate and phosphate modified compounds, revealing that these solid acids are promising as the adsorbents for removal of base gases.
Fluoride and phosphate release from carbonate-rich fluorapatite during managed aquifer recharge
NASA Astrophysics Data System (ADS)
Schafer, David; Donn, Michael; Atteia, Olivier; Sun, Jing; MacRae, Colin; Raven, Mark; Pejcic, Bobby; Prommer, Henning
2018-07-01
Managed aquifer recharge (MAR) is increasingly used as a water management tool to enhance water availability and to improve water quality. Until now, however, the risk of fluoride release during MAR with low ionic strength injectate has not been recognised or examined. In this study we analyse and report the mobilisation of fluoride (up to 58 μM) and filterable reactive phosphorus (FRP) (up to 55 μM) during a field groundwater replenishment experiment in which highly treated, deionised wastewater (average TDS 33 mg/L) was injected into a siliciclastic Cretaceous aquifer. In the field experiment, maximum concentrations, which coincided with a rise in pH, exceeded background groundwater concentrations by an average factor of 3.6 for fluoride and 24 for FRP. The combined results from the field experiment, a detailed mineralogical characterisation and geochemical modelling suggested carbonate-rich fluorapatite (CFA: Ca10(PO4)5(CO3,F)F2) to be the most likely source of fluoride and phosphate release. An anoxic batch experiment with powdered CFA-rich nodules sourced from the target aquifer and aqueous solutions of successively decreasing ionic strength closely replicated the field-observed fluoride and phosphate behaviour. Based on the laboratory experiment and geochemical modelling, we hypothesise that the release of fluoride and phosphate results from the incongruent dissolution of CFA and the simultaneous formation of a depleted layer that has hydrated di-basic calcium phosphate (CaHPO4·nH2O) composition at the CFA-water interface. Disequilibrium caused by calcium removal following breakthrough of the deionised injectate triggered the release of fluoride and phosphate. Given the increasing use of highly treated, deionised water for MAR and the ubiquitous presence of CFA and fluorapatite (Ca10(PO4)6F2) in aquifer settings worldwide, the risk of fluoride and phosphate release needs to be considered in the MAR design process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopcak, T., E-mail: tsopcak@imr.saske.sk; Medvecky, L.; Giretova, M.
The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~more » 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.« less
Pinheiro, Antônio Luiz Barbosa; Soares, Luiz Guilherme Pinheiro; Marques, Aparecida Maria Cordeiro; Cangussú, Maria Cristina Teixeira; Pacheco, Marcos Tadeu Tavares; Silveira, Landulfo
2017-04-01
This work aimed the assessment of biochemical changes induced by laser or LED irradiation during mineralization of a bone defect in an animal model using a spectral model based on Raman spectroscopy. Six groups were studied: clot, laser (λ = 780 nm; 70 mW), LED (λ = 850 ± 10 nm; 150 mW), biomaterial (biphasic synthetic micro-granular hydroxyapatite (HA) + β-tricalcium phosphate), biomaterial + laser, and biomaterial + LED. When indicated, defects were further irradiated at a 48-h interval during 2 weeks (20 J/cm 2 per session). At the 15th and 30th days, femurs were dissected and spectra of the defects were collected. Raman spectra were submitted to a model to estimate the relative amount of collagen, phosphate HA, and carbonate HA by using the spectra of pure collagen and biomaterials composed of phosphate and carbonate HA, respectively. The use of the biomaterial associated to phototherapy did not change the collagen formation at both 15 and 30 days. The amount of carbonate HA was not different in all groups at the 15th day. However, at the 30th day, there was a significant difference (ANOVA, p = 0.01), with lower carbonate HA for the group biomaterial + LED compared to biomaterial (p < 0.05). The phosphate HA was higher in the groups that received biomaterial grafts at the 15th day compared to clot (significant for the biomaterial; p < 0.01). At the 30th day, the phosphate HA was higher for the group biomaterial + laser, while this was lower for all the other groups. These results indicated that the use of laser phototherapy improved the repair of bone defects grafted with the biomaterial by increasing the deposition of phosphate HA.
Andrews, Logan D; Zalatan, Jesse G; Herschlag, Daniel
2014-11-04
Catalytic promiscuity, the ability of enzymes to catalyze multiple reactions, provides an opportunity to gain a deeper understanding of the origins of catalysis and substrate specificity. Alkaline phosphatase (AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions with a ∼10(10)-fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions. The preponderance of formal positive charge in the AP active site, particularly from three divalent metal ions, was proposed to be responsible for this preference by providing stronger electrostatic interactions with the more negatively charged phosphoryl group versus the sulfuryl group. To test whether positively charged metal ions are required to achieve a high preference for the phosphate monoester hydrolysis reaction, the catalytic preference of three protein tyrosine phosphatases (PTPs), which do not contain metal ions, were measured. Their preferences ranged from 5 × 10(6) to 7 × 10(7), lower than that for AP but still substantial, indicating that metal ions and a high preponderance of formal positive charge within the active site are not required to achieve a strong catalytic preference for phosphate monoester over sulfate monoester hydrolysis. The observed ionic strength dependences of kcat/KM values for phosphate and sulfate monoester hydrolysis are steeper for the more highly charged phosphate ester with both AP and the PTP Stp1, following the dependence expected based on the charge difference of these two substrates. However, the dependences for AP were not greater than those of Stp1 and were rather shallow for both enzymes. These results suggest that overall electrostatics from formal positive charge within the active site is not the major driving force in distinguishing between these reactions and that substantial discrimination can be attained without metal ions. Thus, local properties of the active site, presumably including multiple positioned dipolar hydrogen bond donors within the active site, dominate in defining this reaction specificity.
Phosphate-a poison for humans?
Komaba, Hirotaka; Fukagawa, Masafumi
2016-10-01
Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki
2014-01-08
The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.
Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki
2014-01-01
The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson–Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo. PMID:24399194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaisi, Deb P.; Kukkadapu, Ravi K.; Stout, Lisa M.
2011-07-06
A key question to address in the development of oxygen isotope ratios in phosphate (18Op) as a tracer of biogeochemical cycling of phosphorus in ancient and modern environments is the nature of isotopic signatures associated with uptake and cycling of mineral-bound phosphate by microorganisms. Here we present experimental results aimed at understanding the biotic and abiotic pathway of P cycling during biological uptake of phosphate sorbed to ferrihydrite and the selective uptake of specific sedimentary phosphate phases by Escherichia coli, Vibrio fischeri and Marinobacter aquaeolei. Results indicate that a significant fraction of ferrihydrite-bound phosphate is biologically available. The fraction ofmore » phosphate taken up by E. coli attained an equilibrium isotopic composition in a short time (<50 hrs) due to efficient O-isotope exchange between phosphate and water (biotic pathway). The difference in isotopic composition between newly equilibrated aqueous and residual sorbed phosphate promoted the exchange of intact phosphate radicals (abiotic pathway) so that this difference gradually became negligible. In sediment containing different P phases, E. coli and V. fischeri ‘extracted’ loosely sorbed phosphate first while M. aquaeolei preferred iron-oxide bound phosphate. Each bacterium imprinted a biotic isotopic signature on each P phase that it took up and cycled. For example, the 18Op value of the sorbed phosphate phase shifted gradually towards equilibrium isotopic composition and the value of Fe oxide-bound phosphate showed slight changes at first, but when new iron oxides were formed, co-precipitated/occluded phosphate retained 18O values of aqueous phosphate at that time. Concentrations and isotopic compositions of authigenic and detrital phosphates did not change, suggesting that these phosphate phases were not utilized by bacteria. These findings support burgeoning applications of 18Op as a tracer of phosphorus cycling in sediments, soils and aquatic environments and as an indicator of paleo- environmental conditions.« less
Phosphate removal and hemodialysis conditions.
Pohlmeier, R; Vienken, J
2001-02-01
Hyperphosphatemia is frequently found in hemodialysis patients, and the association with an increased risk of mortality has been demonstrated. Other authors have linked hyperphosphatemia to increased cardiovascular mortality. The normalization of phosphate plasma levels is therefore an important goal in the treatment of end-stage renal disease patients. Absorption of phosphate from the food exceeds the elimination through a hemodialysis treatment, and this leads to a chronic phosphate load for the majority of hemodialysis patients. This imbalance should be improved by either a reduction of phosphate absorption or an increased removal of phosphate. A reduction of phosphate absorption can be achieved by reducing the amount of phosphate in the diet or by the administration of phosphate binders. Unfortunately, these measures imply practical difficulties, for example, a lack of patient compliance or other side effects. When considering modifications of the hemodialysis treatment, an essential understanding of the kinetics of dialytic phosphate removal is mandatory. Phosphate is unevenly distributed in different compartments of the body. Only a very small amount of phosphate is present in the easily accessible plasma compartment. The major part of phosphate removed during hemodialysis originates from the cytoplasm of cells. A transfer from intracellular space to the plasma and further from the plasma to the dialysate is necessary. However, if we consider improvement to phosphate removal by dialysis procedures, full dialyzer clearance is effective in only the initial phase of the dialysis treatment. After this initial phase, the transfer rate for phosphate from the intracellular space to the plasma becomes the rate-limiting step for phosphate transport. Attempts to improve this transfer rate have recently been investigated by acidosis correction, but turned out not to be consistently successful. Furthermore, modifications of the treatment schedule have been described in the literature as measures to influence the phosphate balance consistently. Successful improvements of the phosphate balance can be achieved specifically through increasing the frequency of the dialysis treatments.
NASA Astrophysics Data System (ADS)
Schubotz, Florence; Lipp, Julius S.; Elvert, Marcus; Hinrichs, Kai-Uwe
2011-08-01
Seepage of asphalt forms the basis of a cold seep system at 3000 m water depth at the Chapopote Knoll in the southern Gulf of Mexico. Anaerobic microbial communities are stimulated in the oil-impregnated sediments as evidenced by the presence of intact polar membrane lipids (IPLs) derived from archaea and Bacteria at depths up to 7 m below the seafloor. Detailed investigation of stable carbon isotope composition (δ 13C) of alkyl and acyl moieties derived from a range of IPL precursors with distinct polar head groups resolved the complexity of carbon metabolisms and utilization of diverse carbon sources by uncultured microbial communities. In surface sediments most of the polar lipid-derived fatty acids with phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) head groups could be tentatively assigned to autotrophic sulfate-reducing bacteria, with a relatively small proportion involved in the anaerobic oxidation of methane. Derivatives of phosphatidyl-( N)-methylethanolamine (PME) were abundant and could be predominantly assigned to heterotrophic oil-degrading bacteria. Archaeal IPLs with phosphate-based hydroxyarchaeols and diglycosidic glyceroldibiphytanylglyceroltetraethers (GDGTs) were assigned to methanotrophic archaea of the ANME-2 and ANME-1 cluster, respectively, whereas δ 13C values of phosphate-based archaeols and mixed phosphate-based and diglycosidic GDGTs point to methanogenic archaea. At a 7 m deep sulfate-methane transition zone that is linked to the upward movement of gas-laden petroleum, a distinct increase in abundance of archaeal IPLs such as phosphate-based hydroxyarchaeols and diglycosidic archaeol and GDGTs is observed; their δ 13C values are consistent with their origin from both methanotrophic and methanogenic archaea. This study reveals previously hidden, highly complex patterns in the carbon-flow of versatile microbial communities involved in the degradation of heavy oil including hydrocarbon gases that would not have been evident from classical compound-specific isotope analyses of either bulk IPL or apolar lipid derivatives.
New agent to treat elevated phosphate levels: magnesium carbonate/calcium carbonate tablets.
Meyer, Caitlin; Cameron, Karen; Battistella, Marisa
2012-01-01
In summary, Binaphos CM, a magnesium carbonate/calcium carbonate combination phosphate binder, is marketed for treating elevated phosphate levels in dialysis patients. Although studies using magnesium/calcium carbonate as a phosphate binder are short term with small numbers of patients, this phosphate binder has shown some promising results and may provide clinicians with an alternative for phosphate binding. Using a combination phosphate binder may reduce pill burden and encourage patient compliance. In addition to calcium and phosphate, it is imperative to diligently monitor magnesium levels in patients started on this medication, as magnesium levels may increase with longer duration of use. Additional randomized controlled trials are necessary to evaluate long-term efficacy and safety of this combination phosphate binder.
diCenzo, George C.; Sharthiya, Harsh; Nanda, Anish; Zamani, Maryam
2017-01-01
ABSTRACT Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import. IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium meliloti PhoU protein, which plays a key role in rapid adaptation to elevated phosphate concentrations. It is shown that PhoU rapidly responds to elevated phosphate levels by significantly decreasing the phosphate transport of PstSCAB, thereby preventing phosphate toxicity and cell death. Additionally, a new model for phosphate sensing in bacterial species which involves the PhoR-PhoB two-component system is presented. This work provides new insights into the bacterial response to changing environmental conditions and into regulation of the phosphate limitation response that influences numerous bacterial processes, including antibiotic production and virulence. PMID:28416708
Microbial solubilization of phosphate
Rogers, R.D.; Wolfram, J.H.
1993-10-26
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.
Microbial solubilization of phosphate
Rogers, Robert D.; Wolfram, James H.
1993-01-01
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.
Rentsch, Barbe; Bernhardt, Anne; Henß, Anja; Ray, Seemun; Rentsch, Claudia; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael; Rammelt, Stefan; Lode, Anja
2018-03-15
Remodeling of calcium phosphate bone cements is a crucial prerequisite for their application in the treatment of large bone defects. In the present study trivalent chromium ions were incorporated into a brushite forming calcium phosphate cement in two concentrations (10 and 50 mmol/mol β-tricalcium phosphate) and implanted into a femoral defect in rats for 3 and 6 month, non-modified brushite was used as reference. Based on our previous in vitro findings indicating both an enhanced osteoclastic activity and cytocompatibility towards osteoprogenitor cells we hypothesized a higher in vivo remodeling rate of the Cr 3+ doped cements compared to the reference. A significantly enhanced degradation of the modified cements was evidenced by micro computed tomography, X-ray and histological examinations. Furthermore the formation of new bone tissue after 6 month of implantation was significantly increased from 29% to 46% during remodeling of cements, doped with the higher Cr 3+ amount. Time of flight secondary ion mass spectrometry (ToF-SIMS) of histological sections was applied to investigate the release of Cr 3+ ions from the cement after implantation and to image their distribution in the implant region and the surrounding bone tissue. The relatively weak incorporation of chromium into the newly formed bone tissue is in agreement to the low chromium concentrations which were released from the cements in vitro. The faster degradation of the Cr 3+ doped cements was also verified by ToF-SIMS. The positive effect of Cr 3+ doping on both degradation and new bone formation is discussed as a synergistic effect of Cr 3+ bioactivity on osteoclastic resorption on one hand and improvement of cytocompatibility and solubility by structural changes in the calcium phosphate matrix on the other hand. While biologically active metal ions like strontium, magnesium and zinc are increasingly applied for the modification of ceramic bone graft materials, the present study is the first report on the incorporation of low doses of trivalent chromium ions into a calcium phosphate based biomaterial and testing of its performance in bone defect regeneration in vivo. Chromium(III)-doped calcium phosphate bone cements show improved cytocompatibility and both degradation rate and new bone formation in vivo are significantly increased compared to the reference cement. This important discovery might be the starting point for the application of trivalent chromium salts for the modification of bone graft materials to increase their remodelling rate. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Garimella, Ravindranath; Halye, Jeffrey L.; Harrison, William; Klebba, Phillip E.; Rice, Charles V.
2009-01-01
The conformation of D-alanine (D-Ala) groups of bacterial teichoic acid is a central, yet untested, paradigm of microbiology. The D-Ala binds via the C-terminus, thereby allowing the amine to exist as a free cationic NH3+ group with the ability to form a contact-ion-pair with the nearby anionic phosphate group. This conformation hinders metal chelation by the phosphate because the zwitterion pair is charge neutral. To the contrary, the repulsion of cationic antimicrobial peptides (CAMPs) is attributed to the presence of the D-Ala cation; thus the ion-pair does not form in this model. Solid-state nuclear magnetic resonance (NMR) spectroscopy has been used to measure the distance between amine and phosphate groups within cell wall fragments of Bacillus subtilis. The bacteria were grown on media containing 15N D-Ala and β-chloroalanine racemase inhibitor. The rotational-echo double-resonance (REDOR) pulse sequence was used to measure the internuclear dipolar coupling and the results demonstrate: 1) the metal-free amine-to-phosphate distance is 4.4 Å and 2) the amine-to-phosphate distance increases to 5.4 Å in the presence of Mg2+ ions. As a result, the zwitterion exists in a nitrogen-oxygen ion-pair configuration providing teichoic acid with a positive charge to repel CAMPs. Additionally, the amine of D-Ala does not prevent magnesium chelation in contradiction to the prevailing view of teichoic acids in metal binding. Thus, the NMR-based description of teichoic acid structure resolves the contradictory models, advances the basic understanding of cell wall biochemistry, and provides possible insight into the creation of new antibiotic therapies. PMID:19746945
Management of male osteoporosis.
Cortet, B; Vasseur, J; Grardel, B; Catanzariti, L; Marchandise, X; Delcambre, B
2001-05-01
The objective of this study was to evaluate the efficacy of treatments for male osteoporosis selected based on the cause of the disease. Sixty-three men with osteoporosis (T-score at the lumbar spine and/or femoral neck lower than -2.5) with a mean age of 53+/-11 years were studied. Forty-three (68.3%) had a history of fracturing without trauma (vertebral fractures, 37 patients, 57%). Treatments were as follows: idiopathic osteoporosis: calcium and vitamin D supplements (N = 10) or cyclical etidronate for 2 weeks followed by calcium and vitamin D supplements for 76 days (N = 29); moderate idiopathic phosphate diabetes: calcitriol and phosphate (N = 15); idiopathic hypercalciuria: hydrochlorothiazide (N = 6); and hypogonadism: testosterone (N = 3). Percentage change in bone mineral density (mean +/- standard error of the mean) after 18 months: calcium and vitamin D (lumbar spine: 0.6+/-2; femoral neck: 2.2+/-2.2); etidronate (lumbar spine: 3.6+/-1.4*; femoral neck: 0.5+/-1); calcitriol (lumbar spine: 7.0+/-3.5*; femoral neck: 0.0+/-1.4); thiazide diuretic (lumbar spine: 1+/-3.2; femoral neck: -2.3+/-3.7); and testosterone (lumbar spine: 6.8+/-6.4; femoral neck: 2.5+/-2.7), where *P < 0.05 versus baseline. Gastrointestinal side effects occurred in three patients (4.8%), including two on calcitriol-phosphate therapy and one on etidronate therapy. Of the six (9.5%) patients who experienced incident fractures, four were on etidronate, one on calcitriol-phosphate, and one on calcium-vitamin D. No patients discontinued their treatment because of side effects. Etidronate and the combination of calcitriol-phosphate produce a significant increase in lumbar spine bone mass in men with idiopathic osteoporosis or moderate idiopathic phosphate diabetes.
NASA Astrophysics Data System (ADS)
Supriyantini, E.; Santoso, A.; Soenardjo, N.
2018-02-01
Mangrove Park waters area of Pekalongan City, Central Java, used to be an aquaculture field, now turning the function into a restoration-based mangrove area, and now it has undergone rehabilitation. The conditions may affect the distribution of nitrate and phosphate content. The objective of this study was to determine the content of nitrates and phosphates in sediments related to the density levels of mangrove Rhizophora sp. The method used in this research was a descriptive method, and sampling was done by purposive sampling method. Water and sediment sampling were conducted at three stations respectively, representing: no mangrove area but used as a residential and tourist area (station 1); less dense mangrove (station 2); and, the previously aquaculture field - or medium dense mangrove (station 3). The results showed that the content of nitrate and phosphate in the whole sediment showed a low fertility rate. Average nitrate content for station 1, station 2 and station 3 were 0.86 mg/100 g, 0.94 mg/100 g and 0.81 mg/100 g, respectively. The average phosphate content at each station were 1.14 mg/100 g, 0.04 mg/100 g and 0.05 mg/100 g, respectively. Except to the station 1 that was no vegetation anymore, the mangrove density levels at two other stations at study sites were relatively low to medium; at station 2 was 0.8 ind/10 m2 and at station 3 was 1.2 ind/10 m2. The role of nitrate and phosphate were for mangrove growth at the site.
Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew
2014-03-01
The stabilization of Pb on additions of P to contaminated soils and mine spoil materials has been well documented. It is clear from the literature that different P sources result in different efficacies of Pb stabilization in the same contaminated material. We hypothesized that the differences in the efficacy of Pb stabilization in contaminated soils on fluid or granular P amendment addition is due to different P reaction processes in and around fertilizer granules and fluid droplets. We used a combination of several synchrotron-based techniques (i.e., spatially resolved micro-X-ray fluorescence, micro-X-ray absorption near-edge structure spectroscopy, and micro-X-ray diffraction) to speciate Pb at two incubation times in a smelter-contaminated soil on addition of several fluid and granular P amendments. The results indicated that the Pb phosphate mineral plumbogummite was an intermediate phase of pyromorphite formation. Additionally, all fluid and granular P sources were able to induce Pb phosphate formation, but fluid phosphoric acid (PA) was the most effective with time and distance from the treatment. Granular phosphate rock and triple super phosphate (TSP) amendments reacted to generate Pb phosphate minerals, with TSP being more effective at greater distances from the point of application. As a result, PA and TSP were the most effective P amendments at inducing Pb phosphate formation, but caution needs to be exercised when adding large amounts of soluble P to the environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Sharkeev, Yu. P.; Sedelnikova, M. B.; Komarova, E. G.; Khlusov, I. A.
2015-11-01
An investigation of titanium surface modification by microarc oxidation in the electrolyte based on wollastonite and hydroxyapatite was presented. The dependences of the coating properties on the microarc oxidation parameters were found. A variation of the process parameters allowed producing wollastonite-calcium phosphate coatings with aplate-like structure, thickness 25-30 µm, roughness 2.5-5.0 µm, and adhesion strength 57 MPa. The optimum microarc oxidation parameters such as the electrical voltage of 150 V, process duration of 5-10 min, and pulse duration of 100-300 µs were revealed. The wollastonite addition to the electrolyte based on the aqueous solution of phosphoric acid and hydroxyapatite allowed us to form wollastonite-calcium phosphate coatings on the titanium surface by the microarc oxidation method with enhanced strength properties and an increased ability to osseointegration.
NASA Astrophysics Data System (ADS)
Ziyaei, E.; Atapour, M.; Edris, H.; Hakimizad, A.
2017-07-01
The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample's surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.
Biomediated continuous release phosphate fertilizer
Goldstein, Alan H.; Rogers, Robert D.
1999-01-01
A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.
NASA Astrophysics Data System (ADS)
Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh S.; Giammar, Daniel E.; Catalano, Jeffrey G.
2016-02-01
Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work reveals that ternary complexation may occur without a macroscopic signature, which is attributed to phosphate not appreciably binding to smectite in the absence of U(VI), with U(VI) surface complexes serving as the sole reactive surface sites for phosphate. This study shows that phosphate does not enhance U(VI) adsorption to smectite clay minerals, unlike oxide phases, and that a barrier to homogeneous nucleation of U(VI) phosphates was not affected by the presence of the smectite surface.
Malaisse, W J; Malaisse-Lagae, F; Liemans, V; Ottinger, R; Willem, R
1990-03-27
The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of dueterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.
Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K
2012-05-01
In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.
Chemistry of uranium in aluminophosphate glasses
NASA Technical Reports Server (NTRS)
Schreiber, H. D.; Balazs, G. B.; Williams, B. J.
1982-01-01
The U(VI)-U(V)-U(IV) redox equilibria are investigated in two sodium aluminophosphate base compositions at a variety of melt temperatures, imposed oxygen fugacities, and uranium contents. Results show that the higher redox states of uranium are quite soluble in the phosphate glasses, although U(IV) readily precipitates from the melts as UO2. In addition, comparisons of the uranium redox equilibria established in phosphate melts versus those in silicate melts shows that the coordination sites of the individual uranium species are generally the same in both solvent systems although they differ in detail.
Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita
2018-05-11
The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.
Research and engineering assessment of biological solubilization of phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.
This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidationmore » of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.« less
Kim, Ha-Ryong; Hwang, Gi-Wook; Naganuma, Akira; Chung, Kyu-Hyuck
2016-01-01
Exposure to humidifier disinfectants was identified in 2011 as the potential cause of an outbreak of lung disease in Korea. It is estimated that over 8 million people have been exposed to humidifier disinfectants-chemicals added to the water used in humidifiers to prevent the growth of microorganisms-since their commercial introduction. The primary component of humidifier disinfectant products involved was polyhexamethylene guanidine phosphate (PHMG-P), a guanidine-based antimicrobial agent. Lesions observed in the lungs of patients were similar to those observed in laboratory animals exposed to PHMG-P. In this review, we outline the physicochemical and toxicological properties of PHMG-P, and introduce a putative mechanism for its lung toxicity based in large part on research findings to date.
Malagurski, Ivana; Levic, Steva; Nesic, Aleksandra; Mitric, Miodrag; Pavlovic, Vladimir; Dimitrijevic-Brankovic, Suzana
2017-11-01
New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eichler, Daniel R.; Hamann, Haley A.; Harte, Katherine A.; Papadantonakis, George A.
2017-07-01
Results from DFT calculations indicate that states originating from gas-phase ionization of the phosphate and the base are degenerate in syn-5‧-dGMP- and that bulk hydration lowers the base-localized ionization energy by <0.5 eV. Local ionization maps show that micro-hydration leads to the formation of donor and acceptor hydrogen bonds and the ionization energy decreases or increases in each case respectively. The SN2 transition states of the methylation reactions of guanine with methane diazonium ions are lower at the N7 than at the O6 sites and they are influenced by local ionization energy and steric interference.
Nur, Tanjina; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu
2016-01-01
Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L) produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers. PMID:26950136
Phosphate mineral formation in Lake Baikal sediments and implications for paleoclimate
NASA Astrophysics Data System (ADS)
Fagel, N.; Alleman, L. Y.; André, L.; Cloots, R.; Hatert, F.; Juvigné, E.; Renson, V.
2003-04-01
The more than 20 million years old Lake Baikal sedimentary record provides a good climate archive. While most paleoclimate reconstructions are mainly based on biotic proxies, we tested in this study other minerogenic tracers. In particular, it was suggested that the formation of authigenic and/or diagenetic phosphate minerals in Baïkal sediments underlines transitions from glacial to interglacial periods (Deike et al., 1997). The phosphate mineral formation previously evidenced (Müller et al., 2002) may be sensitive to suspended sediment concentrations: glacial periods are characterised by high detrital discharge, interglacial intervals are marked by low detrital supply but high biogenic sedimentation. Phosphate minerals were observed in Baïkal sediments from recent to 65 kyr BP. Their abundance was related to the sedimentation rate, the phosphate enrichment layers being particularly common on low sedimentation site, i.e., the Academician Ridge. Major and trace elements have been analysed by ICP-AES and ICP-MS on four cores drilled on topographic hills, in the southern basin (Posolsky bank, CON01-604), in the central part (Academician Ridge, VER98-1-3 and VER98-1-14) and in the northern basin (Continent Ridge, CON01-603). The geochemical signature is consistent with the occurrence of Mn-Fe-phosphate minerals. For instance P2O5 reaches up to 3% wt. relative to a mean value of 0.3 in the background sediment, MnO2 presents an enrichment factor up to 6. There is no associated enrichment in any of the trace elements measured at the same levels. In the sediments, those P-Mn-Fe rich levels are related either to sparse millimetric dark concretions or to a layer (or a group of layers) defined by an alignment of numerous concretions but there is no so-called crusts. The concretions, isolated by >63 mm sieving, present a lamellar morphology. They are identified as Fe-phosphate phases with a variable proportion of Mn. The powder diffraction diagram is consistent with vivianite, a mineral that has been previously characterized in lacustrine sediments worldwide, including Baïkal. However, its precise formation process is not yet fully understood. Dean et al. (2002) emphasize that the occurrence of phosphate minerals in Elk lake (USA) is indicative of the paleo-productivity of the water-column. For Deike et al. (2002), phosphate crusts mainly accumulate under slow sedimentation conditions. We discuss the paleo-environmental implications of the occurrence of phosphate minerals in sediments. By studying the distribution of the phosphate concretions in sedimentary columns characterised under different sedimentary conditions, we would like to point up the implications of phosphate minerals for paleoclimate reconstruction. Dean et al., 2002. A 1500-year record of climatic and environmental change in Elk Lake, Cearwater County, Minnesota II : Geochemistry , mineralogy, and stable isotopes. J. Paleolimn. 27, 301-319. Müller et al., 2002. P, As, Sb, Mo, and other elements in sedimentary Fe/Mn layers of Lake Baïkal, Environmental Science and Technology, 36, 411-420. Deike et al., 1997. Formation of ferric iron crusts in quaternnary sediments of Lake Baikal, Russia and implications for paleoclimate. Marine Geology 139, 21-46.
NASA Astrophysics Data System (ADS)
Paul, D.; Biswas, R.
2018-05-01
We report a highly sensitive Localized surface plasmon resonance (LSPR) based photonic crystal fiber (PCF) sensor by embedding an array of gold nanospheres into the first layer of air-holes of PCF. We present a comprehensive analysis on the basis of progressive variation of refractive indices of analytes as well as sizes of the nanospheres. In the proposed sensing scheme, refractive indices of the analytes have been changed from 1 to 1.41(RIU), accompanied by alteration of the sizes of nanospheres ranging 40-70 nm. The entire study has been executed in the context of different material based PCFs (viz. phosphate and crown) and the corresponding results have been analyzed and compared. We observe a declining trend in modal loss in each set of PCFs with increment of RI of the analyte. Lower loss has been observed in case of crown based PCF. The sensor shows highest sensitivity ∼27,000 nm/RIU for crown based PCF for nanosphere of 70 nm with average wavelength interrogation sensitivity ∼5333.53 nm/RIU. In case of phosphate based PCF, highest sensitivity is found to be ∼18,000 nm/RIU with an average interrogation sensitivity ∼4555.56 nm/RIU for 40 nm of Au nanosphere. Moreover, the additional sensing parameters have been observed to highlight the better design of the modelled LSPR based photonic crystal fiber sensor. As such, the resolution (R), limit of detection (LOD) and sensitivity (S) of the proposed sensor in each case (viz. phosphate and crown PCF) have been discussed by using wavelength interrogation technique. The proposed study provides a basis for detailed investigation of LSPR phenomenon for PCF utilizing noble metal nanospheres (AuNPs).
Caravaca, Francisco; García-Pino, Guadalupe; Martínez-Gallardo, Rocío; Ferreira-Morong, Flavio; Luna, Enrique; Alvarado, Raúl; Ruiz-Donoso, Enrique; Chávez, Edgar
2013-01-01
Serum phosphate concentrations usually show great variability in patients with advanced chronic kidney disease (ACKD) not on dialysis. Diuretics treatment can have an influence over the severity of mineral-bone metabolism alterations related to ACKD, but their effect on serum phosphate levels is less known. This study aims to determine whether diuretics are independently associated with serum phosphate levels, and to investigate the mechanisms by which diuretics may affect phosphate metabolism. 429 Caucasian patients with CKD not on dialysis were included in this cross-sectional study. In addition to conventional serum biochemical measures, the following parameters of renal phosphate excretion were assessed: 24-hours urinary phosphate excretion, tubular maximum phosphate reabsorption (TmP), and fractional excretion of phosphate (FEP). 58% of patients were on treatment with diuretics. Patients on diuretics showed significantly higher mean serum phosphate concentration (4.78 ± 1.23 vs. 4.24 ± 1.04 mg/dl; P<.0001), and higher TmP per GFR (2.77 ± 0.72 vs. 2.43 ± 0.78 mg/dl; P<.0001) than those not treated with diuretics. By multivariate linear and logistic regression, significant associations between diuretics and serum phosphate concentrations or hyperphosphataemia remained after adjustment for potential confounding variables. In patients with the highest phosphate load adjusted to kidney function, those treated with diuretics showed significantly lower FEP than those untreated with diuretics. Treatment with diuretics is associated with increased serum phosphate concentrations in patients with ACKD. Diuretics may indirectly interfere with the maximum renal compensatory capacity to excrete phosphate. Diuretics should be considered in the studies linking the relationship between serum phosphate concentrations and cardiovascular alterations in patients with CKD.
Nandimath, Arusha P.; Karad, Dilip D.; Gupta, Shantikumar G.; Kharat, Arun S.
2017-01-01
Background and Objectives: Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. Materials and Methods: In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Results: Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml−1. Conclusion: As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting. PMID:29296275
Severe asymptomatic hypophosphataemia in a child with T-acute lymphoblastic leukaemia.
Zakaria, N H; Sthaneshwar, P; Shanmugam, H
2017-12-01
Hypophosphataemia is a metabolic disorder that is commonly encountered in critically ill patients. Phosphate has many roles in physiological functions, thus the depletion of serum phosphate could lead to impairment in multiple organ systems, which include the respiratory, cardiovascular, neurological and muscular systems and haematological and metabolic functions. Hypophosphataemia is defined as plasma phosphate level below 0.80 mmol per litre (mmol/L) and can be further divided into subgroups of mild (plasma phosphate of 0.66 to 0.79 mmol/L), moderate (plasma phosphate of 0.32 to 0.65 mmol/L) and severe (plasma phosphate of less than 0.32 mmol/L). The causes of hypophosphataemia include inadequate phosphate intake, decreased intestinal absorption, gastrointestinal or renal phosphate loss, and redistribution of phosphate into cells. Symptomatic hypophosphataemia associated with haematological malignancies has been reported infrequently. We report here a case of asymptomatic severe hypophosphataemia in a child with acute T-cell lymphoblastic leukaemia. A 14-year-old Chinese boy was diagnosed to have acute T cell lymphoblastic leukaemia (ALL). His serum biochemistry results were normal except inorganic phosphate and lactate dehydrogenase levels. The serum inorganic phosphate level was 0.1mmol/L and the level was low on repeated analysis. The child had no symptoms related to low phosphate levels. The possible causes of low phosphate were ruled out and urine Tmp/GFR was normal. Chemotherapy regime was started and the serum phosphate levels started to increase. Hypophosphataemia in leukaemia was attributed to shift of phosphorus into leukemic cells and excessive cellular phosphate consumption by rapidly proliferating cells. Several reports of symptomatic hypophosphataemia in myelogenous and lymphoblastic leukaemia in adults have been reported. To our knowledge this is the first case of severe asymptomatic hypophosphataemia in a child with ALL.
Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S
2017-10-01
Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.
Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.
Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E
1994-05-01
Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)
Biomediated continuous release phosphate fertilizer
Goldstein, A.H.; Rogers, R.D.
1999-06-15
A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.
Laing, William A; Wright, Michele A; Cooney, Janine; Bulley, Sean M
2007-05-29
The gene for one postulated enzyme that converts GDP-L-galactose to L-galactose-1-phosphate is unknown in the L-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes D-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-L-galactose to L-galactose-1-P. The expressed protein is best described as a GDP-L-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely D-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-L-galactose-D-mannose-1-phosphate guanyltransferase activity.
Laing, William A.; Wright, Michele A.; Cooney, Janine; Bulley, Sean M.
2007-01-01
The gene for one postulated enzyme that converts GDP-l-galactose to l-galactose-1-phosphate is unknown in the l-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes d-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-l-galactose to l-galactose-1-P. The expressed protein is best described as a GDP-l-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely d-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-l-galactose-d-mannose-1-phosphate guanyltransferase activity. PMID:17485667
Synthesis and Performance of LiFe1-xMnxPO4 in Lithium-ion Battery
NASA Astrophysics Data System (ADS)
Bazzi, Khadije; Nazri, Maryam; Vaishnava, Prem; Naik, Vaman; Nazri, Gholam-Abbas; Naik, Ratna
2013-03-01
Olivine-type lithium transition metal phosphates (i.e. LiFePO4) have been intensively investigated as promising electrode materials for rechargeable lithium-ion batteries. There have been attempts to improve energy density and voltage quality of phosphate based electrode. In this study, we have partially substituted FeII/FeIII redox center with MnII/MnIII in LiFePO4 that provides over 600 mV higher voltage. We prepared various compositions of LiFe1-xMnxPO4 (x =0, 0.2, 0.4, 0.6, 0.8 and 1) between the two end members (LiFePO4 - LiMnPO4) . Due to intrinsic low electronic conductivity of lithium transition metal phosphates, we coat these materials with a uniform conductive carbon through a unique sol-gel process developed in our laboratory. In addition, we made a composite of the carbon coated phosphate with carbon nano-tubes to develop a highly conductive matrix electrode. We report the materials structure, morphology, electrical conductivity and electrochemical performances of LiFe1-xMnxPO4 using XRD, Raman spectroscopy, SEM, TEM, XPS, electrical conductivity and galvanostatic charge/discharge measurements.
Efficacy of colestilan in the treatment of hyperphosphataemia in renal disease patients.
Locatelli, Francesco; Dimkovic, Nada; Spasovski, Goce
2014-07-01
Hyperphosphataemia is common in chronic kidney disease (CKD), particularly in the late stages and is associated with secondary hyperparathyroidism, abnormal bone mineralisation and increased cardiovascular morbidity/mortality. At present, there is a range of phosphate binders designed to keep serum phosphate at normal or near normal levels. Colestilan is a new binder that offers additional actions that may afford further benefits over simply lowering phosphate. This paper reviews the pharmacology and clinical data currently available in the use of colestilan to treat hyperphosphataemia in CKD stage 5 patients on dialysis. Available phosphate binders lower serum phosphorus levels to a clinically relevant extent. The balance between the risks and the potential benefits associated with each agent must be considered when choosing a binder. Calcium-based binders can lead to hypercalcaemia and/or positive calcium balance and cardiovascular calcification. Like sevelamer, colestilan is not absorbed and there is no evidence of any risk of hypercalcaemia. In addition, a significant lowering of low-density lipoprotein-cholesterol, similar to simvastatin, a reduction in plasma uric acid and a reduction in high glycosylated haemoglobin values suggest additional beneficial actions that may convert to reductions in mortality.
Connolly, B A; Rider, P
1985-01-01
Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation. PMID:4011448
Bio-solid-State processes for synthesis of Li-Fe-phosphate.
Kim, Hyoung-Bum; Park, Byungno; Lee, Insung; Roh, Yul
2008-10-01
Lithium-Fe-phosphates have become of great interest as storage cathodes for rechargeable Li-batteries because of their high density, environmental friendliness, and safety. The objective of this study was to examine bio-solid-state synthesis of LiFePO4 by microbial processes at room temperature. The microbial reduction of Fe(III)-citrate using an organic carbon, glucose, as an electron donor in the presence of NaHPO4 and lithium that resulted in the formation of Li-substituted iron phosphate. Our studies showed that bacteria enriched from inter-tidal flat sediments, designated as Haejae-1, synthesized Li-substituted iron phosphate. Characterization by X-ray diffraction showed the reduction of Fe(III)-citrate in the presence of NaHPO4 and LiCl2 resulted in the precipitation of Li-substituted vivianite [Li(x)Fe(3-x)(PO4)2 x 8H2O]. SEM-EDX, FTIR, and ESCA analyses showed the chemical composition of the synthesized phases was Li, Fe, P, C, and O. Based on the chemical and physical structure of the mineral, the novel bio-nano-material may be potentially useful to the development of energy storage materials.
Determination of phosphate in natural waters by activation analysis of tungstophosphoric acid
Allen, Herbert E.; Hahn, Richard B.
1969-01-01
Activation analysis may be used to determine quantitatively traces of phosphate in natural waters. Methods based on the reaction 31P(n,γ)32P are subject to interference by sulfur and chlorine which give rise to 32P through n,p and n,α reactions. If the ratio of phosphorus to sulfur or chlorine is small, as it is in most natural waters, accurate analyses by these methods are difficult to achieve. In the activation analysis method, molybdate and tungstate ions are added to samples containing phosphate ion to form tungstomolybdophosphoric acid. The complex is extracted with 2,6-dimethyl-4-heptanone. After activation of an aliquot of the organic phase for 1 hour at a flux of 1013 neutrons per cm2, per second, the gamma spectrum is essentially that of tungsten-187. The induced activity is proportional to the concentration of phosphate in the sample. A test of the method showed it to give accurate results at concentrations of 4 to at least 200 p.p.b. of phosphorus when an aliquot of 100 μl. was activated. By suitable reagent purification, counting for longer times, and activation of larger aliquots, the detection limit could be lowered several hundredfold.
Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.
Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas
2018-04-24
The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.
Giretova, Maria; Medvecky, Lubomir; Stulajterova, Radoslava; Sopcak, Tibor; Briancin, Jaroslav; Tatarkova, Monika
2016-12-01
Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified. The significantly enhanced proliferation activity with faster population growth of osteoblasts were found on enzymatically degraded biopolymer composite films with α-tricalcium phosphate and nanohydroxyapatite. No cytotoxicity of composite films prepared from lysozyme degraded scaffolds containing a large fraction of low molecular weight chitosans (LMWC), was revealed after 10 days of cultivation. Contrary to above in the higher cytotoxicity origin untreated nanohydroxyapatite films and porous composite scaffolds. The results showed that the synergistic effect of surface distribution, morphology of nanohydroxyapatite particles, microtopography and the presence of LMWC due to chitosan degradation in composite films were responsible for compensation of the cytotoxicity of nanohydroxyapatite composite films or porous composite scaffolds.
Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate, an inorganic analogue of phosphonates
NASA Astrophysics Data System (ADS)
Belokoneva, E. L.; Dimitrova, O. V.; Volkov, A. S.
2015-09-01
The new Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate (space group Pnam = Pnma, D {2/h 16}) is obtained under hydrothermal conditions. The crystal structure is determined without preliminary knowledge of the chemical formula. The structure consists of layers of MnО6 octahedra connected with PO4 tetrahedra. Water molecules are located between the layers. [IO3]- groups having a typical umbrella-like coordination are statistically implanted in layers of MnО6 octahedra at a distance of 1.2 Å from Mn atoms. Their content in the crystal is minor. The structures of the phosphate-iodate coincides with the structures of phosphonates with consideration for the replacement of one (OH) vertex of the РО4 tetrahedron by the organic methyl radical СН3. In the structures of phosphonates and earlier studied phosphates, identical layers are distinguished and the cause of the existence of two MDO varieties is established based on the analysis within the OD theory. Possible hybrid structures derived from the prototypes under consideration are predicted.
Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.
Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere
2015-02-16
The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ayadi, Ibticem; Ayed, Foued Ben
2016-07-01
The microstructure, the densification and the mechanical properties of the tricalcium phosphate - titania - MgF2 composites were investigated. The effect of MgF2 addition on the performances of the tricalcium phosphate - 40wt% titania composites is discussed. The mechanical properties were investigated by Brazilian test, Vickers indentation and the ultrasound techniques. The mechanical properties of the tricalcium phosphate - 40wt% titania composites reached optimum performances after the sintering process at 1200°C for one hour with 4wt% MgF2. Thus, the highest values of the rupture strength, Vickers hardness, Young׳s and the shear modulus reached 27MPa, 360Hv, 51GPa and 20GPa, respectively. The increase of the mechanical properties of the composites is due to the presence of the liquid phase and the formation of a new compound. Thus, the microstructure of the composites reveals the presence of a new lamella form relative to the Mg2(PO4)F. Beyond 4wt% MgF2, the performances of the composites are hindered by the exaggerated grain growth and the formation of the bubbles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chaves, Alejandro; Eberle, Silvia Eandi; Defelipe, Lucas; Pepe, Carolina; Milanesio, Berenice; Aguirre, Fernando; Fernandez, Diego; Turjanski, Adrian; Feliú-Torres, Aurora
2016-07-01
The enzyme glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step in the pentose phosphate pathway, producing nicotinamide adenine dinucleotide phosphate (NADPH). NADPH plays a crucial role in preventing oxidative damage to proteins and other molecules in cells, mostly red blood cells. G6PD deficiency has an x-linked pattern of inheritance in which hemizygous males are deficient, while females may or may not be deficient depending on the number of affected alleles. We report two novel DNA variants in the G6PD gene detected in two male probands with chronic nonspherocytic hemolytic anemia (CNSHA), who were referred for hematological evaluation. Probands and their relatives underwent clinical, biochemical, and molecular assessment. Two novel DNA variants, c.995C>T and c.1226C>A, were found in this study. At the protein level, they produce the substitution of Ser332Phe and Pro409Gln, respectively. These DNA variants were analyzed in the female relatives of probands for genetic counseling. The novel DNA variants were classified as class I based on the clinical, biochemical, and molecular evaluations performed. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.
Li, Xiangfeng; Guo, Bo; Xiao, Yumei; Yuan, Tun; Fan, Yujiang; Zhang, Xingdong
2016-01-01
The influences of steam sterilization on the physicochemical properties of calcium phosphate (Ca-P) porous bioceramics, including β-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP) and hydroxyapatite (HA) are investigated. After being steam sterilized in an autoclave (121 °C for 40 min), the porous bioceramics are dried and characterized. The steam sterilization has no obvious effects on the phase composition, thermal stability, pH value and dissolubility of β-TCP porous bioceramic, but changes its morphology and mechanical strength. Meanwhile, the steam sterilization leads to the significant changes of the morphology, phase composition, pH value and dissolubility of BCP porous bioceramic. The increase of dissolubility and mechanical strength, the decrease of pH value of the immersed solution and partial oriented growth of crystals are also observed in HA porous bioceramic after steam sterilization. These results indicate that the steam sterilization can result in different influences on the physicochemical properties of β-TCP, BCP and HA porous bioceramics, thus the application of the steam sterilization on the three kinds of Ca-P porous bioceramics should be considered carefully based on the above changed properties.
Tsogas, Ioannis; Sideratou, Zili; Tsiourvas, Dimitris; Theodossiou, Theodossis A; Paleos, Constantinos M
2007-10-15
The ability of guanidinylated poly(propylene imine) dendrimers to translocate across lipid bilayers was assessed by employing either a model phosphate-bearing liposomal membrane system or A549 human lung carcinoma cells. Two dendrimer generations, differing in the number of surface guanidinium groups, were employed, while surface acetylation or the use of spacers affected the binding of the guanidinium group to the phosphate moiety and finally the transport efficiency. Following adhesion of dendrimers with liposomes, fusion or transport occurred. Transport through the liposomal bilayer was observed at low guanidinium/phosphate molar ratios, and was enhanced when the bilayer was in the liquid-crystalline phase. For effective transport through the liposomal membrane, an optimum balance between the binding strength and the degree of hydrophobicity of the guanidinylated dendrimer is required. In experiments performed in vitro with cells, efficient penetration and internalization in subcellular organelles and cytosol was observed.
NASA Astrophysics Data System (ADS)
Kchikach, Azzouz; Andrieux, Pierre; Jaffal, Mohammed; Amrhar, Mostafa; Mchichi, Mohammed; Boya, Baadi; Amaghzaz, Mbarek; Veyrieras, Thierry; Iqizou, Khadija
2006-05-01
Exploitation of the phosphatic layers in Sidi Chennane deposit (Morocco) collides frequently with problems bound to the existence, in the phosphatic series, of sterile bodies qualified as derangements. Our study shows that these bodies, masked by the Quaternary cover can be mapped using the Time-Domain ElectroMagnetic Soundings method (TDEM). It is based on the acquisition and the interpretation of a series of tests carried out above a visible derangement in an old trench of exploitation and on 2500 TDEM soundings carried out in a virgin area of the deposit. The article concerns to the analysis of the results and of the proceeding for a possible large geophysics survey. To cite this article: A. Kchikach et al., C. R. Geoscience 338 (2006).
Exposure to triaryl phosphates: metabolism and biomarkers of exposure
Furlong, Clement E.
2013-01-01
The leakage of tricresyl phosphate-containing engine lubricants into aircraft cabin air, either from worn or defective engine seals or under normal operating conditions, is a serious concern for both the health and safety of the cabin occupants, since the oil contains one to five percent tricresyl phosphate (TCP) esters, known neurotoxins. The exposure of pilots is a particular concern since their impairment can affect their safe operation of the aircraft. Mass spectrometric (MS)-based protocols for documenting exposures of individuals are described that entail a rapid purification of the TCP-modified plasma enzyme butyrylcholinesterase (BChE). Following protease digestion of BChE, the modified active site peptide is characterized by MS analysis. Approaches for identifying safer engine oil additives are also described. Some general comments regarding the necessity of improving the quality and safety of the cabin air supply are presented. PMID:24285929
Medeiros, Michelle; Wanderlind, Eduardo H; Mora, José R; Moreira, Raphaell; Kirby, Anthony J; Nome, Faruk
2013-10-07
Hydroxylamine reacts as an oxygen nucleophile, most likely via its ammonia oxide tautomer, towards both phosphate di- and triesters of 2-hydroxypyridine. But the reactions are very different. The product of the two-step reaction with the triester TPP is trapped by the NH2OH present in solution to generate diimide, identified from its expected disproportionation and trapping products. The reaction with H3N(+)-O(-) shows general base catalysis, which calculations show is involved in the breakdown of the phosphorane addition-intermediate of a two-step reaction. The reactivity of the diester anion DPP(-) is controlled by its more basic pyridyl N. Hydroxylamine reacts preferentially with the substrate zwitterion DPP(±) to displace first one then a second 2-pyridone, in concerted S(N)2(P) reactions, forming O-phosphorylated products which are readily hydrolysed to inorganic phosphate. The suggested mechanisms are tested and supported by extensive theoretical calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fertilizer Industry: Wet Process Phosphoric Acid Plants X X X X U Phosphate Fertilizer Industry: Superphosphoric Acid Plants X X X X V Phosphate Fertilizer Industry: Diammonium Phosphate Plants X X X X W Phosphate Fertilizer Industry: Triple Superphosphate Plants X X X X X Phosphate Fertilizer Industry...
40 CFR 436.180 - Applicability; description of the phosphate rock subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... phosphate rock subcategory. 436.180 Section 436.180 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Phosphate Rock Subcategory § 436.180 Applicability; description of the phosphate rock... bearing rock, ore or earth for the phosphate content. [43 FR 9809, Mar. 10, 1978] ...
40 CFR 436.180 - Applicability; description of the phosphate rock subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... phosphate rock subcategory. 436.180 Section 436.180 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Phosphate Rock Subcategory § 436.180 Applicability; description of the phosphate rock... bearing rock, ore or earth for the phosphate content. [43 FR 9809, Mar. 10, 1978] ...
40 CFR 436.180 - Applicability; description of the phosphate rock subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... phosphate rock subcategory. 436.180 Section 436.180 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Phosphate Rock Subcategory § 436.180 Applicability; description of the phosphate rock... bearing rock, ore or earth for the phosphate content. [43 FR 9809, Mar. 10, 1978] ...
Hudek, L.; Premachandra, D.; Webster, W. A. J.
2016-01-01
ABSTRACT In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB−) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme. IMPORTANCE Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the synthesis of active uptake systems. The Pst phosphate transport system is one such system, responsible for the internalization of phosphate when cells are in phosphate-limited environments. Our investigations reveal the presence of multiple Pst phosphate uptake systems that exist across three distinct operons in Nostoc punctiforme and functionally characterize the role of the gene product PstB1 as being crucial for the maintenance of phosphate accumulation. We demonstrate that the genes pstB2, pstB3, and pstB4 show alterations in expression to compensate for the deletion of pstB1. The overall outcomes of this work provide insights as to the complex transport mechanisms that exist in cyanobacteria like N. punctiforme, allowing them to thrive in low-phosphate environments. PMID:27542935
Hudek, L; Premachandra, D; Webster, W A J; Bräu, L
2016-11-01
In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the synthesis of active uptake systems. The Pst phosphate transport system is one such system, responsible for the internalization of phosphate when cells are in phosphate-limited environments. Our investigations reveal the presence of multiple Pst phosphate uptake systems that exist across three distinct operons in Nostoc punctiforme and functionally characterize the role of the gene product PstB1 as being crucial for the maintenance of phosphate accumulation. We demonstrate that the genes pstB2, pstB3, and pstB4 show alterations in expression to compensate for the deletion of pstB1 The overall outcomes of this work provide insights as to the complex transport mechanisms that exist in cyanobacteria like N. punctiforme, allowing them to thrive in low-phosphate environments. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming
Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less
McDonough, EmilyKate; Kamp, Heather
2015-01-01
Summary Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, V ibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo‐ and exonucleases. However, no transporter of nucleotides has been identified in V . cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V . cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection. PMID:26175126
McDonough, EmilyKate; Kamp, Heather; Camilli, Andrew
2016-02-01
Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, Vibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo- and exonucleases. However, no transporter of nucleotides has been identified in V. cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V. cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Causey, J. Douglas; Moyle, Phillip R.
2001-01-01
This report provides a description of data and processes used to produce a spatial database that delineates mining-related features in areas of historic and active phosphate mining in the core of the southeastern Idaho phosphate resource area. The data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, the spatial coverage does not differentiate mining-related surface disturbance features at many of the closed or inactive mines. Nineteen phosphate mine sites are included in the study. A total of 5,728 hc (14,154 ac), or more than 57 km2 (22 mi2), of phosphate mining-related surface disturbance are documented in the spatial coverage of the core of the southeast Idaho phosphate resource area. The study includes 4 active phosphate mines—Dry Valley, Enoch Valley, Rasmussen Ridge, and Smoky Canyon—and 15 historic phosphate mines—Ballard, Champ, Conda, Diamond Gulch, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake Canyon, Waterloo, and Wooley Valley. Spatial data on the inactive historic mines is relatively up-to-date; however, spatially described areas for active mines are based on digital maps prepared in early 1999. The inactive Gay mine has the largest total area of disturbance: 1,917 hc (4,736 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda mine with 607 hc (1,504 ac), and it is nearly four times the area of the Smoky Canyon mine, the largest of the active mines with 497 hc (1,228 ac). The wide range of phosphate mining-related surface disturbance features (approximately 80) were reduced to 13 types or features used in this study—adit and pit, backfilled mine pit, facilities, mine pit, ore stockpile, railroad, road, sediment catchment, tailings or tailings pond, topsoil stockpile, water reservoir, and disturbed land (undifferentiated). In summary, the spatial coverage includes polygons totaling 1,114 hc (2,753 ac) of mine pits, 272 hc (671 ac) of backfilled mine pits, 1,570 hc (3,880 ac) of waste dumps, 26 hc (64 ac) of ore stockpiles, and 44 hc (110 ac) of tailings or tailings ponds. Areas of undifferentiated phosphate mining-related land disturbances, called “disturbed land,” total 2,176 (5,377 ac) or nearly 21.8 km2 (8.4 mi2). No determination has been made as to status of reclamation on these lands. Subsequent site-specific studies to delineate distinct mine features will allow modification of this preliminary spatial database.
Phosphate additives in food--a health risk.
Ritz, Eberhard; Hahn, Kai; Ketteler, Markus; Kuhlmann, Martin K; Mann, Johannes
2012-01-01
Hyperphosphatemia has been identified in the past decade as a strong predictor of mortality in advanced chronic kidney disease (CKD). For example, a study of patients in stage CKD 5 (with an annual mortality of about 20%) revealed that 12% of all deaths in this group were attributable to an elevated serum phosphate concentration. Recently, a high-normal serum phosphate concentration has also been found to be an independent predictor of cardiovascular events and mortality in the general population. Therefore, phosphate additives in food are a matter of concern, and their potential impact on health may well have been underappreciated. We reviewed pertinent literature retrieved by a selective search of the PubMed and EU databases (www.zusatzstoffe-online.de, www.codexalimentarius.de), with the search terms "phosphate additives" and "hyperphosphatemia." There is no need to lower the content of natural phosphate, i.e. organic esters, in food, because this type of phosphate is incompletely absorbed; restricting its intake might even lead to protein malnutrition. On the other hand, inorganic phosphate in food additives is effectively absorbed and can measurably elevate the serum phosphate concentration in patients with advanced CKD. Foods with added phosphate tend to be eaten by persons at the lower end of the socioeconomic scale, who consume more processed and "fast" food. The main pathophysiological effect of phosphate is vascular damage, e.g. endothelial dysfunction and vascular calcification. Aside from the quality of phosphate in the diet (which also requires attention), the quantity of phosphate consumed by patients with advanced renal failure should not exceed 1000 mg per day, according to the guidelines. Prospective controlled trials are currently unavailable. In view of the high prevalence of CKD and the potential harm caused by phosphate additives to food, the public should be informed that added phosphate is damaging to health. Furthermore, calls for labeling the content of added phosphate in food are appropriate.
40 CFR 422.40 - Applicability; description of the defluorinated phosphate rock subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... defluorinated phosphate rock subcategory. 422.40 Section 422.40 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphate Rock Subcategory § 422.40 Applicability; description of the defluorinated phosphate rock... phosphate rock by application of high temperature treatment along with wet process phosphoric acid, silica...
40 CFR 422.40 - Applicability; description of the defluorinated phosphate rock subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... defluorinated phosphate rock subcategory. 422.40 Section 422.40 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphate Rock Subcategory § 422.40 Applicability; description of the defluorinated phosphate rock... phosphate rock by application of high temperature treatment along with wet process phosphoric acid, silica...
40 CFR 422.40 - Applicability; description of the defluorinated phosphate rock subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... defluorinated phosphate rock subcategory. 422.40 Section 422.40 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphate Rock Subcategory § 422.40 Applicability; description of the defluorinated phosphate rock... phosphate rock by application of high temperature treatment along with wet process phosphoric acid, silica...
40 CFR 422.40 - Applicability; description of the defluorinated phosphate rock subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... defluorinated phosphate rock subcategory. 422.40 Section 422.40 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphate Rock Subcategory § 422.40 Applicability; description of the defluorinated phosphate rock... phosphate rock by application of high temperature treatment along with wet process phosphoric acid, silica...
40 CFR 422.40 - Applicability; description of the defluorinated phosphate rock subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... defluorinated phosphate rock subcategory. 422.40 Section 422.40 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphate Rock Subcategory § 422.40 Applicability; description of the defluorinated phosphate rock... phosphate rock by application of high temperature treatment along with wet process phosphoric acid, silica...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming
Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated.more » Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work reveals that ternary complexation may occur without a macroscopic signature, which is attributed to phosphate not appreciably binding to smectite in the absence of U(VI), with U(VI) surface complexes serving as the sole reactive surface sites for phosphate. This study shows that phosphate does not enhance U(VI) adsorption to smectite clay minerals, unlike oxide phases, and that a barrier to homogeneous nucleation of U(VI) phosphates was not affected by the presence of the smectite surface« less
Direct visualization of critical hydrogen atoms in a pyridoxal 5'-phosphate enzyme.
Dajnowicz, Steven; Johnston, Ryne C; Parks, Jerry M; Blakeley, Matthew P; Keen, David A; Weiss, Kevin L; Gerlits, Oksana; Kovalevsky, Andrey; Mueser, Timothy C
2017-10-16
Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B 6 ) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substrate analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. Quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.Pyridoxal 5'-phosphate (PLP) is a ubiquitous co factor for diverse enzymes, among them aspartate aminotransferase. Here the authors use neutron crystallography, which allows the visualization of the positions of hydrogen atoms, and computation to characterize the catalytic mechanism of the enzyme.
Iron Phosphate Glass-Containing Hanford Waste Simulant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.
2012-01-18
Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less
Glycal Formation in Crystals of Uridine Phosphorylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Debamita; OLeary, Sen E.; Rajashankar, Kanagalaghatta
2010-06-22
Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2{prime}-deoxyuridine to 2{prime}-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2{prime}-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to actmore » as the base required for glycal formation via deprotonation at C2{prime}. Crystals of bovine uridine phosphorylase treated with 2{prime}-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds.« less
NASA Astrophysics Data System (ADS)
Alimi, Latifa; Bahloul, Lynda; Azzi, Afef; Guerfi, Souad; Ismail, Fadhel; Chaoui, Kamel
2018-05-01
Selection of calcium phosphate base materials in reconstructive bone surgery is justified by the surprising similarities in chemical compositions with human bones. The closest to natural apatite material is the hydroxyapatite (HAp) which has a chemical composition based on calcium and phosphate (Ca10(PO4)6(OH)2). In this study, HAp is synthesized using the wet precipitation method from hydrated calcium chloride (CaCl2,12H2O) and di-sodium hydrogen phosphate di-hydrate (HNa2PO4,2H2O). The powder is calcinated at 900°C and 1200°C in order to compare with sintered condition at 1150°C. Vickers microhardness tests and X-ray diffraction analyzes are used for the characterization of the crystalline material. Mechanical properties (Hv, σe, σr, and KC) and the degree of crystallinity (Xc) are discussed according to heat treatment temperatures. Results indicate that heat treating the powder at 1200°C increased crystallinity up to 72%. At the same time, microhardness increased with temperature and even outmatched the sintered case at 1150°C. Fracture toughness is ameliorated with increasing heat treatment temperature by more than two folds.
Giuliani, Alessandra; Manescu, Adrian; Mohammadi, Sara; Mazzoni, Serena; Piattelli, Adriano; Mangano, Francesco; Iezzi, Giovanna; Mangano, Carlo
2016-02-01
Successful bone regeneration using both granules and blocks of biphasic calcium phosphate materials has been reported in the recent literature, in some clinical applications for maxillary sinus elevation, but the long-term kinetics of bone regeneration has still not been fully investigated. Twenty-four bilateral sinus augmentation procedures were performed and grafted with hydroxyapatite/β-tricalcium phosphate 30/70, 12 with granules and 12 with blocks. The samples were retrieved at different time points and were evaluated for bone regeneration, graft resorption, neovascularization, and morphometric parameters by computed microtomography and histology. A large amount of newly formed bone was detected in the retrieved specimens, together with a good rate of biomaterial resorption and the formation of a homogeneous and rich net of new vessels. The morphometric values were comparable at 5/6 months from grafting but, 9 months after grafting, revealed that the block-based specimens mimicked slightly better than granule-based samples the healthy native bone of the maxillary site. The scaffold morphology was confirmed to influence the long-term kinetics of bone regeneration.
Solanesol Biosynthesis in Plants.
Yan, Ning; Liu, Yanhua; Zhang, Hongbo; Du, Yongmei; Liu, Xinmin; Zhang, Zhongfeng
2017-03-23
Solanesol is a non-cyclic terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants. Solanesol plays an important role in the interactions between plants and environmental factors such as pathogen infections and moderate-to-high temperatures. Additionally, it is a key intermediate for the pharmaceutical synthesis of ubiquinone-based drugs such as coenzyme Q10 and vitamin K2, and anti-cancer agent synergizers such as N-solanesyl-N,N'-bis(3,4-dimethoxybenzyl) ethylenediamine (SDB). In plants, solanesol is formed by the 2- C -methyl-d-erythritol 4-phosphate (MEP) pathway within plastids. Solanesol's biosynthetic pathway involves the generation of C5 precursors, followed by the generation of direct precursors, and then the biosynthesis and modification of terpenoids; the first two stages of this pathway are well understood. Based on the current understanding of solanesol biosynthesis, we here review the key enzymes involved, including 1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), isopentenyl diphosphate isomerase (IPI), geranyl geranyl diphosphate synthase (GGPPS), and solanesyl diphosphate synthase (SPS), as well as their biological functions. Notably, studies on microbial heterologous expression and overexpression of key enzymatic genes in tobacco solanesol biosynthesis are of significant importance for medical uses of tobacco.
Phosphoric and carboxylic methacrylate esters as bonding agents in self-adhesive resin cements
Liu, Wenshu; Meng, Hongmei; Sun, Zhiguang; Jiang, Riwen; Dong, Chang-An; Zhang, Congxiao
2018-01-01
The aim of the present study was to investigate the effect of pH and phosphoric ester structure (phosphonate or phosphate) on the bond strength of different dental restorative materials. The following three self-adhesive resin cements were used in the present study: RelyX™ Unicem, Maxcem and Multilink Sprint The pH of each cement was measured using a pH meter. The cements were used to attach a variety of restorative materials to human dentin and the bond strength was measured by assessing shear strength using a universal testing machine. The pH values of RelyX Unicem, Maxcem and Multilink Sprint were 3.78, 1.78 and 3.42, respectively. Maxcem, a phosphate-based self-adhesive cement, was demonstrated to form the weakest bonds. No significant difference in bond strength was observed between RelyX Unicem and Multilink Sprint, which are phosphonate-based cements. The results of the present study suggest that the chemical structure of the functional monomer influences the performance of an adhesive material. Furthermore, the pH of acidic functional monomers containing phosphonate or phosphate groups has an effect on the strength of bonds formed between dentin and restorative materials. PMID:29731837
Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo
2017-04-17
The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use.
Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements.
Babaie, Elham; Lin, Boren; Goel, Vijay K; Bhaduri, Sarit B
2016-10-07
This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA). Additionally, PVA enables a controlled growth of the final phase via a biomimetic process. The AMP powder was synthesized using a precipitation method. The powder, when in contact with the aqueous PVA solution, forms a putty resulting in a nanocrystalline magnesium phosphate phase of cattiite. The as-prepared cement compositions were evaluated for setting times, exothermicity, compressive strength, biodegradation, and microstructural features before and after soaking in SBF, and in vitro cytocompatibility. Since cattiite is relatively unexplored in the literature, a first time evaluation reveals that it is cytocompatible, just like the other phases in the MgO-P 2 O 5 (Mg-P) system. The cement composition prepared with 15% PVA in an aqueous medium achieved clinically relevant setting times, mechanical properties, and biodegradation. Simulated body fluid (SBF) soaking resulted in coating of bobierrite onto the cement particle surfaces.
Pinto, Alex; MacDonald, Anita; Cleto, Esmeralda; Almeida, Manuela Ferreira; Ramos, Paula Cristina; Rocha, Júlio César
2017-01-01
Pinto A, MacDonald A, Cleto E, Almeida MF, Ramos PC, Rocha JC. A case report of a 4-year-old child with glucose-6-phosphate dehydrogenase deficiency: An evidence based approach to nutritional management. Turk J Pediatr 2017; 59: 189-192. The objective was to describe the nutritional management of a 4-year-old child with glucose-6-phosphate dehydrogenase (G6PD) deficiency. A 4-year-old male child, African descent, born from non-consanguineous parents presented with a clinical history of frequent respiratory infections, usually treated with antibiotics. At 30 months of age, G6PD diagnosis was made after eating one portion (40 - 60 g) of fava beans, resulting in severe hemolytic anemia hospitalization for 5 days. Diagnosis was confirmed by G6PD activity measurement. Nutritional counseling was given to avoid dietary oxidative stressors particularly the exclusion of fava beans and accidental ingestion of other similar beans. Dietary intake of high vitamin C containing foods was discouraged and adequate hydration advised. Nutritional management is crucial in preventing acute stress events in patients with G6PD deficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guohui; Um, Wooyong; Wang, Zheming
The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less