Sample records for phosphate buffer pb

  1. Phosphorus Amendment Efficacy for In Situ Remediation of ...

    EPA Pesticide Factsheets

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils (790-1300 mg Pb kg-1), one from a garden and one from a city lot in Cleveland, OH, were incubated in a bench scale experiment for 1 yr. Six phosphate amendments, including bone meal, fish bone, poultry litter, monoammonium phosphate, diammonium phosphate, and triple superphosphate, were added to containers at two application rates. Lead IVBA was assessed using USEPA Method 1340 and three modified versions of this method. Modifications included using solutions with pH 1.5 and 2.5 as well as using solutions with and without 0.4 mol L-1 glycine. Soil amendments were effective in reducing IVBA Pb in these soils as measured by pH 1.5 with glycine buffer. The greatest reductions in IVBA Pb, from 5 to 26%, were found using pH 2.5 extractions. Lead mineral results showed several soil amendments promoted Pb phosphate formation, an indicator of remediation success. A significant negative linear relationship between reduction in IVBA Pb and Pb-phosphate formation was found only for pH 2.5 without glycine extraction solution. A modified USEPA Method 1340 without glycine and using pH 2.5 has the potential to predict P soil treatment efficacy and reductions in bioavailable Pb. Developing mana

  2. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method.

    PubMed

    Obrycki, John F; Basta, Nicholas T; Scheckel, Kirk; Stevens, Brooke N; Minca, Kristen K

    2016-01-01

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccessible Pb in P-treated soils. Two Pb-contaminated soils (790-1300 mg Pb kg), one from a garden and one from a city lot in Cleveland, OH, were incubated in a bench scale experiment for 1 yr. Six phosphate amendments, including bone meal, fish bone, poultry litter, monoammonium phosphate, diammonium phosphate, and triple superphosphate, were added to containers at two application rates. Lead IVBA was assessed using USEPA Method 1340 and three modified versions of this method. Modifications included using solutions with pH 1.5 and 2.5 as well as using solutions with and without 0.4 mol L glycine. Soil amendments were ineffective in reducing IVBA Pb in these soils as measured by pH 1.5 with glycine buffer. The greatest reductions in IVBA Pb, from 5 to 26%, were found using pH 2.5 extractions. Lead mineral results showed several soil amendments promoted Pb phosphate formation, an indicator of remediation success. A significant negative linear relationship between reduction in IVBA Pb and Pb-phosphate formation was found only for pH 2.5 without glycine extraction solution. A modified USEPA Method 1340 without glycine and using pH 2.5 has the potential to predict P soil treatment efficacy and reductions in bioavailable Pb. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    PubMed

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  4. Passive transport and binding of lead by human red blood cells.

    PubMed

    Simons, T J

    1986-09-01

    The uptake of Pb into human red blood cells has been studied using Pb buffers. Passive Pb movements can be studied conveniently when the cells are depleted of adenosine 5'-triphosphate (ATP), to eliminate active transport, and of inorganic phosphate, to prevent precipitation of lead phosphate. Pb can cross the membrane passively in either direction. Influx and efflux show similar properties. Passive Pb transport is strongly stimulated by HCO3-, and is reduced by replacing Cl- with ClO4-. It is inhibited by low concentrations of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) and 4,4'-diisothiocyanostilbene-2.2'-disulphonic acid (DIDS), characteristic inhibitors of anion transport. Pb uptake is unaffected by varying the external concentrations of Na+, K+ and Ca2+. When Pb enters the cell, it binds mainly to haemoglobin. The ratio of bound Pb:free Pb2+ in the cytosol is estimated to be 6000:1. Pb binding to haemoglobin is unaffected by oxygenation. Binding to albumin is quantitatively similar to binding to haemoglobin. The implications of these results for the transport and binding of Pb in the blood are discussed.

  5. Passive transport and binding of lead by human red blood cells.

    PubMed Central

    Simons, T J

    1986-01-01

    The uptake of Pb into human red blood cells has been studied using Pb buffers. Passive Pb movements can be studied conveniently when the cells are depleted of adenosine 5'-triphosphate (ATP), to eliminate active transport, and of inorganic phosphate, to prevent precipitation of lead phosphate. Pb can cross the membrane passively in either direction. Influx and efflux show similar properties. Passive Pb transport is strongly stimulated by HCO3-, and is reduced by replacing Cl- with ClO4-. It is inhibited by low concentrations of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) and 4,4'-diisothiocyanostilbene-2.2'-disulphonic acid (DIDS), characteristic inhibitors of anion transport. Pb uptake is unaffected by varying the external concentrations of Na+, K+ and Ca2+. When Pb enters the cell, it binds mainly to haemoglobin. The ratio of bound Pb:free Pb2+ in the cytosol is estimated to be 6000:1. Pb binding to haemoglobin is unaffected by oxygenation. Binding to albumin is quantitatively similar to binding to haemoglobin. The implications of these results for the transport and binding of Pb in the blood are discussed. PMID:3795106

  6. Effect of carbonation on leachability, strength and microstructural characteristics of KMP binder stabilized Zn and Pb contaminated soils.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Wu, Hao-liang

    2016-02-01

    This study presents a systematic investigation of effects of carbonation on the contaminant leachability and unconfined compressive strength of KMP stabilized contaminated soils. A field soil spiked with Zn and Pb individually and together is stabilized using a new KMP additive under standard curing conditions and also with carbonation. The KMP additive is composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The stabilized soils are tested for acid neutralization capacity, toxic characteristics leaching characteristics, contaminant speciation and unconfined compression strength. X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy analyses are performed to assess reaction products. The results demonstrate that carbonation increases both acid buffer capacity index and unconfined compressive strength, but decreases leachability of KMP stabilized soils. These results are interpreted based on the changes in chemical speciation of Zn and Pb and also stability and solubility of the reaction products (metal phosphates and carbonates) formed in the soils. Overall, this study demonstrates that carbonation has positive effects on leachability and strength of the KMP stabilized soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  8. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.

    PubMed

    Arifin, Dian R; Palmer, Andre F

    2003-01-01

    In this study, we investigated the size distribution, encapsulation efficiency, and oxygen affinity of liposome-encapsulated tetrameric hemoglobin (LEHb) dispersions and correlated the data with the variation in extruder membrane pore size, ionic strength of the extrusion buffer, and hemoglobin (Hb) concentration. Asymmetric flow field-flow fractionation (AFFF) in series with multi-angle static light scattering (MASLS) was used to study the LEHb size distribution. We also introduced a novel method to measure the encapsulation efficiency using a differential interferometric refractive index (DIR) detector coupled to the AFFF-MASLS system. This technique was nondestructive toward the sample and easy to implement. LEHbs were prepared by extrusion using a lipid combination of dimyristoyl-phosphatidylcholine, cholesterol, and dimyristoyl-phosphatidylglycerol in a 10:9:1 molar ratio. Five initial Hb concentrations (50, 100, 150, 200, and 300 mg Hb per mL of buffer) extruded through five different membrane pore diameters (400, 200, 100, 80, and 50 nm) were studied. Phosphate buffered saline (PBS) and phosphate buffer (PB) both at pH 7.3 were used as extrusion buffers. Despite the variation, extrusion through 400-nm pore diameter membranes produced LEHbs smaller than the pore size, extrusion through 200-nm membranes produced LEHbs with diameters close to the pore diameter, and extrusion through 100-, 80-, and 50-nm membranes produced LEHbs larger than the pore sizes. We found that the choice of extrusion buffer had the greatest effect on the LEHb size distribution compared to either Hb concentration or extruder membrane pore size. Extrusion in PBS produced larger LEHbs and more monodisperse LEHb dispersions. However, LEHbs extruded in PB generally had higher Hb encapsulation efficiencies and lower methemoglobin (metHb) levels. The choice of extrusion buffer also affected how the encapsulation efficiency correlated with Hb concentration, extruder pore size, and the metHb level. The most optimum encapsulation efficiency and amount of Hb entrapped were achieved at the highest Hb concentration and the largest pore size for both extrusion buffers (62.38% and 187.14 mg Hb/mL of LEHb dispersion extruded in PBS, and 69.98% and 209.94 mg Hb/mL of LEHb dispersion extruded in PB). All LEHbs displayed good oxygen-carrying properties as indicated by their P(50) and cooperativity coefficients. LEHbs extruded in PB had an average P(50) of 23.04 mmHg and an average Hill number of 2.29, and those extruded in PBS had average values of 27.25 mmHg and 2.49. These oxygen-binding properties indicate that LEHbs possess strong potential as artificial blood substitutes. In addition, the metHb levels in PB-LEHb dispersions are significantly low even in the absence of antioxidants such as N-acetyl-L-cysteine.

  9. Identification and Quantification of the Water Soluble Components of JP-4 and a Determination of Their Biological Effects upon Selected Freshwater Organisms.

    DTIC Science & Technology

    1982-12-23

    assay Blanks and reaction mixtures were the same as in aminopy- rine demethylase assay except 0.5 ml of 153.64 mM aniline in 0.1 M phosphate buffer...replaced the 0.5 ml aminopyrine. (Final concentration of aniline in the reaction mixture was 25.61 mM). At the end of the 20 minute incubation period, the...with PB, 3MC, or PCB. Aniline hydroxylase activity did not change folowing PB treatment , however it did in- crease when 3MC or PCB were used as the

  10. Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    PubMed Central

    Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420

  11. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils.

    PubMed

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi

    2016-04-01

    The stabilisation of Pb in the soil by phosphate is influenced by environmental conditions and physicochemical properties of the soils to which it is applied. Stabilisation of Pb by phosphate was examined in four soils under different environmental conditions. The effect of soil moisture and temperature on stabilisation of Pb by phosphate was examined by measurement of water extractable and bioaccessible Pb, sequential fractionation and X-ray absorption spectroscopy. The addition of humic acid, ammonium nitrate and chloride was also examined for inhibition or improvement of Pb stability with phosphate treatment. The effect of moisture level varied between soils. In soil MB and DA a soil moisture level of 50% water holding capacity was sufficient to maximise stabilisation of Pb, but in soil TV and PE reduction in bioaccessible Pb was inhibited at this moisture level. Providing moisture at twice the soil water holding capacity did not enhance the effect of phosphate on Pb stabilisation. The difference of Pb stability as a result of incubating phosphate treated soils at 18 °C and 37 °C was relatively small. However wet-dry cycles decreased the effectiveness of phosphate treatment. The reduction in bioaccessible Pb obtained was between 20 and 40% with the most optimal treatment conditions. The reduction in water extractable Pb by phosphate was substantial regardless of incubation conditions and the effect of different temperature and soil moisture regimes was not significant. Selective sequential extraction showed phosphate treatment converted Pb in fraction 1 (exchangeable, acid and water soluble) to fraction 2 (reducible). There were small difference in fraction 4 (residual) Pb and fraction 1 as a result of treatment conditions. X-ray absorption spectroscopy of stabilised PE soil revealed small differences in Pb speciation under varying soil moisture and temperature treatments. The addition of humic acid and chloride produced the greatest effect on Pb speciation in phosphate treated soils. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Highly selective and sensitive coumarin-triazole-based fluorometric 'turn-off' sensor for detection of Pb2+ ions.

    PubMed

    Shaily; Kumar, Ajay; Parveen, Iram; Ahmed, Naseem

    2018-06-01

    Exposure to even very low concentrations of Pb 2+ is known to cause cardiovascular, neurological, developmental, and reproductive disorders, and affects children in particular more severely. Consequently, much effort has been dedicated to the development of colorimetric and fluorescent sensors that can selectively detect Pb 2+ ions. Here, we describe the development of a triazole-based fluorescent sensor L5 for Pb 2+ ion detection. The fluorescence intensity of chemosensor L5 was selectively quenched by Pb 2+ ions and a clear color change from colorless to yellow could be observed by the naked eye. Chemosensor L5 exhibited high sensitivity and selectivity towards Pb 2+ ions in phosphate-buffered solution [20 mM, 1:9 DMSO/H 2 O (v/v), pH 8.0] with a 1:1 binding stoichiometry, a detection limit of 1.9 nM and a 6.76 × 10 6  M -1 binding constant. Additionally, low-cost and easy-to-prepare test strips impregnated with chemosensor L5 were also produced for efficient of Pb 2+ detection and proved the practical use of this test. Copyright © 2018 John Wiley & Sons, Ltd.

  13. In situ formation of pyromorphite is not required for the reduction of in vivo pb relative bioavailability in contaminated soils.

    PubMed

    Juhasz, Albert L; Gancarz, Dorota; Herde, Carina; McClure, Stuart; Scheckel, Kirk G; Smith, Euan

    2014-06-17

    The effect of phosphate treatment on lead relative bioavailability (Pb RBA) was assessed in three distinct Pb-contaminated soils. Phosphoric acid (PA) or rock phosphate were added to smelter (PP2), nonferrous slag (SH15), and shooting range (SR01) impacted soils at a P:Pb molar ratio of 5:1. In all of the phosphate amended soils, Pb RBA decreased compared to that in untreated soils when assessed using an in vivo mouse model. Treatment effect ratios (i.e., the ratio of Pb RBA in treated soil divided by Pb RBA in untreated soil) ranged from 0.39 to 0.67, 0.48 to 0.90, and 0.03 to 0.19 for PP2, SH15, and SR01, respectively. The decrease in Pb RBA following phosphate amendment was attributed to the formation of poorly soluble Pb phosphates (i.e., chloropyromorphite, hydroxypyromorphite, and Pb phosphate) that were identified by X-ray absorption spectroscopy (XAS). However, a similar decrease in Pb RBA was also observed in untreated soils following the sequential gavage of phosphate amendments. This suggests that in vivo processes may also facilitate the formation of poorly soluble Pb phosphates, which decreases Pb absorption. Furthermore, XAS analysis of PA-treated PP2 indicated further in vivo changes in Pb speciation as it moved through the gastrointestinal tract, which resulted in the transformation of hydroxypyromorphite to chloropyromorphite.

  14. Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-assisted pyrolysis.

    PubMed

    Shi, Lingna; Wang, Lijun; Zhang, Tao; Li, Jianfa; Huang, Xiaoyi; Cai, Jing; Lü, Jinhong; Wang, Yue

    2017-10-01

    For the purpose of safe disposal of biomass contaminated by biosorption of heavy metals, phosphate-assisted pyrolysis of water hyacinth biomass contaminated by lead (Pb) was tried to reduce the bioavailability and leaching potential of Pb, using direct pyrolysis without additive as a control method. Direct pyrolysis of the contaminated biomass at low temperatures (300 and 400°C) could reduce the bioavailability of Pb, but the leaching potential of Pb was increased with the rising pyrolysis temperature. While phosphate-assisted pyrolysis significantly enhanced the recovery and stability of Pb in the char. Specifically, the percentages of bioavailable Pb and leachable Pb in the chars obtained by phosphate-assisted pyrolysis at low temperatures were reduced to less than 5% and 7%, respectively. The sequential extraction test indicated the transformation of Pb into more stable fractions after phosphate-assisted pyrolysis, which was related to the formation of Pb phosphate minerals including pyromorphite and lead-substituted hydroxyapatite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers

    PubMed Central

    Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.

    2011-01-01

    Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for BCS II weak acids in developing in vitro bioequivalence dissolution methodology. PMID:19183104

  16. [Isolation and determination of the seeds of Pachyrrhizus errosus protein by high performance gel filtration chromatography (GFC)].

    PubMed

    Wu, H; Hao, B; Tang, G; Lin, Y

    1997-03-01

    From the seeds of Pachyrrhizus errosus, three protein constituents, namel PE1, PE2 and PE3, have been isolated and purified by extraction with 5mmol/L phosphate saline (0.9% NaCl) buffer (PB) at pH 7.2, and S-Sepharose Fast Flow Column (2.6cm x 15cm) chromatography which eluted with 5mmol/L phosphate buffer (pH 7.0) containing 1mmol/L NaCl. Three proteins were burther separated on two connected Protein-Pak 60+Protein-Pak 125 [7.5mm x 39cm, 10microm] columns with mobile phase of 0.2mol/L phosphate buffer (pH 6.5). The flow rate was kept constant at 0.8mL/min by YSB-2 type high press pump. The effluent was monitored at a wavelength of 280nm on photodiode array detector. These three proteins are proved to be homogeneous by SDS-PAGE, IEF and HPGFC experiments, and all present the typical absorption spectra in ultraviolet region. The moleculer weights of the three proteins are approxiamtely 33000D, 14500D and 14000D respectively by SDS-PAGE. But as using HPGFC analysis, the MW value of PE2 is 28000D. This indicates PE2 may be composed of two chains joined by disulfide bond, which is further proved from the latter amino acid composition analysis. The isoelectric points of three proteins are 4.5, 6.5 and 7.5 respectively by using IEF. The amion acids compositions of the three proteins were determined with OPA post-column derivatization/fluorescence detection.

  17. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  18. Improving fatigue resistance of Pb(Zr,Ti)O3 thin films by using PbZrO3 buffer layers

    NASA Astrophysics Data System (ADS)

    Mensur Alkoy, Ebru; Uchiyama, Kiyoshi; Shiosaki, Tadashi; Alkoy, Sedat

    2006-05-01

    Ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin films with PbZrO3 (PZ) buffer layers were prepared on Pt(111)/Ti/SiO2/Si(100) substrates using a hybrid rf magnetron sputtering and sol-gel process. Texture of PZT films was found to depend on Pb content of PZ buffer layers. Buffered PZT films displayed comparable ferroelectric properties (2Pr=38-53 μC/cm2,2Ec=136-170 kV/cm) with unbuffered PZT. Asymmetric leakage current and fatigue behavior with superior fatigue resistance was observed in PZ buffered PZT compared to unbuffered films. PZ buffer layers were found to affect crystallization and texture of PZT, and act as a capacitive interface layer possibly blocking charge injection from electrodes.

  19. Effects of repeated 9 and 30-day exposure to extremely low-frequency electromagnetic fields on social recognition behavior and estrogen receptors expression in olfactory bulb of Wistar female rats.

    PubMed

    Bernal-Mondragón, C; Arriaga-Avila, V; Martínez-Abundis, E; Barrera-Mera, B; Mercado-Gómez, O; Guevara-Guzmán, R

    2017-02-01

    We investigated the short- and long-term effects of extremely low-frequency electromagnetic fields (EMF) on social recognition behavior and expression of α- and β-estrogen receptors (ER). Rats were exposed to 60-Hz electromagnetic fields for 9 or 30 days and tested for social recognition behavior. Immunohistochemistry and western blot assays were performed to evaluate α- and β-ER expression in the olfactory bulb of intact, ovariectomized (OVX), and ovariectomized+estradiol (E2) replacement (OVX+E2). Ovariectomization showed impairment of social recognition after 9 days of EMF exposure and a complete recovery after E2 replacement and so did those after 30 days. Short EMF exposure increased expression of β-ER in intact, but not in the others. Longer exposure produced a decrease in intact but an increase in OVX and OVX+E2. Our findings suggest a significant role for β-estrogen receptors and a lack of effect for α-estrogen receptors on a social recognition task. EMF: extremely low frequency electromagnetic fields; ERs: estrogen receptors; OB: olfactory bulb; OVX: ovariectomized; OVX + E 2 : ovariectomized + estradiol replacement; IEI: interexposure interval; β-ER: beta estrogen receptor; E 2 : replacement of estradiol; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WB: Western blot; PBS: phosphate-buffer saline; PB: phosphate-buffer.

  20. Antigen-specific secretion of IFNγ and CXCL10 in whole blood assay detects Mycobacterium leprae infection but does not discriminate asymptomatic infection from symptomatic leprosy.

    PubMed

    Hungria, Emerith Mayra; Freitas, Aline Araújo; Pontes, Maria Araci Andrade; Gonçalves, Heitor Sá; Sousa, Ana Lúcia Osório Maroccolo; Costa, Maurício Barcelos; Castilho, Mirian Lane Oliveira Rodrigues; Duthie, Malcolm S; Stefani, Mariane Martins Araújo

    2017-04-01

    To advance toward a whole blood assay (WBA)-based test capable of facilitating the diagnosis of paucibacillary (PB) leprosy, we evaluated a prototype in-tube WBA using combinations of Mycobacterium leprae antigens. Blood was collected from newly diagnosed untreated PB (n=38), multibacillary (MB) (n=30), healthy household contacts (HHC) of MB (n=27), and endemic controls (n=61) residing in Goiânia and Fortaleza, Brazil. Blood was incubated with M. leprae cell sonicate, recombinant proteins (46f+LID-1; ML0276+LID-1), or controls (phosphate-buffered saline, phytohemagglutinin, M. tuberculosis purified protein derivative). Antigen-specific IFNγ production was observed in 71-84% and 55% of PB and HHC, respectively. Antigen-specific CXCL10 levels were similarly assessed to determine if, unlike IFNγ, CXCL10 could differentiate PB from HHC with repeated exposure/asymptomatic M. leprae infection. The CXCL10 levels induced in response to M. leprae antigens could not, however, differentiate PB from HHC. Despite these limitations, the WBAs reported here still represent important tools for assessing M. leprae infection rates and evaluating the impact of control measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets.

    PubMed

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-04-01

    The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  2. Selective growth of Pb islands on graphene/SiC buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Sincemore » Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.« less

  3. AMENDING SOILS WITH PHOSPHATE AS MEANS TO ...

    EPA Pesticide Factsheets

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils con

  4. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  5. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's A{beta} peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Megan; Tepper, Katharina; Haupt, Caroline

    Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects onmore » the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.« less

  6. Lead Retention in a Calcareous Soil Influenced by Calcium and Phosphate Amendments

    EPA Science Inventory

    Phosphate amendments in calcareous lead (Pb)-contaminated soils to immobilize Pb may be hindered due to competition of Pb with calcium (Ca) that may inhibit the retention of Pb as a precipitation mechanism. This study explored the retention of Pb in a calcareous soil spiked and ...

  7. Assessment of the Pb-Pb and U-Pb chronometry of the early solar system

    NASA Astrophysics Data System (ADS)

    Tera, Fouad; Carlson, Richard W.

    1999-06-01

    An evaluation of early solar system chronometry by the Pb-Pb and U-Pb methods is provided. Specifically, three consequential factors are examined: procedure of age calculation, extent of terrestrial Pb contamination, and initial Pb isotopic composition. On a Pb-Pb diagram, high temperature inclusions of the Allende meteorite are tightly organized into a well-defined line (inside a potentially dispersive mixing field), which is consistent with the inclusions containing initial Pb that is more primitive than that of Cañon Diablo troilite (PAT). Consequences of the possible existence of a pre-PAT Pb to the evolution history of the solar nebula are discussed. Phosphates from the ordinary chondrite St. Séverin appear to be contaminated by terrestrial Pb, a condition that renders age calculation based on subtraction of PAT inaccurate. The Pb-Pb mixing line of these phosphates indicates an age of 4.558 Ga. Interestingly, Angra dos Reis phosphate and pyroxene, as well as pyroxene of the other angrite Lewis Cliff 86010 fall precisely on the line defined by St. Séverin phosphates. Whole rocks of ordinary chondrites are pictorially and explicitly shown to be seriously contaminated with terrestrial Pb, thus their single-stage U-Pb ages may not be suitable markers of time. Because their true crystallization ages are often younger than the whole rocks, and because of the possibility of multistage evolution, phosphates of ordinary chondrites may yield single-stage ages older than their true crystallization ages. A hypothetical numerical demonstration is provided. On the basis of revised ages and new observations we provide an ;updated; chronometry for the early solar system.

  8. Reduction and conversion of 2,4,6-trinitrotoluene (TNT) by sulfide under simulated anaerobic conditions.

    PubMed

    Qiao, Hua; Wang, He-ling; Feng, Hua-jun; Yao, Jun; Shen, Dong-sheng; Tang, Zhi-jian

    2010-07-15

    To account for the fast disappearance of TNT in anaerobic fermentative liquid, we investigated TNT (TNT(0)=50 mg/L) reduction by Na(2)S at 30+/-1 degrees C in two types of buffer systems, a phosphate buffer (PB, system A) and a CH(3)COOH-NaHCO(3) buffer (system B). The effects of pH, sulfide concentration and buffer system on the conversion and reaction rate of TNT were investigated. The effect of different variables on the conversion of TNT decreased in the following order: Na(2)S concentration>pH>buffer system. A kinetics study showed that TNT reduction by Na(2)S occurred in two stages separated by a change point. The observed rate constants of the first stage K(obs-1) were 1 order of magnitude lower than those of the second stage. The TNT conversion rate increased and the time to reach the change point became shorter with increasing Na(2)S concentration and pH. A 5-fold increase in Na(2)S concentration above the theoretical stoichiometric concentration was optimum. Observed rate constants of the first stage K(obs-1) were proportional to the hydrosulfide ion concentration and the conversion rate of TNT was greater and faster in buffer system B than in system A. 2010 Elsevier B.V. All rights reserved.

  9. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G.; White, S. M.

    2012-12-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg l-1 to 0.061 mg l-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  10. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G. Q.; White, S. M.

    2013-05-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus (P) behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg L-1 to 0.061 mg L-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  11. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    DOE PAGES

    Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun; ...

    2014-07-14

    Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less

  12. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, Jr., Richard A.; Robeson II, Michael S.; Shakya, Migun

    Despite more than three decades of progress, efficient nucleic acid extraction from microbial communities has remained difficult, particularly from clay environments. Lysis with concentrated guanidine followed by concentrated sodium phosphate extraction supported DNA and RNA recovery from high iron, low humus content clay. Alterating the extraction pH or using other ionic solutions (Na 2SO 4 and NH 4H 2PO 4) yielded no detectable nucleic acid. DNA recovered using a lysis solution with 500 mM phosphate buffer (PB) followed by a 1 M PB wash was 15.22±2.33 g DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25more » g DNA/g clay with the Powerlyzer soil DNA system (MoBio). Increasing [PB] in the lysis reagent coincided with increasing DNA fragment length. Rarefaction plots based on16S rRNA (V1/V3 region) pyrosequencing libraries from A-horizon and clay soils showed an ~80% and ~400% larger accessed diversity compared to a previous grinding protocol or the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more bacterial species recovered using this system. Additionally, some OTU's having more than 100 sequences in these libraries were absent in samples extracted using the PowerLyzer reagents or the previous lysis method.« less

  13. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  14. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.

    PubMed

    Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F

    2002-09-01

    Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.

  15. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  16. Extraction of bromelain from pineapple peels.

    PubMed

    Ketnawa, S; Chaiwut, P; Rawdkuen, S

    2011-08-01

    Large amount of pineapple peels (by-products) is left over after processing and they are a potential source for bromelain extraction. Distilled water (DI), DI containing cysteine and ethylenediaminetetraacetic acid (EDTA) (DI-CE), sodium phosphate buffer pH 7.0 (PB) and PB containing cysteine and EDTA (PB-CE) were used as extractants for bromelain from the pineapple peels. The highest bromelain activity was obtained when it was extracted with PB-CE (867 and 1032 units for Nang Lae and Phu Lae cultv, respectively). The PB could maintain the pH of the extract (pH 5.1-5.7) when compared with others. Under sodium dodecyl sulfate polyacrylamide gel electrophoresis, the extract showed protein bands in the range 24-28 kDa. The protein band with a molecular weight of ∼28 kDa exposed the clear zone on blue background under the casein-substrate gel electrophoresis. The effects of the bromelain extract on the protein patterns of beef, chicken and squid muscles were also determined. Trichloroacetic acid soluble peptide content of all the treated muscles increased when the amount of bromelain extract increased. Decrease in myosin heavy chains and actin was observed in all the muscle types when bromelain extract was used. The best extractant for bromelain from pineapple peels was PB-CE. Moreover, bromelain extract could be used as a muscle food tenderizing agent in food industries.

  17. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science.

    PubMed

    Scheckel, Kirk G; Diamond, Gary L; Burgess, Michele F; Klotzbach, Julie M; Maddaloni, Mark; Miller, Bradley W; Partridge, Charles R; Serda, Sophia M

    2013-01-01

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils conducted in humans and animal models. Practical implementation issues, such as criteria and methods for evaluating efficacy, and potential effects of phosphate on mobility and bioavailability of co-contaminants in soil are also discussed.

  18. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  19. Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva.

    PubMed

    Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan

    2014-01-01

    To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

  20. Superior Potential of CD34-Positive Cells Compared to Total Mononuclear Cells for Healing of Nonunion Following Bone Fracture.

    PubMed

    Fukui, Tomoaki; Mifune, Yutaka; Matsumoto, Tomoyuki; Shoji, Taro; Kawakami, Yohei; Kawamoto, Atsuhiko; Ii, Masaaki; Akimaru, Hiroshi; Kuroda, Tomoya; Horii, Miki; Yokoyama, Ayumi; Alev, Cantas; Kuroda, Ryosuke; Kurosaka, Masahiro; Asahara, Takayuki

    2015-01-01

    We recently demonstrated that the local transplantation of human peripheral blood (PB) CD34(+) cells, an endothelial/hematopoietic progenitor cell-rich population, contributes to fracture repair via vasculogenesis/angiogenesis and osteogenesis. Human PB mononuclear cells (MNCs) are also considered a potential cell fraction for neovascularization. We have previously shown the feasibility of human PB MNCs to enhance fracture healing. However, there is no report directly comparing the efficacy for fracture repair between CD34(+) cells and MNCs. In addition, an unhealing fracture model, which does not accurately resemble a clinical setting, was used in our previous studies. To overcome these issues, we compared the capacity of human granulocyte colony-stimulating factor-mobilized PB (GM-PB) CD34(+) cells and human GM-PB MNCs in a nonunion model, which more closely resembles a clinical setting. First, the effect of local transplantation of 1 × 10(5) GM-PB CD34(+) cells (CD34(+) group), 1 × 10(7) GM-PB MNCs (containing approximately 1 × 10(5) GM-PB CD34(+) cells) (MNC group), and phosphate-buffered saline (PBS) (PBS group) on nonunion healing was compared. Similar augmentation of blood flow recovery at perinonunion sites was observed in the CD34(+) and MNC groups. Meanwhile, a superior effect on nonunion repair was revealed by radiological, histological, and functional assessment in the CD34(+) group compared with the other groups. Moreover, through in vivo and in vitro experiments, excessive inflammation induced by GM-PB MNCs was confirmed and believed to be one of the mechanisms underlying this potency difference. These results strongly suggest that local transplantation of GM-PB CD34(+) cells is a practical and effective strategy for treatment of nonunion after fracture.

  1. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron.

    PubMed

    Xenidis, Anthimos; Stouraiti, Christina; Papassiopi, Nymphodora

    2010-05-15

    The chemical immobilization of Pb and As in contaminated soil from Lavrion, Greece, using monocalcium phosphate and ferrous sulfate as stabilizing agents was investigated. Monocalcium phosphate was added to contaminated soil at PO(4) to Pb molar ratios equal to 0, 0.5, 1, 1.5 and 2.5, whereas ferrous sulfate was added at Fe to As molar ratios equal to 0, 2.5, 5, 10 and 20. Phosphates addition to contaminated soil decreased Pb leachability, but resulted in significant mobilization of As. Simultaneous immobilization of Pb and As was obtained only when soil was treated with mixtures of phosphates and ferrous sulfate. Arsenic uptake by plants was also seen to increase when soil was treated only with phosphates, but co-addition of ferrous sulfate was efficient in maintaining As phytoaccumulation at low levels. The addition of at least 1.5M/M phosphates and 10M/M iron sulfate to soil reduced the dissolved levels of Pb and As in the water extracts to values in compliance with the EU drinking water standards. However, both additives contributed in the acidification of soil, decreasing pH from 7.8 to values as low as 5.6 and induced the mobilization of pH sensitive elements, such as Zn and Cd. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. LPE growth of crack-free PbSe layers on Si(100) using MBE-Grown PbSe/BaF2CaF2 buffer layers

    NASA Astrophysics Data System (ADS)

    Strecker, B. N.; McCann, P. J.; Fang, X. M.; Hauenstein, R. J.; O'Steen, M.; Johnson, M. B.

    1997-05-01

    Crack-free PbSe on (100)-oriented Si has been obtained by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. MBE is employed first to grow a PbSe/BaF2/CaF2 buffer structure on the (100)-oriented Si. A 2.5 μm thick PbSe layer is then grown by LPE. The LPE-grown PbSe displays excellent surface morphology and is continuous over the entire 8×8 mm2 area of growth. This result is surprising because of the large mismatch in thermal expansion coefficients between PbSe and Si. Previous attempts to grow crack-free PbSe by MBE alone using similar buffer structures on (100)-oriented Si have been unsuccessful. It is speculated that the large concentration of Se vacancies in the LPE-grown PbSe layer may allow dislocation climb along higher order slip planes, providing strain relaxation.

  3. In Situ Formation of Pyromorphite Is Not Required for the Reduction of in Vivo Pb Relative Bioavailability in Contaminated Soils

    EPA Science Inventory

    The effect of phosphate treatment on lead relative bioavailability (Pb RBA) was assessed in three distinct Pb-contaminated soils. Phosphoric acid (PA) or rock phosphate were added to smelter (PP2), nonferrous slag (SH15), and shooting range (SR01) impacted soils at a P:Pb molar ...

  4. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  5. Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L

    2013-12-01

    Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.

  6. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  7. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-03-01

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  8. Effects of Microbial and Phosphate Amendments on the Bioavailability of Lead (Pb) in Shooting Range Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, Robin; Wilson, Christina; Knox, Anna

    Heavy metals including lead (Pb) are released continually into the environment as a result of industrial, recreational, and military activities. Lead ranked number two on the CERCLA Priority List of Hazardous Substances and was identified as a major hazardous chemical found on 47% of USEPA's National Priorities List sites (Hettiarachchi and Pierzynski 2004). In-situ remediation of lead (Pb) contaminated soils may be accomplished by changing the soil chemistry and structure with the application of microbial and phosphate amendments. Soil contaminated with lead bullets was collected from the surface of the berm at Savannah River Site (SRS) Small Arms Training Academymore » (SATA) in Aiken, SC. While uncontaminated soils typically have Pb levels ranging from 2 to 200 mg/kg (Berti et al. 1998), previous analysis show Pb levels of the SATA berm to reach 8,673 mg/kg. Biosurfactants are surface-active compounds naturally produced by soil bacteria that can bind metals. Biosurfactants have a wide variety of chemical structures that reduce interfacial surface tensions (Jennings and Tanner 2000) and have demonstrated efficient metal complexion (Lin 1996). Biosurfactants also have the potential to change the availability of natural organic matter (Strong-Gunderson 1995). Two types of bacteria, Alcaligenes piechaudii and Pseudomonas putida, were employed as amendments based on their ability to produce biosurfactants and survive in metal-contaminated soils. Apatites (calcium phosphate compounds) are important in the formation of Pb phosphates. Pb phosphates form rapidly when phosphate is available and are the most stable environmental form of lead in soil (Ruby et al.1998). Pyromorphites in particular remain insoluble under a wide range of environmental conditions (Zhang et al. 1998). The three apatites evaluated in the current study were North Carolina apatite (NCA), Florida apatite (FA), and biological apatite (BA). BA is ground fish bone that has few impurities such as As, Cr, or U and contains about 27% total phosphate, most of which is available. FA and NCA are two types of rock phosphates that release small amounts of phosphate over time. Total phosphate is around 30% with only 1-2% phosphate available (Knox et al. 2005). In this study, we describe the influence of combining the two microbial and three phosphate amendments on reducing lead bioavailability in shooting range soil.« less

  9. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Buffer Modulation of Menadione-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Lushchak, Oleh V.; Bayliak, Maria M.; Korobova, Olha V.; Levine, Rodney L.; Lushchak, Volodymyr I.

    2012-01-01

    The objective of this study was to compare in vivo the effects of bicarbonate and phosphate buffers on surviving and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. If at 25 mM concentration of buffers menadione only slightly reduced yeast surviving, at 50 mM concentration cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed. PMID:19843376

  11. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  12. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    EPA Science Inventory

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  13. Micro-x-ray fluorescence, micro-x-ray absorption spectroscopy, and micro-x-ray diffraction investigation of lead speciation after the addition of different phosphorus amendments to a smelter-contaminated soil.

    PubMed

    Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew

    2014-03-01

    The stabilization of Pb on additions of P to contaminated soils and mine spoil materials has been well documented. It is clear from the literature that different P sources result in different efficacies of Pb stabilization in the same contaminated material. We hypothesized that the differences in the efficacy of Pb stabilization in contaminated soils on fluid or granular P amendment addition is due to different P reaction processes in and around fertilizer granules and fluid droplets. We used a combination of several synchrotron-based techniques (i.e., spatially resolved micro-X-ray fluorescence, micro-X-ray absorption near-edge structure spectroscopy, and micro-X-ray diffraction) to speciate Pb at two incubation times in a smelter-contaminated soil on addition of several fluid and granular P amendments. The results indicated that the Pb phosphate mineral plumbogummite was an intermediate phase of pyromorphite formation. Additionally, all fluid and granular P sources were able to induce Pb phosphate formation, but fluid phosphoric acid (PA) was the most effective with time and distance from the treatment. Granular phosphate rock and triple super phosphate (TSP) amendments reacted to generate Pb phosphate minerals, with TSP being more effective at greater distances from the point of application. As a result, PA and TSP were the most effective P amendments at inducing Pb phosphate formation, but caution needs to be exercised when adding large amounts of soluble P to the environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. The protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity.

    PubMed

    Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2012-04-01

    An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.

  15. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    PubMed

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Studies on the electrochemical behavior of thiazolidine and its applications using a flow-through chronoamperometric sensor based on a gold electrode.

    PubMed

    Wang, Lai-Hao; Li, Wen-Jie

    2011-09-06

    The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.

  17. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    PubMed Central

    Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.

    2014-01-01

    Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199

  18. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein

    NASA Astrophysics Data System (ADS)

    Arai, Hirofumi; Berlett, Barbara S.; Chock, P. Boon; Stadtman, Earl R.

    2005-07-01

    Oxidation of low-density lipoprotein (LDL) may play an important role in atherosclerosis. We studied the effects of bicarbonate/CO2 and phosphate buffer systems on metal ion-catalyzed oxidation of LDL to malondialdehyde (MDA) and to protein carbonyl and MetO derivatives. Our results revealed that LDL oxidation in mixtures containing free iron or heme derivatives was much greater in bicarbonate/CO2 compared with phosphate buffer. However, when copper was substituted for iron in these mixtures, the rate of LDL oxidation in both buffers was similar. Iron-catalyzed oxidation of LDL was highly sensitive to inhibition by phosphate. Presence of 0.3-0.5 mM phosphate, characteristic of human serum, led to 30-40% inhibition of LDL oxidation in bicarbonate/CO2 buffer. Iron-catalyzed oxidation of LDL to MDA in phosphate buffer was inhibited by increasing concentrations of albumin (10-200 μM), whereas MDA formation in bicarbonate/CO2 buffer was stimulated by 10-50 μM albumin but inhibited by higher concentrations. However, albumin stimulated the oxidation of LDL proteins to carbonyl derivatives at all concentrations examined in both buffers. Conversion of LDL to MDA in bicarbonate/CO2 buffer was greatly stimulated by ADP, ATP, and EDTA but only when EDTA was added at a concentration equal to that of iron. At higher than stoichiometric concentrations, EDTA prevented oxidation of LDL. Results of these studies suggest that interactions between bicarbonate and iron or heme derivatives leads to complexes with redox potentials that favor the generation of reactive oxygen species and/or to the generation of highly reactive CO2 anion or bicarbonate radical that facilitates LDL oxidation. Freely available online through the PNAS open access option.Abbreviations: LDL, low-density lipoprotein; MDA, malondialdehyde; MetO, methionine sulfoxide.

  20. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal-Limbal and Human Conjunctival Epithelial Cells.

    PubMed

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin

    2017-06-01

    To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.

  1. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal–Limbal and Human Conjunctival Epithelial Cells

    PubMed Central

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline

    2017-01-01

    Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036

  2. Optimization of a model of red blood cells for the study of anti-oxidant drugs, in terms of concentration of oxidant and phosphate buffer.

    PubMed

    Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M

    2005-08-01

    The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.

  3. Influence of high-conductivity buffer composition on field-enhanced sample injection coupled to sweeping in CE.

    PubMed

    Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre

    2013-02-01

    The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.

    PubMed

    Zhang, Jiewen; Bell, Leonard N

    2017-04-01

    Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.

  5. The voltammetric behaviour of lead at a microband screen-printed carbon electrode and its determination in acetate leachates from glazed ceramic plates.

    PubMed

    Honeychurch, Kevin C; Al-Berezanchi, Saman; Hart, John P

    2011-05-15

    Microband screen-printed carbon electrodes (μBSPCEs) without further modification have been investigated as disposable sensors for the measurement of lead in acetate leachates from ceramic glazed plates. Cyclic voltammetry was employed to elucidate the electrochemical behaviour of Pb(2+) at these electrodes in a variety of supporting electrolytes. The anodic peaks obtained on the reverse scans, showed that Pb had been deposited as a thin layer on the surface of the μBSPCE. The anodic peak of greatest magnitude was obtained in 0.1M pH 4.1 acetate buffer containing 13 mM Cl(-). The effect of chromium, copper, phosphate, sulphate and tin was examined and under the conditions employed, no significant change in current was found. The μBSPCEs were evaluated by carrying out lead determinations for acetate leachates from glazed ceramic plates. A highly decorated ornamental plate was found to leach 400 μg Pb(2+) (%CV=1.91%). A second plate, designed for dinnerware was found not to leach any detectable levels of Pb(2+). However, once fortified with 2.10 μg of Pb (equivalent to 100 ng/ml in the leachate), a mean recovery of 82.08% (%CV=4.07%) was obtained. The performance characteristics indicate that reliable data has been obtained for this application which could identify potentially toxic sources of lead. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Lead stabilization by phosphate amendments in soil impacted by paint residue.

    PubMed

    Schwab, A P; Lewis, K; Banks, M K

    2006-01-01

    The addition of phosphate was evaluated for contaminant stabilization in soils impacted by lead paint residue. Soils sampled from 15 highway bridge sites in Indiana were screened based on residual lead concentrations from paint contamination. Two appropriate bridge sites were identified in Tippecanoe County, Indiana. Soluble phosphate was added to the soil at a mole ratio of 3:1 P:Pb. The efficacy of phosphate treatment was evaluated by a physiologically based extraction test (PBET), uptake of lead by sunflowers, and leaching of lead from soil columns. Sunflowers were established on both field sites, and the mean Pb concentration in the above-ground biomass indicated that the rate of uptake was similar to plants growing in uncontaminated soil. The second bioavailability assessment was the physiologically based extraction test, designed to evaluate heavy metal availability during ingestion. After 1 year at both sites, the addition of phosphate significantly reduced the concentrations of lead extracted by PBET, indicating that the lead in the amended soils had lower bioavailability than in the unamended soils. In the column study, the contaminated soil produced the highest mass of leached Pb, and the addition of P reduced the mass of Pb in the leachate to similar levels found in the uncontaminated soil. Overall, the addition of soluble phosphate to these soils appears to be an effective approach for immobilizing Pb and reducing the associated bio-accessibility.

  7. Effect of PbO on the spectral and thermo-optical properties of Nd3+-doped phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yin, Qianwen; Kang, Shuai; Wang, Xue; Li, Shunguang; He, Dongbing; Hu, Lili

    2017-04-01

    Nd3+-doped P2O5-K2O-Al2O3-BaO-PbO phosphate glasses with various PbO/BaO ratios were synthesized using the melt quenching technique. Raman, absorption, and emission spectra were measured to investigate the effects of PbO/BaO ratios on the structures and spectroscopic properties of the glasses. The emission cross-sections of the Nd3+-doped phosphate glasses were calculated using the Judd-Ofelt theory, and were found to increase from 4.37 × 10-20 to 4.50 × 10-20 cm2 as the PbO/BaO ratio increased. In addition, thermo-optical properties were measured using an interferometric technique. The thermo-optical coefficients, which were -1.49 × 10-6, -1.65 × 10-6, and -1.64 × 10-6 K-1, respectively, were all largely negative values. The thermal expansion coefficients of the three glass samples varied within a small range. The results showed that increasing the PbO/BaO ratio of phosphate glasses can improve the laser properties while maintaining their good thermo-optical properties.

  8. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: pH buffering properties of cheese.

    PubMed

    Upreti, P; Bühlmann, P; Metzger, L E

    2006-03-01

    The pH buffering capacity of cheese is an important determinant of cheese pH. However, the effects of different constituents of cheese on its pH buffering capacity have not been fully clarified. The objective of this study was to characterize the chemical species and chemical equilibria that are responsible for the pH buffering properties of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), residual lactose (2.4 vs. 0.78%), and salt-to-moisture ratio (6.4 vs. 4.8%) were manufactured. The pH-titration curves for these cheeses were obtained by titrating cheese:water (1:39 wt/wt) dispersions with 1 N HCl, and backtitrating with 1 N NaOH. To understand the role of different chemical equilibria and the respective chemical species in controlling the pH of cheese, pH buffering was modeled mathematically. The 36 chemical species that were found to be relevant for modeling can be classified as cations (Na+, Ca2+, Mg2+), anions (phosphate, citrate, lactate), protein-bound amino acids with a side-chain pKa in the range of 3 to 9 (glutamate, histidine, serine phosphate, aspartate), metal ion complexes (phosphate, citrate, and lactate complexes of Na+, Ca2+, and Mg2+), and calcium phosphate precipitates. A set of 36 corresponding equations was solved to give the concentrations of all chemical species as a function of pH, allowing the prediction of buffering curves. Changes in the calculated species concentrations allowed the identification of the chemical species and chemical equilibria that dominate the pH buffering properties of cheese in different pH ranges. The model indicates that pH buffering in the pH range from 4.5 to 5.5 is predominantly due to a precipitate of Ca and phosphate, and the protonation equilibrium involving the side chains of protein-bound glutamate. In the literature, the precipitate is often referred to as amorphous colloidal calcium phosphate. A comparison of experimental data and model predictions shows that the buffering properties of the precipitate can be explained, assuming that it consists of hydroxyapatite [Ca5(OH)(PO4)3] or Ca3(PO4)2. The pH buffering in the region from pH 3.5 to 4.5 is due to protonation of side-chain carboxylates of protein-bound glutamate, aspartate, and lactate, in order of decreasing significance. In addition, pH buffering between pH 5 to 8 in the backtitration results from the reprecipitation of calcium and phosphate either as CaHPO4 or Ca4H(PO4)3.

  9. A Chemist’s Perspective on the Role of Phosphorus at the Origins of Life

    PubMed Central

    Fernández-García, Christian; Coggins, Adam J.

    2017-01-01

    The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic chemistry, and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation, and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides, amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as a general acid–base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry, provide an increasingly clear message that understanding phosphate chemistry will be a key element in elucidating the origins of life on Earth. PMID:28703763

  10. Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado.

    PubMed

    Eusden, J D; Gallagher, L; Eighmy, T T; Crannell, B S; Krzanowski, J R; Butler, L G; Cartledge, F K; Emery, E F; Shaw, E L; Francis, C A

    2002-01-01

    The use of soluble PO4(3-) and lime as a heavy metal chemical stabilization agent was evaluated for mine tailings from Leadville, Colorado. The tailings are from piles associated with the Wolftone and Maid of Erin mines; ore material that was originally mined around 1900, reprocessed in the 1940s, and now requires stabilization. The dominant minerals in the tailings are galena (PbS), cerrusite (PbCO3), pyromorphite (Pb5(PO4)3Cl), plumbojarosite (Pb0.5Fe3(SO4)2(OH)6), and chalcophanites ((Pb,Fe,Zn,Mn)Mn2O5 x 2H2O). The tailings were treated with soluble PO4(3-) and lime to convert soluble heavy metals (principally Pb, Zn, Cu, Cd) into insoluble metal phosphate precipitates. The treatment process caused bulk mineralogical transformations as well as the formation of a reaction rind around the particles dominated by Ca and P. Within the mineral grains, Fe-Pb phosphosulfates, Fe-Pb sulfates (plumbojarosite), and galena convert to Fe-Ca-Pb hydroxides. The Mn-Pb hydroxides and Mn-(+/-Fe)-Pb hydroxides (chalcophanites) undergo chemical alteration throughout the grains during treatment. Bulk and surface spectroscopies showed that the insoluble reaction products in the rind are tertiary metal phosphate (e.g. (Cu,Ca2)(PO4)2) and apatite (e.g. Pb5(PO4)3Cl) family minerals. pH-dependent leaching (pH 4,6,8) showed that the treatment was able to reduce equilibrium concentrations by factors of 3 to 150 for many metals; particularly Pb2+, Zn2+, Cd2+, and Cu2+. Geochemical thermodynamic equilibrium modeling showed that apatite family and tertiary metal phosphate phases act as controlling solids for the equilibrium concentrations of Ca2+, PO4(3-) Pb2+, Zn2+, Cd2+, and Cu2+ in the leachates during pH-dependent leaching. Both end members and ideal solid solutions were seen to be controlling solids.

  11. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachar, H.K.; Chao, I.; Fang, X.M.

    1998-12-31

    Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less

  13. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  14. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil.

    PubMed

    Park, Jin Hee; Bolan, Nanthi; Megharaj, Mallavarapu; Naidu, Ravi

    2011-01-30

    Lead (Pb), a highly toxic heavy metal forms stable compounds with phosphate (P). The potential of phosphate solubilizing bacteria (PSB) to immobilize Pb by enhancing solubilization of insoluble P compounds was tested in this research. Eighteen different PSB strains isolated from P amended and Pb contaminated soils were screened for their efficiency in P solubilization. The PSB isolated from P amended soils solubilized 217-479 mg/L of P while the PSB from Pb contaminated soil solubilized 31-293 mg/L of P. Stepwise multiple regression analysis and P solubility kinetics indicated that the major mechanism of P solubilization by PSB is the pH reduction through the release of organic acids. From the isolated bacteria, two PSB were chosen for Pb immobilization and these bacteria were identified as Pantoea sp. and Enterobacter sp., respectively. The PSB significantly increased P solubilization by 25.0% and 49.9% in the case of Pantoea sp., and 63.3% and 88.6% in the case of Enterobacter sp. for 200 and 800 mg/kg of rock phosphate (RP) addition, respectively, thereby enhancing the immobilization of Pb by 8.25-13.7% in the case of Pantoea sp. and 14.7-26.4% in the case of Enterobacter sp. The ability of PSB to solubilize P, promote plant growth, and immobilize Pb can be used for phytostabilization of Pb contaminated soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Zinc speciation in proximity to phosphate application points in a lead/zinc smelter-contaminated soil.

    PubMed

    Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew

    2012-01-01

    The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminated soil would induce Zn phosphate mineral formation and fluid P sources would be more effective than granular P amendments. A combination of different synchrotron-based techniques, namely, spatially resolved micro-X-ray fluorescence (μ-XRF), micro-extended X-ray absorption fine structure spectroscopy (μ-EXAFS), and micro-X-ray diffraction (μ-XRD), were used to speciate Zn at two incubation times in the proximity of application points (0 to 4 mm) for fluid and granular P amendments in a Pb/Zn smelter-contaminated soil. Phosphate rock (PR), triple super phosphate (TSP), monoammonium phosphate (MAP), and fluid ammonium polyphosphate induced Zn phosphate formation. Ammonium polyphosphate was more effective at greater distances (up to 3.7 mm) from the point of P application. Phosphoric acid increased the presence of soluble Zn species because of increased acidity. Soluble Zn has implications with respect to Zn bioavailability, which may negatively impact vegetation and other sensitive organisms. Although additions of P immobilize Pb, this practice needs close monitoring due to potential increases in Zn solubility in a Pb/Zn smelter-contaminated soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Lead and aluminum bonding in Pb-AI metaphosphate glasses.

    PubMed

    Tsuchida, J E; Schneider, J; Pizani, P S; Oliveira, S L

    2008-01-21

    The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb(PO(3))(2).xAI(PO(3))(3) with 0 < or = x < or = 1 were analyzed to determine the effect of the substitution of Pb by AI on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)AI, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for AI decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent AI-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in AI. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AIO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AIO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AIO(n) polyhedra. There is no corner sharing of O between AIO(n) and PbO(n) polyhedra nor between AIO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-AI and Ca-AI metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.

  17. The characterisation and design improvement of a paper-based E.coli impedimetric sensor

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P.; Kumar, S.; Wiederoder, M.; Schoeman, J.; Land, K.; Joubert, T.-H.

    2016-02-01

    This paper describes the development and optimisation of a paper-based E. coli impedimetric biosensor for water quality monitoring. Impedimetric biosensing is advantageous because it is a highly sensitive, label-free, real-time method for the detection of biological species. An impedimetric biosensor measures the change in impedance caused by specific capture of a target on the sensor surface. Each biosensor consists of a pair of photo paper-based inkjet printed electrodes. An impedance analyser was used to measure the impedance at frequencies ranging from 1 kHz to 1 MHz at 1V. The parameters that were investigated to achieve enhanced sensor performance were buffer type, antibody attachment method, measurement frequency, electrode layout, and conductive material. A 0.04M PBS (phosphate buffered saline) solution achieves better results compared to a less conductive 0.04M PB (potassium phosphate dibasic) solution. The direct adsorption of anti-E. coli antibodies onto the sensor surface yielded better results than attaching the sensor to a lateral flow test. The resistive component had a greater impact on the detected impedance, therefore an optimal frequency of 1 MHz was identified. Geometrical electrode designs that maximise the resistive change between the electrodes were utilised. Both lower cost silver and bio-compatible gold ink were validated as electrode materials. The impedance change generated by the selective capture of E. coli K-12, ranging in concentration from 103 to 107 colony forming units per millilitre (cfu/ml), showed a detection limit of 105 cfu/ml.

  18. [Thermal stability and transformation behaviors of Pb in Yima coal].

    PubMed

    Liu, Rui-qing; Wang, Jun-wei

    2013-05-01

    Occurrence forms of Pb in Yima (YM) coal, their thermal stability and transformation behaviors during coal pyrolysis were investigated. Chemical leaching method was used to characterize the forms of Pb in the raw coal and the chars. It was found that about 33% Pb in YM coal was bound to carbonates, sulfides, sulfates, phosphates and oxides, 29% to aluminosilicates, 27% to disulfide species, and 8% to organic species. It was also found that the organic bound Pb was the most releasable while the aluminosilicates bound Pb was the least releasable. The effect of minerals of different sort on Pb release was also studied. The result showed that carbonates, sulfides, sulfates, phosphates and oxides, aluminosilicates and disulfides in YM coal could restrain Pb release during coal pyrolysis. The transformation of different forms of Pb mainly occurred at above 500 degrees C with other forms of Pb transformed to the aluminosilicates form and volatile phase.

  19. Fundamental and Applied Studies of Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Imbrogno, Joseph

    Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We have developed hydrophobic brush membranes that were able to selectively separate valuable organics (isobutanol) from water, while rejecting other undesirable species, such as enzymes, using pervaporation (PV). These membranes (grafted from nanofiltration (NF) support membranes) had a selectivity ˜1.5x higher than the current industrial standard, polydimethylsiloxane (PDMS), with alpha = 10.1 +/- 0.9 for our brush membranes and alpha = 6.7 +/- 0.1 for PDMS membranes. Since the mechanism of pervaporation is based on the solution diffusion (SD) model, these membranes may be used to desalinate water or fractionate gases since they are also based on the SD mechanism. We have discovered that hydrophobic brush membranes are able to reject monovalent salt ions. This type of membrane is analogous to carbon nanotubes (CNTs), which are believed to have extremely high water fluxes through them due to near frictionless flow caused by a lack of hydrogen bonding. Using these brush membranes we were able to achieve 42% monovalent (NaCl) salt rejection of simulated seawater (32,000 ppm salt). These membranes are easier to scale-up than current composite membranes produced using interfacial polymerization. We have been using SFG to study interfacial water on membrane surfaces. We believe that water interactions with the membrane surface and with the feed species, e.g. proteins, play a critical role during the fouling process. Relevant buffers, such as phosphate buffered saline (PBS) and phosphate buffer, contain ions that are known to restructure water at interfaces. Sum frequency generation spectroscopy (SFG) was used to characterize interfacial water structure at poly(ether sulfone) (PES) thin films in the presence of 0.01 M phosphate buffer (low salt) and 0.01 M phosphate buffered saline (high salt). Three model surfaces were studied: unmodified PES, hydrophobic alkane (C18) modified PES, and poly(ethylene glycol) (PEG) modified PES. In the presence of the low salt phosphate buffer (10 mM salt), phosphate anions were excluded from the PEG-modified PES film. This led to a charge separation between the phosphate anions and sodium cations, creating a surface potential which strongly ordered water molecules into the bulk. When using high salt PBS (138 mM salt) the sodium chloride ions screened this charge and reduced water ordering. Interestingly, this effect was the greatest for the PEG modified surface, with minor or no effects observed for the C18 modified PES and unmodified PES, respectively. Using our high throughput screening platform, we were able to determine that (N-[3-(dimethylamino)propyl] methacrylamide), DMAPMA, supported strong attachment and long-term self-renewal of mouse embryonic stem (ES) cells while preventing differentiation (maintaining pluripotency). After developing this platform, it was used to screen for a surface that could instead induce differentiation of bovine and human retinal pigment epithelium (RPE) cells while promoting cell growth. Several PEG based surfaces were able to induce cobblestone morphology of the RPE cells, which is indicative of differentiation. (Abstract shortened by UMI.).

  20. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil.

    PubMed

    Liu, Ruiqiang; Zhao, Dongye

    2013-04-01

    Phosphate compounds and the related materials are effective agents for in situ immobilization of heavy metals in contaminated soils. Problems associated with using these phosphate materials include difficulties in delivering the solid phosphate minerals to the deep contaminated zones or risks of eutrophication with applying soluble phosphates. Therefore, a new class of apatite nanoparticles was synthesized using carboxymethyl cellulose as a stabilizer in order to increase the dispersion rate of phosphate in soils but without introducing significant amount of soluble phosphate into the environment. The product was confirmed by XRD as chlorapatite (Ca5(PO4)3Cl) with poor crystallinity. TEM and SEM revealed that the particles were spherical or irregular in shape with sizes spanning from a few nm to around 200 nm. FTIR spectra suggested that Ca(II) cations formed outer-sphere bonds with carboxyl and hydroxyl groups in cellulose molecules, thus inhibiting further agglomeration of the particles. Dry combustion data supported a formula of [C6H7O2(OH)2OCH2COOCa5(PO4)3Cl]n for the nano-apatite composite. Laboratory tests showed that the nanoparticles could effectively decrease the TCLP-leachable Pb fraction in a Pb-contaminated soil from 66% to 10% after one-month amendment with a ratio of 2 mL solution to 1g soil and the resultant Pb content in the TCLP solution was reduced to 12 from 94 mg L(-1). When the amendment ratio was increased by 5 times, the leachable Pb was further reduced to 3.8 mg L(-1) with only about 3% of the soil Pb leachable. The soil sample, containing an average of 2.7×10(3)mg Pb kg(-1), was taken from a shooting-range in Southern USA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Phosphate Treatment of Lead-Contaminated Soil: Effects on ...

    EPA Pesticide Factsheets

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface water runoff, Pb accumulation in tall fescue (Festuca arundinacea Schreb; Kentucky 31), and Pb speciation. An alluvial soil was treated with triple superphosphate at P to Pb molar ratios of 0:1(control), 4:1, 8:1, and 16:1. After a 6- mo reaction period, rainfall simulation (RFS) studies were conducted, followed by tall fescue establishment and a second set of RFS studies (1 yr after treatment). Results from the first RFS (unvegetated) demonstrated that the total Pb and P concentrations in the effluents of 8:1 and 16:1 (P:Pb molar ratio) treatment levels were significantly greater (p 55%. X-ray absorption near-edge structure spectroscopy data showed that pyromorphite [Pb5(PO4)3OH,Cl,F] abundance ranged from 0% (control) to 32% (16:1 P:Pb; 1 yr after treatment) of the total soil Pb. Although P treatment stimulated pyromorphite formation, pyromorphite abundance was comparable between the P-treated soils. These findings suggest that a 4:1 (P:Pb molar ratio) P treatment may be a sufficient means of reducing Pb bioavailability while minimizing concerns related to P loss in an alluvial setting. The purpose of the current research was to examine the feasability of using phosphate based ammend

  2. Development and validation of a discriminative dissolution method for atorvastatin calcium tablets using in vivo data by LC and UV methods.

    PubMed

    Machado, J C; Lange, A D; Todeschini, V; Volpato, N M

    2014-02-01

    A dissolution method to analyze atorvastatin tablets using in vivo data for RP and test pilot (PB) was developed and validated. The appropriate conditions were determined after solubility tests using different media, and sink conditions were established. The conditions used were equipment paddle at 50 rpm and 900 mL of potassium phosphate buffer pH 6.0 as dissolution medium. In vivo release profiles were obtained from the bioequivalence study of RP and the generic candidate PB. The fraction of dose absorbed was calculated using the Loo-Riegelman method. It was necessary to use a scale factor of time similar to 6.0, to associate the values of absorbed fraction and dissolved fraction, obtaining an in vivo-in vitro correlation level A. The dissolution method to quantify the amount of drug dissolved was validated using high-performance liquid chromatography and ultraviolet spectrophotometry, and validated according to the USP protocol. The discriminative power of dissolution conditions was assessed using two different pilot batches of atorvastatin tablets (PA and PB) and RP. The dissolution test was validated and may be used as a discriminating method in quality control and in the development of the new formulations.

  3. In Vitro Investigations of Human Bioaccessibility from Reference Materials Using Simulated Lung Fluids

    PubMed Central

    Pelfrêne, Aurélie; Cave, Mark R.; Wragg, Joanna; Douay, Francis

    2017-01-01

    An investigation for assessing pulmonary bioaccessibility of metals from reference materials is presented using simulated lung fluids. The objective of this paper was to contribute to an enhanced understanding of airborne particulate matter and its toxic potential following inhalation. A large set of metallic elements (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) was investigated using three lung fluids (phosphate-buffered saline, Gamble’s solution and artificial lysosomal fluid) on three standard reference materials representing different types of particle sources. Composition of the leaching solution and four solid-to-liquid (S/L) ratios were tested. The results showed that bioaccessibility was speciation- (i.e., distribution) and element-dependent, with percentages varying from 0.04% for Pb to 86.0% for Cd. The higher extraction of metallic elements was obtained with the artificial lysosomal fluid, in which a relative stability of bioaccessibility was observed in a large range of S/L ratios from 1/1000 to 1/10,000. For further investigations, it is suggested that this method be used to assess lung bioaccessibility of metals from smelter-impacted dusts. PMID:28125027

  4. Diluents for stabilization of tuberculin

    PubMed Central

    Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans

    1958-01-01

    Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720

  5. Histological preparation of developing vestibular otoconia for scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Huss, D.; Dickman, J. D.

    2003-01-01

    The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.

  6. Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck

    2011-01-01

    The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  7. Ex vivo evaluation of various instrumentation techniques and irrigants in reducing E. faecalis within root canals.

    PubMed

    Basmaci, F; Oztan, M D; Kiyan, M

    2013-09-01

    To evaluate ex vivo the effectiveness of single-file instrumentation techniques compared with serial Ni-Ti rotary instrumentation with several irrigation regimens in reducing E. faecalis within root canals. A total of 81 extracted human mandibular premolar teeth with a single root canal were infected with E. faecalis before and after canal preparation. Samples were divided randomly into 9 groups, as follows: group 1-A: sterile phosphate-buffered saline + Self-adjusting file, group 1-B: 5% sodium hypochlorite + 15% EDTA + Self-adjusting file, group 1-C: 5% sodium hypochlorite + 7% maleic acid + Self-adjusting file, group 2-A: sterile phosphate-buffered saline + Reciproc (R25), group 2-B: 5% sodium hypochlorite + 15% EDTA + Reciproc (R25), group 2-C: 5% sodium hypochlorite + 7% maleic acid + Reciproc (R25), group 3-A: sterile phosphate-buffered saline + ProTaper, group 3-B: 5% sodium hypochlorite + 15% EDTA + ProTaper, group 3-C: 5% sodium hypochlorite + 7% maleic acid + ProTaper. anova was used to analyse statistically the differences in terms of reduction in colony counts between the groups, and Dunn's post hoc test was used for multiple comparisons. All techniques and irrigation regimens significantly reduced the number of bacterial cells in the root canal (P < 0.001). Comparisons amongst the groups revealed significant differences between group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 1B (5% sodium hypochlorite + 15% EDTA + Self-adjusting file) (P = 0.031), group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 2C (5% sodium hypochlorite + 7% maleic acid + Reciproc) (P = 0.003), group 2A (sterile phosphate-buffered saline + Reciproc)/group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper) (P = 0.036), group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P < 0.001), and group 3C (5% sodium hypochlorite + 7% maleic acid + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P = 0.033). No significant differences in terms of reduction in microbial counts were observed between single-file techniques (SAF and Reciproc) and serial Ni-Ti instrumentation technique (ProTaper) in combination with irrigants. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. SPECTROSCOPIC SPECIATION AND QUANTIFICATION OF LEAD IN PHOSPHATE AMENDED SOILS

    EPA Science Inventory

    The immobilization of Pb in contaminated soils as pyromorphite [Pb5(PO4)3CI, OH, F] through the addition of various phosphate amendments has gained much attention in the remediation community. However, it is difficult to fully determine the specia...

  9. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2007-08-25

    Sorption efficacy of phosphatic clay and humus rich soil alone and on combination were tested towards heavy metals present in zinc mine tailing (Zawar Zinc Mine), Udaipur (India). Characterization of the zinc mine tailing sample indicated the presence of Pb, Cu, Zn and Mn in the concentration of 637, 186, 720 and 577microg(-1), respectively. For sorption efficacy, the zinc mine tailing soil were properly amended with phosphatic clay and humus rich soil separately and in combination and leachability study was performed by batch experiment at different pH range from 3 to 9. The data showed that the percent leachability of heavy metal in non-amended soil was 75-90%. After amendment with phosphatic clay percent leachability of heavy metals became 35-45%. Further, the addition of humus soil to phosphatic clay decreased the percent leachability up to 5-15% at all tested pH. Column leachability experiment was performed to evaluate the rate of leachability. The shape of cumulative curves of Pb, Cu, Zn and Mn showed an increase in its concavity in following order: PbCu>Zn>Mn. Further, Langmuir isotherms applied for the sorption studies indicated that phosphatic clay in the presence of humus soil had high affinity for Pb followed by Cu, Zn and Mn, with sorption capacities (b) 139.94, 97.02, 83.32 and 67.58microgg(-1), respectively.

  10. Stabilities of lead(II) complexes formed in aqueous solution with methyl thiophosphate (MeOPS(2-)), uridine 5'- O-thiomonophosphate (UMPS(2-)) or adenosine 5'- O-thiomonophosphate (AMPS(2-)).

    PubMed

    Da Costa, Carla P; Krajewska, Danuta; Okruszek, Andrzej; Stec, Wojciech J; Sigel, Helmut

    2002-04-01

    The acidity constants of twofold protonated methyl thiophosphate (MeOPS(2-)) and of monoprotonated uridine 5'- O-thiomonophosphate (UMPS(2-)) have been determined in aqueous solution (25 degrees C; I= 0.1 M, NaNO(3)) by potentiometric pH titration. The stability constants of their 1:1 complexes formed with Pb(2+), i.e. Pb(MeOPS) and Pb(UMPS), have also been measured. The results show that replacement of a phosphate oxygen by a sulfur atom increases the acidity by about 1.4 p K units. On the basis of recently established log versus plots ( = simple phosphate or phosphonate ligands where R is a non-coordinating residue), it is shown that the stability of the Pb(thiophosphate) complexes is by log Delta= 2.43+/-0.09 larger than expected for a Pb(2+)-phosphate interaction. The identity of the stability increase (log Delta) observed for Pb(MeOPS) and Pb(UMPS) shows that the nucleobase residue in the Pb(UMPS) complex has no influence on complex formation. To be able to carry out the mentioned comparisons, we have also determined the stability constant of the complex formed between Pb(2+) and methyl phosphate; the corresponding data for Pb(UMP) were already known from our earlier studies. The present results allow an evaluation of other Pb(2+) complexes formed with thiophosphate derivatives and they are applied now to the Pb(2+) complexes of adenosine 5'- O-thiomonophosphate (AMPS(2-)). The stability constants of the Pb(H;AMPS)(+) and Pb(AMPS) complexes were measured and it is shown that, within the error limits, the stability of the Pb(AMPS) complex is determined by the basicity of the thiophosphate group of AMPS(2-); in other words, no hint for macrochelate formation involving N7 was observed. More important, with the aid of micro-stability-constant considerations it is concluded that the structure of the dominating isomer of the Pb(H;AMPS)(+) species is the one where the proton is located at the N1 site of the adenine residue and Pb(2+) is coordinated to the deprotonated thiophosphate group. The insights gained from this study with regard to thiophosphate-altered single-stranded nucleic acids and their affinity towards Pb(2+) are discussed.

  11. Lead Speciation And Bioavailability In Apatite-Amended Sediments

    EPA Science Inventory

    The in situ sequestration of lead (Pb) in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS) with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions ...

  12. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement.

    PubMed

    Wang, Yan-Shuai; Dai, Jian-Guo; Wang, Lei; Tsang, Daniel C W; Poon, Chi Sun

    2018-01-01

    Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Phosphatase-mediated bioprecipitation of lead by soil fungi.

    PubMed

    Liang, Xinjin; Kierans, Martin; Ceci, Andrea; Hillier, Stephen; Gadd, Geoffrey Michael

    2016-01-01

    Geoactive soil fungi were examined for their ability to release inorganic phosphate (Pi ) and mediate lead bioprecipitation during growth on organic phosphate substrates. Aspergillus niger and Paecilomyces javanicus grew in 5 mM Pb(NO3)2-containing media amended with glycerol 2-phosphate (G2P) or phytic acid (PyA) as sole P sources, and liberated Pi into the medium. This resulted in almost complete removal of Pb from solution and extensive precipitation of lead-containing minerals around the biomass, confirming the importance of the mycelium as a reactive network for biomineralization. The minerals were identified as pyromorphite (Pb5(PO4)3Cl), only produced by P. javanicus, and lead oxalate (PbC2O4), produced by A. niger and P. javanicus. Geochemical modelling of lead and lead mineral speciation as a function of pH and oxalate closely correlated with experimental conditions and data. Two main lead biomineralization mechanisms were therefore distinguished: pyromorphite formation depending on organic phosphate hydrolysis and lead oxalate formation depending on oxalate excretion. This also indicated species specificity in biomineralization depending on nutrition and physiology. Our findings provide further understanding of lead geomycology and organic phosphates as a biomineralization substrate, and are also relevant to metal immobilization biotechnologies for bioremediation, metal and P biorecovery, and utilization of waste organic phosphates. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Laser Raman spectra of mono-, oligo- and polysaccharides in solution

    NASA Astrophysics Data System (ADS)

    Barrett, T. W.

    We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.

  15. Bacteria mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of Pseudomonas putida bacteria - an effect on Pb remobilization in the environment

    NASA Astrophysics Data System (ADS)

    Flis, Justyna; Manecki, Maciej; Merkel, Broder J.; Latowski, Dariusz

    2010-05-01

    The objective of the study was to determine the mechanisms of microbially enhanced dissolution of lead phosphate-pyromorphite Pb5(PO4)3Cl). Contrary to the current literature, the results of our experiments indicate a great potential for Pb remobilization in the environment by an aerobic microorganism acquiring phosphates. Broad knowledge exists about the role of Pb-apatites in regulating the behavior and the bioavailability of Pb in soils and wastewater. In situ Pb immobilization is one of the methods now routinely applied for the reclamation of Pb-contaminated soils, including shallow unconfined aquifers (Magalhaes & Silva, 2003; Magalhaes, 2002; Ma et al. 1993). This method is based on the principle that aqueous phosphates added to soil pore solutions form a very stable (insoluble) mineral pyromorphite (Pb-apatite) Pb5(PO4)3Cl. Bioavailability of aqueous Pb is thus minimized due to the very low solubility and the high thermodynamic stability of pyromorphite (Flis, 2007; Nriagu, 1974). Several reports have examined the ability of different bacterial species including Pseudomonas to solubilise insoluble inorganic phosphate compounds for example apatites (Welch et al., 2002; Maurice et al., 1999; Rodriguez and Fraga, 1999 ). Various species of Pseudomonas genera are encountered as common inhabitants of soils and wastes in the industrial areas under strong pollution influence. To date, there has not been any published evidence of microbial dissolution of pyromorphite. The major objective of the project was to study Pseudomonas putida growth in the presence of Pb-apatite (Pb5(PO4)3Cl) as the sole source of phosphate. It was to test the hypothesis that in the phosphate deficient environment bacteria are able to actively scavenge for P from the Pb-apatite which results in remobilization of Pb in the environment. The bacteria growth was investigated at 22oC. Commercially available Pseudomonas putida strain was used throughout. The experiment and its controls were run in standard growth medium for the period of 10 days, at starting pH=6.5. Samples were periodically analysed for pH, bacterial density, Pb and P (UV-vis, ICP). Our results indicate that Pb may be mobilized from pyromorphite by microbial activity, both in phosphorous-rich and phosphorous-deficient environment. At the experimental conditions the presence of bacteria enhances the dissolution of pyromorphite, resulting in up to 20 times increase of Pbaq. The observed effects of microorganisms on Pb remobilization need to be considered in Pb remediation strategies that rely on pyromorphite formation. References: FLIS J.M., (2007). "Thermodynamic properties of minerals from pyromorphite-mimetite series"- Master Thesis, AGH-University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Cracow, Poland. MA Q.Y., TRAINA S.J., LOGAN T.J., RYAN J.A. (1993). "In-situ lead immobilization by apatite". Environ. Sci. Technol., 27: 1803-1810. MAURICE P.A, LEE Y.J., HERSMAN L.E. (1999). "Dissolution of Al-substituted goethites by an aerobic Pseudomonas mendocina var. Bacteria." Gechim. Cosmochim. Acta. 64: 1363-1374. MAGALHÃES M.C.F. (2002). "Arsenic. An environmental problem limited by solubility". Pure Appl. Chem., 74(10): 1843-1850. MAGALHÃES M.C.F., SLIVA, M.C.M.(2003). "Stability of lead(II) arsenates". Monat. fur Chem. 134: 735-743 NRIAGU J.O., (1974). "Lead orthophosphates IV. Formation and stability in the environment." Geochim. Cosmochim. Acta, 37: 367-377. RODRIGUEZ H. & FRAGA R. (1999). "Phosphate solubilizing bacteria and their role in plant growth promotion". Biotechn. Advan. 17: 319-339. WELCH S.A., TAUNTON A.E., BANFIELD J.F. (2002). "Effect of Microorganisms and Microbial Metabolites on Apatite Dissolution". Geomicrobil. J. 19: 343-367.

  16. Structure-Function Relationship of Hydrophiidae Postsynaptic Neurotoxins

    DTIC Science & Technology

    1990-09-18

    24 hr. Buffer F consisted of 10 mM sodium phosphate, pH 7.5. containing 0.02% (w/v) lauryl sulfate (SDS), and 0.04% (w/v) sodium cholate. The...subjected to gel filtration on Sephadex G-50-50 using 10 mM sodium phosphate buffer (pH 6.5) containing 0.1 M NaCl. Samples were dissolved in 3.5 ml buffer...sequencing. Isolation of Cobrotoxin. The venom from NaJa naia atra was subjected to Sephadex G50-50 gel filtration pre-equilibrated with 10 mM sodium

  17. Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using TCLP, BCR and Earthworms

    PubMed Central

    Kede, Maria Luiza F. M.; Correia, Fabio V.; Conceição, Paulo F.; Salles Junior, Sidney F.; Marques, Marcia; Moreira, Josino C.; Pérez, Daniel V.

    2014-01-01

    The objective of the present study was to investigate the reduction of mobility, availability and toxicity found in soil contaminated with lead (Pb) and cadmium (Cd) from Santo Amaro Municipality, Bahia, Brazil using two combined methods, commonly tested separately according to the literature: metal mobilization with phosphates and phytoextraction. The strategy applied was the treatment with two sources of phosphates (separately and mixed) followed by phytoremediation with vetiver grass (Vetiveria zizanioides (L.)). The treatments applied (in triplicates) were: T1—potassium dihydrogen phosphate (KH2PO4); T2—reactive natural phosphate fertilizer (NRP) and; T3—a mixture 1:1 of KH2PO4 and NRP. After this step, untreated and treated soils were planted with vetiver grass. The extraction procedures and assays applied to contaminated soil before and after the treatments included metal mobility test (TCLP); sequential extraction with BCR method; toxicity assays with Eisenia andrei. The soil-to-plant transfer factors (TF) for Pb and Cd were estimated in all cases. All treatments with phosphates followed by phytoremediation reduced the mobility and availability of Pb and Cd, being KH2PO4 (T1) plus phytoremediation the most effective one. Soil toxicity however, remained high after all treatments. PMID:25386955

  18. A segmental chronic pain syndrome in rats associated with intrathecal infusion of NMDA: evidence for selective action in the dorsal horn.

    PubMed

    Zochodne, D W; Murray, M; Nag, S; Riopelle, R J

    1994-02-01

    We explored the effects of chronic lumbar intrathecal NMDA infusion (mini-osmotic pumps) in Sprague-Dawley rats on motor and sensory axon integrity. Several different infusion protocols, each given over a 4 week period were examined: 0.15 M NMDA in phosphate buffered saline; phosphate buffered saline without NMDA; and 0.20 M magnesium sulfate plus 0.15 M NMDA; 0.35 M NMDA. In two additional protocols, 0.15 M NMDA or phosphate buffered saline were infused for a total of 8 weeks. Within 1-2 weeks of the onset of NMDA, but not phosphate buffered saline infusions, the rats exhibited irritability, circling, biting and excessive grooming resulting in loss of hair, and skin ulcerations from autotomy localized to lumbar and sacral innervated dermatomes. Co-infusion of NMDA with magnesium sulfate almost completely prevented these findings. The behavioural changes were not associated with abnormalities of sensory or motor conduction. Intrathecal infusion of NMDA induces a chronic "central" experimental pain disorder in rats, localized to the cord segment with the greatest exposure to the infusion, without involvement of peripheral sensory axons and sparing the axonal integrity of anterior horn cells.

  19. Soil solid-phase controls lead activity in soil solution.

    PubMed

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P < 0.01 and R2 = -0.89, P < 0.01, respectively). It could be predicted in soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  20. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.

    PubMed

    Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang

    2016-10-01

    Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. IN-VITRO FORMATION OF PYROMORPHITE VIA REACTION OF PB SOURCES WITH SOFT-DRINK PHOSPHORIC ACID

    EPA Science Inventory

    The risk of Pb adsorption into the body may be greatly diminished when accompanied by a phosphate sink. One of the most labile, albeit not healthiest, forms of phosphate consumed in the human diet is derived from cola soft drinks that use phosphoric acid as a preservative and als...

  2. Field demonstration of reduction of lead availability in soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings using phosphorus fertilizers*

    PubMed Central

    Xie, Zheng-miao; Wang, Bi-ling; Sun, Ye-fang; Li, Jing

    2006-01-01

    A field demonstration of reduction of lead availability in a soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings, located in Shaoxing, China was carried out to evaluate the effects of applications of phosphorus fertilizers on Pb fractionation and Pb phytoavailability in the soil. It was found that the addition of all three P fertilizers including single super phosphate (SSP), phosphate rock (PR), and calcium magnesium phosphate (CMP) significantly decreased the percentage of water-soluble and exchangeable (WE) soil Pb and then reduced the uptake of Pb, Cd, and Zn by the cabbage compared to the control (CK). The results showed that the level of 300 g P/m2 soil was the most cost-effective application rate of P fertilizers for reducing Pb availability at the first stage of remediation, and that at this P level, the effect of WE fraction of Pb in the soil decreased by three phosphorus fertilizers followed the order: CMP (79%)>SSP (41%)>PR (23%); Effectiveness on the reduction of Pb uptake by cabbage was in the order: CMP (53%)>SSP (41%)>PR (30%). Therefore our field trial demonstrated that it was effective and feasible to reduce Pb availability in soil and cabbage contaminated by mining tailings using P fertilizers in China and PR would be a most cost-effective amendment. PMID:16365925

  3. Thermal stability of tagatose in solution.

    PubMed

    Luecke, Katherine J; Bell, Leonard N

    2010-05-01

    Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.

  4. Development, Characterization, and In Vitro Biological Performance of Fluconazole-Loaded Microemulsions for the Topical Treatment of Cutaneous Leishmaniasis

    PubMed Central

    Graminha, Márcia; Cerecetto, Hugo; González, Mercedes

    2015-01-01

    Cutaneous leishmaniasis (CL) is a resistant form of leishmaniasis that is caused by a parasite belonging to the genus Leishmania. FLU-loaded microemulsions (MEs) were developed by phase diagram for topical administration of fluconazole (FLU) as prominent alternative to combat CL. Three MEs called F1, F2, and F3 (F1—60% 50 M phosphate buffer at pH 7.4 (PB) as aqueous phase, 10% cholesterol (CHO) as oil phase, and 30% soy phosphatidylcholine/oil polyoxyl-60 hydrogenated castor oil/sodium oleate (3/8/6) (S) as surfactant; F2—50% PB, 10% CHO, and 40% S; F3—40% PB, 10% CHO, and 50 % S) were characterized by droplet size analysis, zeta potential analysis, X-ray diffraction, continuous flow, texture profile analysis, and in vitro bioadhesion. MEs presented pseudoplastic flow and thixotropy was dependent on surfactant concentration. Droplet size was not affected by FLU. FLU-loaded MEs improved the FLU safety profile that was evaluated using red cell haemolysis and in vitro cytotoxicity assays with J-774 mouse macrophages. FLU-unloaded MEs did not exhibit leishmanicidal activity that was performed using MTT colourimetric assays; however, FLU-loaded MEs exhibited activity. Therefore, these MEs have potential to modulate FLU action, being a promising platform for drug delivery systems to treat CL. PMID:25650054

  5. [Immobilization technology and mechanism of fly ash using H3PO4].

    PubMed

    Wang, Jun; Jiang, Jian-Guo; Sui, Ji-Chao; Yang, Shi-Jian

    2006-08-01

    Chemical composition and toxicity leaching characteristics of fly ash was analyzed. The experiment results show that many heavy metals were contained; leaching concentration of Pb is 67.03 mg/L, which exceeds the limit of identification standard for hazardous wastes. Effect of input mass of H3PO4 on immobilization of heavy metals and its long-term environmental stability was studied. The results show that when input 8% - 14% (H3PO4 mass/ fly ash mass) of H3PO4 sound immobilization effect can be achieved; 8% and 12% of H3PO4 will bring a satisfactory environmental stability of heavy metals, while more H3PO4 led to less buffer capacity to acid conditions. In fly ash treated by 12% H3PO4, a small quantity of crystal Cr2P2O7, ZnP2, Pb3P4O13, Pb3P2O7, NaZnPO4, NaPbP3O9, Ca2ZnSi2O7 can be detected by XRD; many independent fly ash particles and bar-shaped Pb5 (PO4)3Cl with a diameter of 0.3 - 0.5 microm were observed by SEM; concentrated heavy metal materials were not obtained by CHBr3 floatation. Conclusions can be drawn that, through neutralization reaction of H3PO4 with strongly alkaline fly ash, stabilization reaction conditions were improved, entrapped heavy metals were chemically activated and PO4(3-) needed in stabilization was produced. Activated heavy metals combined with PO4(3-) on surface of fly ash,generated phosphates existing as forms of solid solution in SiO2, CaCO3, CaSO4, KCl, NaCl.

  6. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain.

    PubMed

    Cui, Hongbiao; Zhang, Shiwen; Li, Ruyan; Yi, Qitao; Zheng, Xuebo; Hu, Youbiao; Zhou, Jing

    2017-09-01

    Phosphate amendments have been used to immobilize heavy metal-contaminated soils. However, phosphate amendments contain large amounts of phosphorus, which could leach out to potentially contaminate groundwater and surface water. A laboratory column leaching experiment was designed to study the effects of simulated acid rain (SAR) on the potential release of copper (Cu), lead (Pb), cadmium (Cd), and phosphorus (P), and their availability after immobilizing with hydroxyapatite (HAP) and potassium dihydrogen phosphate (PDP). The application of HAP and PDP enhanced the leachate electrical conductivity, total organic carbon, and pH. Higher P was found in the PDP- (>4.29 mg L -1 ) and HAP-treated (>1.69 mg L -1 ) columns than that in untreated (<0.2 mg L -1 ) columns, and they were both over the class V limit (0.4 mg L -1 ) mandated by the Chinese National Quality Standards for Surface Waters (GB 3838-2002). PDP application decreased the leachate Cu, Pb, and Cd effectively; however, HAP addition increased leachate Cu and Pb. HAP and PDP applications decreased the soil CaCl 2 -extractable and exchangeable fraction of Cu, Pb, and Cd, and increased resin P. However, eluviations transformed the heavy metals from inactive to active fractions and reduced soil labile P. These findings showed that HAP and PDP had a potential risk of excessive P-induced eutrophication. Meanwhile, more attention should be paid to the leaching loss of multiple metals because phosphate amendments might promote the leaching of some metals while immobilizing others.

  7. Thermal inactivation of ileal loop-reactive Clostridium perfringens type A strains in phosphate buffer and beef gravy.

    PubMed

    Bradshaw, J G; Peeler, J T; Twedt, R M

    1977-09-01

    The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators.

  8. Thermal inactivation of ileal loop-reactive Clostridium perfringens type A strains in phosphate buffer and beef gravy.

    PubMed Central

    Bradshaw, J G; Peeler, J T; Twedt, R M

    1977-01-01

    The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators. PMID:199113

  9. An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue.

    PubMed

    Salameh, Samer; Nouel, Dominique; Flores, Cecilia; Hoops, Daniel

    2018-01-01

    Netrin-1, an axon guidance protein, is difficult to detect using immunohistochemistry. We performed a multi-step, blinded, and controlled protocol optimization procedure to establish an efficient and effective fluorescent immunohistochemistry protocol for characterizing Netrin-1 expression. Coronal mouse brain sections were used to test numerous antigen retrieval methods and combinations thereof in order to optimize the stain quality of a commercially available Netrin-1 antibody. Stain quality was evaluated by experienced neuroanatomists for two criteria: signal intensity and signal-to-noise ratio. After five rounds of testing protocol variants, we established a modified immunohistochemistry protocol that produced a Netrin-1 signal with good signal intensity and a high signal-to-noise ratio. The key protocol modifications are as follows: •Use phosphate buffer (PB) as the blocking solution solvent.•Use 1% sodium dodecyl sulfate (SDS) treatment for antigen retrieval. The original protocol was optimized for use with the Netrin-1 antibody produced by Novus Biologicals. However, we subsequently further modified the protocol to work with the antibody produced by Abcam. The Abcam protocol uses PBS as the blocking solution solvent and adds a citrate buffer antigen retrieval step.

  10. Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Nardi, Rachel Prado Russo Delorenzo; Braz, Celso Eduardo; de Camargo, Andrea S. S.; Ribeiro, Sidney J. L.; Rocha, Lucas A.; Cassanjes, Fábia Castro; Poirier, Gael

    2015-11-01

    Tungsten phosphate glasses are known to be promising materials for several applications in optics such as non linear optical properties, lower phonon energy or photochromic effects related with tungsten oxide incorporation inside the phosphate network. In this study, lead fluoride has been incorporated in a 60NaPO3-40WO3 glass composition according to the ternary molar compositions (100 - x)[0.6NaPO3-0.4WO3]-xPbF2 with x varying from 0 to 60 mol%. The structural changes as a function of composition were investigated by thermal analysis, UV-visible absorption, Raman spectroscopy, X-ray diffraction of the crystallized samples, and Eu3+ emission in the visible. While DSC analyzes points out a strong decrease in the glass network connectivity and higher crystallization tendency with increasing PbF2 contents, Raman spectra clearly identify a progressive incorporation of PbF2 in the phosphate network with the formation of terminal Psbnd F and Wsbnd F bonds. These results are also in agreement with the crystallization of β-PbF2 observed for the most lead fluoride concentrated samples. Investigation of Eu3+ emission data in the visible showed longer 5D0 excited state lifetime values and higher quantum efficiencies. These results are discussed in terms of the assumption of higher local symmetry around Eu3+ with increasing PbF2 contents.

  11. Influence of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Moudane, M., E-mail: m.elmoudane@gmail.com; El Maniani, M.; Sabbar, A.

    2015-12-15

    Highlights: • Results of ionic conductivities of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. • Determination of glass transition temperature using DSC method. • Study of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. - Abstract: Lithium–Lead–Bismuth phosphates glasses having, a composition 30Li{sub 3}PO{sub 4}–(70 − x)Pb{sub 3}(PO{sub 4}){sub 2}–xBiPO{sub 4} (45 ≤ x ≤ 60 mol%) were prepared by using the melt quenching method 1000 °C. The thermal stability of theses glasses increases with the substitution of Bi{sub 2}O{sub 3} with PbO. The ionic conductivity of all compositions havemore » been measured over a wide temperature (200–500 °C) and frequency range (1–106 Hz). The ionic conductivity data below and above T{sub g} follows Arrhenius and Vogel–Tamman–Fulcher (VTF) relationship, respectively. The activation energies are estimated and discussed. The dependence in frequency of AC conductivity is found to obey Jonscher’s relation.« less

  12. Comparison of adhesive properties of water- and phosphate-buffer-washed cottonseed meals with cottonseed protein isolate on maple and poplar veneers

    USDA-ARS?s Scientific Manuscript database

    Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...

  13. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil.

    PubMed

    Ye, Xinxin; Li, Hongying; Zhang, Ligan; Chai, Rushan; Tu, Renfeng; Gao, Hongjian

    2018-01-01

    Combinations of remediation technologies are needed to solve the problem of soil contamination in paddy rice, due to multiple potential toxic elements (PTEs). Two potential mitigation methods, water management and in-situ remediation by soil amendment, have been widely used in treatment of PTE-polluted paddy soil. However, the interactive relationship between soil amendment and water management, and its influence on the accumulation of PTEs in rice are poorly understood. Greenhouse pot experiments were conducted to examine the effects of phosphate amendment on Cd and Pb availability in soil and their influence on Cd and Pb uptake into rice, on Fe and P availability in soil, and on the alteration of Fe amount and compartment on root surface among different water management strategies. Results indicated that Cd and Pb content in the shoot and grain were significantly affected by the different water management strategies in nonamended soils, and followed the order: wetting irrigation > conventional irrigation > continuous flooding. The application of phosphate amendment significantly decreased the variations of Cd and Pb absorption in shoot and grain of rice among different water treatments. The reasons may be attributed to the enhancement of P availability and the decrease of Fe availability in soil, and the decreased variations of Fe 2+ /Fe 3+ content in root coating after the application of phosphate amendment. These results suggested that the simultaneous use of phosphate amendment and continuous flooding to immobilize Cd and Pb, especially in acid paddy soils, should be avoided. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Quality and consumer acceptability of salt and phosphate enhanced goat loin from goats fed varying levels of pine bark.

    PubMed

    Leick, C M; Broadway, P R; Solaiman, S; Behrends, J M

    2012-03-01

    Goat loins (n=22) were evaluated to test effects of 0, 15, and 30% dietary pine bark (PB) and salt, water, and phosphate enhancement on shelf-life, shear force (WBSF) and consumer acceptability. No interactions existed between PB and enhancement. Dietary PB did not affect objective color, but enhancement increased a* and b* values (P<0.05). Thiobarbituric acid reactive substances (TBARS) increased from d 1 to d 5 of storage (P<0.0001), but were not affected by PB or enhancement. The WBSF for 30% PB was less than that of 0% PB (P=0.0199), and enhancement decreased WBSF (P=0.0010). Texture, flavor, and overall acceptability were greater (P<0.05) for 15 and 30% PB compared to 0% PB. Enhanced loin samples had greater appearance, aroma, texture, flavor, and overall acceptability scores (P<0.05). Results indicated that enhancement improved tenderness and consumer acceptability of goat loin, and PB had minimal impact on goat loin quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. FORMATION OF CHLOROPYROMORPHITE FROM GALENA (PBS) IN THE PRESENCE OF HYDROXYAPATITE

    EPA Science Inventory

    Transformation of unstable lead [Pb(II)] forms into insoluble pyromorphite, [Pb5(PO4)3(OH, Cl, F...)], by addition of phosphate to Pb contaminated soil has been proposed as a remediation technology which reduces the mobility and bioavailability of Pb. Under aerobic condition, ox...

  16. FORMATION OF PYROMORPHITE IN ANGLESITE-HYDROXYAPATITE SUSPENSIONS UNDER VARYING PH CONDITIONS

    EPA Science Inventory

    Addition of phosphate to lead [Pb(II)] contaminated soil to immobilize soil Pb by formation of pyromorphite has been proposed as an alternative remediation technique. Lead sulfate (PbSO4, anglesite), a Pb-bearing form found in contaminated soils and wastes, was reacted with a sy...

  17. Interrelationships between Blended Phosphate Treatment and Scale Formation for a Utility with Lead Pipes

    EPA Science Inventory

    Lead (Pb) in tap water (released from Pb-based plumbing materials) poses a serious public health concern. Water utilities experiencing Pb problems often use orthophosphate treatment, with the theory of forming insoluble Pb(II)-orthophosphate compounds on the pipe wall to inhibit ...

  18. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    PubMed

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Opioid Abuse after TBI

    DTIC Science & Technology

    2015-09-01

    hippocampal formation (Paxinos and Watson, 2005). The sections were mounted on 1% gelatin -coated slides and stored at -20°C until further histological... drying at room temperature overnight. Finally, sections were rinsed in xylene (2 times for 5 min) and coverslipped with DPX mounting media (Electron...0.1M phosphate buffered saline (3 x 5 min) and 0.1M phosphate buffer (3 x 5 min) and slides were allowed to dry for one hour before being

  20. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method.

    PubMed

    Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X

    2016-07-03

    Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.

  1. Formation kinetics of a novel product from photolysis of cytosine in phosphate-buffered solutions

    NASA Astrophysics Data System (ADS)

    Wenqing, Wang; Feng, Lin; Jilan, Wu

    1999-01-01

    For studying the role of phosphate in the origin of life and the effect of far-ultraviolet light induced photochemical damage to RNA, DNA and its components, it was found that the photolysis of nucleobases, nucleosides and nucleotides was strongly enhanced by phosphate under the irradiation of medium pressure mercury lamp (MPML). Ultraviolet irradiation (190-220 nm) of cytosine in 0.05 mol dm -3 phosphate buffered solution at pH 8-9 leads to the production of a novel compound C 4H 6N 3O 5P in the presence of oxygen. The main photoproduct has been isolated, purified and characterized by use of 1H- and 31P-NMR spectroscopy, elemental analysis, ultraviolet and infrared spectroscopy and electron impact mass spectrometry. Phosphate effect can be inhibited by amino acids. The formation mechanism of the photoproduct and the kinetics was studied.

  2. Removal of lead and phosphate ions from aqueous solutions by organo-smectite.

    PubMed

    Bajda, Tomasz; Szala, Barbara; Solecka, Urszula

    2015-01-01

    Smectite has been modified using hexadecyltrimethyl ammonium bromide in an amount of double cationic exchange capacity. This alteration makes it possible to use organo-smectite as a sorbent to remove anionic forms. The experiment consisted of the interchangeable sorption of phosphate(V) and lead(II) by organo-smectite. Research was carried out with varying pH (2-5) and various concentrations (0.1-5 mmol/L). Organo-smectite with previously adsorbed lead ions removed more phosphate than the untreated organo-smectite. Experimental data show that lead is more likely to absorb on the organo-smectite than on the organo-smectite with previously adsorbed phosphate ions. It follows that the most effective use of the organo-smectite is through the sorption of first - Pb cations and then PO4 anions. With an increasing concentration of Pb(II) or P(V), the sorption efficiency increases. The maximum sorption efficiency of lead and phosphate ions is observed at pH 5. This enables the removal of harmful lead and phosphorus compounds from waste water and immobilizes them on the sorbent's surface. The alternating reactions of lead and phosphorus ions result in the crystallization of brompyromorphite Pb5(PO4)3Br.

  3. INFLUENCE OF AGING ON PYROMORPHITE FORMATION AND DISSOLUTION

    EPA Science Inventory

    Published literature has clearly demonstrated that the reaction of a lead (Pb) source as either Pb-minerals (angelesite, cerrusite, or galena), goethite adsorbed lead, Pb-contaminated soils, or an in-vitro bioavailable assay with a phosphate reserve (apatite or hydroxyapatite) re...

  4. Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry.

    PubMed

    Zhang, Yaping; Wang, Xiaofei; Chen, Hong; Yang, Xin; Chen, Jianmin; Allen, Jonathan O

    2009-01-01

    Lead (Pb) in individual aerosol particles was measured using single particle aerosol mass spectrometer (ATOFMS) in the summer of 2007 in Shanghai, China. Pb was found in 3% of particles with diameters in the range 0.1-2.0 microm. Single particle data were analyzed focusing on the particles with high Pb content which were mostly submicron. Using the ART-2a neural network algorithm, these fine Pb-rich particles were classified into eight main classes by their mass spectral patterns. Based on the size distribution, temporal variation of number density, chemical composition and the correlation between different chemical species for each class, three major emission sources were identified. About 45% of the Pb-rich particles contained organic or elemental carbon and were attributed to the emission from coal combustion; particles with good correlation between Cl and Pb content were mostly attributed to waste incineration. One unique class of particles was identified by strong phosphate and Pb signals, which were assigned to emissions from phosphate industry. Other Pb-rich particles included aged sea salt and particles from metallurgical processes.

  5. Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin-gold nano composite.

    PubMed

    Krithiga, N; Viswanath, K Balaji; Vasantha, V S; Jayachitra, A

    2016-05-15

    In this report, we have successfully fabricated an immunosensor for detection of Pseudomonas aeruginosa in water. The monoclonal antibody was immobilized on the surface modified with CCLP (Calcium Cross-Linked Pectin)-Au NPs (gold nanoparticles)/Glassy Carbon Electrode. The building of the immunosensor was evaluated in each step by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The electrochemical detection was done based on the anti rabbit IgG HRP (Horseradish Peroxidase) which binds to the immune complex and the response was observed using Hydro Quininone (HQ) and Hydrogen peroxide (H2O2) in PB (Phosphate Buffer) electrolyte. From the results, the sensitivity range is from 10(1) to 10(7)CFU/ml and LOD is calculated as 9×10(2)CFU/ml. The developed immunosensor also have high selectivity, stability, reproducibility and reusability. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. 40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles.... 14433-76-2) Emulsifier, solvent, cosolvent Diammonium phosphate (CAS Reg. No. 7783-28-0) Buffer...

  7. 40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...

  8. 40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...

  9. /sup 3/H)pirenzepine and (-)-(/sup 3/H)quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic cholinergic sites. I. Characterization and regulation of agonist binding to putative muscarinic subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, M.; Yamamura, H.I.; Roeske, W.R.

    The binding and regulation of selected muscarinic agonists to putative subtypes in rat cerebral cortex and heart were studied. Parallel inhibition studies of (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and (-)-(/sup 3/H)quinuclidinylbenzilate ((-)-(/sup 3/H)QNB)-labeled membranes were done with and without 30 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) at 25 degrees C in 10 mM Na-K-phosphate buffer which enhances PZ binding affinity and in modified Krebs-phosphate buffer, which mimics physiological conditions. Classical agonists such as carbachol, oxotremorine and acetylcholine inhibited (-)-(/sup 3/H)QNB binding to membranes with shallow Hill values (nH less than 1), were better fit to a 2-state model, were Gpp(NH)p-regulated and showed lowermore » affinity in modified Krebs-phosphate buffer than in 10 mM Na-K-phosphate buffer. Some agonists were not significantly better fit to a 2-state model in (/sup 3/H)PZ-labeled cortical membranes, especially in 10 mM Na-K-phosphate buffer. Whereas putative M1 and M2 binding sites distinguished by PZ possessed multiple agonist affinity states, as judged by carbachol, and agonist binding to (/sup 3/H)PZ-labeled sites were Gpp(NH)p modulated, the partial agonist pilocarpine and nonclassical agonist McN-A-343 (3-(m-chlorophenylcarbamoyloxy)-2-butynyl trimethylammonium chloride) showed little Gpp(NH)p-induced shift in (/sup 3/H)PZ-labeled cortical membranes in physiological conditions. Agonist binding to (-)-(/sup 3/H)QNB-labeled putative M2 cardiac sites was more sensitive to Gpp(NH)p than (-)-(/sup 3/H)QNB-labeled cortical sites. Carbachol and acetylcholine showed significant selectivity for putative M2 sites.« less

  10. All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: stable and efficient photoelectrochemical sensing of dopamine under visible irradiation.

    PubMed

    Chen, Xu; Li, Dongyu; Pan, Gencai; Zhou, Donglei; Xu, Wen; Zhu, Jinyang; Wang, He; Chen, Cong; Song, Hongwei

    2018-06-07

    CsPbX3 (X = Cl, Br or I) perovskite quantum dots (PQDs) have attracted tremendous attention due to their extraordinarily excellent optical properties. However, there is still an obstacle for their bio-application, which is limited by their water-instability. In this work, we have designed a novel visible light triggered photoelectrochemical (PEC) sensor for dopamine (DA) based on CsPbBr1.5I1.5 PQD immobilized three-dimensional (3D) TiO2 inverse opal photonic crystals (IOPCs). Supported by the TiO2 IOPCs, the water-stability of the PQDs as well as that of the PEC sensor was considerably improved. Furthermore, employed as a photoactive material in PEC sensor, CsPbBr1.5I1.5 PQDs can expand the photocurrent response of the PEC sensor to the whole visible region. In addition, the modulation of the photonic stop band effect of TiO2 IOPCs on the incident light and the emission of PQDs could further enhance the photocurrent response. Such a PEC sensor demonstrates sensitive detection of DA in phosphate buffer saline solution and serum, with a good linear range from 0.1 μM to 250 μM and a low detection limit of approximately 0.012 μM. Our strategy opens an alternative horizon for PQD based PEC sensing, which could be more sensitive, convenient and inexpensive for clinical and biological analysis.

  11. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    PubMed

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH<6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2007-09-01

    minerals, and may also exist inside particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and...Abbreviations: Fe=iron, Pb=lead, Cu=copper, Ti=titanium, Zn= zinc , Sb=antimony, Rb=rubidium, Zr=zirconium, As=arsenic. Values are mean of three...20 30 40 50 60 70 80 FeOOH Cerussite Organic Phosphate PbMO PbAsO MnOOH Anglesite PbOOH PbCl4 Slag FeSO4 PbO Frequency of Occurrence Relative Pb

  13. ELISA (Enzyme-linked Immunosorbent Assay) to Detect Humoral Antibodies Specific for Clostridium botulinum Type A Neurotoxin

    DTIC Science & Technology

    1985-11-19

    10.6). Unbound toxoid was removed by washing three times with phosphate-buffered saline (pH 7.4) containing 0.05% Triton X-100 (Eastman Organic...MD) in phosphate-buffered saline was added. After a 90 min incubation period at 37*C, the excess conjugate was removed by washing each well three times...3. Cardella, M. A. 1964. Botulinum toxoids, p. 113-129. In K . H. Lewis and K . Cassel, Jr., (ed.), Botulism. U. S. Department of Health, Education

  14. Analysis of Fatty Acid and Growth Profiles in Ten Shewanella spp. to Associate Phylogenetic Relationships

    DTIC Science & Technology

    2015-10-25

    in a defined medium composed of half-strength Marine Broth adjusted to pH 6, 7, or 8 in a 50 mM phosphate buffer, both growth characteristics and...work had broad phylogenetic diversity (Fig. 1) and were isolated from mostly marine environments. S. putrefaciens was the only strain that was not...the defined medium that supported growth of most of the strains tested was marine broth diluted to half strength with 50 mM phosphate buffer (½-MB

  15. Innovative Microsystems: Novel Nanostructures to Capture Circulating Breast Cancer Cells

    DTIC Science & Technology

    2009-05-01

    temperature to promote a Schiff-base reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered...recombinant protein G from E . coli (Zymed Lab Inc.), at a concentration of 50 mg ml1 in 1 PBS, is incubated on the activated surface overnight at 4 C...reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered saline (CMF-PBS), is incubated on the

  16. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. IN VITRO SOIL PB SOLUBILITY IN THE PRESENCE OF HYDROXYAPATITE

    EPA Science Inventory

    The transformation of lead (Pb) in contaminated soils to pyromorphite, by the addition of phosphate minerals, may be an economic in-situ immobilization strategy which also results in a reduction of bioavailable Pb. To test this hypothesis, we conducted two sets of soil-solution e...

  18. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method

    PubMed Central

    Cao, X.M.; Tian, Y.; Wang, Z.Y.; Liu, Y.W.; Wang, C.X.

    2016-01-01

    ABSTRACT Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method. PMID:27459596

  19. Experimental model of cerussite PbCO3 transformation into phosphate phases at pH 3-11

    NASA Astrophysics Data System (ADS)

    Kwaśniak-Kominek, Monika; Manecki, Maciej

    2014-05-01

    Bioavailability of lead depends strongly on mineral speciation. Mobility of this toxic element is strongly reduced when lead in the form of relatively soluble phases (carbonates) is transformed into insoluble forms like phosphates. Despite the fact, that in-situ immobilization of Pb by phosphate amendment (phosphate-induced lead immobilization) is widely applied in remediation of polluted soils and waters, the mechanism of transformation of lead carbonate into lead phosphates is only recently under investigation [1]. Our understanding of this mechanism might in future allow for optimization of the methods applied in environmental engineering. Although the transformation of carbonate minerals into phosphate phases has been studied before, little is known of this system with Pb. There is no systematic study of the effect of pH on the mechanism and the reaction product. The mechanism of cerussite reaction with phosphate solution at pH 3 - 11 was studied using fragments of natural gem-quality crystals from Morocco. The mineral was reacted with 0.1M PO43- or a mixture of 0.1M PO43- and 0.03M Cl- either at 140 ° C in the autoclave for 24 hours or at 8 ° C in the cooler (for around 6 weeks). Reaction products were identified ex-situ by X-Ray diffraction (XRD) and micro Raman spectroscopy. Scanning electron microscopy and microprobe analysis (EMP) were applied to cut and polished crystals in epoxy. The products of the reaction depend on pH. This dependency is the most pronounced in Cl-free environment. At low pH (below 6) phosphoshultenite PbHPO4 and hydroxylpyromorphite Pb5(PO4)3OH (HPY) are formed while at alkaline range HPY is the only product. Pyromorphite Pb5(PO4)3Cl (CPY) forms in the wider pH range. The replacement reaction proceeds through coupled dissolution-precipitation mechanism. The lead phosphate coating does not armor the surface resulting in complete replacement of cerussite grain by polycrystalline porous reaction products. There is evidence for formation of precursors at the reaction front, which later undergo transformation into final products. This is probably combine effect of carbonate dissolution associated with relatively slow diffusion of ions though porous coating, affecting both pH and saturation indices. High concentrations of carbonate ions result in CO32- substitution in the structure of precipitating HPY. This is less pronounced or non-existing in the case of CPY precipitating in the presence of Cl-. Monika Kwasniak-Kominek was partially financed from AGH-UST grant No. 15.11.140.329. Maciej Manecki was financed from research grant No. NCN 2011/01/M/ST10/06999. [1] Wang L., Putnis CV, Ruiz-Agudo E., King HE, Putnis A. Coupled Dissolution and Precipitation at the Cerussite-Phosphate Solutions Interface: Implications for Immobilization of Lead in Soils, Environmental Science & Technology, 2013.

  20. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    EPA Science Inventory

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  1. Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media?

    PubMed

    Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2018-06-01

    An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.

  2. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    PubMed Central

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  3. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    PubMed

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  4. The Inhibitation of Pb(IV) Oxide Formation in Chlorinated Water by Orthophosphate

    EPA Science Inventory

    Previous work showed that PbO2 can form in water in the absence of phosphate. The analysis of many pipe scales and deposits removed from real DWDS has shown that PbO2 is present in some cases and absent in others. High ORP has been shown to favor PbO

  5. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Towards Synthesis and Usage of Actinide-Bearing REE Phosphate age Standards: A Progress Report

    NASA Astrophysics Data System (ADS)

    Pyle, J. M.; Cherniak, D. J.

    2006-05-01

    Electron microprobe (EMP) dates result from a concentration-time unit conversion, so use of a concentration- based (rather than isotope-ratio based) fictive age standard is warranted. This observation has motivated our mineral synthesis program, aimed at producing actinide-doped REE phosphate EMP dating standards that meet the following criteria: 1) known concentrations of U, Th, and Pb; 2) homogeneous intragrain distribution of all components; 3) of suitable size, either as a single-crystal or polycrystalline sintered ceramic. Single-crystal synthesis of actinide-doped LaPO4 by flux-growth methods results in disproportionation of lanthanide and flux, alkali, and actinide components into phosphate and oxide phases, respectively, and flux- growth methods were abandoned. Actinide-doped La phosphate is successfully prepared by high-T annealing and hydrothermal processing of microcrystalline phosphate; both homogeneity and charge-balance of (Ca, Th, Pb)-bearing LaPO4 increase with increasing solvent acidity during cold-seal hydrothermal synthesis. A combination of pressing and high-T (1400° C) sintering transforms fine-grained (0.1-10 μm) run- products to ceramic pellets with 90-95% theoretical density. Our most recent runs focused on a target composition of La80(CaTh)17(CaU)2(PbTh)1PO4 processed with 6% 2M HCl at 820° C, 0.75 kbar for 1 week. The run products are 0.1-2 μm crystals identified by XRD as La-actinide phosphate solid solution. 2 μm grains (N=16) give a composition (mean±2 sd) of La79.77(1.26)(CaTh)17.87(1.00)(CaU)1.53(0.42)(PbTh)0.82(0.09)PO4. Th (8.07-9.13 wt. %) is homogeneous at the level of analytical precision, and the Pb concentration range (3500-4350 ppm) is restricted relative to untreated precipitate. Uranium concentration values are more variable (6500-10000 ppm). This run yields a fictive age of 702±4 Ma (mean±2 se), compared to the fictive age of 794 Ma for the target composition.

  7. Molecular beam epitaxy growth of PbSe on Si (211) using a ZnTe buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. J.; Chang, Y.; Hou, Y. B.

    2011-09-15

    The authors report the results of successful growth of single crystalline PbSe on Si (211) substrates with ZnTe as a buffer layer by molecular beam epitaxy. Single crystalline PbSe with (511) orientation was achieved on ZnTe/Si (211), as evidenced by RHEED patterns indicative of 2 dimensional (2D) growth, x ray diffraction rocking curves with a full width at half maximum as low as 153 arc sec and mobility as large as 1.1x10{sup 4}cm{sup 2}V{sup -1}s{sup -1} at 77 K. Cross hatch patterns were found on the PbSe(511) surface in Nomarski filtered microscope images suggesting the presence of a surface thermalmore » strain relaxation mechanism, which was confirmed by Fourier transformed high resolution transmission electron microscope images.« less

  8. Cooperativity between various types of polar solute-solvent interactions in aqueous media.

    PubMed

    Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y

    2015-08-21

    Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Sm-Nd-Pu timepieces in the Angra dos Reis meteorite

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Marti, K.

    1977-01-01

    Isotope ratios and age estimations are presented for the ultramafic pyroxenite Angra dos Reis meteorite. A pyroxene-phosphate internal isochron age of 4.55 plus or minus 0.04 eons was obtained, in agreement with reported Pb-Pb ages. It is suggested that Sm-146 decay led to an increase in the ratio of Nd-142 to Nd-144 in pyroxene, which is greater than the ratio of the Nd isotopes in phosphates. The effect of Pu-244 on the fission xenon components in pyroxene and phosphate is examined. The ratios of Pu-244 to Nd, U-238, and Th-232 are compared for pyroxene and phosphate separates. The exposure age of the meteorite, as obtained by the Kr-81 to Kr-83 method, was found to be 55.5 plus or minus 1.2 million years.

  10. Partition coefficients of some purine derivatives and its application to pharmacokinetics.

    PubMed

    Chrzanowska, M; Sobiak, J; Kuehn, M; Dorawa, E; Hermann, T

    2009-12-01

    Metazathioprine (MAZA), a methylated derivative of azathioprine (AZA), demonstrated the greatest values of apparent and specific partition coefficients in n-octanol/phosphate buffer at pH 5.7 and pH 7.4 among purine derivatives such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and AZA. Introduction of a methyl group into the imidazole ring of AZA increases lipophilic properties of MAZA compared to AZA. Mass balance of purine derivatives in n-octanol and in phosphate buffer indicated their chemical stability in those media.

  11. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer

    PubMed Central

    1976-01-01

    We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619

  12. Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dario; Krug, Francisco José

    2014-07-01

    A validated method for quantitative determination of Cd, Cr, and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy (LIBS) is presented. Laboratory samples were comminuted and homogenized by cryogenic or planetary ball milling, pressed into pellets and analyzed by LIBS. The experimental setup was designed by using a Q-switched Nd:YAG at 1064 nm with 10 Hz repetition rate, and the intensity signals from Cd II 214.441 nm, Cr II 267.716 nm and Pb II 220.353 nm emission lines were measured by using a spectrometer furnished with an intensified charge-coupled device. LIBS parameters (laser fluence, lens-to-sample distance, delay time, integration time gate, number of sites and number of laser pulses per site) were chosen after univariate experiments with a pellet of NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer). Calibration and validation were carried out with 30 fertilizer samples from single superphosphate, triple superphosphate, monoammonium phosphate, and NPK mixtures. Good results were obtained by using 30 pulses of 50 J cm- 2 (750 μm spot size), 2.0 μs delay time and 5.0 μs integration time gate. No significant differences between Cd, Cr, and Pb mass fractions determined by the proposed LIBS method and by ICP OES after microwave-assisted acid digestion (AOAC 2006.03 Official Method) were found at 95% confidence level. The limits of detection of 1 mg kg- 1 Cd, 2 mg kg- 1 Cr and 15 mg kg- 1 Pb and the precision (coefficients of variation of results ranging from 2% to 15%) indicate that the proposed LIBS method can be recommended for the determination of these analytes in phosphate fertilizers.

  13. 6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.

    PubMed

    Le, Simone Balzer; Heggeset, Tonje Marita Bjerkan; Haugen, Tone; Nærdal, Ingemar; Brautaset, Trygve

    2017-05-01

    D-Ribulose-5-phosphate-3-epimerase (RPE) and 6-phosphofructokinase (PFK) catalyse two reactions in the ribulose monophosphate (RuMP) cycle in Bacillus methanolicus. The B. methanolicus wild-type strain MGA3 possesses two putative rpe and pfk genes encoded on plasmid pBM19 (rpe1-MGA3 and pfk1-MGA3) and on the chromosome (rpe2-MGA3 and pfk2-MGA3). The wild-type strain PB1 also encodes putative rpe and pfk genes on plasmid pBM20 (rpe1-PB1 and pfk1-PB1*); however, it only harbours a chromosomal pfk gene (pfk2-PB1). Transcription of the plasmid-encoded genes was 10-fold to 15-fold upregulated in cells growing on methanol compared to mannitol, while the chromosomal genes were transcribed at similar levels under both conditions in both strains. All seven gene products were recombinantly produced in Escherichia coli, purified and biochemically characterized. All three RPEs were active as hexamers, catalytically stimulated by Mg 2+ and Mn 2+ and displayed similar K' values (56-75 μM) for ribulose 5-phosphate. Rpe2-MGA3 showed displayed 2-fold lower V max (49 U/mg) and a significantly reduced thermostability compared to the two Rpe1 proteins. Pfk1-PB1* was shown to be non-functional. The PFKs were active both as octamers and as tetramers, were catalytically stimulated by Mg 2+ and Mn 2+ , and displayed similar thermostabilities. The PFKs have similar K m values for fructose 6-phosphate (0.61-0.94 μM) and for ATP (0.38-0.82 μM), while Pfk1-MGA3 had a 2-fold lower V max (6.3 U/mg) compared to the two Pfk2 proteins. Our results demonstrate that MGA3 and PB1 exert alternative solutions to plasmid-dependent methylotrophy, including genetic organization, regulation, and biochemistry of RuMP cycle enzymes.

  14. Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations.

    PubMed

    Casacuberta, N; Masqué, P; Garcia-Orellana, J; Bruach, J M; Anguita, M; Gasa, J; Villa, M; Hurtado, S; Garcia-Tenorio, R

    2009-10-30

    Potentially harmful phosphate-based products derived from the wet acid digestion of phosphate rock represent one of the most serious problems facing the phosphate industry. This is particularly true for dicalcium phosphate (DCP), a food additive produced from either sulphuric acid or hydrochloric acid digestion of raw rock material. This study determined the natural occurring radionuclide concentrations of 12 DCP samples and 4 tricalcium phosphate (TCP) samples used for animal and human consumption, respectively. Metal concentrations (Al, Fe, Zn, Cd, Cr, As, Hg, Pb and Mg) were also determined. Samples were grouped into three different clusters (A, B, C) based on their radionuclide content. Whereas group A is characterized by high activities of 238U, 234U (approximately 10(3) Bq kg(-1)), 210Pb (2 x 10(3) Bq kg(-1)) and (210)Po ( approximately 800 Bq kg(-1)); group B presents high activities of (238)U, (234)U and (230)Th (approximately 10(3) Bq kg(-1)). Group C was characterized by very low activities of all radionuclides (< 50 Bq kg(-1)). Differences between the two groups of DCP samples for animal consumption (groups A and B) were related to the wet acid digestion method used, with group A samples produced from hydrochloric acid digestion, and group B samples produced using sulphuric acid. Group C includes more purified samples required for human consumption. High radionuclide concentrations in some DCP samples (reaching 2 x 10(3) and 10(3) Bq kg(-1) of 210Pb and 210Po, respectively) may be of concern due to direct or indirect radiological exposure via ingestion. Our experimental results based on 210Pb and 210Po within poultry consumed by humans, suggest that the maximum radiological doses are 11 +/- 2 microSv y(-1). While these results suggest that human health risks are small, additional testing should be conducted.

  15. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Jin, Fei; Wu, Hao-Liang; Liu, Zhi-Bin

    2014-12-15

    Cement stabilization is used extensively to remediate soils contaminated with heavy metals. However, previous studies suggest that the elevated zinc (Zn) and lead (Pb) concentrations in the contaminated soils would substantially retard the cement hydration, leading to the deterioration of the performance of cement stabilized soils. This study presents a new binder, KMP, composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The effectiveness of stabilization using this binder is investigated on soils spiked with Zn and Pb, individually and together. Several series of tests are conducted including toxicity characteristic leaching (TCLP), ecotoxicity in terms of luminescent bacteria test and unconfined compressive strength. The leachability of a field Zn- and Pb- contaminated soil stabilized with KMP is also evaluated by TCLP leaching test. The results show that the leached Zn concentrations are lower than the China MEP regulatory limit except when Zn and Pb coexist and for the curing time of 7 days. On the other hand, the leached Pb concentrations for stabilized soils with Pb alone or mixed Zn and Pb contamination are much lower than the China MEP or USEPA regulatory limit, irrespective of the curing time. The luminescent bacteria test results show that the toxicity of the stabilized soils has been reduced considerably and is classified as slightly toxic class. The unconfined compressive strength of the soils decrease with the increase in the Zn concentration. The stabilized soils with mixed Zn and Pb contaminants exhibit notably higher leached Zn concentration, while there is lower unconfined compressive strength relative to the soils when contaminated with Zn alone. The X-ray diffraction and scanning electron microscope analyses reveal the presence of bobierrite (Mg3(PO4)2·8H2O) and K-struvite (MgKPO4·6H2O) as the main products formed in the KMP stabilized uncontaminated soils; the formation of hopeite (Zn3(PO4)2·4H2O), scholzite (CaZn2(PO4)2·2H2O), zinc hydroxide (Zn(OH)2), and fluoropyromorphite (Pb5(PO4)3F) in the soils are the main mechanisms for immobilization of Zn and Pb with the KMP binder. The change in the relative quantities of the formed phosphate-based products, with respect to the Zn concentration and presence of mixed Zn and Pb contaminants, can well explain the measured impact of the Zn concentration levels and presence of both Zn and Pb contaminants on the unconfined compressive strength of the KMP stabilized soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Distribution and biokinetic analysis of 210Pb and 210Po in poultry due to ingestion of dicalcium phosphate.

    PubMed

    Casacuberta, N; Traversa, F L; Masqué, P; Garcia-Orellana, J; Anguita, M; Gasa, J; Garcia-Tenorio, R

    2010-09-15

    Dicalcium phosphate (DCP) is used as a calcium supplement for food producing animals (i.e., cattle, poultry and pig). When DCP is produced via wet acid digestion of the phosphate rock and depending on the acid used in the industrial process, the final product can result in enhanced (210)Pb and (210)Po specific activities (approximately 2000 Bq.kg(-1)). Both (210)Pb and (210)Po are of great interest because their contribution to the dose received by ingestion is potentially large. The aims of this work are to examine the accumulation of (210)Pb and (210)Po in chicken tissues during the first 42 days of life and to build a suitable single-compartment biokinetic model to understand the behavior of both radionuclides within the entire animal using the experimental results. Three commercial corn-soybean-based diets containing different amounts and sources of DCP were fed to broilers during a period of 42 days. The results show that diets containing enhanced concentrations of (210)Pb and (210)Po lead to larger specific accumulation in broiler tissues compared to the blank diet. Radionuclides do not accumulate homogeneously within the animal body: (210)Pb follows the calcium pathways to some extent and accumulates largely in bones, while (210)Po accumulates to a large extent in liver and kidneys. However, the total amount of radionuclide accumulation in tissues is small compared to the amounts excreted in feces. The single-compartment non-linear biokinetic model proposed here for (210)Pb and (210)Po in the whole animal takes into account the size evolution and is self-consistent in that no fitting parameterization of intake and excretions rates is required. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  18. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    MedlinePlus

    ... J, Müller A, Heep A, Bartmann P, Franz AR. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy. Arch Dis ... Windfuhr M, Wagner N, Strehl H, Bagci S, Franz AR, Mills PB, Clayton PT, Baumgartner MR, Steinmann B, ...

  19. Simple, sensitive, selective and validated spectrophotometric methods for the estimation of a biomarker trigonelline from polyherbal gels

    NASA Astrophysics Data System (ADS)

    Chopra, Shruti; Motwani, Sanjay K.; Ahmad, Farhan J.; Khar, Roop K.

    2007-11-01

    Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20 μg mL -1 ( r2 = 0.9999) in deionised water and 1-24 μg mL -1 ( r2 = 0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 × 10 3 L mol -1 cm -1 and 0.0422 μg cm -2/0.001A in deionised water; and 3.05 × 10 3 L mol -1 cm -1 and 0.0567 μg cm -2/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 μg mL -1 in deionised water and 0.13 and 0.40 μg mL -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.

  20. Phosphate Binder Pill Burden, Patient-Reported Non-Adherence, and Mineral Bone Disorder Markers: Findings from the DOPPS

    PubMed Central

    Fissell, Rachel B.; Karaboyas, Angelo; Bieber, Brian A.; Sen, Ananda; Li, Yun; Lopes, Antonio A.; Akiba, Takashi; Bommer, Jürgen; Ethier, Jean; Jadoul, Michel; Pisoni, Ronald L.; Robinson, Bruce M.; Tentori, Francesca

    2015-01-01

    Background Due to multiple comorbidities, hemodialysis (HD) patients are prescribed many oral medications, including phosphate binders (PBs), often resulting in a high “pill burden”. Methods Using data from the international Dialysis Outcomes and Practice Patterns Study (DOPPS), we assessed associations between PB pill burden, patient-reported PB non-adherence, and levels of serum phosphorus (SPhos) and parathyroid hormone (PTH), using standard regression analyses. The study included data collected from 5,262 HD patients from dialysis units participating in the DOPPS in 12 countries. Results PB prescription ranged from a mean of 7.4 pills/day in the United States (US) to 3.9 pills/day in France. About half of the patients were prescribed at least 6 PB pills/day, and 13% were prescribed at least 12 PB pills/day. Overall, the proportion of patients who reported skipping PBs at least once in the past month was 45% overall, ranging from 33% in Belgium to 57% in the US. There was a trend toward greater PB non-adherence and a higher number of prescribed PB pills/day. Non-adherence to PB prescription was associated with high SPhos (>5.5 mg/dL) and PTH (> 600 pg/mL). Conclusions Adherence to PB is a challenge for many hemodialysis patients and may be related to the number of PB pills prescribed. Prescription of a simplified PB regimen could improve patient adherence and perhaps improve SPhos and PTH levels. PMID:25975222

  1. PZT Films Fabricated by Metal Organic Decomposition Method

    NASA Astrophysics Data System (ADS)

    Sobolev, Vladimir; Ishchuk, Valeriy

    2014-03-01

    High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.

  2. Control of brown stain: in Eastern white pine

    Treesearch

    Robert E. Stutz; Peter Koch; Millard L. Oldham

    1961-01-01

    Degrade caused by brown stain and blue stain in eastern white pine was virtually eliminated by the use of sap stain chemicals and sodium azide. Combinations of buffered sodium azide with both sodium pentachlorophenate plus borax and buffered ethyl mercury phosphate were effective.

  3. Kinetics of Escherichia coli destruction by microwave irradiation.

    PubMed Central

    Fujikawa, H; Ushioda, H; Kudo, Y

    1992-01-01

    The kinetics of destruction of Escherichia coli cells suspended in a solution by microwave irradiation with a microwave oven were studied. During radiation at several powers, the temperature of 0.01 M phosphate buffer (PB), pH 7.0, in a glass beaker increased linearly at a rate of A (degrees Centigrade per second) according to the exposure time. When E. coli cells suspended in PB were exposed in the same beaker, the number of viable cells decreased according to the exposure time and the power used. The survival curve was approximated to a set of three linear parts. For each part, a rate constant of destruction (k) and an extrapolated starting temperature (T0) at several powers were estimated. Thereafter, the relationships between A and k and between A and T0 were studied. When a flat petri dish was used, the A value of exposed PB was lower and bacterial destruction was inhibited; the survival curve was similar to a curve predicted from the A value by using the relationships between the parameters. As the concentration of salt in the solution increased (from 0 to 1.35 M), the A value decreased and bacterial destruction was more suppressed. No remarkable difference between the destruction profiles for microwave exposure and conventional heating, which had the potential to generate an equal A value, was detected. These results showed that the parameter A of an irradiated solution is essential when kinetics of bacterial destruction by microwave exposure are studied and that the destruction profile can be interpreted mostly by means of thermal effects. PMID:1575494

  4. 76 FR 65653 - New Source Performance Standards (NSPS) Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ..., PM 2.5 , PM 10 ), nitrogen oxides (NO X ), carbon monoxide (CO), lead (Pb), volatile organic... Refineries Ja 06/24/2008 (73FR35867) 12/22/2008 \\4\\ (73FR78552) (Stay) Phosphate Fertilizers--Diammonium V 08/06/1975 (40FR33155) 10/17/2000 3 4 (65FR61757) Phosphate Plants. Phosphate Fertilizers--Granular X 08...

  5. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.).

    PubMed

    Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76-98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44-1.56%) or transported to the shoot (1.28-14.24%). A large proportion of Pb (74.11-99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb-phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08-80.40%) and taproot skin (46.22-77.94%), while the leaves and roots had 28.36-39.37% and 27.35-46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb-phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops.

  6. Developing procedures for the large-scale purification of human serum butyrylcholinesterase.

    PubMed

    Saxena, Ashima; Luo, Chunyuan; Doctor, Bhupendra P

    2008-10-01

    Human serum butyrylcholinesterase (Hu BChE) is the most viable candidate for the prophylactic treatment of organophosphate poisoning. A dose of 200 mg/70 kg is predicted to protect humans against 2x LD(50) of soman. Therefore, the aim of this study was to develop procedures for the purification of gram quantities of this enzyme from outdated human plasma or Cohn Fraction IV-4. The purification of Hu BChE was accomplished by batch adsorption on procainamide-Sepharose-CL-4B affinity gel followed by ion-exchange chromatography on a DEAE-Sepharose column. For the purification of enzyme from Cohn Fraction IV-4, it was resuspended in 25 mM sodium phosphate buffer, pH 8.0, and fat was removed by decantation, prior to batch adsorption on procainamide-Sepharose gel. In both cases, the procainamide gel was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0, containing 0.05 M NaCl, and the enzyme was eluted with the same buffer containing 0.1 M procainamide. The enzyme was dialyzed and the pH was adjusted to 4.0 before loading on the DEAE column equilibrated in sodium acetate buffer, pH 4.0. The column was thoroughly washed with 25 mM sodium phosphate buffer, pH 8.0 containing 0.05 M NaCl before elution with a gradient of 0.05-0.2M NaCl in the same buffer. The purity of the enzyme following these steps ranged from 20% to 40%. The purity of the enzyme increased to >90% by chromatography on an analytical procainamide affinity column. Results show that Cohn Fraction IV-4 is a much better source than plasma for the large-scale isolation of purified Hu BChE.

  7. Dissolution enhancement of atorvastatin calcium by co-grinding technique.

    PubMed

    Prabhu, Priyanka; Patravale, Vandana

    2016-08-01

    Atorvastatin calcium (AC) is a BCS class II drug which shows poor bioavailability due to inadequate dissolution. Solid dispersions present a promising option to enhance the solubility of poorly soluble drugs. Co-grinding with hydrophilic excipients is an easy and economical technique to improve the solubility of poorly soluble drugs and is free from usage of organic solvents. The aim of the present study was to explore novel carrier VBP-1 (organosulphur compound) for formulating a solid dispersion by using a simple, commercially viable co-grinding technique to enhance the dissolution of AC and to develop an oral formulation of the same. Composition of the solid dispersion was optimized based on the release profile in pH 1.2 buffer. The optimized solid dispersion was further characterized for flow properties, DSC, FTIR spectroscopy, XRD, contact angle, SEM studies and release profile in phosphate buffer pH 6.8. The developed solid dispersion gave similar release profile as the innovator formulation (Lipitor® tablets) in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed solid dispersion was formulated into hard gelatin capsules (size 3). The developed capsules were found to give similar release as the innovator formulation in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed capsules were found to be stable for a period of 6 months. Anti-hyperlipidemic efficacy studies in rats showed higher reduction in cholesterol and triglyceride levels by the developed capsules in comparison to pure AC. In conclusion, novel carrier VBP-1 was successfully employed to enhance the dissolution of AC using co-grinding technique.

  8. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  9. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications.

    PubMed

    el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe

    2002-01-01

    By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 447-453, 2002

  10. Photophysical investigations of squaraine and cyanine dyes and their interaction with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.

    2016-04-01

    A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.

  11. [Effect of phosphate and organic acid addition on passivation of simulated Pb contaminated soil and the stability of the product].

    PubMed

    Zuo, Ji-Chao; Gao, Ting-Ting; Su, Xiao-Juan; Wan, Tian-Ying; Hu, Hong-Qing

    2014-10-01

    Organic acids can improve the phosphorus availability, influence the immobilization of heavy metals in soil, and has very complicated function in phosphorus activation and heavy metal passivation. This research took simulated Pb contaminated soil as material, phosphate and citric acid as remediation matter, adopted BCR continuous extraction, 0.01 mol · L(-1) CaCl2 and toxicity characteristic leaching procedure (TCLP) to evaluate the remediation effect. Besides, malic acid and NaNO3 were taken as desorption reagents to discuss the stability of the phosphorus-citric acid-Pb system. The results showed that: in the absence of citric acid, the amount of acid extracted Pb decreased along with the increase of P concentration; when the P concentration was 100 and 400 mg · kg(-1), acid extractable Pb increased with the increasing of citric acid concentration. However, residual Pb changed in the opposite direction from acid extractable Pb. The phenomenon showed that P improved the bioavailability of Pb, while citric acid had the opposite effect. With a certain organic acid concentration, extractable Pb contents extracted by 0.01 mol · L(-1) CaCl2 and TCLP both decreased with the increasing P concentration, therefore, P had immobilization effect on Pb in contaminated soil. But at a fixed P concentration, extractable Pb contents by 0.01 mol · L(-1) CaCl2 and TCLP changed in the opposite trend with the increasing citric acid concentration. The desorption rate of Pb in soil increased with the increasing malic acid concentration, the decreasing pH and the increasing ionic strength. The desorption extent of Pb in soil with P only was lower than that with both P and citric acid. But the stability of Pb passivated by the former was higher.

  12. Soil solution interactions may limit Pb remediation using P ...

    EPA Pesticide Factsheets

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm-1, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. Mor

  13. Optimizing buffering chemistry to maintain near neutral pH of broiler feed during pre-enrichment for Salmonella.

    PubMed

    Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E

    2015-12-01

    Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Adsorption kinetics of ion of Pb2+ using Tricalcium Phosphate particles

    NASA Astrophysics Data System (ADS)

    Fadli, A.; Yenti, S. R.; Akbar, F.; Maihendra; Mawarni, F.

    2018-04-01

    One of the heavy metals that can pollute water is Pb2+. The concentration of ion Pb2+ can be removed using the adsorption method. The purpose of this research is to determine the adsorption kinetics model of ions Pb2+ using tricalcium phosphate (TCP) particles with variation of the temperature and adsorbent dosage. Five hundred mililiter Pb2+ solution with of 3 mg/L were added 0,5 gr, 1 gr and 1,5 gr of TCP in a glass beaker and stirred with rate of 300 rpm at a temperature of 30 °C, 40 °C and 50 °C. Pb2+ concentration in solution was analyzed by AAS (Atomic Adsorption Spectroscopy). The results showed that the rate of adsorption increased with the increasing of the temperature and adsorbent dosage. Minimum constant value of adsorption kinetic was 1,720 g/mg.min obtained at temperature of 30 °C and adsorbent dosageof 0,5 gr. The maximum value of adsorption kinetic constant was 9,755 g/mg.min obtained at temperature of 50 °C and adsorbent dosage of 1,5 gr. The appropriate model for adsorption kinetics followed the pseudo second order.

  15. Ion sensitivity of large-area epitaxial graphene film on SiC substrate

    NASA Astrophysics Data System (ADS)

    Mitsuno, Takanori; Taniguchi, Yoshiaki; Ohno, Yasuhide; Nagase, Masao

    2017-11-01

    We investigated the intrinsic ion sensitivity of graphene field-effect transistors (FETs) fabricated by a resist-free stencil mask lithography process from a large-scale graphene film epitaxially grown on a SiC substrate. A pH-adjusted phosphate-buffered solution was used for the measurement to eliminate the interference of other ions on the graphene FET's ion sensitivity. The charge neutrality point shifted negligibly with changing pH for the pH-adjusted phosphate-buffered solution, whereas for the mixed buffer solution, it shifted toward the negative gate voltage owing to the decrease in the concentration of phthalate ions. This phenomenon is contrary to that observed in previous reports. Overall, our results indicate that the graphene film is intrinsically insensitive to ions except for those with functional groups that interact with the graphene surface.

  16. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  17. Influence of vehicle properties and excipients on hydrolytic and photochemical stability of curcumin in preparations containing Pluronics: studies of curcumin and curcuminoids XLVIII.

    PubMed

    Singh, R; Kristensen, S; Tønnesen, H H

    2013-03-01

    The influence of vehicle properties and excipients on the hydrolytic and photochemical stability of curcumin in Pluronic preparations, and the interactions between curcumin and Pluronics was investigated. Curcumin was found to be degraded by general acid-base catalyzed hydrolytic degradation in alkaline preparations. The degradation rate of curcumin was higher in carbonate buffer than in phosphate buffer (pH 8.8), while it was higher in phosphate buffer than in citrate buffer (pH 7.8). At pH 8.0-8.8 the degradation rate of curcumin increased compared to preparations with pH <8.0. The stabilizing effect of the Pluronics against hydrolytic degradation of curcumin was only detectable at pH 8.0-8.8, and it was highest for F127 and lowest for P85, in phosphate buffer pH 8.8. An increase in the ionic strength increased the stabilization against hydrolytic degradation of curcumin by all Pluronics. Addition of ethanol decreased the hydrolytic stability of curcumin in all Pluronics. Addition of PEG 400 decreased the hydrolytic stability in preparation with either P123 or F127 while the degradation in preparations with P85 remained the same as in P85 preparations without PEG 400. Vehicle properties and excipients did not to any large degree influence the spectroscopic properties or the photostability of curcumin in Pluronic preparations. Photochemical half life of curcumin was in the minutes range. Spectrophotometric data indicate that Pluronic aggregates most likely solubilize curcumin through hydrophobic interactions, although hydrogen-bonding may also be involved.

  18. Effect of Pressure-Induced Changes in the Ionization Equilibria of Buffers on Inactivation of Escherichia coli and Staphylococcus aureus by High Hydrostatic Pressure

    PubMed Central

    Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria

    2013-01-01

    Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm3 mol−1, than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about −25 cm3 mol−1. However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471

  19. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  20. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantification of the internal resistance distribution of microbial fuel cells.

    PubMed

    Fan, Yanzhen; Sharbrough, Evan; Liu, Hong

    2008-11-01

    Identifying the limiting factors in a microbial fuel cell (MFC) system requires qualifying the contribution of each component of an MFC to internal resistance. In this study, a new method was developed to calculate the internal resistance distribution of an MFC. Experiments were conducted to identify the limiting factors in single-chamber MFCs by varying the anode surface areas, cathode surface areas, and phosphate buffer concentrations. For the MFCs with equally sized electrodes (7 cm2) and 200 mM phosphate buffer, the anode contributed just 5.4% of the internal resistance, while the cathode and the electrolyte each contributed 47.3%, indicating that the anode was not the limiting factor in power generation. The limitation of the cathode was further revealed by the 780% higher area-specific resistance (284.4 omega cm2) than the 32.3 omega cm2 of the anode. The electrolyte limitation was also evidenced by the greatly increased contribution of electrolyte in internal resistance from 47.3 to 78.2% when the concentration of phosphate buffer was decreased from 200 to 50 mM. An anodic power density of 6860 mW/m2 was achieved at a current density of 2.62 mA/cm2 using the MFCs with an anode/cathode area ratio of 1/14 and 200 mM phosphate buffer. The method was also successfully applied to analyze the internal resistance distribution of the two chamber MFCs from a previously reported study. The comparison of the internal resistances of the two air cathode systems indicates that the much lower resistances, including anode, cathode, and membrane resistances, contributed to the much better performance of the single-chamber MFCs than the two-chamber system.

  2. DECREASING LEAD BIOAVAILABILITY OF MINE WASTES: TWO PHOSPHATE FIELD STUDIES

    EPA Science Inventory

    Findings from two evaluation studies of phosphate-based in situ treatment of soils for reducing lead (Pb) bioavailability at two lead mining and lead refining Superfund sites will be presented and discussed. These assessments correlated physicochemical data with results obtained...

  3. Apollo 12 breccia 12013: Impact-induced partial Pb loss in zircon and its implications for lunar geochronology

    NASA Astrophysics Data System (ADS)

    Thiessen, F.; Nemchin, A. A.; Snape, J. F.; Bellucci, J. J.; Whitehouse, M. J.

    2018-06-01

    Apollo 12 breccia 12013 is composed of two portions, one grey in colour, the other black. The grey portion of the breccia consists mainly of felsite thought to have formed during a single crystallisation event, while the black part is characterized by presence of lithic fragments of noritic rocks and individual plagioclase crystals. In this study, U-Pb analyses of Ca-phosphate and zircon grains were conducted in both portions of the breccia. The zircon grains within the grey portion yielded a large range of ages (4154 ± 7 to 4308 ± 6 Ma, 2σ) and show decreasing U and Th concentrations within the younger grains. Moreover, some grains exhibit recrystallisation features and potentially formation of neoblasts. The latter process requires high temperatures above 1600-1700 °C leading to the decomposition of the primary zircon grain and subsequent formation of new zircon occurring as neoblasts. As a result of the high temperatures, the U-Pb system of the remaining original zircon grains was most likely open for Pb diffusion causing partial resetting and the observed range of 207Pb/206Pb ages. The event that led to the Pb loss in zircon could potentially be dated by the U-Pb system in Ca-phosphates, which have a weighted average 207Pb/206Pb age across both lithologies of 3924 ± 3 Ma (95% conf.). This age is identical within error to the combined average 207Pb/206Pb age of 3926 ± 2 Ma that was previously obtained from Ca-phosphates within Apollo 14 breccias, zircon grains in Apollo 12 impact melt breccias, and the lunar meteorite SaU 169. This age was interpreted to date the Imbrium impact. The zircon grains located within the black portion of the breccia yielded a similar range of ages (4123 ± 13 to 4328 ± 14 Ma, 2σ) to those in the grey portion. Given the brecciated nature of this part of the sample, the interpretation of these ages as representing igneous crystallisation or resetting by impact events remains ambiguous since there is no direct link to their source rocks via textural relationships or crystal chemistry. Similarly, the currently available zircon data set for all lunar samples may be distorted by partial Pb loss, resulting in meaningless and misleading age distribution patterns. Therefore, it is crucial to fully understand and recognize the processes and conditions that may lead to partial resetting of the U-Pb system in zircon in order to better constrain the magmatic and impact history of the Moon.

  4. Comparative Inactivation of Murine Norovirus and MS2 Bacteriophage by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent.

    PubMed

    Dunkin, Nathan; Weng, ShihChi; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2017-03-07

    Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log 10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log 10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.

  5. Optimizing Fungal DNA Extraction Methods from Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Jimenez, G.; Mescioglu, E.; Paytan, A.

    2016-12-01

    Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as preliminary results to continue developing fungi DNA extraction methods. Developing these methods will be important as dust storms are predicted to increase due to increased draughts and anthropogenic activity, and the fungal communities of these dust-storms are currently relatively understudied.

  6. Soil solution interactions may limit Pb remediation using P amendments in an urban soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obrycki, John F.; Scheckel, Kirk G.; Basta, Nicholas T.

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organicmore » acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils.« less

  7. Incorporation of 210Pb and 210Po to Poultry through the Addition of Dicalcium Phosphate (DCP) to the Diet

    NASA Astrophysics Data System (ADS)

    Casacuberta, N.; Masqué, P.; Garcia-Orellana, J.; Gasa, J.; Anguita, M.

    2008-08-01

    Due to the replacement of calcium by uranium in the phosphorite, sedimentary phosphate rock contains high concentrations of 238U (i.e. from 1500 Bqṡkg-1 in Morocco to 4000 Bqṡkg-1 in Tanzania ores). Dicalcium Phosphate (DCP) is produced by the wet acid digestion of the phosphorite, and is used as a source of calcium and phosphorus for livestock feed supplement. If the phosphorite acid digestion is made with hydrochloric acid, DCP may present specific activities of about 103 Bqṡkg-1 of 238U and some of its decay chain daughters. In particular, due to its radiological implications, the presence of 210Pb and 210Po in DCP is of special relevance. The aim of this work was to investigate the potential incorporation of these radionuclides to poultry through its diet. Three different diets were therefore prepared with different contents of both DCP and 210Pb and 210Po. Diet A was used as a blank, and had a 2.5% in weight of monocalcium phosphate (MCP); diet B, with a 5% in weight of DCP; and diet C, with a 2.5% of DCP. Concentrations of 210Pb were 0.93, 101.4 and 51.2 Bqṡkg-1; whereas concentrations of 210Po were 0.92, 74 and 36 Bqṡkg-1 of food for diets A, B and C, respectively. Accumulation of 210Pb and 210Po was analysed at several times during poultry growth in samples of bone, liver, kidney, muscle, excrements as well as entire animals, with a total of 30 broilers fed with the 3 different diets. Results showed clear enhancements in the accumulation of both 210Pb and 210Po in chicken for diets B and C, and in particular in liver and bone. However, total accumulation of radionuclides in chicken, and especially in edible parts, is low compared to its expulsion through excrements. These results are interpreted in terms of the potential dose through consumption of chicken.

  8. Vehicle influence on permeation through intact and compromised skin.

    PubMed

    Gujjar, Meera; Banga, Ajay K

    2014-09-10

    The purpose of this study was to compare the transdermal permeation of a model compound, diclofenac diethylamine, from a hydrophilic and lipophilic vehicle across in vitro models simulating compromised skin. Mineral oil served as a lipophilic vehicle while 10mM phosphate buffered saline served as a hydrophilic vehicle. Compromised skin was simulated by tape stripping, delipidization, or microneedle application and compared with intact skin as a control. Transepidermal water loss was measured to assess barrier function. Skin compromised with tape stripping and delipidization significantly (p<0.05) increased permeation of diclofenac diethylamine compared to intact and microneedle treated skin with phosphate buffered saline vehicle. A similar trend in permeation was observed with mineral oil as the vehicle. For both vehicles, permeation across skin increased in the same order and correlated with degree of barrier impairment as indicated by transepidermal water loss values: intact

  9. Physical and chemical properties of pyropheophorbide-a methyl ester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-alpha-phosphatidylcholine vesicles.

    PubMed

    Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse

    2006-03-01

    The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).

  10. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    USGS Publications Warehouse

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  11. Heavy metal stabilization in contaminated road-derived sediments.

    PubMed

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Speciation of 210Po and 210Pb in air particulates determined by sequential extraction.

    PubMed

    Al-Masri, M S; Al-Karfan, K; Khalili, H; Hassan, M

    2006-01-01

    Speciation of (210)Po and (210)Pb in air particulates of two Syrian phosphate sites with different climate conditions has been studied. The sites are the mines and Tartous port at the Mediterranean Sea. Air filters were collected during September 2000 until February 2002 and extracted chemically using different selective fluids in an attempt to identify the different forms of these two radionuclides. The results have shown that the inorganic and insoluble (210)Po and (210)Pb (attached to silica and soluble in mineral acids) portion was found to be high in both sites and reached a maximum value of 94% and 77% in the mine site and Tartous port site, respectively. In addition, only 24% of (210)Pb in air particulates was found to be associated with organic materials probably produced from the incomplete burning of fuel vehicle and similar activities. Moreover, the (210)Po/(210)Pb activity ratio in air particulates was higher than that in all samples at both sites and varied between 3.85 in November 2000 at Tartous port site and 20 in April 2001 at the mine area. These activity ratios were also higher than the natural levels. The (210)Po/(210)Pb activity ratio was also determined in each portion resulting from the selective extraction and found to be higher than that in most samples. The sources of (210)Po excess in these portions are discussed. Soil suspension, which is common in the dry climate dominant in the area, sea water spray and heating of phosphate ores were considered; polonium is more volatile than the lead compounds at even moderate temperature. Furthermore, variations in the chemical forms of (210)Po and (210)Pb during the year were also investigated. However, the results of this study can also be utilized for dose assessment to phosphate industry workers.

  13. Biochemical characteristics of glucose-6-phosphate dehydrogenase variants among the Malays of Singapore with report of a new non-deficient (GdSingapore) and three deficient variants.

    PubMed

    Saha, N; Hong, S H; Wong, H A; Jeyaseelan, K; Tay, J S

    1991-12-01

    Biochemical characteristics of one non-deficient fast G6PD variant (GdSingapore) and six different deficient variants (three new, two Mahidol, one each of Indonesian and Mediterranean) were studied among the Malays of Singapore. The GdSingapore variant had normal enzyme activity (82%) and fast electrophoretic mobilities (140% in TEB buffer, 160% in phosphate and 140% in Tris-HCl buffer systems respectively). This variant is further characterized by normal Km for G6P; utilization of analogues (Gal6P, 2dG6P; dAmNADP), heat stability and pH optimum. The other six deficient G6PD variants had normal electrophoretic mobility in TEB buffer with enzyme activities ranging from 1 to 12% of GdB+. The biochemical characteristics identity them to be 2 Mahidol, 1 Indonesian and 1 Mediterranean variants and three new deficient variants.

  14. Analysis of three variables in sampling solutions used to assay bacteria of hands: type of solution, use of antiseptic neutralizers, and solution temperature.

    PubMed Central

    Larson, E L; Strom, M S; Evans, C A

    1980-01-01

    Tests were performed using the sterile bag technique to determine the effects of type of sampling solution, use of antiseptic neutralizers, and solution temperature on the detection and quantitation of bacteria on hands. Using paired hand cultures, three sampling solutions were compared: quarter-strength Ringer solution, a phosphate buffer containing Triton X-100, and the same buffer containing antiseptic neutralizers. The phosphate buffer containing Triton X-100 was significantly better than quarter-strength Ringer solution in mean bacterial yield; the neutralizer-containing sampling solution was slightly better than Triton X-100-containing solution, although differences were not significant at the P = 0.05 level. Temperature (6 or 23 degrees C) of the sampling solution showed no consistent effect on bacterial yield from hands tested with the fluid containing neutralizers. PMID:7012171

  15. The effect of the type of HA on the degradation of PLGA/HA composites.

    PubMed

    Naik, Ashutosh; Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E

    2017-01-01

    The aim of this study is to explore the importance of the potentially competing effects of buffering effects of the calcium phosphate filler and particle-mediated water sorption on the degradation products of poly(d,l lactide-co-glycolide (50:50))(PLGA)/hydroxyapatite(HA) composites. Further the influence of type of HA on the mechanical properties of the composites was investigated. Phase pure HA was synthesised via a reaction between aqueous solutions of calcium hydroxide and orthophosphoric acid. The powder produced was either used as produced (uncalcined) or calcined in air or calcined in a humidified argon atmosphere. An in-vitro degradation study was carried out in phosphate buffered saline (PBS). The results obtained indicated that the degradation rate of the composite might be better understood if both the buffering effects and the rate of water sorption by the composites are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. DETERMINING SPECIATION OF PB IN PHOSPHATE AMENDED SOILS: METHOD LIMITATIONS

    EPA Science Inventory

    Determining the effectiveness of in-situ immobilization for P-amended, Pb-contaminated soils has typically relied on non-spectroscopic methods that in recent years have come under scrutiny due to technical and unforeseen error issues. In this study, we analyzed 18 soil samples vi...

  17. The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections

    DTIC Science & Technology

    1979-08-01

    sodium or potassium phosphate 6.0-8.0 N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) 6.5-8.5 tris 7.0-9.5 sodium borate 7.5-9.5 sodium...was found to be variable with respect to whether sodium or potassium phosphate buffer was used. With sodium phosphate, virtually all the enzyme...activity bound was eluted between 20-100.2M phosphate at pH 6.8. With the potassium salt, elution occurs at 400-?00mM KP04. Since very little protein was

  18. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.

    PubMed

    Wei, Wei; Cui, Jing; Wei, Zhenggui

    2014-06-01

    Understanding the effects of low molecular weight organic acids (LMWOAs) on the transformation of Pb(II) to geochemically stable pyromorphite (PY) by apatite materials (AMs), has considerable benefits for risk assessment and remediation strategies for contaminated water and soil. In this study, we systematically investigated the immobilization of Pb(II) from aqueous solution by natural phosphate rock (PR) and different crystallized hydroxyapatite (HAp) in the absence and presence of LMWOAs (oxalic, malic and citric acids). The results indicated that the effectiveness of PR and HAp in immobilizing Pb(II) followed in descending order by HAp2 (the poorly crystallized HAp), HAp1 (the well crystallized HAp) and PR, regardlessof the presence of LMWOAs. The presence of malic and citric acids significantly decreased the immobilizationefficiency of Pb(II) by HAp1 and PR, clarifying the lower adsorption affinities of Pb(II)-organic acid complexes on HAp1 and PR rather than Pb(II) ion. On thecontrary, oxalic acid could markedly enhance the removal of Pb(II) from aqueous solution by HAp1 and PR through the formation of lead oxalate, which was confirmed by FT-IR and XRDanalysis. Results also showed that LMWOAs had little promoting or inhibiting effect on the immobilization of Pb(II) by HAp2. This study suggested that the ubiquity of LMWOAs in natural environments could retard the transformation efficiency of Pb(II) to PY by AMs, especiallyin thepresenceof oxalic acid, and the poorly crystallized HAp2 had great potential to remediate Pb(II)-contaminated water and soil due to its insusceptibility to LMWOAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  20. [Evaluation of phosphate-containing amendments on remediation effect and influential factors in a lead/zinc mining tailings contaminated soil using TCLP and forms].

    PubMed

    Chen, Jian-Jun; Yu, Tian-Ming; Wang, Bi-Ling; Xie, Zheng-Miao

    2010-01-01

    A pot experiment was conducted to evaluate the effects of phosphate-containing (P) amendments on the toxicity and bioavailability of Pb and Zn in a soil contaminated by mining tailings using toxicity characteristic leaching procedure (TCLP) and water soluble, exchangeable leaching procedures in order to find out the appropriate P application rates to reduce the soil TCLP extractable Pb to below the USA EPA's regulatory limit levels. The results showed that TCLP extractable Pb concentrations were significantly decreased by up to 93.3% for MPP treatments and up to 68.5% for SSP treatments after P application. The dose required to reduce leachable Pb below the EPA's regulatory limit level was found to be around the molar ratio of v(P/Pb) = 0.6 for MPP and 1.8 for SSP. It was also found both MPP and SSP could reduce the exchangeable Pb and Zn concentrations that all bio-available Zn forms including water soluble, exchangeable, and TCLP extractable forms in soil were significantly and negatively correlated to soil pH values, indicating that the content of Zn in the soil was mostly controlled by soil pH value even after P application. These results suggest that P as MPP and SSP could successfully decrease the toxicity and bioavailability of Pb and Zn in the contaminated soil.

  1. Reduction of Human Norovirus GI, GII, and Surrogates by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent.

    PubMed

    Dunkin, Nathan; Weng, ShihChi; Coulter, Caroline G; Jacangelo, Joseph G; Schwab, Kellogg J

    2017-10-17

    The objective of this study was to characterize human norovirus (hNoV) GI and GII reductions during disinfection by peracetic acid (PAA) and monochloramine in secondary wastewater (WW) and phosphate buffer (PB) as assessed by reverse transcription-qPCR (RT-qPCR). Infectivity and RT-qPCR reductions are also presented for surrogate viruses murine norovirus (MNV) and bacteriophage MS2 under identical experimental conditions to aid in interpretation of hNoV molecular data. In WW, RT-qPCR reductions were less than 0.5 log 10 for all viruses at concentration-time (CT) values up to 450 mg-min/L except for hNoV GI, where 1 log 10 reduction was observed at CT values of less than 50 mg-min/L for monochloramine and 200 mg-min/L for PAA. In PB, hNoV GI and MNV exhibited comparable resistance to PAA and monochloramine with CT values for 2 log 10 RT-qPCR reduction between 300 and 360 mg-min/L. Less than 1 log 10 reduction was observed for MS2 and hNoV GII in PB at CT values for both disinfectants up to 450 mg-min/L. Our results indicate that hNoVs exhibit genogroup dependent resistance and that disinfection practices targeting hNoV GII will result in equivalent or greater reductions for hNoV GI. These data provide valuable comparisons between hNoV and surrogate molecular signals that can begin the process of informing regulators and engineers on WW treatment plant design and operational practices necessary to inactivate hNoVs.

  2. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.)

    PubMed Central

    Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76–98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44–1.56%) or transported to the shoot (1.28–14.24%). A large proportion of Pb (74.11–99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb–phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08–80.40%) and taproot skin (46.22–77.94%), while the leaves and roots had 28.36–39.37% and 27.35–46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb–phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops. PMID:26005445

  3. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.

  4. A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules.

    PubMed

    Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2013-04-15

    A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Cullin 5 Expression in the Rat: Cellular and Tissue Distribution, and Changes in Response to Water Deprivation and Hemorrhagic Shock

    DTIC Science & Technology

    2003-02-28

    of Health p53 tumor suppressor PBS phosphate buffered saline PCO2 partial pressure of carbon dioxide PO2 partial pressure of oxygen PCR...buffered saline TTBS tween-20 tris buffered saline TonEBP tonicity-response enhancer binding protein TSNRP TriService Nursing Research Program...growth and metabolism (Hochstrasser, 1995; Deshaies, 1999). Although traditionally seen as no more than a means of eliminating no longer needed

  6. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  7. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NASA Astrophysics Data System (ADS)

    de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.

    2001-12-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions in the seagrass meadows.

  8. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    EPA Science Inventory

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  9. SPECTROSCOPIC SPECIATION AND QUANTIFICATION ON ALTERATIONS OF PB IN PHOSPHATE AMENDED SOILS

    EPA Science Inventory

    Lead-bearing soils are a source of lead (Pb) contamination at a number of sites across the nation and pose a risk for our most sensitive population, children. The In-place Inactivation and Natural Ecological Restoration Team (IINERT) has demonstrated the feasibility of reducing ...

  10. ENVIRONMENTAL RISK ASSESSMENT OF PHOSPHATE-BASED REMEDIAL TECHNOLOGY IN METAL CONTAMINATED URBAN AND MINING AREAS IN A SELECTED MISSOURI SUPERFUND SITE

    EPA Science Inventory

    This project provided important data on fundamental processes responsible for health and environmental risk reductions and environmental safety of the phosphate-based treatments in metal, specifically Pb, contaminated soils. By an integrated approach of environmental risk asse...

  11. Practical Implications from Observed Lead Pipe Scale Mineralogy in a Blended Phosphate Treated System - slides

    EPA Science Inventory

    Many water utilities in the United States rely on the addition of phosphate-based corrosion inhibitors to optimize their corrosion control and comply with requirements of the Lead and Copper Rule. Orthophosphate is used on the theory of forming low solubility Pb(II)-orthophosphat...

  12. Effect of degree of esterification of pectin and calcium amount on drug release from pectin-based matrix tablets.

    PubMed

    Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit

    2004-02-12

    The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.

  13. The accretion and impact history of the ordinary chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Blackburn, Terrence; Alexander, Conel M. O'D.; Carlson, Richard; Elkins-Tanton, Linda T.

    2017-03-01

    A working timeline for the history of ordinary chondrites includes chondrule formation as early as 0-2 Ma after our Solar System's earliest forming solids (CAIs), followed by rapid accretion into undifferentiated planetesimals that were heated internally by 26Al decay and cooled over a period of tens of millions of years. There remains conflict, however, between metallographic cooling rate (Ni-metal) and radioisotopic thermochronometric data over the sizes and lifetimes of the chondrite parent bodies, as well as the timing of impact related disruptions. The importance of establishing the timing of parent body disruption is heightened by the use of meteorites as recorders of asteroid belt wide disruption events and their use to interpret Solar System dynamical models. Here we attempt to resolve these records by contributing new 207Pb-206Pb data obtained on phosphates isolated from nine previously unstudied ordinary chondrites. These new results, along with previously published Pb-phosphate, Ni-metal and thermometry data, are interpreted with a series of numerical models designed to simulate the thermal evolution for a chondrite parent body that either remains intact or is disrupted by impact prior to forming smaller unsorted "rubble piles". Our thermal model and previously published thermometry data limit accretion time to 2.05-2.25 Ma after CAIs. Measured Pb-phosphate data place minimum estimates on parent body diameters of ∼260-280 km for both the L and H chondrite parent bodies. They also consistently show that petrologic Type 6 (highest thermal metamorphism) chondrites from both the H and L bodies have younger ages and, therefore, cooled more slowly than Type 5 (lesser metamorphism) chondrites. This is interpreted as evidence for Type 5 chondrite origination from shallower depths than Type 6 chondrites within initially concentrically zoned bodies. This contrasts metallographic cooling rate data that are inconsistent with such a simple onion shell scenario. One model that can reconcile these two data sets takes into account subtle differences in temperature to which each system responds. This working model requires that disruption occur early enough such that the Ni-metal system can record the cooling rate associated with a rubble pile (<70 Ma), yet late enough that the Pb-phosphate system can record an onion shell structure (>30 Ma). For this 30-70 Ma timeline, reaccretion into smaller rubble piles will ensure that the originally deeply buried and hot Type 6 samples will always cool faster as a result of disruption, yielding nearly uniform ages that record the time of parent body disruption. This is consistent with the available Pb-phosphate data, where all but one Type 6 chondrite (H, n = 3; L, n = 4) yields a cooling age within a narrow 4505 ± 5 Ma timeframe. These data collectively imply that both the H and L chondrite parent bodies were catastrophically disrupted at ∼60 Ma. In addition, combined Ni-metal and Pb-phosphate models confirm that a subset of Type 4 chondrites record early rapid cooling likely associated with erosional impacting of the H and L parent bodies on ∼5 Ma timescales.

  14. Biaxially textured composite substrates

    DOEpatents

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  15. The disruption of H and L ordinary chondrite parent bodies at 60 Ma

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Alexander, C.; Carlson, R.; Elkins-Tanton, L. T.

    2016-12-01

    A working timeline for the history of ordinary chondrites (OCs) includes chondrule formation as early as 1-2 Ma after our Solar System's earliest forming solids (CAIs), followed by rapid accretion into undifferentiated planetesimals that were heated internally by 26Al decay and cooled over a period of tens of millions of years. There remains conflict, however, between metallographic cooling rates and radioisotopic thermochronometric data over the sizes and lifetimes of the chondrite parent bodies, as well as the timing of impact related disruption. The importance of establishing the timing of parent body disruption is heightened by the use of meteorites as recorders of asteroid belt wide disruption events as suggested by various dynamical models. Here we attempt to resolve these records with new Pb-phosphate dates for 9 previously unstudied OCs. These new results, along with previously published Pb-phosphate and metallographic data, are interpreted with a series of numerical models designed to simulate the thermal evolution for a chondrite parent body that is disrupted by impact prior to forming smaller unsorted "rubble piles". One model that could satisfy both the available thermochronologic and Ni-metal data takes into account subtle differences in closure temperatures for each system. It requires that disruption occur early enough such that the Ni-metal system can record the cooling rate associated with a rubble pile (<70 Ma), yet late enough that the Pb-phosphate system can record an onion shell structure (>30 Ma). For this 30-70 Ma timeline, reaccretion into smaller rubble piles will ensure that the originally deeply buried and hot Type 6 samples will always cool faster as a result of disruption, yielding nearly uniform ages that date parent body disruption. This is consistent with the available Pb-phosphate data, where all but one Type 6 chondrite (H, n=3; L, n=4) records a uniform cooling age (4508 ± 5 Ma). Our model results suggest that a disruption at this time is: 1) late enough so that shallow chondrite layers will have cooled and H5/L5s will always have older Pb-phosphate dates than deeper H6/L6s; 2) early enough to precede Ni-metal closure, replicating the lack of correlation between Ni-metal cooling rates and petrologic Type suggestive of cooling through Ni-metal closure in a reaccreted rubble pile.

  16. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate.

    PubMed

    Kawasaki, Kosei; Kamagata, Yoichi

    2017-11-01

    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O 2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H 2 O 2 formation from agar. H 2 O 2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H 2 O 2 formation. Amendment of catalase or pyruvate, a well-known H 2 O 2 -scavenging agent, effectively eliminated H 2 O 2 Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. Copyright © 2017 American Society for Microbiology.

  17. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate

    PubMed Central

    Kamagata, Yoichi

    2017-01-01

    ABSTRACT Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H2O2) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659–7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H2O2 formation in agar. The H2O2 formation was pH dependent: H2O2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H2O2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H2O2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H2O2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H2O2 from PT medium, these observations indicate that although H2O2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H2O2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H2O2 formation from agar. H2O2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H2O2 formation. Amendment of catalase or pyruvate, a well-known H2O2-scavenging agent, effectively eliminated H2O2. Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. PMID:28821549

  18. Comparative evaluation of the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gum on salivary flow rate, pH and buffering capacity in children: An in vivo study.

    PubMed

    Hegde, Rahul J; Thakkar, Janhavi B

    2017-01-01

    This study aimed to compare and evaluate the changes in the salivary flow rate, pH, and buffering capacity before and after chewing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol-containing chewing gums in children. Sixty children aged between 8 and 12 years were selected for the study. They were randomly divided into Group 1 (CPP-ACP chewing gum) and Group 2 (xylitol-containing chewing gum) comprising thirty children each. Unstimulated and stimulated saliva samples at 15 and 30 min interval were collected from all children. All the saliva samples were estimated for salivary flow rate, pH, and buffering capacity. Significant increase in salivary flow rate, pH, and buffering capacity from baseline to immediately after spitting the chewing gum was found in both the study groups. No significant difference was found between the two study groups with respect to salivary flow rate and pH. Intergroup comparison indicated a significant increase in salivary buffer capacity in Group 1 when compared to Group 2. Chewing gums containing CPP-ACP and xylitol can significantly increase the physiochemical properties of saliva. These physiochemical properties of saliva have a definite relation with caries activity in children.

  19. Effect of Phosphate-Buffered Solution Corrosion on the Ratcheting Fatigue Behavior of a Duplex Mg-Li-Al Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong

    2016-05-01

    This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.

  20. Lead phytoremediation potential of Vetiver grass: a hydroponic study

    NASA Astrophysics Data System (ADS)

    Pachanoor, D. S.; Andra, S. P.; Datta, R.; Sarkar, D.

    2006-05-01

    Lead (Pb) is a toxic heavy metal that is released into the environment from a variety of sources. Sources of Pb contamination in soils can be divided into three broad categories: industrial activities, such as mining and smelting processes, agricultural activities, such as application of insecticide and municipal sewage sludge, and urban activities, such as use of Pb in gasoline, paints, and other materials. Severe Pb contamination of soils may cause a variety of environmental problems, including loss of vegetation, groundwater contamination and Pb toxicity in plants, animals and humans. The use of plants to remove toxic metals from soils (phytoremediation) is fast emerging as an acceptable strategy for cost-effective and environmentally sound remediation of contaminated soils. The objective of this study was to gain insight into the lead uptake potential and biochemical stress response mechanism in vetiver grass (Vetiveria zizanioides L.) upon exposure to Pb in contaminated soils. We investigated the effect of increasing concentrations of Pb on vetiver grass grown in a hydroponic system. Plant response to the addition of phosphate in the presence of Pb was also studied. Biochemical stress response was studied by monitoring the activities of Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes. The results indicated that exposure to Pb in the range of 0 ppm -1200 ppm had no significant negative effects on the growth of vetiver grass. There was no considerable decrease in vetiver biomass, implying the potential of this grass for Pb phytoremediation. The translocation of Pb from the root to the shoot was up to 20%. The SOD activity was in positive correlation with Pb concentrations in the solution, but no such trend was observed with GPx. In systems containing phosphate fertilizer, lead precipitated out immediately, thereby decreasing the soluble concentration of lead, resulting in less availability of Pb to the grass.

  1. Anthropogenic Signatures of Lead in the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E. P.; Annett, A. L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J. M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-03-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by fourfold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (>2,500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb, and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to "buffer" the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.

  2. AMENDING SOILS WITH PHOSPHATE AS MEANS TO MITIGATE SOIL LEAD HAZARD: A CRITICAL REVIEW OF THE STATE OF THE SCIENCE

    EPA Science Inventory

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feas...

  3. The Preparation of Capsaicin-Chitosan Microspheres (CCMS) Enteric Coated Tablets

    PubMed Central

    Chen, Jian; Huang, Gui-Dong; Tan, Si-Rong; Guo, Jiao; Su, Zheng-Quan

    2013-01-01

    This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS) enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%), plasticisers (TEC and DBS), dosage of plasticiser (10%, 20% and 30%) and coating weight (2%, 3% and 5%) were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8) revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs. PMID:24351818

  4. Albumin adsorption onto surfaces of urine collection and analysis containers☆

    PubMed Central

    Robinson, Mary K.; Caudill, Samuel P.; Koch, David D.; Ritchie, James; Hortin, Glen; Eckfeldt, John H.; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W. Greg

    2017-01-01

    Background Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. Methods We added 125I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Results Adsorption of urine albumin (UA) at 5–6 mg/l was <0.9%; and at 90 mg/l was <0.4%. Adsorption was generally less at pH 8 than pH 5 but only 3 cases had p <0.05. Adsorption from 11 unaltered urine samples with albumin 5–333 mg/l was <0.8%. Albumin adsorption for the material with greatest binding was extrapolated to the surface areas of 100 ml and 2 l collection containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2–28%) was larger than that from urine. Conclusions Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. PMID:24513540

  5. Albumin adsorption onto surfaces of urine collection and analysis containers.

    PubMed

    Robinson, Mary K; Caudill, Samuel P; Koch, David D; Ritchie, James; Hortin, Glen; Eckfeldt, John H; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W Greg

    2014-04-20

    Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. We added (125)I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Adsorption of urine albumin (UA) at 5-6 mg/l was <0.9%; and at 90 mg/l was <0.4%. Adsorption was generally less at pH8 than pH5 but only 3 cases had p<0.05. Adsorption from 11 unaltered urine samples with albumin 5-333 mg/l was <0.8%. Albumin adsorption for the material with greatest binding was extrapolated to the surface areas of 100 ml and 2l collection containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2-28%) was larger than that from urine. Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Simple and sensitive determination of five quinolones in food by liquid chromatography with fluorescence detection.

    PubMed

    Ramos, Macarena; Aranda, Angela; Garcia, Elena; Reuvers, Thea; Hooghuis, Henny

    2003-06-15

    A simple and sensitive high-performance liquid chromatographic (HPLC) method has been developed for the determination of five different quinolones: enrofloxacin, ciprofloxacin, sarafloxacin, oxolinic acid and flumequine in pork and salmon muscle. The method includes one extraction and clean-up step for the five quinolones together which are detected in two separated HPLC runs by means of their fluorescence. The proposed analytical method involves homogenizing of the tissue sample with 0.05 M phosphate buffer, pH 7.4 and clean-up by Discovery DS-18 cartridges. For chromatographic separation a Symmetry C(18) column is used in two different runs: (1) ciprofloxacin, enrofloxacin and sarafloxacin with acetonitrile-0.02 M phosphate buffer pH 3.0 (18:82) as mobile phase and the detector at excitation wavelength: 280 nm and emission wavelength 450 nm; and (2) oxolinic acid and flumequine with acetonitrile-0.02 M phosphate buffer pH 3.0 (34:66) as mobile phase and excitation wavelength: 312 nm and emission wavelength: 366 nm. Detection limit was as low as 5 ng g(-1), except for sarafloxacin which had a limit of 10 ng g(-1). Standard curves using blank muscle tissues spiked at different levels showed a good linear correlation coefficient, r(2) higher than 0.999 for all quinolones.

  7. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies.

    PubMed

    Paltseva, Anna; Cheng, Zhongqi; Deeb, Maha; Groffman, Peter M; Shaw, Richard K; Maddaloni, Mark

    2018-05-30

    Pesticides containing lead and arsenic were widely used in the US through the 20th century. Legacy contamination from this use poses a health risk as interest in cultivation of abandoned agricultural lands has grown in recent years. We addressed these risks by quantifying Pb and As in soils and produce from a suburban farm in New Jersey, USA and examining the ability of phosphate-bearing amendments (bone meal, triple super phosphate, manure compost and raised bed soil) in combination with Fe and/or Mn amendments to stabilize these metals and prevent their movement into vegetables. Common produce (tomato, carrot, lettuce, and radish) was grown in soils with 133-307 mg Pb kg -1 and 19-73 mg As kg -1 . Our results suggest that vegetables produced on these soils can have Pb and As at levels above health and safety standards, especially root and leafy green vegetables. Phosphate-bearing amendments can reduce extractable Pb but can increase extractable As in soils, and can have similar effects on vegetables. Iron amendment increased both extractable Pb and As, likely due to the presence of elemental sulfur in the Fe amendment, which lowered soil pH, while Mn amendment had the opposite effect. Most of the Pb and As in vegetables appear to be associated with soil particles adhered to the vegetables, and the contribution from uptake was relatively small except for plots treated with Fe-amendments and for carrots. Thus, proper crop selection, rigorous cleaning, and dust and dirt control are critical to reduce the risk of contaminant exposure through the consumption of garden produce. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    PubMed

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant parts decreased in two improved groups, while the proportion of strong activity chemical forms increased; two improved groups led strong activity Zn chemical form of root increased, while strong activity Zn chemical form of aboveground decreased.

  9. Tannate complexes of antihistaminic drug: sustained release and taste masking approaches.

    PubMed

    Rahman, Ziyaur; Zidan, Ahmed S; Berendt, Robert T; Khan, Mansoor A

    2012-01-17

    The aim of this investigation was to evaluate the complexation potential of brompheniramine maleate (BPM) and tannic acid (TA) for sustained release and taste masking effects. The complexes (1:1-1:7 TA to BPM ratio) were prepared by the solvent evaporation method using methanol, phosphate buffer pH 6.8 or 0.1N HCl as common solvents. The complexes were characterized microscopically by scanning electron microscopy (SEM), chemically by Fourier transform infrared (FTIR) and solid-state NMR (SSNMR), thermally by differential scanning calorimetry (DSC), for crystallinity by powder X-ray powder diffraction (PXRD), for organoleptic evaluation by electronic tongue (e-tongue), and for solubility in 0.1N HCl and phosphate buffer pH 6.8. The dissolution studies were carried out using the USP II method at 50 rpm in 500 ml of dissolution media (0.1N HCl or phosphate buffer pH 6.8). SEM images revealed that the morphology of complexes were completely different from the individual components, and all complexes had the same morphological characteristics, irrespective of the solvent used for their preparation, pH or ratio of BPM and TA. The FTIR spectra showed the presence of chemical interactions between the TA and BPM. DSC, PXRD and SSNMR indicated that the drug lost its crystalline nature by formation of the complex. Complexation has significantly reduced the solubility of BPM and sustained the drug release up to 24h in phosphate buffer pH 6.8 media. The bitter taste of the BPM was completely masked which was indicated by Euclidean distance values which was far from the drug but near to its placebo in the complexes in all ratios studied. The taste masked complexes can be potentially developed as suitable dosage forms for pediatric use. In summary, complexation of BPM and TA effectively sustained the dissolution and masked the bitter taste of drug for the development of suitable dosage forms for pediatric use. Published by Elsevier B.V.

  10. Improved quantitative recovery of Listeria monocytogenes from stainless steel surfaces using a one-ply composite tissue.

    PubMed

    Vorst, Keith L; Todd, Ewen C D; Rysert, Elliot T

    2004-10-01

    Four sampling devices, a sterile environmental sponge (ES), a sterile cotton-tipped swab (CS), a sterile calcium alginate fiber-tipped swab (CAS), and a one-ply composite tissue (CT), were evaluated for quantitative recovery of Listeria monocytogenes from a food-grade stainless steel surface. Sterile 304-grade stainless steel plates (6 by 6 cm) were inoculated with approximately 106 CFU/cm2 L. monocytogenes strain Scott A and dried for 1 h. The ES and CT sampling devices were rehydrated in phosphate buffer solution. After plate swabbing, ES and CT were placed in 40 ml of phosphate buffer solution, stomached for 1 min and hand massaged for 30 s. Each CS and CAS device was rehydrated in 0.1% peptone before swabbing. After swabbing, CS and CAS were vortexed in 0.1% peptone for 1 min. Samples were spiral plated on modified Oxford agar with modified Oxford agar Rodac Contact plates used to recover any remaining cells from the stainless steel surface. Potential inhibition from CT was examined in both phosphate buffer solution and in a modified disc-diffusion assay. Recovery was 2.70, 1.34, and 0.62 log greater using CT compared with ES, CS, and CAS, respectively, with these differences statistically significant (P < 0.001) for ES and CT and for CAS, CS, and CT (P < 0.05). Rodac plates were typically overgrown following ES, positive after CS and CAS, and negative after CT sampling. CT was noninhibitory in both phosphate buffer solution and the modified disc-diffusion assay. Using scanning electron microscopy, Listeria cells were observed on stainless steel plates sampled with each sampling device except CT. The CT device, which is inexpensive and easy to use, represents a major improvement over other methods in quantifying L. monocytogenes on stainless steel surfaces and is likely applicable to enrichment of environmental samples.

  11. Incorporation of {sup 210}Pb and {sup 210}Po to Poultry through the Addition of Dicalcium Phosphate (DCP) to the Diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casacuberta, N.; Masque, P.; Garcia-Orellana, J.

    Due to the replacement of calcium by uranium in the phosphorite, sedimentary phosphate rock contains high concentrations of {sup 238}U (i.e. from 1500 Bq{center_dot}kg{sup -1} in Morocco to 4000 Bq{center_dot}kg{sup -1} in Tanzania ores). Dicalcium Phosphate (DCP) is produced by the wet acid digestion of the phosphorite, and is used as a source of calcium and phosphorus for livestock feed supplement. If the phosphorite acid digestion is made with hydrochloric acid, DCP may present specific activities of about 10{sup 3} Bq{center_dot}kg{sup -1} of {sup 238}U and some of its decay chain daughters. In particular, due to its radiological implications, themore » presence of {sup 210}Pb and {sup 210}Po in DCP is of special relevance. The aim of this work was to investigate the potential incorporation of these radionuclides to poultry through its diet. Three different diets were therefore prepared with different contents of both DCP and {sup 210}Pb and {sup 210}Po. Diet A was used as a blank, and had a 2.5% in weight of monocalcium phosphate (MCP); diet B, with a 5% in weight of DCP; and diet C, with a 2.5% of DCP. Concentrations of {sup 210}Pb were 0.93, 101.4 and 51.2 Bq{center_dot}kg{sup -1}; whereas concentrations of {sup 210}Po were 0.92, 74 and 36 Bq{center_dot}kg{sup -1} of food for diets A, B and C, respectively. Accumulation of {sup 210}Pb and {sup 210}Po was analysed at several times during poultry growth in samples of bone, liver, kidney, muscle, excrements as well as entire animals, with a total of 30 broilers fed with the 3 different diets. Results showed clear enhancements in the accumulation of both {sup 210}Pb and {sup 210}Po in chicken for diets B and C, and in particular in liver and bone. However, total accumulation of radionuclides in chicken, and especially in edible parts, is low compared to its expulsion through excrements. These results are interpreted in terms of the potential dose through consumption of chicken.« less

  12. Soil solution interactions may limit Pb remediation using P amendments in an urban soil.

    PubMed

    Obrycki, John F; Scheckel, Kirk G; Basta, Nicholas T

    2017-01-01

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1 , potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Circadian Rhythm in both Complement Cascade (ComC) Activation and Sphingosine-1-Phosphate (S1P) Levels in Human Peripheral Blood Supports a Role for the ComC-S1P Axis in Circadian Changes in the Number of Stem Cells Circulating in Peripheral Blood.

    PubMed

    Budkowska, Marta; Ostrycharz, Ewa; Wojtowicz, Adrianna; Marcinowska, Zuzanna; Woźniak, Jarosław; Ratajczak, Mariusz Z; Dołęgowska, Barbara

    2018-06-17

    The number of hematopoietic stem/progenitor cells (HSPCs) circulating in peripheral blood (PB) is regulated by a circadian rhythm, and more HSPCs circulate in PB in the morning hours than at night. Different mechanisms have been proposed that might regulate this process, including changes in tonus of β-adrenergic innervation of bone marrow (BM) tissue. Our group reported that in mice circadian changes in the number of HSPCs circulating in PB correlates with diurnal activation of the complement cascade (ComC) and that the mice deficient in C5 component of ComC (C5-KO mice) do not show circadian changes in the number of circulating HSPCs in PB. We also reported the existence of a gradient between PB and BM of a bioactive phosphosphingolipid, sphingosine-1-phosphate (S1P), which is a major PB chemottractant for BM-residing HSPCs. Based on these observations, we investigated activation of the ComC and the level of S1P in the PB of 66 healthy volunteers. We found that both ComC activation and the S1P level undergo changes in a circadian cycle. While the ComC becomes highly activated during deep sleep at 2 am, S1P becomes activated later, and its highest level is observed at 8 am, which precedes circadian egress of HSPCs from BM into PB. In sum, circadian activation of the ComC-S1P axis releases HSPCs from BM into PB.

  14. Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components.

    PubMed

    Gera, N; Doores, S

    2011-03-01

    Inactivation of Escherichia coli and Listeria monocytogenes were investigated in buffer and milk upon treatment with ultrasound waves (USW). In addition, sonoprotective effect of milk components and ultrasound-induced changes in bacterial cells were investigated using scanning electron microscopy (SEM). Bacterial cells were added to phosphate buffer, whole milk, skim milk, or simulated milk ultrafiltrate (SMUF). To determine the sonoprotective effect of milk components, lactose (5%), casein (3%), or β lactoglobulin (0.3%) was added to SMUF. Samples were sonicated with 24 kHz pulse USW while maintaining the system temperature between 30 to 35 °C. Aliquots were drawn at set times during sonication and bacteria were enumerated by surface plating appropriate dilutions on selective and nonselective media plates. Escherichia coli exhibited significantly higher D values in whole (2.43 min) and skim milk (2.41 min) than phosphate buffer (2.19 min). Listeria monocytogenes also showed higher D values in whole (9.31 min) and skim milk (8.61 min) compared to phosphate buffer (7.63 min). Data suggest that milk exerts a sonoprotective effect on these bacteria. Escherichia coli exhibited a log-linear inactivation kinetics followed by tailing whereas L. monocytogenes showed 1st-order kinetics throughout. Among the milk components tested, presence of lactose in SMUF resulted in significantly higher D values than SMUF for both organisms suggesting that lactose was exerting a protective effect on bacteria. SEM images showed that USW caused mechanical damage to the cell wall and cell membrane of bacteria leading to their inactivation.

  15. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    PubMed

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  16. Influence of diluent and sample processing methods on the recovery of the biocontrol agent Pantoea agglomerans CPA-2 from different fruit surfaces.

    PubMed

    Torres, R; Viñas, I; Usall, J; Remón, D; Teixidó, N

    2012-08-01

    Determining the populations of biocontrol agents applied as a postharvest treatment on fruit surfaces is fundamental to the assessment of the microorganisms' ability to colonise and persist on fruit. To obtain maximum recovery, we must develop a methodology that involves both diluent and processing methods and that does not affect the viability of the microorganisms. The effect of diluent composition was evaluated using three diluents: phosphate buffer, peptone saline and buffered peptone saline. An additional study was performed to compare three processing methods (shaking plus sonication, stomaching and shaking plus centrifugation) on the recovery efficiency of Pantoea agglomerans strain CPA-2 from apples, oranges, nectarines and peaches treated with this biocontrol agent. Overall, slight differences occurred among diluents, although the phosphate buffer maintained the most ideal pH for CPA-2 growth (between 5.2 and 6.2). Stomaching, using the phosphate buffer as diluent, was the best procedure for recovering and enumerating the biocontrol agent; this fact suggested that no lethal effects from naturally occurring antimicrobial compounds present on the fruit skins and/or produced when the tissues were disrupted affected the recovery of the CPA-2 cells, regardless of fruit type. The growth pattern of CPA-2 on fruits maintained at 20°C and under cold conditions was similar to that obtained in previous studies, which confirms the excellent adaptation of this strain to conditions commonly used for fruit storage. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    PubMed

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  18. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID:26295582

  19. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

    PubMed

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2015-03-11

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

  20. An efficient buffer-mediated control between free radical substitution and proton-coupled electron transfer: dehalogenation of iodoethane by the α-hydroxyethyl radical in aqueous solution.

    PubMed

    Ljubić, Ivan; Matasović, Brunislav; Bonifačić, Marija

    2013-11-07

    A remarkable buffer-mediated control between free-radical substitution (FRS) and proton-coupled electron transfer (PCET) is demonstrated for the reaction between iodoethane and the α-hydroxyethyl radical in neutral aqueous solution in the presence of bicarbonate or phosphate buffer. The reaction is initiated by the γ-radiolysis of the water solvent, and the products, either the iodine atom (FRS) or anion (PCET), are analysed using ion chromatographic and spectrophotometric techniques. A detailed insight into the mechanism is gained by employing density functional theory (M06-2X), Møller-Plesset perturbation treatment to the second order (MP2), and multireference methods (CASSCF/CASPT2). Addition of a basic buffer anion is indispensable for the reaction to occur and the competition between the two channels depends subtly on its proton accepting affinity, with FRS being the dominant channel in the phosphate and PCET in the bicarbonate containing solutions. Unlike the former, the latter channel sustains a chain-like process which significantly enhances the dehalogenation. The present systems furnish an example of the novel PCET/FRS dichotomy, as well as insights into possibilities of its efficient control.

  1. In vitro behaviour of three biocompatible glasses in composite implants.

    PubMed

    Varila, Leena; Lehtonen, Timo; Tuominen, Jukka; Hupa, Mikko; Hupa, Leena

    2012-10-01

    Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.

  2. Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation.

    PubMed

    Gundogdu, Nuran; Cetin, Meltem

    2014-11-01

    In this study, the preparation and in vitro characterisation of metformin HCl-loaded CS-PLGA nanoparticles (NPs) were aimed. The prepared nanoparticles (blank nanoparticles (C-1), 50 mg of metformin HCl loaded nanoparticles (C-2) and 75 mg of metformin HCl loaded nanoparticles (C-3) ranged in size from 506.67±13.61 to 516.33±16.85 nm and had surface charges of 22.57±1.21 to 32.37±0.57 mV. Low encapsulation efficiency was observed for both nanoparticle formulations due to the leakage of metformin HCl to the external medium during preparation of nanoparticles. Nanoparticle formulations showed highly reproducible drug release profiles. ~20% of metformin HCl was released within 30 minutes and approximately 98% of the loaded metformin HCl was released at 144 hours in a phosphate buffer (PB; pH 6.8). No statistically significant difference was noted between the in vitro release profiles of the nanoparticles (C-2 and C-3) containing metformin HCl. Also, nanoparticles were characterised using FT-IR and DSC.

  3. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    PubMed

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  4. Zinc Speciation in Proximity to Phosphate Application Points in a Lead/Zinc Smelter-Contaminated Soil

    EPA Science Inventory

    The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminate...

  5. Lead and Arsenic Uptake by Leafy Vegetables Grown on Contaminated Soils: Effects of Mineral and Organic Amendments

    PubMed Central

    McBride, Murray B.; Simon, Tobi; Tam, Geoffrey; Wharton, Sarah

    2015-01-01

    To assess strategies for mitigating Pb and As transfer into leafy vegetables from contaminated garden soils, we conducted greenhouse experiments using two field-contaminated soils amended with materials expected to reduce metal phytoavailability. Lettuce and mustard greens grown on these soils were analysed by ICP-MS, showing that some Pb and As transfer into the vegetables occurred from both soils tested, but plant Pb concentrations were highly variable among treatment replicates. Soil-to-plant transfer was more efficient for As than for Pb. Contamination of the leaves by soil particles probably accounted for most of the vegetable Pb, since plant Pb concentrations were correlated to plant tissue concentrations of the immobile soil elements Al and Fe. This correlation was not observed for vegetable As concentrations, evidence that most of the soil-to-plant transfer for this toxic metal occurred by root uptake and translocation into the above-ground tissues. A follow-up greenhouse experiment with lettuce on one of the two contaminated soils revealed a lower and less variable foliar Pb concentration than observed in the first experiment, with evidence of less soil particle contamination of the crop. This reduced transfer of Pb to the crop appeared to be a physical effect attributable to the greater biomass causing reduced overall exposure of the above-ground tissues to the soil surface. Attempts to reduce soil Pb and As solubility and plant uptake by amendment at practical rates with stabilizing materials including composts, peat, Ca phosphate, gypsum and Fe oxide, were generally unsuccessful. Only Fe oxide reduced soluble As in the soil, but this effect did not persist. Phosphate amendment rapidly increased soil As solubility but had no measurable effect on either soil Pb solubility or concentrations of Pb or As in the leafy vegetables. The ineffectiveness of these amendments in reducing Pb transfer into leafy vegetables is attributed in this study to the low initial Pb solubility of the studied soils and the fact that the primary mechanism of Pb transfer is physical contamination. PMID:26884640

  6. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    PubMed

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  8. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell.

    PubMed

    Ren, Yueping; Chen, Jinli; Shi, Yugang; Li, Xiufen; Yang, Na; Wang, Xinhua

    2017-11-01

    Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO 3 - concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P max ) increased from 322.9mWm -2 to 527.2mWm -2 , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of polarized PZT on the crystal growth of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sun, Xiaodan; Ma, Chunlai; Wang, Yude; Li, Hengde

    2002-01-01

    The effects of polarization on the crystallization of calcium phosphate are studied in this work. Crystals of calcium phosphate from saturated solution of hydroxyapatite (HA, Ca 10(PO 4) 6(OH) 2) were deposited on the surfaces of ferroelectric ceramics lead zirconate titanium (Pb(Ti,Zr)O 3, PZT). The results of the experiment demonstrated the acceleration effects of polarized PZT on the crystal growth of calcium phosphate. Furthermore, it is indicated that polarization also influenced the orientation of the deposited crystals due to the growth of a layer of (0 0 2) oriented octacalcium phosphate (OCP, Ca 8H 2(PO 4) 6·5H 2O) on the negatively charged surfaces of PZT.

  10. Investigation of lead bioimmobilization and transformation by Penicillium oxalicum SL2.

    PubMed

    Ye, Binhui; Luo, Yating; He, Junyu; Sun, Lijuan; Long, Bibo; Liu, Qinglin; Yuan, Xiaofeng; Dai, Peibin; Shi, Jiyan

    2018-05-18

    Fungi Penicillium oxalicum SL2 was applied for Pb 2+ bioremediation in aqueous solution in this study. After 7 days of incubation at different initial concentrations of Pb 2+ (0, 100, 500 and 2500 mg L -1 ), most of Pb 2+ were removed (90, 98.3, and 86.2%), the maximum Pb content in mycelium reached about 155.6 mg g -1  dw. Meanwhile, the formation of extracellular secondary minerals and intracellular Pb-complex were observed and identified, the speciation of Pb in mycelium was also detected by X-ray absorption near-edge structure (XANES) spectroscopy, i.e., Pb-oxalate, Pb-citrate, Pb-hydrogen phosphate and Pb-glutathione analogues. In addition, content of glutathione and oxidized glutathione was increased under the exposure of Pb 2+ , which implied that glutathione might play a key role in Pb immobilization and detoxification in P. oxalicum SL2. This study elucidated partial mechanisms of Pb immobilization and speciation transformation of this strain, providing an alternative biomaterial in the bioremediation of Pb-contaminated wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. [Effects of the additives and the combination of plants on Pb absorption, growth and quality of Dianthus superbus].

    PubMed

    Yang, Xiao Yu; Li, Cheng; Ma, Si Yue; Li, Jian Heng

    2017-04-18

    A pot experiment was conducted to study the effects of inoculation with arbuscular mycorrhizal (AM) fungi, neighboring plants (Trifolium repens), addition of EDTA and phosphate fertilizer on the performance of Dianthus superbus grown on Pb contaminated soil. The growth and quality of D. superbus were investigated to provide a theoretical basis for the scientific cultivation of Chinese herbal medicine. The results showed that the D. superbus with AM resulted in a significant inhibition of Pb uptake (P<0.05), increase of root development and root/shoot ratio compared to untreated control plants, and with the highest content of active component. The content of emodin reached 6.5 mg·g -1 . When planting with T. repens the reducing effect of Pb absorption induced by AM fungi was insignificant. The quality of D. superbus decreased, and the emodin content decreased to 3.2 mg·g -1 , which was lower than that in the control group. However, D. superbus showed improved growth and active ingredients, and the lowest Pb content (1.3 mg·g -1 ) due to AM fungal inoculation. The addition of EDTA decreased the growth of D. superbus, but promoted the absorption of Pb, with the Pb content to 340.0 mg·g -1 . Calcium phosphate showed the ability to immobilize other heavy metals in the soil, therefore might be more suitable to be applied in the conditions of compound pollution. Considering all of the results, AM fungi play a positive role in protecting the safety and quality of Chinese herbal medicine.

  12. Fluxes of 238U decay series radionuclides in a dicalcium phosphate industrial plant.

    PubMed

    Casacuberta, N; Masqué, P; Garcia-Orellana, J

    2011-06-15

    The production of dicalcium phosphate (DCP) is part of the phosphate industry, which has been recently included in the positive list of the NORM industries defined in the revised version of the EU-BSS (Euratom 29/96). The objective of the present work is to study specific concentrations and fluxes of (238,234)U, (230)Th, (226)Ra, (210)Pb and (210)Po at the different stages of the DCP production. Results showed highest activities of (238)U and (210)Pb were found in DCP (1500-2000 Bq kg(-1)); (230)Th and (210)Po were released together with the sludges (1600-2000 Bq kg(-1)) and (226)Ra presented particularly high activities in water (48 × 10(3) Bq m(-3)) and in the reactor scales (115 × 10(3) Bq kg(-1)). Fluxes of radionuclides showed that (238)U outflows were equally distributed between sludges (16 × 10(3) kBq h(-1)) and dicalcium phosphate (20 × 10(3) kBq h(-1)); (230)Th and (210)Po were almost entirely released in the sludges (30 × 10(3)kBq h(-1)) and the greatest (210)Pb outflow was the DCP current (25 × 10(3) kBq h(-1)). (226)Ra was mainly discharged through the water effluent (12 × 10(3) kBq h(-1)). This work highlights the importance of studying the industrial processes involving NORM, as minor changes in the production steps lead to different radionuclide distribution in the process. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Interaction of two diclofenac acid salts with copolymers of ammoniomethacrylate: effect of additives and release profiles.

    PubMed

    Khalil, E; Sallam, A

    1999-04-01

    The copolymer of ammoniomethacrylate Eudragit RL (ERL) interacted with diclofenac acid salts (sodium and diethylamine salts) in aqueous solutions, forming a complex. Sorption experiments were done in aqueous solutions of either sodium lauryl sulfate (SLS), Tween 20, or Tween 80. The SLS competed strongly with the drug, even at low concentrations, and reduced significantly the amount of drug sorbed by ERL. Tweens at high concentrations exhibited two phase profiles: the sorption phase, which was short and during which drug concentration dropped sharply, and the release phase, during which the drug was released slowly over 24 hr and which was accompanied by dispersion of ERL particles into the colloidal dispersion. The interaction was dependent on temperature, ionic strength, and nature of the additives. The extent of interaction in water and phosphate buffer solutions was in the following order: water > pH 6 > pH 7-8. In-vitro dissolution studies of the dried complex were done over 24 hr. In water, the drug remained bound to the polymer. In aqueous surfactant solutions (SLS, Tween 20, and Tween 80) and phosphate buffer at pH 6.8, a linear relationship between drug concentration and the square root of time was obtained, indicating a matrix diffusion-controlled mechanism. However, 100% release was not reached, and resorption was observed in the phosphate buffer solution.

  14. Layer by layer assembled films between hemoglobin and multiwall carbon nanotubes for pH-switchable biosensing.

    PubMed

    Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying

    2015-05-01

    Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.

    PubMed

    Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J

    2016-04-06

    The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A calorimetric investigation of the interaction of the lac repressor with inducer.

    PubMed

    Donnér, J; Caruthers, M H; Gill, S J

    1982-12-25

    A calorimetric study has been made of the interaction between the lac repressor and isopropyl-1-thio-beta-D-galactopyranoside (IPTG). The buffer-corrected enthalpy of reaction at 25 degrees C was found to be -15.6, -24.7, -4.6 kJ/mol of bound IPTG at pH 7.0, pH 8.1, and pH 9.0, respectively. This large range of enthalpy values is in contrast to a maximum difference in the free energy of the reaction of only 1.5 kJ/mol of bound IPTG between these pH values. The reaction was found by calorimetric measurements in different buffers to be accompanied by an uptake of 0.29 mol of protons/mol of bound IPTG at pH 8.1. The pH dependency of the reaction enthalpy suggests differences in the extent of protonation of the binding site and the involvement of H bonding with IPTG. The lack of strong hydrophobic contributions in the IPTG binding process is revealed by the absence of any determinable heat capacity change for the reaction at pH 7.0. The presence of phosphate buffer significantly alters the enthalpy of IPTG binding at higher pH values, but has little effect upon the binding constant. This implies that highly negative phosphate species change the nature of the IPTG binding site without any displacement of phosphate upon IPTG binding.

  17. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.

    PubMed

    Banno, Taisuke; Miura, Shingo; Kuroha, Rie; Toyota, Taro

    2013-06-25

    Micrometer-sized self-propelled oil droplets in nonequilibrium systems have attracted much attention, since they form stable emulsions composed of oil, water, and surfactant which represent a primitive type of inanimate chemical machinery. In this work, we examined means of controlling the movement of oil droplets by studying the dynamics of n-heptyloxybenzaldehyde droplets in phosphate buffers containing alkanediyl-α,ω-bis(N-dodecyl-N,N-dimethylammonium bromide) (nG12) with either tetramethylene (4G12), octaethylene (8G12), or dodecamethylene (12G12) chains in the linker moiety. Significant differences in droplet dynamics were observed to be induced by changes in the linker structure of these gemini cationic surfactants. In a phosphate buffer containing 30 mM 4G12, self-propelled motion of droplets concurrent with the formation of molecular aggregates on their surfaces was observed, whereas the fusion of oil droplets was evident in both 8G12 and 12G12 solutions. We also determined that the surface activities and the extent of molecular self-assembly of the surfactants in phosphate buffer were strongly influenced by the alkyl chain length in the linker moiety. We therefore conclude that the surface activities of the gemini cationic surfactant have important effects on the oil-water interfacial tension of oil droplets and the formation of molecular aggregates and that both of these factors induce the unique movement of the droplets.

  18. Lead in Martian Meteorites-- Observations and Inconsistencies: I. Chassigny

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Simon, J. I.; Usui, T.

    2017-01-01

    The history of Pb isotope analyses of the martian meteorites (SNC) and their interpretations is laden with difficulties. Two different analytical groups have interpreted their ancient (= 4 Ga) shergottite Pb ages as primary [1-5]. A Nakhla age of approximately 4.3 Ga has been interpreted to be primary as well [2]. This is in stark contrast to the young (= 1.4 Ga) crystallization ages defined by the Rb-Sr, Sm-Nd, Lu-Hf, and KAr systems [6]. Possibly, a better interpretation for the ancient Pb ages is that they reflect the formation times of the various SNC source regions [7]. A difficulty in dealing with Pb is that terrestrial contamination is ubiquitous, unlike the other chronometer systems noted above. This issue is complicated by the fact that radioactive decay causes localized mineral damage. So washing and leaching to remove Pb contamination tends to remove in situ radiogenic Pb. This issue is further compounded because U and Th are often concentrated in phosphates and other minor phases, so the leaching process tends to remove these, especially phosphates. Another difficulty is that it is not clear whether the observed Pb isotopic variation in leachates, residues, and ion-microprobe analyses is due to terrestrial or to indigenous martian Pb contamination [e.g., 8]. A third difficulty is that the shergottites on the one hand, and the nakhlites and chassignites on the other, appear to have come from separate source regions with different chemical compositions [e.g., 7]. Thus, it is expected that their Pb isotopic characteristics would be different. And even if all these meteorite types came from the same source region, their igneous ages differ considerably. The nakhlites and chassignites are 1.4 Ga and the shergottites are = 600 Ma [e.g., 6]. This age difference alone should assure that the two distinct SNC groups have differing Pb isotopic signatures.

  19. Applications of vitamin B6 cofactor pyridoxal 5‧-phosphate and pyridoxal 5‧-phosphate crowned gold nanoparticles for optical sensing of metal ions

    NASA Astrophysics Data System (ADS)

    Bothra, Shilpa; Upadhyay, Yachana; Kumar, Rajender; Sahoo, Suban K.

    2017-03-01

    Vitamin B6 cofactor pyridoxal 5‧-phosphate (PLP) and PLP crowned gold nanoparticles (PLP-AuNPs) was applied for the optical chemosensing of metal ions in aqueous medium. PLP showed a visually detectable colour change from colourless to yellow and 'turn-off' fluorescence in the presence of Fe3 +. The fluorescence intensity of PLP at 433 nm was also blue-shifted and enhanced at 395 nm upon addition of Al3 +. When the PLP was functionalized over AuNPs surface, the wine red colour of PLP-AuNPs was turned to purplish-blue and the SPR band at 525 nm was red-shifted upon addition of Al3 +, Cd2 + and Pb2 + due to the complexation-induced aggregation of nanoparticles. The developed sensing systems exhibited good selectivity and specificity for the detected analytes (Fe3 +, Al3 +, Cd2 + and Pb2 +).

  20. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns.

    PubMed

    Cheraghi, Mehrdad; Lorestani, Bahareh; Merrikhpour, Hajar

    2012-01-01

    The use of phosphate fertilizers is essential in agriculture, because they supply farmland with nutrients for growing plants. However, heavy metals might be included as impurities in natural materials and minerals, so heavy metals can also be present in phosphate fertilizers or other chemical fertilizers. The aim of this work was to assess the heavy metal content and contamination status of agricultural soils in the Hamadan province of Iran used for the cultivation of different crops, including cucumber, potatoes, and sugar beet. Surface soil samples were collected and analyzed to determine the total concentration of specific elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), before the pollution index was calculated for each element. Soils used for the cultivation of the three types of crop were not contaminated with As, Cr, Cu, Pb, or Zn. However, the pollution indices for Cd were 1.1, 4.4, and 3.8 in cucumber, potato, and sugar beet fields, respectively, which indicated moderate, high, and high levels of contamination, respectively. Soils from potato and sugar beet fields were heavily contaminated with Cd, which may have resulted from long-term overuse of phosphate fertilizers.

  1. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  2. Evaluation of ocular and general safety following repeated dosing of dexamethasone phosphate delivered by transscleral iontophoresis in rabbits.

    PubMed

    Patane, Michael A; Schubert, William; Sanford, Thomas; Gee, Raymond; Burgos, Melissa; Isom, William P; Ruiz-Perez, Begona

    2013-10-01

    To evaluate the toxicokinetics and tolerability (local ocular and general toxicity) of the anti-inflammatory agent, dexamethasone phosphate (a prodrug of dexamethasone) delivered to the eye in rabbits by transscleral iontophoresis. Female rabbits (n=6/group) received dexamethasone phosphate (40 mg/mL ophthalmic solution, EGP-437) transsclerally to the right eye (OD) using the Eyegate(®) II ocular iontophoresis delivery system once biweekly for 24 consecutive weeks at current doses of 10, 14, and 20 mA-min and current levels up to, and including -4 mA for 3.5-5 min. The study included 2 control groups (n=6/group): (1) a noniontophoresis control [an ocular applicator-loaded citrate buffer (placebo) without current] and (2) an iontophoresis control (a citrate buffer plus cathode iontophoresis at 20 mA-min, -4 mA for 5 min). Recoverability was evaluated 4 weeks following the last dose in 2 animals per group. The left eye (OS) was untreated and served as an internal control for each animal. Ocular and general safety of dexamethasone phosphate and dexamethasone were assessed. Other evaluations included toxicokinetics, ophthalmic examinations, intraocular pressure (IOP) measurements, electroretinographs, clinical observations, body weight, hematology and serum chemistry, gross necropsy, organ weight, and microscopic histopathology. The biweekly transscleral iontophoresis with either the citrate buffer or dexamethasone phosphate at cathodic doses up to, and including 20 mA-min and currents up to, and including -4 mA for 24 weeks was well-tolerated. Transient signs of conjunctival hyperemia and chemosis, mild corneal opacity, and fluorescein staining of the cornea were noted and attributed to expected ocular reactions to the temporary placement of the ocular applicator and application of iontophoresis. There were no dexamethasone phosphate-, dexamethasone-, or iontophoresis-related effects on IOP, electroretinography, or histopathology. Reductions in body weight gain, anemia, decreased leukocyte and lymphocyte counts, compromised liver function, enlarged liver, and reduced spleen weight were consistent with systemic corticosteroid-mediated pharmacology, repeated use of anesthesia, stress, and sedentariness, and unlikely to be related to iontophoresis application. The results of this investigation suggest that repeated transscleral iontophoresis with dexamethasone phosphate may be safe for use as a treatment for inflammatory ocular disorders that require prolonged and/or repeated corticosteroid therapy.

  3. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  4. Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes.

    PubMed

    Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly

    2016-09-18

    In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.

  5. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  6. Structural characterization and dissolution profile of mycophenolic acid cocrystals.

    PubMed

    Zeng, Qing-Zhu; Ouyang, Jian; Zhang, Shuo; Zhang, Lei

    2017-05-01

    Three novel cocrystals of mycophenolic acid (MPA) with isonicotinamide (MPA-ISO), minoxidil (MPA-MIN) and 2,2'-dipyridylamine (MPA-DPA) as coformers have been prepared successfully by both slow evaporation and liquid-assisted grinding. The structures of these cocrystals show that all the three coformers form hydrogen bonds with the carboxylic acid group of MPA. The cocrystal MPA-ISO possesses remarkably improved solubility and dissolution rate, while two other cocrystals exhibit the opposite characteristics. The solids in the slurry with pH6.8 phosphate buffer and cocrystals remain as the incipient cocrystal after 24h. However, evidence of slight polymerization was shown in the slurry of pH6.8 phosphate buffer with MPA and MPA-ISO cocrystal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Program on Resorbable Radio Devices

    DTIC Science & Technology

    2014-05-05

    radio circuit - + PDMS Copper Mg PBS Buffer 1© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com Transient, Biocompatible...way, ZnO provides an alternative to silicon [ 16 ] or organic semi- conductors [ 17–20 ] for physically transient forms of electronics and sensors...immersion in several different types of solutions, such as phosphate buffer saline (PBS, pH 4.0, Sigma- Figure 1 . Materials and designs for

  8. Assessing the influence of media composition and ionic strength on drug release from commercial immediate-release and enteric-coated aspirin tablets.

    PubMed

    Karkossa, Frank; Klein, Sandra

    2017-10-01

    The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.

  9. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.

    PubMed

    Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L

    1999-12-01

    The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate formation. Both sodium and potassium chloride contribute more to turbidity of the reconstituted solid than either sodium or potassium phosphate buffers at similar ionic strength, with sodium chloride resulting in a substantially higher level of aggregates than potassium chloride. At a given cooling rate, the specific surface area of dried solids is approximately a factor of 2 higher for the formulation containing sodium chloride than the formulation containing potassium chloride. Turbidity is also influenced by the extent of secondary drying, which underscores the importance of minimizing secondary drying of this system. Including a surfactant such as polysorbate 80, either in the formulation or in the water used for reconstitution, decreased, but did not eliminate, insoluble aggregates. There was no correlation between pharmaceutically acceptability of the freeze-dried cake and insoluble aggregate levels in the reconstituted product.

  10. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  11. Synthesis, characterization and electrical properties of a lead sodium vanadate apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun-Ouadhour, E.; Ternane, R.; Hassen-Chehimi, D. Ben

    2008-08-04

    The lacunary lead sodium vanadate apatite Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} was synthesized by the solid-state reaction method. The compound was characterized by X-ray powder diffraction, infrared (IR) absorption spectroscopy and Raman scattering spectroscopy. By comparing the effect of vanadate and phosphate ions on electrical properties, it was concluded that Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} apatite is better conductor than Pb{sub 8}Na{sub 2}(PO{sub 4}){sub 6} apatite.

  12. [High performance liquid chromatogram (HPLC) determination of adenosine phosphates in rat myocardium].

    PubMed

    Miao, Yu; Wang, Cheng-long; Yin, Hui-jun; Shi, Da-zhuo; Chen, Ke-ji

    2005-04-18

    To establish method for the quantitative determination of adenosine phosphates in rat myocardium by optimized high performance liquid chromatogram (HPLC). ODS HYPERSIL C(18) column and a mobile phase of 50 mmol/L tribasic potassium phosphate buffer solution (pH 6.5), with UV detector at 254 nm were used. The average recovery rates of myocardial adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were 99%-107%, 96%-104% and 95%-119%, respectively; relative standard deviations (RSDs) of within-day and between-days were less than 1.5% and 5.1%, respectively. The method is simple, rapid and accurate, and can be used to analyse the adenosine phosphates in myocardium.

  13. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    PubMed

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Development of buffer layer structure for epitaxial growth of (100)/(001)Pb(Zr,Ti)O3-based thin film on (111)Si wafer

    NASA Astrophysics Data System (ADS)

    Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji

    2017-07-01

    This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.

  15. Condensation of activated diguanylates on a Poly/C/ template. [prebiotic polynucleotide replication mechanism

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Bridson, P. K.; Orgel, L. E.

    1981-01-01

    The metal-ion catalysis of the oligomerization of activated diguanylate isomers on a polycytidylic acid template is studied in an investigation of possible early prebiotic polynucleotide replication mechanisms. The 5'-imidazolides of diguanylates linked 2' to 5' or 3' to 5' were reacted with polyC in a 1-methylimidazole or a 2,6-lutidine buffer in the presence of a Zn(+2) or a Pb(+2) catalyst, and reaction products were determined by paper chromatography, paper electrophoresis and liquid chromatography. In the lutidine buffer, the presence of both the Zn(+2) catalyst and the polyC template is found to result in the production of 3'-5' linked oligomers with up to 10 diguanylate units, and from diguanylates in the presence of the monomer. In the reactions conducted in the 1-methylimidazole buffer, the addition of Pb(+2) is found to lead to less marked increases in oligomerization in the presence of template, with approximately equal proportions of 2'-5' and 3'-5' oligomers formed from the 2'-5' substrate and mainly 3'-5' bonds from the 3'-5' linked dimer.

  16. Epitaxial growth and dielectric properties of Pb0.4Sr0.6TiO3 thin films on (00l)-oriented metallic Li0.3Ni0.7O2 coated MgO substrates

    NASA Astrophysics Data System (ADS)

    Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.

    2007-06-01

    Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.

  17. Influence of some mononucleotides and their corresponding nucleosides on the metabolism of carbohydrates in the isolated rat diaphragm muscle

    PubMed Central

    Beloff-Chain, Anne; Betto, P.; Bleszynski, W.; Catanzaro, Raffaella; Chain, E. B.; Dmitrovskii, A. A.; Longinotti, L.; Pocchiari, F.

    1965-01-01

    1. The influence of ATP on glucose metabolism was studied in the isolated rat diaphragm; it was shown that ATP increases the oxidation of glucose and the aerobic conversion of glucose into lactate, whereas it decreases glycogen synthesis. There was no influence of ATP on the anaerobic formation of lactate from glucose. 2. A maximum effect of ATP on the oxidation of glucose (about 160% increase) was obtained in the presence of 10mm-ATP; in the presence of 2mm-ATP the effect was about 65%, and was approximately constant from 10 to 90min. incubation period. 3. In a phosphate-free tris-buffered medium the oxidation of glucose was considerably decreased, but the percentage stimulation by ATP was about the same as in a phosphate-buffered medium. 4. ATP was shown to increase the oxidation of fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and, to a much smaller extent, pyruvate. 5. ADP stimulated the oxidation of glucose to the same extent as ATP at a concentration of 2mm and the effect with AMP was only slightly less; IMP and adenosine had only a small stimulatory effect at this concentration, whereas inosine had no effect. PMID:16749165

  18. Final report of the key comparison APMP.QM-K91: APMP comparison on pH measurement of phthalate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Ketrin, Rosi; Nuryatini; Thanh, Ngo Huy; Truong Chinh, Nguyen; Vospelova, Alena; Bastkowski, Frank; Sander, Beatrice; Matzke, Jessica; Prokunin, Sergey; Frolov, Dmitry; Aprelev, Alexey; Dobrovolskiy, Vladimir; Uysal, Emrah; Liv, Lokman; Velina Lara-Manzano, Judith; Montero-Ruiz, Jazmin; Ortiz-Aparicio, JosÉ Luis; Ticona Canaza, Galia; Anuar Mohd Amin, Khirul; Abd Kadir, Haslina; Bakovets, Nickolay; Wong, Siu-Kay; Lam, Wai-Hing

    2017-01-01

    The APMP.QM-K91 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phthalate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan at the APMP-TCQM meeting held September 22-23, 2014. After approval by TCQM, the comparison has been conducted by NMIJ. The comparison is a key comparison following CCQM-K91. The comparison material was a phthalate buffer of pH around 4.0 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the third APMP key comparison on pH measurement and the fifth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006, APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011 and APMP.QM-K19/APMP.QM-P25 (a borate buffer) in 2013-2014. The results can be used further by any participant to support its CMC claim at least for a phthalate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Host plasma proteins on the surface of pathogenic Trichomonas vaginalis.

    PubMed

    Peterson, K M; Alderete, J F

    1982-08-01

    Sodium dodecyl sulfate-gel electrophoresis and fluorography and fluorography technology revealed that pathogenic Trichomonas vaginalis was able to acquire numerous loosely associated plasma proteins during incubation in normal human plasma. These proteins were readily removed by repeated washing of the parasite in phosphate-buffered saline. Plasma proteins avidly bound to the surface of T. vaginalis were also detected using a highly sensitive and specific agglutination assay with protein A-bearing Staphylococcus aureus pretreated with monospecific antiserum directed against individual human serum proteins. These avidly associated plasma proteins could not be removed by repeated washing in phosphate-buffered saline or by treatment of washed, live organisms with surface-modifying reagents such as trypsin and periodate. A combined radioimmunoprecipitation-gel electrophoresis-fluorography methodology indicated that parasite biosynthesis of hostlike macromolecules was not responsible for the observed agglutination and reinforced the idea of trichosomal acquisition of plasma components. Finally, incubation of trichomonads with plasma in various buffers at different pH values did not alter the agglutination patterns. These and other data suggest that specific membrane sites trichomonal binding of host proteins. The biological significance of our results is discussed.

  20. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; McFeters, G. A.

    1990-01-01

    Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.

  1. Apoenzyme of aspartate aminotransferase isozymes in serum and its diagnostic usefullness for hepatic diseases.

    PubMed

    Kamei, S; Ohkubo, A; Yamanaka, M

    1979-08-15

    Aspartate aminotransferase in the sera of normal subjects and of patients with hepatic diseases has been immunologically separated into two isoenzymes, cytosolic aspartate aminotransferase and mitochondrial aspartate aminotransferase. The activity of the isoenzymes was measured in three different buffer solutions with or without pyridoxal 5'-phosphate. To attain maximal activation, the apoenzyme of mitochondrial fraction must be preincubated with pyridoxal 5'-phosphate longer than that of the cytosolic fraction in either of the three reaction mixtures. In most sera the activity of both isoenzymes increased substantially in the presence of pyridoxal 5'-phosphate regardless of the type of buffer solutions. Both the apoenzymatic activity and the ratio of apo- to holo-enzymatic activity of each of the isoenzymes varied among samples from the patients with hepatic diseases. However, significantly high ratios of apo- to holo-enzymatic activity of both isoenzymes were observed in the patients with hepatoma in contrast with those with other hepatic diseases. These findings suggest that the simultaneous measurement of both apo- and holo-enzyme activities of aspartate aminotransferase isoenzymes may be useful in the clinical assessment of hepatic diseases.

  2. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields.

    PubMed

    Rafique, Nazia; Tariq, Saadia R

    2016-05-01

    Heavy metals enriched agricultural soils have been the subject of great concern because these metals have potential to be transferred to the soil solution and afterward accumulated in food chain. To study the trace metal persistence in crop soil, 90 representative soil samples were collected and analyzed for heavy metal (As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn) and anions (chloride, nitrates, phosphates and sulfates). Cluster and factor analysis techniques were used for the source identification of these excessive heavy metal levels and ecological risk was determined with potential ecological risk assessment. The degree of enrichment of eight studied heavy metals in comparison with the corresponding background levels decreased in order: Cd > Pb > Fe > Ni > Mn > As > Cu ~ Zn. Arsenic and cadmium exhibited 1.30- and 1.64-fold exceeded levels than threshold limits set by National environment quality standards, respectively. Cd in cotton field's soil may lead to higher potential risk than other heavy metals. On overall basis, the cumulative mean potential ecological risk for the district (207.75) corresponded to moderate risk level with higher contributions from As and Pb especially from Cd. Cadmium formed strong positive correlation with phosphate content of soil at p < 0.01. Cluster analysis indicated that Cluster 1 (extremely polluted) probably originated from anthropogenic inputs of phosphate fertilizer and past usage of arsenical pesticides.

  3. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  4. Potentially modifiable factors associated with non-adherence to phosphate binder use in patients on hemodialysis.

    PubMed

    Martins, Maria Tereza Silveira; Silva, Luciana Ferreira; Kraychete, Angiolina; Reis, Dandara; Dias, Lidiane; Schnitman, Gabriel; Oliveira, Lívia; Lopes, Gildete Barreto; Lopes, Antonio Alberto

    2013-10-03

    Despite the evidence that phosphate binder (PB) is associated with improved outcomes many hemodialysis patients do not adhere to prescribed PB regimen. Therefore, barriers to PB adherence should be identified and eliminated. The purpose of this study was to evaluate PB adherence among hemodialysis patients and to explore potentially modifiable factors associated with low PB adherence. A cross-sectional study (502 patients) was performed in four dialysis units in Salvador, Brazil, using data from the second phase of the Prospective Study of the Prognosis of Chronic Hemodialysis Patients (PROHEMO). Patients were categorized as adherent or non-adherent to PB based on their responses to a semi-structured questionnaire. Non-adherence to PB was observed for 65.7% of the patients. After adjustments for numerous covariates, cerebrovascular disease (odds ratio (OR), 3.30; 95% confidence interval (CI), 1.03-10.61), higher PTH (OR per each 300 pg/mL, 1.14; 95% CI, 1.01-1.28), lack of comprehension of the appropriate time to use PB (OR, 7.09; 95% CI, 2.10-23.95) and stopping PB use after feeling better (OR, 4.54; 95% CI, 1.45-14.25) or feeling worse (OR, 11.04; 95% CI, 1.79- 68.03) were significantly associated with PB non-adherence. By contrast, the adjusted odds of PB non-adherence were lower for patients with more years on dialysis (OR by each 2 years, 0.87; 95% CI, 0.80-0.95), with serum phosphorus above 5.5 mg/dL (OR, 0.53; 95% CI 0.34-0.82), who referred that were encouraged by the dialysis staff to be independent (OR, 0.52; 95% CI 0.30-0.90), and reported that the nephrologist explained how PB should be used (OR, 0.20; 95% CI 0.05-0.73). The results of the present study are encouraging by showing evidence that improvement in the care provided by the dialysis staff and the attending nephrologist may play an important role in reducing the high prevalence of non-adherence to PB in maintenance hemodialysis patients. A new questionnaire is presented and may help to evaluate systematically the patients regarding PB adherence in hemodialysis setting.

  5. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  6. Increased degradation rate of nitrososureas in media containing carbonate.

    PubMed

    Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov

    2009-01-01

    The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.

  7. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.

    PubMed

    Baheiraei, Nafiseh; Yeganeh, Hamid; Ai, Jafar; Gharibi, Reza; Azami, Mahmoud; Faghihi, Faezeh

    2014-11-01

    There has been a growing trend towards applying conducting polymers for electrically excitable cells to increase electrical signal propagation within the cell-loaded substrates. A novel biodegradable electroactive polyurethane containing aniline pentamer (AP-PU) was synthesized and fully characterized by spectroscopic methods. To tune the physico-chemical properties and biocompatibility, the AP-PU was blended with polycaprolactone (PCL). The presence of electroactive moieties and the electroactivity behavior of the prepared films were confirmed by UV-visible spectroscopy and cyclic voltammetry. A conventional four probe analysis demonstrated the electrical conductivity of the films in the semiconductor range (~10(-5)S/cm). MTT assays using L929 mouse fibroblast and human umbilical vein endothelial cells (HUVECs) showed that the prepared blend (PB) displayed more cytocompatibility compared with AP-PU due to the introduction of a biocompatible PCL moiety. The in vitro cell culture also confirmed that PB was as supportive as tissue culture plate. The antioxidant activity of the AP-PU was proved using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV-vis spectroscopy. In vitro degradation tests conducted in phosphate-buffered saline, pH7.4 and pH5.5, proved that the films were also biodegradable. The results of this study have highlighted the potential application of this bioelectroactive polyurethane as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Functional Analysis of Human NF1 in Drosophila

    DTIC Science & Technology

    2007-01-01

    adjusted to 1 mg/ml. Fifty microlitres of 2 assay buffer (50 mM Tris– acetate buffer at pH 7.5, 20 mM MgCl2, 2 mM dithiothreitol, 10 mM creatine phosphate...200 units/ml creatinine kinase, 0.1 mM cAMP at pH 7.5, 0.2 mg/ml bovine serum albumin, 0.02 mg/ml aprotinin, 0.02 mg/ml pepstatin and fresh 0.2 mg

  9. A self-powered kinesin-microtubule system for smart cargo delivery

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Dong, Weiguang; Feng, Xiyun; Li, Jieling; Li, Junbai

    2014-11-01

    A smart self-powered cargo delivery system that is composed of creatine phosphate kinase (CPK) microspheres, kinesins and microtubules is demonstrated. The CPK microsphere not only acts as an ATP generation and buffering system, but also as a carrier for cargo transport, thus realizing the easy loading and self-powered delivery of cargos at the same time.A smart self-powered cargo delivery system that is composed of creatine phosphate kinase (CPK) microspheres, kinesins and microtubules is demonstrated. The CPK microsphere not only acts as an ATP generation and buffering system, but also as a carrier for cargo transport, thus realizing the easy loading and self-powered delivery of cargos at the same time. Electronic supplementary information (ESI) available: Experimental details, Fig. S1-S4, and Mov. S1-S6. See DOI: 10.1039/c4nr04454a

  10. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    NASA Astrophysics Data System (ADS)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  11. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  12. Fracture toughness and fractography of dental cements, lining, build-up, and filling materials.

    PubMed

    Mueller, H J

    1990-06-01

    The plane strain fracture toughness (K1c) at 23 degrees C and the fractography of zinc phosphate and zinc polycarboxylate cements, buffered glass ionomer liner, amalgam alloy admixed glass ionomer build-up material, and glass ionomer, microfilled and conventionally filled bis-GMA resin composite filling materials were analyzed by elastic-plastic short-rod and scanning electron microscopy methodologies. Results indicated that significant differences occurred in their K1c's from the lowest to the highest in the following groups of materials, (i) buffered glass ionomer, (ii) zinc phosphate, glass ionomer, zinc polycarboxylate, and alloy mixed glass ionomer, (iii) microfilled resin, and (iv) conventionally filled resin. All materials except the microfilled resin, which fractured via crack jumping, fractured via smooth crack advance. Filler debonding without any crack inhibiting process was related to materials with low K1c values. The incorporation of either buffering compounds or alloy particles into glass ionomer had no beneficial effect upon fracture toughness. This was in contrast to microfilled and conventionally filled resins where either crack blunting or crack pinning processes, respectively, were likely involved with their increased K1c's. For microfilled resin, distinct radial zones positioned around the chevron apex and characterized by plastically deformed deposited material were related to distinct crack jumps that occurred in the load versus displacement behavior. Finally, for the two remaining materials of zinc phosphate and polycarboxylate, particle cleavage and matrix debonding for the former and shear yielding for the latter occurred.

  13. High-performance liquid chromatography method for the simultaneous determination of sulfamethoxazole and trimethoprim in bovine milk using an on-line clean-up column.

    PubMed

    Pereira, A V; Cass, Q B

    2005-11-05

    A bidimensional HPLC method for the simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) in bovine milk has been developed and validated. After centrifugation, aliquots (150 microl) of milk samples were directly injected to a column-switching HPLC system. At the first step a RAM octyl-BSA column was employed to automatically remove proteins that otherwise would interfere with milk analysis. The mobile phase 0.01 M phosphate buffer pH 6.0:acetonitrile (95:5, v/v) was used in the first 5 min for the elution of milk proteins and then 0.01 M phosphate buffer pH 6.0:acetonitrile (83:17, v/v) for transfer SMX and TMP to the analytical column. The separation of SMX and TMP from one another and from other remaining milk components was performed on an octyl column using the mobile phase 0.01 M phosphate buffer pH 5.0:acetonitrile (82:18, v/v), which were detected by UV at 265 nm. The calibration graphs were linear in the concentration ranges of 25-800 ng/ml and 50-400 ng/ml for SMX and TMP, respectively. The intra- and inter-assay coefficients of variation were less than 15% for both drugs. The validated method was applied to the analysis of milk samples of twelve (two groups of six) cows after administration (intramuscular or subcutaneous) of a single recommended therapeutic dose of the SMX-TMP combination.

  14. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1981-01-01

    The isotopic compositions of uranium and lead in Ca-Al-rich inclusions from the Allende chondrite and in whitlockite from the St. Severin chondrite and the Angra dos Reis achondrite are reported. Isoptopic analysis of acid soluble fractions of the Allende inclusions and the meteoritic whitlockite, which show isotopic anomalies in other elements, reveals U-235/U-238 ratios from 1/137.6 to 1/138.3, within 20 per mil of normal terrestrial U abundances. The Pb isotopic compositions of five coarse-grained Allende inclusions give a mean Pb-207/Pb-206 model age of 4.559 + or - 0.015 AE, in agreement with the U results. Pb isotope ratios of two fine-grained inclusions and a coarse-grained inclusion with strong mass fractionation and some nonlinear isotopic anomalies indicate that the U-Pb systems of these inclusions have evolved differently from the rest of Allende. Th/U abundance ratios in the Allende inclusions and meteoritic phosphate are found to range from 3.8 to 96, presumably indicating an optimal case for Cm/U fractionation, although the normal U concentrations do not support claims of abundant live Cm-247 or Cm-247/U-238 fractionation at the time of meteorite formation, in contrast to previous results. A limiting Cm-247/U-235 ratio of 0.004 at the time of meteorite formation is calculated which implies that the last major r process contribution at the protosolar nebula was approximately 100 million years prior to Al-26 formation and injection.

  15. Fabrication and characterization of {110}-oriented Pb(Zr,Ti)O3 thin films on Pt/SiO2/Si substrates using PdO//Pd buffer layer

    NASA Astrophysics Data System (ADS)

    Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi

    2017-10-01

    A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.

  16. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    PubMed

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. INACTIVATION OF HEPATITIS A VIRUS AND MS2 BY OZONE AND OZONE-HYDROGEN PEROXIDE IN BUFFERED WATER

    EPA Science Inventory

    The comparative inactivation of highly purified hepatitis A virus (HAV) and MS2 by 1 mg H202/L, 2.0 and 0.4 mg 03/L, and 2.0 mg 03/L plus 0.6, 1.0, or 1.6 mg H202/L, at 3-10 degrees C, in 0.01 M phosphate buffer (pH 6-10) was determined. Both HAV and MS2 were completely inactivat...

  18. Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Kirpichtchikova, Tatiana A.; Manceau, Alain; Spadini, Lorenzo; Panfili, Fré; dé; ric; Marcus, Matthew A.; Jacquet, Thierry

    2006-05-01

    Synchrotron-based X-ray radiation microfluorescence (μ-SXRF) and micro-focused and powder extended X-ray absorption fine structure (EXAFS) spectroscopy measurements, combined with desorption experiments and thermodynamic calculations, were used to evaluate the solubility of metal contaminants (Zn, Cu, Pb) and determine the nature and fractional amount of Zn species in a near-neutral pH (6.5-7.0) truck-farming soil contaminated by sewage irrigation for one hundred years. Zn is the most abundant metal contaminant in the soil (1103 mg/kg), followed by Pb (535 mg/kg) and Cu (290 mg/kg). The extractability of Zn, Pb, and Cu with citrate, S, S-ethylenediaminedisuccinic acid (EDDS), and ethylenediaminetetraacetic acid (EDTA) was measured as a function of time (24 h, 72 h, 144 h), and also as a function of the number of applications of the chelant (5 applications each with 24 h of contact time). Fifty-three percent of the Zn was extracted after 144 h with citrate, 51% with EDDS and 46% with EDTA, compared to 69, 87, and 61% for Cu, and 24, 40, and 34% for Pb. Renewing the extracting solution removed more of the metals. Seventy-nine, 65, and 57% of the Zn was removed after five cycles with citrate, EDDS and EDTA, respectively, compared to 88, 100, and 72% for Cu, and 91, 65, and 47% for Pb. Application to the untreated soil of μ-SXRF, laterally resolved μ-EXAFS combined with principal component analysis, and bulk averaging powder EXAFS with linear least-squares combination fit of the data, identified five Zn species: Zn-sorbed ferrihydrite, Zn phosphate, Zn-containing trioctahedral phyllosilicate (modeled by the Zn kerolite, Si 4(Mg 1.65Zn 1.35)O 10(OH) 2 · nH 2O), willemite (Zn 2SiO 4), and gahnite (ZnAl 2O 4), in proportions of ˜30, 28, 24, 11, and less than 10%, respectively (precision: 10% of total Zn). In contrast to Cu and Pb, the same fractional amount of Zn was extracted after 24 h contact time with the three chelants (40-43% of the initial content), suggesting that one of the three predominant Zn species was highly soluble under the extraction conditions. Comparison of EXAFS data before and after chemical treatment revealed that the Zn phosphate component was entirely and selectively dissolved in the first 24 h of contact time. Preferential dissolution of the Zn phosphate component is supported by thermodynamic calculations. Despite the long-term contamination of this soil, about 79% of Zn, 91% of Pb, and 100% of Cu can be solubilized in the laboratory on a time scale of a few days by chemical complexants. According to metal speciation results and thermodynamic calculations, the lower extraction level measured for Zn is due to the Zn phyllosilicate component, which is less soluble than Zn phosphate and Zn ferrihydrite.

  19. Solid-phase extraction of small biologically active peptides on cartridges and microelution 96-well plates from human urine.

    PubMed

    Semenistaya, Ekaterina; Zvereva, Irina; Krotov, Grigory; Rodchenkov, Grigory

    2016-09-01

    Currently liquid chromatography - mass spectrometry (LC-MS) analysis after solid-phase extraction (SPE) on weak cation-exchange cartridges is a method of choice for anti-doping analysis of small bioactive peptides such as growth hormone releasing peptides (GHRPs), desmoporessin, LHRH, and TB-500 short fragment. Dilution of urine samples with phosphate buffer for pH adjustment and SPE on weak cation exchange microelution plates was tested as a means to increase throughput of this analysis. Dilution using 200 mM phosphate buffer provides good buffering capacity without affecting the peptides recoveries. SPE on microelution plates was performed on Waters Positive Pressure-96 Processor with subsequent evaporation of eluates in nitrogen flow. Though the use of smaller sample volume decreases the pre-concentration factor and increases the limits of detection of 5 out of 17 detected peptides, the recovery, linearity, and reproducibility of the microelution extraction were comparable with cartridge SPE. The effectiveness of protocols was confirmed by analysis of urine samples containing ipamorelin, and GHRP-6 and its metabolites. SPE after urine sample dilution with buffer can be used for faster sample preparation. The use of microelution plates decreases consumption of solvents and allows processing of up to 96 samples simultaneously. Cartridge SPE with manual рН adjustment remains the best option for confirmation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  1. Report of the key comparison APMP.QM-K19. APMP comparison on pH measurement of borate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Obromsook, Krairerk; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Wong, Siu-Kay; Lam, Wai-Hing; Zakaria, Osman; Anuar Mohd. Amin, Khirul; Thanh, Ngo Huy; Máriássy, Michal; Vyskocil, Leos; Hankova, Zuzana; Fisicaro, Paola; Stoica, Daniela; Singh, Nahar; Soni, Daya; Ticona Canaza, Galia; Kutovoy, Viatcheslav; Barbieri Gonzaga, Fabiano; Dias, Júlio Cesar; Vospelova, Alena; Bakovets, Nickolay; Zhanasbayeva, Bibinur

    2015-01-01

    The APMP.QM-K19 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a borate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan (NMIJ) and the National Institute of Metrology (Thailand) (NIMT) at the APMP-TCQM meeting held 26-27 November 2012. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K19 and CCQM-K19.1. The comparison material was a borate buffer of pH around 9.2 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the second APMP key comparison on pH measurement and the fourth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006 and APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Rhizofiltration - the use of plants to remove heavy metals from aqueous streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, I.; Dushenkov, V.; Kumar, P.B.A.N.

    1995-12-31

    Heavy metal pollution of water is a major environmental problem facing the modern world. Rhizofiltration - the use of plant roots to remove heavy metals from water is an emerging environmental clean-up technology. Roots of many hydroponically grown terrestrial plants e.g. Indian mustard, sunflower (Hefianthus annuus L.) and various grasses effectively removed toxic metals such as CU{sup -2}, Cd{sup +2}Cr{sup +6}, Ni{sup +2}Pb{sup +2} and Zn{sup +2} from aqueous solutions. Roots of B. juncea concentrated these metals 131 to 563-fold (on a DW basis) above initial solution concentrations. Pb removal was based on tissue absorption and on root-mediated Pb precipitationmore » in the form of insoluble inorganic compounds, mainly Pb phosphate. At high Pb concentrations precipitation played a progressively more important role in Pb removal than tissue absorption, which saturated at approximately 100 {mu}g Pb/g DW root. Dried roots were much less effective than live roots in accumulating Pb and in removing Pb from the solution.« less

  3. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle.

    PubMed

    Abe, H; Dobson, G P; Hoeger, U; Parkhouse, W S

    1985-10-01

    Histidine-related compounds (HRC) were analyzed in fish skeletal muscle as a means of identifying their precise role in intracellular buffering. Fish muscle was used because it contains two functionally and spatially distinct fiber types, red and white. Two fish species, rainbow trout (Salmo gairdneri) and the Pacific blue marlin (Makaira nigricans), were studied because these species demonstrate widely different activity patterns. Marlin red and white muscle buffer capacity was two times higher than trout with white muscle, buffering being two times greater than red in both species. Buffer capacity was highest in the 6.5-7.5 pH range for all tissues, which corresponded to their high anserine levels. The titrated HRC buffering was greater than the observed HRC buffering, which suggested that not all HRC were available to absorb protons. The HRC contribution to total cellular buffering varied from a high of 62% for marlin white to a low of 7% for trout red. The other principal buffers were found to be phosphate and protein with taurine contributing within red muscle in the 7.0-8.0 pH range. HRC were found to be dominant in skeletal muscle buffering by principally accounting for the buffering capacity differences found between the species and fiber types.

  4. Determination of monosaccharides derivatized with 2-aminobenzoic Acid by capillary electrophoresis.

    PubMed

    Abo, Mitsuru; He, Li-Ping; Sato, Kae; Okubo, Akira

    2013-01-01

    Reducing monosaccharides were derivatized with 2-aminobenzoic acid (2-AA) through reductive amination using sodium cyanoborohydride as a reductant, and the derivatives were separated by capillary zone electrophoresis with UV detection using 50 mM sodium phosphate (pH 5.5) or 150 mM sodium borate-50 mM sodium phosphate (pH 7.0) running buffer. The derivatives of monosaccharides, which are major components of various carbohydrate materials, were completely separated within 25 min.

  5. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks.

    PubMed

    Zhang, Zhuo; Guo, Guanlin; Wang, Mei; Zhang, Jia; Wang, Zhixin; Li, Fasheng; Chen, Honghan

    2018-01-01

    Phosphate amendments, especially phosphate rock (PR), are one of the most commonly used materials to stabilize heavy metals in contaminated soils. However, most of PR reserve consists of low-grade ore, which limits the efficiency of PR for stabilizing heavy metals. This study was to enhance the stabilization of heavy metals through improving the available phosphorous (P) release of PR by oxalic acid activation. Raw PR and activated PR (APR) were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and laser diffraction to determine the changes of structure and composition of APR. The stabilization effectiveness of lead (Pb), zinc (Zn), and cadmium (Cd) in soils by APR was investigated through toxicity leaching test and speciation analysis. The results indicated that after treatment by oxalic acid, (1) the crystallinity of the fluorapatite phase of PR transformed into the weddellite phase; (2) the surface area of PR increased by 37%; (3) the particle size of PR became homogenized (20-70 μm); and (4) the available P content in PR increased by 22 times. These changes of physicochemical characteristics of PR induced that APR was more effective to transform soil heavy metals from the non-residual fraction to the residual fraction and enhance the stabilization efficiency of Pb, Zn, and Cd than PR. These results are significant for the future use of low-grade PR to stabilize heavy metals.

  6. Subcellular Compartmentalization and Chemical Forms of Lead Participate in Lead Tolerance of Robinia pseudoacacia L. with Funneliformis mosseae

    PubMed Central

    Huang, Li; Zhang, Haoqiang; Song, Yingying; Yang, Yurong; Chen, Hui; Tang, Ming

    2017-01-01

    The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.) seedlings inoculated with Funneliformis mosseae isolate (BGC XJ01A) under a range of Pb treatments (0, 90, 900, and 3000 mg Pb kg-1 soil). The majority of Pb was retained in the roots of R. pseudoacacia under Pb stress, with a significantly higher retention in the inoculated seedlings. F. mosseae inoculation significantly increased the proportion of Pb in the cell wall and soluble fractions and decreased the proportion of Pb in the organelle fraction of roots, stems, and leaves, with the largest proportion of Pb segregated in the cell wall fraction. F. mosseae inoculation increased the proportion of inactive Pb (especially pectate- and protein-integrated Pb and Pb phosphate) and reduced the proportion of water-soluble Pb in the roots, stems, and leaves. The subcellular compartmentalization of Pb in different chemical forms was highly correlated with improved plant biomass, height, and photosynthesis in the inoculated seedlings. This study indicates that F. mosseae could improve Pb tolerance in R. pseudoacacia seedlings growing in Pb polluted soils. PMID:28443111

  7. Calcium manganate: A promising candidate as buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pengjun; Wang, Hongguang; Kong, Wenwen

    2014-11-21

    We have systematically studied the feasibility of CaMnO{sub 3} thin film, an n-type perovskite, to be utilized as the buffer layer for hybrid halide perovskite photovoltaic-thermoelectric device. Locations of the conduction band and the valence band, spontaneous polarization performance, and optical properties were investigated. Results indicate the energy band of CaMnO{sub 3} can match up well with that of CH{sub 3}NH{sub 3}PbI{sub 3} on separating electron-hole pairs. In addition, the consistent polarization angle helps enlarge the open circuit voltage of the composite system. Besides, CaMnO{sub 3} film shows large absorption coefficient and low extinction coefficient under visible irradiation, demonstrating highmore » carrier concentration, which is beneficial to the current density. More importantly, benign thermoelectric properties enable CaMnO{sub 3} film to assimilate phonon vibration from CH{sub 3}NH3PbI{sub 3}. All the above features lead to a bright future of CaMnO{sub 3} film, which can be a promising candidate as a buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems.« less

  8. Photovoltaic effect of ferroelectric Pb(Zr0.52,Ti0.48)O3 deposited on SrTiO3 buffered n-GaAs by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Yunxia; Zhu, Jun; Liu, Xingpeng; Wu, Zhipeng

    Ferroelectric Pb(Zr0.52,Ti0.48)O3(PZT) thin film was grown on n-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) 〈100〉 PZT//(002) 〈100〉 STO//(001) 〈110〉 GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45∘ in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5G (100mW/cm2) illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.

  9. Development of a new class of chemical and biological ultrasensors: Ribonuclease contamination and control

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In order to define ribonuclease contamination, an assay for ribonuclease having picogram level sensitivity was established. In this assay, polycytidylic acid is digested by ribonuclease leading to smaller fragments of poly C that remain soluble after treatment of the sample with perchloric acid and lanthanum acetate. An absorbance measurement at 260 nm of the supernatant from the centrifuged sample measures the ribonuclease. A standard curve is shown. Using this assay procedure, ribonuclease contamination was found to be significant in routine laboratory proteins, in particular, bovine serum albumin, lysozyme, catalase, and cytochrome C. This was confirmed by demonstrating a considerable reduction in this activity in the presence of phosphate buffer since phosphate inhibits ribonuclease. Ribonuclease contamination was not significantly encountered in routine laboratory glassware, plasticware, column surfaces, chromatographic particles, and buffer reagents, including airborne contamination. Some contamination could be introduced by fingerprints, however.

  10. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions.

    PubMed

    Wang, Lu-Ning; Huang, Xian-Qiu; Shinbine, Alyssa; Luo, Jing-Li

    2013-02-01

    The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0-4 g L(-1)) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.

  11. Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for Organo-Phosphate Detection

    PubMed Central

    Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo

    2017-01-01

    A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071

  12. Microwave fixation versus formalin fixation of surgical and autopsy tissue.

    PubMed

    Login, G R

    1978-05-01

    Microwave irradiation of surgical and autopsy tissue penetrates, fixes, and hardens the tissue almost immediately (the fluid media used in the microwave consisted of saline, ten percent phosphate buffered formalin, and distilled water). Tissue sections from a representative sample of organs were tested. Comparable sections were simultaneously fixed in a phosphate buffered ten percent formalin bath in a vaccum oven as a control. Hematoxylin and eosin were used to stain the sections. Results equal to and superior to the control method were obtained. Saline microwave fixation was superior to formalin microwave fixation. Tissues placed in Zenker's solution and fixed in standard microwave oven (for approximately one minute) yielded results at least equal to conventional Zenker fixation (approximately two hours). No tissue hardening resulted from Zenker microwave fixation. A unique time versus temperature graph (microwave heating curve) reduces individual variation with this technique.

  13. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination.

    PubMed

    Raindlová, Veronika; Pohl, Radek; Hocek, Michal

    2012-03-26

    5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation of Fluorohydroxyapatite with Silver Diamine Fluoride

    PubMed Central

    Mei, M.L.; Nudelman, F.; Marzec, B.; Walker, J.M.; Lo, E.C.M.; Walls, A.W.; Chu, C.H.

    2017-01-01

    Silver diamine fluoride (SDF) is found to promote remineralization and harden the carious lesion. Hydroxyapatite crystallization is a crucial process in remineralization; however, the role of SDF in crystal formation is unknown. We designed an in vitro experiment with calcium phosphate with different SDF concentrations (0.38, 1.52, 2.66, 3.80 mg/mL) to investigate the effect of this additive on the nucleation and growth of apatite crystals. Two control groups were also prepared—calcium phosphate (CaCl2·2H2O + K2HPO4 in buffer solution) and SDF (Ag[NH3]2F in buffer solution). After incubation at 37 oC for 24 h, the shape and organization of the crystals were examined by bright-field transmission electron microscopy and electron diffraction. Unit cell parameters of the obtained crystals were determined with powder X-ray diffraction. The vibrational and rotational modes of phosphate groups were analyzed with Raman microscopy. The transmission electron microscopy and selected-area electron diffraction confirmed that all solids precipitated within the SDF groups were crystalline and that there was a positive correlation between the increased percentage of crystal size and the concentration of SDF. The powder X-ray diffraction patterns indicated that fluorohydroxyapatite and silver chloride were formed in all the SDF groups. Compared with calcium phosphate control, a contraction of the unit cell in the a-direction but not the c-direction in SDF groups was revealed, which suggested that small localized fluoride anions substituted the hydroxyl anions in hydroxyapatite crystals. This was further evidenced by the Raman spectra, which displayed up-field shift of the phosphate band in all the SDF groups and confirmed that the chemical environment of the phosphate functionalities indeed changed. The results suggested that SDF reacted with calcium and phosphate ions and produced fluorohydroxyapatite. This preferential precipitation of fluorohydroxyapatite with reduced solubility could be one of the main factors for arrest of caries lesions treated with SDF. PMID:28521107

  15. Determination of bromhexine in plasma by reversed-phase liquid chromatography. Interference of lipoproteins on extraction.

    PubMed

    Johansson, M; Lenngren, S

    1988-11-18

    Extraction of the hydrophobic tertiary amine bromhexine from plasma using cyclohexane-heptafluorobutanol (99.5:0.5, v/v) was studied at different pH values. The extraction yield from buffer solutions was quantitative at pH greater than 4.1, but from plasma the extraction yield decreased with increasing pH. Furthermore, at pH 8.4 the extraction yield varied greatly (56-99%) in different human plasma. The addition of lipoproteins to phosphate buffer, at pH 8.1, decreased the extraction yields considerably. Quantitative extraction from plasma was obtained by using a very long extraction time at pH 8.4 or by decreasing the pH to 5.4. The chromatographic system consisted of a reversed-phase column (Nucleosil C18, 5 microns) with an acidic mobile phase (methanol-phosphate buffer, pH 2) containing an aliphatic tertiary amine. UV detection at 308 or 254 nm was used. The limit of quantitation was 5 ng/ml using 3.00 ml of plasma and detection at 254 nm. The intra-assay precision for bromhexine was better than 3.6% at 5 ng/ml.

  16. Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification.

    PubMed

    Fischer, Sina; Kühnlenz, Tanja; Thieme, Michael; Schmidt, Holger; Clemens, Stephan

    2014-07-01

    Lead (Pb) ranks first among metals with respect to tonnage produced and released into the environment. It is highly toxic and therefore an important pollutant of worldwide concern. Plant Pb uptake, accumulation, and detoxification mobilize Pb into food webs. Still, knowledge about the underlying mechanisms is very limited. This is largely due to serious experimental challenges with respect to Pb availability. In most studies, Pb(II) concentrations in the millimolar range have been used even though the toxicity threshold is in the nanomolar range. We therefore developed a low-phosphate, low-pH assay system that is more realistic with respect to soil solution conditions. In this system the growth of Arabidopsis thaliana seedlings was significantly affected by the addition of only 0.1 μM Pb(NO3)2. Involvement of phytochelatins in the detoxification of Pb(II) could be demonstrated by investigating phytochelatin synthase mutants. They showed a stronger inhibition of root growth and a lack of Pb-activated phytochelatin synthesis. In contrast, other putative Pb hypersensitive mutants were unaffected under these conditions, further supporting the essential role of phytochelatins for Pb detoxification. Our findings demonstrate the need to monitor plant Pb responses at realistic concentrations under controlled conditions and provide a strategy to achieve this.

  17. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    PubMed

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multiprobe Spectroscopic Inverstigation of Molecular-level Behavior within Aqueous 1-Butyl-3-methylimidazolium Tetrafluoroborate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Abhra; Ali, Maroof; Baker, Gary A

    2009-01-01

    In this work, an array of molecular-level solvent featuressincluding solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusionswere investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probessa watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroaniline, and 4-nitroanilineswere employed to determine ET (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices * (dipolarity/polarizability), R (hydrogenmore » bond donor acidity), and (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-1-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a sphere-of-action quenching model, a further manifestation of the microheterogeneity of the system. Fluorescence correlation spectroscopic results for both small (BODIPY FL) and macromolecular (Texas Red-10 kDa dextran conjugate) diffusional probes provide additional evidence in support of microphase segregation inherent to aqueous [bmim][BF4].« less

  19. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  20. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    PubMed Central

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  1. Hormone-Dependence of Sarin Lethality in Rats: Sex Differences and Stage of the Estrous Cycle

    DTIC Science & Technology

    2015-06-12

    that causes numerous physiological events including miosis, salivation , respiratory failure, tremors, seizures, and death. Treatment regimens that...into 96-well plates. The reactions were initiated by the addition of 290 μL of 50 mM sodium phosphate buffer ( pH 8.0) containing one of the following...buffer containing 50mMHEPES pH 7.4 in a total volume of 280 μL. Treat- ed samples were loaded into a 96-microtiter plate well, and the reaction was

  2. A Core Facility for the Study of Neurotoxins of Biological Origin

    DTIC Science & Technology

    1990-06-15

    toxicity of 5 x 10-8 MLD/mg protein. Sodium 125 Iodine and the Bolton-Hunter Reagent - 1251odine were purchased from Amersham. Chloramine- T , glycine...tyrosine and all salts and buffers were from Sigma Chemical Co. and Fisher. Iodination procedures. The chloramine- T method was used essentially as...previously described. Tetanus toxin (100 ig) in sodium phosphate buffer (100 mM, pH 7.4) was mixed with chloramine- T (0.5 mM) and Na 1251 (1 mCi) for 30

  3. Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium - identification of the responsible medium components.

    PubMed

    Pless-Petig, Gesine; Metzenmacher, Martin; Türk, Tobias R; Rauen, Ursula

    2012-10-10

    In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.

  4. Two new glucose 6-phosphate dehydrogenase variants associated with congenital nonspherocytic hemolytic anemia found in Japan: GD(-) Tokushima and GD(-) Tokyo.

    PubMed

    Miwa, S; Ono, J; Nakashima, K; Abe, S; Kageoka, T

    1976-01-01

    Two new variants of glucose 6-phosphate dehydrogenase (G6PD) deficiency associated with chronic nonspherocytic hemolytic anemia were discovered in Japan. Gd(-) Tokushima was found in a 17-years-old male whose erythrocytes contained 4.4% of normal enzyme activity. Partially purified enzyme revealed a main band of normal electrophoretic mobility with additional two minor bands of different mobility; normal Km G6P, and Km NADP five-to sixfold higher than normal; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; marked thermal instability; a normal pH curve; and normal Ki NADPH. The hemolytic anemia was moderate to severe. Gd(-) Tokyo was characterized from a 15-year-old male who had chronic nonspherocytic hemolytic anemia of mild degree. The erythrocytes contained 3% of normal enzyme activity, and partially purified enzyme revealed slow electrophoretic mobility (90% of normal for both a tris-hydrochloride buffer system and a tris-EDTA-borate buffer system, and 70% of normal for a phosphate buffer system); normal Km G6P and Km NADP; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; greatly increased thermal instability; a normal pH curve; and normal Ki NADPH. These two variants are clearly different from hitherto described G6PD variants, including the Japanese variants Gd(-) Heian and Gd(-) Kyoto. The mothers of both Gd(-) Tokushima and Gd(-) Tokoyo were found to be heterozygote by an ascorbate-cyanide test.

  5. Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP.

    PubMed

    Chaudhuri, Gouri; Chatterjee, Saswata; Venu-Babu, P; Ramasamy, K; Thilagaraj, W Richard

    2013-02-01

    The hydrolysis of p-nitrophenyl phosphate (pNPP) by calf intestinal alkaline phosphatase (CIAP) was investigated with respect to kinetic parameters such as V(max), K(m) and K(cat) under varying pH, buffers, substrate concentration, temperature and period of incubation. Highest activity was obtained with Tris-HCl at pH 11, while in the case of glycine-NaOH buffer the peak activity was recorded at pH 9.5. The enzyme showed the following kinetic characteristics with pNPP in 50 mM Tris-HCl at pH 11 and 100 mM glycine-NaOH at pH 9.5 at an incubation temperature of 37 degrees C: V(max), 3.12 and 1.6 micromoles min(-1) unit(-1); K(m), 7.6 x 10(-4) M and 4 x 10(-4) M; and K(cat), 82.98 s(-1) and 42.55 s(-1), respectively. CIAP displayed a high temperature optimum of 45 degrees C at pH 11. The kinetic behaviour of the enzyme under different parameters suggested that the enzyme might undergo subtle conformational changes in response to the buffers displaying unique characteristics. Bioprecipitation of Cu2+ from 50 ppm of CuCl2 solution was studied where 64.3% of precipitation was obtained. P(i) generated from CIAP-mediated hydrolysis of pNPP was found to bind with copper and precipitated as copper-phosphate. Thus, CIAP could be used as a test candidate in bioremediation of heavy metals from industrial wastes through generation of metal-phosphate complexes.

  6. Development and Optimization of HPLC Analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in Pharmaceutical Dosage Forms Using Experimental Design.

    PubMed

    Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M

    2016-11-01

    A new simple, sensitive, rapid and accurate gradient reversed-phase high-performance liquid chromatography with photodiode array detector (RP-HPLC-DAD) was developed and validated for simultaneous analysis of Metronidazole (MNZ), Spiramycin (SPY), Diloxanidefuroate (DIX) and Cliquinol (CLQ) using statistical experimental design. Initially, a resolution V fractional factorial design was used in order to screen five independent factors: the column temperature (°C), pH, phosphate buffer concentration (mM), flow rate (ml/min) and the initial fraction of mobile phase B (%). pH, flow rate and initial fraction of mobile phase B were identified as significant, using analysis of variance. The optimum conditions of separation determined with the aid of central composite design were: (1) initial mobile phase concentration: phosphate buffer/methanol (50/50, v/v), (2) phosphate buffer concentration (50 mM), (3) pH (4.72), (4) column temperature 30°C and (5) mobile phase flow rate (0.8 ml min -1 ). Excellent linearity was observed for all of the standard calibration curves, and the correlation coefficients were above 0.9999. Limits of detection for all of the analyzed compounds ranged between 0.02 and 0.11 μg ml -1 ; limits of quantitation ranged between 0.06 and 0.33 μg ml -1 The proposed method showed good prediction ability. The optimized method was validated according to ICH guidelines. Three commercially available tablets were analyzed showing good % recovery and %RSD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. U, Th, Pb and REE abundances and Pb 207/Pb 206 ages of individual minerals in returned lunar material by ion microprobe mass analysis.

    NASA Technical Reports Server (NTRS)

    Andersen, C. A.; Hinthorne, J. R.

    1972-01-01

    Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.

  8. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    NASA Astrophysics Data System (ADS)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  9. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    PubMed Central

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  10. Increasing the potency of an alhydrogel-formulated anthrax vaccine by minimizing antigen-adjuvant interactions.

    PubMed

    Watkinson, Allan; Soliakov, Andrei; Ganesan, Ashok; Hirst, Karie; Lebutt, Chris; Fleetwood, Kelly; Fusco, Peter C; Fuerst, Thomas R; Lakey, Jeremy H

    2013-11-01

    Aluminum salts are the most widely used vaccine adjuvants, and phosphate is known to modulate antigen-adjuvant interactions. Here we report an unexpected role for phosphate buffer in an anthrax vaccine (SparVax) containing recombinant protective antigen (rPA) and aluminum oxyhydroxide (AlOH) adjuvant (Alhydrogel). Phosphate ions bind to AlOH to produce an aluminum phosphate surface with a reduced rPA adsorption coefficient and binding capacity. However, these effects continued to increase as the free phosphate concentration increased, and the binding of rPA changed from endothermic to exothermic. Crucially, phosphate restored the thermostability of bound rPA so that it resembled the soluble form, even though it remained tightly bound to the surface. Batches of vaccine with either 0.25 mM (subsaturated) or 4 mM (saturated) phosphate were tested in a disease model at batch release, which showed that the latter was significantly more potent. Both formulations retained their potency for 3 years. The strongest aluminum adjuvant effects are thus likely to be via weakly attached or easily released native-state antigen proteins.

  11. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens

    PubMed Central

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570

  12. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.

    PubMed

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.

  13. Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb+2 as lead phosphate.

    PubMed

    Naik, M M; Khanolkar, D; Dubey, S K

    2013-02-01

    A lead-resistant bacteria isolated from soil contaminated with car battery waste were identified as Providencia alcalifaciens based on biochemical characteristics, FAME profile and 16S rRNA sequencing and designated as strain 2EA. It resists lead nitrate up to 0·0014 mol l(-1) by precipitating soluble lead as insoluble light brown solid. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometric analysis (SEM-EDX) and X-ray diffraction spectroscopy (XRD) revealed extracellular light brown precipitate as lead orthophosphate mineral, that is, Pb(9) (PO(4))(6) catalysed by phosphatase enzyme. This lead-resistant bacterial strain also demonstrated tolerance to high levels of cadmium and mercury along with multiple antibiotic resistance. Providencia alcalifaciens strain 2EA could be used for bioremediation of lead-contaminated environmental sites, as it can efficiently precipitate lead as lead phosphate. © 2012 The Society for Applied Microbiology.

  14. Treatment of toxic metal aqueous solutions: encapsulation in a phosphate-calcium aluminate matrix.

    PubMed

    Fernández, J M; Navarro-Blasco, I; Duran, A; Sirera, R; Alvarez, J I

    2014-07-01

    Polyphosphate-modified calcium aluminate cement matrices were prepared by using aqueous solutions polluted with toxic metals as mixing water to obtain waste-containing solid blocks with improved management and disposal. Synthetically contaminated waters containing either Pb or Cu or Zn were incorporated into phosphoaluminate cement mortars and the effects of the metal's presence on setting time and mechanical performance were assessed. Sorption and leaching tests were also executed and both retention and release patterns were investigated. For all three metals, high uptake capacities as well as percentages of retention larger than 99.9% were measured. Both Pb and Cu were seen to be largely compatible with this cementitious matrix, rendering the obtained blocks suitable for landfilling or for building purposes. However, Zn spoilt the compressive strength values because of its reaction with hydrogen phosphate anions, hindering the development of the binding matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Automated cassette-based production of high specific activity [203/212Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer.

    PubMed

    Li, Mengshi; Zhang, Xiuli; Quinn, Thomas P; Lee, Dongyoul; Liu, Dijie; Kunkel, Falk; Zimmerman, Brian E; McAlister, Daniel; Olewein, Keith; Menda, Yusuf; Mirzadeh, Saed; Copping, Roy; Johnson, Frances L; Schultz, Michael K

    2017-09-01

    A method for preparation of Pb-212 and Pb-203 labeled chelator-modified peptide-based radiopharmaceuticals for cancer imaging and radionuclide therapy has been developed and adapted for automated clinical production. Pre-concentration and isolation of radioactive Pb2+ from interfering metals in dilute hydrochloric acid was optimized using a commercially-available Pb-specific chromatography resin packed in disposable plastic columns. The pre-concentrated radioactive Pb2+ is eluted in NaOAc buffer directly to the reaction vessel containing chelator-modified peptides. Radiolabeling was found to proceed efficiently at 85°C (45min; pH 5.5). The specific activity of radiolabeled conjugates was optimized by separation of radiolabeled conjugates from unlabeled peptide via HPLC. Preservation of bioactivity was confirmed by in vivo biodistribution of Pb-203 and Pb-212 labeled peptides in melanoma-tumor-bearing mice. The approach has been found to be robustly adaptable to automation and a cassette-based fluid-handling system (Modular Lab Pharm Tracer) has been customized for clinical radiopharmaceutical production. Our findings demonstrate that the Pb-203/Pb-212 combination is a promising elementally-matched radionuclide pair for image-guided radionuclide therapy for melanoma, neuroendocrine tumors, and potentially other cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dried venous blood samples for the detection and quantification of measles IgG using a commercial enzyme immunoassay.

    PubMed Central

    Riddell, Michaela A.; Byrnes, Graham B.; Leydon, Jennie A.; Kelly, Heath A.

    2003-01-01

    OBJECTIVES: To determine whether samples of dried venous blood (DVB) were an acceptable alternative to serum for detecting measles-specific IgG in a commercial enzyme immunoassay. METHODS: Paired samples of serum and DVB were collected from 98 suspected cases of measles and 1153 schoolchildren in Victoria, Australia. All samples were tested using the Dade Behring Enzygnost Anti-Measles-Virus/IgG immunoassay. DVB samples were eluted using either the sample buffer provided with the kit or 5% dry milk powder in phosphate-buffered saline-Tween 20. FINDINGS: DVB samples eluted by sample buffer showed significantly better linear correlation to the serum samples than did DVB samples eluted in 5% dry milk in phosphate-buffered saline-Tween 20. To improve the comparability of serum and DVB samples an adjustment factor of 1.28 was applied to the optical density (OD) values of DVB. This adjustment also enabled quantification of the titre of measles IgG in mIU/ml directly from the OD value using the alpha calculation as specified by the kit protocol. For DVB samples stored for less than six months at 4 degrees C, the assay showed an overall sensitivity of 98.4% and a specificity of 97.2% compared with the results of serum testing. CONCLUSION: These results illustrate the potential for DVB samples to be widely used with the Dade Behring enzyme immunoassay system for determining the immunity of the individual and the population to the measles virus. PMID:14758429

  17. Vtc5, a Novel Subunit of the Vacuolar Transporter Chaperone Complex, Regulates Polyphosphate Synthesis and Phosphate Homeostasis in Yeast*

    PubMed Central

    Desfougères, Yann; Gerasimaitė, R̄uta; Jessen, Henning Jacob

    2016-01-01

    SPX domains control phosphate homeostasis in eukaryotes. Ten genes in yeast encode SPX-containing proteins, among which YDR089W is the only one of unknown function. Here, we show that YDR089W encodes a novel subunit of the vacuole transporter chaperone (VTC) complex that produces inorganic polyphosphate (polyP). The polyP synthesis transfers inorganic phosphate (Pi) from the cytosol into the acidocalcisome- and lysosome-related vacuoles of yeast, where it can be released again. It was therefore proposed for buffer changes in cytosolic Pi concentration (Thomas, M. R., and O'Shea, E. K. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 9565–9570). Vtc5 physically interacts with the VTC complex and accelerates the accumulation of polyP synthesized by it. Deletion of VTC5 reduces polyP accumulation in vivo and in vitro. Its overexpression hyperactivates polyP production and triggers the phosphate starvation response via the PHO pathway. Because this Vtc5-induced starvation response can be reverted by shutting down polyP synthesis genetically or pharmacologically, we propose that polyP synthesis rather than Vtc5 itself is a regulator of the PHO pathway. Our observations suggest that polyP synthesis not only serves to establish a buffer for transient drops in cytosolic Pi levels but that it can actively decrease or increase the steady state of cytosolic Pi. PMID:27587415

  18. Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass.

    PubMed

    Denisov, Igor A; Skoptsov, Nikolai A; Gaponenko, Maxim S; Malyarevich, Alexander M; Yumashev, Konstantin V; Lipovskii, Andrei A

    2009-11-01

    Passive Q-switched mode locking of a 2.09 microm flashlamp-pumped Cr(3+),Tm(3+),Ho(3+):Y(3)Sc(2)Al(3)O(12) laser by use of a phosphate glass doped with PbS quantum dots of 5 nm in radius was demonstrated. Mode-locked pulses of 290 ps in duration and up to 0.5 mJ in energy were registered.

  19. Novel lead-iron phosphate glass

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    The invention described and claimed in the specification relates to the discovery that effective addition of Fe.sub.2 O.sub.3 to a lead phosphate glass results in a glass having enhanced chemical durability and physical stability, and consists essentially of the glass resulting from melting a mixture consisting essentially of, in weight percent, 40-66 percent PbO, 30-55 percent P.sub.2 O.sub.5 and an effective concentration up to 12 percent Fe.sub.2 O.sub.3.

  20. Novel lead-iron phosphate glass

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1989-07-11

    The invention described and claimed in the specification relates to the discovery that effective addition of Fe[sub 2]O[sub 3] to a lead phosphate glass results in a glass having enhanced chemical durability and physical stability, and consists essentially of the glass resulting from melting a mixture consisting essentially of, in weight percent, 40--66 percent PbO, 30--55 percent P[sub 2]O[sub 5] and an effective concentration up to 12 percent Fe[sub 2]O[sub 3].

  1. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.

    PubMed

    Kielar, Charlotte; Xin, Yang; Shen, Boxuan; Kostiainen, Mauri A; Grundmeier, Guido; Linko, Veikko; Keller, Adrian

    2018-05-25

    DNA origami have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Here, we investigate DNA origami stability in low-Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+-DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low-μM range. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chemical Modification of the Olfactory Receptor Epithelium of Vertebrate Species

    DTIC Science & Technology

    1990-06-28

    Pre-column Derivatization Procedure: 1.0 mL of the Jeffamine solution was mixed with 1.0 mL of NaCN, 5.0 mL of phosphate buffer pH 9.5 followed by 1.0...running buffer. All the unprotonated components elute at the same time because their rate of elution is controlled only by the rate of electroosmotic ...elecarosomotic mobility under our experimental conditions. Using an average elution time of 22.2 min the measured electroosmotic mobility is 1.3 x 10-4 cm2

  3. Initial-phase optimization for bioremediation of munition compound-contaminated soils.

    PubMed Central

    Funk, S B; Roberts, D J; Crawford, D L; Crawford, R L

    1993-01-01

    We examined the bioremediation of soils contaminated with the munition compounds 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine by a procedure that produced anaerobic conditions in the soils and promoted the biodegradation of nitroaromatic contaminants. This procedure consisted of flooding the soils with 50 mM phosphate buffer, adding starch as a supplemental carbon substrate, and incubating under static conditions. Aerobic heterotrophs, present naturally in the soil or added as an inoculum, quickly removed the oxygen from the static cultures, creating anaerobic conditions. Removal of parent TNT molecules from the soil cultures by the strictly anaerobic microflora occurred within 4 days. The reduced intermediates formed from TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine were removed from the cultures within 24 days, completing the first stage of remediation. The procedure was effective over a range of incubation temperatures, 20 to 37 degrees C, and was improved when 25 mM ammonium was added to cultures buffered with 50 mM potassium phosphate. Ammonium phosphate buffer (50 mM), however, completely inhibited TNT reduction. The optimal pH for the first stage of remediation was between 6.5 and 7.0. When soils were incubated under aerobic conditions or under anaerobic conditions at alkaline pHs, the TNT biodegradation intermediates polymerized. Polymerization was not observed at neutral to slightly acidic pHs under anaerobic conditions. Completion of the first stage of remediation of munition compound-contaminated soils resulted in aqueous supernatants that contained no munition residues or aminoaromatic compounds. PMID:8357251

  4. Knot Security of 5 Metric (USP 2) Sutures: Influence of Knotting Technique, Suture Material, and Incubation Time for 14 and 28 Days in Phosphate Buffered Saline and Inflamed Equine Peritoneal Fluid.

    PubMed

    Sanders, Ruth E; Kearney, Clodagh M; Buckley, Conor T; Jenner, Florien; Brama, Pieter A

    2015-08-01

    To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. In vitro mechanical study. Knotted suture loops (n = 5/group). Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security. © Copyright 2015 by The American College of Veterinary Surgeons.

  5. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    PubMed

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  6. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend

    PubMed Central

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  7. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  8. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  9. Amperometric Determination of Glucose at Parts per Million Levels with Immobilized Glucose Oxidase.

    ERIC Educational Resources Information Center

    Sittampalam, G.; Wilson, G. S.

    1982-01-01

    An experiment on the operation and utility of an amperometric immobilized enzyme electrode (or probe) is described, including advantages of the experiment, equipment, reagents, preparation of phosphate buffer, enzyme immobilization techniques, laboratory procedures, precautions, and discussion of experimental results. (SK)

  10. Distribution of spotted fever group rickettsiae in select tissues of experimentally infected and field-collected Gulf Coast ticks.

    PubMed

    Edwards, Kristine T; Goddard, Jerome; Varela-Stokes, Andrea

    2011-05-01

    Salivary glands, midgut, Malpighian tubules, and ovaries were dissected from infected, colony-derived Amblyomma maculatum (Gulf Coast ticks) injected as nymphs with either Rickettsia parkeri (a spotted fever group rickettsia [SFGR]; treatment) or phosphate-buffered saline (negative control). For comparison, similar tissues were dissected from hemolymph-positive, field-collected ticks. Tissues were analyzed by indirect fluorescent antibody (IFA) tests. All phosphate-buffered saline-injected ticks were IFA negative, whereas SFGR were detected by IFA in 100% of the salivary glands and ovaries and 78 and 75% of midgut and Malpighian tubule samples, respectively, of R. parkeri-injected ticks. Nearly 22% (10/46) of the field-collected ticks were hemolymph positive. Of those, SFGR were detected by IFA in 80% of the salivary glands, 67% of the ovaries, and 60% in the midgut and Malpighian tubules. This is the first study to assess the distribution of SFGR in select tissues of A. maculatum ticks.

  11. Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline.

    PubMed

    Ondaral, Sedat; Çelik, Elif; Kurtuluş, Orçun Çağlar; Aşıkuzun, Elif; Yakın, İsmail

    2018-04-15

    The chitosan adsorption on films prepared using nanofibrillated cellulose (NFC) with different content of aldehyde group was studied by means of Quartz Crystal Microbalance with Dissipation (QCM-D). Results showed that frequency change (Δf) was higher when the chitosan adsorbed on NFC film consisting more aldehyde group indicating the higher adsorption. The (Δf) and dissipation (ΔD) factors completely changed during adsorption of chitosan pre-treated with acetic acid: Δf increased and ΔD decreased, oppositely to un-treated chitosan adsorption. After acid treatment, molecular weight and crystallinity index of chitosan decreased addition to change in chemical structure. It was found that more phosphate buffered saline (PBS), as a model liquid for wound exudate, adsorbed to acid treated chitosan-NFC film, especially to film having more aldehyde groups. Comparing with bare NFC film, chitosan-NFC films adsorbed less PBS because chitosan crosslinked the NFC network and blocked the functional groups of NFC and thus, preventing swelling film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Development of a nucleotide sugar purification method using a mixed mode column & mass spectrometry detection.

    PubMed

    Eastwood, Heather; Xia, Fang; Lo, Mei-Chu; Zhou, Jing; Jordan, John B; McCarter, John; Barnhart, Wesley W; Gahm, Kyung-Hyun

    2015-11-10

    Analysis of nucleotide sugars, nucleoside di- and triphosphates and sugar-phosphates is an essential step in the process of understanding enzymatic pathways. A facile and rapid separation method was developed to analyze these compounds present in an enzymatic reaction mixture utilized to produce nucleotide sugars. The Primesep SB column explored in this study utilizes hydrophobic interactions as well as electrostatic interactions with the phosphoric portion of the nucleotide sugars. Ammonium formate buffer was selected due to its compatibility with mass spectrometry. Negative ion mode mass spectrometry was adopted for detection of the sugar phosphate (fucose-1-phophate), as the compound is not amenable to UV detection. Various mobile phase conditions such as pH, buffer concentration and organic modifier were explored. The semi-preparative separation method was developed to prepare 30mg of the nucleotide sugar. (19)F NMR was utilized to determine purity of the purified fluorinated nucleotide sugar. The collected nucleotide sugar was found to be 99% pure. Published by Elsevier B.V.

  13. A Janus cobalt-based catalytic material for electro-splitting of water

    NASA Astrophysics Data System (ADS)

    Cobo, Saioa; Heidkamp, Jonathan; Jacques, Pierre-André; Fize, Jennifer; Fourmond, Vincent; Guetaz, Laure; Jousselme, Bruno; Ivanova, Valentina; Dau, Holger; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2012-09-01

    The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable and efficient systems for the conversion and storage of renewable energy sources. The production of hydrogen through water splitting seems a promising and appealing solution. We found that a robust nanoparticulate electrocatalytic material, H2-CoCat, can be electrochemically prepared from cobalt salts in a phosphate buffer. This material consists of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte and mediates H2 evolution from neutral aqueous buffer at modest overpotentials. Remarkably, it can be converted on anodic equilibration into the previously described amorphous cobalt oxide film (O2-CoCat or CoPi) catalysing O2 evolution. The switch between the two catalytic forms is fully reversible and corresponds to a local interconversion between two morphologies and compositions at the surface of the electrode. After deposition, the noble-metal-free coating thus functions as a robust, bifunctional and switchable catalyst.

  14. Effects of coating layer and release medium on release profile from coated capsules with Eudragit FS 30D: an in vitro and in vivo study.

    PubMed

    Moghimipour, Eskandar; Rezaei, Mohsen; Kouchak, Maryam; Fatahiasl, Jafar; Angali, Kambiz Ahmadi; Ramezani, Zahra; Amini, Mohsen; Dorkoosh, Farid Abedin; Handali, Somayeh

    2018-05-01

    The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.

  15. Direct enantioseparation of catechin and epicatechin in tea drinks by 6-O-alpha-D-glucosyl-beta-cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Kodama, Shuji; Yamamoto, Atsushi; Matsunaga, Akinobu; Yanai, Hiroko

    2004-08-01

    Cyclodextrin-modified micellar electrokinetic chromatography was applied to the enantioseparation of catechin and epicatechin using 6-O-alpha-D-glucosyl-beta-cyclodextrin together with sodium dodecyl sulfate and borate-phosphate buffer. Factors affecting chiral resolution and migration time of catechin and epicatechin were studied. The optimum running conditions were found to be 200 mM borate-20 mM phosphate buffer (pH 6.4) containing 25 mM 6-O-alpha-D-glucosyl-beta-cyclodextrin and 240 mM sodium dodecyl sulfate with an effective voltage of +25 kV at 20 degrees C using direct detection at 210 nm. Under these conditions, the resolution (Rs) of racemic catechin and epicatechin were 4.15 and 1.92, respectively. With this system, catechin and epicatechin enantiomers along with other four catechins ((-)-catechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epigallocatechin gallate) and caffeine in tea samples were analyzed successfully. The difference of migration time between catechin and epicatechin is discussed.

  16. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  17. 203Pb-Labeled Alpha-Melanocyte-Stimulating Hormone Peptide as an Imaging Probe for Melanoma Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yubin, Miao; Figueroa, Said D.; Fisher, Darrell R.

    2008-05-01

    Abbreviations: a-MSH; alpha melanocyte stimulating hormone, DOTA; 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, Re(Arg11)CCMSH; DOTA-[Cys3,4,10, D-Phe7, Arg11]a-MSH3-13, NDP; [Nle4,d-Phe7] a-MSH3-13. Abstract Peptide-targeted alpha therapy with 200 mCi of 212Pb-DOTA-Re(Arg11)CCMSH cured 45% of B16/F1 murine melanoma-bearing C57 mice in a 120-day study, highlighting its melanoma treatment potential. However, there is a need to develop an imaging surrogate for patient specific dosimetry and to monitor the tumor response to 212Pb-DOTA-Re(Arg11)CCMSH therapy. The purpose of this study was to evaluate the potential of 203Pb-DOTA-Re(Arg11)CCMSH as a matched-pair SPECT imaging agent for 212Pb-DOTA-Re(Arg11)CCMSH. Method: DOTA-Re(Arg11)CCMSH was labeled with 203Pb in 0.5 M NH4OAc buffer at pH 5.4. Themore » internalization and efflux of 203Pb-DOTA-Re(Arg11)CCMSH were determined in B16/F1 melanoma cells. The pharmacokinetics of 203Pb-DOTA-Re(Arg11)CCMSH were examined in B16/F1 melanoma-bearing C57 mice. A micro-SPECT/CT imaging study was performed with 203Pb-DOTA-Re(Arg11)CCMSH in a B16/F1 melanoma-bearing C57 mouse at 2 h post-injection. Results: 203Pb-DOTA-Re(Arg11)CCMSH was easily prepared in NH4OAc buffer and completely separated from the excess non-radiolabeled peptide by RP-HPLC. 203Pb-DOTA-Re(Arg11)CCMSH displayed fast internalization and extended retention in B16/F1 cells. Approximately 73% of 203Pb-DOTA-Re(Arg11)CCMSH activity internalized after a 20-min incubation at 25C. After incubating the cells in culture media for 20 min, 78% of internalized activity remained in the cells. 203Pb-DOTA-Re(Arg11)CCMSH exhibited similar biodistribution pattern with 212Pb-DOTA-Re(Arg11)CCMSH in B16/F1 melanoma-bearing mice. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor uptake of 12.00 +/- 3.20 %ID/g at 1 h post-injection. The tumor uptake gradually decreased to 3.43 +/- 1.12 %ID/g at 48 h post-injection. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor to kidney uptake ratio of 1.53 at 2 h post-injection. The absorbed doses to the tumor and kidneys were 432 and 435 cGy/mCi, respectively. Whole-body clearance of 203Pb-DOTA-Re(Arg11)CCMSH was fast, with approximately 89% of the activity cleared through urinary system by 2 h post-injection. 203Pb showed 1.6 mm SPECT imaging resolution, which was comparable to 99mTc. Melanoma lesions were visualized through SPECT/CT images of 203Pb-DOTA-Re(Arg11)CCMSH at 2 h post-injection. Conclusions: 203Pb-DOTA-Re(Arg11)CCMSH exhibited favorable pharmacokinetic and tumor imaging properties, highlighting its potential as a matched-pair SPECT imaging agent for 212Pb-DOTA-Re(Arg11)CCMSH melanoma treatment.« less

  18. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    NASA Astrophysics Data System (ADS)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that biological activity and Pb mobilization are intimately connected: in humid regions with high biological activity in soil, Pb might be precipitated rapidly due to biologically-released phosphate, whereas Pb will be released to the environment from ore deposits or mine dumps much more easily in arid regions with low biological activity, because pyromorphite cannot form due to limited supply of phosphorus. Phosphate from magmatic, metamorphic or sedimentary rocks: The most important phosphate-bearing mineral in such rocks is apatite (Ca5[(PO4)3(F,Cl,OH)]). In magmatic and metamorphic rocks it generally occurs as fluorapatite (Piccoli and Candela, 2002; Filippelli, 2008), whereas sedimentary rocks may also contain considerable amounts of carbonate-fluorapatite. Phosphorites are present in the geological record since the Lower Proterozoic (Cook and McElhinny, 1979; Shemesh et al., 1983). Alteration with low-pH fluids can dissolve apatite and thereby release geochemical phosphate (Filippelli, 2008). Low pH values may be attained by dissolution of atmospheric CO2 or by reaction with sulfides present in the rocks or in adjacent ore deposits. Phosphate of organic origin, such as from plants, animals or microorganisms: Phosphorus is required in most biological systems, as it is an essential element in major organic molecules such as adenosine triphosphate in the energy cycle, or in phospholipids, which form cell walls (Bucher, 2007; Filippelli, 2008). Organisms take up phosphorus as dissolved inorganic phosphate and cycle it through metabolic processes (intracellular enzyme activity). Once entering the soil, the organic material is decomposed by extracellular enzyme activity (hydrolysis of ester bonds) and phosphate is being released (Bünemann et al., 2011). Phosphate of anthropogenic origin: Since phosphate is a limiting factor in organism growth, it is an important ingredient of fertilizers in the agricultural industry. Also, phosphate can be found as ingredients in detergents, toothpaste and as a release of waste water treatment plants (Young et al., 2009). Anthropogenic effects will not be discussed further in the following. On this basis, we consider three different cases of pyromorphite formation as illustrated on the conceptual scheme of Fig. 1. Case 1: Pyromorphite grown recently (within the last hundreds of years) on rock surfaces in former mines. Both, phosphate released geochemically from igneous rocks and phosphate released biologically during leaching from litter/lysis of microbial cells and soil organic matter decomposition are possible sources. Case 2: Pyromorphite formation on mine dumps, below vegetation (recent, during tens to hundreds of years). Based on the specific setting of these samples investigated here (they were found exclusively below a large fern; see more details in the section on sample description), biologically-mediated P release provides the phosphate for pyromorphite growth. Case 3: Pyromorphite growth in the oxidized zones of ore bodies prior to human interference. Most samples of our study belong to this case.Phosphorus generally forms very strong covalent bonds (Huminicki and Hawthorne, 2002) and there is only negligible exchange of oxygen isotopes between phosphate and ambient water under most near-surface conditions without biological activity (Winter et al., 1940; Longinelli, 1965). The only important exchange of oxygen isotopes between phosphate and ambient water involves biological activity and the oxygen isotope composition of phosphate (δ18OP) may be modified by different enzymatic/cellular processes. Once phosphate is taken up by organisms, intracellular pyrophosphatase mediates internal P cycling. This is associated with a temperature-dependent equilibrium isotope fractionation due to the reversible exchange of O atoms between the phosphate molecule and cell water. As a result the δ18OP is equilibrated with the ambient water, and the equilibrium temperature can be calculated following the revised empirical equation from Longinelli and Nuti (1973) presented by Puceat et al. (2010): T(°C)=118.7-4.22[(δ18OP+(22.6-δ18ONBS120c))-δ18OW] where T is the temperature of the ambient water, δ18OP is the oxygen isotope composition of the phosphate at equilibrium conditions, δ18ONBS120c is the oxygen isotope composition of reference material NBS120c according to Vennemann et al. (2002) and δ18OW is the oxygen isotope composition of the ambient water. Knowledge of the δ18OP of ambient water and its temperature renders it possible to calculate a theoretical equilibrium value for δ18OP. If phosphate is again released from organisms into the soil, it will reflect the δ18OP of the cell-internal P cycling. In addition, extracellular enzymes are released in soil if the demand for P requires the hydrolysis of organic P in soil (McGill and Cole, 1981). Extracellular enzymes also transfer O atoms from water to phosphate and thus, change δ18OP. The associated isotopic fractionation factors vary between -10‰ (enzyme: 5‧-nucleotidase) and -30‰ (enzyme: alkaline phosphatase; Liang and Blake, 2006, 2009). All recent publications on δ18OP of phosphate in the readily available P fraction in soil (resin P) showed δ18OP values in the range calculated for isotopic equilibrium fractionation irrespective of environmental conditions (parent material, climate, biome). At most 20% down to 0% of the measured δ18OP fell outside the calculated isotopic equilibrium range (Angert et al., 2011, 2012; Tamburini et al., 2012). We therefore infer a dominant role of intracellular enzyme activity for δ18OP values in resin P in soil.Theoretical calculations by Lecuyer et al. (1999) imply that oxygen isotope exchange between phosphate and water can also occur in the absence of biological activity. An extrapolation of their equations to temperatures of 10 °C shows, however, that it takes more than 6000 years to exchange 10% of the phosphate oxygen (Colman et al., 2005). Traditionally, the oxygen isotope composition of phosphate has been used as a tool for determining paleotemperatures (e.g., Longinelli, 1984), but recent studies suggested to test its suitability for tracing phosphate sources in aquatic systems (Gruau et al., 2005; Elsbury et al., 2009; Young et al., 2009). Most of these studies deal with short-term ecological cycles and therefore the inorganic exchange of oxygen is negligible. However, this effect has to be considered for processes that happen in geological timescales.Due to the low phosphate concentrations in natural waters (Blake et al., 2005) and the low solubility product of pyromorphite, it is reasonable to assume almost all phosphate to precipitate as pyromorphite without any fractionation. Accordingly, the δ18OP of pyromorphite reflects the oxygen isotope composition of the dissolved phosphate in the water from which it precipitated and records the source, if this phosphate was not modified during fluid transport.Different phosphate reservoirs differ in their oxygen-isotope composition and with more and more data available it is possible to discriminate between different sources. Data for phosphates in aquatic systems are provided by Young et al. (2009): Phosphates of anthropogenic origin (fertilizers and the corresponding processing stages, detergents and toothpaste) show δ18OP values between +13.3‰ and +22.3‰, for phosphates from organic sources (vegetation leachate and animal waste) values between +14.2‰ and +23.1‰ are reported and a range between +8.4‰ and +14.2‰ is covered by phosphates of waste water treatment plants. For terrestrial ecosystems, Tamburini et al. (2012) reported δ18OP values between +4.5‰ and +31.4‰ with most data falling in the range of +12.4‰ to +31.4‰ for phosphate in plants (N = 11). Microbial phosphate in soil covered a range of +11‰ to +19‰. Resin-extractable P in soil as the readily available P fraction in soil from which P-containing minerals would precipitate, showed a range of 14.5-20.0‰ (Angert et al., 2011, 2012; Weiner et al., 2011; Tamburini et al., 2012). Additionally, Tamburini et al., 2012 reported values for apatite, most likely from the metamorphosed granitic bedrock, to be about +7‰. This is consistent with theoretical considerations by Shemesh et al. (1983) and with data from a gabbro (+4.1‰) and a tonalite (+6.7‰) reported by Taylor and Epstein (1962). Mizota et al. (1992) analyzed δ18OP of apatites from carbonatites, volcanic ashes and hydrothermal vugs covering a range of +0.2 to +12.2‰ (N = 10), whereas phosphate from phosphorites have higher values of up to +20‰ (e.g., Shemesh et al. (1983).This study investigates the oxygen isotope composition of phosphate in pyromorphite and in apatite from crystalline rocks. To evaluate possible phosphate sources, the results will be checked for isotopic equilibrium with different ambient waters and possible phosphate sources will be discussed.

  19. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging.

    PubMed

    Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy

    2015-01-01

    We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg(2+), Pb(2+), light metal Al(3+) ion, alkali, alkaline earth, and transition metal ions by UV-visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb(2+)/Al(3+) metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb(2+) and Al(3+) ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb(2+) and Al(3+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    PubMed

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching.

  1. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Bacher, Adelbert; Fischer, Markus

    2004-07-01

    The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C atoms for the xylene moiety of riboflavin. Three of the four hydroxyl groups of ribulose 5-phosphate were coordinated by the metal ions. Based on crystallographic refinement, the metals were assigned as zinc and calcium, which were present in the crystallization buffer. Neither metal supports the enzymatic reaction. In the present study, the correctness of this assignment is assessed using anomalous diffraction data collected at the high-energy side of the zinc absorption edge (lambda = 1.2823 A). Only the three tentative zinc ions give strong peaks in an anomalous difference Fourier map (>20sigma), whereas the four tentative calcium ions do not show anomalous signals above the noise level. These results confirm the initial assignment. In addition, the resolution was improved to 1.55 A.

  2. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    1982-01-01

    It is known that the addition of phosphate buffer to two polymer aqueous phase systems has a strong effect on the partition behavior of cells and other particles in such mixtures. The addition of sodium phosphate to aqueous poly(ethylene glycol) dextran phase systems causes a concentration-dependent shift in binodial on the phase diagram, progressively lowering the critical conditions for phase separation as the phosphate concentration is increased. Sodium chloride produces no significant shift in the critical point relative to the salt-free case. Accurate determinations of the phase diagram require measurements of the density of the phases; data is presented which allows this parameter to be calculated from polarimetric measurements of the dextran concentrations of both phases. Increasing polymer concentrations in the phase systems produce increasing preference of the phosphate for the dextran-rich bottom phase. Equilibrium dialysis experiments showed that poly(ethylene glycol) effectively rejected phosphate, and to a lesser extent chloride, but that dextran had little effect on the distribution of either salt. Increasing ionic strength via addition of 0.15 M NaCl to phase systems containing 0.01 M phosphate produces an increased concentration of phosphate ions in the bottom dextran-rich phase, the expected effect in this type of Donnan distribution.

  3. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    PubMed

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Enhanced dielectric properties of Pb0.92La0.08 Zr0.52Ti0.48O3 films with compressive stress

    NASA Astrophysics Data System (ADS)

    Ma, Beihai; Liu, Shanshan; Tong, Sheng; Narayanan, Manoj; (Balu) Balachandran, U.

    2012-12-01

    We deposited ferroelectric (Pb0.92La0.08)(Zr0.52Ti0.48)O3 (PLZT 8/52/48) films on nickel foils and platinized silicon (PtSi) substrates by chemical solution deposition. Prior to the deposition of PLZT, a conductive oxide buffer layer of LaNiO3 (LNO) was deposited on the nickel foil. Residual stresses of the films were determined by x-ray diffraction. Compressive stress of ≈-370 MPa and tensile stress of ≈250 MPa were measured in ≈2-μm-thick PLZT grown on LNO-buffered Ni foil and PtSi substrate, respectively. We also measured the following electrical properties for the PLZT films grown on LNO-buffered Ni and PtSi substrates, respectively: remanent polarization, ≈23.5 μC/cm2 and ≈10.1 μC/cm2; coercive electric field, ≈23.8 kV/cm and ≈27.9 kV/cm; dielectric constant at room temperature, ≈1300 and ≈1350; and dielectric loss at room temperature, ≈0.06 and ≈0.05. Weibull analysis determined the mean breakdown strength to be 2.6 MV/cm and 1.5 MV/cm for PLZT films grown on LNO-buffered Ni and PtSi substrates, respectively. The difference in dielectric properties and breakdown strength can be attributed to the residual stress in the PLZT films. Our results suggest that compressive stress enhances the dielectric breakdown strength of the PLZT films.

  5. Bioaccessibility tests accurately estimate bioavailability of lead to quail

    USGS Publications Warehouse

    Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John

    2016-01-01

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.

  6. Revisiting the pH Effect on Orthophosphate Control of Plumbosolvency

    EPA Science Inventory

    Although solubility models for Pb(II) have largely been successful for giving corrosion control treatment guidance for over 2 decades, very little systematic research has been done to precisely define plumbosolvency responses to changes in pH, carbonate and phosphate concentratio...

  7. Metal Immobilization Influence On Bioavailability And Remediation For Urban Environments

    EPA Science Inventory

    Immobilization of soil contaminants, such as lead, via phosphate amendments to alter the chemical environment of metals into highly insoluble forms is a well established process. The literature has documented numerous examples of highly contaminated Pb sites at shooting ranges, b...

  8. Biological Degradation of Tetrachloroethylene in Methanogenic Conditions

    DTIC Science & Technology

    1994-06-01

    stock of neat PCE was not purged with N2-C0 2. Alcohol oxidase (from Pichia pasrori, phosphate-buffered 60 percent sucrose solution), peroxidase (Type...dechlorination of tetrachlorocthene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols ," Appl. Environ. Microbiol. (58

  9. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.

  10. Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens.

    PubMed

    Henry, Heather; Naujokas, Marisa F; Attanayake, Chammi; Basta, Nicholas T; Cheng, Zhongqi; Hettiarachchi, Ganga M; Maddaloni, Mark; Schadt, Christopher; Scheckel, Kirk G

    2015-08-04

    Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This paper discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Although in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. More data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.

  11. Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens

    DOE PAGES

    Henry, Heather; Naujokas, Marisa F.; Attanayake, Chammi; ...

    2015-07-03

    Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This study discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Althoughmore » in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. Finally, more data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.« less

  12. Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Heather; Naujokas, Marisa F.; Attanayake, Chammi

    Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This study discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Althoughmore » in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. Finally, more data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.« less

  13. Synthesis of a novel alginate-rubber joint immobilization strains H-1 and its application in removal of Pb (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Huidong; Huo, Kaili; Li, Xiaolei; Zhang, Lin; Yun, Yueqing; Song, Lei; Bai, Runying; Liu, Yuhong

    2018-02-01

    In this study, a novel alginate-rubber-strains immobilized beads (ARSIBs) was synthesized at the optimum conditions that the concentration of sodium alginate was 4%; the volume of bacterial suspension was 75%; the quality of rubber powder was 3.2%; the crosslinking time was 24 h by the orthogonal experiments. The optimum conditions for Pb (II) adsorption were 1.2% ARSIBs, 100 mg L-1 initial concentrations, pH 5 and 3 h contact time. The equilibrium data were well fitted by the Freundlich isotherm model. The biosorption process was nearly consistent with the pseudo-second-order model. Meanwhile, the biosorption mechanism could be that Pb (II) was adsorbed by the hydroxyl and carboxyl, finally precipitated with phosphate in the form of NaPb4(PO4)3, Pb5(PO4)3(OH) and Pb(H2PO4)2 based on the spectra of FTIR and XRD, respectively. In addition, the stability of ARSIBs was enhanced due to the addition to the rubber powder in the process of wastewater treatment.

  14. The role of hydroxo-bridged dinuclear species and the influence of "innocent" buffers in the reactivity of cis-[Co(III)(cyclen)(H₂O)₂]³⁺ and [Co(III)(tren)(H₂O)₂]³⁺ complexes with biologically relevant ligands at physiological pH.

    PubMed

    Basallote, Manuel G; Martínez, Manuel; Vázquez, Marta

    2014-07-28

    In view of the relevance of the reactivity of inert tetraamine Co(III) complexes having two substitutionally active cis positions capable of interact with biologically relevant ligands, the study of the reaction of cis-[Co(cyclen)(H2O)2](3+) and [Co(tren)(H2O)2](3+) with chlorides, inorganic phosphate and 5'-CMP (5'-cytidinemonophosphate) has been pursued at physiological pH. The results indicate that, in addition to the actuation of the expected labilising conjugate-base mechanism, the formation of mono and inert bis hydroxo-bridged species is relevant for understanding their speciation and reactivity. The reactivity pattern observed also indicates the key role played by the "innocent" buffers frequently used in most in vitro studies, which can make the results unreliable in many cases. The differences between the reactivity of inorganic and biologically relevant phosphates has also been found to be remarkable, with outer-sphere hydrogen bonding interactions being a dominant factor for the process. While for the inorganic phosphate substitution process the formation of μ-η(2)-OPO2O represents the termination of the reactivity monitored, for 5'-CMP only the formation of η(1)-OPO3 species is observed, which evolve with time to the final dead-end bis hydroxo-bridged complexes. The promoted hydrolysis of the 5'-CMP phosphate has not been observed in any of the processes studied.

  15. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization.

    PubMed

    Rodríguez-Sánchez, Viridiana; Guzmán-Moreno, Jesús; Rodríguez-González, Vicente; Flores-de la Torre, Juan Armando; Ramírez-Santoyo, Rosa María; Vidales-Rodríguez, Luz Elena

    2017-08-01

    The study of metal-tolerant bacteria is important for bioremediation of contaminated environments and development of green technologies for material synthesis due to their potential to transform toxic metal ions into less toxic compounds by mechanisms such as reduction, oxidation and/or sequestration. In this study, we report the isolation of seven lead-tolerant bacteria from a metal-contaminated site at Zacatecas, México. The bacteria were identified as members of the Staphylococcus and Bacillus genera by microscopic, biochemical and 16S rDNA analyses. Minimal inhibitory concentration of these isolates was established between 4.5 and 7.0 mM of Pb(NO 3 ) 2 in solid and 1.0-4.0 mM of Pb(NO 3 ) 2 in liquid media. A quantitative analysis of the lead associated to bacterial biomass in growing cultures, revealed that the percentage of lead associated to biomass was between 1 and 37% in the PbT isolates. A mechanism of complexation/biosorption of lead ions as inorganic phosphates (lead hydroxyapatite and pyromorphite) in bacterial biomass, was determined by Fourier transform infrared spectroscopy and X-ray diffraction analyses. Thus, the ability of the lead-tolerant isolates to transform lead ions into stable and highly insoluble lead minerals make them potentially useful for immobilization of lead in mining waste.

  16. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions

    PubMed Central

    Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.

    2017-01-01

    In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717

  17. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

  18. DEVELOPMENT OF BIOMARKER OF EXPOSURE TO VIRAL PATHOGENS

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for a viral exposure study. Twelve-week-old BALB/c mice were intraperitoneally injected with 0.2ml of 104 PFU/ml of coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS on...

  19. Interferon Gamma as a Biomarker of Exposure to Enteric Viruses

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for viral exposure. Twelve-week-old BALB/c mice were intraperitoneally injected with Coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS only. Four months after viral infectio...

  20. RELATIVE RATE CONSTANTS OF CONTAMINANT CANDIDATE LIST PESTICIDES WITH HYDROXYL RADICALS

    EPA Science Inventory

    The objective of this study was to establish the rate constants for the reactions of selected pesticides listed on the US EPA Contaminant Candidate List, with UV and hydroxyl radicals (·OH). Batch experiments were conducted in phosphate buffered solution at pH 7. All pestici...

  1. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  2. Apoptosis and Tumor Progressionin Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    control. Proc Natl Acad Sci USA 94: 10057- 10062 . 5. Colombel M, Symmans F, et al. (1993): Detection of the apoptosis-suppressing oncoprotein bcl-2 in...hours prior to treatment. After treatment, cells were washed with phosphate buffered saline ( PBS ) and fixed in 500 [tL 0.2% glutaraldehyde in water for

  3. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution.

    PubMed

    Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A

    2014-02-01

    This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.

  4. Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors.

    PubMed

    Mu, Luye; Droujinine, Ilia A; Rajan, Nitin K; Sawtelle, Sonya D; Reed, Mark A

    2014-09-10

    We demonstrate the versatility of Al2O3-passivated Si nanowire devices ("nanoribbons") in the analysis of enzyme-substrate interactions via the monitoring of pH change. Our approach is shown to be effective through the detection of urea in phosphate buffered saline (PBS), and penicillinase in PBS and urine, at limits of detection of <200 μM and 0.02 units/mL, respectively. The ability to extract accurate enzyme kinetics and the Michaelis-Menten constant (Km) from the acetylcholine-acetylcholinesterase reaction is also demonstrated.

  5. Assessment of pancreas cells

    NASA Technical Reports Server (NTRS)

    Vanoss, C. J.

    1978-01-01

    Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.

  6. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgour, Douglas W.; Moseley, Rebecca A.; Savage, Kaye S

    2008-09-01

    A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed duringmore » column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.« less

  7. Optimization of microwave-assisted extraction of analgesic and anti-inflammatory drugs from human plasma and urine using response surface experimental designs.

    PubMed

    Fernández, Purificación; Fernández, Ana M; Bermejo, Ana M; Lorenzo, Rosa A; Carro, Antonia M

    2013-04-01

    The performance of microwave-assisted extraction and HPLC with photodiode array detection method for determination of six analgesic and anti-inflammatory drugs from plasma and urine, is described, optimized, and validated. Several parameters affecting the extraction technique were optimized using experimental designs. A four-factor (temperature, phosphate buffer pH 4.0 volume, extraction solvent volume, and time) hybrid experimental design was used for extraction optimization in plasma, and three-factor (temperature, extraction solvent volume, and time) Doehlert design was chosen to extraction optimization in urine. The use of desirability functions revealed the optimal extraction conditions as follows: 67°C, 4 mL phosphate buffer pH 4.0, 12 mL of ethyl acetate and 9 min, for plasma and the same volume of buffer and ethyl acetate, 115°C and 4 min for urine. Limits of detection ranged from 4 to 45 ng/mL in plasma and from 8 to 85 ng/mL in urine. The reproducibility evaluated at two concentration levels was less than 6.5% for both specimens. The recoveries were from 89 to 99% for plasma and from 83 to 99% for urine. The proposed method was successfully applied in plasma and urine samples obtained from analgesic users. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast☆

    PubMed Central

    Martins, Dorival; English, Ann M.

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848

  9. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    PubMed

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  10. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    PubMed Central

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  11. Effect of source and particle size of supplemental phosphate on rumen function of steers fed high concentrate diets.

    PubMed

    Murphy, M R; Whetstone, H D; Davis, C L

    1983-12-01

    We examined effects of source and particle size of supplemental defluorinated rock phosphate, to meet phosphorus requirements, on rumen function of 195-kg Holstein steers fed high concentrate. Two sources and two particle sizes of each source were evaluated in a 5 X 5 Latin square with 14-day periods. There was no effect of source on ruminal mH [- log (mean (H+)]; however, ruminal mH was higher in animals fed supplements of larger particle size. This effect was also evident when rumen pH versus time curves were integrated below pH 6. Animals fed supplements of larger particle size had less area below pH 6 than those fed supplements of smaller size. Ruminal buffering capacity at pH 7 was affected by diet; however, orthogonal comparisons between treatment means were not significant. Neither source nor particle size of the supplement affected ruminal fluid osmolality, total volatile fatty acid concentration, or fecal starch. Water intake and ruminal dry matter on HyCal supplemented diets; however, there was also a trend toward increasing rumen fluid volume. The net effect was little change of dilution rate of ruminal fluid. This may explain why rumen fermentation was not affected greatly. Conventional phosphate supplements may have potential as rumen buffering agents, but higher levels of feeding should be studied.

  12. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less

  13. Nutrient leaching, soil pH and changes in microbial community increase with time in lead-contaminated boreal forest soil at a shooting range area.

    PubMed

    Selonen, Salla; Setälä, Heikki

    2017-02-01

    Despite the known toxicity of lead (Pb), Pb pellets are widely used at shotgun shooting ranges over the world. However, the impacts of Pb on soil nutrients and soil microbes, playing a crucial role in nutrient cycling, are poorly understood. Furthermore, it is unknown whether these impacts change with time after the cessation of shooting. To shed light on these issues, three study sites in the same coniferous forest in a shooting range area were studied: an uncontaminated control site and an active and an abandoned shooting range, both sharing a similar Pb pellet load in the soil, but the latter with a 20-year longer contamination history. Soil pH and nitrate concentration increased, whilst soil phosphate concentration and fungal phospholipid fatty acid (PLFA) decreased due to Pb contamination. Our results imply that shooting-derived Pb can influence soil nutrients and microbes not only directly but also indirectly by increasing soil pH. However, these mechanisms cannot be differentiated here. Many of the Pb-induced changes were most pronounced at the abandoned range, and nutrient leaching was increased only at that site. These results suggest that Pb disturbs the structure and functions of the soil system and impairs a crucial ecosystem service, the ability to retain nutrients. Furthermore, the risks of shooting-derived Pb to the environment increase with time.

  14. Effects of substrates and phosphate on INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride) and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Smith, J. J.; McFeters, G. A.

    1996-01-01

    The effects of substrates of primary aerobic dehydrogenases, and inorganic phosphate on aerobic INT and CTC reduction in Escherichia coli were examined. In general, INT produced less formazan than CTC, but INT (+) cell counts remained near values of CTC (+) cells. INT and CTC (+) cell numbers were higher than plate counts on R2A medium using succinate, formate, lactate, casamino acids, glucose, glycerol (INT only) and no substrate. Formate resulted in the greatest amount of INT and CTC formazan. Reduction of both INT and CTC was inhibited above 10 mmol l-1 phosphate, and this appeared to be related to decreased rates of O2 consumption. Formation of fluorescent CTC (+), but not INT (+) cells was also inhibited in a concentration dependent manner by phosphate above 10 mmol l-1. From light microscopic observations it appeared CTC formed increasing amounts of poorly or non-fluorescent formazan with increasing phosphate. Therefore, use of phosphate buffer in excess of 10 mmol l-1 may not be appropriate in CTC and INT reduction assays.

  15. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaut, Z.; Mayoral, M.L.; Reinhold, L.

    When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of /sup 14/C detected in sugar phosphates and UDPglucose following /sup 14/CO/sub 2/ supply. Whenmore » mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO/sub 2/ fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans /sup 14/C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO/sub 2/ fixation rate was constant for several days.« less

  16. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  17. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    NASA Astrophysics Data System (ADS)

    Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian

    2015-07-01

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  18. Iron as a catalyst of human low-density lipoprotein oxidation: Critical factors involved in its oxidant properties.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Obletter, Gabriele

    2017-05-01

    Iron-induced human LDL oxidation, which is relevant to atherosclerosis, has not yet been properly investigated. We addressed such issue using iron(II) and (III) basically in the presence of phosphates, which are present in vivo and influence iron oxidative properties, at pH 4.5 and 7.4, representative, respectively, of the lysosomal and plasma environment. In 10mM phosphate buffered saline (PBS), iron(II) induces substantial LDL oxidation at pH 4.5 at low micromolar concentrations, while at pH 7.4 has low oxidative effects; iron(III) promotes small LDL oxidation only at pH 4.5. In 10mM sodium acetate/NaCl buffer, pH 4.5, iron-induced LDL oxidation is far higher than in PBS, highlighting the relevance of phosphates in the inhibitory modulation of iron-induced LDL oxidation. LDL oxidation is related to iron binding to the protein and lipid moiety of LDL, and requires the presence of iron(II) bound to LDL together with iron(III). Chemical modification of LDL carboxyl groups, which could bind iron especially at pH 4.5, decreases significantly iron binding to LDL and iron-induced LDL oxidation. Hydroxyl radical scavengers are ineffective on iron-induced LDL oxidation, which is inhibited by metal chelation, scavengers of alkoxyl/peroxyl radicals, or removal of LDL lipid hydroperoxides (LOOH). Overall, substantial human LDL oxidation is induced LOOH-dependently by iron(II) at pH 4.5 even in the presence of phosphates, suggesting the occurrence of iron(II)-induced LDL oxidation in vivo within lysosomes, where pH is about 4.5, iron(II) and phosphates coexist, plasma with its antioxidants is absent, and glutathione peroxidase is poorly expressed resulting in LOOH accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    PubMed

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  20. In vitro metabolic stability of moisture-sensitive rabeprazole in human liver microsomes and its modulation by pharmaceutical excipients.

    PubMed

    Ren, Shan; Park, Mi-Jin; Kim, Aera; Lee, Beom-Jin

    2008-03-01

    A reliable method to assess in vitro metabolic stability of rabeprazole and its modulation by Generally Recognized As Safe (GRAS)-listed pharmaceutical excipients was established in human liver microsomes. The metabolic stability of rabeprazole decreased as a function of incubation time, resulting in the formation of thioether rabeprazole via nonenzymatic degradation and enzymatic metabolism. Buffer type was also a determining factor for the degree of both nonenzymatic degradation and enzymatic metabolism. The net extent of enzymatic drug metabolism, obtained by calculating the difference in drug degradation between a microsome-present reaction system and a microsome-free solution, was about 9.20 +/- 0.67% in phosphate buffer and 2.27 +/- 1.76% in Tris buffer, respectively. Rabeprazole exhibited first-order kinetics in microsome-free solution but showed non-linear kinetics in the microsome-present reaction system. The maximal velocity, Vmax, in phosphate buffer was 5.07 microg mL(-1) h(-1) and the Michaelis-Menten constant, Km, was 10.39 microg mL(-1) by computer-fitting to the classical Michaelis-Menten equation for pattern of time-dependent change in the substrate concentration. The intact drug and its thioether form were well resolved and successfully identified by HPLC chromatography and liquid chromatography mass spectroscopy (LC/MS). The metabolic stability of rabeprazole was also modulated by the presence of pharmaceutical excipients. Among the five pharmaceutical excipients tested, poloxamer 188 and Gelucire 44/14 had potentially inhibitory effects on rabeprazole metabolism in human liver microsomes (p < 0.05). A greater understanding of metabolic stability and its modulation by pharmaceutical excipients would be useful for optimizing the bioavailability of rabeprazole at the early formulation stages.

  1. Effect of pressure on ore mineral solubilities under hydrothermal conditions.

    USGS Publications Warehouse

    Hemley, J.J.; Cygan, G.L.; d'Angelo, W. M.

    1986-01-01

    The combined solubilities of Fe, Zn and Pb sulphides were determined at elevated P and T in chloride solutions buffered in pH by a silicate assemblage of quartz monzonite composition plus added muscovite, and buffered in fS2 and fO2 by the assemblage pyrite-pyrrhotite-magnetite. Higher T and higher chloride concentration favour higher metal solubilities, but the P effect is opposite. At 500oC, 0.5 kbar and 1 M total chloride, Fe, Zn, Pb solubilities were 8500, 4300 and 8700 ppm, respectively, whereas at 1 kbar they were 4200, 2400 and 2600 ppm, and at 2 kbar, 1700, 800 and 1200 ppm. The P effect is of considerable importance to problems of ore-mineral transport; the metal could be carried over long distances on a decreasing P gradient so long as the T decreases were sufficient; this condition could be approximated by a near-adiabatic transport cooling path. Such a condition is probably common for hydrothermal processes involving fairly deep-seated sources of heat and mineral components.-L.C.H.

  2. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with the pathogen and then dip-treated in phosphate buffered saline (PBS) control, 3.0% hydrogen peroxide, a 0.1% ...

  3. Inactivation of Hepatitis A Virus (HAV) by Chlorine and Iodine in Water

    DTIC Science & Technology

    1986-11-01

    treatment practices utilizing chemical disinfection, primarily chlorination, are generally believed to * be effective in producing microbiologically safe...OCl) in 1 liter of HDFW. Stock solution was then diluted in tesi water (halogen demand-free, 0.01M phosphate buffer, pH 4.5, 7.0 or 9.5 in initial

  4. Morphology of the female reproductive system and physiological age-grading of Megamelus scutellaris (Hemiptera: Delphacidae), a biological control agent of water hyacinth

    USDA-ARS?s Scientific Manuscript database

    The morphology of the female reproductive system in Megamelus scutellaris Berg (Hemiptera:Delphacidae), a biocontrol agent of Eichhornia crassipes (Mart.) Solms, was examined using standard light microscopy techniques. Ovaries extracted from individuals dissected in phosphate buffered saline were ex...

  5. EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON

    EPA Science Inventory

    The reduction rates of trichloroethylene (TCE) using zero-valent iron (ZVI) and the rates of iron hydrolysis were characterized at pH values of 5 to 10. The reduction of TCE by ZVI was carried out in batch reactors filled with pH-buffered (phosphate based) solutions under anaerob...

  6. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  7. 9 CFR 113.43 - Detection of chlamydial agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...

  8. 9 CFR 113.43 - Detection of chlamydial agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...

  9. 9 CFR 113.43 - Detection of chlamydial agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...

  10. 9 CFR 113.43 - Detection of chlamydial agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in a filed Outline of Production. (a) The yolk sac of 6-day-old chicken embryos shall be injected. Three groups of 10 embryos shall be used sequentially. (1) The inoculum for each embryo in the first... embryos shall be harvested, pooled, homogenized as a 20 percent suspension in phosphate buffered saline...

  11. Discernment of lint trash in raw cotton using multivariate analysis of excitation-emission luminescence spectra

    USDA-ARS?s Scientific Manuscript database

    Excitation-Emission luminescence spectra of basic (pH 12.5) phosphate buffer solution extracts were used to distinguish among botanical components of trash within seed cotton. All components were separated from whole plants removed from a field in southern New Mexico. Unfolded Principal Component An...

  12. Fission Yeast Model Study for Dissection of TSC Pathway

    DTIC Science & Technology

    2010-04-01

    prepared as follows. A total of 1010 cells were incubated at 37! for 1 hr in spheroplasts buffer [50 mm citrate–phosphate (pH 5.6) and 1.2 m sorbitol ...potassium acetate, and 0.1 m sorbitol ] containing 0.4 mm phenylmethyl- sulfonyl fluoride and 13 protease inhibitor cocktail (Nacalai Tesque) and downed

  13. Volunteer Challenge With Enterotoxigenic Escherichia coli That Express Intestinal Colonization Factor Fimbriae CS17 and CS19

    DTIC Science & Technology

    2011-07-01

    for 18-20 h, bacteria were harvested in sterile saline, and the sus- pension was diluted in phosphate-buffered saline to the ap- propriate...Levine MM, Merson MM. Serologic differentiation between antitoxin responses to infection with Vibrio cholerae and enterotoxin-producing Escherichia coli

  14. Biodegradable neural cell culture sheet made of poly(lactic-co-glycolic acid) thin film with micropatterns of Dulbecco’s phosphate-buffered saline (-) containing laminin layers

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuki; Horiuchi, Shunpu; Nishioka, Yasushiro

    2018-02-01

    In the regenerative medicine field of nervous systems, techniques used to fabricate microstructures of neurons on flexible and biodegradable substrates have attracted attention. In this research, biodegradable and flexible neuron culture thin films that enable the selective axonal outgrowth of neurons were fabricated using poly(lactic-co-glycolic acid) (PLGA) thin films with micropatterns of Dulbecco’s phosphate-buffered saline (D-PBS) (-) containing laminin layers. The 100-µm-thick PLGA thin films were fabricated by diluting PLGA in acetone (5% w/w) and the solution was distributed onto a poly(dimethylsiloxane) (PDMS) mold. D-PBS (-) micropatterns containing laminin layers with widths of 10-150 µm were fabricated by micromolding in capillaries (MIMIC) and the microstencil method. Rat neurons were selectively cultured for 3 d on the laminin micropatterns; using the MIMIC method, the cells properly adhered to a pattern wider than 30 µm, while with the microstencil method, the necessary pattern width for proper adhesion was more than 50 µm.

  15. Is nothing sacred?

    USGS Publications Warehouse

    Hoffman, G.L.

    1980-01-01

    N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species, This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.

  16. Liquid chromatographic determination of chloramine-T and its primary degradation product, p-toluenesulfonamide, in water

    USGS Publications Warehouse

    Dawson, Verdel K.; Davis, Ruth A.

    1997-01-01

    N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species. This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.

  17. Liquid chromatographic determination of chloramine-T and its primary degradation product, p-toluenesulfonamide, in water

    USGS Publications Warehouse

    Dawson, V.K.; Davis, R.A.

    1997-01-01

    N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species, This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.

  18. Development of Cell Analysis Software for Cultivated Corneal Endothelial Cells.

    PubMed

    Okumura, Naoki; Ishida, Naoya; Kakutani, Kazuya; Hongo, Akane; Hiwa, Satoru; Hiroyasu, Tomoyuki; Koizumi, Noriko

    2017-11-01

    To develop analysis software for cultured human corneal endothelial cells (HCECs). Software was designed to recognize cell borders and to provide parameters such as cell density, coefficient of variation, and polygonality of cultured HCECs based on phase contrast images. Cultured HCECs with high or low cell density were incubated with Ca-free and Mg-free phosphate-buffered saline for 10 minutes to reveal the cell borders and were then analyzed with software (n = 50). Phase contrast images showed that cell borders were not distinctly outlined, but these borders became more distinctly outlined after phosphate-buffered saline treatment and were recognized by cell analysis software. The cell density value provided by software was similar to that obtained using manual cell counting by an experienced researcher. Morphometric parameters, such as the coefficient of variation and polygonality, were also produced by software, and these values were significantly correlated with cell density (Pearson correlation coefficients -0.62 and 0.63, respectively). The software described here provides morphometric information from phase contrast images, and it enables subjective and noninvasive quality assessment for tissue engineering therapy of the corneal endothelium.

  19. Immunological relatedness among Candida albicans and other pathogenic Candida species.

    PubMed Central

    Hector, R F; Lyon, F L; Domer, J E

    1981-01-01

    Membrane-mitochondrial (butanol-hot phosphate-buffered saline) and cytosol (soluble cytoplasmic substances) extracts from seven pathogenic species of Candida were used in in vivo and in vitro immunological assays to study antigenic similarities among the strains with respect to C. albicans. Mice were sensitized with C. albicans serotype A for footpad testing or to provide cells for lymphocyte stimulation assays, and guinea pigs were immunized with whole cells or butanol-hot phosphate-buffered saline extracts of C. albicans to obtain antisera for immunodiffusion assays. When extracts from each of the seven species were used in the assays, they consistently segregated, as determined by statistical or subjective analyses, into three groups. Extracts of C. albicans serotype A or B and C. stellatoidea were the most immunologically reactive in all assays, indicating close similarities between those two species, whereas extracts of C. tropicalis and C. parapsilosis elicited only moderate responses. Extracts from C. krusei, C. guilliermondii, and C. pseudotropicalis were hypo- or nonreactive in the assays, indicating a low level of antigenic relatedness to C. albicans. Images PMID:7037643

  20. Development of gastro intestinal sustained release tablet formulation containing acryl-EZE and pH-dependent swelling HPMC K 15 M.

    PubMed

    Lamoudi, Lynda; Chaumeil, Jean Claude; Daoud, Kamel

    2012-05-01

    The aim of this study was to evaluate physical properties and release from matrix tablets containing different ratios of HPMC 15 M and Acryl-EZE. A further aim is to assess their suitability for pH dependent controlled release. Matrix tablets containing HPMC 15 M and Acryl-EZE were manufactured using a fluidized bed. The release from this matrix using Sodium Diclofenac (SD) as model drug is studied in two dissolution media (0.1 N HCl or pH = 6.8 phosphate buffer solution); the release rate, mechanism, and pH dependence were characterized by fitting four kinetic models and by using a similarity factor analysis. The obtained results revealed that the presence of Acryl-EZE in the matrix tablets is effective in protecting the dosage forms from release in acid environments such as gastric fluid. In pH = 6.8 phosphate buffer, the drug release rate and mechanism of release from all matrices is mainly controlled by HPMC 15 M. The model of Korsmeyer-Peppas was found to fit experimental dissolution results.

  1. Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment

    NASA Astrophysics Data System (ADS)

    Ohshima, Shuto; Nomura, Kazuki; Iwahashi, Hitoshi

    2013-06-01

    High hydrostatic pressure (HP) technology has gained more attention as a non-thermal food pasteurization technology. Recently, a limitation of the HP technology was reported by Koseki and Yamamoto [Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006;110:108-111], who completely recovered Escherichia coli species after HP treatment. We investigated the recovery mechanism of E. coli after HP treatment. The cells were treated with 200-300 MPa at 0-25°C for 24 h. The HP-treated E. coli was recovered in phosphate-buffered saline (PBS) during 120 h of incubation at 25°C, confirming the results reported by them. However, E. coli did not grow in PBS but grew with inactivated cells in PBS. In addition, the results of our "population size experiments" demonstrated that the recovery of E. coli cells depended on both the degree of pressure and the population size. These results suggest that some portion of cells recovered from the damage and then grew by using inactivated cells.

  2. Corrosion behavior of pristine and added MgB2 in Phosphate Buffered Saline Solution

    NASA Astrophysics Data System (ADS)

    Batalu, D.; Bojin, D.; Ghiban, B.; Aldica, G.; Badica, P.

    2012-09-01

    We have obtained by Spark Plasma Sintering (SPS), dense samples of MgB2 added with Ho2O3. Starting composition was (MgB2)0.975(HoO1.5)0.025 and we used addition powders with an average particle size below and above 100 nm. For Mg, pristine and added MgB2 samples we measured potentiodynamic polarization curves in Phosphate Buffered Saline (PBS) solution media at room temperature. MgB2 based composites show corrosion/ degradation effects. This behavior is in principle similar to Mg based alloys in the same media. Our work suggests that the different morphologies and phase compositions of the SPS-ed samples influence the interaction with corrosion medium; hence additions can play an important role in controlling the corrosion rate. Pristine MgB2 show a significant improvement of the corrosion resistance, if compared with Mg. The best corrosion resistance is obtained for pristine MgB2, followed by MgB2 with nano-Ho2O3 and μ-Ho2O3 additions.

  3. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.

    PubMed

    Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E

    2014-11-01

    Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. All-solution-processed PbS quantum dot solar modules

    NASA Astrophysics Data System (ADS)

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-01

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a

  5. Osmotic agents and buffers in peritoneal dialysis solution: monocyte cytokine release and in vitro cytotoxicity.

    PubMed

    Plum, J; Schoenicke, G; Grabensee, B

    1997-09-01

    Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found for the bicarbonate-buffered solutions. Amino acids (1%) proved to be comparable to glucose (1.5%) as an osmotic agent at a neutral pH with regard to LPS-stimulated cytokine release and cytotoxicity. The incubation with a glucose polymer solution (7.5% glucose polymer in phosphate-buffered saline, pH 7.3) resulted in a significantly lowered cytokine release (LPS stimulation: IL-1beta, 69 +/- 19 pg/mL) compared with the other solutions with neutral pH (P < 0.01). These results suggest that bicarbonate as a buffer provided better biocompatibility with regard to mononuclear cytokine release and viability compared with lactate. Amino acids and glucose were equivalent to these parameters at a physiologic pH. The glucose polymer solution, however, was associated with a marked depression of cytokine release.

  6. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.

  7. Adsorption of Pb(II) and Cu(II) by Ginkgo-Leaf-Derived Biochar Produced under Various Carbonization Temperatures and Times.

    PubMed

    Lee, Myoung-Eun; Park, Jin Hee; Chung, Jae Woo

    2017-12-07

    Ginkgo trees are common street trees in Korea, and the large amounts of leaves that fall onto the streets annually need to be cleaned and treated. Therefore, fallen gingko leaves have been used as a raw material to produce biochar for the removal of heavy metals from solutions. Gingko-leaf-derived biochar was produced under various carbonization temperatures and times. This study evaluated the physicochemical properties and adsorption characteristics of gingko-leaf-derived biochar samples produced under different carbonization conditions regarding Pb(II) and Cu(II). The biochar samples that were produced at 800 °C for 90 and 120 min contained the highest oxygen- and nitrogen-substituted carbons, which might contribute to a high metal-adsorption rate. The intensity of the phosphate bond was increased with the increasing of the carbonization temperature up to 800 °C and after 90 min of carbonization. The Pb(II) and Cu(II) adsorption capacities were the highest when the gingko-leaf-derived biochar was produced at 800 °C, and the removal rates were 99.2% and 34.2%, respectively. The highest removal rate was achieved when the intensity of the phosphate functional group in the biochar was the highest. Therefore, the gingko-leaf-derived biochar produced at 800 °C for 90 min can be used as an effective bio-adsorbent in the removal of metals from solutions.

  8. Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent.

    PubMed

    Prasad, Murari; Xu, Huan-yan; Saxena, Sona

    2008-06-15

    Multi-component sorption studies were carried out for attenuation of divalent heavy metal cations (Pb2+, Cu2+ and Zn2+) by a low-cost mineral adsorbent from the aqueous solution. Kinetic and equilibrium batch-type sorption experiments were conducted under variable conditions for multi-component using low-grade (<12%P2O5) phosphate rock. Percentage of multiple heavy metal species removal increases with decreasing initial metals concentration and particle size. The equilibrium data were well described to a lesser extent by Freundlich model but Langmuir model seemed to be more appropriate with the fixation capacity obtained at room temperature for Pb2+, Cu2+ and Zn2+ was 227.2, 769.2 and 666.6 micromol g(-1), respectively. Two simple kinetic models were tested to investigate the adsorption mechanism. Rate constants have been found nearly constant at all metal concentrations for first order. The comparison of adsorption capacity of low-grade phosphate rock decreases in multi-component system as compared to single component due to ionic interactions. X-ray powder diffraction (XRPD) technique was used to ascertain the formation of new metal phases followed by surface complexation. Used adsorbents have been converted into a value added product by utilizing innovative Zero-waste concept to solve the used adsorbents disposal problem and thus protecting the environment.

  9. Distribution and mode of occurrence of radionuclides in phosphogypsum derived from Aqaba and Eshidiya Fertilizer Industry, South Jordan

    USGS Publications Warehouse

    Al-Hwaiti, M. S.; Zielinski, R.A.; Bundham, J.R.; Ranville, J.F.; Ross, P.E.

    2010-01-01

    Phosphogypsum (PG) is a by-product of the chemical reaction called the "wet process" whereby sulphuric acid reacts with phosphate rock (PR) to produce phosphoric acid, needed for fertilizer production. Through the wet process, some impurities naturally present in the PR become incorporated in PG, including U decay-series radionuclides, are the main important concern which could have an effect on the surrounding environment and prevent its safe utilization. In order to determine the distribution and bioavailability of radionuclides to the surrounding environment, we used a sequential leaching of PG samples from Aqaba and Eshidiya fertilizer industry. The results showed that the percentages of 226Ra and 210Pb in PG are over those in the corresponding phosphate rocks (PG/PR), where 85% of the 226Ra and 85% of the 210Pb fractionate to PG. The sequential extraction results exhibited that most of 226Ra and 210Pb are bound in the residual phase (non-CaSO4) fraction ranging from 45-65% and 55%-75%, respectively, whereas only 10%-15% and 10%-20% respectively of these radionuclides are distributed in the most labile fraction. The results obtained from this study showed that radionuclides are not incorporated with gypsum itself and may not form a threat to the surrounding environment. ?? 2010 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  10. Formate binding near the redox-active tyrosineD in photosystem II: consequences on the properties of tyrD.

    PubMed

    Hienerwadel, Rainer; Gourion-Arsiquaud, Samuel; Ballottari, Matteo; Bassi, Roberto; Diner, Bruce A; Berthomieu, Catherine

    2005-06-01

    Formate and phosphate affect substantially the rate of tyrosine D (TyrD) oxidation and the stability of the radical TyrD* in Photosystem II [Hienerwadel R, Boussac A, Breton J and Berthomieu C (1996) Biochemistry 35: 15447-15460]. This observation prompted us to analyze the influence of formate and phosphate on the environment of TyrD using FTIR spectroscopy. The nu (CO) IR mode of TyrD* at 1503 cm-1 remains unchanged whatever the buffer used at pH 6 and whether formate is present or not in the sample. Similarly, the main IR mode of reduced TyrD remains at approximately 1250 cm-1 in all tested conditions. We thus conclude that formate does not modify the hydrogen-bonded interactions of TyrD and TyrD* with neighbouring D2His189 and D2Gln164. In the TyrD-state, an IR mode of formate significantly different from that observed in solution, is detected using 13C-formate, showing that formate forms a strong electrostatic interaction within PS II. The presence of formate affects also IR bands that may be assigned to an arginine side chain. Upon TyrD* formation, formate does not protonate but its binding interaction weakens. A proton uptake by Mes or phosphate buffer is detected, which is not observed when BisTris is used as a buffer. In these latter conditions, IR bands characteristic of the protonation of a carboxylate group of the protein are detected instead. The present IR data and the recent structural model of the TyrD environment proposed by Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S [(2004) Science 303: 1831-1838], suggest that the proton released upon TyrD* formation is shared within a hydrogen bonding network including D2Arg294, and CP47Glu364 and that perturbation of this network by formate - possibly binding near D2Arg294 - substantially affects the properties of TyrD.

  11. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Schoonen, Martin A.

    2017-06-01

    The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio. The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers. The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a ;co-factor; that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction. Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and exposure to dust containing the two metal sulfides may present a health burden.

  12. Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2012-05-30

    Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe(2+) oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe(3+) was produced from Fe(2+) oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO(4)(2-) form. The scavenged arsenate species was relatively stable after 2464-h aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Predicting potentially plant-available lead in contaminated residential sites.

    PubMed

    Andra, Syam S; Sarkar, Dibyendu; Saminathan, Sumathi K M; Datta, Rupali

    2011-04-01

    Lead (Pb)-based paints pose a serious health problem to people living in residential settings constructed prior to 1978. Children are at a greater risk to Pb exposure resulting from hand-to-mouth activity in Pb-contaminated residential soils. For soil Pb, the most environmentally friendly, potentially cheap, and visually unobtrusive in situ technology is phytoremediation. However, the limiting factor in a successful phytoremediation strategy is the availability of Pb for plant uptake. The purpose of this study was to establish a relationship between soil properties and the plant-available/exchangeable Pb fraction in the selected Pb-based paint-contaminated residential sites. We selected 20 such sites from two different locations (San Antonio, Texas and Baltimore, Maryland) with varying soil properties and total soil Pb concentrations ranging between 256 and 4,182 mg kg(-1). Despite higher Pb levels in these soils that exceeds US EPA permissible limit of 400 mg kg(-1), it is known that the plant-available Pb pools are significantly lower because of their sorption to soil components such as organic matter, Fe-Mn oxides, and clays, and their precipitation in the form of carbonates, hydroxides, and phosphates. Principal component analysis and hierarchical clustering showed that the potentially plant-available Pb fraction is controlled by soil pH in the case of acidic Baltimore soils, while soil organic matter plays a major role in alkaline San Antonio soils. Statistical models developed suggest that Pb is likely to be more available for plant uptake in Baltimore soils and a chelant-assisted phytoextraction strategy will be potentially necessary for San Antonio soils in mobilizing Pb from complexed pool to the plant-available pool. A thorough knowledge of site-specific factors is therefore essential in developing a suitable and successful phytoremediation model.

  14. Transformation of Pb(II) from Cerrusite to Chloropyromorphite in the Presence of Hydroxyapatite under Varying Conditions of pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, J.A.; Zhang, P.

    1998-10-14

    Cerrusite (PbC03) is soluble under acidic conditions and considered to be a highly bioavailable soil Pb species. In this study, synthetic cerrusite and hydroxyapatite [Ca5(P04)30H] were reacted under constant and dynamic pH conditions with various P/Pb molar ratios in an attempt to evaluate the effect of reaction kinetics on the formation of chloropyromorphite (Pb5(P04)3Cl) and solubilization of Pb. Under constant pH conditions, dissolution rates of both cerrusite and apatite were rapid when pH was low. Complete conversion of Pb from cerrusite to chloropyromorphite occurred within 60 tin at pH 4 and below when the amount of phosphate in the addedmore » apatite was stoichoimetrically equal to that needed to transform all added Pb into chloropyromorphite. The concentration of soluble Pb depended upon the volubility of chloropyromorphite. The dissolution rates of apatite and cerrusite decreased with increasing pH, and the transformation was incomplete at pH 5 and above in the 60 rnin reaction period. The soluble Pb level, therefore, was determined by the volubility of cerrusite. In the dynamic pH system which simulated the gastrointestinal tract (GI tract) system, a complete transformation of Pb from cerrusite to chloropyromorphite was achieved due to the complete dissolution of apatite and cerrusite at the initial low pHs. Chloropyromorphite was the exclusive reaction product in both constant and dynamic pH systems as indicated by XRD analysis. The differences in transformation rate and the control of Pb volubility between the reactions occurring in constant and dynamic pH systems indicate the significance of kinetics in controlling the bioavailability of Pb and the potential for the reaction to occur during ingestion.« less

  15. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    PubMed

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.

  17. Electrophoretic analysis of the major polypeptides of human erythrocyte membranes prepared by low and high osmolarity haemolysis.

    PubMed

    Zail, S S; Hoek, V D

    1975-04-16

    Human erythrocyte membranes were prepared in three ways: washing in hypotonic Tris buffer, pH 7.6, by lysis in isotonic Tris buffer pH 7.6 after incubation at 37 degrees C for 2 hours and by ultrasonication in an isotonic medium, pH 7.6. Analysis of the major polypeptides of the erythrocyte membranes by sodium dodecylsulphate polyacrylamide gel electrophoresis revealed a selective depletion of a major polypeptide representing glyceraldehyde-3-phosphate dehydrogenase in the membranes prepared by high osmolarity lysis. The pattern of seperation of the remaining polypeptides was identical in the 3 different membrane preparations.

  18. Interaction of Pb(II) and biofilm associated extracellular polymeric substances of a marine bacterium Pseudomonas pseudoalcaligenes NP103

    NASA Astrophysics Data System (ADS)

    Kumari, Supriya; Mangwani, Neelam; Das, Surajit

    2017-02-01

    Three-dimensional excitation-emission matrix (3D EEM) fluorescence spectroscopy and attenuated total reflectance fourier-transformed infrared spectroscopy (ATR-FTIR) was used to evaluate the interaction of biofilm associated extracellular polymeric substances (EPS) of a marine bacterium Pseudomonas pseudoalcaligenes NP103 with lead [Pb(II)]. EEM fluorescence spectroscopic analysis revealed the presence of one protein-like fluorophore in the EPS of P. pseudoalcaligenes NP103. Stern-Volmer equation indicated the existence of only one binding site (n = 0.789) in the EPS of P. pseudoalcaligenes NP103. The interaction of Pb(II) with EPS was spontaneous at room temperature (Δ G = - 2.78 kJ/K/mol) having binding constant (Kb) of 2.59 M- 1. ATR-FTIR analysis asserted the involvement of various functional groups such as sulphydryl, phosphate and hydroxyl and amide groups of protein in Pb(II) binding. Scanning electron microscopy (SEM) and fluorescence microscopy analysis displayed reduced growth of biofilm with altered surface topology in Pb(II) supplemented medium. Energy dispersive X-ray spectroscopy (EDX) analysis revealed the entrapment of Pb in the EPS. Uronic acid, a characteristic functional group of biofilm, was observed in 1H NMR spectroscopy. The findings suggest that biofilm associated EPS are perfect organic ligands for Pb(II) complexation and may significantly augment the bioavailability of Pb(II) in the metal contaminated environment for subsequent sequestration.

  19. Striking Effects of Storage Buffers on Apparent Half-Lives of the Activity of Pseudomonas aeruginosa Arylsulfatase.

    PubMed

    Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei

    2016-08-01

    To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants.

  20. [Blood acid-base changes produced by variations of water oxygenation in the crab Carcinus maenas (author's transl)].

    PubMed

    Truchot, J P

    1975-12-01

    10 Blood acid-base changes were studied at 17 degrees C in immersed crabs (Carcinus maenas) exposed to hypoxic and hyperoxic conditions, by measuring the pH and the CO2 partial pressure, PbCO2, and by calculating the bicarbonate concentration. 20 Hyperoxia first induces a marked respiratory acidosis with a rise of PbCO2. This acidosis is compensated thereafter by a non-ventilatory increase of the blood buffer base concentration. These results are discussed in relation to the general problems concerning the control of the blood acid-base balance in aquatic animals.

  1. Sr-Nd-Pb Isotope Geochemistry of Melange Formation: Implications for Identification of Fluid Sources in the Mantle Wedge and the Arc

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; King, R. L.; Moriguti, T.; Nakamura, E.

    2004-12-01

    Paramount to our ability to decipher the behavior of fluids and melts within the mantle wedge and the overall subduction system are the chemical compositions of rocks adjacent to the slab-mantle interface. Profound metamorphic and metasomatic alteration of pre-subduction lithologies to form melange along the slab-mantle interface may yield rock types inheriting mixed chemical compositions of diverse pre-subduction lithologies. Early work on melange geochemistry indicates competitive effects between mechanical mixing, metasomatism by fluids or melts, and mineral stabilities imposed by the resulting bulk composition. We have explored the Sr-Nd-Pb isotope geochemistry of low- to high-grade melange zones in the Catalina Schist, CA, to address this crucial missing component in studies of subduction-zone mass flux. The Catalina Schist contains lawsonite-albite (LA), lawsonite-blueschist (LB), and amphibolite (AM) facies melange zones, all with mineralogy dominated by talc, chlorite, and Na-Ca amphiboles, with additional minerals such as micas, rutile, zircon, and apatite stabilized based on bulk sample chemistry. Major element compositions vary, from strongly ultramafic in the AM melange, to more crustal-like compositions (i.e., more reminiscent of basaltic to sedimentary protoliths) for LA and LB melange. However, initial Sr and Nd isotope ratios for all grades of melange are essentially indistinguishable, displaying a wide variation from 87Sr/86Sr=0.703-0.709 and ɛ Nd= +15 to -15. Covariations are generally negative, similar to that of the mantle array, but with some samples extending to higher Sr ratios at constant ɛ Nd that probably reflect inheritance of seawater Sr. No clear mixing relationships between 87Sr/86Sr and 1/Sr exist, suggesting either localized buffering of Sr isotope ratios or that mixing relations are obscured by secondary devolatilization. However, a clear mixing trend for Nd indicates two end-members, one a high-concentration, positive ɛ Nd source (AOC?), the other with low-concentration and negative ɛ Nd (devolatilized sediments?). Likewise, initial Pb isotope ratios for all grades of melange form a single array independent of rock type or inferred protolith. Melange matrix of the Catalina Schist preserves initial 206Pb/204Pb of 18.95-19.59, 207Pb/204Pb of 15.61-15.68, and 208Pb/204Pb of 37.85-39.05. Such elevated Pb ratios are typical of subducting oceanic sediments, but not of MORB-like oceanic crust or peridotites of the depleted mantle. The similarity of these initial ratios suggests pervasive alteration of Pb isotope signatures within diverse rock types by fluids during subduction. As Pb concentrations decline from LA/LB to AM melange, this suggests devolatilization of Pb from the ultramafic AM melange will transfer crustal-like Pb isotope ratios. Sr-Nd-Pb isotope systematics for arc volcanic rocks are commonly used as indicators of fluid sources from the subducting slab to the arc magma source region. Our results suggest such an assumption is extremely dangerous, as hybridization processes common to melange zones are more likely to occur along the slab-mantle interface than is preservation of a pre-subduction section. Such metamorphic mediation and buffering of "slab" compositions is essentially unknown, yet our data support an interpretation where these processes impart a fundamental control on the chemistry of fluids passed to the mantle wedge.

  2. Estimation of the Contribution of CYP2C8 and CYP3A4 in Repaglinide Metabolism by Human Liver Microsomes Under Various Buffer Conditions.

    PubMed

    Kudo, Toshiyuki; Goda, Hitomi; Yokosuka, Yuki; Tanaka, Ryo; Komatsu, Seina; Ito, Kiyomi

    2017-09-01

    We have previously reported that the microsomal activities of CYP2C8 and CYP3A4 largely depend on the buffer condition used in in vitro metabolic studies, with different patterns observed between the 2 isozymes. In the present study, therefore, the possibility of buffer condition dependence of the fraction metabolized by CYP2C8 (fm2C8) for repaglinide, a dual substrate of CYP2C8 and CYP3A4, was estimated using human liver microsomes under various buffer conditions. Montelukast and ketoconazole showed a potent and concentration-dependent inhibition of CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α-hydroxylation, respectively, without dependence on the buffer condition. Repaglinide depletion was inhibited by both inhibitors, but the degree of inhibition depended on buffer conditions. Based on these results, the contribution of CYP2C8 in repaglinide metabolism was estimated to be larger than that of CYP3A4 under each buffer condition, and the fm2C8 value of 0.760, estimated in 50 mM phosphate buffer, was the closest to the value (0.801) estimated in our previous modeling analysis based on its concentration increase in a clinical drug interaction study. Researchers should be aware of the possibility of buffer condition affecting the estimated contribution of enzyme(s) in drug metabolism processes involving multiple enzymes. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 1. Screening of optimal extraction conditions using a D-optimal experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A D-optimal design was constructed to optimize allergen extraction efficiency simultaneously from roasted, non-roasted, defatted, and non-defatted almond, hazelnut, peanut, and pistachio flours using three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various conditions of ionic strength, buffer-to-protein ratio, extraction temperature, and extraction duration. Statistical analysis showed that roasting and non-defatting significantly lowered protein recovery for all nuts. Increasing the temperature and the buffer-to-protein ratio during extraction significantly increased protein recovery, whereas increasing the extraction time had no significant impact. The impact of the three buffers on protein recovery varied significantly among the nuts. Depending on the extraction conditions, protein recovery varied from 19% to 95% for peanut, 31% to 73% for almond, 17% to 64% for pistachio, and 27% to 88% for hazelnut. A modulation by the buffer type and ionic strength of protein and immunoglobuline E binding profiles of extracts was evidenced, where high protein recovery levels did not always correlate with high immunoreactivity. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).

    PubMed

    Fadda, Angela; Barberis, Antonio; Sanna, Daniele

    2018-02-01

    The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars.

    PubMed

    Xu, Xuebin; Hu, Xin; Ding, Zhuhong; Chen, Yijun

    2017-12-01

    The potential release of toxic elements and the stability of carbon in sludge-based biochars are important on their application in soil remediation and wastewater treatment. In this study, municipal sludge was co-pyrolyzed with calcium carbonate (CaCO 3 ) and calcium dihydrogen phosphate [Ca(H 2 PO 4 ) 2 ] under 300 and 600 °C, respectively. The basic physicochemical properties of the resultant biochars were characterized and laboratory chemical oxidation and leaching experiments of toxic elements were conducted to evaluate the chemical stability of carbon in biochars and the potential release of toxic elements from biochars. Results show that the exogenous minerals changed the physico-chemical properties of the resultant biochars greatly. Biochars with exogenous minerals, especially Ca(H 2 PO 4 ) 2 , decreased the release of Zn, Cr, Ni, Cu, Pb, and As and the release ratios were less than 1%. Tessier's sequential extraction analysis revealed that labile toxic elements were transferred to residual fraction in the biochars with high pyrolysis temperature (600 °C) and exogenous minerals. Low risks for biochar-bound Pb, Zn, Cd, As, Cr, and Cu were confirmed according to risk assessment code (RAC) while the potential ecological risk index (PERI) revealed that the exogenous Ca(H 2 PO 4 ) 2 significantly decreased the risks from considerable to moderate level. Moreover, the exogenous minerals significantly increased the chemical stability of carbon in 600 °C-pyrolyzed biochars by 10-20%. These results indicated that the copyrolysis of sludge with phosphate and carbonate, especially phosphate, were effective methods to prepare the sludge-based biochars with immobilized toxic elements and enhanced chemical stability of carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A reagent-free tubular biofilm reactor for on-line determination of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Zhao, Huijun; Gao, Shan; Jia, Jianbo; Zhao, Limin; Yong, Daming; Dong, Shaojun

    2013-07-15

    We reported a reagent-free tubular biofilm reactor (BFR) based analytical system for rapid online biochemical oxygen demand (BOD) determination. The BFR was cultivated using microbial seeds from activated sludge. It only needs tap water to operate and does not require any chemical reagent. The analytical performance of this reagent-free BFR system was found to be equal to or better than the BFR system operated using phosphate buffer saline (PBS) and high purity deionized water. The system can readily achieve a limit of detection of 0.25 mg O2 L(-1), possessing superior reproducibility, and long-term operational and storage stability. More importantly, we confirmed for the first time that the BFR system is capable of tolerating common toxicants found in wastewaters, such as 3,5-dichlorophenol and Zn(II), Cr(VI), Cd(II), Cu(II), Pb(II), Mn(II) and Ni(II), enabling the method to be applied to a wide range of wastewaters. The sloughing and clogging are the important attributes affecting the operational stability, hence, the reliability of most online wastewater monitoring systems, which can be effectively avoided, benefiting from the tubular geometry of the reactor and high flow rate conditions. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD online determination. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    PubMed

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  8. Inhibition of Aspergillus niger Phosphate Solubilization by Fluoride Released from Rock Phosphate

    PubMed Central

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2013-01-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F− per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions. PMID:23770895

  9. Metals sorption from aqueous solutions by Kluyveromyces marxianus: process optimization, equilibrium modeling and chemical characterization.

    PubMed

    Pal, Rama; Tewari, Saumyata; Rai, Jai P N

    2009-10-01

    The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0-1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.

  10. Poly (Methyl Methacrylate) (PMMA) and Polyactic Acid Nanoparticles as Adjuvents for Peroral Vaccines

    DTIC Science & Technology

    1999-06-01

    pH 7.4) 10 2 PMMA DC GA adsorbed Miglyol 10 3 PMMA DC GA adsorbed Paraffine 10 4 PMMA DC GA adsorbed Olive oil 10 5 PMMA DC GA adsorbed...polyethylenglycole, paraffin, miglyol and phosphate buffered saline. - 17 - 6.2. Testing of the Optimized Vaccine Preparations The vaccine preparations

  11. Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina.

    PubMed

    Nord, L I; Kenne, L

    1999-07-20

    Six major saponins were isolated from a bark extract from Quillaja saponaria Molina. Solid-phase extraction, followed by a two-step reversed-phase HPLC separation procedure with phosphate and ammonium acetate buffers of different pH values, was used. The compounds were characterised using NMR spectroscopy, mass spectrometry and chemical methods.

  12. A simple reliable procedure for obtaining metaphases from human leukemic bone-marrow aspirates suitable for Giemsa banding.

    PubMed

    Srivastava, A K; Smith, R D

    1980-02-01

    Short incubation of heparinized human leukemic bone-marrow cells in phosphate buffered saline containing colcemid and overnight chilling of fixed cells yields metaphases with elongated and well-spread chromosomes. This technique enables us to do trypsin-Giemsa banding of chromosomes obtained from leukemic marrow cells otherwise difficult to band.

  13. Fire-retardant-treated strandboard : properties and fire performance

    Treesearch

    Jerrold Winandy; Qingwen Wang; Robert H. White

    2008-01-01

    This study evaluated a series of single-layer, randomly oriented strandboard panels made with one resin type, a single resin loading level, and four fire-retardant-treatment levels. The fire retardant (FR) evaluated was a pH-buffered combination of boric acid and organic phosphate. Siberian larch strands were separated into five batches. One batch of strands served as...

  14. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR THE URINARY BIOMONITORING OF 2,4-DICHLOROPHRENOCYACETIC ACID (2,4-D)

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...

  15. Dominant Negative Mutants of the Estrogen Receptor as Probes of Estrogen Action and Inhibitors of Breast Cancer Growth

    DTIC Science & Technology

    1996-07-01

    tetrazolium, inner salt; MTS; Promega], 1.9 mg/ml, and an electron coupling reagent ( phenazine methosulfate; PMS; Sigma), 0.044 mg/ml, in Dulbecco’s...acids PBS, phosphate buffered saline PCR, polymerase chain reaction PMS, phenazine methosulfate poly A, polyadenylation s.e., standard error TAE, tris

  16. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.

    PubMed

    Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš

    2011-06-01

    The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater.

    PubMed

    Azam, Hossain M; Finneran, Kevin T

    2014-02-01

    Phosphate is a water contaminant from fertilizers, soaps, and detergents that enters municipal and onsite wastewater from households, businesses, and other commercial operations. Phosphate is a limiting nutrient for algae, and is one of the molecules that promotes eutrophication of water bodies. Phosphate is especially problematic in onsite wastewater because there are few removal mechanisms under normal operating conditions; a system must be amended specifically with compounds to bond to or adsorb phosphate in the septic tank or within the leach field. Vivianite (Fe3(PO4)2⋅8H2O) is a stable mineral formed from ferrous iron and phosphate, often as the result of Fe(III) reducing microbial activity. What was unknown was the concentration of phosphate that could be removed by this process, and whether it was relevant to mixed microbial systems like septic tank wastewater. Data presented here demonstrate that significant concentrations of phosphate (12-14mM) were removed as vivianite in growing cultures of Geobacter metallireducens strain GS-15. Vivianite precipitates were identified on the cell surfaces and within multi cell clusters using TEM-EDX; the mineral phases were directly characterized using XRD. Phosphate was also removed in dilute and raw (undiluted) septic wastewater amended with different forms of Fe(III) including solid phase and soluble Fe(III). Vivianite precipitates were recovered and identified using XRD, along with siderite (ferrous carbonate), which was expected given that the systems were likely bicarbonate buffered. These data demonstrate that ferric iron amendments in septic wastewater increase phosphate removal as the mineral vivianite, and this may be a good strategy for phosphate attenuation in the septic tank portion of onsite wastewater systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. An azine based sensor for selective detection of Cu2 + ions and its copper complex for sensing of phosphate ions in physiological conditions and in living cells

    NASA Astrophysics Data System (ADS)

    Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar

    2018-02-01

    A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu2 + ions in the presence of other competitive ions through ;naked eye; in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10 mM, pH = 7.4)). The presence of Cu2 + induce color change from light yellow green to yellow with the appearance of a new band at 450 nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10 μM) was quenched completely in the presence of 2.7 equiv. of Cu2 + ions. Sub-micromolar limit of detection (LOD = 3.4 × 10- 7 M), efficient Stern-Volmer quenching constant (KSV = 1.8 × 105 L mol- 1) and strong binding constant (log Kb = 5.92) has been determined with the help of fluorescence titration profile. Further, 1 - Cu2 + complex was employed for the detection of phosphate ions (PO43 -, HPO42 - and H2PO4-) at micromolar concentrations in EtOH-buffer of pH 7.4 based on fluorescence recovery due to the binding of Cu2 + with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406 nm) and emission wavelength (537 nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging.

  19. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography.

    PubMed

    Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J

    2008-12-05

    A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).

  20. The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: a comparison of serum, synovial fluid, albumin, EDTA, and water.

    PubMed

    Lewis, A C; Kilburn, M R; Heard, P J; Scott, T B; Hallam, K R; Allen, G C; Learmonth, I D

    2006-08-01

    Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition.

  1. [Indirect and repeated electromagnetic irradiation of extremely high freguency of bacteria Escherichia coli].

    PubMed

    Isakhanian, V; Trchunian, A

    2005-01-01

    It has been shown that separate irradiation of distilled water and tris-phosphate buffer containing some inorganic ions, with Escherichia coli K12 grown in anaerobic conditions upon fermentation of sugar (glucose) with "noise" electromagnetic radiation of extremely high frequencies (53.5-68 gHz) or millimeter waves (wavelength of 3 to 8 mm) with low flux capacity (0.01 mW) for 10, 30 and 60 min caused opposite effects, changing the growth of these bacteria. The irradiation of water has a bactericide effect, whereas the irradiation of the buffer stimulates bacterial growth although the buffer itself inhibits the growth. These results point out the role of water in the bactericide action of "noise" electromagnetic radiation of extremely high frequencies, and confirm the significance of membranotropic effects. The bactericide action disappeared after repeated irradiation for 10 and 30 min with 2-h intervals. This indicates the operation of some compensatory mechanisms in bacteria.

  2. Study on the valorization routes of ashes from thermoelectric power plants working under mono-and co-combustion regimes

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro Fernandes

    The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for these ashes are now opened, contributing to improve their valorization rates.

  3. Concomitant Zn-Cd and Pb retention in a carbonated fluvio-glacial deposit under both static and dynamic conditions.

    PubMed

    Lassabatere, Laurent; Spadini, Lorenzo; Delolme, Cécile; Février, Laureline; Galvez Cloutier, Rosa; Winiarski, Thierry

    2007-11-01

    The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.

  4. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  6. Phosphorus Sorption Capacity of Gray Forest Soil as Dependent on Fertilization System

    NASA Astrophysics Data System (ADS)

    Rogova, O. B.; Kolobova, N. A.; Ivanov, A. L.

    2018-05-01

    In this paper, the results of the study of changes in the phosphorus sorption capacity of gray forest soils of Vladimir opolie under the impact of different fertilization systems are discussed. The quantitative parameters of the potential buffer capacity of soils for phosphorus (PBCP) and Langmuir sorption isotherms have been calculated. It is shown that the application of organic fertilizers results in a stronger decrease in PBCP than the application of mineral fertilizers. The portion of phosphorus of mineral compounds considerably increases, and the high content of available phosphates is maintained. In the variants with application of mineral phosphorus in combination with manure, the portions of organic and mineral phosphorus are at the level typical of unfertilized soils. The energy of phosphate bonds with the soil is minimal upon the application of a double rate of mineral phosphorus at the maximum capacity in relation to phosphate ions.

  7. Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Raghavarao, Karumanchi S. M. S.

    1999-11-01

    Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.

  8. Simultaneous HPLC analysis of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid dosage forms.

    PubMed

    Manassra, Adnan; Khamis, Mustafa; El-Dakiky, Magdy; Abdel-Qader, Zuhair; Al-Rimawi, Fuad

    2010-03-11

    An HPLC method using UV detection is proposed for the simultaneous determination of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid formulation. C18 column (250mmx4.0mm) is used as the stationary phase with a mixture of methanol:acetate buffer:acetonitrile (85:5:10, v/v) as the mobile phase. The factors affecting column separation of the analytes were studied. The calibration graphs exhibited a linear concentration range of 0.06-1.0mg/ml for pseudophedrine hydrochloride, 0.02-1.0mg/ml for codeine phosphate, and 0.0025-1.0mg/ml for triprolidine hydrochloride for a sample size of 5microl with correlation coefficients of better than 0.999 for all active ingredients studied. The results demonstrate that this method is reliable, reproducible and suitable for routine use with analysis time of less than 4min. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.

    PubMed

    Polanams, Jup; Ray, Alisha D; Watt, Richard K

    2005-05-02

    Nanoparticles of iron phosphate, iron arsenate, iron molybdate, and iron vanadate were synthesized within the 8 nm interior of ferritin. The synthesis involved reacting Fe(II) with ferritin in a buffered solution at pH 7.4 in the presence of phosphate, arsenate, vanadate, or molybdate. O2 was used as the oxidant to deposit the Fe(III) mineral inside ferritin. The rate of iron incorporation into ferritin was stimulated when oxo-anions were present. The simultaneous deposition of both iron and the oxo-anion was confirmed by elemental analysis and energy-dispersive X-ray analysis. The ferritin samples containing iron and one of the oxo-anions possessed different UV/vis spectra depending on the anion used during mineral formation. TEM analysis showed mineral cores with approximately 8 nm mineral particles consistent with the formation of mineral phases inside ferritin.

  10. Coefficient of Friction of Human Corneal Tissue.

    PubMed

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  11. Pyrroloquinoline quinone (PQQ) is reduced to pyrroloquinoline quinol (PQQH2) by vitamin C, and PQQH2 produced is recycled to PQQ by air oxidation in buffer solution at pH 7.4.

    PubMed

    Mukai, Kazuo; Ouchi, Aya; Nagaoka, Shin-ichi; Nakano, Masahiko; Ikemoto, Kazuto

    2016-01-01

    Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV-vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions.

  12. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.

    Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.

  13. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan.

    PubMed

    Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard

    2015-07-01

    Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and Zn values in the clay waste were determined to have exceeded the severe effect level (SEL) limit values, whereas Cd and Cu level ranges between LEL and SEL indicate moderate contamination. I R values of heavy metals in the clay waste confirmed that Cd and Cu were bound to the exchangeable and carbonate fractions and presented higher mobility, whereas As, Cr, Mo, Pb, V, and Zn were bound to organic or residual fractions and consequently exhibit lower mobility. A Nemerow multi-factor index revealed that the mine site contains high levels of Cd, Cu, V, and Zn pollution. As and Cr were found at a moderate level of contamination, whereas Pb was present at a safe level of contamination. The order of the comprehensive contamination indices was Cd > Cu > Mo > Zn > V > Cr > As > Pb, indicating that the assessment of clay waste, especially with Cd and Cu, should be undertaken to control heavy metal contamination in adjacent urban and mine areas at the Eshidiya mines.

  14. Partial Purification and Properties of an Alkaline α-Galactosidase from Mature Leaves of Cucurbita pepo1

    PubMed Central

    Gaudreault, Pierre-Richard; Webb, John A.

    1983-01-01

    A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884

  15. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum.

    PubMed

    Tian, Da; Wang, Wenchao; Su, Mu; Zheng, Junyi; Wu, Yuanyi; Wang, Shimei; Li, Zhen; Hu, Shuijin

    2018-05-16

    Phosphate-solubilizing fungi (PSF) can secrete large amounts of organic acids. In this study, the application of the fungus Penicillium oxalicum and geological fluorapatite (FAp) to lead immobilization was investigated. The formation and morphology of the lead-related minerals were analyzed by ATR-IR, XRD, Raman, and SEM. The quantity of organic acids secreted by P. oxalicum reached the maximum on the fourth day, which elevated soluble P concentrations from 0.4 to 108 mg/L in water. The secreted oxalic acid dominates the acidity in solution. P. oxalicum can survive in the solution with Pb concentration of ~ 1700 mg/L. In addition, it was shown that ~ 98% lead cations were removed while the fungus was cultured with Pb (~ 1700 mg/L) and FAp. The mechanism is that the released P from FAp (enhanced by organic acids) can react with Pb 2+ to form the stable pyromorphite mineral [Pb 5 (PO 4 ) 3 F]. The precipitation of lead oxalate also contributes to Pb immobilization. However, lead oxalate is more soluble due to its relatively high solubility. P. oxalicum has a higher rate of organic acid secretion compared with other typical PSF, e.g., Aspergillus niger. This study sheds light on bright future of applying P. oxalicum in Pb remediation.

  16. Comparative analyses of universal extraction buffers for assay of stress related biochemical and physiological parameters.

    PubMed

    Han, Chunyu; Chan, Zhulong; Yang, Fan

    2015-01-01

    Comparative efficiency of three extraction solutions, including the universal sodium phosphate buffer (USPB), the Tris-HCl buffer (UTHB), and the specific buffers, were compared for assays of soluble protein, free proline, superoxide radical (O2∙-), hydrogen peroxide (H2O2), and the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR) in Populus deltoide. Significant differences for protein extraction were detected via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Between the two universal extraction buffers, the USPB showed higher efficiency for extraction of soluble protein, CAT, GR, O2∙-, GPX, SOD, and free proline, while the UTHB had higher efficiency for extraction of APX, POD, and H2O2. When compared with the specific buffers, the USPB showed higher extraction efficiency for measurement of soluble protein, CAT, GR, and O2∙-, parallel extraction efficiency for GPX, SOD, free proline, and H2O2, and lower extraction efficiency for APX and POD, whereas the UTHB had higher extraction efficiency for measurement of POD and H2O2. Further comparisons proved that 100 mM USPB buffer showed the highest extraction efficiencies. These results indicated that USPB would be suitable and efficient for extraction of soluble protein, CAT, GR, GPX, SOD, H2O2, O2∙-, and free proline.

  17. Bioaccessibility tests accurately estimate bioavailability of lead to quail.

    PubMed

    Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S

    2016-09-01

    Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  18. Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X

    NASA Astrophysics Data System (ADS)

    Hart, Stanley R.; Gaetani, Glenn A.

    2016-07-01

    We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250-1523 °C, pressures of 1.0-3.5 GPa and oxygen fugacities at iron-wustite and wustite-magnetite. The total observed range of KdPb is 4.0-66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2-39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 - 119*P in GPa)*(1/FeO - 0.021). We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the ;natural; partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.

  19. Deduction of a calcium ion circuit affecting rooster sperm in vitro.

    PubMed

    Froman, D P

    2016-08-01

    Four premises for rooster sperm preservation were outlined previously. Understanding mitochondrial Ca cycling in terms of whole-cell Ca flux was one premise. The present work tested the hypothesis that sperm mitochondria can be damaged by intracellular as well as extracellular Ca. Sperm were washed by centrifugation through 12% (wt/vol) Sperm were washed by centrifugation through 12%(at/vol) Accudenz to procure sperm at a physiological concentration within a chemically-defined suspension. Five solutions were tested. Each solution contained 30 m glucose, and had an osmolality of 320 mmol/kg and a pH of 7.4. Washed sperm were diluted to 2.0 × 10 sperm/mL. Each replicate sperm suspension was cooled to 10°C. Sperm mobility was measured after 1, 2, 4, 8, 12, and 24 h. Data were plotted as a function of time in each experiment. Function type was confirmed by lack of fit analysis. A parabola with a maximum at 3.7 h was observed when sperm were suspended in 205 m taurine buffered with 50 m-tris[hydroxyl-methyl]methyl-2-amino-ethanesulfonic acid (TES). This effect was attributed to a Ca flux from the nuclear envelope into mitochondria. An exponential decay was observed when TES-buffered taurine contained 2 m Ca. This effect was attributed to mitochondrial Ca overload induced by uptake of extracellular Ca. Exponential decay also was observed when TES-buffered taurine contained a Ca chelator. This effect was attributed to a Ca flux from the nuclear envelope through mitochondria and then into an extracellular Ca sink. This possibility was supported by the response of sperm to thapsigargin. Specifically, inhibition of sarcoendoplasmic reticulum Ca-ATPase compromised sperm mobility relative to a buffer control. Finally, a 60 m phosphate buffer containing 2 m citrate yielded a linear relationship in contrast to the TES-buffered solutions tested. Sperm mobility after 24 h of storage in the phosphate buffer was 92% of that observed for prewashed sperm. The linear response was attributed to weak chelators providing resistance within a Ca circuit and thereby preventing mitochondrial Ca overload. Fertility, however, was compromised when hens were inseminated with mobile sperm recovered after either 8 or 24 h of storage at 10°C. In conclusion, sperm cell Ca homeostasis was proven to be critical for maintaining sperm mobility in vitro, but mitochondrial Ca uptake is not the sole phenomenon that compromises sperm function during in vitro storage.

  20. Overloaded elution band profiles of ionizable compounds in reversed-phase liquid chromatography: Influence of the competition between the neutral and the ionic species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2008-01-01

    The parameters that affect the shape of the band profiles of acido-basic compounds under moderately overloaded conditions (sample size less than 500 nmol for a conventional column) in RPLC are discussed. Only analytes that have a single pK{sub a} are considered. In the buffer mobile phase used for their elution, their dissociation may, under certain conditions, cause a significant pH perturbation during the passage of the band. Two consecutive injections (3.3 and 10 {micro}L) of each one of three sample solutions (0.5, 5, and 50 mM) of ten compounds were injected on five C{sub 18}-bonded packing materials, including the 5more » {micro}m Xterra-C{sub 18} (121 {angstrom}), 5 {micro}m Gemini-C{sub 18} (110 {angstrom}), 5 {micro}m Luna-C{sub 18}(2) (93 {angstrom}), 3.5 {micro}m Extend-C{sub 18} (80 {angstrom}), and 2.7 {micro}m Halo-C{sub 18} (90 {angstrom}). The mobile phase was an aqueous solution of methanol buffered at a constant {sub W}{sup W}pH of 6, with a phosphate buffer. The total concentration of the phosphate groups was constant at 50 mM. The methanol concentration was adjusted to keep all the retention factors between 1 and 10. The compounds injected were phenol, caffeine, 3-phenyl 1-propanol, 2-phenyl butyric acid, amphetamine, aniline, benzylamine, p-toluidine, procainamidium chloride, and propranololium chloride. Depending on the relative values of the analyte pK{sub a} and the buffer solution pH, these analytes elute as the neutral, the cationic, or the anionic species. The influence of structural parameters such as the charge, the size, and the hydrophobicity of the analytes on the shape of its overloaded band profile is discussed. Simple but general rules predict these shapes. An original adsorption model is proposed that accounts for the unusual peak shapes observed when the analyte is partially dissociated in the buffer solution during its elution.« less

  1. 21 CFR 573.320 - Diammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (nitrogen × 6.25) and 20 percent phosphorus. It contains not more than the following: 1 part fluorine to 100 parts phosphorus. 75 parts per million or arsenic (as As). 30 parts per million of heavy metals, as lead (Pb). (b) It is used in ruminant feeds as a source of phosphorus and nitrogen in an amount that...

  2. 21 CFR 573.320 - Diammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (nitrogen × 6.25) and 20 percent phosphorus. It contains not more than the following: 1 part fluorine to 100 parts phosphorus. 75 parts per million or arsenic (as As). 30 parts per million of heavy metals, as lead (Pb). (b) It is used in ruminant feeds as a source of phosphorus and nitrogen in an amount that...

  3. Evaluation of the efficiency of three extraction conditions for the immunochemical detection of allergenic soy proteins in different food matrices.

    PubMed

    Amponsah, Amma; Nayak, Balunkeswar

    2018-04-01

    Recent studies have shown the need to improve soy allergen extraction using different extraction conditions to ensure more accurate results in allergen detection. This study investigated some of these extraction conditions to confirm that these methods, especially ultrasound-assisted extraction (UAE) and the use of Laemmli buffer instead of the conventional extraction with phosphate-buffered saline (PBS), could be helpful in improving the extraction step in allergen detection. Higher total soluble protein was obtained in all samples extracted with Laemmli buffer alone and in combination with ultrasound. For immunochemical detection of soy proteins by enzyme-linked immunosorbent assay (ELISA), comparable detection was observed in extracts from all extraction conditions in all commercial samples with the exception of table cracker and veggie burger, where significantly higher detection was seen in extracts from Laemmli buffer only. For the dry mix and cookie samples, the degree of soy protein detection with ELISA varied among the different extraction conditions, but overall, extraction with only Laemmli buffer showed higher detection. Laemmli buffer with conventional extraction and UAE may be better alternatives or additional extraction methods in soy allergen detection. Different food matrices performed differently (whether it was for the recovery of total proteins or detection by ELISA) under different extraction conditions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Diet shapes the ability of human intestinal microbiota to degrade phytate--in vitro studies.

    PubMed

    Markiewicz, L H; Honke, J; Haros, M; Świątecka, D; Wróblewska, B

    2013-07-01

    Investigation of intestinal bacterial groups involved in phytate degradation and the impact of diets with different phytate contents on phytase activity. Faecal samples of adults on conventional (n = 8) or vegetarian (n = 8) diets and breastfed infants (n = 6) were used as an inoculum for modified media supplemented with phytate. Populations of Gram-positive anaerobes (GPA), lactic acid bacteria (LAB), Proteobacteria-Bacteroides (P-B), coliforms and anaerobes were studied. The PCR-DGGE analysis revealed a random distribution of DGGE profiles in the dendrograms of GPA, P-B and coliforms, and a partially diet-specific distribution in the DGGE dendrograms of LAB and anaerobes. The degradation of phytic acid (PA) was determined with HPLC method in supernatants of the cultures. Regardless of the diet, the Gram-positive anaerobes and LAB displayed the lowest ability to degrade phytate, whereas the coliforms and P-B cultures produced higher amounts of intermediate myo-inositol phosphates. Bacterial populations grown in a nonselective medium were the most effective ones in phytate degradation. It was the vegetarians' microbiota that particularly degraded up to 100% phytate to myo-inositol phosphate products lower than InsP3. A diet rich in phytate increases the potential of intestinal microbiota to degrade phytate. The co-operation of aerobic and anaerobic bacteria is essential for the complete phytate degradation. This study provides insights on the effect of diet on specific metabolic activity of human intestinal microbiota. © 2013 The Society for Applied Microbiology.

  5. Recovery of Monkeys After Myocardial Infarction with Ventricular Fibrillation. Effects of PGB

    DTIC Science & Technology

    1980-01-01

    stress5 ,0 a new bioregulatory factor was dis- ing to hypoxia and acidosis is associated with covered with the unique property of conserv- biochemical...with 5% glutaralde- bovine serum albumin to give a final mixture hyde in 0.1 M phosphate buffer, pH 7.4. At of 2.2 ml. AMP and ADP were added as 30

  6. High-Throughput Kinetic Characterization of Ricin Toxin B Chain and Ovalbumin Antibodies Using Surface Plasmon Resonance

    DTIC Science & Technology

    2013-10-01

    antibodies were purified using protein A purification, desalted in 1× phosphate buffered saline using Sephadex G-25 columns, and then filtered with a 0.2 µm...Purification of clones 2  The following materials were used in this process: o Protein A XK 16/15 (30 mL) column o Desalting Sephadex G

  7. Plasma creatinine and creatine quantification by capillary electrophoresis diode array detector.

    PubMed

    Zinellu, Angelo; Caria, Marcello A; Tavera, Claudio; Sotgia, Salvatore; Chessa, Roberto; Deiana, Luca; Carru, Ciriaco

    2005-07-15

    Traditional clinical assays for nonprotein nitrogen compounds, such as creatine and creatinine, have focused on the use of enzymes or chemical reactions that allow measurement of each analyte separately. Most of these assays are mainly directed to urine quantification, so that their applicability on plasma samples is frequently hard to perform. This work describes a simple free zone capillary electrophoresis method for the simultaneous measurement of creatinine and creatine in human plasma. The effect of analytical parameters such as concentration and pH of Tris-phosphate running buffer and cartridge temperature on resolution, migration times, peak areas, and efficiency was investigated. Good separation was achieved using a 60.2-cm x 75-microm uncoated silica capillary, 75 mmol/L Tris-phosphate buffer, pH 2.25, at 15 degrees C, in less than 8 min. We compared the present method to a validated capillary electrophoresis assay, by measuring plasma creatinine in 120 normal subjects. The obtained data were compared by the Passing-Bablok regression and the Bland-Altman test. Moreover the performance of the developed method was assessed by measuring creatine and creatinine in 16 volunteers prior to and after a moderate physical exercise.

  8. Anions in Electrothermal Supercharging of Proteins with Electrospray Ionization Follow a Reverse Hofmeister Series

    PubMed Central

    2015-01-01

    The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546

  9. Crystallization of dienelactone hydrolase in two space groups: structural changes caused by crystal packing

    PubMed Central

    Porter, Joanne L.; Carr, Paul D.; Collyer, Charles A.; Ollis, David L.

    2014-01-01

    Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P212121 from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P212121 DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein–protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices. PMID:25005082

  10. Relationship of the method of addition and temperature of cryoprotective agents to the fertilizing capacity of cooled chicken spermatozoa.

    PubMed

    Sexton, T J

    1975-05-01

    Three experiments were conducted to determine the relationship of the method of adding (fraction or bulk) and/or holding temperature (41 degrees, 25 degrees, 10 degrees) of glycerol, dimethylsulfoxide or ethylene glycol to the fertilizing capacity of chicken spermatozoa during cooling. No significant effect on fertility was observed when sperm were washed, suspended without dilution in phosphate buffer or milk and cooled to 15 degrees in 30 min. With phosphate buffer as the medium, fertility was comparable with that of the control only when glycol was maintained at 41 degrees or 25 degrees prior to addition in fractions (3 equal parts at 10 min. intervals). Similar effects were observed when 4% DMSO at 25 degrees was added in bulk after cooling. However, when DMSO was added to sperm suspended in milk, fertility was significantly reduced regardless of treatment. None of the methods were successful in eliminating the contraceptive action of glycerol. The results indicate that a number of in vitro techniques can be used to maintain the fertilizing capacity of chicken spermatozoa in the presence of 4% ethylene glycol or DMSO.

  11. Prefibrillar Formation Conditions of β-Lactoglobulin by Titration and Chaotropes Urea and KSCN Under Thermal Load

    NASA Astrophysics Data System (ADS)

    Babcock, Jeremiah; Valdez, Rolando; Brancaleon, Lorenzo

    2009-10-01

    The harmful growth of toxic oligomers in the formation of protein amyloid fibrils have been connected to degenerative diseases like Alzheimer's and Huntington's diseases. Understanding the fundamental mechanisms behind protein unfolding and subsequent fibrillogenesis may provide a way to stop the process from occurring. The purpose of this study was to identify favorable fibril growth conditions for a globular model protein β-lactoglobulin using the chaotropes urea and KSCN, along with titration of a pH 7.04 phosphate buffer solution at 40 ^oC over five days. Time-resolved and steady-state fluorescence was used to examine the shift in emission of the tryptophan amino acids over the applied denaturation ranges. BLG, a dimer in native form, monomerized and partially unfolded at 5 M Urea, 2 M KSCN and at pH 2 in phosphate buffer in vitro. Exposure of the solutions to continuous heat over time caused a increase in the lifetimes and red shift in the emission spectra, indicating the possible beginning of nucleation. The study has provided a base for continuation of the study of oligomerization and subsequent fibrillation of BLG, which may provide a fundamental mechanism of formation transferable to other proteins in vivo.

  12. Morphological examination of the effects of defibrotide on experimentally induced bladder injury and its relation to interstitial cystitis.

    PubMed

    Aydin, H; Ercan, F; Cetinel, S; San, T

    2001-08-01

    This morphological study aims to investigate the effects of defibrotide, a deoxyribonucleic acid derivative drug with cytoprotective, immunosuppressive and vasorelaxant effects, on protamine sulfate induced bladder injury. Wistar albino female rats were catheterized and intravesically infused with phosphate buffered solution (control group) or, either protamine sulfate (bladder injury group) or protamine sulfate+defibrotide (bladder injury+defibrotide group) dissolved in phosphate buffered solution. The morphology of the urinary bladder was investigated using light and electron microscopy. The number of mast cells in the mucosa, mucosal alterations, intercellular junctions, surface topography and the glycosaminoglycan (GAG) layer as well as microvillus formation on the luminal surface were evaluated. In the bladder injury group, ulcerated areas, irregularity of the GAG layer, increased number of mast cells, vacuole formation, dilated perinuclear cistern, formation of pleomorphic and uniform microvilli and dilatations in the intercellular spaces in the urothelium were observed. In the bladder injury+defibrotide group a relatively normal urothelial topography, GAG layer and a few mast cells in the mucosa, some dilatations between the intercellular areas, less uniform microvilli, regular perinuclear cistern and tight junctions were observed. These results show that defibrotide can inhibit PS induced bladder damage.

  13. Mitochondrial rhodanese: membrane-bound and complexed activity.

    PubMed

    Ogata, K; Volini, M

    1990-05-15

    We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.

  14. Development and Validation of Different Ultraviolet-Spectrophotometric Methods for the Estimation of Besifloxacin in Different Simulated Body Fluids.

    PubMed

    Singh, C L; Singh, A; Kumar, S; Kumar, M; Sharma, P K; Majumdar, D K

    2015-01-01

    In the present study a simple, accurate, precise, economical and specific UV-spectrophotometric method for estimation of besifloxacin in bulk and in different pharmaceutical formulation has been developed. The drug shows maximum λmax289 nm in distilled water, simulated tears and phosphate buffer saline. The linearity range of developed methods were in the range of 3-30 μg/ml of drug with a correlation coefficient (r(2)) 0.9992, 0.9989 and 0.9984 with respect to distilled water, simulated tears and phosphate buffer saline, respectively. Reproducibility by repeating methods as %RSD were found to be less than 2%. The limit of detection in different media was found to be 0.62, 0.72 and 0.88 μg/ml, respectively. The limit of quantification was found to be 1.88, 2.10, 2.60 μg/ml, respectively. The proposed method was validated statically according to International Conference on Harmonization guidelines with respect to specificity, linearity, range, accuracy, precision and robustness. The proposed methods of validation were found to be accurate and highly specific for the estimation of besifloxacin in different pharmaceutical formulations.

  15. Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens.

    PubMed

    Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui

    2018-06-10

    In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Precise method for the measurement of catalase activity in honey.

    PubMed

    Huidobro, José F; Sánchez, M Pilar; Muniategui, Soledad; Sancho, M Teresa

    2005-01-01

    An improved method is reported for the determination of catalase activity in honey. We tested different dialysis membranes, dialysis fluid compositions and amounts, dialysis temperatures, sample amounts, and dialysis times. The best results were obtained by dialysis of 7.50 g sample in a cellulose dialysis sack, using two 3 L portions of 0.015 M sodium phosphate buffer (pH 7.0) as the dialysis fluid at 4 degrees C for 22 h. As in previous methods, catalase activity was determined on the basis of the rate of disappearance of the substrate, H202, with the H202 determined spectrophotometrically at 400 nm in an assay system containing o-dianisidine and peroxidase. Trials indicated that the best solvent for the o-dianisidine was 0.2 M sodium phosphate buffer, pH 6.1; the best starting H202 concentration was 3 mM; the best HCl concentration for stopping the reaction was 6 N; and the best sample volume for catalase measurement was 7.0 mL. Precision values (relative standard deviations for analyses of 10 subsamples of each of 3 samples) were high, ranging from 0.48% for samples with high catalase activity to 1.98% for samples with low catalase activity.

  17. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    PubMed

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. All-solution-processed PbS quantum dot solar modules.

    PubMed

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-21

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.

  19. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    PubMed

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism.

    PubMed

    Diao, Zeng-Hui; Du, Jian-Jun; Jiang, Dan; Kong, Ling-Jun; Huo, Wen-Yi; Liu, Cui-Mei; Wu, Qi-Hang; Xu, Xiang-Rong

    2018-06-13

    Cr 6+ and Pb 2+ are both highly toxic pollutants and commonly co-exist in some industrial effluents and contaminated waters. In this study, simultaneous removal of Cr 6+ and Pb 2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero-valent iron (SSB-nZVI) was systematically investigated. It was well demonstrated that a porous structure was successfully formed on the SSB-nZVI when the starch was used as an additive. A synergistic effect on the adsorption and reduction over the SSB-nZVI was achieved, resulting in nearly 90 and 82% of Cr 6+ and Pb 2+ removal within 30 min, respectively. Cr 6+ was reduced prior to Pb 2+ . A low pH could accelerate the corrosion of nZVI as well as phosphate leaching. When Malachite green was added as a coexisting organic pollutant, its effective removal was found due to the formation of a Fenton-like system. The SSB-nZVI could be run consecutively three times with a relatively satisfactory performance. Most of Cr 6+ was converted into Cr 2 O 3 and Cr(OH) 3 on the SSB-nZVI surface, whereas most of Pb 2+ species existed as Pb(OH) 2 (or PbO). A possible reaction mechanism on the SSB-nZVI involved the adsorption, reduction and precipitation of both Cr 6+ and Pb 2+ over the particles. Present study sheds light on the insight of the fate and transport of Cr 6+ and Pb 2+ in aquatic environment, as well provides helpful guide for the remediation of coexistence of pollutants in real applications. Copyright © 2018 Elsevier B.V. All rights reserved.

Top