Science.gov

Sample records for phosphate coated titanium

  1. Alternative technique for calcium phosphate coating on titanium alloy implants

    PubMed Central

    Le, Van Quang; Pourroy, Geneviève; Cochis, Andrea; Rimondini, Lia; Abdel-Fattah, Wafa I; Mohammed, Hadeer I; Carradò, Adele

    2014-01-01

    As an alternative technique for calcium phosphate coating on titanium alloys, we propose to functionalize the metal surface with anionic bath containing chlorides of palladium or silver as activators. This new deposition route has several advantages such as controlled conditions, applicability to complex shapes, no adverse effect of heating, and cost effectiveness. A mixture of hydroxyapatite and calcium phosphate hydrate is deposited on the surface of Ti–6Al–4V. Calcium phosphate coating is built faster compared with the one by Simulated Body Fluid. Cell morphology and density are comparable to the control one; and the results prove no toxic compound is released into the medium during the previous seven days of immersion. Moreover, the cell viability is comparable with cells cultivated with the virgin medium. These experimental treatments allowed producing cytocompatible materials potentially applicable to manufacture implantable devices for orthopedic and oral surgeries. PMID:24646569

  2. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. A.; Balestra, R. M.; Rocha, M. N.; Peripolli, S. B.; Andrade, M. C.; Pereira, L. C.; Oliveira, M. V.

    2013-01-01

    The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  3. Calcium phosphate coating on titanium using laser and plasma spray

    NASA Astrophysics Data System (ADS)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from

  4. Influence of anodization on the adhesion of calcium phosphate coatings on titanium substrates.

    PubMed

    Blackwood, Daniel J; Seah, Kar Heng W

    2010-06-15

    Electrochemical deposition is an attractive technique for the deposition of calcium phosphate, especially hydroxyapatite, on titanium implants. However, the adhesion of these coatings to the titanium substrates needs to be improved for clinical use. It is demonstrated that anodization of a titanium alloy does marginally increase the adhesion of calcium phosphate coatings. Although scratch test measurements on coatings deposited at a constant potential appear to suggest that adhesion improves with increased thickness of the anodized layer, when a constant current is used to deposit the coatings their adhesion becomes independent of the thickness of the anodized layer. This apparent contradiction is explained by the thicker oxides acting as larger series resistors that reduce the magnitude of the current density when deposition is conducted at a constant potential. The resulting lower current density is responsible for increased adhesion of the calcium phosphate coating. It was also observed that surface roughness affects the interfacial adhesion strength between the coating and the titanium substrate, with a more adherent coating being formed over a rough surface. However, adhesion becomes independent of surface finish at levels smoother than 600 grit, suggesting that mechanical interlocking is not the sole force at play.

  5. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    PubMed Central

    Wei, Mei

    2013-01-01

    The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation. PMID:24455730

  6. Highly efficient solid-phase derivatization of sugar phosphates with titanium-immobilized hydrophilic polydopamine-coated silica.

    PubMed

    Qin, Qian; Wang, Bohong; Chang, Mengmeng; Zhou, Zhihui; Shi, Xianzhe; Xu, Guowang

    2016-07-29

    Sugar phosphates are a type of key metabolic intermediates of glycolysis, gluconeogenesis and pentose phosphate pathway, which can regulate tumor energetic metabolism. Due to their low endogenous concentrations, poor chromatographic retention properties as well as ionization suppression from complex matrix interference, the determination of sugar phosphates in biological samples is very difficult. In this study, titanium-immobilized hydrophilic polydopamine-coated silica microspheres (SiO2@PD-Ti(4+)) were synthesized for highly efficient solid-phase derivatization of sugar phosphates. Sugar phosphates were selectively captured onto the surface of the SiO2@PD-Ti(4+) microspheres by chelating with phosphate groups, and then reacted with 3-amino-9-ethylcarbazole via reductive amination based on solid-phase derivatization, which could not only increase the retention and resolution of sugar phosphates on reversed-phase liquid chromatography (RPLC), but also improve the mass spectrometry (MS) sensitivity of sugar phosphates. The adsorption capacity of SiO2@PD-Ti(4+) microspheres towards glucose-6-phosphate is 0.76mg/g, which is much larger than that of commercial TiO2. Compared with the traditional liquid-phase derivatization, the solid-phase derivatization based on the SiO2@PD-Ti(4+) microspheres displayed several superiorities including shorter derivatization time (within 10min), higher product purity and much lower limit of detection (up to 38pmol/L). In addition, good linearity (R(2)≥0.99), excellent recovery (80.6-118%) and high precision (RSDs with 2.8-7.8%) were obtained when the developed method was used for quantitative analysis of sugar phosphates. Finally, the SiO2@PD-Ti(4+) microspheres combined with RPLC-MS were successfully applied to the determination of sugar phosphates from hepatocarcinoma cell lines and could even detect the trace sugar phosphates in thousands of cells. PMID:27371021

  7. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium.

    PubMed

    Kazemzadeh-Narbat, Mehdi; Noordin, Shahryar; Masri, Bassam A; Garbuz, Donald S; Duncan, Clive P; Hancock, Robert E W; Wang, Rizhi

    2012-07-01

    Preventing infection is one of the major challenges in total hip and joint arthroplasty. The main concerns of local drug delivery as a solution have been the evolution of antibiotic-resistant bacteria and the potential inhibition of osseointegration caused by the delivery systems. This work investigated the in vitro drug release, antimicrobial performance, and cytotoxicity, as well as the in vivo bone growth of an antimicrobial peptide loaded into calcium phosphate coated Ti implants in a rabbit model. Two potent AMP candidates (HHC36: KRWWKWWRR, Tet213: KRWWKWWRRC) were first investigated through an in vitro cytotoxicity assay. MTT absorbance values revealed that HHC36 showed much lower cytotoxicity (minimal cytotoxic concentration 200 μg/mL) than Tet 213 (50 μg/mL). The AMP HHC36 loaded onto CaP (34.7 ± 4.2 μg/cm(2)) had a burst release during the first few hours followed by a slow and steady release for 7 days as measured spectrophotometrically. The CaP-AMP coatings were antimicrobial against Staphylococcus aureus and Pseudomonas aeruginosa strains in colony-forming units (CFU) in vitro assays. No cytotoxicity was observed on CaP-AMP samples against MG-63 osteoblast-like cells after 5 days in vitro. In a trabecular bone growth in vivo study using cylindrical implants, loading of AMP HHC36 did not impair bone growth onto the implants. Significant bone on-growth was observed on CaP-coated Ti with or without HHC36 loading, as compared with Ti alone. The current AMP-CaP coating thus offers in vivo osteoconductivity to orthopedic implants. It also offers in vitro antimicrobial property, with its in vivo performance to be confirmed in future animal infection models.

  8. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  9. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  10. Carbon-coated lithium titanium phosphate nanoporous microplates with superior electrochemical performance

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng; Liu, Li; Zhou, Qian; Tan, Jinli; Yan, Zichao; Xia, Dongdong; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-10-01

    In this study, we report a facile method to synthesize carbon-coated LiTi2(PO4)3 nanoporous microplates (LTP/C MPs) using ethylenediamine as the chelating agent and carbon source. The as-prepared LTP/C MPs with thickness of 0.4 μm consist of interconnected nanosized particles embedded in nano-thickness carbon layer and well-dispersed nanopores. The carbon layer significantly improves the electrochemical performance of LiTi2(PO4)3 microplates. LTP/C MPs deliver a reversible capacity of 121 mAh g-1 at 0.2C (1C = 138 mAh g-1) and show a remarkable capacity retention of 94.2% over 100 cycles when matched with Li metal counter electrode. It also presents excellent electrochemical properties as anode material for aqueous rechargeable lithium batteries (ARLBs). LTP/C MPs//LiMn2O4 ARLB shows a high discharge capacity of 76 mAh g-1 at 20 mA g-1 and superior rate capability. The results suggest a practical stratagem to develop a novel composite in which the carbon is coated with LiTi2(PO4)3 nanoporous microplates, which can become one of the promising electrode materials for both non-aqueous and aqueous lithium ion batteries.

  11. Calcium phosphate coatings produced by radiofrequency magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Bolbasov, E. N.; Zheravin, A. A.; Klimov, I. A.; Kulbakin, D. E.; Perelmuter, V. M.; Tverdokhlebov, S. I.; Cherdyntseva, N. V.; Choinzonov, E. L.

    2016-08-01

    Calcium phosphate coatings on titanium implants surface, produced by radio frequency (RF) magnetron sputtering method with hydroxyapatite solid target were investigated. It was found that produced coatings are calcium deficient compared to stoichiometric hydroxyapatite. The surface of the coatings is highly rough at the nanoscale and highly elastic. In vivo experiments on rats revealed that titanium implants with the calcium phosphate coatings do not cause negative tissue reaction after 6 months incubation period.

  12. In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion.

    PubMed

    Mróz, Waldemar; Budner, Bogusław; Syroka, Renata; Niedzielski, Kryspin; Golański, Grzegorz; Slósarczyk, Anna; Schwarze, Dieter; Douglas, Timothy E L

    2015-01-01

    The use of porous titanium-based implant materials for bone contact has been gaining ground in recent years. Selective laser melting (SLM) is a rapid prototyping method by which porous implants with highly defined external dimensions and internal architecture can be produced. The coating of porous implants produced by SLM with ceramic layers based on calcium phosphate (CaP) remains relatively unexplored, as does the doping of such coatings with magnesium (Mg) to promote bone formation. In this study, Mg-doped coatings of the CaP types octacalcium phosphate and hydroxyapatite (HA) were deposited on such porous implants using the pulsed laser deposition method. The coated implants were subsequently implanted in a rabbit femoral defect model for 6 months. Uncoated implants served as a reference material. Bone-implant contact and bone volume in the region of interest were evaluated by histopathological techniques using a tri-chromatographic Masson-Goldner staining method and by microcomputed tomography (µCT) analysis of the volume of interest in the vicinity of implants. Histopathological analysis revealed that all implant types integrated directly with surrounding bone with ingrowth of newly formed bone into the pores of the implants. Biocompatibility of all implant types was demonstrated by the absence of inflammatory infiltration by mononuclear cells (lymphocytes), neutrophils, and eosinophils. No osteoclastic or foreign body reaction was observed in the vicinity of the implants. µCT analysis revealed a significant increase in bone volume for implants coated with Mg-doped HA compared to uncoated implants.

  13. In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion.

    PubMed

    Mróz, Waldemar; Budner, Bogusław; Syroka, Renata; Niedzielski, Kryspin; Golański, Grzegorz; Slósarczyk, Anna; Schwarze, Dieter; Douglas, Timothy E L

    2015-01-01

    The use of porous titanium-based implant materials for bone contact has been gaining ground in recent years. Selective laser melting (SLM) is a rapid prototyping method by which porous implants with highly defined external dimensions and internal architecture can be produced. The coating of porous implants produced by SLM with ceramic layers based on calcium phosphate (CaP) remains relatively unexplored, as does the doping of such coatings with magnesium (Mg) to promote bone formation. In this study, Mg-doped coatings of the CaP types octacalcium phosphate and hydroxyapatite (HA) were deposited on such porous implants using the pulsed laser deposition method. The coated implants were subsequently implanted in a rabbit femoral defect model for 6 months. Uncoated implants served as a reference material. Bone-implant contact and bone volume in the region of interest were evaluated by histopathological techniques using a tri-chromatographic Masson-Goldner staining method and by microcomputed tomography (µCT) analysis of the volume of interest in the vicinity of implants. Histopathological analysis revealed that all implant types integrated directly with surrounding bone with ingrowth of newly formed bone into the pores of the implants. Biocompatibility of all implant types was demonstrated by the absence of inflammatory infiltration by mononuclear cells (lymphocytes), neutrophils, and eosinophils. No osteoclastic or foreign body reaction was observed in the vicinity of the implants. µCT analysis revealed a significant increase in bone volume for implants coated with Mg-doped HA compared to uncoated implants. PMID:24801401

  14. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  15. Hybrid calcium phosphate coatings for implants

    NASA Astrophysics Data System (ADS)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  16. Aluminum phosphate coatings

    DOEpatents

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  17. Lightweight Protective Coatings For Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  18. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  19. Silk electrogel coatings for titanium dental implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-04-01

    The aim of this study was to develop biocompatible, biodegradable dental implant coatings capable of withstanding the mechanical stresses imparted during implant placement. Two techniques were developed to deposit uniform silk fibroin protein coatings onto dental implants. Two novel coating techniques were implemented to coat titanium shims, studs, and implants. One technique involved electrodeposition of the silk directly onto the titanium substrates. The second technique consisted of melting electrogels and dispensing the melted gels onto the titanium to form the coatings. Both techniques were tested for coating reproducibility using a stylus profilometer and a dial thickness gauge. The mechanical strength of adhered titanium studs was assessed using a universal mechanical testing machine. Uniform, controllable coatings were obtained from both the electrodeposition and melted electrogel coating techniques, tunable from 35 to 1654 µm thick under the conditions studied, and able to withstand delamination during implantation into implant socket mimics. Mechanical testing revealed that the adhesive strength of electrogel coatings, 0.369 ± 0.09 MPa, rivaled other biologically derived coating systems such as collagen, hydroxyapatite, and chitosan (0.07-4.83 MPa). These novel silk-based techniques offer a unique approach to the deposition of safe, simple, mechanically robust, biocompatible, and degradable implant coatings.

  20. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.

    PubMed

    Kim, H; Johnson, J W

    1999-02-01

    Orthodontic wires containing nickel have been implicated in allergic reactions. The potential for orthodontic wires to cause allergic reactions is related to the pattern and mode of corrosion with subsequent release of metal ions, such as nickel, into the oral cavity. The purpose of this study was to determine if there is a significant difference in the corrosive potential of stainless steel, nickel titanium, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium orthodontic wires. At least two specimens of each wire were subjected to potentiostatic anodic dissolution in 0.9% NaCl solution with neutral pH at room temperature. Using a Wenking MP 95 potentiostat and an electrochemical corrosion cell, the breakdown potential of each wire was determined. Photographs were taken of the wire speci mens using a scanning electron microscope, and surface changes were qualitatively evaluated. The breakdown potentials of stainless steel, two nickel titanium wires, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium were 400 mV, 300 mV, 750 mV, 300 mV, 1800 mV, and >2000 mV, respectively. SEM photographs revealed that some nickel titanium and stainless steel wires were susceptible to pitting and localized corrosion. The results indicate that corrosion occurred readily in stainless steel. Variability in breakdown potential of nickel titanium alloy wires differed across vendors' wires. The nitride coating did not affect the corrosion of the alloy, but epoxy coating decreased corrosion. Titanium wires and epoxy-coated nickel titanium wires exhibited the least corrosive potential. For patients allergic to nickel, the use of titanium or epoxy-coated wires during orthodontic treatment is recommended.

  1. Oxygen-Barrier Coating for Titanium

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Unnam, Jalaiah

    1987-01-01

    Oxygen-barrier coating for titanium developed to provide effective and low-cost means for protecting titanium alloys from oxygen in environment when alloys used in high-temperature mechanical or structural applications. Provides protective surface layer, which reduces extent of surface oxidation of alloy and forms barrier to diffusion of oxygen, limiting contamination of substrate alloy by oxygen. Consists of submicron layer of aluminum deposited on surface of titanium by electron-beam evaporation, with submicron layer of dioxide sputtered onto aluminum to form coat.

  2. The effect of current reversal on coated titanium electrodes

    NASA Astrophysics Data System (ADS)

    Elnathan, Francis

    Coated titanium electrodes have applications in the electrochemical industry, including water treatment and swimming pool chlorination. Current/polarity reverse electrolysis is a technique used for "self-cleaning" of the coated titanium anodes employed in water disinfection and treatment. However, the literature holds very little information about the effects of polarity reversal on these anodes. The present work appears to be the first to investigate coated titanium anodes in polarity reversal in a systematic method. Two commercial titanium electrodes (RuTi and IrTa) were studied. Polarity reversal was the main electrochemical technique employing a current density of 1200 A/m 2, except when current density was studied. The effects of NO 3-, SO42-, ClO4 -, HPO42-, CO32-, Mg2+ and Ca2+ on electrode lifetime were examined. Analysis of the electrochemical results showed that plateau time (tau p), for gas evolution, is highly important to the lifetime of the coated titanium anodes. The effects of three electrolysis variables on the coated titanium anode life were examined. Current density was observed to have an inverse relationship with anode life while reversal cycle time had a direct relation with lifetime. NaCl concentration had no discernible effect. In general, the RuTi electrode exhibited longer lifetimes than IrTa except for a few specific conditions. The influence of the concentration of five anions (NO3-, SO42-, ClO 4-, HPO42-, and CO3 2-) was determined. Changing the composition and concentration of anions affected the lifetimes of the two electrodes, especially nitrate, hydrogen phosphate and carbonate. The lifetime of IrTa was highest in nitrate, and increased as a function of nitrate concentration. The service life of RuTi was highest in hydrogen phosphate, and increased with increasing hydrogen phosphate concentration. Lifetime of both anodes decreased with increasing carbonate ions. The effects of Mg2+ and Ca2+ on electrode lifetime were examined with

  3. Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Fan, Ding; Li, Xiu-Kun; Li, Wen-Fei; Liu, Qi-Bin; Zhang, Jian-Bin

    2008-11-01

    To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and β-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate.

  4. Coating for prevention of titanium combustion

    NASA Technical Reports Server (NTRS)

    Anderson, V. G.; Funkhouser, M.; Mcdaniel, P.

    1980-01-01

    A limited number of coating options for titanium gas turbine engine components were explored with the objective of minimizing potential combustion initiation and propagation without adversely affecting component mechanical properties. Objectives were met by two of the coatings, ion-plated platinum plus electroplated copper plus electroplated nickel and ion vapor deposited aluminum.

  5. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces.

    PubMed

    Meininger, M; Wolf-Brandstetter, C; Zerweck, J; Wenninger, F; Gbureck, U; Groll, J; Moseke, C

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr(2+) ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr(2+) into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr(2+) ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant-bone interface. PMID:27287100

  6. Nickel and titanium nanoboride composite coating

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevsky, G. V.; Rudneva, V. V.; Kozyrev, N. A.; Orshanskaya, E. G.

    2015-09-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density.

  7. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  8. Low temperature solution deposition of calcium phosphate coatings for orthopedic implants

    SciTech Connect

    Campbell, A.A.; Graff, G.L.

    1994-04-01

    Calcium phosphate coatings were grown from aqueous solution onto a derivatized self-assmebled monolayer (SAM) which was covalently bound to a titanium metal substrate. The SAM molecules provided an idea connection between the metal surface and the calcium phosphate coating. The trichlorosilane terminus of the SAM molecule insured covalent attachment to the surface, while the functionalized ``tail`` induced heterogeneous nucleation of the calcium phosphate coating from supersaturated solutions. This low temperature process allowed for uniform coatings to be produced onto complex-shaped and/or microporous surfaces and provided better control of phase purity.

  9. Titanium Coating of the Boston Keratoprosthesis

    PubMed Central

    Salvador-Culla, Borja; Jeong, Kyung Jae; Kolovou, Paraskevi Evi; Chiang, Homer H.; Chodosh, James; Dohlman, Claes H.; Kohane, Daniel S.

    2016-01-01

    Purpose We tested the feasibility of using titanium to enhance adhesion of the Boston Keratoprosthesis (B-KPro), ultimately to decrease the risk of implant-associated complications. Methods Cylindrical rods were made of poly(methyl methacrylate) (PMMA), PMMA coated with titanium dioxide (TiO2) over a layer of polydopamine (PMMATiO2), smooth (Ti) and sandblasted (TiSB) titanium, and titanium treated with oxygen plasma (Tiox and TiSBox). Topography and surface chemistry were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Adhesion force between rods and porcine corneas was measured ex vivo. Titanium sleeves, smooth and sandblasted, were inserted around the stem of the B-KPro and implanted in rabbits. Tissue adhesion to the stem was assessed and compared to an unmodified B-Kpro after 1 month. Results X-ray photoelectron spectroscopy demonstrated successful deposition of TiO2 on polydopamine-coated PMMA. Oxygen plasma treatment did not change the XPS spectra of titanium rods (Ti and TiSB), although it increased their hydrophilicity. The materials did not show cell toxicity. After 14 days of incubation, PMMATiO2, smooth titanium treated with oxygen plasma (Tiox), and sandblasted titanium rods (TiSB, TiSBox) showed significantly higher adhesion forces than PMMA ex vivo. In vivo, the use of a TiSB sleeve around the stem of the B-KPro induced a significant increase in tissue adhesion compared to a Ti sleeve or bare PMMA. Conclusions Sandblasted titanium sleeves greatly enhanced adherence of the B-KPro to the rabbit cornea. This approach may improve adhesion with the donor cornea in humans as well. Translational Relevance This approach may improve adhesion with donor corneas in humans. PMID:27152247

  10. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials.

    PubMed

    Habibovic, P; van der Valk, C M; van Blitterswijk, C A; De Groot, K; Meijer, G

    2004-04-01

    In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials. Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT-PBT) copolymer, all uncoated and coated with biomimetically produced OCP, were implanted in back muscles of 10 goats for 6 and 12 weeks. Uncoated Ti6Al4Vand HA did not show any bone formation after intramuscular implantation. All OCP coated implants, except PEGT-PBT, did induce bone in the soft tissue. The reason for the non-inductive behaviour of the copolymer is probably its softness, that makes it impossible to maintain its porous shape after implantation. Both uncoated and OCP coated BCP induced bone. However, the amount of animals in which the bone was induced was higher in the coated BCP implants in comparison to the uncoated ones. Osteoinductive potential of biomaterials is influenced by various material characteristics, such as chemical composition, crystallinity, macro- and microstructure. OCP coating has a positive effect on osteoinductivity of the biomaterials. The combination of the advantages of biomimetic coating method above traditional methods, and a good osteoinductivity of OCP coating that is produced by using this method, opens new possibilities for designing more advanced orthopaedic implants. PMID:15332602

  11. Surface roughness of anodized titanium coatings.

    SciTech Connect

    Dugger, Michael Thomas; Chinn, Douglas Alan

    2010-10-01

    Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

  12. Functionalized titanium oxide surfaces with phosphated carboxymethyl cellulose: characterization and bonelike cell behavior.

    PubMed

    Pasqui, Daniela; Rossi, Antonella; Di Cintio, Federica; Barbucci, Rolando

    2007-12-01

    The performance of dental or orthopedic implants is closely dependent on surface properties in terms of topography and chemistry. A phosphated carboxymethylcellulose containing one phosphate group for each disaccharide unit was synthesized and used to functionalize titanium oxide surfaces with the aim to improve osseointegration with the host tissue. The modified surfaces were chemically characterized by means of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The investigation of the surface topography was performed by atomic force microscopy measurements before and after the polysaccharide coating. In vitro biological tests using osteoblastlike cells demonstrated that functionalized TiO(2) surfaces modulated cell response, in terms of adhesion, proliferation,and morphology. Phosphated carboxymethylcellulose promoted better cell adhesion and significantly enhanced their proliferation. The morphology of cells was polygonal and more spread on this type of modified surface.These findings suggest that the presence of a phosphate polysaccharide coating promotes osteoblast growth on the surface potentially improving biomaterial osseointegration.

  13. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  14. Biocompatible glass ceramic coatings for titanium alloys (review)

    SciTech Connect

    Vlasov, A.S.; Ludanova, O.V.

    1995-11-01

    Coatings from hydroxylapatite and bioglass for titanium are considered. A review of patents and scientific publications shows that there are prerequisites for creating coatings on titanium alloys that would ensure the biological compatibility of titanium on the basis of known technologies.

  15. In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition.

    PubMed

    Borrajo, Jacinto P; Serra, Julia; González, Pío; León, Betty; Muñoz, Fernando M; López, M

    2007-12-01

    During the past years, different techniques, like chemical treatment, plasma spraying, sputtering, enamelling or sol-gel; and materials, like metals, hydroxylapatite, calcium phosphates, among others, have been applied in different combinations to improve the performance of prostheses. Among the techniques, Pulsed Laser Deposition (PLD) is very promising to produce coatings of bioactive glass on any metal alloy used as implant. In this work the biocompatibility of PLD coatings deposited on titanium substrates was examined by implantation in vivo. Different coating compositions were checked to find the most bioactive that was then applied on titanium and implanted into paravertebral muscle of rabbit.

  16. Formation of Solution-derived Hydroxyapatite Coatings on Titanium Alloy in the Presence of Magnetron-sputtered Alumina Bond Coats

    PubMed Central

    Zykova, Anna; Safonov, Vladimir; Yanovska, Anna; Sukhodub, Leonid; Rogovskaya, Renata; Smolik, Jerzy; Yakovin, Stas

    2015-01-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and calcium phosphate ceramic materials and coatings are widely used in medicine and dentistry because of their ability to enhance the tissue response to implant surfaces and promote bone ingrowth and osseoconduction processes. The deposition conditions have a great influence on the structure and biofunctionality of calcium phosphate coatings. Corrosion processes and poor adhesion to substrate material reduce the lifetime of implants with calcium phosphate coatings. The research has focused on the development of advanced methods to deposit double-layered ceramic oxide/calcium phosphate coatings by a hybrid technique of magnetron sputtering and thermal methods. The thermal method can promote the crystallization and the formation of HAp coatings on titanium alloy Ti6Al4V substrates at low temperature, based on the principle that the solubility of HAp in aqueous solutions decreases with increasing substrate temperature. By this method, hydroxyapatite directly coated the substrate without precipitation in the initial solution. Using a thermal substrate method, calcium phosphate coatings were prepared at substrate temperatures of 100-105 oC. The coated metallic implant surfaces with ceramic bond coats and calcium phosphate layers combine the excellent mechanical properties of metals with the chemical stability of ceramic materials. The corrosion test results show that the ceramic oxide (alumina) coatings and the double-layered alumina-calcium phosphate coatings improve the corrosion resistance compared with uncoated Ti6Al4V and single-layered Ti6Al4V/calcium phosphate substrates. In addition, the double-layered alumina/hydroxyapatite coatings demonstrate the best biocompatibility during in vitro tests. PMID:25893018

  17. Formation of Solution-derived Hydroxyapatite Coatings on Titanium Alloy in the Presence of Magnetron-sputtered Alumina Bond Coats.

    PubMed

    Zykova, Anna; Safonov, Vladimir; Yanovska, Anna; Sukhodub, Leonid; Rogovskaya, Renata; Smolik, Jerzy; Yakovin, Stas

    2015-01-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and calcium phosphate ceramic materials and coatings are widely used in medicine and dentistry because of their ability to enhance the tissue response to implant surfaces and promote bone ingrowth and osseoconduction processes. The deposition conditions have a great influence on the structure and biofunctionality of calcium phosphate coatings. Corrosion processes and poor adhesion to substrate material reduce the lifetime of implants with calcium phosphate coatings. The research has focused on the development of advanced methods to deposit double-layered ceramic oxide/calcium phosphate coatings by a hybrid technique of magnetron sputtering and thermal methods. The thermal method can promote the crystallization and the formation of HAp coatings on titanium alloy Ti6Al4V substrates at low temperature, based on the principle that the solubility of HAp in aqueous solutions decreases with increasing substrate temperature. By this method, hydroxyapatite directly coated the substrate without precipitation in the initial solution. Using a thermal substrate method, calcium phosphate coatings were prepared at substrate temperatures of 100-105 (o)C. The coated metallic implant surfaces with ceramic bond coats and calcium phosphate layers combine the excellent mechanical properties of metals with the chemical stability of ceramic materials. The corrosion test results show that the ceramic oxide (alumina) coatings and the double-layered alumina-calcium phosphate coatings improve the corrosion resistance compared with uncoated Ti6Al4V and single-layered Ti6Al4V/calcium phosphate substrates. In addition, the double-layered alumina/hydroxyapatite coatings demonstrate the best biocompatibility during in vitro tests. PMID:25893018

  18. Method of coating a substrate with a calcium phosphate compound

    DOEpatents

    Gao, Yufei; Campbell, Allison A.

    2000-01-01

    The present invention is a method of coating a substrate with a calcium phosphate compound using plasma enhanced MOCVD. The substrate is a solid material that may be porous or non-porous, including but not limited to metal, ceramic, glass and combinations thereof. The coated substrate is preferably used as an implant, including but not limited to orthopaedic, dental and combinations thereof. Calcium phosphate compound includes but is not limited to tricalcium phosphate (TCP), hydroxyapatite (HA) and combinations thereof. TCP is preferred on a titanium implant when implant resorbability is desired. HA is preferred when the bone bonding of new bone tissue into the structure of the implant is desired. Either or both of TCP and/or HA coated implants may be placed into a solution with an agent selected from the group of protein, antibiotic, antimicrobial, growth factor and combinations thereof that can be adsorbed into the coating before implantation. Once implanted, the release of TCP will also release the agent to improve growth of new bone tissues and/or to prevent infection.

  19. The biomimetic apatite-cefalotin coatings on modified titanium.

    PubMed

    Kang, Min-Kyung; Lee, Sang-Bae; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2012-02-01

    Dental implant failure often occurs due to oral bacterial infection. The aim of this study was to demonstrate that antibiotic efficacy could be enhanced with modified titanium. First, the titanium was modified by anodization and heat-treatment. Then, a biomimetic coating process was completed in two steps. Surface characterization was performed with scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Release of antibiotic was evaluated by UV/VIS spectrometry, and the antibacterial effect was evaluated on Streptococcus mutans. After the second coating step, we observed a thick homogeneous apatite layer that contained the antibiotic, cefalotin. The titanium formed a rutile phase after the heat treatment, and a carbonated apatite phase appeared after biomimetic coating. We found that the modified titanium increased the loading of cefalotin onto the hydroxyapatite coated surface. The results suggested that modified titanium coated with a cefalotin using biomimetic coating method might be useful for preventing local post-surgical implant infections.

  20. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  1. Effect of power and type of substrate on calcium-phosphate coating morphology and microhardness

    SciTech Connect

    Kulyashova, Ksenia Glushko, Yurii; Sharkeev, Yurii; Sainova, Aizhan

    2015-10-27

    As known, the influence of the different sputtering process parameters and type of substrate on structure of the deposited coating is important to identify, because these parameters are significantly affected on structure of coating. The studies of the morphology and microhardness of calcium-phosphate (CaP) coatings formed and obtained on the surface of titanium, zirconium, titanium and niobium alloy for different values of the power of radio frequency discharge are presented. The increase in the radio frequency (rf) magnetron discharge leads to the formation of a larger grain structure of the coating. The critical depths of indentation for coatings determining the value of their microhardness have been estimated. Mechanical properties of the composite material on the basis of the bioinert substrate metal and CaP coatings are superior to the properties of the separate components that make up this composite material.

  2. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation

    SciTech Connect

    Ni Jiahua; Shi Yulong Yan Fengying; Chen Jianzhi; Wang Lei

    2008-01-08

    Hydroxyapatite-containing titania coatings on titanium substrates were formed by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca.H{sub 2}O) and sodium phosphate monobasic dihydrate (NaH{sub 2}PO{sub 4}.2H{sub 2}O) using a pulse power supply. Scanning electron microscopy (SEM) with Energy dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD) were employed to characterize the microstructure, elemental composition and phase components of the coatings. The coatings were rough and porous, without apparent interface to the titanium substrates. All the oxidized coatings contained Ca and P as well as Ti and O, and the porous coatings were made up of anatase, rutile and hydroxyapatite. Such MAO films are expected to have significant applications as artificial bone joints and dental implants.

  3. Effect of plasma-sprayed hydroxyapatite coating on the osteoconductivity of commercially pure titanium implants.

    PubMed

    Strnad, Z; Strnad, J; Povýsil, C; Urban, K

    2000-01-01

    Formation of a calcium phosphate layer was studied on the surfaces of plasma-sprayed hydroxyapatite (PSHA) and sandblasted commercially pure (cp) titanium in simulated body fluid with ion concentrations similar to those of human blood plasma. The PSHA surface induced the formation of calcium phosphate surface layers, while the precipitation of calcium phosphate on sandblasted cp titanium was not detected. Histologic evaluation of in vivo tests demonstrated that implants with a PSHA coating enabled the growth of bone tissue into gaps with a depth of up to 1 mm without significant formation of intermediate fibrous tissue. In comparison to sandblasted cp titanium, implants with PSHA coating exhibited greater tolerance to unfavorable conditions during healing, such as gaps at the interface or primary instability of the implant. In the case of good primary stability of the implant, filling of the gap with fibrous tissue was observed for sandblasted cp titanium implants over the greater part of the surface of gaps with a depth of 0.3 mm. Direct contact of cp titanium implants with bone was achieved only when the press-fit implantation model was used. PMID:10960980

  4. Reactive oxygen species inhibited by titanium oxide coatings.

    PubMed

    Suzuki, Richard; Muyco, Julie; McKittrick, Joanna; Frangos, John A

    2003-08-01

    Titanium is a successful biomaterial that possesses good biocompatibility. It is covered by a surface layer of titanium dioxide, and this oxide may play a critical role in inhibiting reactive oxygen species, such as peroxynitrite, produced during the inflammatory response. In the present study, titanium dioxide was coated onto silicone substrates by radio-frequency sputtering. Silicone coating with titanium dioxide enhanced the breakdown of peroxynitrite by 79%. At physiologic pH, the peroxynitrite donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) was used to nitrate 4-hydroxyphenylacetic acid (4-HPA) to form 4-hydroxy-3-nitrophenyl acetic acid (NHPA). Titanium dioxide-coated silicone inhibited the nitration of 4-HPA by 61% compared to aluminum oxide-coated silicone and 55% compared to uncoated silicone. J774A.1 mouse macrophages were plated on oxide-coated silicone and polystyrene and stimulated to produce superoxide and interleukin-6. Superoxide production was measured by the chemiluminescent reaction with 2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (MCLA). Titanium dioxide-coated silicone exhibited a 55% decrease in superoxide compared to uncoated silicone and a 165% decrease in superoxide compared to uncoated polystyrene. Titanium dioxide-coated silicone inhibited IL-6 production by 77% compared to uncoated silicone. These results show that the anti-inflammatory properties of titanium dioxide can be transferred to the surfaces of silicone substrates.

  5. Determination of the stability of laser deposited apatite coatings in phosphate buffered saline solution using Fourier transform infrared (FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Bagratashvili, V. N.; Popov, V. K.; Sobol, E. N.; Howdle, S. M.

    1996-01-01

    We report the use of grazing angle Fourier transform infrared spectroscopy for determination of the stability to erosion of hydroxyapatite coatings. A series of coatings were deposited by pulsed laser ablation onto titanium foils. The coatings were exposed to a phosphate buffered saline solution, and FTIR spectroscopy was used to monitor the depletion of infrared bands associated with phosphate moieties in the hydroxyapatite coatings. The technique allows determintion of the effects of the laser deposition parameters upon the stability to erosion of the coatings.

  6. TEMPLATED SYNTHESIS OF MESOPOROUS TITANIUM PHOSPHATES FOR THE SEQUESTRATION OF RADIONUCLIDES

    SciTech Connect

    X. Shari Li; A.R. Courtney, W. Yantasee; S.V. Mattigod

    2005-10-11

    Several mesoporous titanium phosphate phases, with varying pore sizes, were prepared using non-ionic surfactants and easily handled titanium precursors under mild reaction conditions. Preliminary testing reveals that these materials have high affinity for certain radionuclides of environmental concern.

  7. Calcium Phosphate Growth at Electropolished Titanium Surfaces

    PubMed Central

    Ajami, Elnaz; Aguey-Zinsou, Kondo-Francois

    2012-01-01

    This work investigated the ability of electropolished Ti surface to induce Hydroxyapatite (HA) nucleation and growth in vitro via a biomimetic method in Simulated Body Fluid (SBF). The HA induction ability of Ti surface upon electropolishing was compared to that of Ti substrates modified with common chemical methods including alkali, acidic and hydrogen peroxide treatments. Our results revealed the excellent ability of electropolished Ti surfaces in inducing the formation of bone-like HA at the Ti/SBF interface. The chemical composition, crystallinity and thickness of the HA coating obtained on the electropolished Ti surface was found to be comparable to that achieved on the surface of alkali treated Ti substrate, one of the most effective and popular chemical treatments. The surface characteristics of electropolished Ti contributing to HA growth were discussed thoroughly. PMID:24955535

  8. Coating of titanium with hydroxyapatite leads to decreased bone formation

    PubMed Central

    Bøe, B. G.; Støen, R. Ø.; Solberg, L. B.; Reinholt, F. P.; Ellingsen, J. E.; Nordsletten, L.

    2012-01-01

    Objectives An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits. Methods A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections. Results Small amounts of bone were observed scattered along the surface of five of the 12 implants coated with porous titanium, and around one out of 12 porous coated surfaces with Bonemaster. No bone formation could be detected around porous coated implants with plasma-sprayed hydroxyapatite. Conclusion Porous titanium coating is to some degree osteoinductive in muscles. PMID:23610682

  9. Investigation of duty cycle effect on corrosion properties of electrodeposited calcium phosphate coatings.

    PubMed

    Azem, Funda Ak; Delice, Tulay Koc; Ungan, Guler; Cakir, Ahmet

    2016-11-01

    The bioceramic calcium phosphate (CaP) is frequently used for improving bone fixation in titanium medical implants and thus increasing lifetime of the implant. It is known that the application of CaP coatings on metallic implant devices offers the possibility of combining the strength of the metals and the bioactivity of the ceramic materials. Many different techniques are available for producing CaP coatings. Electrochemical deposition method is widely used because of its ease of operation parameters, low temperature requirement, reproducibility and suitability for coating complex structures. This technique allows obtaining CaP coatings which promote bone in growth during the first healing period leading to permanent fixation. Electrochemical pulse technique is an alternative to calcium phosphate deposition techniques usually employed to cover orthopedic or dental titanium implant surfaces. Additionally, pulse electrodeposition technique can produce more uniform and denser CaP coatings on metallic implants. In this study, CaP based coatings were produced by electrochemical pulse technique on Ti6Al4V substrates. The resulting CaP deposits were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Corrosion properties of the CaP coatings were also investigated. The results showed that various duty cycle ranges have remarkably effect on morphology, crystallinity and corrosion properties of the produced CaP coatings.

  10. Investigation of duty cycle effect on corrosion properties of electrodeposited calcium phosphate coatings.

    PubMed

    Azem, Funda Ak; Delice, Tulay Koc; Ungan, Guler; Cakir, Ahmet

    2016-11-01

    The bioceramic calcium phosphate (CaP) is frequently used for improving bone fixation in titanium medical implants and thus increasing lifetime of the implant. It is known that the application of CaP coatings on metallic implant devices offers the possibility of combining the strength of the metals and the bioactivity of the ceramic materials. Many different techniques are available for producing CaP coatings. Electrochemical deposition method is widely used because of its ease of operation parameters, low temperature requirement, reproducibility and suitability for coating complex structures. This technique allows obtaining CaP coatings which promote bone in growth during the first healing period leading to permanent fixation. Electrochemical pulse technique is an alternative to calcium phosphate deposition techniques usually employed to cover orthopedic or dental titanium implant surfaces. Additionally, pulse electrodeposition technique can produce more uniform and denser CaP coatings on metallic implants. In this study, CaP based coatings were produced by electrochemical pulse technique on Ti6Al4V substrates. The resulting CaP deposits were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Corrosion properties of the CaP coatings were also investigated. The results showed that various duty cycle ranges have remarkably effect on morphology, crystallinity and corrosion properties of the produced CaP coatings. PMID:27524068

  11. Biofilm formation on nanostructured hydroxyapatite-coated titanium.

    PubMed

    Westas, Emma; Gillstedt, Martin; Lönn-Stensrud, Jessica; Bruzell, Ellen; Andersson, Martin

    2014-04-01

    Biofilm formation on medical devices is a common cause of implant failure, especially regarding implants that breach the epithelial tissue, so-called transcutaneous implants. Nanotechnology and the development of new nanomaterials have given the opportunity to design nanotextured implant surfaces. Such surfaces have been studied using various in vitro methods showing that nanosized features strongly benefit bone cell growth. However, little is known on how nanostructured features affect biofilm formation. The aim of this study was therefore to examine the shape- and chemical-dependent effect of a nanostructured hydroxyapatite (HA) coating on the degree of Staphylococcus epidermidis biofilm formation. Three different types of nanosized HA particles having different shapes and calcium to phosphate ratios were compared to uncoated turned titanium using safranin stain in a biofilm assay and confocal laser scanning microscopy (CLSM) for assessment of biofilm biomass and bacterial volume, respectively. No difference in biofilm biomass was detected for the various surfaces after 6 h incubation with S. epidermidis. Additionally, image analysis of CLSM Z-stacks confirmed the biofilm assay and showed similar results. In conclusion, the difference in nanomorphology and chemical composition of the surface coatings did not influence the adhesion and biofilm formation of S. epidermidis.

  12. Biosensing applications of titanium dioxide coated graphene modified disposable electrodes.

    PubMed

    Kuralay, Filiz; Tunç, Selma; Bozduman, Ferhat; Oksuz, Lutfi; Oksuz, Aysegul Uygun

    2016-11-01

    In the present work, preparation of titanium dioxide coated graphene (TiO2/graphene) and the use of this nanocomposite modified electrode for electrochemical biosensing applications were detailed. The nanocomposite was prepared with radio frequency (rf) rotating plasma method which serves homogeneous distribution of TiO2 onto graphene. TiO2/graphene was characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Then, this nanocomposite was dissolved in phosphate buffer solution (pH 7.4) and modified onto disposable pencil graphite electrode (PGE) by dip coating for the investigation of the biosensing properties of the prepared electrode. TiO2/graphene modified PGE was characterized with SEM, EDS and cyclic voltammetry (CV). The sensor properties of the obtained surface were examined for DNA and DNA-drug interaction. The detection limit was calculated as 1.25mgL(-1) (n=3) for double-stranded DNA (dsDNA). RSD% was calculated as 2.4% for three successive determinations at 5mgL(-1) dsDNA concentration. Enhanced results were obtained compared to the ones obtained with graphene and unmodified (bare) electrodes. PMID:27591620

  13. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  14. Color Anodizing of Titanium Coated Rolled Carbon Steel Plate

    SciTech Connect

    Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab

    2011-12-26

    As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.

  15. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOEpatents

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  16. Titania sol-gel coatings with silver on non-porous titanium and titanium alloys

    NASA Astrophysics Data System (ADS)

    Horkavcova, D.; Cerny, M.; Sanda, L.; Novak, P.; Jablonska, E.; Zlamalova-Cflova, Z.; Helebrant, A.

    2016-04-01

    The objective of the work was to prepare and characterize titania sol-gel coatings on non-porous titanium and newly developed titanium alloys. Basic titania sol contained two forms of silver. Titania sol without silver was used as a reference sample. Coatings were prepared by dip-coating technique during stirring and fired. Coatings after firing were characterized by scanning electron microscopy. All titania coatings were measured to determine their adhesive and bactericidal properties. Adhesion of the coatings to the substrate was measured by tape test. Gram-negative bacteria E. coli was used for the bactericidal test. Coated substrates were immersed into suspension of E. coli in physiological solution for 24 hours. The in vitro cytotoxicity test was performed after one day. The bactericidal effect without toxicity was confirmed for selected coatings.

  17. Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition.

    PubMed

    Arias, J L; Mayor, M B; Pou, J; Leng, Y; León, B; Pérez-Amor, M

    2003-09-01

    Micro- and nano-testing methods have been explored to study the thin calcium phosphate coatings with high adhesive strength. The pulsed laser deposition (PLD) technique was utilised to produce calcium phosphate coatings on metal substrates, because this type of coatings exhibit much higher adhesive strength with substrates than conventional plasma-sprayed coatings. Due to the limitations of the conventional techniques to evaluate the mechanical properties of these thin coatings (1 microm thick), micro-scratch testing has been applied to evaluate the coating-to-substrate adhesion, and nano-indentation to determine the coating hardness and elastic modulus. The test results showed that the PLD produced amorphous and crystalline HA coatings are more ductile than titanium substrates, and the PLD coatings are not delaminated from the substrates by scratch. Also, the results showed that the crystalline HA coating is superior in internal cohesion to the amorphous one, even though the lower elastic modulus of amorphous coating could be more mechanically compatible with natural bone. PMID:12809768

  18. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    PubMed

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (p<0.001). After thorough cleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants. PMID:19332400

  19. Characterization of Titanium Phosphate as Electrolytes in Fuel Cells

    NASA Astrophysics Data System (ADS)

    Tran, A. T. T.; Duke, M. C.; Gray, P. G.; Diniz da Costa, J. C.

    Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid (H3PO4) in different ratios by a sol gel method. High BET surface areas of 271 m2.g-1 were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4×10-2 S.cm-1 was measured at 20°C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P-OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10-1 S.cm-1 (5% RH) and ~1.6×10-2 S.cm-1 (anhydrous condition) at 200°C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.

  20. Tissue response to implanted ceramic-coated titanium alloys in rats.

    PubMed

    Satomi, K; Akagawa, Y; Nikai, H; Tsuru, H

    1988-07-01

    In order to assess the tissue compatibility of the hybrid materials for the dental implant (hydroxyapatite, titanium oxide and titanium nitride coated titanium alloys), tissue response to these materials implanted in the rat subcutaneous tissue was histologically examined. Initial inflammatory response was less evident in titanium oxide coated and non-coated titanium alloys. All materials were encapsulated by thin fibrous connective tissues. The membrane thickness of hydroxyapatite coated titanium alloy was significantly higher than that of titanium nitride coated one. These results suggest that all materials possess favourable tissue compatibility and may encourage clinical use as the dental implant.

  1. Production of nano-ceramic coatings on titanium implants

    NASA Astrophysics Data System (ADS)

    Fomin, A. A.; Rodionov, I. V.; Fomina, M. A.; Petrova, N. V.

    2015-03-01

    Composite titania coatings modified with hydroxyapatite nanoparticles were obtained on intraosseous implants fabricated from commercially pure titanium and titanium alloy Ti-2.5Al-5Mo-5V. The present study aims to identify consistency changes of morphological characteristics and physico-mechanical properties of titanium items coatings obtained by oxidation during induction heat treatment and modification with colloidal hydroxyapatite nanoparticles. The influence of temperature between 600 and 1200 °C and duration of thermal modification from 1 to 300 s was studied. It was established that high hardness about 6.7±1.9 GPa for nanocrystalline TiO2 coatings and 19.2±0.6 GPa for nanoceramic "TiO2+HAp" coatings is reached at 1000 °C and 120 s.

  2. Polyelectrolyte multilayer-calcium phosphate composite coatings for metal implants.

    PubMed

    Elyada, Alon; Garti, Nissim; Füredi-Milhofer, Helga

    2014-10-13

    The preparation of organic-inorganic composite coatings with the purpose to increase the bioactivity of bioinert metal implants was investigated. As substrates, glass plates and rough titanium surfaces (Ti-SLA) were employed. The method comprises the deposition of polyelectrolyte multilayers (PEMLs) followed by immersion of the coated substrate into a calcifying solution of low supersaturation (MCS). Single or mixed PEMLs were constructed from poly-L-lysine (PLL) alternating with poly-L-glutamate, (PGA), poly-L-aspartate (PAA), and/or chondroitin sulfate (CS). ATR-FTIR spectra reveal that (PLL/PGA)10 multilayers and mixed multilayers with a (PLL/PGA)5 base contain intermolecular β-sheet structures, which are absent in pure (PLL/PAA)10 and (PLL/CS)10 assemblies. All PEML coatings had a grainy topography with aggregate sizes and size distributions increasing in the order: (PLL/PGA)n < (PLL/PAA)n < (PLL/CS)n. In mixed multilayers with a (PLL/PGA)n base and a (PLL/PAA)n or (PLL/CS)n top, the aggregate sizes were greatly reduced. The PEMLs promoted calcium phosphate nucleation and early crystal growth, the intensity of the effect depending on the composition of the terminal layer(s) of the polymer. In contrast, crystal morphology and structure depended on the supersaturation, pH, and ionic strength of the MCS, rather than on the composition of the organic matrix. Crystals grown on both uncoated and coated substrates were mostly platelets of calcium deficient carbonate apatite, with the Ca/P ratio depending on the precipitation conditions. PMID:25105729

  3. Polyelectrolyte multilayer-calcium phosphate composite coatings for metal implants.

    PubMed

    Elyada, Alon; Garti, Nissim; Füredi-Milhofer, Helga

    2014-10-13

    The preparation of organic-inorganic composite coatings with the purpose to increase the bioactivity of bioinert metal implants was investigated. As substrates, glass plates and rough titanium surfaces (Ti-SLA) were employed. The method comprises the deposition of polyelectrolyte multilayers (PEMLs) followed by immersion of the coated substrate into a calcifying solution of low supersaturation (MCS). Single or mixed PEMLs were constructed from poly-L-lysine (PLL) alternating with poly-L-glutamate, (PGA), poly-L-aspartate (PAA), and/or chondroitin sulfate (CS). ATR-FTIR spectra reveal that (PLL/PGA)10 multilayers and mixed multilayers with a (PLL/PGA)5 base contain intermolecular β-sheet structures, which are absent in pure (PLL/PAA)10 and (PLL/CS)10 assemblies. All PEML coatings had a grainy topography with aggregate sizes and size distributions increasing in the order: (PLL/PGA)n < (PLL/PAA)n < (PLL/CS)n. In mixed multilayers with a (PLL/PGA)n base and a (PLL/PAA)n or (PLL/CS)n top, the aggregate sizes were greatly reduced. The PEMLs promoted calcium phosphate nucleation and early crystal growth, the intensity of the effect depending on the composition of the terminal layer(s) of the polymer. In contrast, crystal morphology and structure depended on the supersaturation, pH, and ionic strength of the MCS, rather than on the composition of the organic matrix. Crystals grown on both uncoated and coated substrates were mostly platelets of calcium deficient carbonate apatite, with the Ca/P ratio depending on the precipitation conditions.

  4. CVD tungsten carbide and titanium carbide coatings for aerospace components

    SciTech Connect

    Dyer, P.N.; Garg, D.; Pellman, M.A.; Sheridan, J.J. III.

    1989-01-01

    Commercial applications of ceramic coatings for improving the wear resistance and tribology of stainless steel components such as compressor blades and ball bearings are under development. This paper reviews two coating systems: a proprietary erosion-resistant tungsten carbide coating system and a licensed wear-resistant titanium carbide coating, which as been qualified for use in several critical navigational gyroscope systems in the U.S. and European aerospace industries. Both have demonstrated performance and applicability superior to other protective coatings. 27 refs.

  5. Thin CVD Coating Protects Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  6. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process.

    PubMed

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e

    2010-04-01

    A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium-niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by X-ray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO(2) and Nb(2)O(5) formed on the TiNb alloy surface and hydrated to Ti(OH)(4) and Nb(OH)(5), respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 degrees C for 12 h.

  7. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process.

    PubMed

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e

    2010-04-01

    A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium-niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by X-ray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO(2) and Nb(2)O(5) formed on the TiNb alloy surface and hydrated to Ti(OH)(4) and Nb(OH)(5), respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 degrees C for 12 h. PMID:19836001

  8. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  9. BS-SEM evaluation of the tissular interactions between cortical bone and calcium-phosphate covered titanium implants.

    PubMed

    Manzanares, M C; Franch, J; Carvalho, P; Belmonte, A M; Tusell, J; Franch, B; Fernandez, J M; Clèries, L; Morenza, J L

    2001-01-01

    The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes.

  10. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation.

    PubMed

    Hirota, Makoto; Hayakawa, Tohru; Yoshinari, Masao; Ametani, Akihiro; Shima, Takaki; Monden, Yuka; Ozawa, Tomomichi; Sato, Mitsunobu; Koyama, Chika; Tamai, Naoto; Iwai, Toshinori; Tohnai, Iwai

    2012-10-01

    This study investigated the bone regeneration properties of titanium fibre mesh as a tissue engineering material. A thin hydroxyapatite (HA) coating on the titanium fibre web was created using the developed molecular precursor method without losing the complex interior structure. HA-coated titanium fibre mesh showed apatite crystal formation in vitro in a human osteoblast culture. Titanium fibre mesh discs with or without a thin HA coating were implanted into rat cranial bone defects, and the animals were killed at 2 and 4 weeks. The in vivo experience revealed that the amount of newly formed bone was significantly higher in the HA-coated titanium fibre mesh than in the non-coated titanium fibre mesh 2 weeks after implantation. These results suggest that thin HA coating enhances osteoblast activity and bone regeneration in the titanium fibre mesh scaffold. Thin HA-coating improved the ability of titanium fibre mesh to act as a bone regeneration scaffold.

  11. EFFECTS OF PHOSPHATED TITANIUM AND ENAMEL MATRIX DERIVATIVES ON OSTEOBLAST BEHAVIOR IN VITRO

    PubMed Central

    Dacy, J. Anthony; Spears, Robert; Hallmon, William W.; Kerns, David; Rivera-Hidalgo, Francisco; Minevski, Zoran S.; Nelson, Carl J.; Opperman, Lynne A.

    2011-01-01

    Purpose The purpose of this study was to evaluate the effects of phosphated titanium and EMD on osteoblast function. Materials and Methods Primary rat osteoblasts were cultured on discs of either phosphated or non-phosphated titanium and in half of the samples 180μg of EMD was immediately added. Media was changed every 2 days for 28 days, and then analyzed by TGF-β1 and IL-1β ELISAs. Scanning electron microscopy (SEM) and light microscopy (LM) was used to evaluate nodule formation and mineralization. Results Microscopic evaluation revealed no differences in osteoblast attachment on all discs, regardless of treatment. Osteoblast nodule formation was observed in all groups. In the absence of mineralizing media, nodules on the non-phosphated titanium samples showed no evidence of mineralization. All nodules on the phosphated titanium had evidence of mineralization. ELISA analysis revealed no significant differences in IL-1β production between any of the groups. The EMD treated osteoblasts produced significantly more TGF-β1 than non-EMD treated cells for up to 8 days, and osteoblasts on phosphated titanium produced significantly more Tgf-ß1 at 8 days. Discussion and Conclusion Osteoblast attachment appeared unaffected by surface treatment. EMD initiated early TGF-β1 production, but production decreased to control levels within 10 days. Phosphated titanium increased Tgf-ß1 production at 8 days, and induced nodule mineralization even in the absence of mineralizing medium. PMID:17974103

  12. Biomimetic whisker-shaped apatite coating of titanium powder.

    PubMed

    Sim, Young Uk; Kim, Jong Hee; Yang, Tae Young; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.

  13. Lanthanum-containing hydroxyapatite coating on ultrafine-grained titanium by micro-arc oxidation: a promising strategy to enhance overall performance of titanium.

    PubMed

    Deng, Zhennan; Wang, LiLi; Zhang, Dafeng; Liu, Jinsong; Liu, Chuantong; Ma, Jianfeng

    2014-01-31

    Titanium is widely used in biomedical materials, particularly in dental implants, because of its excellent biocompatibility and mechanical characteristics. However, titanium implant failures still remain in some cases, varying with implantation sites and patients. Improving its overall performance is a major focus of dental implant research. Equal-channel angular pressing (ECAP) can result in ultrafine-grained titanium with superior mechanical properties and better biocompatibility, which significantly benefits dental implants, and without any harmful alloying elements. Lanthanum (La) can inhibit the acidogenicity of dental plaque and La-containing hydroxyapatite (La-HA) possesses a series of attractive properties, in contrast to La-free HA. Micro-arc oxidation (MAO) is a promising technology that can produce porous and firmly adherent hydroxyapatite (HA) coatings on titanium substrates. Therefore, we hypothesize that porous La-containing hydroxyapatite coatings with different La content (0.89%, 1.3% and 1.79%) can be prepared on ultrafine-grained (~200-400 nm) titanium by ECAP and MAO in electrolytic solution containing 0.2 mol/L calcium acetate, 0.02 mol/L beta-glycerol phosphate disodium salt pentahydrate (beta-GP), and lanthanum nitrate with different concentrations to further improve the overall performance of titanium, which are expected to have great potential in medical applications as a dental implant.

  14. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  15. An Oxidation-Resistant Coating Alloy for Gamma Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, James L.; Brindley, William J.

    1997-01-01

    Titanium aluminides based on the g-phase (TiAl) offer the potential for component weight savings of up to 50 percent over conventional superalloys in 600 to 850 C aerospace applications. Extensive development efforts over the past 10 years have led to the identification of "engineering" gamma-alloys, which offer a balance of room-temperature mechanical properties and high-temperature strength retention. The gamma class of titanium aluminides also offers oxidation and interstitial (oxygen and nitrogen) embrittlement resistance superior to that of the alpha(sub 2) (Ti3Al) and orthorhombic (Ti2AlNb) classes of titanium aluminides. However, environmental durability is still a concern, especially at temperatures above 750 to 800 C. Recent work at the NASA Lewis Research Center led to the development of an oxidation-resistant coating alloy that shows great promise for the protection of gamma titanium aluminides.

  16. Chemical changes in DMP1-null murine bone & silica based pecvd coatings for titanium implant osseoapplications

    NASA Astrophysics Data System (ADS)

    Maginot, Megen

    In order to improve clinical outcomes in bone-implant systems, a thorough understanding of both local bone chemistry and implant surface chemistry is necessary. This study consists, therefore, of two main parts: one focused on determining the nature of the changes in bone chemistry in a DMP1-null transgenic disease model and the other on the development of amorphous silica-based coatings for potential use as titanium bone implant coatings. For the study of bone mineral in the DMP1 transgenic model, which is known to have low serum phosphate levels, transgenic DMP1-null and wild type mice were fed a high phosphate diet, sacrificed, and had their long bone harvested. This bone was characterized using SEM, FTIR, microCT and XANES and compared to DMP1-null and wild type control groups to assess the therapeutic effect of high Pi levels on the phenotype and the role of DMP1 in mineralization in vivo. Findings suggest that though the high phosphate diet results in restoring serum phosphate levels, it does not completely rescue the bone mineral phenotype at an ultrastructural level and implicates DMP1 in phosphate nucleation. Since plasma enhanced chemical vapor deposition (PECVD) silica like coatings have not previously been fabricated for use in oessoapplications, the second part of this study initially focused on the characterization of novel SiOx chemistries fabricated via a chemical vapor deposition process that were designed specifically to act as bioactive coatings with a loose, hydrogenated structure. These coatings were then investigated for their potential initial stage response to bone tissue through immersion in a simulated body fluid and through the culture of MC3T3 cells on the coating surfaces. Coating surfaces were characterized by SEM, FTIR, contact angle measurements, and XANES. Coating dissolution and ionic release were also investigated by ICP-OES. Findings suggest that some SiOx chemistries may form a bioactive coating while more highly substituted

  17. A Review Paper on Biomimetic Calcium Phosphate Coatings

    PubMed Central

    Lin, X.; de Groot, K.; Wang, D.; Hu, Q.; Wismeijer, D.; Liu, Y.

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation induced by multinuclear cells, such as osteoclasts and foreign body giant cells, which mimics a physiologically similar release mode, to achieve sustained ectopic or orthotopic bone formation. Therefore, biomimetic calcium phosphate coatings are considered to be a promising delivery vehicle for osteogenic agents. In this review, we present an overview of biomimetic calcium phosphate coatings including their preparation techniques, physico-chemical properties, potential as drug carrier, and their pre-clinical application both in ectopic and orthotopic animal models. We briefly review some features of hydroxyapatite coatings and their clinical applications to gain insight into the clinical applications of biomimetic calcium phosphate coatings in the near future. PMID:25893016

  18. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Gardon, M.; Guilemany, J. M.

    2014-04-01

    Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.

  19. Biomimetic calcium phosphate coating on Ti-7.5Mo alloy for dental application.

    PubMed

    Escada, A L A; Machado, J P B; Schneider, S G; Rezende, M C R Alves; Claro, A P R Alves

    2011-11-01

    Titanium and its alloys have been used as bone-replacement implants due to their excellent corrosion resistance and biocompatibility. However, a titanium coating is a bioinert material and cannot bond chemically to bone tissue. The objective of this work was to evaluate the influence of alkaline treatment and heat treatment on the formation of calcium phosphate layer on the surface of a Ti-7.5Mo alloy after soaking in simulated body fluid (SBF). Thirty six titanium alloy plates were assigned into two groups. For group I, samples were immersed in a 5.0-M NaOH aqueous solution at 80°C for 72 h, washed with distilled water and dried at 40°C for 24 h. For group II, after the alkaline treatment, samples were heat-treated at 600°C for 1 h in an electrical furnace in air. Then, all samples were immersed in SBF for 7 or 14 days to allow the formation of a calcium phosphate coating on the surface. The surfaces were characterized using SEM, EDS, AFM and contact angle measurements.

  20. Characterization of hydrogen barrier coatings for titanium-base alloys

    NASA Astrophysics Data System (ADS)

    Leguey, T.; Baluc, N.; Jansen, F.; Victoria, M.

    2002-12-01

    The purpose of this study was to investigate the barrier efficiency of a thick thermal spray deposit on the α-titanium alloy, Ti-5Al-2.4Sn against hydrogen penetration. Therefore, a duplex coating has been applied by plasma spraying using a Sulzer Metco F4 gun. The selected duplex coating system consisted of a 0.1-0.2 mm thick tantalum bond layer and a chromium oxide top layer doped with 3 wt% titanium oxide. The achieved thickness of the top layer was about 0.6 mm. The coated specimens have been characterized with regard to bond strength, hardness and microstructure. Hydrogen charging experiments were performed in a Sievert's apparatus.

  1. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  2. X-ray photoemission and energy dispersive spectroscopy of hydroxyapatite-coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-07-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (X-ray photoemission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls and specimens aged 30 min and 3 h at room temperature in distilled water and 0.2M sodium phosphate buffer (pH 7.2). Each X-ray photoemission cycle consisted of three scans followed by argon sputtering for 10 min for usually 20 cycles, corresponding to a sampling depth of {approximately}1,500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {micro}m area for 500 s. The X-ray photoemission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorus. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis.

  3. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties.

    PubMed

    Drevet, Richard; Benhayoune, Hicham

    2013-10-01

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM.

  4. Cellular response to titanium discs coated with polyelectrolyte multilayer films

    NASA Astrophysics Data System (ADS)

    Zhan, Jing; Luo, Qiao-jie; Huang, Ying; Li, Xiao-dong

    2014-09-01

    The purpose of this study was to investigate the effects of polyelectrolyte multilayer (PEM) coatings on the biological behavior of titanium (Ti) substrates. Collagen type Ι/hyaluronic acid (Col/HA) and chitosan/hyaluronic acid (Chi/HA) multilayer PEM coatings were introduced onto Ti substrates using layer-by-layer assembly. Contact angle instruments and quartz crystal microbalance were used for film characterization. The results obtained showed that both Col/HA and Chi/HA surfaces had high hydrophilicity and promoted cell adhesion in MC3T3-E1 pre-osteoblast and human gingival fibroblast cells. In addition, the synthesis of function-related proteins and gene expression levels in both MC3T3-E1 and fibroblast cells was higher for the Col/HA coating compared with the Chi/HA coating, indicating better cellular response to the Col/HA coating.

  5. Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces.

    PubMed

    Geißler, Sebastian; Barrantes, Alejandro; Tengvall, Pentti; Messersmith, Phillip B; Tiainen, Hanna

    2016-08-16

    Polyphenols can form functional coatings on a variety of different materials through auto-oxidative surface polymerization in a manner similar to polydopamine coatings. However, the mechanisms behind the coating deposition are poorly understood. We report the coating deposition kinetics of the polyphenol tannic acid (TA) and the simple phenolic compound pyrogallol (PG) on titanium surfaces. The coating deposition was followed in real time over a period of 24 h using a quartz crystal microbalance with dissipation monitoring (QCM-D). TA coatings revealed a multiphasic layer formation: the deposition of an initial rigid layer was followed by the buildup of an increasingly dissipative layer, before mass adsorption stopped after approximately 5 h of coating time. The PG deposition was biphasic, starting with the adsorption of a nonrigid viscoelastic layer which was followed by layer stiffening upon further mass adsorption. Coating evaluation by ellipsometry and AFM confirmed the deposition kinetics determined by QCM-D and revealed maximum coating thicknesses of approximately 50 and 75 nm for TA and PG, respectively. Chemical characterization of the coatings and polymerized polyphenol particles indicated the involvement of both physical and chemical interactions in the auto-oxidation reactions.

  6. Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces.

    PubMed

    Geißler, Sebastian; Barrantes, Alejandro; Tengvall, Pentti; Messersmith, Phillip B; Tiainen, Hanna

    2016-08-16

    Polyphenols can form functional coatings on a variety of different materials through auto-oxidative surface polymerization in a manner similar to polydopamine coatings. However, the mechanisms behind the coating deposition are poorly understood. We report the coating deposition kinetics of the polyphenol tannic acid (TA) and the simple phenolic compound pyrogallol (PG) on titanium surfaces. The coating deposition was followed in real time over a period of 24 h using a quartz crystal microbalance with dissipation monitoring (QCM-D). TA coatings revealed a multiphasic layer formation: the deposition of an initial rigid layer was followed by the buildup of an increasingly dissipative layer, before mass adsorption stopped after approximately 5 h of coating time. The PG deposition was biphasic, starting with the adsorption of a nonrigid viscoelastic layer which was followed by layer stiffening upon further mass adsorption. Coating evaluation by ellipsometry and AFM confirmed the deposition kinetics determined by QCM-D and revealed maximum coating thicknesses of approximately 50 and 75 nm for TA and PG, respectively. Chemical characterization of the coatings and polymerized polyphenol particles indicated the involvement of both physical and chemical interactions in the auto-oxidation reactions. PMID:27452793

  7. [INFLUENCE OF TITANIUM COATING ON THE BIOCOMPATIBILITY OF POLYPROPYLENE IMPLANTS].

    PubMed

    Babichenko, I I; Kazantsev, A A; Titarov, D L; Shemyatovsky, K A; Ghevondian, N M; Melchenko, D; Alekhin, A I

    2016-01-01

    Comparative analysis of the proliferative activity of inflammatory cells and distribution of collagen types I and III was carried out around the net materials of polypropylene and titanium coating polypropylene using im- munohistochemical method and polarization microscopy. Experimental modeling of implanted mesh material were made in the soft tissues of the lumbar region of rats. On the 7th postoperative day, quantitative analysis of proliferating cells delected using antibodies to the Ki-67 protein showed, a significant decrease (p < 0.001) in the number of proliferating cells around the network elements of the polypropylene (29.1 ± 5.7 %), when com- pared to similar figures of infiltrates in titanium coating polypropylene (33.6 ± 3.1 %). Similar patterns were found on the 30th day of the experiment--15.9 ± 4.3 and 26.9 ± 3.6%--respectively (p < 0.001). Different types of collagen fibers in the granulomas around various types of implanted mesh material were detected on sections stained with Sirius red at polarizing light. On the 7th day after surgery, the ratio of collagen fibers ty- pe I and III in granulomas around the mesh material made of polypropylene was 1.085 ± 0.022 and this rati around materials of titanium coated polypropylene was higher--1.107 ± 0.013 (p = 0.017). On the 30th posto- perative day in the interface area ratio I/III collagen significantly increased and amounted to 1.174 ± 0.036 and 1.246 ± 0.102, respectively (p = 0.045). Assessing the impact of the use of titanium as a coating on the po- lypropylene, it can be argued that it promotes the formation of collagen I type and a more mature connective tis- sue around the mesh of the implants. PMID:27220251

  8. [INFLUENCE OF TITANIUM COATING ON THE BIOCOMPATIBILITY OF POLYPROPYLENE IMPLANTS].

    PubMed

    Babichenko, I I; Kazantsev, A A; Titarov, D L; Shemyatovsky, K A; Ghevondian, N M; Melchenko, D; Alekhin, A I

    2016-01-01

    Comparative analysis of the proliferative activity of inflammatory cells and distribution of collagen types I and III was carried out around the net materials of polypropylene and titanium coating polypropylene using im- munohistochemical method and polarization microscopy. Experimental modeling of implanted mesh material were made in the soft tissues of the lumbar region of rats. On the 7th postoperative day, quantitative analysis of proliferating cells delected using antibodies to the Ki-67 protein showed, a significant decrease (p < 0.001) in the number of proliferating cells around the network elements of the polypropylene (29.1 ± 5.7 %), when com- pared to similar figures of infiltrates in titanium coating polypropylene (33.6 ± 3.1 %). Similar patterns were found on the 30th day of the experiment--15.9 ± 4.3 and 26.9 ± 3.6%--respectively (p < 0.001). Different types of collagen fibers in the granulomas around various types of implanted mesh material were detected on sections stained with Sirius red at polarizing light. On the 7th day after surgery, the ratio of collagen fibers ty- pe I and III in granulomas around the mesh material made of polypropylene was 1.085 ± 0.022 and this rati around materials of titanium coated polypropylene was higher--1.107 ± 0.013 (p = 0.017). On the 30th posto- perative day in the interface area ratio I/III collagen significantly increased and amounted to 1.174 ± 0.036 and 1.246 ± 0.102, respectively (p = 0.045). Assessing the impact of the use of titanium as a coating on the po- lypropylene, it can be argued that it promotes the formation of collagen I type and a more mature connective tis- sue around the mesh of the implants.

  9. Effect of titanium nitride/titanium coatings on the stress corrosion of nickel-titanium orthodontic archwires in artificial saliva

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Kuang; Liu, I.-Hua; Liu, Cheng; Chang, Chen-Jung; Kung, Kuan-Chen; Liu, Yen-Ting; Lee, Tzer-Min; Jou, Jin-Long

    2014-10-01

    The purpose of this investigation was to develop titanium nitride (TiN)/titanium (Ti) coating on orthodontic nickel-titanium (NiTi) wires and to study the stress corrosion of specimens in vitro, simulating the intra-oral environment in as realistic a manner as possible. TiN/Ti coatings were formed on orthodontic NiTi wires by physical vapor deposition (PVD). The characteristics of untreated and TiN/Ti-coated NiTi wires were evaluated by measurement of corrosion potential (Ecorr), corrosion current densities (Icorr), breakdown potential (Eb), and surface morphology in artificial saliva with different pH and three-point bending conditions. From the potentiodynamic polarization and SEM results, the untreated NiTi wires showed localized corrosion compared with the uniform corrosion observed in the TiN/Ti-coated specimen under both unstressed and stressed conditions. The bending stress influenced the corrosion current density and breakdown potential of untreated specimens at both pH 2 and pH 5.3. Although the bending stress influenced the corrosion current of the TiN/Ti-coated specimens, stable and passive corrosion behavior of the stressed specimen was observed even at 2.0 V (Ag/AgCl). It should be noted that the surface properties of the NiTi alloy could determine clinical performance. For orthodontic application, the mechanical damage destroys the protective oxide film of NiTi; however, the self-repairing capacity of the passive film of NiTi alloys is inferior to Ti in chloride-containing solutions. In this study, the TiN coating was found able to provide protection against mechanical damage, while the Ti interlayer improved the corrosion properties in an aggressive environment.

  10. Preparation and characterization of laser cladding wollastonite derived bioceramic coating on titanium alloy.

    PubMed

    Li, Huan-cai; Wang, Dian-gang; Chen, Chuan-zhong; Weng, Fei; Shi, Hua

    2015-01-01

    The bioceramic coating is fabricated on titanium alloy (Ti6Al4V) by laser cladding the preplaced wollastonite (CaSiO3) powders. The coating on Ti6Al4V is characterized by x-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy, and attenuated total reflection Fourier-transform infrared. The interface bonding strength is measured using the stretching method using an RGD-5-type electronic tensile machine. The microhardness distribution of the cross-section is determined using an indentation test. The in vitro bioactivity of the coating on Ti6Al4V is evaluated using the in vitro simulated body fluid (SBF) immersion test. The microstructure of the laser cladding sample is affected by the process parameters. The coating surface is coarse, accidented, and microporous. The cross-section microstructure of the ceramic layer from the bottom to the top gradually changes from cellular crystal, fine cellular-dendrite structure to underdeveloped dendrite crystal. The coating on Ti6Al4V is composed of CaTiO3, CaO, α-Ca2SiO4, SiO2, and TiO2. After soaking in the SBF solution, the calcium phosphate layer is formed on the coating surface. PMID:26307502

  11. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings.

    PubMed

    Nijhuis, Arnold W G; Nejadnik, M Reza; Nudelman, Fabio; Walboomers, X Frank; te Riet, Joost; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Li, Yubao; Bomans, Paul H H; Jansen, John A; Sommerdijk, Nico A J M; Leeuwenburgh, Sander C G

    2014-02-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium concentration and conductivity of the aqueous solutions as a function of time, urease concentration and initial concentrations of calcium and phosphate ions. Cryogenic transmission electron microscopy was used to study the process of homogeneous CaP precipitation in solution, whereas CaP deposition on conventional acid-etched titanium and micropatterned polystyrene (PS) surfaces was studied using scanning electron microscopy. The data presented in this study confirm that the substrate-enzyme combination urea-urease offers strong control over the rate of pH increase by varying the concentrations of precursor salts and urease. Formation of biomimetic CaP coatings was shown to proceed via formation of ionic polymeric assemblies of prenucleation complexes. The process of deposition and corresponding coating morphology was strongly dependent on the concentration of calcium, phosphate and urease. Finally, it was shown that the substrate-enzyme combination urea-urease allowed for spatial distribution of CaP crystals along the grooves of micropatterned PS surfaces at low concentrations of calcium, phosphate and urease, stressing the sensitivity of the presented method.

  12. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  13. Induction heat treatment and technique of bioceramic coatings production on medical titanium alloys

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Fomina, Marina A.; Poshivalova, Elena Y.; Krasnikov, Aleksandr V.; Petrova, Natalia N.; Zakharevich, Andrey M.; Skaptsov, Alexander A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2015-03-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, physico-mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  14. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model

    PubMed Central

    2011-01-01

    Background Uncemented fixation of components in joint arthroplasty is achieved primarily through de novo bone formation at the bone-implant interface and establishment of a biological and mechanical interlock. In order to enhance bone-implant integration osteoconductive coatings and the methods of application thereof are continuously being developed and applied to highly porous and roughened implant substrates. In this study the effects of an electrochemically-deposited dicalcium phosphate dihydrate (DCPD) coating of a porous substrate on implant osseointegration was assessed using a standard uncemented implant fixation model in sheep. Methods Plasma sprayed titanium implants with and without a DCPD coating were inserted into defects drilled into the cancellous and cortical sites of the femur and tibia. Cancellous implants were inserted in a press-fit scenario whilst cortical implants were inserted in a line-to-line fit. Specimens were retrieved at 1, 2, 4, 8 and 12 weeks postoperatively. Interfacial shear-strength of the cortical sites was assessed using a push-out test, whilst bone ingrowth, ongrowth and remodelling were investigated using histologic and histomorphometric endpoints. Results DCPD coating significantly improved cancellous bone ingrowth at 4 weeks but had no significant effect on mechanical stability in cortical bone up to 12 weeks postoperatively. Whilst a significant reduction in cancellous bone ongrowth was observed from 4 to 12 weeks for the DCPD coating, no other statistically significant differences in ongrowth or ingrowth in either the cancellous or cortical sites were observed between TiPS and DCPD groups. Conclusion The application of a DCPD coating to porous titanium substrates may improve the extent of cancellous bone ingrowth in the early postoperative phase following uncemented arthroplasty. PMID:22053991

  15. Immobilization of calcium phosphate nano-clusters into alkoxy-derived porous TiO2 coatings.

    PubMed

    Shirkhanzadeh, M; Sims, S

    1997-10-01

    Alkoxy-derived porous coatings of titanium oxide were fabricated on commercially pure titanium substrates by an electrochemical method in methanolic electrolytes. Nano-clusters of brushite (CaHPO4. 2H2O) were immobilized into the pores of the oxide network by reacting these coatings in acidic calcium phosphate solutions at 50 degrees C. The acid-base reaction between calcium phosphate solutions and the hydroxyl groups of the oxide network resulted in the formation of nano-clusters of brushite crystals immobilized inside the oxide pores. This treatment resulted in the conversion of the porous oxide network into a coherent mass with improved physical integrity. Nano-clusters of brushite crystals immobilized in the oxide matrix were converted into amorphous calcium phosphate (ACP) and poorly crystallized hydroxyapatite (HA) by further treatment of the oxide in alkaline solutions. The porous oxide coating also reacted strongly with concentrated phosphoric acid. The phosphate-modified oxide resulting from this reaction was further treated in calcium hydroxide solution to form nano-clusters of poorly crystallized HA within the oxide network.

  16. SUMMARY ON TITANIUM NITRIDE COATING OF SNS RING VACUUM CHAMBERS.

    SciTech Connect

    TODD, R.; HE, P.; HSEUH, H.C.; WEISS, D.

    2005-05-16

    The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with {approx}100nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 135 chambers and kicker modules, some up to 5m in length and 36cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering -using a - cylindrical cathode with internal permanent magnets. This cathode configuration generates a deposition-rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arcs, injection, extraction, collimation and RF straight sections. Chamber types and quantities as well as the cathode configurations are presented herein. The unique coating requirements of the injection kicker ceramic chambers and the extraction kicker ferrite surface will be emphasized. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing.

  17. Durability evaluation of biopolymer coating on titanium alloy substrate.

    PubMed

    Ryan Stanfield, J; Bamberg, Stacy

    2014-07-01

    For this study, a commercially available phosphorylcholine (PC) polymer was applied to Ti6Al4V ELI. A multivariate approach to design a statistically significant array of experiments was employed to evaluate and estimate optimization of PC-immobilization process factors. The seven process factors analyzed were (1) power level for RFGD plasma treatment, (2) duration of plasma treatment, (3) concentration of PC solution used to coat samples, (4) rate at which samples were dipped in/out of the solution, (5) temperature for curing, (6) relative humidity level during curing, and (7) duration of curing. Imaging and analysis of the coating were done via fluorescence microscopy (FM), confirming the uniform coverage of PC polymer on titanium substrate. The process factors were evaluated by three measured responses: initial thickness, coating durability and degree of cross-linked coating, which were assessed by FM, a spray test and extraction in IPA, respectively. Variations in PC solution concentration showed no impact on fouling resistance of the resultant coating. It was hypothesized that the PC-application process factors could be optimized to yield favorable outcomes in durability and degree of cross-linked coating responses. The resulting statistical model indicates that PC solution concentration, dip rate, and cure temperature are the three greatest singular effects on both durability and degree of cross-linking. In addition, plasma treatment of the substrate with O2 was effective in enhancing the degree of cross-linking of the polymer surface.

  18. Surface analysis of titanium coated silicone rubber biological implants

    SciTech Connect

    Farr, J.D.; Hutchinson, W.B.

    1987-01-01

    A wide variety of materials are used today in the fabrication of biomedical implants. Various plastics, ceramics, metals, and composites are found in dozens of applications as biomaterials. The biological interactions between the implant surfaces and the proteins and cells of the body sometimes cause problems such as inflammation, thrombosis, and encapsulation. Coating the implants with a biocompatible material such as titanium could alleviate these problems. In an effort to improve the biological compatibility of silicone rubber vascular grafts, thin layers of titanium were sputter deposited onto medical grade silicone rubber. The surfaces of two such samples were then characterized by Auger electron spectroscopy (AES), electron spectroscopy for chemical analysis (ESCA), electron probe microanalysis (EPM), and ion microprobe mass analysis (IMMA).

  19. Calcium-phosphate-coated oral implants promote osseointegration in osteoporosis.

    PubMed

    Alghamdi, H S; Cuijpers, V M J I; Wolke, J G C; van den Beucken, J J J P; Jansen, J A

    2013-11-01

    Osteoporotic conditions are anticipated to affect the osseointegration of dental implants. This study aimed to evaluate the effect of a radiofrequent magnetron-sputtered calcium phosphate (CaP) coating on dental implant integration upon installment in the femoral condyles of both healthy and osteoporotic rats. At 8 weeks post-implantation, bone volume and histomorphometric bone area were lower around non-coated implants in osteoporotic rats compared with healthy rats. Interestingly, push-out tests revealed significantly enhanced implant fixation for CaP-coated compared with non-coated implants in both osteoporotic (i.e., 2.9-fold) and healthy rats (i.e., 1.5-fold), with similar implant fixation for CaP-coated implants in osteoporotic conditions compared with that of non-coated implants in healthy conditions. Further, the presence of a CaP coating significantly increased bone-to-implant contact compared with that in non-coated implants in both osteoporotic (i.e., 1.3-fold) and healthy rats (i.e., 1.4-fold). Sequential administration of fluorochrome labels showed significantly increased bone dynamics close to CaP-coated implants at 3 weeks of implantation in osteoporotic conditions and significantly decreased bone dynamics in osteoporotic compared with healthy conditions. In conclusion, analysis of the data obtained demonstrated that dental implant modification with a thin CaP coating effectively improves osseointegration in both healthy and osteoporotic conditions.

  20. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    PubMed Central

    Aninwene, George E; Yao, Chang; Webster, Thomas J

    2008-01-01

    Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone). To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin) and inflammation (dexamethasone) using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF). Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes. PMID:18686785

  1. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  2. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana

    2015-12-01

    The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate. PMID:26445021

  3. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana

    2015-12-01

    The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate.

  4. Titanium acoustic diaphragm coated with polycrystal diamond film

    SciTech Connect

    Zhiwei Zhang; Zhen Yan; Hesun Zhu

    1995-12-31

    The spherical titanium diaphragm, which is widely used in high frequency loudspeaker, coat with polycrystal diamond film (DF) was prepared for the first time in China by the method of DC arc plasma jet. Its acoustic performance was remarkably upgraded, as confirmed by Raman Shift Spectrum and frequency response curve. Its sensibility was improved by 3-6 dB and frequency widened by 5x10{sup 3}Hz. The frequency range extended from 2.2x10{sup 3}Hz to 25x10{sup 3}Hz. The preparation and process of DF is discussed.

  5. Luminescence properties of gallium phosphate glass doped with trivalent titanium ions

    SciTech Connect

    Batyaev, I.M.; Golodova, I.V.

    1994-07-01

    Luminescence properties of gallium phosphate glasses doped with trivalent titanium ions are studied. The glasses luminesce in the 680- to 880-nm region (the {sup 2}E{sub g}-{sup 2}T{sub 2g} transition in the distorted octahedral field) and can be used as matrices for the development of luminophors in the near infrared region. 8 refs., 2 figs.

  6. Textured hydroxyapatite interface onto biomedical titanium-based coatings.

    PubMed

    Manso, Miguel; Herrero, P; Fernández, M; Langlet, M; Martínez-Duart, J M

    2003-03-15

    Hydroxyapatite (HAP) bioceramic coatings grown onto titanium-nitride (TiN) buffer layers by the aerosol-gel procedure present interfaces with a preferred growth orientation. These coatings were crystallized at 800 degrees C and subsequently etched to ease the study of the interface by Auger electron spectroscopy depth profiling. Ion beam milling was applied to cross-section samples to analyze the interface structures using transmission electron microscopy. At the interface, the HAP crystals showed a <002> orientation. It was shown by Auger electron spectroscopy depth profiling that O atoms diffuse into the nitride interlayer, indicating that the formation of O channels in the HAP structure is the driving force inducing the textured film. The outstanding biocompatible properties of both the materials and properties of their interface suggest that HAP/TiN structures are particularly well suited for endoprosthetic applications.

  7. Interfaces in graded coatings on titanium-based implants

    PubMed Central

    Lopez-Esteban, S.; Gutierrez-Gonzalez, C. F.; Gremillard, L.; Saiz, E.; Tomsia, A. P.

    2013-01-01

    Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na2O-K2O-P2O5 system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The use of high-silica layers (>60 wt % SiO2) in contact with the alloy promotes long-term stability of the coating; glass-metal adhesion is achieved through the formation of a nanostructured Ti5Si3 layer. A surface layer containing a mixture of a low-silica glass (~53 wt % SiO2) and synthetic hydroxyapatite particles promotes the precipitation of new apatite during tests in vitro. The in vitro behavior of the coatings in simulated body fluid depends both on the composition of the glass matrix and the CP particles, and is strongly affected by the coating design and the firing conditions. PMID:18384170

  8. Regenerating Titanium Ventricular Assist Device Surfaces after Gold/ Palladium Coating for Scanning Electron Microscopy

    PubMed Central

    Achneck, Hardean E.; Serpe, Michael J; Jamiolkowski, Ryan; Eibest, Leslie M.; Craig, Stephen L.; Lawson, Jeffrey H.

    2014-01-01

    Titanium is one of the most commonly used materials for implantable devices in human s. Scanning electron microscopy (SEM) serves as an important tool for imaging titanium surfaces and analyzing cells and other organic matter adhering to titanium implants. However, high-vacuum SEM imaging of a non-conductive sample requires a conductive coating on the surface. A gold/ palladium coating is commonly used and to date no method has been described to ‘clean’ such gold/ palladium covered surfaces for repeated experiments without etching the titanium itself. This constitutes a major problem with titanium based implantable devices which are very expensive and thus in short supply. Our objective was to devise a protocol to regenerate titanium surfaces after SEM analysis. In a series of experiments, titanium samples from implantable cardiac assist devices were coated with fibronectin, seeded with cells and then coated with gold/palladium for SEM analysis. X-ray photoelectron spectroscopy spectra were obtained before and after five different cleaning protocols. Treatment with aqua regia (a 1:3 solution of concentrated nitric and hydrochloric acid), with or without ozonolysis, followed by sonication in soap solution and sonication in deionized water, allowed regenerating titanium surfaces to their original state. Atomic force microscopy confirmed that the established protocol did not alter the titanium microstructure. The protocol described herein is applicable to almost all titanium surfaces used in biomedical sciences and because of its short exposure time to aqua regia, will likely work for many titanium alloys as well. PMID:19642216

  9. Fabrication and characterization of Mg-doped chitosan-gelatin nanocompound coatings for titanium surface functionalization.

    PubMed

    Cai, Xinjie; Cai, Jing; Ma, Kena; Huang, Pin; Gong, Lingling; Huang, Dan; Jiang, Tao; Wang, Yining

    2016-07-01

    Titanium and its alloys have been widely used in clinic and achieved great success. Due to the bio-inertness of titanium surface, challenges still exit in some compromised conditions. The present study aimed to functionalize titanium surface with magnesium (Mg)-doped chitosan/gelatin (CS/G) nanocompound coatings via electrophoretic deposition (EPD). CS/G coatings loaded with different amount of magnesium were successfully prepared on titanium substrate via EPD. Physicochemical characterization of the coatings confirmed that magnesium ions were loaded into the coatings in a dose-dependent manner. XRD results demonstrated that co-deposition of magnesium influenced the crystallinity of the coatings, and a new crystalline substance presented, namely hydrated basic magnesium carbonate. Mechanical tests showed improved tensile and shear bond strength of the magnesium-doped coatings, while the excessively high magnesium concentration could eventually decrease the bonding strength. Sustained release of magnesium ion was detected by ICP-OES within 28 days. TEM images also displayed that nanoparticles could be released from the coatings. In vitro cellular response assays demonstrated that the Mg-doped nanocompound coatings could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells compared to CS/G coatings. Therefore, it could be concluded that Mg-doped CS/G nanocompound coatings were successfully fabricated on titanium substrates via EPD. It would be a promising candidate to functionalize titanium surface with such organic-inorganic nanocompound coatings. PMID:27115206

  10. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.

    2003-01-01

    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  11. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    PubMed

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.

  12. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    PubMed

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable. PMID:26687457

  13. Deposition of calcium phosphate coatings using condensed phosphates (P2O7(4-) and P3O10(5-)) as phosphate source through induction heating.

    PubMed

    Zhou, Huan; Hou, Saisai; Zhang, Mingjie; Yang, Mengmeng; Deng, Linhong; Xiong, Xinbo; Ni, Xinye

    2016-12-01

    In present work condensed phosphates (P2O7(4-) and P3O10(5-)) were used as phosphate source in induction heating to deposit calcium phosphate coatings. The phase, morphology, and composition of different phosphate-related coatings were characterized and compared using XRD, FTIR, and SEM analyses. Results showed that P2O7(4-)formed calcium pyrophosphate hydrate coatings with interconnected cuboid-like particles. The as-deposited calcium tripolyphosphate hydrate coating with P3O10(5-) was mainly composed of flower-like particles assembled by plate-like crystals. The bioactivity and cytocompatibility of the coatings were also studied. Moreover, the feasibility of using hybrid phosphate sources for preparing and depositing coatings onto magnesium alloy was investigated. PMID:27612721

  14. Formation Mechanism of Titanium Carbide Crystal in Laser Synthesized Metal-Ceramic Composite Coating

    NASA Astrophysics Data System (ADS)

    Du, Baoshuai; Zhang, Zhongwen; Wang, Xinhong; Zou, Zengda

    In situ titanium carbide reinforced iron-based composite coating was deposited on mild carbon steel using laser surface engineering (LSE) with ferrotitanium and graphite as precursor. The microstructure and phase constituents of the deposited coating were characterized. Formation mechanism of titanium carbide crystal in the composite coating was elucidated by correlating the morphology of titanium carbide and the thermal cycle experienced by the precursor during the laser treatment. It was demonstrated that titanium carbide was formed in situ as a result of the metallurgical reaction between ferrotitanium and graphite following a liquid-precipitation route. Different morphologies of titanium carbide crystal (dendrite and fishbone) correspond to the primary and eutectic titanium carbide respectively.

  15. Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification.

    PubMed

    Hamlet, Stephen; Ivanovski, Saso

    2011-05-01

    Nanoscale surface modification of titanium dental implants with calcium phosphate (CaP) has been shown to achieve superior bone wound healing and osseointegration compared with smooth or microrough titanium surfaces alone. As bone healing has been shown to be influenced by the action of cytokines, this study examined whether changes in cytokine gene expression from RAW 264.7 cells cultured on commercially pure and titanium alloy (Ti-6Al-4V) microrough or nanoscale crystalline CaP-modified surfaces, may influence downstream events in bone wound healing and osseointegration. Whilst no significant difference in the attachment or proliferation of RAW 264.7 cells was observed, the nanoscale CaP-modified surface elicited a gene expression profile with marked down-regulation of a number of pro-inflammatory cytokines and chemokines. Inflammatory cytokine gene expression was further influenced by chemical composition, with lower levels of pro-inflammatory markers noted following exposure of the macrophage-like cells to titanium alloy (Ti-6Al-4V) compared with the commercially pure titanium surface. Down-regulation of pro-inflammatory cytokine gene expression (confirmed at the protein level for TNFα and CCL5), may thus facilitate the enhanced bone wound healing and osseointegration observed clinically with nanoscale calcium phosphate-modified implant surfaces.

  16. Mixed zirconia calcium phosphate coatings for dental implants: tailoring coating stability and bioactivity potential.

    PubMed

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Li Destri, Giovanni; Marletta, Giovanni; Rezwan, Kurosch

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. PMID:25579931

  17. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    PubMed

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.

  18. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    PubMed

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD. PMID:26964975

  19. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections

    PubMed Central

    Zhang, Li; Yan, Junwei; Yin, Zhaowei; Tang, Cheng; Guo, Yang; Li, Dong; Wei, Bo; Xu, Yan; Gu, Qiangrong; Wang, Liming

    2014-01-01

    The objectives of this work were to develop an antibiotic coating on the surface of a titanium plate to determine its antibacterial properties in vitro and in vivo. To prepare vancomycin-coated titanium implants, we adopted the electrospinning nanotechnique. The surface structure of the coating implants was observed using a scanning electron microscope. An elution method and a high-pressure liquid chromatography assay were used to characterize the release behavior of vancomycin from the coating. The antibacterial efficacy and the cytotoxicity of the coated titanium implants on osteoblasts were investigated in vitro. In addition, X-ray, white blood cell count, C-reactive protein, erythrocyte sedimentation rate, and pathological examination were performed to validate its antimicrobial efficacy in vivo. The antibiotic coating released 82.7% (approximately 528.2 μg) of total vancomycin loading in the coating in vitro. The release behavior of vancomycin from nanofiber coatings exhibited a biphasic release pattern with an initial burst on day 1, followed by a slow and controlled release over 28 days. There was no cytotoxicity observed in vitro for the vancomycin-loaded coating. The vancomycin-coated titanium implants were active in treating implant-associated infection in vivo. Thus, vancomycin-coated titanium implants may be a promising approach to prevent and treat implant-associated infections. PMID:25028544

  20. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions.

  1. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  2. Influence of saliva-coating on the ultraviolet-light-induced photocatalytic bactericidal effects on modified titanium surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Park, So-Yoon; Chang, Young-Il; Lim, Young-Jun; Ahn, Sug-Joon

    2012-07-01

    The purpose of this study was to investigate the ultraviolet-light-induced photocatalytic bactericidal effects of titanium surfaces on Streptococcus sanguinis in the presence of saliva-coating. Three different titanium disks were prepared: machined (MA), heat-treated (HT), and anodized surfaces (AO). Each disk was incubated with whole saliva or phosphate-buffered saline for 2 h. Antibacterial tests were performed by incubating a S. sanguinis suspension with each disk for 90 or 180 min under ultraviolet (UV) illumination. The viable counts of bacteria were enumerated from the cell suspension and the UV-light-induced photocatalytic bactericidal effects were determined by the bacterial survival rate. Without saliva-coating, AO disks exhibited significantly decreased bacterial survival rates compared to MA disks. The bacterial survival rates of the HT disks were intermediate between MA and AO in the absence of saliva-coating. However, saliva-coating significantly increased bacterial survival rates in all surface types. There was no significant difference in bacterial survival rates among the three surface types after saliva-coating. This study suggests that Ti-based antibacterial implant materials using TiO2 photocatalyst may have a limitation for intraoral use.

  3. Biomechanical evaluation of different hydroxyapatite coatings on titanium for keratoprosthesis

    NASA Astrophysics Data System (ADS)

    Dong, Ying; Qiu, Zhiye; Liu, Xiaoyu; Wang, Liqiang; Yang, Jingxin; Huang, Yifei; Cui, Fuzhai

    2015-09-01

    Stable tissue integration is important to keratoprosthesis (KPro). The aim of this study was to evaluate the tissue bonding ability of hydroxyapatite (HAp)-coated titanium KPro. The samples were divided into three groups: test groups (IBAD group and AD group) and Ti control. The coated samples had a HAp layer created by ion beam assisted deposition (IBAD) or aerosol deposition (AD). The surface characteristics were analyzed with SEM, AFM, and XRD. The samples were surgically inserted into the muscles of rabbits. Eight weeks after healing, the attachment to the tissue was tested with a universal test device. The three samples exhibited distinctive surface morphology. The force to remove the HAp implants from the muscles was significantly greater than that of Ti group ( P < 0.01), with the AD samples requiring the greatest force ( P < 0.01). After removal, SEM showed that the tissue was firmly attached to the surface of AD samples. Photomicrographs of the peri-implant muscles showed a layer of aligned fibrous tissue without severe inflammation. The AD samples had more fibroblasts. Results indicate that because of enhanced mechanical adhesion of soft tissue to the implants, HAp-coated Ti by AD is a suitable KPro skirt material.

  4. Oxide-bioceramic coatings obtained on titanium items by the induction heat treatment and modified with hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Fomina, Marina A.; Rodionov, Igor V.; Koshuro, Vladimir A.; Petrova, Natalia V.; Skaptsov, Aleksandr A.; Atkin, Vsevolod S.

    2015-06-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from cp-titanium and medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  5. Highly reliable spin-coated titanium dioxide dielectric

    NASA Astrophysics Data System (ADS)

    Mondal, Sandip; Kumar, Arvind; Rao, K. S. R. Koteswara; Venkataraman, V.

    2016-05-01

    Dielectric degradation as low as 0.3 % has been observed for a highly reliable Titanium dioxide (TiO2) film after constant voltage stressing (CVS) with - 4 V for 105 second at room temperature (300 K). The film was fabricated by sol -gel spin - coating method on a lightly doped p-Si (~1015 cm-3) substrate. The equivalent oxide thickness (EOT) is 7 nm with a dielectric constant 33 (at 1 MHz). Metal - Oxide - Semiconductor (MOS) capacitors have been fabricated with an optimum annealing temperature of 800°C for one hour in a preheated furnace. The dielectric degradation is annealing temperature dependent. A degradation of 1.4 %, 1.2 % and 1.1 % has been observed for 400°C, 600°C and 1000°C temperature annealed MOS respectively. The dielectric degradation increases below or above the optimum temperature of annealing.

  6. Investigation on Antibacterial Property of Cu-COATING on Pure Titanium Fabricated via Plasma Surface Alloying

    NASA Astrophysics Data System (ADS)

    Zou, Jiaojuan; Hang, Ruiqiang; Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2013-07-01

    This paper describes the fabrication of a Cu-coating on pure titanium via plasma surface alloying technology. The surface morphology, cross-sectional microstructure and elemental distributions of the coating were analyzed by scanning electron microscope (SEM) and glow discharge optical emission spectroscope (GDOES). The antibacterial property of the Cu-coating was assessed via in vitro bacterial adhesion test. The results showed that the Cu-coating was continuous and compact. The Cu-coating endowed pure titanium with a promising antibacterial property.

  7. Chemical composition, electrochemical, and morphological properties of iron phosphate conversion coatings

    SciTech Connect

    Warburton, Y.J.; Gibbon, D.L.; Jackson, K.M.; Gate, L.F.; Rodnyansky, A.; Warburton, P.R.

    1999-09-01

    Iron phosphate conversion coatings are used widely in the pretreatment industry to enhance paint adherence to metal substrates and therefore improve corrosion resistance. However, very limited nonproprietary literature describing the properties of iron phosphate coating is available, as compared to volumes dedicated to zinc phosphate coating. The present study described chemical, electrochemical, and morphological characterizations of iron phosphate coating using x-ray photoelectron spectroscopy (XPS), potentiodynamic scans, and scanning electron microscopy (SEM). For the samples under investigation, the mode of operation of iron phosphate coating was to promote paint adhesion, and the coating itself did not impart significant corrosion protection to the metal substrate. It also was shown that the Fe/P ratio in the phosphate coating ranged from 1:2 to 1:1. When tested in pH 7 buffered phosphate solution, the phosphate coating displayed a passivation region, which also possessed the highest impedance value. The phosphate coating was found to comprise two layers: a dense, adherent layer and a loose, granular top layer. For samples with coating weights of 20 mg/ft{sup 2} to 30 mg/ft{sup 2} (0.22 g/m{sup 2} to 0.32 g/m{sup 2}), the corresponding coating thickness was {approximately} 0.1 {micro}m to 0.3 {micro}m.

  8. Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization.

    PubMed

    Buxadera-Palomero, Judit; Canal, Cristina; Torrent-Camarero, Sergi; Garrido, Beatriz; Javier Gil, Francisco; Rodríguez, Daniel

    2015-06-12

    Titanium dental implants are commonly used for the replacement of lost teeth, but they present a considerable number of failures due to the infection on surrounding tissues. The aim of this paper is the development of a polyethylene glycol-like (PEG-like) coating on the titanium surface by plasma polymerization to obtain a novel improved surface with suitable low bacterial adhesion and adequate cell response. Surface analysis data of these coatings are presented, in particular, water contact angle, surface roughness, and film chemistry, demonstrating the presence of a PEG-like coating. Streptococcus sanguinis and Lactobacillus salivarius bacterial adhesion assays showed a decreased adhesion on the plasma polymerized samples, while cell adhesion of fibroblasts and osteoblasts on the treated surfaces was similar to control surfaces. Thus, the PEG-like antifouling coating obtained by plasma polymerization on Ti confers this biomaterial's highly suitable properties for dental applications, as they reduce the possibility of infection while allowing the tissue integration around the implant.

  9. Waterproof Alkyl Phosphate Coated Fluoride Phosphors for Optoelectronic Materials.

    PubMed

    Nguyen, Hoang-Duy; Lin, Chun Che; Liu, Ru-Shi

    2015-09-01

    A facile approach for coating red fluoride phosphors with a moisture-resistant alkyl phosphate layer with a thickness of 50-100 nm is reported. K2 SiF6 :Mn(4+) particles were prepared by co-precipitation and then coated by esterification of P2 O5 with alcohols (methanol, ethanol, and isopropanol). This route was adopted to encapsulate the prepared phosphors using transition-metal ions as cross-linkers between the alkyl phosphate moieties. The coated phosphor particles exhibited a high water tolerance and retained approximately 87 % of their initial external quantum efficiency after aging under high-humidity (85 %) and high-temperature (85 °C) conditions for one month. Warm white-light-emitting diodes that consisted of blue InGaN chips, the prepared K2 SiF6 :Mn(4+) phosphors, and either yellow Y3 Al5 O12 :Ce(3+) phosphors or green β-SiAlON: Eu(2+) phosphors showed excellent color rendition. PMID:26214154

  10. Bond-coating in plasma-sprayed calcium-phosphate coatings.

    PubMed

    Oktar, F N; Yetmez, M; Agathopoulos, S; Lopez Goerne, T M; Goller, G; Peker, I; Ipeker, I; Ferreira, J M F

    2006-11-01

    The influence of bond-coating on the mechanical properties of plasma-spray coatings of hydroxyatite on Ti was investigated. Plasma-spray powder was produced from human teeth enamel and dentine. Before processing the main apatite coating, a very thin layer of Al2O3/TiO2 was applied on super clean and roughened, by Al2O3 blasting, Ti surface as bond-coating. The experimental results showed that bond-coating caused significant increase of the mechanical properties of the coating layer: In the case of the enamel powder from 6.66 MPa of the simple coating to 9.71 MPa for the bond-coating and in the case of the dentine powder from 6.27 MPa to 7.84 MPa, respectively. Both tooth derived powders feature high thermal stability likely due to their relatively high content of fluorine. Therefore, F-rich apatites, such those investigated in this study, emerge themselves as superior candidate materials for calcium phosphate coatings of producing medical devices. The methods of apatite powder production and shaping optimization of powder particles are both key factors of a successful coating. The methods used in this study can be adopted as handy, inexpensive and reliable ways to produce high quality of powders for plasma spray purposes.

  11. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    PubMed

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features.

  12. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  13. Study on titanium foil coated with partial reduction titanium dioxide as bipolar lead-acid battery's substrate

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Tang, Shenzhi; Zhu, Junsheng; Guo, Chenfeng

    2014-12-01

    Pure titanium foil cannot be directly as the substrate for the bipolar lead-acid battery due to its surface oxidized into titanium dioxide in the cell cycle. The poor electronic conductivity of titanium dioxide will increase substrate's ohmic resistance and can affect the cell's electrochemical performances. In this paper, titanium foil's surface is coated with a lay of partial reduction titanium dioxide (TiO2-x) which has excellent chemical stability and high electronic conductivity by means of sol-gel method. Through XRD, SEM and four-probe test, it shows that the modified titanium's surface has the most superior crystal structure and morphology and the highest electronic conductivity in the sintering temperature of 800 °C. We subsequently assemble bipolar lead-acid batteries with Ti coated by TiO2-x as the substrate material. The batteries are discovered that when charged and discharged in 3.5 V-4.84 V at 0.5C the voltage between the charge and discharge voltage platform is 0.3 V, and the initial discharge specific capacity can reach 80 mAh g-1. When the current rate is up to 1C and 2C, the initial discharge specific capacity is 70 mAh g-1and 60 mAh g-1. After 100 cycles, the initial specific capacity only decreases 12.5%.

  14. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    SciTech Connect

    Maslova, Marina V.; Rusanova, Daniela Naydenov, Valeri; Antzutkin, Oleg N.; Gerasimova, Lidia G.

    2008-12-15

    Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formation of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.

  15. Comparative Evaluation of Antifungal Effect of Titanium, Zirconium and Aluminium Nanoparticles Coated Titanium Plates Against C. albicans

    PubMed Central

    Mohandoss, Karthikeyan; Balasubramaniam, Muthu Kumar

    2016-01-01

    Introduction The topographical modifications may vary from millimeter wide grooves to nano size structures. Recently growing nano technology is rapidly advancing surface engineering in implant dentistry. This advancement has resulted in difference in surface properties including the morphology, chemistry, crystal structure and mechanical properties of the implant. Aim To evaluate the anticandidal effect of titanium, zirconium and aluminium nanoparticles against C. albicans at 24 hours, 72 hours and one week time interval. Materials and Methods According to ISO/TR 11175:1993, the samples were prepared with the dimension of 20mm diameter and 1mm thickness in grade IV titanium. A total of 40 samples were made and the samples were divided into four groups. The samples without coating were Group-A (control), samples coated with titanium nano particles were Group-B, samples coated with zirconium nano particles were Group-C and samples coated with aluminium nano particles were Group-D. The samples were cleaned by sonicating in acetone and subsequently in water three times for 15 min. Then they were treated with TiO2, ZrO2 and Al2O3 nanoparticles. The discs were sterilized under uv radiation and placed in SDA for C.albicans. The colonies were counted in 24, 72 hours and one week intervals. Results The values were statistically analyzed using one-way ANOVA and Tukey HSD Test. Significance p-value was < .001, which showed that significant difference in C.F.U among the groups in titanium coated samples at 24 hours, 72 hours and one week time intervals. Conclusion TiO2 nanoparticles coated titanium plates showed significant anticandidal effect compared to ZrO2 and Al2O3 nanoparticles at 24, 72 hours and one week time interval. PMID:26894177

  16. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  17. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  18. Thermal behavior of Ni- and Cu-containing plasma electrolytic oxide coatings on titanium

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Wybornov, S.; Lukiyanchuk, I. V.; Staedler, T.; Jiang, X.; Ustinov, A. Yu.; Vasilyeva, M. S.

    2012-09-01

    In this work the effect of thermal annealing on the surface composition, structure and catalytic activity in CO oxidation of NiO + CuO/TiO2/Ti composites is studied. The composites have been obtained by a plasma electrolytic oxidation (PEO) technique, followed by impregnation in a solution of nickel (II) and copper (II) salts and air annealing. The structures contain ˜20 at% Ni and ˜12 at% Cu. It has been shown that the additional air annealing of such structures at temperature above 750 °C results in phosphate crystallization in the coatings and decreasing of Cu concentration in the surface layers. A growth of filiform nanocrystals containing mainly oxygen compounds of nickel and titanium on the coating surface takes place at the temperatures above 700 °C. The nanocrystals have a diameter of 50-200 nm and lengths below 10 μm. Such changes result in decreasing of catalytic activity of the composites in CO oxidation. At the same time the ascertained regularities may be of interest for obtaining the Ni-containing oxide catalysts with an extended surface, perspective for usage in organic catalysis or for preparing oxide nanofibers.

  19. Titanium Carbides Coatings for Wear Resistant Biomedical Devices: Manufacturing and Modeling

    SciTech Connect

    Contro, R.; Vena, P.; Gastaldi, D.; Masante, S.; Cavallotti, P. L.; Nobili, L.; Bestetti, M.

    2008-02-15

    Deposition of Titanium Carbide coatings on Ti6Al4V substrate, through the reactive magnetron sputtering technique is here presented. The mechanical characterization of the coatings has been carried out through a set of indentation tests at different maximum applied loads. The elastic stiffness as well as the hardness of the coating-substrate system indicate that these coatings are suitable candidates for wear resistance applications in the orthopaedic field. Numerical simulation of the indentation tests allowed the identification of the constitutive parameters of the titanium carbide. Good agreement was achieved between experimental and numerical results.

  20. In vitro Evaluation of Calcium Phosphate Precipitation on Possibly Bioactive Titanium Surfaces in the Presence of Laminin

    PubMed Central

    Stenport, Victoria Franke; Currie, Fredrik; Wennerberg, Ann

    2011-01-01

    ABSTRACT Objectives The aim of the present study was to evaluate calcium phosphate precipitation and the amount of precipitated protein on three potentially bioactive surfaces when adding laminin in simulated body fluid. Material and Methods Blasted titanium discs were prepared by three different techniques claimed to provide bioactivity: alkali and heat treatment (AH), anodic oxidation (AO) or hydroxyapatite coating (HA). A blasted surface incubated in laminin-containing simulated body fuid served as a positive control (B) while a blasted surface incubated in non laminin-containing simulated body fuid served as a negative control (B-). The immersion time was 1 hour, 24 hours, 72 hours and 1 week. Surface topography was investigated by interferometry and morphology by Scanning Electron Microscopy (SEM). Analysis of the precipitated calcium and phosphorous was performed by Energy Dispersive X-ray Spectroscopy (EDX) and the adsorbed laminin was quantified by iodine (125I) labeling. Results SEM demonstrated that all specimens except for the negative control were totally covered with calcium phosphate (CaP) after 1 week. EDX revealed that B- demonstrated lower sum of Ca and P levels compared to the other groups after 1 week. Iodine labeling demonstrated that laminin precipitated in a similar manner on the possibly bioactive surfaces as on the positive control surface. Conclusions Our results indicate that laminin precipitates equally on all tested titanium surfaces and may function as a nucleation center thus locally elevating the calcium concentration. Nevertheless further studies are required to clarify the role of laminin in the interaction of biomaterials with the host bone tissue. PMID:24421995

  1. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings

    NASA Astrophysics Data System (ADS)

    Ievlev, V. M.; Kostyuchenko, A. V.; Darinskii, B. M.; Barinov, S. M.

    2014-02-01

    The hardness of thin (1.0-4.0 μm) hydroxyapatite coatings with different structures (nanocrystalline, amorphous-crystalline, and amorphous) grown by rf magnetron sputtering on Ti and Si plates has been studied using the nanoindentation method. All the grown structures are characterized by the strain which has reversible and irreversible components. The hardness of nanocrystalline coatings (about 10 GPa) corresponds to the average hardness of hydroxyapatite single crystals. The structure of nanocrystalline coatings in the indentation zone and outside it has been investigated and changes in the structure under the indenter have been revealed using high-resolution transmission electron microscopy. From a comparison of the hardnesses of coatings with different structures and based on an analysis of the intragranular structure, it has been assumed that the plastic deformation occurs according to a dislocation-free mechanism. The plastic deformation is interpreted in terms of the cluster representation of the hydroxyapatite structure and amorphous calcium phosphates of the same elemental composition and cluster-boundary sliding during the deformation.

  2. Effect of modifications of dual acid-etched implant surfaces on periimplant bone formation. Part II: calcium phosphate coatings.

    PubMed

    Schliephake, H; Aref, A; Scharnweber, D; Rösler, S; Sewing, A

    2009-01-01

    The aim of the present study was to test the hypothesis that calcium phosphate coatings of dual acid-etched surfaces (DAEs) can improve periimplant bone regeneration. Ten adult female foxhounds received experimental titanium screw implants in the mandible 3 months after removal of all premolar teeth. Five types of surface states were evaluated in each animal: (i) implants with a machined surface (MS) (Control 1); (ii) implants with a DAE (Control 2); (iii) implants with a DAE coated with collagen I (Control 3); (iv) implants with a DAE with mineralized collagen I; and (v) implants with a DAE with a hydroxylapatite (HA) coating. Periimplant bone regeneration was assessed by histomorphometry after 1 and 3 months in five dogs each by measuring bone implant contact (BIC) and the volume density of the newly formed periimplant bone (BVD). After 1 month, mean BIC of experimental implants did not differ significantly from implants with DAE and collagen-coated surfaces, but was significantly higher than the MS implants. BVD was enhanced significantly only in implants with mineralized collagen coating compared with DAE and collagen-coated controls. After 3 months, the mean values of BIC had increased significantly in the group of implants with HA and mineralized collagen coating but were not significantly different from implants with DAE and collagen-coated surfaces. The same held true for the mean BVD values. In conclusion, the present study could not verify the hypothesis that calcium phosphate coatings of DAEs in the present form enhanced periimplant bone formation compared with the DAE surface alone. PMID:19126106

  3. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    PubMed

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence.

  4. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    NASA Astrophysics Data System (ADS)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is

  5. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    NASA Astrophysics Data System (ADS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Titanium alloy β-21S (Ti-15Mo-3Nb-3Al-0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks' solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks' solution.

  6. Magnetic hyperthermia in phosphate coated iron oxide nanofluids

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Muthukumaran, T.; Philip, John

    2016-06-01

    We study the magnetic field induced hyperthermia in water based phosphate coated Fe3O4 nanofluids, synthesized by a co-precipitation method using ferrous and ferric salt solutions, ammonia and orthophosphoric acid. The specific absorption rate (SAR) values were measured at a fixed frequency of 126 kHz and at extremely low field amplitudes. The SAR values were determined from the initial rate of temperature rise curves under non-adiabatic conditions. It was observed that the SAR initially increases with sample concentration, attains a maximum at an optimum concentration and beyond which SAR decreases. The decrease in SAR values beyond the optimum concentration was attributed to the enhancement of dipolar interaction and agglomeration of the particles. The system independent intrinsic loss power (ILP) values, obtained by normalizing the SAR values with respect to field amplitude and frequency, were found to vary between 158-125 nHm2 kg-1, which were the highest benchmark values reported in the biologically safe experimental limit of 1.03-0.92×108 Am-1 s-1. The very high value of ILP observed in the bio-compatible phosphate coated iron oxide nanofluids may find practical applications for these nanoparticles in tumor targeted hyperthermia treatment.

  7. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide

    PubMed Central

    Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo

    2016-01-01

    The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287

  8. Tribological coating of titanium alloys by laser processing

    NASA Astrophysics Data System (ADS)

    Pang, Wang

    Titanium-based alloys have been used for aerospace materials for many years. Recently, these alloys are now being increasingly considered for automotive, industrial and consumer applications. Their excellent creep resistance, corrosion resistance and relative higher specific strength ratio are attractive for many applications. However, the main obstacle for the wide adoption of Ti alloys in various industries is their poor tribological properties. In slide wear, Ti deforms and adhesive wear readily occurs. Their poor tribological properties are mainly due to low hardness and absolute values of tensile and shear strength. Different surface modification techniques have been studied in order to improve the tribological characteristics of Ti alloys, i.e. PVD, nitrding, carburizing, boriding, plating etc. Coatings produced by these techniques have their own limitations such as thermal distortion and grain growth. A different approach is to introduce hard particles in the Ti alloy matrix to form a MMC coating, which has tailor-made hardness and wear resistance properties. Laser cladding or laser alloying techniques facilitate the fabrication of surface MMC on Ti alloys without thermal distortion to the substrate. In this project, the fabrication of hard and wear resistant layers of metal matrix composite on titanium alloys substrate by laser surface alloying was investigated. Powder mixtures of Mo and WC were used to form the MMC layer. By optimizing the processing parameters and pre-placed powder mixture compositions, surface MMC of different properties have been successfully fabricated on CP-Ti and Ti6A14V respectively. The structure and characteristics of the MMC surface were investigated by metallography, SEM, XRD, and E-DAX. It was found that the hardness of the laser alloyed Mo/WC MMC surface was 300% higher than that of the CP-Ti substrate Excellent metallurgical bonding with the MMC layer of the substrate has been achieved. The relative kinetic frictional tests

  9. Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature

    PubMed Central

    van Hove, Ruud P.; Sierevelt, Inger N.; van Royen, Barend J.; Nolte, Peter A.

    2015-01-01

    Surfaces of medical implants can be enhanced with the favorable properties of titanium-nitride (TiN). In a review of English medical literature, the effects of TiN-coating on orthopaedic implant material in preclinical studies were identified and the influence of these effects on the clinical outcome of TiN-coated orthopaedic implants was explored. The TiN-coating has a positive effect on the biocompatibility and tribological properties of implant surfaces; however, there are several reports of third body wear due to delamination, increased ultrahigh molecular weight polyethylene wear, and cohesive failure of the TiN-coating. This might be due to the coating process. The TiN-coating process should be optimized and standardized for titanium alloy articulating surfaces. The clinical benefit of TiN-coating of CoCrMo knee implant surfaces should be further investigated. PMID:26583113

  10. Nonvolatile buffer coating of titanium to prevent its biological aging and for drug delivery.

    PubMed

    Suzuki, Takeo; Kubo, Katsutoshi; Hori, Norio; Yamada, Masahiro; Kojima, Norinaga; Sugita, Yoshihiko; Maeda, Hatsuhiko; Ogawa, Takahiro

    2010-06-01

    The osseointegration capability of titanium decreases over time. This phenomenon, defined as biological aging of titanium, is associated with the disappearance of hydrophilicity and the progressive accumulation of hydrocarbons on titanium surfaces. The objective of this study was to examine whether coating of titanium surfaces with 4-(2-Hydroxylethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, a nonvolatile zwitterionic chemical buffering agent, could prevent the time-dependent degradation of the bioactivity of titanium. Commercially pure titanium samples, prepared as disks and cylinders, were acid-etched with H(2)SO(4). A third of the samples were used for experiments immediately after processing (new surfaces), while another third were stored under dark ambient conditions for 3 months (3-month-old surfaces). The remaining third were coated with HEPES after acid-etching and were stored for 3 months (HEPES-coated 3-month-old surfaces). The 3-month-old surfaces were hydrophobic, while new and HEPES-coated 3-month-old surfaces were superhydrophilic. Protein adsorption and the number of osteoblasts attached during an initial culture period were substantially lower for 3-month-old surfaces than for new and HEPES-coated 3-month-old surfaces. Alkaline phosphatase activity and calcium deposition in osteoblast cultures were reduced by more than 50% on 3-month-old surfaces compared to new surfaces, whereas such degradation was not found on HEPES-coated 3-month-old surfaces. The strength of in vivo bone-implant integration for 3-month-old implants, evaluated by the push-in test, was 60% lower than that for new implants. The push-in value of HEPES-coated 3-month-old implants was equivalent to that of new implants. Coating titanium surfaces with HEPES containing an antioxidant amino acid derivative, N-acetyl cysteine (NAC), further enhanced osteoblast attachment to the surfaces, along with the increase level of intracellular glutathione reserves as a result of cellular

  11. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles

    SciTech Connect

    Zhao Difang . E-mail: zdf6910@163.com; Zhou Jie; Liu Ning

    2007-03-15

    This paper presents the results of a study in which nanosized titanium dioxide (TiO{sub 2}) crystal particles were coated onto the surface of palygorskite fibrous clay which had been modified by silver ions using titanium tetrachloride as a precursor. Coated TiO{sub 2} particles with the anatase structure were formed after calcining at 400 deg. C for 2 h in air. Various analytical techniques were used to characterize the surface properties of titanium dioxide particles on the palygorskite. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that TiO{sub 2} particles were supported on the surface of the palygorskite clays and their size was in the range of 3-6 nm. The titanium oxide coatings were found to be very active for the photocatalytic decomposition of methylene blue.

  12. Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior

    NASA Astrophysics Data System (ADS)

    Zou, Guoqiang; Chen, Jun; Zhang, Yan; Wang, Chao; Huang, Zhaodong; Li, Simin; Liao, Hanxiao; Wang, Jufeng; Ji, Xiaobo

    2016-09-01

    Carbon-coated rutile titanium dioxide (CRT) was fabricated through an in-situ pyrolysis of titanium-based metal organic framework (Ti8O8(OH)4[O2CC6H4CO2]6) crystals. Benefiting from the Tisbnd Osbnd C skeleton structure of titanium-based metal organic framework, the CRT possesses abundant channels and micro/mesopores with the diameters ranging from 1.06 to 4.14 nm, shows larger specific surface area (245 m2 g-1) and better electronic conductivity compared with pure titanium dioxide (12.8 m2 g-1). When applied as anode material for sodium-ion batteries, the CRT electrode exhibits a high cycling performance with a reversible capacity of ∼175 mAh g-1 at 0.5 C-rate after 200 cycles, and obtains an excellent rate capability of ∼70 mAh g-1 after 2000 cycles even at a specific current of 3360 mA g-1(20 C-rate). The outstanding rate capability can be attributed to the carbon-coated structure, which may effectively prevent aggregation of the titanium dioxide nanoparticles, accelerate the mass transfer of Na+ and speed up the charge transfer rate. Considering these advantages of this particular framework structure, the CRT can serve as an alternative anode material for the industrial application of SIBs.

  13. ENDOTHELIAL PROGENITOR CELL ADHESION, GROWTH AND CHARACTERIZATION ON TRABECULAR TITANIUM AND TRABECULAR TITANIUM COATED WITH COLLAGEN OR DECELLULARIZED ECM.

    PubMed

    Gastaldi, G; Caliogna, L; Botta, L; Ghiara, M; Benazzo, F

    2015-01-01

    Adequate blood supply is essential for prosthesis osteointegration and bone healing as it supplies oxygen, nutrition and progenitor cells. The bone healing process and vascularization depend upon the endothelial cells, which speed up implant osteointegration. Endothelial Progenitor Cells (EPC) are a population of stem cells that can reproduce, migrate and acquire mature endothelial phenotype. Their recruitment occurs in the tissue lesion to enhance neovascularization. Trabecular TitaniumTM (TTTM) is a new biomaterial with very interesting biomechanical characteristics and fast osteointegration. This study has investigated adhesion, proliferation and characteristics of EPC on three types of biomaterial: unmodified trabecular titanium, trabecular titanium coated with the ECM deposited by human mesenchymal stem cells isolated from subcutaneous adipose tissue and decellularized and trabecular titanium coated with type I collagen (control scaffold). MTT assay showed similar percentages of EPCs seeded on the different kinds of scaffold: 67% on TT, 70% on decellularized scaffolds and 82% on collagen-coated scaffolds. There were no statistically significant differences between the three groups. We therefore conclude that TTTM allows EPC adhesion and proliferation and, consequently, by permitting vascularization, it favours prosthesis osteointegration. PMID:26652487

  14. Interface strength studies of calcium phosphate ceramic coated strain gauges.

    PubMed

    Battraw, G A; Szivek, J A; Anderson, P L

    1998-01-01

    In vivo strain gauging has been used to understand physiological loading and bone remodeling. In early studies, a cyanoacrylate adhesive was used to bond gauges to bone, even though this adhesive is susceptible to biodegradation that results in rapid debonding. Calcium phosphate ceramic (CPC) coated gauges have been successfully bonded to bone for long periods. However, earlier studies noted occasional debonding of coatings from gauges. The goals of this project were to develop a technique to securely bond particles to gauge backings and develop an in vitro test and assess its accuracy in simulating in vivo degradation of this interface. Gauges were heated for different time intervals, roughened with carbide papers, and prepared using layered coatings of polysulfone and CPC particles that varied in size, shape, and crystallinity. They were soaked in solution or placed in muscle pouches of rats for up to 16 weeks. They were then epoxied to fixtures, mounted on an MTS machine, and loaded to failure. Heating and roughening gauge surfaces increased the interface strengths by up to 2000%. In vivo and in vitro testing showed an initial drop in the interface strength, which leveled off to approximately 7.0+/-2.0 MPa.

  15. Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating

    NASA Astrophysics Data System (ADS)

    Lahtinen, Kimmo; Maydannik, Philipp; Seppänen, Tarja; Cameron, David C.; Johansson, Petri; Kotkamo, Sami; Kuusipalo, Jurkka

    2013-10-01

    Titanium oxide layers were deposited onto a BOPP film by atomic layer deposition in order to prevent UV degradation of the film. The coatings were deposited in a low-temperature process at 80 °C by using tetrakis(dimethylamido)titanium and ozone as titanium and oxygen precursors, respectively. UV block characteristics of the coatings and their effect on the polymer were measured by using UV-vis and IR spectrometry, and differential scanning calorimetry. According to the results, the coatings provided a considerable decrease in the photodegradation of the BOPP film during UV exposure. IR spectra showed that during a 6-week UV exposure, a 67 nm titanium oxide coating was able to almost completely prevent the formation of photodegradation products in the film. The mechanical properties of the film were also protected by the coating, but as opposed to what the IR study suggested they were still somewhat compromised by the UV light. After a 6-week exposure, the tensile strength and elongation at break of the 67 nm titanium oxide coated film decreased to half of the values measured before the treatment. This should be compared to the complete degradation suffered by the uncoated base sheet already after only 4 weeks of treatment. The results show that nanometre scale inorganic films deposited by ALD show a promising performance as effective UV protection for BOPP substrates.

  16. Hydroxyapatite Coating of Titanium Implants Using Hydroprocessing and Evaluation of Their Osteoconductivity

    PubMed Central

    Kuroda, Kensuke; Okido, Masazumi

    2012-01-01

    Many techniques for the surface modification of titanium and its alloys have been proposed from the viewpoint of improving bioactivity. This paper contains an overview of surface treatment methods, including coating with hydroxyapatite (HAp), an osteoconductive compound. There are two types of coating methods: pyroprocessing and hydroprocessing. In this paper, hydroprocessing for coating on the titanium substrate with HAp, carbonate apatite (CO3–Ap), a CO3–Ap/CaCO3 composite, HAp/collagen, and a HAp/gelatin composite is outlined. Moreover, evaluation by implantation of surface-modified samples in rat tibiae is described. PMID:22400015

  17. Wear and corrosion resistance of anti-bacterial Ti-Cu-N coatings on titanium implants

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Zhang, Xiangyu; He, Xiaojing; Li, Meng; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2014-10-01

    Anti-bacterial coatings with excellent wear and corrosion resistance play a vital role in ensuring the durability of implant materials in constant use. To this end, a novel anti-bacterial surface modification by combining magnetron sputtering with plasma nitriding was adopted in this paper to fabricate Cu-bearing Ti-based nitrides coatings (Ti-Cu-N) on titanium surface. The anti-bacterial properties of Ti-Cu-N coatings were evaluated. The microstructures and composition of the coatings were investigated by using FESEM, EDS, GDOES, XRD. The wear and corrosion resistance of the coatings were investigated. The results confirmed that an anti-bacterial Ti-Cu-N coating with a thickness of 6 μm and good adhesive strength to substrate was successfully achieved on titanium surface. As implied by XRD, the coatings were consisted of TiN, Ti2N, TiN0.3 phases. The surface micro-hardness and wear resistance of Ti-Cu-N coatings were significantly enhanced after plasma nitriding treatment. The analysis of potentiodynamic polarization curves and Nyquist plots obtained in 0.9 wt.% NaCl solution suggested that the Ti-Cu-N coatings also exhibited an excellent corrosion resistance. As mentioned above, it can be concluded that the duplex-treatment reported here was a versatile approach to develop anti-bacterial Ti-Cu-N coatings with excellent comprehensive properties on titanium implants.

  18. Electrochemical determination of the porosity of single and duplex PVD coatings of titanium and titanium nitride on brass

    SciTech Connect

    Tato, W.; Landolt, D.

    1998-12-01

    For the development of optimized coating-substrate systems one needs fast and reliable methods which permit the characterization of both intrinsic corrosion resistance and porosity. In the present paper electrochemical procedures for the determination of porosity are developed and applied to the study of Ti and TiN coatings on brass and of TiN/Ti duplex coatings. In a first approach the porosity was obtained from a comparison of the dc polarization resistance of the uncoated and coated substrate at constant potential. In another approach the ratio of current maxima observed during dissolution of brass substrate in presence and absence of a coating was taken as a measure of porosity. The third method used impedance spectroscopy for the determination of the polarization resistance in the presence and absence of a coating. All methods gave consistent results that were well reproducible. The lowest porosity was found for duplex coatings and for titanium coatings deposited under application of a bias voltage. The electrochemical methods used in this study are well suited for the characterization of the porosity of passive physically vapor deposited coatings deposited on electrochemically active substrates.

  19. Effects of silica-coating on surface topography and bond strength of porcelain fused to CAD/CAM pure titanium.

    PubMed

    Fukuyama, Takushi; Hamano, Naho; Ino, Satoshi

    2016-01-01

    The aim of this study was to evaluate the shear bond strength of porcelain fusing to titanium and the effects of surface treatment on surface structure of titanium. In the shear bond strength test, titanium surface treatments were: conventional, silica-coating without bonding agent, and silica-coating with bonding agent. Titanium surface treatments for analysis by the atomic force microscope (AFM) were: polishing, alumina sandblasting and silica-coating. The shear bond strength value of silica-coating with bonding agent group showed significantly higher than that of other groups. In AFM observation results, regular foamy structure which is effective for wetting was only observed in silica-coating. Therefore, this structure might indicate silicon. Silica-coating renders forms a nanoscopic regular foamy structure, involved in superhydrophilicity, to titanium surface, which is markedly different from the irregular surface generated by alumina sandblasting. PMID:27041024

  20. Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry.

    PubMed

    Choi, A H; Ben-Nissan, B; Matinlinna, J P; Conway, R C

    2013-10-01

    The purpose of coatings on implants is to achieve some or all of the improvements in biocompatibility, bioactivity, and increased protection from the release of harmful or unnecessary metal ions. During the last decade, there has been substantially increased interest in nanomaterials in biomedical science and dentistry. Nanocomposites can be described as a combination of two or more nanomaterials. By this approach, it is possible to manipulate mechanical properties, such as strength and modulus of the composites, to become closer to those of natural bone. This is feasible with the help of secondary substitution phases. Currently, the most common composite materials used for clinical applications are those selected from a handful of available and well-characterized biocompatible ceramics and natural and synthetic polymers. This approach is currently being explored in the development of a new generation of nanocomposite coatings with a wider range of oral and dental applications to promote osseointegration. The aim of this review is to give a brief introduction into the new advances in calcium phosphate nanocoatings and their composites, with a range of materials such as bioglass, carbon nanotubes, silica, ceramic oxide, and other nanoparticles being investigated or used in dentistry.

  1. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces.

    PubMed

    Mendes, Vanessa C; Moineddin, Rahim; Davies, John E

    2007-11-01

    We sought to address the question: Can metallic surfaces be rendered bone-bonding? We employed dual acid-etched (DAE) commercially pure titanium (cpTi) and titanium alloy (Ti6Al4V) custom-made rectangular coupons (1.3 mm x 2.5 mm x 4 mm) with, or without, further modification by the discrete crystalline deposition (DCD) of calcium phosphate (CAP) nanocrystals. A total of 48 implants comprising four groups were placed bilaterally in the distal femur of male Wistar rats for 9 days. After harvesting, the bone immediately proximal and distal to the implant was removed, resulting in a test sample comprising the implant with two attached cortical arches. The latter were distracted at 30 mm/min, in an Instron machine, and the disruption force was recorded. Results showed that alloy samples exhibited greater disruption forces than cpTi, and that DCD samples had statistically significantly greater average disruption forces than non-DCD samples. The bone-bonding phenomenon was visually evident by fracture of the cortical arches and an intact bone/implant interface. Field emission scanning electron microscopy showed the bone/implant interface was occupied by a bony cement line matrix that was interlocked with the surface topographical features of the implant. We conclude that titanium implant surfaces can be rendered bone-bonding by an increase in the complexity of the surface topography. PMID:17697709

  2. Secondary electron yield from stainless steel surface coated with titanium nitride

    NASA Astrophysics Data System (ADS)

    Orlov, O. S.; Meshkov, I. N.; Rudakov, A. Yu.; Philippov, A. V.

    2014-09-01

    The experiment on measurement of secondary electron yield from surface of a stainless steel Kh189 sample covered with titanium nitride is performed at stand "Recuperator". This work is related to known problem of electron clouds formation in a vacuum chamber by a propagating charge particle beam. An original method of secondary electron yield measurement was developed in this experiment. The obtained results allow one to estimate efficiency of coating nitride titanium.

  3. In vivo evaluation of plasma-sprayed titanium coating after alkali modification.

    PubMed

    Xue, Weichang; Liu, Xuanyong; Zheng, XueBin; Ding, Chuanxian

    2005-06-01

    In this paper, plasma-sprayed titanium coatings were modified by alkali treatment. The changes in chemical composition and structure of coatings were examined by SEM and AES. The results obtained indicated that a net-like microscopic texture feature, which was full of the interconnected fine porosity, appeared on the surface of alkali-modified titanium coatings. The surface chemical composition was also altered by alkali modification. A sodium titanate compound was formed on the surface of the titanium coating and replaced the native passivating oxide layer. Its thickness was measured as about 150 nm which was about 10 times of that of the as-sprayed coating. The bone bonding ability of titanium coatings were investigated using a canine model. The histological examination and SEM observation demonstrated that more new bone was formed on the surface of alkali-modified implants and grew more rapidly into the porosity. The alkali-modified implants were found to appose directly to the surrounding bone. In contrast, a gap was observed at the interface between the as-sprayed implants and bone. The push-out test showed that alkali-modified implants had a higher shear strength than as-sprayed implants after 1 month of implantation. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the alkali-modified implant by EDS analysis.

  4. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    PubMed

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  5. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats.

    PubMed

    van der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A; Esbrit, Pedro; Weinans, Harrie

    2015-05-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous titanium is improved with a coating of osteostatin, an osteoinductive peptide that consists of the 107-111 domain of the parathyroid hormone (PTH)-related protein (PTHrP), and the effects of this osteostatin coating on bone regeneration were evaluated in vitro and in vivo. SLM-produced porous titanium received an alkali-acid-heat treatment and was coated with osteostatin through soaking in a 100 nM solution for 24 h or left uncoated. Osteostatin-coated scaffolds contained ∼0.1 μg peptide/g titanium, and in vitro 81% was released within 24 h. Human periosteum-derived osteoprogenitor cells cultured on osteostatin-coated scaffolds did not induce significant changes in osteogenic (alkaline phosphatase [ALP], collagen type 1 [Col1], osteocalcin [OCN], runt-related transcription factor 2 [Runx2]), or angiogenic (vascular endothelial growth factor [VEGF]) gene expression; however, it resulted in an upregulation of osteoprotegerin (OPG) gene expression after 24 h and a lower receptor activator of nuclear factor kappa-B ligand (RankL):OPG mRNA ratio. In vivo, osteostatin-coated, porous titanium implants increased bone regeneration in critical-sized cortical bone defects (p=0.005). Bone regeneration proceeded until 12 weeks, and femurs grafted with osteostatin-coated implants and uncoated implants recovered, respectively, 66% and 53% of the original femur torque strength (97±31 and 77±53 N·mm, not significant). In conclusion, the osteostatin coating improved bone regeneration of porous titanium. This effect was initiated after a short burst release and might be related to the observed in vitro upregulation of OPG gene expression by osteostatin in osteoprogenitor

  6. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats.

    PubMed

    van der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A; Esbrit, Pedro; Weinans, Harrie

    2015-05-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous titanium is improved with a coating of osteostatin, an osteoinductive peptide that consists of the 107-111 domain of the parathyroid hormone (PTH)-related protein (PTHrP), and the effects of this osteostatin coating on bone regeneration were evaluated in vitro and in vivo. SLM-produced porous titanium received an alkali-acid-heat treatment and was coated with osteostatin through soaking in a 100 nM solution for 24 h or left uncoated. Osteostatin-coated scaffolds contained ∼0.1 μg peptide/g titanium, and in vitro 81% was released within 24 h. Human periosteum-derived osteoprogenitor cells cultured on osteostatin-coated scaffolds did not induce significant changes in osteogenic (alkaline phosphatase [ALP], collagen type 1 [Col1], osteocalcin [OCN], runt-related transcription factor 2 [Runx2]), or angiogenic (vascular endothelial growth factor [VEGF]) gene expression; however, it resulted in an upregulation of osteoprotegerin (OPG) gene expression after 24 h and a lower receptor activator of nuclear factor kappa-B ligand (RankL):OPG mRNA ratio. In vivo, osteostatin-coated, porous titanium implants increased bone regeneration in critical-sized cortical bone defects (p=0.005). Bone regeneration proceeded until 12 weeks, and femurs grafted with osteostatin-coated implants and uncoated implants recovered, respectively, 66% and 53% of the original femur torque strength (97±31 and 77±53 N·mm, not significant). In conclusion, the osteostatin coating improved bone regeneration of porous titanium. This effect was initiated after a short burst release and might be related to the observed in vitro upregulation of OPG gene expression by osteostatin in osteoprogenitor

  7. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    PubMed

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  8. Study of Plasma Interaction with Titanium Coated Ferritic Steel in IR-T1 Tokamak

    SciTech Connect

    Ghoranneviss, M.; Talebitaher, A.; Arvin, R.; Mohammadi, S.; Nikmohamadi, A.; Milani, M.; Salem, M. K.; Sari, A. H.; Yousefi, M. R.; Shokouhi, A.; Khorshid, P.; Saboohi, S.

    2008-04-07

    Studies of plasma interaction with titanium coated ferritic steel is performed on IR-T1 tokamak. Titanium coating is one of the candidates for the plasma facing materials in a tokomak. Titaniumization is carried out by a sputtering method. Some of the samples were baked (3 hours at 460 deg. C) before sputtering. Atomic Force Microscopy (AFM) analyses before and after discharge in r/a = l .04 carried out. The samples (with distinctive titanium layers) were placed at different depths inside the vacuum vessel of the IR-T1 tokamak in the SOL region. A comparison of the titanium coated steel with bare ferritic steel exposed to plasma tokamak and glow discharges is made in this research. Depth of impurity penetration and retention, and the surface roughness are measured by using surface analysis methods. Rutherford backscattering method is used to measure the content of nitrogen, oxygen and titanium, before and after discharges. The result is shown a change in roughness with respect to position of samples.

  9. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.

    2015-04-01

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  10. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents.

    PubMed

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J

    2015-05-14

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  11. Study of Plasma Interaction with Titanium Coated Ferritic Steel in IR-T1 Tokamak

    NASA Astrophysics Data System (ADS)

    Ghoranneviss, M.; Khorshid, P.; Saboohi, S.; Talebitaher, A.; Arvin, R.; Mohammadi, S.; Nikmohamadi, A.; Milani, M.; Salem, M. K.; Sari, A. H.; Yousefi, M. R.; Shokouhi, A.

    2008-04-01

    Studies of plasma interaction with titanium coated ferritic steel is performed on IR-T1 tokamak. Titanium coating is one of the candidates for the plasma facing materials in a tokomak. Titaniumization is carried out by a sputtering method. Some of the samples were baked (3 hours at 460 °C) before sputtering. Atomic Force Microscopy (AFM) analyses before and after discharge in r/a = l .04 carried out. The samples (with distinctive titanium layers) were placed at different depths inside the vacuum vessel of the IR-T1 tokamak in the SOL region. A comparison of the titanium coated steel with bare ferritic steel exposed to plasma tokamak and glow discharges is made in this research. Depth of impurity penetration and retention, and the surface roughness are measured by using surface analysis methods. Rutherford backscattering method is used to measure the content of nitrogen, oxygen and titanium, before and after discharges. The result is shown a change in roughness with respect to position of samples.

  12. Stability of plasma electrolytic oxidation coating on titanium in artificial saliva.

    PubMed

    Matykina, E; Arrabal, R; Mohedano, M; Pardo, A; Merino, M C; Rivero, E

    2013-01-01

    Bioactive PEO coating on titanium with high Ca/P ratio was fabricated and characterized with respect to its morphology, composition and microstructure. Long-term electrochemical stability of the coating and Ti(4+) ion release was evaluated in artificial saliva. Influence of the lactic acid and fluoride ions on corrosion protection mechanism of the coated titanium was assessed using AC and DC electrochemical tests. The PEO-treated titanium maintained high passivity in the broad range of potentials up to 2.5 V (Ag/AgCl) for up to 8 weeks of immersion in unmodified saliva and exhibited Ti(4+) ion release <0.002 µg cm(-2) days(-1). The high corrosion resistance of the coating is determined by diffusion of reacting species through the coating and resistance of the inner dense part of the coating adjacent to the substrate. Acidification of saliva in the absence of fluoride ions does not affect the surface passivity, but the presence of 0.1 % of fluoride ions at pH ≤4.0 causes loss of adhesion of the coating due to inwards migration of fluoride ions and their adsorption at the substrate/coating interface in the presence of polarisation.

  13. Retrieval analysis of titanium nitride (TiN) coated prosthetic femoral heads articulating with polyethylene.

    PubMed

    Łapaj, Łukasz; Wendland, Justyna; Markuszewski, Jacek; Mróz, Adrian; Wiśniewski, Tomasz

    2015-03-01

    Data regarding in vivo performance of titanium nitride (TiN) coated prosthetic femoral heads is scarce, and available studies of older generations of implants demonstrated coating wear in vivo. That is why we conducted a retrieval analysis of 11 femoral heads (articulating in vivo for 1-56 months) with TiN film formed using physical vapor deposition (PVD), to verify if coating failure is a problem in contemporary implants. Retrieved implants were examined using scanning electron microscope, coating roughness was evaluated with a contact profilometer and adhesion was tested using a Rockwell HRC test according to VDI 3824 guideline. Although no gross failure of the TiN coating was observed in our retrievals, all implants had defects typical for PVD coatings, such as pinholes, small titanium droplets and blisters with delaminated coating. In some heads the coating was contaminated with small niobium (Nb) droplets uniformly scattered on the entire surface of the film. Presence of Nb contamination was associated with an increased number and area of other types of defects and poorer coating adhesion. In one component, subjected to multiple dislocations we found severe delamination and cracking of the coating, increased roughness and the presence of third bodies. Our results indicate, that although wear of the coating is lower than seen in older generations of implants, inconsistent quality of the TiN film among different implants indicates the need for strict monitoring of the manufacturing process. PMID:26584076

  14. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    PubMed Central

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  15. Effects of a carbon nanotube-collagen coating on a titanium surface on osteoblast growth

    NASA Astrophysics Data System (ADS)

    Park, Jung Eun; Park, Il-Song; Neupane, Madhav Prasad; Bae, Tae-Sung; Lee, Min-Ho

    2014-02-01

    This study was performed to evaluate the effect of collagen-multi-walled carbon nanotubes (MWCNTs) composite coating deposited on titanium on osteoblast growth. Titanium samples coated with only collagen and MWCNTs were used as controls. Pure titanium was coated with collagen-MWCNTs composite coating with 5, 10 and 20 μg cm-2 MWCNTs by dip coating method. Scanning probe microscopy, field emission scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy were used to ascertain the root mean squared roughness, structural and morphological features and, the interaction between the collagen and the MWCNTs, respectively. The biocompatibility of the collagen-MWCNTs composite coated Ti was assessed by MTT and ALP activity assays after culturing the cells for 2 and 5 days. The study reveals that root mean squared surface roughness of collagen-MWCNTs composite coated titanium is relatively higher than those of collagen and MWCNTs coated Ti. There is a strong interaction between the MWCNTs and the collagen, which is supported by the inferences made in FE-SEM and TEM studies and further confirmed by FT-IR spectra. Among all the specimens tested, cell proliferation is relatively higher on collagen-MWCNTs composite coated Ti specimen incorporated with 20 μg cm-2 of MWCNTs (p < 0.05) after 5 days of cell culture. Cell proliferation studies confirm the existence of a strong dependence of the extent of cell proliferation on the amount of MWCNTs incorporated in the composite; the higher the amount of MWCNTs, the greater the extent of cell proliferation. The higher surface roughness of collagen-MWCNTs composite coated Ti specimens is considered responsible for the relatively higher extent of cell proliferation. The MWCNTs incorporated in the composite could have also contributed to the cell viability and growth.

  16. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants.

    PubMed

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone-implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone-implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone-implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone-implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone-implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the

  17. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants.

    PubMed

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone-implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone-implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone-implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone-implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone-implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the

  18. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    PubMed Central

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was

  19. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections.

    PubMed

    Kazemzadeh-Narbat, Mehdi; Lai, Benjamin F L; Ding, Chuanfan; Kizhakkedathu, Jayachandran N; Hancock, Robert E W; Wang, Rizhi

    2013-08-01

    Prevention of bacterial colonization and formation of a bacterial biofilm on implant surfaces has been a challenge in orthopaedic surgery. The treatment of implant-associated infections with conventional antibiotics has become more complicated by the emergence of multi-drug resistant bacteria. Antimicrobial eluting coatings on implants is one of the most promising strategies that have been attempted. This study reports a controlled release of an antimicrobial peptide (AMP) from titanium surface through a non-cytotoxic multilayered coating. Three layers of vertically oriented TiO2 nanotubes, a thin layer of calcium phosphate coating and a phospholipid (POPC) film were impregnated with a potent broad-spectrum AMP (HHC-36). The coating with controlled and sustained release of AMP was highly effective against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. No cytotoxicity to osteoblast-like cells (MG-63) was observed. Moderate platelet activation and adhesion on the implant surface with no observable activation in solution, and very low red blood cell lysis was observed on the implant. This multi-layer assembly can be a potential approach to locally deliver AMPs to prevent peri-implant infection in orthopaedics without being toxic to host cells. PMID:23680363

  20. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections.

    PubMed

    Kazemzadeh-Narbat, Mehdi; Lai, Benjamin F L; Ding, Chuanfan; Kizhakkedathu, Jayachandran N; Hancock, Robert E W; Wang, Rizhi

    2013-08-01

    Prevention of bacterial colonization and formation of a bacterial biofilm on implant surfaces has been a challenge in orthopaedic surgery. The treatment of implant-associated infections with conventional antibiotics has become more complicated by the emergence of multi-drug resistant bacteria. Antimicrobial eluting coatings on implants is one of the most promising strategies that have been attempted. This study reports a controlled release of an antimicrobial peptide (AMP) from titanium surface through a non-cytotoxic multilayered coating. Three layers of vertically oriented TiO2 nanotubes, a thin layer of calcium phosphate coating and a phospholipid (POPC) film were impregnated with a potent broad-spectrum AMP (HHC-36). The coating with controlled and sustained release of AMP was highly effective against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. No cytotoxicity to osteoblast-like cells (MG-63) was observed. Moderate platelet activation and adhesion on the implant surface with no observable activation in solution, and very low red blood cell lysis was observed on the implant. This multi-layer assembly can be a potential approach to locally deliver AMPs to prevent peri-implant infection in orthopaedics without being toxic to host cells.

  1. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide

    SciTech Connect

    Park, Jong Hyeok; Park, O Ok; Kim, Sungwook

    2006-10-16

    The photocatalytic splitting of water into hydrogen and oxygen using solar light is a potentially clean and renewable source for hydrogen fuel. Titanium oxide nanotubes coated with tungsten oxide were prepared to harvest more solar light for the first time and characterized their water splitting efficiency. The tungsten trioxide coatings significantly enhanced the visible spectrum absorption of the titanium dioxide nanotube array, as well as their solar-spectrum induced photocurrents. For the sample, upon white light illumination at 150 mW/cm{sup 2}, hydrogen gas generated at the overall conversion efficiency of 0.87%.

  2. Synthesis and characterization of titanium carbide, titanium boron carbonitride, titanium boride/titanium carbide and titanium carbide/chromium carbide multilayer coatings by reactive and ion beam assisted, electron beam-physical vapor deposition (EB-PVD)

    NASA Astrophysics Data System (ADS)

    Wolfe, Douglas Edward

    The purpose of the present work was to investigate the synthesis of titanium carbide, TiBCN, TiB2/TiC and TiC/Cr23C6 multilayer coatings by several methods of electron beam-physical vapor deposition (EB-PVD) and examine the affects of various processing parameters on the properties and microstructures of the coatings. TiC was successfully deposited by reactive ion beam assisted (RIBA), EB-PVD and the results were compared to various titanium carbide coatings deposited by a variety of techniques. The affects of substrate temperature and ion beam current density were correlated with composition, hardness, changes in the lattice parameter, degree of crystallographic texture, residual stress, surface morphology, and microstructure. The average Vicker's hardness number was found to increase with increasing ion beam current density and increase over the substrate temperature range of 250°C to 650°C. The average Vicker's hardness number decreased at a substrate temperature of 750°C as a result of texturing and microstructure. The present investigation shows that the average Vicker's hardness number is not only a function of the composition, but also the microstructure including the degree of crystallographic texture. TiB2/TiC multilayer coatings were deposited by argon ion beam assisted, EB-PVD with varying number of total layers to two different film thicknesses under slightly different deposition conditions. In both cases, the hardness of the coatings increased with increasing number of total layers. The adhesion of the coatings ranged from 30 N to 50 N, with the better adhesion values obtained with the thinner coatings. The crystallographic texture coefficients of both the TiC and TiB2 layers were found to change with increasing number of total layers. The multilayer design was found to significantly affect the microstructure and grain size of the deposited coatings. The fracture toughness was found to decrease with increasing number of total layers and was

  3. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    NASA Astrophysics Data System (ADS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  4. Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Li, Baoe; Liang, Chunyong; Wang, Hongshui; Qiao, Zhixia

    2016-01-01

    A hydroxyapatite (HA)/TiO2 composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca-P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca2+ ions which diffused into the coating decreased more rapidly than that of PO43- or HPO42-. The adhesive strength between the apatite and TiO2 coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO2 layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  5. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    PubMed Central

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  6. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  7. The study of titanium oxynitride coatings solubility deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Leonova, L. A.; Boytsova, E. L.; Pustovalova, A. A.

    2016-06-01

    To improve hemocompatibility of cardiovascular stents the coatings based on titanium oxides and oxynitrides were used. In the present work the morphology, surface properties (wettability and surface energy), and in vitro solubility of the ternary system Ti-N-O coating were investigated. Experimentally, low dissolution rate of the coating in saline NaCl (0,9%) was confirmed. Instrumental methods of quantitative analysis (XRF, AES) revealed that the Ti-N-O coating is chemical-resistant and does not change the qualitative and quantitative composition of body fluids.

  8. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  9. Influence of the Structure of the Titanium Oxide Coating Surface on Immunocompetent Tumor Cells

    NASA Astrophysics Data System (ADS)

    Khlusov, I. A.; Sharkeev, Yu. P.; Pichugin, V. F.; Legostaeva, E. V.; Litvinova, L. S.; Shupletsova, V. V.; Sokhonevich, N. A.; Khaziakhmatova, O. G.; Khlusova, M. Yu.; Gutor, S. S.; Tolkacheva, T. V.

    2016-03-01

    Results of a study of the properties of titanium oxide based coatings deposited on titanium substrates by microarc oxidation are presented that establish a relationship between physical and mechanical properties of the coating surface and their medical and biological properties. The required surface topography is formed by sandblasting of the substrate and is controlled by values of the roughness index Ra. A linear dependence of the amplitude of negative electrostatic potential of the oxide coating on the Ra value is established. The topography of the micro-arc coating surface determines its negative surface potential that apparently reduces the viability of the leukemia T cells of the Jurkat line via electrostatic and biological mechanisms unrelated to the generation of intracellular reactive oxygen species.

  10. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys.

    PubMed

    Rahman, Zia Ur; Shabib, Ishraq; Haider, Waseem

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility.

  11. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    PubMed Central

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C. P.; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-01-01

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC). PMID:25019343

  12. Gold-coated pacemaker implantation for a patient with type IV allergy to titanium.

    PubMed

    Kypta, Alexander; Blessberger, Hermann; Lichtenauer, Michael; Lambert, Thomas; Kammler, Juergen; Steinwender, Clemens

    2015-01-01

    A 65-year-old man was scheduled for pacemaker implantation for symptomatic sick-sinus-syndrome (SSS). He suffered from multiple drug-allergies and allergies to several metals like quicksilver and titanium. Gold-coated pacemaker generators and polyurethane leads are effective in avoiding allergic reactions to pacing system components. Therefore, we decided to implant a custom-made gold-coated DDDR-pacemaker generator and polyurethane leads. PMID:27479204

  13. Gold-coated pacemaker implantation for a patient with type IV allergy to titanium

    PubMed Central

    Kypta, Alexander; Blessberger, Hermann; Lichtenauer, Michael; Lambert, Thomas; Kammler, Juergen; Steinwender, Clemens

    2016-01-01

    A 65-year-old man was scheduled for pacemaker implantation for symptomatic sick-sinus-syndrome (SSS). He suffered from multiple drug-allergies and allergies to several metals like quicksilver and titanium. Gold-coated pacemaker generators and polyurethane leads are effective in avoiding allergic reactions to pacing system components. Therefore, we decided to implant a custom-made gold-coated DDDR-pacemaker generator and polyurethane leads. PMID:27479204

  14. Layer-by-layer Grafting of Titanium Phosphate onto Mesoporous Silica SBA-15 Surfaces: Synthesis, Characterization, and Applications

    SciTech Connect

    Ma, Zhen; Zhang, Jianan; Jiao, Jian; Yin, Hongfeng; Yan, Wenfu; Hagaman, Edward {Ed} W; Yu, Jihong; Dai, Sheng

    2009-01-01

    Metal phosphates have many applications in catalysis, separation, and proton conduction, but their small surface areas and/or constrained pore structures limit their utilization. Here, we report two new methods for the liquid-phase grafting of titanium phosphate onto mesoporous silica (SBA-15) surfaces: (1) alternate grafting of Ti(OPri)4 and then POCl3 and (2) one-pot grafting of titanium phosphate formed in situ by employing Ti(OPri)4 (a base) and POCl3 (an acid) as an appropriate acid-base pair . Both the size of mesopores and the content of titanium phosphate can be changed by increasing the number of modification cycles in a stepwise (or layer-by-layer) fashion. The obtained products were characterized by inductively coupled plasma optical emission spectroscopy, X-ray diffraction, N2 adsorptiondesorption, transmission electron microscopy, 31P and 29Si magic-angle spinning NMR, and NH3 temperatureprogrammed desorption, and their performance in acid catalysis and metal ion adsorption was investigated. This work provides new methodologies for the general synthesis of supported metal phosphates with large surface areas, ordered nanoporous structures, and acid properties.

  15. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    NASA Astrophysics Data System (ADS)

    Tan, Guoxin; Zhou, Lei; Ning, Chengyun; Tan, Ying; Ni, Guoxin; Liao, Jingwen; Yu, Peng; Chen, Xiaofeng

    2013-08-01

    Immobilizing organic-inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic-mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  16. Chromatographic separation of inorganic ions on thin layers of titanium phosphate ion-exchanger.

    PubMed

    Ghoulipour, Vanik; Safari, Moharram

    2014-12-01

    The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous, organic and mixed mobile phases. The separation of one ion from several other ions and also ternary and binary separations have been developed. Some important analytical separations are reported. The effect of pH of the mobile phase on retention factor (Rf) values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied. This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationaiy phase in thin layer chromatography.

  17. Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters.

    PubMed

    Jia, Kun; Pan, Bingcai; Lv, Lu; Zhang, Qingrui; Wang, Xiaoshu; Pan, Bingjun; Zhang, Weiming

    2009-03-15

    Titanium phosphate (TiP) exhibits preferable sorption toward lead ion in the presence of competing calcium ions at high levels, however, it is present as fine or ultrafine particles and cannot be directly employed in fixed-bed or any flow-through systems due to the excessive pressure drop and poor mechanical strength. In the present study a new hybrid sorbent TiP-001 was fabricated by impregnating titanium phosphate (TiP) nanoparticles onto a strongly acidic cation exchanger D-001 for enhanced lead removal from waters. D-001 was selected as a host material mainly because of the Donnan membrane effect resulting from the immobilized sulfonic acid groups bound on the exchanger matrix, which would enhance permeation of the target metal cation prior to effective sequestration. TiP-001 was characterized by transmission electron micrograph (TEM), X-ray diffraction (XRD), and pH-titration. Batch and column sorption onto TiP-001 was assayed to evaluate its performance as compared to the host exchanger D-001. Lead sorption onto TiP-001 is a pH-dependent process due to the ion-exchange nature, and its sorption kinetics follows the pseudo-second-order model well. Compared to D-001, TiP-001 displays highly selective lead sorption in the presence of competing calcium cations at concentration of several orders higher than the target metal. Fixed-bed sorption of a synthetic feeding solution indicates that lead retention by TiP-001 results in a conspicuous decrease of this toxic metal from 0.50 to below 0.010 mg/L (drinking water standard recommended by WHO). Moreover, its feasible regeneration by dilute HCl solution also favors TiP-001 to be a feasible sorbent for enhanced lead removal from water. PMID:19101673

  18. Influence of laser cladding regimes on structural features and mechanical properties of coatings on titanium substrates

    SciTech Connect

    Malyutina, Yulia N. Lazurenko, Daria V. Bataev, Ivan A.; Movtchan, Igor A.

    2015-10-27

    In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.

  19. Intramedullary anchoring strength of titanium rod with mixed beta-tricalcium phosphate and fibrin adhesive.

    PubMed

    Oyake, Yuichiro; Beppu, Moroe; Ishii, Shoji; Takagi, Masayuki; Takashi, Masahisa

    2002-01-01

    Histological and biomechanical studies were conducted in Japanese white rabbits to evaluate the effect of mixed beta-tricalcium phosphate (beta-TCP) and fibrin adhesive on bone formation around a titanium rod in femoral bone marrow. The animals received injections of fibrin adhesive with beta-TCP or hydroxyapatite into the femoral bone marrow from the distal end of the femur, where a titanium rod was inserted. Group I received fibrin adhesive only, group II received fibrin adhesive and hydroxyapatite (HA), and group III received fibrin adhesive and beta-TCP. On the examination of nondecalcified specimens, group III showed cross-bridging bone formation between beta-TCP particles at week 8, this being observed earlier than in group II. On mechanical evaluation, group III showed significant differences in maximum pull-out force at week 8, and in modulus of rigidity at week 24, compared with the other groups. On the examination of decalcified specimens, chronic inflammation was clearly identified in group I at week 8, and residual beta-TCP particles were found in group III at week 24. These results suggest that the mixture given to group III filled bone defects around the rod and promoted bone formation at a relatively early stage. Inflammation and delayed absorption of beta-TCP, which appeared to be a reaction of heterologous fibrins, caused delays in bone formation promoted by beta-TCP. Nevertheless, the use of fibrin adhesive appears to be a feasible method for loading powdered beta-TCP. PMID:11819144

  20. Templated synthesis of mesoporous titanium phosphates for the sequestration of radionuclides

    SciTech Connect

    Li, Xiaohong S.; Courtney, Andrea R.; Yantasee, Wassana; Mattigod, Shas V.; Fryxell, Glen E.

    2006-03-01

    Several mesoporous titanium phosphate phases, with varying pore sizes, were prepared using non-ionic surfactants and easily handled titanium precursors under mild reaction conditions. Preliminary testing reveals that these materials have high affinity for certain radionuclides of environmental concern. Significant amounts of radioactive waste have built up over the last half century as the result of nuclear weapons production and the accumulation of spent nuclear fuel. Ultimately, after processing, this waste is targeted to be buried in a deep geological repository. One plan is to include ''getter materials'' in with this waste in order to sequester any radionuclides that might leak from the wasteforms. Of particular interest in this regard are the long-lived actinide species (e.g. Pu, Am, Np, etc.) and the anions (e.g. pertechnetate, iodide, etc.). These getter materials must be able to survive long-term exposure to elevated temperatures (>150 C) and moderately high radiation fluxes. Due to their frailty towards radiolytic degradation, organic components cannot be used for either structure or function in the final getter material.

  1. In-vitro MRI detectability of interbody test spacers made of carbon fibre-reinforced polymers, titanium and titanium-coated carbon fibre-reinforced polymers.

    PubMed

    Ernstberger, Thorsten; Buchhorn, Gottfried; Baums, Mike Herbert; Heidrich, Gabert

    2007-04-01

    The purpose of this study was to investigate how different materials affect the magnetic resonance imaging (MRI) detectability of interbody test spacers (ITS). We evaluated the post-implantation MRI scans with T1 TSE sequences for three different ITS made of titanium, carbon fibre-reinforced polymers (CFRP) and titanium-coated CFRP, respectively. The main target variables were total artefact volume (TAV) and median artefact area (MAA). Additionally, implant volume (IV)/TAV and cross section (CS)/MAA ratio were determined. The t test and Newman-Keuls test for multiple comparisons were used for statistical analysis. TAV and MAA did not differ significantly between CFRP and titanium-coated CFRP, but were approximately twice as high for the titanium ITS (p < 0.001). MRI detectability was optimum for CFRP and titanium-coated CFRP, but was limited at the implant-bone interface of the titanium ITS. The material's susceptibility and the implant's dimensions affected MRI artefacting. Based on TAV, the volume of titanium surface coating in the ITS studied has no influence on susceptibility in MRI scans with T1 TSE sequences.

  2. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOEpatents

    Nastasi, M.A.; Levine, T.E.; Mayer, J.W.; Pizziconi, V.B.

    1998-10-06

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  3. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOEpatents

    Nastasi, Michael A.; Levine, Timothy E.; Mayer, James W.; Pizziconi, Vincent B.

    1998-01-01

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  4. Effect of titanium carbide coating on the osseointegration response in vitro and in vivo.

    PubMed

    Brama, Marina; Rhodes, Nicholas; Hunt, John; Ricci, Andrea; Teghil, Roberto; Migliaccio, Silvia; Rocca, Carlo Della; Leccisotti, Silvia; Lioi, Attilio; Scandurra, Marta; De Maria, Giovanni; Ferro, Daniela; Pu, Fanrong; Panzini, Gianluca; Politi, Laura; Scandurra, Roberto

    2007-02-01

    Titanium has limitations in its clinical performance in dental and orthopaedic applications. This study describes a coating process using pulsed laser deposition (PLD) technology to produce surfaces of titanium carbide (TiC) on titanium substrates and evaluates the biological response both in vitro and in vivo. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of 18.6-21.5% TiC in the surface layer, accompanied by oxides of titanium 78.5-81.4% in the following concentrations: 11.1-13.0% Ti(2)O(3), 50.8-55.8% TiO(2), 14.5-14.7% TiO. Expression of genes central to osteoblast differentiation (alkaline phosphatase, A2 pro-collagen type 1, osteocalcin, BMP-4, TGFbeta and Cbfa-1) were up-regulated in all cell lines (primary human osteoblasts, hFOB1.19 and ROS.MER#14) grown on TiC compared with uncoated titanium when measured by semiquantitative PCR and real time-PCR, whilst genes involved in modulation of osteoclastogenesis and osteoclast activity (IL-6 and M-CSF) were unchanged. Bone density was shown to be greater around TiC-coated implants after 2 and 4 weeks in sheep and both 4 and 8 weeks in rabbits compared to uncoated titanium. Rapid bone deposition was demonstrated after only 2 weeks in the rabbit model when visualized with intravital staining. It is concluded that coating with TiC will, in comparison to uncoated titanium, improve implant hardness, biocompatibility through surface stability and osseointegration through improved bone growth.

  5. The durability of adhesively bonded titanium: Performance of plasma-sprayed polymeric coating pretreatments

    SciTech Connect

    Jackson, F.; Dillard, J.; Dillard, D.

    1996-12-31

    The role of a surface treatment of an adherend is to promote highly stable adhesive-adherend interactions; high stability is accomplished by making the chemistry of the adherend and adhesive compatible. The common surface preparations used to enhance durability include grit blasting, chromic acid or sodium hydroxide anodization, and other chemical treatments for titanium. As interest has grown in the development of environmentally benign surface treatments, other methods have been explored. In this study, plasma-sprayed polymeric materials have been evaluated as a surface coating pretreatment for adhesively bonding titanium alloy. Polyimide and polyether powders were plasm-sprayed onto grit-blasted titanium-6Al-4V. The alloy was adhesively bonded using a high performance polyimide adhesive. The coating was characterized using surface sensitive analytical measurements. The durability performance of the plasma-sprayed adherends was compared to the performance for chromic acid anodized titanium. Among the plasma-sprayed coatings, a LaRC-TPI polyimide-based coating exhibited performance comparable to that for chromic acid anodized specimens.

  6. Effect of Coating and Packaging Materials on Photocatalytic and Antimicrobial Activities of Titanium Dioxide Nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...

  7. Study of the laser marking process of cold sprayed titanium coatings on aluminium substrates

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Genna, S.; Leone, C.; Memola Capece Minutolo, F.; Squillace, A.; Velotti, C.

    2016-09-01

    This paper deals with the study of the laser marking process of titanium cold sprayed coatings on aluminium substrates. Despite several studies regarding the laser marking process are available in literature very few attention have been paid to the marking of cold sprayed coatings and there are no previous papers in literature. Also the phenomena occurring during the marking of a porous coating are to date not fully understood and will be discussed in this paper. The experimental campaign was also repeated on grade 2 titanium rolled sheets with a thickness of 2 mm. The marking tests were carried out under different experimental conditions varying the main process parameters (i.e. laser pulse power and laser scan speed), after that the mark sections were observed by optical microscope and SEM. Both the maximum penetration depth and width of the marks were acquired and also internal damages induced by the process were studied. A correlation between the process parameters and the mark's geometry was found. The results show the effectiveness of the laser process to produce high quality marks on both the titanium layer and the titanium sheet. Moreover, a higher mark penetration on Ti coating was observed compared to the Ti sheet. However, the results show also the possibility to introduce severe and hidden damages in both materials if the process parameters are not properly set.

  8. Bone response to a titanium aluminium nitride coating on metallic implants.

    PubMed

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  9. Fixation of titanium and hydroxyapatite-coated implants in arthritic osteopenic bone.

    PubMed

    Søballe, K; Hansen, E S; Brockstedt-Rasmussen, H; Hjortdal, V E; Juhl, G I; Pedersen, C M; Hvid, I; Bünger, C

    1991-12-01

    Retrieval studies of porous-coated prostheses have demonstrated deficient bony ingrowth in high percentages. Possible reasons for this are lack of initial mechanical stability and the presence of osteopenia. The authors studied ingrowth of osteopenic bone into titanium alloy (Ti) porous-coated implants with and without hydroxyapatite (HA) coating in an experimental dog model. Unilateral osteopenia of the knee with a 20% reduced bone density as judged by computed tomography (CT) scanning (P less than .001) was induced in 12 mature dogs by weekly intraarticular injections of Carragheenin into the right knee for 12 weeks, with the left knee serving as control. Ti porous-coated cylinders were inserted in press-fit bilaterally in the lateral femoral condyles in six dogs. HA-coated titanium plugs were implanted similarly in another sex-, age-, and weight-matched group of six dogs. Bony ingrowth after 4 weeks was significantly reduced for Ti implants in osteopenic bone compared to control bone, but HA-coated implants were covered by equal amounts of bone tissue. Bone-implant shear strength of Ti implants also was reduced in osteopenic bone compared to control bone. In control bone, the anchorage of Ti implants was stronger than HA-coated implants, whereas the fixation of Ti and HA-coated implants was equal in the osteopenic bone. The results demonstrate that the bony fixation of Ti porous-coated implants is weakened by the presence of experimentally induced osteopenia. However, the fixation of HA-coated implants was not affected by the osteopenic condition in the surrounding bone. The fixation of Ti and HA-coated implants was equal in osteopenic bone, whereas the fixation of Ti porous-coated implants was superior to that of HA-coated implants in control bone. PMID:1663154

  10. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    PubMed

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications.

  11. Atomic layer deposited titanium dioxide coatings on KD-II silicon carbide fibers and their characterization

    NASA Astrophysics Data System (ADS)

    Cao, Shiyi; Wang, Jun; Wang, Hao

    2016-03-01

    To provide oxidation protection and/or to act as an interfacial coating, titanium oxide (TiO2) coatings were deposited on KD-II SiC fibers by employing atomic layer deposition (ALD) technique with tetrakis(dimethylamido)titanium (TDMAT) and water (H2O) as precursors. The average deposition rate was about 0.08 nm per cycle, and the prepared coatings were smooth, uniform and conformal, shielding the fibers entirely. The as-deposited coatings were amorphous regardless of the coating thickness, and changed to anatase and rutile crystal phase after annealing at 600 °C and 1000 °C, respectively. The oxidation measurement suggests that the TiO2 coating enhanced the oxidation resistance of SiC fibers obviously. SiC fibers coated with a 70-nm-thick TiO2 layer retained a relatively high tensile strength of 1.66 GPa even after exposition to air at 1400 °C for 1 h, and thick silica layer was not observed. In contrast, uncoated SiC fibers were oxidized dramatically through the same oxidation treatment, covered with a macro-cracked thick silica film, and the tensile strength was not measurable due to interfilament adhesion. The above results indicate that TiO2 films deposited by ALD are a promising oxidation resistance coating for SiC fibers.

  12. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. PMID:27040264

  13. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution.

  14. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants.

    PubMed

    Kim, Hae-Won; Kim, Hyoun-Ee; Knowles, Jonathan C

    2004-08-01

    Hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) films were deposited on a titanium substrate using a sol-gel technique. Different concentrations of F- were incorporated into the apatite structure during the sol preparation. Typical apatite structures were obtained for all coatings after dipping and subsequent heat treatment at 500 degrees C. The films obtained were uniform and dense, with a thickness of approximately 5 microm. The dissolution rate of the coating layer decreased with increasing F- incorporation within the apatite structure, which demonstrates the possibility of tailoring the solubility by a functional gradient coating of HA and FHA. The cell proliferation rate on the coating layer decreased slightly with increasing F- incorporation. The alkaline phosphatase (ALP) activity of the cells on all the HA and FHA coated samples showed much higher expression levels compared to pure Ti. This confirmed the improved activity of cell functions on the substrates with the sol-gel coating treatment.

  15. Citrate impairs the micropore diffusion of phosphate into pure and C-coated goethite

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Lang, Friederike; Kaupenjohann, Martin

    2006-02-01

    Anions of polycarboxylic low-molecular-weight organic acids (LMWOA) compete with phosphate for sorption sites of hydrous Fe and Al oxides. To test whether the sorption of LMWOA anions decreases the accessibility of micropores (<2 nm) of goethite (α-FeOOH) for phosphate, we studied the kinetics of citrate-induced changes in microporosity and the phosphate sorption kinetics of synthetic goethite in the presence and absence of citrate in batch systems for 3 weeks (500 μM of each ion, pH 5). We also used C-coated goethite obtained after sorption of dissolved organic matter in order to simulate organic coatings in the soil. We analyzed our samples with N 2 adsorption and electrophoretic mobility measurements. Citrate clogged the micropores of both adsorbents by up to 13% within 1 h of contact. The micropore volume decreased with increasing concentration and residence time of citrate. In the absence of citrate, phosphate diffused into micropores of the pure and C-coated goethite. The C coating (5.6 μmol C m -2) did not impair the intraparticle diffusion of phosphate. In the presence of citrate, the diffusion of phosphate into the micropores of both adsorbents was strongly impaired. We attribute this to the micropore clogging and the ligand-induced dissolution of goethite by citrate. While the diffusion limitation of phosphate by citrate was stronger when citrate was added before phosphate to pure goethite, the order of addition of both ions to C-coated goethite had only a minor effect on the intraparticle diffusion of phosphate. Micropore clogging and dissolution of microporous hydrous Fe and Al oxides may be regarded as potential strategies of plants to cope with phosphate deficiency in addition to ligand-exchange.

  16. Effects of calcium phosphate nanocrystals on osseointegration of titanium implant in irradiated bone.

    PubMed

    Li, Jun Yuan; Pow, Edmond Ho Nang; Zheng, Li Wu; Ma, Li; Kwong, Dora Lai Wan; Cheung, Lim Kwong

    2015-01-01

    Radiotherapy may compromise the integration of implant and cause implant loss. Implant surface modifications have the possibility of promoting cell attachment, cell growth, and bone formation which ultimately enhance the osseointegration process. The present study aimed to investigate the effects of calcium phosphate nanocrystals on implant osseointegration in irradiated bone. Sixteen rabbits were randomly assigned into control and nano-CaP groups, receiving implants with dual acid-etched surface or dual acid-etched surface discretely deposited of nanoscale calcium-phosphate crystals, respectively. The left leg of all the rabbits received 15 Gy radiation, followed by implants placement one week after. Four animals in each group were sacrificed after 4 and 12 weeks, respectively. Implant stability quotient (ISQ), ratio of bone volume to total volume (BV/TV), bone growth rate, and bone-to-implant contact (BIC) were evaluated. The nano-CaP group showed significantly higher ISQ (week 12, P = 0.031) and bone growth rate (week 6, P = 0.021; week 9, P = 0.001) than that in control group. No significant differences in BV/TV and BIC were found between two groups. Titanium implant surface modified with CaP nanocrystals provides a potential alternative to improve bone healing around implant in irradiated bone.

  17. Effects of calcium phosphate nanocrystals on osseointegration of titanium implant in irradiated bone.

    PubMed

    Li, Jun Yuan; Pow, Edmond Ho Nang; Zheng, Li Wu; Ma, Li; Kwong, Dora Lai Wan; Cheung, Lim Kwong

    2015-01-01

    Radiotherapy may compromise the integration of implant and cause implant loss. Implant surface modifications have the possibility of promoting cell attachment, cell growth, and bone formation which ultimately enhance the osseointegration process. The present study aimed to investigate the effects of calcium phosphate nanocrystals on implant osseointegration in irradiated bone. Sixteen rabbits were randomly assigned into control and nano-CaP groups, receiving implants with dual acid-etched surface or dual acid-etched surface discretely deposited of nanoscale calcium-phosphate crystals, respectively. The left leg of all the rabbits received 15 Gy radiation, followed by implants placement one week after. Four animals in each group were sacrificed after 4 and 12 weeks, respectively. Implant stability quotient (ISQ), ratio of bone volume to total volume (BV/TV), bone growth rate, and bone-to-implant contact (BIC) were evaluated. The nano-CaP group showed significantly higher ISQ (week 12, P = 0.031) and bone growth rate (week 6, P = 0.021; week 9, P = 0.001) than that in control group. No significant differences in BV/TV and BIC were found between two groups. Titanium implant surface modified with CaP nanocrystals provides a potential alternative to improve bone healing around implant in irradiated bone. PMID:25685809

  18. Effects of Calcium Phosphate Nanocrystals on Osseointegration of Titanium Implant in Irradiated Bone

    PubMed Central

    Li, Jun Yuan; Pow, Edmond Ho Nang; Kwong, Dora Lai Wan; Cheung, Lim Kwong

    2015-01-01

    Radiotherapy may compromise the integration of implant and cause implant loss. Implant surface modifications have the possibility of promoting cell attachment, cell growth, and bone formation which ultimately enhance the osseointegration process. The present study aimed to investigate the effects of calcium phosphate nanocrystals on implant osseointegration in irradiated bone. Sixteen rabbits were randomly assigned into control and nano-CaP groups, receiving implants with dual acid-etched surface or dual acid-etched surface discretely deposited of nanoscale calcium-phosphate crystals, respectively. The left leg of all the rabbits received 15 Gy radiation, followed by implants placement one week after. Four animals in each group were sacrificed after 4 and 12 weeks, respectively. Implant stability quotient (ISQ), ratio of bone volume to total volume (BV/TV), bone growth rate, and bone-to-implant contact (BIC) were evaluated. The nano-CaP group showed significantly higher ISQ (week 12, P = 0.031) and bone growth rate (week 6, P = 0.021; week 9, P = 0.001) than that in control group. No significant differences in BV/TV and BIC were found between two groups. Titanium implant surface modified with CaP nanocrystals provides a potential alternative to improve bone healing around implant in irradiated bone. PMID:25685809

  19. Effect Of Gravity On Porous Tricalcium Phosphate And Nonstoichiometric Titanium Carbide Produced Via Combustion Synthesis

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Novel processing techniques, such as self-propagating high temperature synthesis (SHS), have the capability to rapidly produce advanced porous materials that are difficult to fabricate by other methods. This processing technique is also capable of near net shape synthesis, while variable gravity allows the manipulation of the structure and composition of the material. The creation of porous tricalcium phosphate (TCP) is advantageous in the biomaterials field, since it is both a biocompatible material and an osteoconductive material. Porous tricalcium phosphate produced via SHS is an excellent candidate for bone scaffold material in the bone regeneration process. The porosity allows for great vascularization and ingrowth of tissue. Titanium Carbide is a nonstoichiometric biocompatible material that can be incorporated into a TiC-Ti composite system using combustion synthesis. The TiC-Ti composite exhibits a wide range of mechanical and chemical properties. Both of these material systems (TCP and TiC-Ti) can be used to advantage in designing novel bone replacement materials. Gravity plays an important role in both the pore structure and the chemical uniformity of these composite systems and offers considerable potential in advanced bone engineering.

  20. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    SciTech Connect

    Gong, Yansheng; Tu, Rong; Goto, Takashi

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  1. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    PubMed

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%.

  2. Facile Synthesis of Photofunctional Nanolayer Coatings on Titanium Substrates

    PubMed Central

    Choi, Kyong-Hoon; Kim, Jung-Gil; Kang, Byungman; Kim, Ho-Joong; Park, Bong Joo

    2016-01-01

    We developed a two-step chemical bonding process using photosensitizer molecules to fabricate photofunctional nanolayer coatings on hematoporphyrin- (HP-) coated Ti substrates. In the first step, 3-aminopropyltriethoxysilane was covalently functionalized onto the surface of the Ti substrates to provide heterogeneous sites for immobilizing the HP molecules. Then, HP molecules with carboxyl groups were chemically attached to the amine-terminated nanolayer coatings via a carbodiimide coupling reaction. The microstructure and elemental and phase composition of the HP-coated Ti substrates were investigated using field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The photophysical properties of the photofunctional nanolayer coatings were confirmed using reflectance ultraviolet-visible absorption and emission spectrophotometry. The singlet oxygen generation efficiency of the photofunctional nanolayer coatings was determined using the decomposition reaction of 1,3-diphenylisobenzofuran. The HP-coated Ti substrates exhibited good biocompatibility without any cytotoxicity, and these nanolayer coatings generated singlet oxygen, which can kill microorganisms using only visible light. PMID:27110564

  3. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    NASA Astrophysics Data System (ADS)

    Yong, Zhiyi; Zhu, Jin; Qiu, Cheng; Liu, Yali

    2008-12-01

    In this paper, a new conversion coating—molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an "alveolate-crystallized" structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  4. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    PubMed

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F

    2013-12-01

    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity. PMID:24094199

  5. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    PubMed

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F

    2013-12-01

    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.

  6. Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate.

    PubMed

    Lin, Chi-Chang; Fu, Shu-Juan; Lin, Yu-Ching; Yang, I-Kuan; Gu, Yesong

    2014-07-01

    In this work, hydroxyapatite (HA) mineralized on chitosan (CS)-coated poly(lactic acid) (PLA) nanofiber mat was prepared and compared in terms of mineralization characteristics. Significant calcium phosphate crystals formed on various concentrations of CS-coated PLA fiber mat with better uniformity after 2h of incubation in 10 times simulated body fluid (10× SBF). X-ray diffraction results further indicated that the composition of the deposited mineral was a mixture of dicalcium phosphate dehydrates and apatite. Chitosan, a cationic polysaccharide, can promote more nucleation and growth of calcium phosphate under conditions of 0.4% chitosan concentrations. These results indicated that HA-mineralized on CS-coated PLA fiber mat can be prepared directly via simply using CS coating followed by SBF immersion, and the results also suggest that this composite can mimic structural, compositional, and biological functions of native bone and can serve as a good candidate for bone tissue engineering (BTE). PMID:24768970

  7. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  8. The effect of Si content on structure and mechanical features of silicon-containing calcium-phosphate-based films deposited by RF-magnetron sputtering on titanium substrate treated by pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Surmeneva, M.; Tyurin, A.; Mukhametkaliyev, T.; Teresov, A.; Koval, A.; Pirozhkova, T.; Shuvarin, I.; Chudinova, E.; Surmenev, R.

    2015-11-01

    Silicon-containing calcium phosphate (Si-CaP) coatings were fabricated by radio frequency (rf) magnetron sputtering using the targets prepared from hydroxyapatite (HA) powder with different silicon content. A powder of Si-HA (Ca10(PO4)6-x(SiO4)x(OH)2-x, x=0.5 and 1.72) was prepared by mechanochemical activation and then used as a precursor-powder to prepare a target for sputtering. The titanium substrate was acid etched and treated with pulsed electron beam with an energy density of 15 J/cm2. The average crystallite size as determined by XRD was 28 nm for the coatings obtained using the target prepared from the Si-HA powder (x=0.5), whereas Si-CaP (Si-HA powder x=1.72) films showed an amorphous structure. The nanohardness and the Young's modulus of the Si-CaP coating (x=0.5) deposited on titanium treated by pulsed electron beam are enhanced to 4.5 and 113 GPa compared to titanium substrate. Increase of Si content resulted in a dramatic decrease of the nanohardness and Young's modulus of Si-CaP films. However, Si-CaP coatings with the highest Si content revealed significantly lower values of elastic modulus, but slightly higher values of H/E and H3/E2 than did the non-coated specimens. Rf-magnetron sputtering allowed us to produce Si- CaP coatings with higher nanohardness and lower elastic modulus compared to titanium substrate.

  9. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  10. Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates

    NASA Astrophysics Data System (ADS)

    Farnoush, Hamidreza; Muhaffel, Faiz; Cimenoglu, Huseyin

    2015-01-01

    In the present study, micro-arc oxidation (MAO) was carried out on commercially pure titanium (CP-Ti) to fabricate porous titanium oxide coatings containing calcium phosphates (CaP) at different applied voltages of 300, 330 and 360 V for 5 min. Subsequently, nano-hydroxyapatite (HA) and HA-45S5 bioglass (BG) composite were effectively coated on micro-arc oxidized substrate by electrophoretic deposition (EPD) at a constant voltage of 30 V for 120 s. The phase, structural agents, microstructure and composition of MAO interlayer and subsequent EPD coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Thermal stability of the as-deposited coatings was analyzed by simultaneous differential scanning calorimetry and thermal gravimetery. The pull-off adhesion tests showed the highest bonding strength was obtained for HA-BG coating on micro-oxidized sample at 360 V. The results of potentiodynamic polarization and impedance spectroscopic measurements in simulated body fluid solution depicted that the combination of MAO treatment at 360 V and EPD of HA-BG composite could effectively increase the corrosion resistance of CP-Ti substrates.

  11. Thermal control/oxidation resistant coatings for titanium-based alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Wallace, Terryl A.; Cunnington, George R.; Wiedemann, Karl E.

    1992-01-01

    Extensive research and development efforts have been expended toward development of thermal control and environmental protection coatings for NASP and generic hypersonic vehicle applications. The objective of the coatings development activities summarized here was to develop light-weight coatings for protecting advanced titanium alloys from oxidation in hypersonic vehicle applications. A number of new coating concepts have been evaluated. Coated samples were exposed to static oxidation tests at temperatures up to 1000 C using a thermogravimetric apparatus. Samples were also exposed to simulated hypersonic flight conditions for up to 10 hr to determine their thermal and chemical stability and catalytic efficiency. The emittance of samples was determined before and after exposure to simulated hypersonic flight conditions.

  12. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma.

    PubMed

    Roy, Mangal; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Bose, Susmita

    2011-02-01

    In this study we report the fabrication of compositionally graded hydroxyapatite (HA) coatings on Ti by combining laser engineering net shaping (LENS) and radio frequency induction plasma spraying processes. Initially, HA powder was embedded in the Ti substrates using LENS, forming a Ti-HA composite layer. Later, RF induction plasma spraying was used to deposit HA on these Ti substrates with a Ti-HA composite layer on top. Phase analysis by X-ray diffraction indicated phase transformation of HA to β-tricalcium phosphate in the laser processed coating. Laser processed coatings showed the formation of a metallurgically sound and diffused substrate-coating interface, which significantly increased the coating hardness to 922 ± 183 Hv from that of the base metal hardness of 189 ± 22 Hv. In the laser processed multilayer coating a compositionally graded nature was successfully achieved, however, with severe cracking and a consequent decrease in the flexural strength of the coating. To obtain a structurally stable coating with a composition gradient across the coating thickness a phase pure HA layer was sprayed on top of the laser processed single layer coatings using induction plasma spray. The plasma sprayed HA coatings were strongly adherent to the LENS-TCP coatings, with adhesive bond strength of 21 MPa. In vitro biocompatibility of these coatings, using human fetal osteoblast cells, showed a clear improvement in cellular activity from uncoated Ti compared with LENS-TCP-coated Ti and reached a maximum in the plasma sprayed HA coating.

  13. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    PubMed Central

    Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J

    2015-01-01

    In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958

  14. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density.

    PubMed

    Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J

    2015-01-01

    In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958

  15. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    NASA Technical Reports Server (NTRS)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  16. High Anatase Rate Titanium Dioxide Coating Deposition by Low Power Microwave Plasma Spray

    NASA Astrophysics Data System (ADS)

    Redza, Ahmad; Kondo, Toshiki; Yasui, Toshiaki; Fukumoto, Masahiro

    2016-02-01

    Titanium dioxide is a promising photocatalyst material because of the magnificent properties of this material where it is able to remove the air pollution substance and the deodorizing function. Generally, the deposition method of a titanium dioxide coating is carried out by an organic system binder but the powerful photocatalytic reaction will degrades the binder. Therefore, thermal spray is considered to be the alternative method but this method will induce crystallization transformation of titanium dioxide from anatase phase with high photocatalytic activity to rutile phase with low photocatalyst which caused by high heat input. Since our microwave plasma spraying device is operable at low power comparing with conventional high power plasma spray, the reduce effect of the heat input onto the particles at the time of spraying can be achieved and coating deposition with high rate of anatase phase is expected. Therefore, in this research, the coating deposition by controlling the heat input into the spray particle which can be resulted in high rate of anatase phase with high photocatalytic activity was conducted. By controlled condition, coating with optimum anatase rate of 83% is able to be fabricated by this method.

  17. Titanium

    SciTech Connect

    Fox, G.J.

    1997-01-01

    The article contains a summary of factors pertinent to titanium use. Geology and exploitation, production processes, global production, titanium dioxide and alloy applications, and the titanium market are reviewed. Potential applications outlined are for oil and gas equipment and for the automotive industry. Titanium alloys were selected for drilling risers for North Sea oil and gas drilling platforms due to a high strength-to-weight ratio and corrosion resistance. These properties also make titanium alloys attractive for auto parts, although the cost is currently prohibitive.

  18. Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits

    NASA Astrophysics Data System (ADS)

    Hussain, T.; McCartney, D. G.; Shipway, P. H.; Marrocco, T.

    2011-01-01

    Cold gas dynamic spraying can be used to deposit oxygen-sensitive materials, such as titanium, without significant chemical degradation of the powder. The process is thus believed to have potential for the deposition of corrosion-resistant barrier coatings. However, to be effective, a barrier coating must not allow ingress of a corrosive liquid and hence must not have interconnected porosity. This study investigated the effects of porosity on the corrosion behavior of cold sprayed titanium coatings onto carbon steel and also of free standing deposits. For comparative purposes, a set of free standing deposits was also vacuum heat-treated to further decrease porosity levels below those in the as-sprayed condition. Microstructures were examined by optical and scanning electron microscopy. Mercury intrusion porosimetry (MIP) was used to characterize the interconnected porosity over a size range of micrometers to nanometers. Open circuit potential (OCP) measurements and potentiodynamic polarization scans in 3.5 wt.% NaCl were used to evaluate the corrosion performance. The MIP results showed that in cold sprayed deposits a significant proportion of the porosity was sub-micron and so could not be reliably measured by optical microscope based image analysis. In the case of free standing deposits, a reduction in interconnected porosity resulted in a lower corrosion current density, a lower passive current density, and an increase in OCP closer to that of bulk titanium. For the lowest porosity level, ~1.8% achieved following vacuum heat treatment, the passive current density was identical to that of bulk titanium. However, electrochemical measurements of the coatings showed significant substrate influence when the interconnected porosity of the coating was 11.3 vol.% but a decreased substrate influence with a porosity level of 5.9 vol.%. In the latter case, the OCP was still around 250 mV below that of bulk Ti. Salt spray tests confirmed these electrochemical findings and

  19. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    EPA Science Inventory

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  20. Nano-crystalline diamond-coated titanium dental implants - a histomorphometric study in adult domestic pigs.

    PubMed

    Metzler, Philipp; von Wilmowsky, Cornelius; Stadlinger, Bernd; Zemann, Wolfgang; Schlegel, Karl Andreas; Rosiwal, Stephan; Rupprecht, Stephan

    2013-09-01

    Promising biomaterial characteristics of diamond-coatings in biomedicine have been described in the literature. However, there is a lack of knowledge about implant osseointegration of this surface modification compared to the currently used sandblasted acid-etched Ti-Al6-V4 implants. The aim of this study was to investigate the osseointegration of microwave plasma-chemical-vapour deposition (MWP-CVD) diamond-coated Ti-Al6-V4 dental implants after healing periods of 2 and 5 months. Twenty-four MWP-CVD diamond-coated and 24 un-coated dental titanium-alloy implants (Ankylos(®)) were placed in the frontal skull of eight adult domestic pigs. To evaluate the effects of the nano-structured surfaces on bone formation, a histomorphometric analysis was performed after 2 and 5 months of implant healing. Histomorphometry analysed the bone-to-implant contact (BIC). No significant difference in BIC for the diamond-coated implants in comparison to reference implants could be observed for both healing periods. Scanning electron microscopy revealed an adequate interface between the bone and the diamond surface. No delamination or particle-dissociation due to shearing forces could be detected. In this study, diamond-coated dental titanium-alloy implants and sandblasted acid-etched implants showed a comparable degree of osseointegration.

  1. A novel titania/calcium silicate hydrate hierarchical coating on titanium.

    PubMed

    Huang, Qianli; Liu, Xujie; Elkhooly, Tarek A; Zhang, Ranran; Shen, Zhijian; Feng, Qingling

    2015-10-01

    Recently, surface micron/nano-topographical modifications have attracted a great deal of attention because it is capable of mimicking the hierarchical characteristics of bone. In the current work, a novel titania/calcium silicate hydrate (CSH) bi-layer coating with hierarchical surface topography was successfully prepared on titanium substrate through micro-arc oxidation (MAO) and subsequent hydrothermal treatment (HT). MAO treatment could lead to a micron-scale topographical surface with numerous crater-like protuberances. The subsequent HT process enables the in situ nucleation and growth of CSH nanoplates on MAO-fabricated titania surface. The nucleation of CSH nanoplates is considered to follow a dissolution-precipitation mechanism. Compared to MAO-fabricated coating with single-scale surface topography, MAO-HT-fabricated coating with hierarchical surface topography exhibits enhanced hydrophilicity, fibronectin adsorption and initial MG-63 cell attachment. The process of cell-material interactions is considered to be triggered by surface properties of the coated layer and indirectly mediated by protein adsorption on coating surface. These results suggest that MAO-HT treatment is an efficient way to prepare coatings with hierarchical surface topography on titanium surface, which is essential for altering protein adsorption and initial cell attachment.

  2. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  3. A brief review of calcium phosphate conversion coating on magnesium and its alloys

    NASA Astrophysics Data System (ADS)

    Zaludin, Mohd Amin Farhan; Jamal, Zul Azhar Zahid; Jamaludin, Shamsul Baharin; Derman, Mohd Nazree

    2016-07-01

    Recent developments have shown that magnesium is a promising candidate to be used as a biomaterial. Owing to its light weight, biocompatibility and compressive strength comparable with natural bones makes magnesium as an excellent choice for biomaterial. However, high reactivity and low corrosion resistance properties have restricted the application of magnesium as biomaterials. At the moment, several strategies have been developed to solve this problem. Surface modification of magnesium is one of the popular solutions to solve the problem. Among many techniques developed in the surface modification, conversion coating method is one of the simple and effective techniques. From various types of conversion coating, calcium phosphate-based conversion coating is the most suitable for biomedical fields. This paper reviews some studies on calcium phosphate coating on Mg and its alloys via chemical conversion method and discusses some factors determining the coating performance.

  4. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities.

    PubMed

    Zhou, Jianhong; Zhao, Lingzhou

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337

  5. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    PubMed Central

    Zhou, Jianhong; Zhao, Lingzhou

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337

  6. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition

    PubMed Central

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-01-01

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices. PMID:20880853

  7. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging.

  8. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. PMID:27474622

  9. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates

    PubMed Central

    Lou, Weiwei; Dong, Yiwen; Zhang, Hualin; Jin, Yifan; Hu, Xiaohui; Ma, Jianfeng; Liu, Jinsong; Wu, Gang

    2015-01-01

    Titanium (Ti) has been widely used in clinical applications for its excellent biocompatibility and mechanical properties. However, the bioinertness of the surface of Ti has motivated researchers to improve the physicochemical and biological properties of the implants through various surface modifications, such as coatings. For this purpose, we prepared a novel bioactive material, a lanthanum-incorporated hydroxyapatite (La-HA) coating, using a dip-coating technique with a La-HA sol along with post-heat treatment. The XRD, FTIR and EDX results presented in this paper confirmed that lanthanum was successfully incorporated into the structure of HA. The La-HA coating was composed of rod-like particles which densely compacted together without microcracks. The results of the interfacial shear strength test indicated that the incorporation of lanthanum increased the bonding strength of the HA coating. The mass loss ratios under acidic conditions (pH = 5.5) suggested that the La-HA coatings have better acid resistance. The cytocompatibility of the La-HA coating was also revealed by the relative activity of alkaline phosphatase, cellular morphology and cell proliferation assay in vitro. The present study suggested that La-HA coated on Ti has promising potential for applications in the development of a new type of bioactive coating for metal implants. PMID:26404255

  10. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line.

  11. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces

    PubMed Central

    Yang, Hua-Wei; Lin, Mao-Han; Xu, Yuan-Zhi; Shang, Guang-Wei; Wang, Rao-Rao; Chen, Kai

    2015-01-01

    Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline phosphatase (ALP) activity, mineralized nodules formation and cell osteocalcin (OC) secretion were measured. Results: Electrochemically deposited Sr-HA coating and HA coating had no effect on the proliferation of BMSCs and demonstrated that the materials have a good biocompatibility. BMSCs cultured on Sr-HA coating showed increased alkaline phosphatase activity, mineralized nodules formation, and cell OC secretion compared with the other two groups. Cells cultured on HA coating also showed increased biological activity compared with the roughened group. Conclusion: Sr-HA coated titanium surfaces by electrochemical deposition can promote osteogenesis of BMSCs in vitro and have the potential to shorten bone healing period and enhance implant osseointegration. PMID:25784995

  12. Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering.

    PubMed

    Chai, Yoke Chin; Truscello, Silvia; Bael, Simon Van; Luyten, Frank P; Vleugels, Jozef; Schrooten, Jan

    2011-05-01

    A perfusion electrodeposition (P-ELD) system was reported to functionalize additive manufactured Ti6Al4V scaffolds with a calcium phosphate (CaP) coating in a controlled and reproducible manner. The effects and interactions of four main process parameters - current density (I), deposition time (t), flow rate (f) and process temperature (T) - on the properties of the CaP coating were investigated. The results showed a direct relation between the parameters and the deposited CaP mass, with a significant effect for t (P=0.001) and t-f interaction (P=0.019). Computational fluid dynamic analysis showed a relatively low electrolyte velocity within the struts and a high velocity in the open areas within the P-ELD chamber, which were not influenced by a change in f. This is beneficial for promoting a controlled CaP deposition and hydrogen gas removal. Optimization studies showed that a minimum t of 6 h was needed to obtain complete coating of the scaffold regardless of I, and the thickness was increased by increasing I and t. Energy-dispersive X-ray and X-ray diffraction analysis confirmed the deposition of highly crystalline synthetic carbonated hydroxyapatite under all conditions (Ca/P ratio=1.41). High cell viability and cell-material interactions were demonstrated by in vitro culture of human periosteum derived cells on coated scaffolds. This study showed that P-ELD provides a technological tool to functionalize complex scaffold structures with a biocompatible CaP layer that has controlled and reproducible physicochemical properties suitable for bone engineering.

  13. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    PubMed Central

    Lakhkar, Nilay J; M Day, Richard; Kim, Hae-Won; Ludka, Katarzyna; Mordan, Nicola J; Salih, Vehid; Knowles, Jonathan C

    2015-01-01

    In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications. PMID:26668711

  14. Improving blood-compatibility of titanium by coating collagen-heparin multilayers

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Li, Q. L.; Chen, J. Y.; Chen, C.; Huang, N.

    2009-05-01

    This work deals with improving the blood-compatibility of titanium by coating it with heparin (Hep) and collagen (Col) using a layer-by-layer (LBL) self-assembly technique. In the work described here, LBL-produced Hep-Col film growth is initialized by deposition of a layer of positively charged poly L-Lysine (PLL) on a titanium surface, which is negatively charged after treatment with NaOH, followed by formation of a multilayer thin film formed by alternating deposition of negatively charged heparin and positively charged collagen utilizing electrostatic interaction. The chemical composition, wettability, surface topography, mass and thickness of the film were investigated by Fourier transform infrared spectroscopy, water contact angle measurement, scanning electron microscopy, atomic force microscopy, electronic analytical semi-microbalances, and XP stylus profilometry. The in vitro platelet adhesion and activation were investigated by a static platelet adhesion test probing the lactate dehydrogenase (LDH) release of adherent platelets after lysis and by a P-selectin assay. The clotting time was examined by activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. All obtained data showed that the LBL film can significantly decrease platelet adhesion and activation, and prolong clotting time of APTT and PT compared to untreated titanium. LBL-produced Hep-Col films on titanium display more excellent anticoagulation performance than on the surface of titanium.

  15. Fatigue strength of titanium alloys with a VK-type detonation coating

    SciTech Connect

    Fedorenko, V.K.; Sergeev, V.V.; Shkanov, I.N.

    1995-07-01

    The influence of the structural, phase, and size factors, and the bonding of hard tungsten alloys to titanium alloy bases on the mechanism by which the system fails under alternating loads is studied. The failure mechanism of materials with detonation coatings applied by different methods is discussed in regard to the classical sequence of fatigue phenomena, i.e., hardening-softening and crack nucleation and growth.

  16. Effects of saliva or serum coating on adherence of Streptococcus oralis strains to titanium.

    PubMed

    Dorkhan, Marjan; Chávez de Paz, Luis E; Skepö, Marie; Svensäter, Gunnel; Davies, Julia R

    2012-02-01

    The use of dental implants to treat tooth loss has increased rapidly over recent years. 'Smooth' implants showing high long-term success rates have successively been replaced by implants with rougher surfaces, designed to stimulate rapid osseointegration and promote tissue healing. If exposed in the oral cavity, rougher surfaces may promote bacterial adhesion leading to formation of microbial biofilms which can induce peri-implant inflammation. Streptococcus oralis is an early colonizer of oral surfaces and has been recovered from titanium surfaces in vivo. The purpose of this study was to examine the adherence of clinical strains of S. oralis to titanium with smooth or moderately rough surface topography and to determine the effect of a saliva- or serum-derived coating on this process. Adherence was studied using a flow-cell system with confocal laser scanning microscopy, while putative adhesins were analysed using proteomics of bacterial cell wall proteins. This showed that adherence to moderately rough surfaces was greater than to smooth surfaces. Serum did not promote binding of any of the studied S. oralis strains to titanium, whereas a saliva coating increased adherence in two of three strains tested. The higher level of adherence to the moderately rough surfaces was maintained even in the presence of a saliva coating. The S. oralis strains that bound to saliva expressed an LPXTG-linked protein which was not present in the non-adherent strain. Thus strains of S. oralis differ in their capacity to bind to saliva-coated titanium and we propose that this is due to differential expression of a novel adhesin. PMID:22075030

  17. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  18. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-02-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  19. Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings

    NASA Astrophysics Data System (ADS)

    Kim, KeeHyun; Kuroda, Seiji; Watanabe, Makoto; Huang, RenZhong; Fukanuma, Hirotaka; Katanoda, Hiroshi

    2012-06-01

    Thick titanium coatings were prepared by the warm spraying (WS) and cold spraying (CS) processes to investigate the oxidation and microstructure of the coating layers. Prior to the coating formations, the temperature and velocity of in-flight titanium powder particles were numerically calculated. Significant oxidation occurred in the WS process using higher gas temperature conditions with low nitrogen flow rate, which is mixed to the flame jet of a high velocity oxy-fuel (HVOF) spray gun in order to control the temperature of the propellant gas. Oxidation, however, decreased strikingly as the nitrogen flow rate increased. In the CS process using nitrogen or helium as a propellant gas, little oxidation was observed. Even when scanning electron microscopy or an x-ray diffraction method did not detect oxides in the coating layers produced by WS using a high nitrogen flow rate or by CS using helium, the inert gas fusion method revealed minor increases of oxygen content from 0.01 to 0.2 wt.%. Most of the cross-sections of the coating layers prepared by conventional mechanical polishing looked dense. However, the cross-sections prepared by an ion-milling method revealed the actual microstructures containing small pores and unbounded interfaces between deposited particles.

  20. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  1. Ammonia sensing using lossy mode resonances in a tapered optical fibre coated with porphyrin-incorporated titanium dioxide

    NASA Astrophysics Data System (ADS)

    Tiwari, Divya; Mullaney, Kevin; Korposh, Serhiy; James, Stephen W.; Lee, Seung-Woo; Tatam, Ralph P.

    2016-05-01

    The development of an ammonia sensor, formed by the deposition of a functionalised titanium dioxide film onto a tapered optical fibre is presented. The titanium dioxide coating allows the coupling of light from the fundamental core mode to a lossy mode supported by the coating, thus creating lossy mode resonance (LMR) in the transmission spectrum. The porphyrin compound that was used to functionalise the coating was removed from the titanium dioxide coating upon exposure to ammonia, causing a change in the refractive index of the coating and a concomitant shift in the central wavelength of the lossy mode resonance. Concentrations of ammonia as small as 1ppm was detected with a response time of less than 1min.

  2. Electrically controlled drug release from nanostructured polypyrrole coated on titanium.

    PubMed

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J

    2011-02-25

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s(-1). Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  3. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    NASA Astrophysics Data System (ADS)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J.

    2011-02-01

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s - 1. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  4. In vitro bioactivity of different degree of deacetylation chitosan, a potential coating material for titanium implants.

    PubMed

    Lieder, Ramona; Darai, Mariam; Thor, Margrét Björk; Ng, C-H; Einarsson, Jón M; Gudmundsson, Sveinn; Helgason, Benedikt; Gaware, Vivek Sambhaji; Másson, Már; Gíslason, Jóhannes; Orlygsson, Gissur; Sigurjónsson, Olafur E

    2012-12-01

    Clinical treatment of orthopaedic tissue injuries often involves the use of titanium and titanium alloys with considerable research focusing on the surface modification of these materials. Chitosan, the partly deacetylated form of chitin, is one of the materials under investigation as surface coating for orthopaedic implants in order to improve osteo-integration and cellular attachment. In this study, we determined the effects of the degree of deacetylation (DD) of chitosan membranes on attachment, proliferation and osteogenic differentiation of MC3T3-E1 mouse preosteoblasts. Chitosan membranes were coated with fibronectin to promote biocompatibility and cellular attachment. Membranes were characterized in terms of wettability and surface topography using water contact angle measurements and atomic force microscopy. The results in this study indicate that the surface roughness and fibronectin adsorption increase with increased DD. A higher DD also facilitates attachment and proliferation of cells, but no induction of spontaneous osteogenic differentiation was observed. Lower DD chitosan membranes were successfully prepared to sustain attachment and were modified by crosslinking with glutaraldehyde to promote long-term studies. The chitosan membranes used in this study are suitable as a potential coating for titanium implants.

  5. Sputtered titanium oxynitride coatings for endosseous applications: Physical and chemical evaluation and first bioactivity assays

    NASA Astrophysics Data System (ADS)

    Banakh, Oksana; Moussa, Mira; Matthey, Joel; Pontearso, Alessandro; Cattani-Lorente, Maria; Sanjines, Rosendo; Fontana, Pierre; Wiskott, Anselm; Durual, Stephane

    2014-10-01

    Titanium oxynitride coatings (TiNxOy) are considered a promising material for applications in dental implantology due to their high corrosion resistance, their biocompatibility and their superior hardness. Using the sputtering technique, TiNxOy films with variable chemical compositions can be deposited. These films may then be set to a desired value by varying the process parameters, that is, the oxygen and nitrogen gas flows. To improve the control of the sputtering process with two reactive gases and to achieve a variable and controllable coating composition, the plasma characteristics were monitored in-situ by optical emission spectroscopy. TiNxOy films were deposited onto commercially pure (ASTM 67) microroughened titanium plates by reactive magnetron sputtering. The nitrogen gas flow was kept constant while the oxygen gas flow was adjusted for each deposition run to obtain films with different oxygen and nitrogen contents. The physical and chemical properties of the deposited films were analyzed as a function of oxygen content in the titanium oxynitride. The potential application of the coatings in dental implantology was assessed by monitoring the proliferation and differentiation of human primary osteoblasts.

  6. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  7. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility.

    PubMed

    Kim, Hae-Won; Georgiou, George; Knowles, Jonathan C; Koh, Young-Hag; Kim, Hyoun-Ee

    2004-08-01

    Calcium phosphates (CaP) and phosphate-based glass (P-glass, xCaO-(0.55-x) Na(2)O-0.45P(2)O(5) composition) composite coatings were obtained on a strong ZrO(2) to improve biocompatibility, the mechanical strength and biological activity. Hydroxyapatite (HA) and P-glass mixed powder slurries were coated on the ZrO(2) substrate, and subsequently heat-treated to obtain CaP- and P-glass composite coatings. The effects of glass composition (x=0.3, 0.4, 0.5 mol), mixing ratio of glass to HA (30%, 40%, 50% wt/wt), and heat treatment temperature (800 degrees C, 900 degrees C, 1000 degrees C) on the coating properties were investigated. After heat treatment, additional calcium phosphates, i.e., dicalcium phosphate (DCP) and tricalcium phosphate (TCP), were crystallized, resulting in the formation of triphasic calcium phosphates (HA-TCP-DCP) surrounded by a glass phase. The relative amounts of the crystalline phases varied with coating variables. The higher heat treatment temperature and glass amount, and the lower CaO content in the glass composition rendered the composite coatings to retain the higher amounts of TCP and DCP while the initial HA decreased. These appearance of additional crystalline phases and reduction of HA amount were attributed to the combined effects, i.e., the melting-crystallization of P-glass and the reaction between glass liquid phase and HA powder during thermal treatment. As a result of the glass phase in the composite coatings, their microstructures became much denser when compared to the pure HA coating. In particular, a completely dense structure was obtained at coating conditions with large amount of glass addition (50 wt%) at the glass composition of lower CaO content (0.3 mol CaO), and the following heat treatment above 800 degrees C for 2h. As a result, the adhesion strengths of the composite coating layers were significantly improved when compared to the pure HA coating. The highest strength of the composite coating was approximately 40

  8. Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates

    PubMed Central

    Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong

    2012-01-01

    In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO2 coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings on Ti substrates might be a promising material for bone replacement. PMID:22606041

  9. Additive manufacturing of Ti-Si-N ceramic coatings on titanium

    NASA Astrophysics Data System (ADS)

    Zhang, Yanning; Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2015-08-01

    In this study, Laser Engineered Net Shaping (LENSTM) was employed towards Additive Manufacturing/3D Printing of Ti-Si-N coatings with three different Ti-Si ratios on commercially pure titanium (cp-Ti) substrate. Microstructural analysis, phase analysis using X-ray diffraction, wear resistance and hardness measurements were done on LENS™ processed 3D printed coatings. Coatings showed graded microstructures and in situ formed phases. Results showed that microstructural variations and phase changes influence coating's hardness and wear resistance directly. High hardness values were obtained from all samples' top surface where the hardness of coatings can be ranked as 90% Ti-10% Si-N coating (2093.67 ± 144 HV0.2) > 100% Ti-N coating (1846 ± 68.5 HV0.2) > 75% Ti-25% Si-N coating (1375.3 ± 61.4 HV0.2). However, wear resistance was more dependent on inherent Si content, and samples with higher Si content showed better wear resistance.

  10. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  11. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  12. Effect of heat treatment on pulsed laser deposited amorphous calcium phosphate coatings.

    PubMed

    García, F; Arias, J L; Mayor, B; Pou, J; Rehman, I; Knowles, J; Best, S; León, B; Pérez-Amor, M; Bonfield, W

    1998-01-01

    Amorphous calcium phosphate coatings were produced by pulsed laser deposition from targets of nonstoichiometric hydroxyapatite (Ca/P = 1.70) at a low substrate temperature of 300 degrees C. They were heated in air at different temperatures: 300, 450, 525 and 650 degrees C. Chemical and structural analyses of these coatings were performed using X-ray diffraction (XRD), FTIR, and SEM, XRD analysis of the as-deposited and heated coatings revealed that their crystallinity improved as heat treatment temperature increased. The main phase was apatitic, with some beta-tricalcium phosphate in the coatings heated at 525 and 600 degrees C. In the apatitic phase there was some carbonate substitution for phosphate and hydroxyl ions at 450 degrees C and almost solely for phosphate at 525 and 600 degrees C as identified by FTIR. This was accompanied by a higher hydroxyl content at 525 and 600 degrees C. At 450 degrees C a texture on the coating surface was observable by SEM that was attributable to a calcium hydroxide and calcite formation by XRD. These phases almost disappeared at 600 degrees C, probably due to a transformation into calcium oxide.

  13. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    PubMed Central

    Liang, Yongqiang; Li, Haoyan; Xu, Jiang; Li, Xin; Qi, Mengchun; Hu, Min

    2014-01-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials. PMID:24901526

  14. Morphology, composition, and bioactivity of strontium-doped brushite coatings deposited on titanium implants via electrochemical deposition.

    PubMed

    Liang, Yongqiang; Li, Haoyan; Xu, Jiang; Li, Xin; Qi, Mengchun; Hu, Min

    2014-06-04

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.

  15. Vibrational spectroscopic characterization of new calcium phosphate bioactive coatings.

    PubMed

    Taddei, P; Tinti, A; Bottura, G; Bertoluzza, A

    2000-01-01

    In this work calcium phosphate (CaP) compounds with different PO(3-)(4)/HPO(2-)(4) R molar ratios in the 0.65-149 range were synthesized. In fact, all these CaPs contain different amounts of HPO(2-)(4) and PO(3-)(4) ions as well as the amorphous precursors (tricalcium phosphate and octacalcium phosphate) of hydroxyapatite deposition, which was shown by in vitro and in vivo measurements. Spectroscopical IR and Raman results showed the presence of bands whose intensity ratio can be related to the molar ratio R; in particular, the Raman I(962)/I(987) and the IR I(1035)/I(1125) intensity ratios were characterized as markers of the molar ratio. For these CaP compounds a nucleation model, which was based on the ability of HPO(2-)(4) ions to form strong H bonds with PO(3-)(4) ions, was proposed.

  16. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    PubMed

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion.

  17. Evolution of silica coating layer on titanium surface and the effect on the bond strength between titanium and porcelain

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Ge, Chaoqun; Yin, Hengbo; Gao, Yu; Jiang, Tao; Xia, Chunlin; Wu, Gang; Wu, Zhanao

    2013-07-01

    SiO2 coating layers were uniformly anchored at the surfaces of sandblasted/pre-oxidized commercially pure titanium (CP-Ti) substrates by the chemical deposition method using Na2SiO3 as the SiO2 precursor at the pH values of 8-10 with the Na2SiO3 concentrations of 0.05-0.5 mol/L. The SiO2 coating layers were composed of small-sized SiO2 nanoparticles with the average particle sizes ranging from 18.0 to 20.5 nm. After firing porcelain (Ti-22) on SiO2-coated sandblasted/pre-oxidized CP-Ti substrates, the bond strengths of CP-Ti and porcelain ranged from 33.56 to 40.43 MPa, which were detected by the three-point flexure bend test method. In the absence of SiO2 interlayer, the bond strength of sandblasted/pre-oxidized CP-Ti and porcelain was 25.6 MPa. The bond strengths in the presence of SiO2 interlayer were higher than that in the absence of SiO2 interlayer. On the other hand, when the CP-Ti substrates were only treated by hydrochloric acid pickling, the bond strengths of SiO2-coated acid-pickled CP-Ti and porcelain ranged from 12.99 to 16.59 MPa. The chemical interaction between the SiO2 interlayers and the oxidized CP-Ti surfaces probably played an important role in increasing the bond strength of CP-Ti and porcelain.

  18. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF).

    PubMed

    Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu

    2014-08-01

    The residual stress distributions in hydroxyapatite (HAp) coating with and without mixed hydroxyapatite/titanium (HAp/Ti) bond coating on commercially pure Titanium substrate (cp-Ti) were evaluated by Raman piezo-spectroscopy analysis. The Raman shifted position 962cm(-1), which is the symmetrical stretching of surrounded oxygen atoms with phosphorous atom ( [Formula: see text] ), was referred to analyses of stress dependency. The piezo-spectroscopic coefficient, which is a Raman shift value per stress (cm(-1)/GPa), was fitted from the result of four-points bending test of rectangular HAp bar and as-sprayed HAp on Zn plate. The calculated values were 3.89cm(-1)/GPa for the former and 7.11cm(-1)/GPa for the latter. By using these calibrations, the compressive residual stress in HAp coating with HAp/Ti bond coating (HA-B) has been found to be distributed in the range of -137MPa to -75MPa. For the heat-treated HAp coating (HA-B-HT) specimen, the compressive residual stresses placed in the range of -40--22MPa. The changes in the values of residual stress of the HAp coating after immersion in SBF were also evaluated. The residual stress in HA-WB specimens tend to change from compressive to tensile after 30 days immersion. The HA-B-HT specimens exhibited similar behavior and reached to zero stress after the immersion. The mechanism of the changes in residual stress would be the effect of stress redistribution around melted calcium phosphate particles to remained HAp splats.

  19. Silver doped titanium oxide-PDMS hybrid coating inhibits Staphylococcus aureus and Staphylococcus epidermidis growth on PEEK.

    PubMed

    Tran, Nhiem; Kelley, Michael N; Tran, Phong A; Garcia, Dioscaris R; Jarrell, John D; Hayda, Roman A; Born, Christopher T

    2015-04-01

    Bacterial infection remains one of the most serious issues affecting the successful installation and retention of orthopedic implants. Many bacteria develop resistance to current antibiotics, which complicates or prevents traditional antibiotic-dependent eradication therapy. In this study, a hybrid coating of titanium dioxide and polydimethylsiloxane (PDMS) was synthesized to regulate the release of silver. The coatings were benefited from the antimicrobial activity of silver ion, the biocompatibility of titanium dioxide, and the flexibility of the polymer. Three studied silver doped coatings with different titanium dioxide-PDMS ratios effectively inhibited the attachment and growth of Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner. The coatings were successfully applied on the discs of polyether ether ketone (PEEK), a common spinal implant material and antibacterial property of these coatings was assessed via Kirby Bauer assay. More importantly, these selected coatings completely inhibited biofilm formation. The release study demonstrated that the release rate of silver from the coating depended on doping levels and also the ratios of titanium dioxide and PDMS. This result is crucial for designing coatings with desired silver release rate on PEEK materials for antimicrobial applications.

  20. Reliability performance of titanium sputter coated Ni-Ti arch wires: mechanical performance and nickel release evaluation.

    PubMed

    Anuradha, P; Varma, N K Sapna; Balakrishnan, Avinash

    2015-01-01

    The present research was aimed at developing surface coatings on NiTi archwires capable of protection against nickel release and to investigate the stability, mechanical performance and prevention of nickel release of titanium sputter coated NiTi arch wires. Coated and uncoated specimens immersed in artificial saliva were subjected to critical evaluation of parameters such as surface analysis, mechanical testing, element release, friction coefficient and adhesion of the coating. Titanium coatings exhibited high reliability on exposure even for a prolonged period of 30 days in artificial saliva. The coatings were found to be relatively stable on linear scratch test with reduced frictional coefficient compared to uncoated samples. Titanium sputtering adhered well with the Ni-Ti substrates at the molecular level, this was further confirmed by Inductive coupled plasma emission spectroscopy (ICPE) analysis which showed no dissolution of nickel in the artificial saliva. Titanium sputter coatings seem to be promising for nickel sensitive patients. The study confirmed the superior nature of the coating, evident as reduced surface roughness, friction coefficient, good adhesion and minimal hardness and elastic modulus variations in artificial saliva over a given time period.

  1. Surface modification of pure titanium by hydroxyapatite-containing composite coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Quan-Ming; Cheng, Li; Yang, Hui-Lin; Liu, Zhong-Tang; Feng, De-Hong

    2014-12-01

    Micro-arc oxidation (MAO) is commonly applied to modify the surface of titanium (Ti)-based medical implants with a bioactive and porous Ti oxide (TiO2) coating. The study reports a new method of incorporating hydroxyapatite (HA) within the TiO2 coating by MAO and alkali heat treatment (AHT) in the solution containing Ca ion and P ion. The morphology, composition and phase composition of the coatings were analyzed with scanning electron microscopy with energy-dispersive X-ray spectrometer and X-ray diffraction. Surface topography and roughness of the coatings were investigated by atomic force microscopy operated in the tapping mode. The results showed that TiO2-based coatings were obtained on pure Ti by MAO with an electrolyte containing Ca ion and P ion; the prepared MAO coatings were mainly composed of Ca, P, O and Ti. AHT transformed Ca and P to HA crystals. In conclusion, the TiO2/HA composite coatings can be obtained on the surface of pure Ti by MAO and AHT, and the addition of Ca ion and P ion to the AHT solution contributed to the formation of HA.

  2. Effect of Thickness on the Structure, Composition and Properties of Titanium Nitride Nano-Coatings

    SciTech Connect

    Martinez, Gustavo; Shutthanandan, V.; Thevuthasan, Suntharampillai; Chessa, J. F.; Ramana, C.V.

    2014-05-05

    Titanium nitride (TiNx) coatings were grown by magnetron sputtering onto Si(1 0 0) substrates by varying time of deposition to produce coatings with variable thickness (dTiN) in the range of 20-120 nm. TiNx coatings were characterized by studying their structure, composition, and mechanical properties. Nuclear reaction analysis (NRA) combined with Rutherford backscattering spectrometry (RBS) analyses indicate that the grown coatings were stoichiometric TiN. Grazing incidence X-ray diffraction (GIXRD) measurements indicate that the texturing of TiN coatings changes as a function of dTiN. The (1 1 1) and (0 0 2) peaks appear initially; (1 1 1) becomes intense while (0 0 2) disappears with increasing dTiN. Dense, columnar grain structure was evident for all the coatings in electron microscopy analyses. The residual stress for TiN coatings with dTiN~120 nm was 1.07 GPa in compression while thinner samples exhibit higher values of stress.

  3. Microstructure and Mechanical Properties of Warm-Sprayed Titanium Coating on Carbon Fiber-Reinforced Plastic

    NASA Astrophysics Data System (ADS)

    Ganesan, Amirthan; Takuma, Okada; Yamada, Motohiro; Fukumoto, Masahiro

    2016-04-01

    Polymer materials are increasingly dominating various engineering fields. Recently, polymer-based composite materials' surface performances—in particular, surface in relative motion—have been improved markedly by thermal spray coating. Despite this recent progress, the deposition of high-strength materials—producing a coating thickness of the order of more than 500 μm—remains highly challenging. In the present work, a highly dense and thick titanium coating was successfully deposited onto the carbon fiber-reinforced plastic (CFRP) substrate using a newly developed high-pressure warm spray (WS) system. The coating properties, such as hardness (300 ± 20 HV) and adhesion strength (8.1 ± 0.5 MPa), were evaluated and correlated with the microstructures of the coating. In addition, a wipe-test and in situ particle velocity and temperature measurement were performed to validate the particle deposition behavior as a function of the nitrogen flow rate in the WS system. It was found that the microstructures, deposition efficiency, and mechanical properties of the coatings were highly sensitive to nitrogen flow rates. The coating porosity increased with increasing nitrogen flow rates; however, the highest density was observed for nitrogen flow rate of 1000 standard liters per minute (SLM) samples due to the high fraction of semi-molten particles in the spray stream.

  4. Synthesis and microstructure observation of titanium carbonitride nanostructured coatings using reactive plasma spraying in atmosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; He, Jining; Yan, Dianran; Xiao, Lisong; Dong, Yanchun; Zhang, Jianxin; Liao, Hanlin

    2011-08-01

    In the present study, nanostructured titanium carbonitride (TiCN) coatings were successfully deposited by reactive plasma spraying (RPS) technology using a self-designed gas tunnel mounted on a normal plasma spray torch. The phase composition and microstructure of the TiCN coatings were characterised by XRD, SEM and TEM. The results indicated that the main phase of the coatings was FCC TiC 0.2N 0.8 with a small amount of Ti 3O. The coating that was deposited using 35 kW displayed better microstructure and properties. The coating exhibited a typical nanostructure including 90 nm diamertrical equiaxed grains and 400 nm long columnar grains by TEM images. The SEM observation further revealed that the equiaxed grains in parallel direction to the substrate surface in TEM images were actually the columnar grains perpendicular to the substrate surface. The formation mechanism of the nanostructured coatings was also discussed. The measured microhardness value of the coating was approximately 1659 Hv 100 g , and the calculated crack extension force was about 34.9 J/m 2.

  5. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility.

  6. A study of strontium doped calcium phosphate coatings on AZ31.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun E; Ohodnicki, John; Loghmanian, Autrine; Banerjee, Ipsita; Kumta, Prashant N

    2014-07-01

    Calcium phosphate (CaP) coatings have been studied to tailor the uncontrolled non-uniform corrosion of Mg based alloys while simultaneously enhancing bioactivity. The use of immersion techniques to deposit CaP coatings is attractive due to the ability of the approach to coat complex structures. In the current study, AZ31 substrates were subjected to various pretreatment conditions prior to depositing Sr(2+) doped and undoped CaP coatings. It was hypothesized that the bioactivity and corrosion protection of CaP coatings could be improved by doping with Sr(2+). Heat treatment to elevated temperatures resulted in the diffusion of alloying elements, Mg and Zn, into the pretreated layer. Sr(2+) doped and undoped CaP coatings formed on the pretreated substrates consisted of biphasic mixtures of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA). Electrochemical corrosion experiments indicated that the extent of Sr(2+) doping and pretreatment both influenced the corrosion protection. Cytotoxicity was evaluated with MC3T3-E1 mouse preosteoblasts and human mesenchymal stem cells (hMSCs). For both cell types, proliferation decreased upon increasing the Sr(2+) concentration. However, both osteogenic gene and protein expression significantly increased upon increasing Sr(2+) concentration. These results suggest that Sr(2+) doped coatings are capable of promoting osteogenic differentiation on degradable Mg alloys, while also enhancing corrosion protection, in comparison to undoped CaP coatings. PMID:24857503

  7. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection.

    PubMed

    Krishnan, Vinod; Krishnan, Anand; Remya, R; Ravikumar, K K; Nair, S Asha; Shibli, S M A; Varma, H K; Sukumaran, K; Kumar, K Jyothindra

    2011-04-01

    The present research was aimed at developing surface coatings on β titanium orthodontic archwires capable of protection against fluoride-induced corrosion. Cathodic arc physical vapor deposition PVD (CA-PVD) and magnetron sputtering were utilized to deposit thin films of titanium aluminium nitride (TiAlN) and tungsten carbide/carbon (WC/C) coatings on β titanium orthodontic archwires. Uncoated and coated specimens were immersed in a high fluoride ion concentration mouth rinse, following a specially designed cycle simulating daily use. All specimens thus obtained were subjected to critical evaluation of parameters such as electrochemical corrosion behaviour, surface analysis, mechanical testing, microstructure, element release, and toxicology. The results confirm previous research that β titanium archwires undergo a degradation process when in contact with fluoride mouth rinses. The study confirmed the superior nature of the TiAlN coating, evident as many fewer changes in properties after fluoride treatment when compared with the WC/C coating. Thus, coating with TiAlN is recommended in order to reduce the corrosive effects of fluorides on β titanium orthodontic archwires. PMID:21111072

  8. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    PubMed

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  9. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    PubMed

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The

  10. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  11. Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy's bio-tribological properties and corrosion resistance.

    PubMed

    Sak, Anita; Moskalewicz, Tomasz; Zimowski, Sławomir; Cieniek, Łukasz; Dubiel, Beata; Radziszewska, Agnieszka; Kot, Marcin; Łukaszczyk, Alicja

    2016-06-01

    Polyetheretherketone (PEEK) coatings of 70-90μm thick were electrophoretically deposited from a suspension of PEEK powder in ethanol on near-β Ti-13Nb-13Zr titanium alloy. In order to produce good quality coatings, the composition of the suspension (pH) and optimized deposition parameters (applied voltage and time) were experimentally selected. The as-deposited coatings exhibited the uniform distribution of PEEK powders on the substrate. The subsequent annealing at a temperature above the PEEK melting point enabled homogeneous, semi-crystalline coatings with spherulitic morphology to be produced. A micro-scratch test showed that the coatings exhibited very good adhesion to the titanium alloy substrate. Coating delamination was not observed even up to a maximal load of 30N. The PEEK coatings significantly improved the tribological properties of the Ti-13Nb-13Zr alloy. The coefficient of friction was reduced from 0.55 for an uncoated alloy to 0.40 and 0.12 for a coated alloy in a dry sliding and sliding in Ringer's solution, respectively. The PEEK coatings exhibited excellent wear resistance in both contact conditions. Their wear rate was more than 200 times smaller compared with the wear rate of the uncoated Ti-13Nb-13Zr alloy. The obtained results indicate that electrophoretically deposited PEEK coatings on the near-β titanium alloy exhibit very useful properties for their prospective tribological applications in medicine. PMID:27040195

  12. Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment.

    PubMed

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; Zhao, Xing-Chuan; He, Kun; Yuan, Y F; Li, Ying; Ma, Xiao-Ni

    2014-09-01

    Plasma electrolytic oxidation (PEO) is one of the most applicable methods to produce bioceramic coating on a dental implant and sandblasting is a primary technique to modify metal surface properties. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by PEO technique to improve its bioactive performance. The time-dependent modified surfaces are characterized in terms of their microstructure, phase, chemical composition, mechanical properties and bioactivities. The results show that the combination-treated coating exhibits better properties than the PEO-treated one, especially in bioactivities, as evidenced by the HA formation after immersion in simulated body fluid (SBF) for 5 days and the cell viability after seeding for 1 or 3 days. The enhancement of the modified surface is attributed to a combination of the mechanical sandblasting and the microplasma oxidation.

  13. High-Strength Submicrocrystalline (α + β)-Titanium Alloys With a Nanocomposite Antifriction Coating

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Tabachenko, A. N.; Savostikov, V. M.; Dudarev, E. F.; Bakach, G. P.; Skosyrskii, A. B.

    2014-06-01

    The experimental data on mechanical and tribotechnical properties of coarse-grained and submicrocrystalline titanium alloys under conditions of dry friction are presented, including those with modified chemical and phase composition of friction surfaces. It is shown that synthesis of a heterophase coating on either of grain structures, which contains sulfides, carbides and an amorphous phase, allows the friction coefficient to be decreased by a factor of ten and simultaneously achieve a considerable decrease in the wear rate. A method is proposed for forming a low-temperature, ion-plasma coating, which would ensure high adhesion of the coating to the substrate and preserve its initial structural-phase state and mechanical properties.

  14. Mixed-mode retention of peptides on phosphate-modified polybutadiene-coated zirconia.

    PubMed

    Sun, L; Carr, P W

    1995-08-01

    Zirconia HPLC packing materials were found to be potentially advantageous for large-scale protein separations due to their excellent pH stability and mechanical stability. However, Lewis acid sites on zirconia's surface cause irreversible adsorption of proteins due to their interactions with hard Lewis bases such as the carboxyl groups in proteins. Although the Lewis acid sites can be effectively blocked by adsorbing phosphate ions onto zirconia's surface, proteins and peptides cannot be eluted using a typical reversed-phase mobile phase. In this work, we found that the separation of peptides on a phosphate-modified polybutadiene-coated zirconia (PBD-ZrO2) can be brought about by using a mobile phase containing both an organic modifier and a high concentration of sodium perchlorate. The salt is needed to cancel the Coulombic interactions between the negatively charged stationary phase and the positively charged proteins. To understand the retention mechanism of proteins and peptides on phosphate-modified PBD-ZrO2, this work was aimed at the study of the surface characteristics of the phosphate-modified PBD-ZrO2. We found that the phosphate-modified PBD-ZrO2 phase has both reversed-phase and cation-exchange characteristics under the acidic mobile-phase conditions used for protein and peptide separations. The PBD coating provides hydrophobic moieties, and the phosphate ions adsorbed on zirconia's surface provide cation-exchange sites. Reversed-phase separation of a peptide standard mixture and cation-exchange separation of a cationic peptide standard mixture on the same phosphate-modified PBD-ZrO2 column shows excellent column resolution in both modes. Although mixed-mode stationary phases provide unique selectivity, the secondary equilibrium on phosphate-modified PBD-ZrO2 can cause peak broadening. Applications of the phosphate-modified PBD-ZrO2 to peptide separations are demonstrated here. PMID:8849022

  15. Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy.

    PubMed

    Cui, W F; Jin, L; Zhou, L

    2013-10-01

    A porous bioactive titania coating on biomedical β titanium alloy was prepared by pre-anodization followed by micro arc oxidation technology. The effects of pre-anodization on the phase constituent, morphology and electrochemical corrosion behavior of the microarc oxidation coating were investigated. The results show that pre-anodization has less influence on the phase constituent and the surface morphology of the microarc oxidation coating, but improves the inner layer density of the microarc oxidation coating. The decrease of plasma discharge strength due to the presence of the pre-anodized oxide film contributes to the formation of the compact inner layer. The pre-anodized microarc oxidation coating effectively inhibits the penetration of the electrolyte in 0.9% NaCl solution and thus increases the corrosion resistance of the coated titanium alloy in physiological solution.

  16. Preparation and in vitro evaluation of plasma-sprayed Mg(2)SiO(4) coating on titanium alloy.

    PubMed

    Xie, Youtao; Zhai, Wanyin; Chen, Lei; Chang, Jiang; Zheng, Xuebin; Ding, Chuanxian

    2009-07-01

    In this paper, chemically synthesized Mg(2)SiO(4) (MS) powder was plasma-sprayed onto a titanium alloy substrate to evaluate its application potentials in biomedicine. The phase composition and surface morphology of the MS coating were analyzed. Results showed that the MS coating was composed mainly of Mg(2)SiO(4) phase, with a small amount of MgO and glass phases. Mechanical testing showed that the coating exhibited good adhesion strength to the substrate due to the close thermal expansion coefficient between the MS ceramic and the titanium alloy substrate. The measured bonding strength was as high as 41.5+/-5.3MPa, which is much higher than the traditional HA coating. In vitro cytocompatibility evaluation of the MS coating was performed using canine bone marrow stem cells (MSCs). The MSCs exhibited good adhesion, proliferation and differentiation behavior on the MS coating surface, which can be explained by the high protein adsorption capability of the MS coating, as well as the stimulatory effects of Mg and Si ions released from the coating. The proliferation rate of the MSCs on MS coating was very close to that on the hydroxylapatite (HA) coating. Alkaline phosphatase (ALP) activity analysis demonstrated that the ALP level of the MSCs on the MS coating remained high even after 21days, implying that the surface characteristics of the coating are beneficial for the differentiation of MSCs. In summary, our results suggest that MS coating might be a new approach to prepare bone implants.

  17. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

    SciTech Connect

    McLaughlin, Mark F; Woodward, Jonathan; Boll, Rose Ann; Wall, Jonathan; Rondinone, Adam Justin; Kennel, Steve J; Mirzadeh, Saed; Robertson, David J.

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo generators such as 225Ac, which emits four particles in its decay chain, can significantly amplify the radiation dose delivered to the target site. However, renal dose from unbound 213Bi escaping during the decay process limits the dose of 225Ac that can be administered. Traditional chelating moieties are unable to sequester the radioactive daughters because of the high recoil energy from alpha particle emission. To counter this, we demonstrate that an engineered multilayered nanoparticle-antibody conjugate can both deliver radiation and contain the decay daughters of the in vivo -generator 225Ac while targeting biologically relevant receptors. These multi-shell nanoparticles combine the radiation resistance of crystalline lanthanide phosphate to encapsulate and contain 225Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established surface chemistry of gold for attachment of nanoparticles to targeting antibodies.

  18. [Effect of Zinc Doped Calcium Phosphate Coating on Bone Formation and the Underlying Biological Mechanism].

    PubMed

    Luo, Wenjing; Zhao, Jinghui; Meng, Xing; Ma, Shanshan; Sun, Qianyue; Guo, Tianqi; Wang, Yufeng; Zhou, Yanmin

    2015-12-01

    Implant surface modified coating can improve its osteoinductivity, about which simple calcium phosphate coating has been extensively studied. But it has slow osteointegration speed and poor antibacterial property, while other metal ions added, such as nano zinc ion, can compensate for these deficiencies. This paper describes the incorporation form, the effect on physical and chemical properties of the material and the antibacterial property of nano zinc, and summarizes the material's biological property given by calcium ion, zinc ion and inorganic phosphate (Pi), mainly focusing on the influence of these three inorganic ions on osteoblast proliferation, differentiation, protein synthesis and matrix mineralization in order to present the positive function of zinc doped calcium phosphate in the field of bone formation.

  19. Staphylococcus aureus resistance on titanium coated with multivalent PEGylated-peptides

    PubMed Central

    Khoo, Xiaojuan; O’Toole, George A.; Nair, Shrikumar A.; Snyder, Brian D.; Kenan, Daniel J.; Grinstaff, Mark W.

    2013-01-01

    Bacterial infections can have adverse effects on the efficacy, lifetime and safety of an implanted device and are the second most commonly attributed cause of orthopedic implant failure. We have previously shown the assembly of PEGylated titanium-binding peptides (TBPs) on Ti to obtain a bacteriophobic surface coating that can effectively resist protein adsorption and Staphylococcus aureus (S. aureus) adhesion. In the present study, we examine the effect of multiple TBP repeats on coating performance in vitro. Mono, di, and tetravalent peptides were synthesized and assessed for binding affinity and serum stability. PEGylated analogs were prepared and evaluated for their effect on S. aureus attachment and biofilm formation. Coating performance improved with the number of TBP repeats, with the tetravalent coating, TBP4–PEG, showing the best performance in all assays. In particular, TBP4–PEG forms a serum-resistant surface coating capable of preventing S. aureus colonization and subsequent biofilm formation. These results further support the role that multivalency can play in the development of improved surface coatings with enhanced stabilities and efficacy for in vivo clinical use. PMID:20863561

  20. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring

    PubMed Central

    Weder, Markus; Hegemann, Dirk; Amberg, Martin; Hess, Markus; Boesel, Luciano F.; Abächerli, Roger; Meyer, Veronika R.; Rossi, René M.

    2015-01-01

    For the long-time monitoring of electrocardiograms, electrodes must be skin-friendly and non-irritating, but in addition they must deliver leads without artifacts even if the skin is dry and the body is moving. Today's adhesive conducting gel electrodes are not suitable for such applications. We have developed an embroidered textile electrode from polyethylene terephthalate yarn which is plasma-coated with silver for electrical conductivity and with an ultra-thin titanium layer on top for passivation. Two of these electrodes are embedded into a breast belt. They are moisturized with a very low amount of water vapor from an integrated reservoir. The combination of silver, titanium and water vapor results in an excellent electrode chemistry. With this belt the long-time monitoring of electrocardiography (ECG) is possible at rest as well as when the patient is moving. PMID:25599424

  1. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  2. Bacterial adhesion on titanium nitride-coated and uncoated implants: an in vivo human study.

    PubMed

    Scarano, Antonio; Piattelli, Maurizio; Vrespa, Giuseppe; Caputi, Sergio; Piattelli, Adriano

    2003-01-01

    Titanium nitride (TiN) has been used in many fields as a surgical instrument coating that makes the surgical materials more resistant to wear and corrosion. The aim of the present study was an in vivo evaluation of the bacterial adhesion to TiN-coated (test) and uncoated (control) titanium implants. Six patients aged between 21 and 25 years and in excellent systemic health participated in the study. All of the participants gave their informed consent. The participants were selected on the basis of good periodontal health and no signs of mouth breathing. In each of the 6 participants, a removable acrylic device was adapted to the molar-premolar region of each quadrant of the jaws. One 4 x 13 mm titanium implant was glued to the buccal aspect of each device. The plasma spray covered 11.5 mm of the body of the implant, whereas the neck was machined titanium. Test implants were glued to the right devices and control implants were glued to the left devices. After 24 hours, the implants were removed from each device and processed for scanning electron microscopy for evaluation of the machined portion of the implant covered by bacteria. A total of 24 implants were used in this study, 12 test and 12 control. Surface characterization of the machined portion of the neck of the implant was performed on an additional 10 implants (5 test and 5 control). On test implants the implant surface covered by bacteria was significantly lower compared with that of control implants (P = .0001). The surface roughness was similar in both groups. TiN surfaces showed a significant reduction of the presence of bacteria, and this fact could probably be important in the decrease of the inflammation of the peri-implant soft tissues.

  3. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation.

    PubMed

    Hirota, Makoto; Hayakawa, Tohru; Shima, Takaki; Ametani, Akihiro; Tohnai, Iwai

    2015-04-01

    We compared osteoblast and osteoclast differentiation when using beta-tricalcium phosphate (βTCP) and titanium scaffolds by investigating human mesenchymal stem cells (hMSCs) and osteoclast progenitor cell activities. hMSCs were cultured for 7, 14, and 21days on titanium scaffolds with 60%, 73%, and 87% porosity and on βTCP scaffolds with 60% and 75% porosity. Human osteoclast progenitor cells were cultured with osteoblast for 14 and 21days on 87% titanium and 75% βTCP scaffolds. Viable cell numbers with 60% and 73% titanium were higher than with 87% titanium and βTCP scaffolds (P<0.05). An 87% titanium scaffold resulted in the highest osteocalcin production with calcification on day 14 (P<0.01) in titanium scaffolds. All titanium scaffolds resulted in higher osteocalcin production on days 7 and 14 compared to βTCP scaffolds (P<0.01). Osteoblasts cultured on 87% titanium scaffolds suppressed osteoclast differentiation on day 7 but enhanced osteoclast differentiation on day 14 compared to 75% βTCP scaffolds (P<0.01). These findings concluded that high porosity titanium scaffolds could enhance progression of hMSC/osteoblast differentiation and regulated osteoclast differentiation cooperating with osteoblast differentiation for calcification as compared with lower porous βTCP.

  4. Nanostructured Al{sub 2}O{sub 3}-TiO{sub 2} coatings for high-temperature protection of titanium alloy during ablation

    SciTech Connect

    Li Chonggui; Wang You; Tian Wei; Yang Yong

    2010-08-15

    Plasma-sprayed nanostructured Al{sub 2}O{sub 3}-13 wt.%TiO{sub 2} coatings were successfully fabricated on titanium alloys (Ti-6Al-4V) using as-prepared feedstock. Ablation experiments for the titanium alloy samples with or without a coating were carried out using a Metco 9MB plasma gun. The microstructure, phase constituents and mechanical properties of the titanium alloys before and after ablation were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD) and Vickers hardness tester. The surface morphologies, cross-sectional microstructure and hardness of titanium alloys with coatings are similar before and after ablation. In contrast, the microstructure and mechanical properties of the titanium alloy without coating are significantly changed after ablation. The surface coating is found to serve as a protective coating during ablation.

  5. The effect of silica-containing binders on the titanium/face coat reaction

    SciTech Connect

    Frueh, C.; Poirier, D.R.; Maguire, M.C.

    1996-11-01

    The interactions of CP-Ti and Ti-6Al-4V with investment molds containing alumina/silica and yttria/silica face coat systems were studied. Containerless melting in a vacuum was employed and small test samples were made by drop casting into the molds. The effects of the face coat material and mold preheat temperatures on the thickness of the alpha case on the castings were evaluated with microhardness and microprobe measurements. It was found that the thickness of the alpha case was the same, whether a yttria/silica or alumina/silica face coat was used, indicating that the silica binder reacted with the titanium. Hence, the use of expensive refractories, such as yttria, represents an unnecessary cost when combined with a silica binder. It was also found that the alloyed titanium castings had a thinner alpha case than those produced from CP-Ti, which suggests that the thickness of the alpha case depends on the crystal structure of the alloy during cooling from high temperatures. Furthermore, castings made in small yttria crucibles used as molds exhibited little or no alpha case.

  6. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL.

    PubMed

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-06-10

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating.

  7. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL.

    PubMed

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  8. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    PubMed Central

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  9. Development of nano TiO2-incorporated phosphate coatings on hot dip zinc surface for good paintability and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Shibli, S. M. A.; Chacko, Francis

    2011-01-01

    Phosphating is one of the most important chemical conversion processes for the purpose of corrosion protection and primer for painting. In the present work, nano TiO2 incorporated phosphate coating was developed on hot dip galvanized zinc surface for achieving good paintability and corrosion resistance. Based on the results from preliminary studies, the amount of nano TiO2 incorporated into the phosphating bath was optimized as 0.1 g. TiO2 incorporation effectively reduced the extent of zinc dissolution during phosphating and activated the process to achieve the expected coating weight faster. Also it yielded coating with greater thickness than the normal phosphate coating. The TiO2 incorporation resulted in a well crystallized phosphate coating with large crystal size and greater surface coverage. Results from the electrochemical analysis revealed the better barrier protection characteristics and enhanced corrosion resistance of TiO2 incorporated phosphate coatings over the normal phosphate coatings.

  10. X-Ray photoelectron spectroscopy study of radiofrequency-sputtered titanium, carbide, molybdenum carbide, and titanium boride coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1977-01-01

    Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.

  11. Clinical and microbiological findings on newly inserted hydroxyapatite-coated and pure titanium human dental implants.

    PubMed

    Rams, T E; Roberts, T W; Feik, D; Molzan, A K; Slots, J

    1991-01-01

    The clinical and microbiologic features of 30 hydroxyapatite-coated root-form endosseous dental implants (Tri-Stage) were compared to 10 similar pure titanium implants without hydroxyapatite coatings. In 7 of 9 partially edentulous patients studied, pure titanium fixtures were placed adjacent to hydroxyapatite-coated implants. Implants in the maxilla were submerged beneath mucosal tissues after implant placement for a minimum of 6 months, and in the mandible for at least 4 months. All patients were prescribed short-term beta-lactam antibiotic therapy after fixture placement, and 8 of 9 used chlorhexidine mouthrinses after fixture exposure. Clinical and microbiological examination was carried out 7-10 months after fixed prosthetic loading of the implants. Clinical measurements included the gingival index, plaque index, bleeding on probing and peri-implant probing depths determined with the Florida Probe system. Subgingival microbial samples were collected with paper points and transported in VMGA III. Specimens were examined by direct phase-contrast microscopy and were plated onto nonselective and selective culture media for anaerobic and aerobic incubation. No significant mean clinical or microbiological differences were found between the implant types, although one hydroxyapatite-coated implant exhibited deep probing depths, bleeding on probing and marked radiographic crestal bone loss. Streptococcus sanguis and Streptococcus mitis were the most predominant organisms recovered from clinically stable implants, whereas high proportions of Fusobacterium species and Peptostreptococcus prevotii were isolated from the ailing hydroxyapatite-coated implant. One or more implants in 8 of the study subjects yielded enteric rods, pseudomonads, enterococci or staphylococci. The prognosis of implants with varying early microbiotas needs to be established in longitudinal studies. PMID:1843465

  12. Corrosion of phosphate-enriched titanium oxide surface dental implants (TiUnite) under in vitro inflammatory and hyperglycemic conditions.

    PubMed

    Messer, Regina L W; Seta, Francesca; Mickalonis, John; Brown, Yolanda; Lewis, Jill B; Wataha, John C

    2010-02-01

    Endosseous dental implants use is increasing in patients with systemic conditions that compromise wound healing. Manufacturers recently have redesigned implants to ensure more reliable and faster osseointegration. One design strategy has been to create a porous phosphate-enriched titanium oxide (TiUnite) surface to increase surface area and enhance interactions with bone. In the current study, the corrosion properties of TiUnite implants were studied in cultures of monocytic cells and solutions simulating inflammatory and hyperglycemic conditions. Furthermore, to investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties, the enhanced surface implants as well as machined titanium implants were placed into human cadaver mandibular bone, the bone removed, and the corrosion properties measured. Implant corrosion behavior was characterized by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy. In selected samples, THP1 cells were activated with lipopolysaccharide prior to implant exposure to simulate an inflammatory environment. No significant differences in corrosion potentials were measured between the TiUnite implants and the machined titanium implants in previous studies. TiUnite implants exhibited lower corrosion rates in all simulated conditions than observed in PBS, and EIS measurements revealed two time constants which shifted with protein-containing electrolytes. In addition, the TiUnite implants displayed a significantly lower corrosion rate than the machined titanium implants after placement into bone. The current study suggests that the corrosion risk of the enhanced oxide implant is lower than its machined surface titanium implant counterpart under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone.

  13. Possibilities of surface coating for thermal insulation. [zirconium dioxide, titanium dioxide, and zircon coatings

    NASA Technical Reports Server (NTRS)

    Poeschel, E.; Weisser, G.

    1979-01-01

    Calculations performed for pulsating heat sources indicate a relatively thin (200-1000 micron) coating can lower temperature both inside and on the surface of a construction material. Various coating materials (including zirconium dioxide) are discussed, together with possible thermic stresses and ways to deal with the latter.

  14. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    NASA Astrophysics Data System (ADS)

    Lindahl, Carl; Xia, Wei; Engqvist, Håkan; Snis, Anders; Lausmaa, Jukka; Palmquist, Anders

    2015-10-01

    The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca2+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300-500 nm. Cross-section imaging showed a thickness of 300-500 nm. In addition, dissolution tests in Tris-HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  15. Optical and environmentally protective coatings for potassium dihydrogen phosphate (KDP) harmonic converter crystals

    SciTech Connect

    Thomas, I.M.

    1991-06-24

    Potassium dihydrogen phosphate (KDP) crystals have been used as harmonic converters on the Nova laser at LLNL for over six years. All crystals were coated with a single layer, quarterwave AR coating of porous silica with a refractive index of 1.22. This was prepared by a sol-gel process and was applied from a colloidal suspension by spin coating at room temperature. A few crystals were also coated with a methyl silicone coating prior to the application of the AR coating for environmental protection. The initial optical performance of all crystals was very good but there has been some deterioration over the years because of environmental and laser damage degradation. The deterioration in the silicone samples was, however, much less than the others. We are now in the process of replacing all ten KDP arrays with new crystals and will apply the silicone undercoat to all samples. Recently we have been evaluating a new perfluorinated organic polymer coating which has a refractive index of 1.29. This material is soluble in fluorinated solvents and can be applied by dip coating from solution at room temperature. We hope that this can provide environmental protection when applied to KDP and also act as an AR coating at the same time. The optical performance is not as good as our porous silica because of the higher index; about 0.3% reflection per surface is obtained. 4 refs., 10 figs., 1 tab.

  16. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

    PubMed Central

    McLaughlin, Mark F.; Woodward, Jonathan; Boll, Rose A.; Wall, Jonathan S.; Rondinone, Adam J.; Kennel, Stephen J.; Mirzadeh, Saed; Robertson, J. David

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo α-generator targeted radiotherapies can deliver multiple α particles to a receptor site dramatically amplifying the radiation dose delivered to the target. The major challenge with α-generator radiotherapies is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-target tissue. The recoil energy of the 225Ac daughters following α decay will sever any metal-ligand bond used to form the bioconjugate. This work demonstrates that an engineered multilayered nanoparticle-antibody conjugate can deliver multiple α radiations and contain the decay daughters of 225Ac while targeting biologically relevant receptors in a female BALB/c mouse model. These multi-shell nanoparticles combine the radiation resistance of lanthanide phosphate to contain 225Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established gold chemistry for attachment of targeting moieties. PMID:23349921

  17. Poly(ethylene glycol) and hydroxy functionalized alkane phosphate mixed self-assembled monolayers to control nonspecific adsorption of proteins on titanium oxide surfaces.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Tanzi, Maria Cristina; Zürcher, Stefan; Tosatti, Samuele

    2010-05-01

    The spontaneous formation of alkane phosphate self-assembled monolayers (SAMs) on titanium oxide was chosen as a tool to tailor the surface physicochemical properties in terms of nonspecific adsorption of proteins. For this aim, poly(ethylene glycol)-modified (PEG) alkane phosphate was codeposited with OH-terminated alkane phosphates. X-ray photoelectron spectroscopy and ellipsometry of the resulting mixed SAMs indicate that the PEG density can be controlled by varying the mole fraction of PEG-terminated phosphates in the solutions used during the deposition process, leading to surfaces with different degrees of protein resistance.

  18. Selected fretting-wear-resistant coatings for titanium - 6-percent-aluminum - 4-percent-vanadium alloy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1976-01-01

    A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface.

  19. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Xiaohong; Zhang, Xiangyu; Wu, Haibo; Tian, Linhai; Ma, Yong; Tang, Bin

    2014-02-01

    Infection associated with titanium implants remains the most common serious complication after surgery. In this work, Cu-doped antibacterial TiO2 coating was synthesized by micro-arc oxidation of titanium in an electrolyte bearing Cu nanoparticles. Surface morphology and structure of the coating were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated that Cu nanoparticles were not only distributed on the surface and inside the pores but also embedded in the coating. Cu mainly exists in the Cu2+ state in the TiO2 coating. The Cu-doped coating exhibited excellent antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).

  20. Effect of Poly-L-Lysine coating on titanium osseointegration: from characterization to in vivo studies.

    PubMed

    Varoni, Elena; Canciani, Elena; Palazzo, Barbara; Varasano, Vincenzo; Chevallier, Pascale; Petrizzi, Lucio; Dellavia, Claudia; Mantovani, Diego; Rimondini, Lia

    2015-12-01

    Dental implant prostheses cannot preclude a correct and stable implant osseointegration, which is still a challenge and greatly depends on biomaterial-cell interface. Titanium (Ti) coating using polyelectrolyte poly-L-lysine (PLL) may represent an interesting and simple approach, to provide a charged surface net able to improve cell adherence. However, in vitro and in vivo effects of Ti coated with PLL have been poorly investigated. The aims of the present study are (1) to obtain and characterize, chemically and physically, Ti disks coated with PLL (TiPLL); (2) to perform in vitro studies on osteoblast cell lines' cytocompatibility and functionality (alkaline phosphatase [ALP] activity, calcium deposition, proinflammatory interleukin 6 production); (3) to obtain in vivo evidence of osseointegration, using a sheep animal model. XPS, AFM, and contact-angle analyses demonstrated that the Ti disk was successfully covered with PLL, providing higher hydrophilicity to the Ti disk. No cellular toxicity, enhanced calcium deposition, and a decreased tendency toward interleukin-6 production were observed in the osteoblast seeded onto TiPLL. In vivo experiments showed cortical bone microhardness at 3 months significantly improved in the presence of the PLL coating. PLL coating on Ti implants seemed to safely enhance calcium deposition and implant early osseointegration in animals, suggesting promising evidence to optimize the surface properties of dental implants.

  1. Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability

    NASA Astrophysics Data System (ADS)

    Marimuthu, Mohana; Veerapandian, Murugan; Ramasundaram, Subramaniyan; Hong, Seok Won; Sudhagar, P.; Nagarajan, Srinivasan; Raman, V.; Ito, Eisuke; Kim, Sanghyo; Yun, Kyusik; Kang, Yong Soo

    2014-02-01

    Surface functionalization is an important process that has been adopted to well explore the applications of nanomaterials. In this context, we demonstrate the sodium functionalized graphene oxide (NaGO) as an excellent candidate for increasing the life time of titanium (Ti) based ortho-implants. As-prepared aqueous dispersion of NaGO was used to assemble NaGO sheets on commercially pure Ti (CpTi) plates by heat controlled spin coating. The resulting wrinkled NaGO sheets play a dual role in implant material, i.e., passive layer against corrosion and biocompatible scaffold for cell viability. The preparation, physicochemical properties, and biocompatibility of NaGO coatings formed on CpTi were reported. The electrochemical polarization studies demonstrate the relative susceptibility of control GO and NaGO coatings to corrosion, which outline that the NaGO coating act as a geometric blocking layer and hence prevent the implant surface from contacting corrosive media. The immunofluorescence and cell proliferation studies performed using human dermal fibroblasts cells showed that NaGO coatings significantly (P < 0.05) enhanced the cellular viability for longer in vitro culture period (15 days) than control GO and pristine CpTi.

  2. Investigation of phosphate removal using sulphate-coated zeolite for ion exchange.

    PubMed

    Choi, Jae-Woo; Hong, Seok-Won; Kim, Dong-Ju; Lee, Sang-Hyup

    2012-01-01

    Sulphate-coated zeolite (SCZ) was characterized and employed for the removal of phosphate from aqueous solutions using both batch and column tests. Batch experiments were conducted to assess the sulphate dilution ratio, reaction time for coating, surface washing and calcination temperature during the synthesis of SCZ. Langmuir isotherm and pseudo-first-order models were suitable to explain the sorption characteristics of phosphate onto the SCZ. Equilibrium tests showed that SCZ was capable of removing phosphate, with a maximum binding energy beta = 30.2 mg g(-1), compared to other adsorbents, such as activated alumina and ion exchange resin. The Thomas model was applied to the adsorption of phosphate to predict the breakthrough curves and the parameters of a column test. The model was found to be suitable for describing the adsorption process of the dynamic behaviour of the SCZ column. The total adsorbed quantity and equilibrium uptake ofphosphate related to the effluent volumes were determined by evaluating the breakthrough curves obtained under the allowed conditions. The results of batch and column experiments, as well as the low cost of the adsorbent, suggested that SCZ could be used as an adsorbent for the efficient and cost-effective removal of phosphate from aqueous solution.

  3. Tribological properties of adaptive phosphate composite coatings with addition of silver and molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Liu, Cancan; Chen, Lei; Zhou, Jiansong; Zhou, Huidi; Chen, Jianmin

    2014-05-01

    Adaptive phosphate composite coatings with addition of solid lubricants of molybdenum disulfide (MoS2) and silver (Ag) using aluminum chromium phosphate as the binder were fabricated on high-temperature steel. The tribological properties of phosphate composite coatings were evaluated from room temperature (RT) to 700 °C. The phase composition and microstructure were investigated according to the characterization by power X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The results show that the composite coating with the Ag/MoS2 mass ratio of 2:1 exhibits the stable and low friction coefficients from RT to 700 °C and relative low wear rates at all testing temperatures. The tribo-chemical reaction between Ag and MoS2 occurred in the rubbing process to form silver molybdates compounds lubricating film. The temperature-adaptive tribological properties were attributed to the formation of lubricating films composed of lubricants silver, MoS2 and silver molybdates phases on the worn surfaces of the composites coatings in a wide-temperature range.

  4. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications.

    PubMed

    Sivakumar, Bose; Singh, Raghuvir; Pathak, Lokesh Chandra

    2015-03-01

    The boriding of commercially pure titanium was performed at 850°C, 910°C, and 1050°C for varied soaking periods (1, 3 and 5h) to enhance the surface properties desirable for bioimplant applications. The coating developed was characterized for the evolution of phases, microstructure and morphology, microhardness, and consequent corrosion behavior in the Ringer's solution. Formation of the TiB2 layer at the outermost surface followed by the TiB whiskers across the borided CpTi is unveiled. Total thickness of the composite layer on the substrates borided at 850, 910, and 1050°C for 5h was found to be 19.1, 26.4, and 18.2μm respectively which includes <3μm thick TiB2 layer. The presence of TiB2 phase was attributed to the high hardness ~2968Hv15gf of the composite coating. The anodic polarization studies in the simulated body fluid unveiled a reduction in the pitting corrosion resistance after boriding the CpTi specimens. However, this value is >0.55VSCE (electrochemical potential in in-vivo physiological environment) and hence remains within the safe region. Both the untreated and borided CpTi specimens show two passive zones associated with different passivation current densities. Among the CpTi borided at various times and temperatures, a 3h treated shows better corrosion resistance. The corrosion of borided CpTi occurred through the dissolution of TiB2. PMID:25579920

  5. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications.

    PubMed

    Sivakumar, Bose; Singh, Raghuvir; Pathak, Lokesh Chandra

    2015-03-01

    The boriding of commercially pure titanium was performed at 850°C, 910°C, and 1050°C for varied soaking periods (1, 3 and 5h) to enhance the surface properties desirable for bioimplant applications. The coating developed was characterized for the evolution of phases, microstructure and morphology, microhardness, and consequent corrosion behavior in the Ringer's solution. Formation of the TiB2 layer at the outermost surface followed by the TiB whiskers across the borided CpTi is unveiled. Total thickness of the composite layer on the substrates borided at 850, 910, and 1050°C for 5h was found to be 19.1, 26.4, and 18.2μm respectively which includes <3μm thick TiB2 layer. The presence of TiB2 phase was attributed to the high hardness ~2968Hv15gf of the composite coating. The anodic polarization studies in the simulated body fluid unveiled a reduction in the pitting corrosion resistance after boriding the CpTi specimens. However, this value is >0.55VSCE (electrochemical potential in in-vivo physiological environment) and hence remains within the safe region. Both the untreated and borided CpTi specimens show two passive zones associated with different passivation current densities. Among the CpTi borided at various times and temperatures, a 3h treated shows better corrosion resistance. The corrosion of borided CpTi occurred through the dissolution of TiB2.

  6. Regeneration of titanium oxide nano-coated long-period grating biosensor

    NASA Astrophysics Data System (ADS)

    Dominik, M.; Niedziółka-Jönsson, J.; Roźniecka, E.; Wachnicki, Ł.; Godlewski, M.; Mikulic, P.; Bock, Wojtek J.; Śmietana, M.

    2016-05-01

    This work presents an application of sodium hydroxide (NaOH) as an effective method for regeneration of titanium oxide (TiOx) nano-coated long-period grating (LPG) biosensor. Below 100 nm in thickness TiOx coating was deposited with atomic layer deposition (ALD) method on LPGs for enhancing their refractive index sensitivity up to 2912 nm/RIU in RI range 1.33-1.36 RIU. Next, the sensors were biofunctionalized in order to immobilize receptor (biotin) on their surface and used for selective avidin detection. After successful biofunctionalization process and avidin detection the sensors were washed in NaOH and biofunctionalized again. The proposed method for recovering the sensor does not cause decrease in its functional properties. As a result of the applied procedure the biosensor was fully regenerated.

  7. Interfacial reaction kinetics of coated SiC fibers with various titanium alloys

    NASA Technical Reports Server (NTRS)

    Gundel, D. B.; Wawner, F. E.

    1991-01-01

    The kinetics of the reaction between the silicon carbide fibers and the titanium-based alloy matrix was investigated at temperatures from 800 to 1000 C for several titanium-based alloys (including Ti-1100 alloy and BETA 21S) and unalloyed Ti, reinforced with coated silicon carbide fiber SCS-6. The reaction zone growth kinetics was studied by exposing vacuum encapsulated samples to temperatures from 700 to 1000 C for times up to 150 hrs, followed by SAM observations of samples which were polished perpendicular to the fiber axis and etched. It was found that the reaction zone growth kinetics of the alpha (hcp) and beta (bcc) phases of unalloyed titanium reacting with SCS-6 fibers exhibited different values of the apparent activation energy and of the preexponential factor. Additions of other metals to Ti was found to slow down the reaction kinetics. Among the alloys studied, the Ti-1100 was the slowest reacting conventional alloy and the Ti-14Al-21Nb (in wt pct) was the slowest overall.

  8. Biodegradation performance of a chitosan coated magnesium-zinc-tricalcium phosphate composite as an implant.

    PubMed

    Zhao, Jun; Chen, Liangjian; Yu, Kun; Chen, Chang; Dai, Yilong; Qiao, Xueyan; Yan, Yang

    2014-09-01

    A Mg-Zn-tricalcium phosphate composite with a chitosan coating was prepared in this investigation to study its biodegradation performance both in vitro and in vivo conditions. The in vitro test results show that the immersion corrosion rate, the pH values of the simulated body fluids and the released metal ion concentration of the chitosan coated composite are all lower than those of the uncoated composite. The in vitro cytotoxicity test shows that the chitosan coated specimens is safe for cellular applications. When the chitosan coated composite is tested in vivo, the concentration of metal ions from the composite observed in the venous blood of Zelanian rabbits is less than the uncoated composite specimens. The chitosan coating slows down the in vivo degradation of the composite after surgery. In vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys, and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. The chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed.

  9. Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO₂ coatings.

    PubMed

    Lorenzetti, Martina; Dakischew, Olga; Trinkaus, Katja; Lips, Katrin Susanne; Schnettler, Reinhard; Kobe, Spomenka; Novak, Saša

    2015-07-01

    Even though Ti-based implants are the most used materials for hard tissue replacement, they may present lack of osseointegration on the long term, due to their inertness. Hydrothermal treatment (HT) is a useful technique for the synthesis of firmly attached, highly crystalline coatings made of anatase titanium dioxide (TiO2), providing favorable nanoroughness and higher exposed surface area, as well as greater hydrophilicity, compared to the native amorphous oxide on pristine titanium. The hydrophilicity drops even more by photofunctionalization of the nanostructured TiO2-anatase coatings under UV light. Human mesenchymal stem cells exhibited a good response to the combination of the positive surface characteristics, especially in respect to the UVB pre-irradiation. The results showed that the cells were not harmed in terms of viability; even more, they were encouraged to differentiate in osteoblasts and to become osteogenically active, as confirmed by the calcium ion uptake and the formation of well-mineralized, bone-like nodule structures. In addition, the enrichment of hydroxyl groups on the HT-surfaces by UVB photofunctionalization accelerated the cell differentiation process and greatly improved the osteogenesis in comparison with the nonirradiated samples. The optimal surface characteristics of the HT-anatase coatings as well as the high potentiality of the photo-induced hydrophilicity, which was reached during a relatively short pre-irradiation time (5 h) with UVB light, can be correlated with better osseointegration ability in vivo; among the samples, the superior biological behavior of the roughest and most hydrophilic HT coating makes it a good candidate for further studies and applications.

  10. Comparison of titanium mesh implants with PLA-hydroxyapatite coatings for maxillofacial cancer reconstruction

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, S. I.; Choinzonov, E. L.; Kolokolova, O. V.; Cherdyntseva, N. V.

    2016-08-01

    Since 2013 physics of TPU and oncologists from the TCRI with participation of the "ConMet" company (Moscow) and the "Sintel" company (Tomsk Special Economic Zone resident) have been working on the theme entitled "Development of the composite implants for reconstructive surgery of a craniofacial areas of the traumatological and oncological patients" supported with the Federal Program "R&D, part 1.3". The goal was to develop the maxillo-facial implants on the basis of the transformable titanium mesh with PLA & hydroxyapatite coating. According to the Contract No. 14.578.21.0031, the team of developers had to start supplying these advanced implants to the industrial partners up to 2017. This research was supported with the preliminary market researches by the ISPMS SB RAS and the TP "MF". The stages of preliminary market researches were: 1) research of the Worldwide CMF market; 2) forecasting the BRIC CMF market up to 2020; 3) the total Russian market (epidemiology) estimation as a sum of official calculations and statistics; 4) looking for the best foreign analogue prices, comparing their and our implant properties; 5) search for the best Russian analogues; 6) the investigation of the world patent database Espacenet for the last years, and finding the owners and applicants of patents of CMF osteosynthesis plates on the basis of titanium coated with PLA & hydroxyapatite; 7) comparison of the domestic implants, and making conclusions. Several variants of the meshes have got the equal quality with the best foreign and Russian implants. The closest analogues were titanium, polyethylene, PEEK composite meshes suited to the patient shape by the Synthes company in 2014, and the only hybrid titanium "Grey" implant with layers of gelatin, dextran, collagen, HAP & BMP-2 was found. This implant was produced by Russian institution, and it was mentioned in the report on clinical trials by L.A. Pavlova et al., 2014 [1]. There are no manufacturers of the coated implants in Russia

  11. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    NASA Astrophysics Data System (ADS)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  12. The Effect of Root Coating with Titanium on Prevention of Root Resorption in Avulsed Teeth: An Animal Study

    PubMed Central

    Heydari, Azar; Tahmasbi, Soodeh; Badiee, Mohammadreza; Izadi, SeyedSadra; Mashhadi Abbas, Fatemeh; Mokhtari, Sepideh

    2016-01-01

    Introduction: Tooth avulsion is a real dental emergency. If immediate replantation is not performed, the avulsed tooth may be lost due to inflammatory or replacement resorption. This animal study aimed to evaluate the bone response to the titanium coating of the root surface as an artificial barrier, and prevention of resorption of avulsed teeth. Methods and Materials: This experimental study was conducted on four male dogs. The dogs were randomly divided into two groups for assessment at two and eight weeks. Four teeth were extracted in each animal. The root surfaces of the test group were coated with a titanium layer using the Electron Beam Deposition system. After 24 h, replantation of the teeth was performed. Two animals were sacrificed after two weeks and the remaining dogs were killed after eight weeks. The presence of inflammation, inflammatory resorption, replacement resorption, periodontal regeneration, periapical granuloma and ankylosis were evaluated through histological analyses. Results: Inflammatory root resorption was not present in any tooth except one tooth in the coated group after eight weeks. Replacement resorption was noted just in three of the non-coated teeth after two weeks and two teeth after eight weeks. The McNemar's test revealed that the frequency of replacement resorption in the non-coated group was significantly higher than the coated group (P=0.031). Conclusion: Based on the results of this study, it seems that coating the root surfaces of avulsed teeth with titanium may control the replacement root resorption. PMID:27790261

  13. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy.

    PubMed

    Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu

    2015-12-01

    Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface.

  14. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy.

    PubMed

    Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu

    2015-12-01

    Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface. PMID:26306772

  15. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    PubMed Central

    Liu, Xiaoling; Grant, David M.; Parsons, Andrew J.; Harper, Lee T.; Rudd, Chris D.; Ahmed, Ifty

    2013-01-01

    Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness. PMID:24066297

  16. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period.

  17. Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Khor, K. A.; Cheang, P.

    1998-03-01

    Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.

  18. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles.

    PubMed

    Massa, Miguel A; Covarrubias, Cristian; Bittner, Mauricio; Fuentevilla, Ignacio Andrés; Capetillo, Pavel; Von Marttens, Alfredo; Carvajal, Juan Carlos

    2014-12-01

    Infection is the most common factor that leads to dental titanium implant failure. Antibacterial implant surfaces based on nano-scale modifications of the titanium appear as an attractive strategy for control of peri-implantitis. In the present work, the preparation and antibacterial properties of a novel composite coating for titanium based on nanoporous silica and silver nanoparticles are presented. Starch-capped silver nanoparticles (AgNPs) were synthesized and then incorporated into sol-gel based solution system. The AgNP-doped nanoporous silica coatings were prepared on titanium surface using a combined sol-gel and evaporation-induced self-assembly (EISA) method. The coating nanostructure was characterized by XRD, SEM-EDX, and HR-TEM. Antibacterial activity was evaluated against Aggregatibacter actinomycetemcomitans, a representative pathogen of dental peri-implantitis. Colony-forming units (CFUs) were counted within the biofilm and at the planktonic state. Biofilm development was quantified using crystal violet staining and viability of adherent bacteria was confirmed with the Live/Dead fluorescence assay. Silica-based composite coating containing AgNPs (AgNP/NSC) was prepared on titanium surface by direct incorporation of AgNP suspension into the sol-gel system. The self-assembly technique enabled the spontaneous formation of a highly ordered nanoporosity in the coating structure, which is a desired property for osseointegration aspects of titanium implant surface. AgNP/NSC coating produces a strong antibacterial effect on titanium surface by not only killing the adherent bacteria but also reducing the extent of biofilm formation. Biofilm survival is reduced by more than 70% on the AgNP/NSC-modified titanium surface, compared to the control. This antibacterial effect was verified for up to 7 days of incubation. The long-term antibacterial activity exhibited by the nanostructured AgNP/NSC-titanium surface against A. actinomycetemcomitans suggests that this

  19. Investigation of anodized titanium implants coated with triterpenoids extracted from black cohosh: an animal study

    PubMed Central

    Park, In-Phill; Kang, Tae-Joo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Ju-Han; Lee, Joo-Hee; Lee, Shin-Jae

    2014-01-01

    PURPOSE The purpose of this study was to evaluate bone response to anodized titanium implants coated with the extract of black cohosh, Asarum Sieboldii, and pharbitis semen. MATERIALS AND METHODS Forty anodized titanium implants were prepared as follows: group 1 was for control; group 2 were implants soaked in a solution containing triterpenoids extracted from black cohosh for 24 hours; group 3 were implants soaked in a solution containing extracts of black cohosh and Asarum Sieboldii for 24 hours; group 4 were implants soaked in a solution containing extracts of pharbitis semen for 24 hours. The implants from these groups were randomly and surgically implanted into the tibiae of ten rabbits. After 1, 2, and 4 weeks of healing, the nondecalcified ground sections were subjected to histological observation, and the percentage of bone-to-implant contact (BIC%) was calculated. RESULTS All groups exhibited good bone healing with the bone tissue in direct contact with the surface of the implant. Group 2 (52.44 ± 10.98, 25.54 ± 5.56) showed a significantly greater BIC% compared to that of group 3 (45.34 ± 5.00, 22.24 ± 2.20) with respect to the four consecutive threads and total length, respectively. The BIC% of group 1 (25.22 ± 6.00) was significantly greater than that of group 3 (22.24 ± 2.20) only for total length. CONCLUSION This study did not show any remarkable effects of the extract of black coshosh and the other natural products on osseointegration of anodized titanium implants as coating agents. Further studies about the application method of the natural products on to the surface of implants are required. PMID:24605201

  20. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate.

    PubMed

    Hu, Ren; Lin, Chang-Jian; Shi, Hai-Yan

    2007-03-01

    A novel porous nano hydroxyapatite (HA) coating has been prepared on commercially pure titanium substrate by a modified electrochemical deposition method. The physico-chemical and biological properties of the coating were characterized by SEM, XRD, FTIR, Raman, and in vitro cell culture test respectively. The SEM patterns show a uniform microporous morphology consisting of wirelike crystals at nanometer scale. It is suggested that under controlled deposition conditions, the primary HA nanowires grow and self-assemble to construct an ordered microporous nest-like morphology, thus to form a nano-micro two-level structure. The XRD results demonstrate that the HA nanowires are orderly arranged with their c-axis preferentially perpendicular to the substrate surface. The Raman and IR spectra affirm that the main component of the coating is well crystallized HA. An interdigitation phenomenon of the MG63 human osteosarcoma cells with the HA nanowires is observed in the in vitro test, indicating excellent biocompatibility and bioactivity for the prepared coating.

  1. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    PubMed Central

    Poth, Nils; Seiffart, Virginia; Gross, Gerhard; Menzel, Henning; Dempwolf, Wibke

    2015-01-01

    A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V. PMID:25581889

  2. Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    PubMed Central

    Chaudhari, Amol; Braem, Annabel; Vleugels, Jozef; Martens, Johan A.; Naert, Ignace; Cardoso, Marcio Vivan; Duyck, Joke

    2011-01-01

    Background Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 µm, BAF-500), in the implant vicinity (100 µm, BAF-100) and further away (100–500 µm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p>0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-µm compared to the 400-µm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn't stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn't stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation. PMID:21935382

  3. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    SciTech Connect

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  4. Structure and properties of La- and Si-incorporated calcium phosphate coatings

    NASA Astrophysics Data System (ADS)

    Komarova, E. G.; Chaikina, M. V.; Sedelnikova, M. B.; Sharkeev, Yu. P.

    2016-08-01

    The physical and chemical properties of calcium phosphate coatings deposited by means of the microarc oxidation method in electrolytes based on simultaneously La- and Si-substituted hydroxyapatite with various concentrations of the substituents (Ca10-xLax(PO4)6-y(SiO4)y(OH)2, x = y = 0.2 and 0.5) under different oxidation voltages from 150 to 350 V are investigated. It is shown that with increasing oxidation voltage the coating thickness and surface roughness increase linearly from 20 to 130 μm and from 2 to 8 μm, respectively. It is established that coatings deposited under voltages in the range 150-250 V have an amorphous structure and, as a consequence, a high rate of bioresorption. The increase in the process voltage to 300-350 leads to the formation of the crystalline phases CaHPO4 and β-Ca2P2O7 in coatings. With increasing voltage, the La concentration increases in coatings and the Si concentration remains almost unaltered. In this case, the maximum La and Si amounts in coatings are equal to 0.22 and 0.16 at. %, respectively. An oxidation voltage increase leads to the intensification of the Ca2+ ion deposition from the electrolyte, thus the Ca content increases in the coating composition and the Ca/P ratio grows from 0.26 to 0.58.

  5. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating.

    PubMed

    Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N

    2014-03-01

    A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues.

  6. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    PubMed

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line.

  7. Effect of culture conditions and calcium phosphate coating on ectopic bone formation.

    PubMed

    Vaquette, Cédryck; Ivanovski, Saso; Hamlet, Stephen M; Hutmacher, Dietmar W

    2013-07-01

    This study investigated the effect of a calcium phosphate (CaP) coating onto a polycaprolactone melt electrospun scaffold and in vitro culture conditions on ectopic bone formation in a subcutaneous rat model. The CaP coating resulted in an increased alkaline phosphatase activity (ALP) in ovine osteoblasts regardless of the culture conditions and this was also translated into higher levels of mineralisation. A subcutaneous implantation was performed and increasing ectopic bone formation was observed over time for the CaP-coated samples previously cultured in osteogenic media whereas the corresponding non-coated samples displayed a lag phase before bone formation occurred from 4 to 8 weeks post-implantation. Histology and immunohistochemistry revealed bone fill through the scaffolds 8 weeks post-implantation for coated and non-coated specimens and that ALP, osteocalcin and collagen 1 were present at the ossification front and in the bone tissues. Vascularisation in the vicinity of the bone tissues was also observed indicating that the newly formed bone was not deprived of oxygen and nutrients. We found that in vitro osteogenic induction was essential for achieving bone formation and CaP coating accelerated the osteogenic process. We conclude that high cell density and preservation of the collagenous and mineralised extracellular matrix secreted in vitro are factors of importance for ectopic bone formation.

  8. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    PubMed

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. PMID:27157742

  9. Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing.

    PubMed

    Toque, J A; Herliansyah, M K; Hamdi, M; Ide-Ektessabi, A; Sopyan, I

    2010-05-01

    It is generally accepted that calcium phosphate (CaP) is one of the most important biomaterials in implant coating applications mainly because of its excellent bioactivity. However, its relatively poor mechanical properties limits its application. This entails that a better understanding of the mechanical properties of a CaP coating is a must especially its behavior and the mechanisms involved when subjected to stresses which eventually lead to failure. The mechanical properties of the coating may be evaluated in terms of its adhesion strength. In this study, a radio frequency-magnetron (RF-MS) sputtering technique was used to deposit CaP thin films on 316L stainless steel (SS). The coatings were subjected to series of microscratch tests, taking careful note of its behavior as the load is applied. The adhesion behavior of the coatings showed varying responses. It was revealed that several coating process-related factors such as thickness, post-heat treatment and deposition parameters, to name a few, affect its scratching behavior. Scratch testing-related factors (i.e. loading rate, scratch speed, scratch load, etc.) were also shown to influence the mechanisms involved in the coating adhesion failure. Evaluation of the load-displacement graph combined with optical inspection of the scratch confirmed that several modes of failure occurred during the scratching process. These include trackside cracking, tensile cracking, radial cracking, buckling, delamination and combinations of one or more modes.

  10. The effect of microstructured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants.

    PubMed

    Werner, Sandra; Huck, Olivier; Frisch, Benoît; Vautier, Dominique; Elkaim, René; Voegel, Jean-Claude; Brunel, Gérard; Tenenbaum, Henri

    2009-04-01

    In the present study, we investigated the dental implant protection from peri-implant inflammation by improving the soft tissue adhesion on the titanium surface. Porous titanium was used to create, at the level of the transmucosal part of the implants (the "neck"), a microstructured 3-dimensional surface that would tightly seal the interface between the implant and soft tissue. Cell-specific adhesion properties were induced via an adhesion peptide derived from laminin-5 coupled to native or cross-linked PLL/PGA multilayered polyelectrolyte films (MPFs), which are used for biomedical device coatings. Porous titanium exhibited good cell-adhesion properties, but the colonisation of the material was further improved by a coating with laminin-5 functionalised MPFs and especially with (PLL/PGA)(6,5)-PGA-peptide film. Focal contact formation was observed on cross-linked architectures, reflecting cell anchorage on these surfaces. In contrast, when seeded on laminin-5-functionalised native films, epithelial cells formed only very diffuse focal contacts, but adhered via hemidesmosome formation. In vivo experiments confirmed that the porous titanium was colonised by cells of soft tissue. Altogether, the results indicate that the microstructure of the implant neck combined with a specific bioactive coating could constitute efficient routes to improve the integration of soft tissue on titanium dental implants, which could significantly protect implants from peri-implant inflammation and enhance long-term implant stabilisation.

  11. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium

    NASA Astrophysics Data System (ADS)

    Shi, Jue; Liu, Yu; Wang, Ying; Zhang, Jing; Zhao, Shifang; Yang, Guoli

    2015-11-01

    The prevention and control of peri-implantitis is a challenge in dental implant surgery. Dental implants with sustained antimicrobial coating are an ideal way of preventing peri-implantitis. This study reports development of a non- immunotoxicity multilayered coating on a titanium surface that had sustained antimicrobial activity and limited early biofilm formation. In this study, the broad spectrum AMP, Tet213, was linked to collagen IV through sulfo-SMPB and has been renamed as AMPCol. The multilayer AMPCol coatings were assembled on smooth titanium surfaces using a LBL technique. Using XPS, AFM, contact angle analysis, and QCM, layer-by-layer accumulation of coating thickness was measured and increased surface wetting compared to controls was confirmed. Non-cytotoxicity to HaCaT and low erythrocyte hemolysis by the AMPCol coatings was observed. In vivo immunotoxicity assays showed IP administration of AMPCol did not effect serum immunoglobulin levels. This coating with controlled release of AMP decreased the growth of both a Gram-positive aerobe (Staphylococcus aureus) and a Gram-negative anaerobe (Porphyromonas gingivalis) up to one month. Early S. aureus biofilm formation was inhibited by the coating. The excellent long-term sustained antimicrobial activity of this multilayer coating is a potential method for preventing peri-implantitis through coated on the neck of implants before surgery.

  12. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium

    PubMed Central

    Shi, Jue; Liu, Yu; Wang, Ying; Zhang, Jing; Zhao, Shifang; Yang, Guoli

    2015-01-01

    The prevention and control of peri-implantitis is a challenge in dental implant surgery. Dental implants with sustained antimicrobial coating are an ideal way of preventing peri-implantitis. This study reports development of a non- immunotoxicity multilayered coating on a titanium surface that had sustained antimicrobial activity and limited early biofilm formation. In this study, the broad spectrum AMP, Tet213, was linked to collagen IV through sulfo-SMPB and has been renamed as AMPCol. The multilayer AMPCol coatings were assembled on smooth titanium surfaces using a LBL technique. Using XPS, AFM, contact angle analysis, and QCM, layer-by-layer accumulation of coating thickness was measured and increased surface wetting compared to controls was confirmed. Non-cytotoxicity to HaCaT and low erythrocyte hemolysis by the AMPCol coatings was observed. In vivo immunotoxicity assays showed IP administration of AMPCol did not effect serum immunoglobulin levels. This coating with controlled release of AMP decreased the growth of both a Gram-positive aerobe (Staphylococcus aureus) and a Gram-negative anaerobe (Porphyromonas gingivalis) up to one month. Early S. aureus biofilm formation was inhibited by the coating. The excellent long-term sustained antimicrobial activity of this multilayer coating is a potential method for preventing peri-implantitis through coated on the neck of implants before surgery. PMID:26548760

  13. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    PubMed

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. PMID:23910322

  14. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    PubMed

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model.

  15. Understanding the effects of process parameters on the properties of cold gas dynamic sprayed pure titanium coatings

    NASA Astrophysics Data System (ADS)

    Wong, Wilson

    The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to

  16. Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations

    NASA Astrophysics Data System (ADS)

    Eivaz Mohammadloo, H.; Sarabi, A. A.

    2016-11-01

    There have been an increasing interest in finding a replacement for the chromating process due to environmental and health concerns. Hence, in this study Chrome-free chemical conversion coatings were deposited on the surface of cold-rolled steel (CRS) on the basis of Titanium (TiCC), Titanium-Nickel (TiNiCC) and titanium-molybdate (TiMoCC) based conversion coating solutions. The surface characterization was performed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measuring device. Also, the corrosion behavior was assessed by the means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. FESEM and AFM study show that the TiNiCC is denser and more uniform than that TiCC and TiMoCC since, TiMoCC conversion coating presents network feature, and there were abundant micro-cracks on the surface of the coating. XPS results confirmed the precipitation of Ti and Ni oxide/hydroxide, Mn dioxide/trioxide on the surface of different Ti-based conversion coatings. Electrochemical results revealed that all Ti-based conversion coatings have better anti-corrosion properties than bare CRS. Moreover, TiNiCC treatment inhibited the corrosion of CRS to a significant degree (polarization resistance (Rp) = 5510 Ω cm2) in comparison with TiCC (Rp = 2705 Ω cm2) and TiMoCC (Rp = 805 Ω cm2).

  17. Hydroxyapatite nanoparticles in poly-D,L-lactic acid coatings on porous titanium implants conducts bone formation.

    PubMed

    Jensen, Thomas; Jakobsen, Thomas; Baas, Jørgen; Nygaard, Jens V; Dolatshahi-Pirouz, Alireza; Hovgaard, Mads B; Foss, Morten; Bünger, Cody; Besenbacher, Flemming; Søballe, Kjeld

    2010-12-01

    It is well established in the field of biomaterials that hydroxyapatite (HA) may provide interesting osteoconductive properties. In this study, we investigated the osseointegrational effect of a 50/50 vol % composite of HA nanoparticles and poly-D,L-lactic acid (PDLLA) coated on model titanium bone implants in an in vivo animal model. The aim is to evaluate how the addition of HA to PDLLA may improve the bone formation and initial fixation of the implant. Two titanium implants coated with the PDLLA/HA composite and pure PDLLA, respectively, were implanted bilaterally in proximal part of humeri with a 2-mm peri-implant gap in 10 sheep. After 12 weeks, the remains of the coatings were present on 20.3 and 19.8% of PDLLA/HA composite- and PDLLA-coated implants, respectively. It was observed that newly formed bone (39.3%) and fibrous tissue (58.3%) had replaced the PDLLA/HA composite, whereas pure PDLLA was replaced almost completely by fibrous tissue (96.2%). Consequently, the PDLLA/HA composite-coated implants were better fixated as confirmed by push-out tests. Using quantification of peri-implant tissue and implant fixation as parameters, the present findings, therefore, clearly reveal that the addition of nanoparticulate HA to a PDLLA coating on titanium implants increases osseointegration.

  18. Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium.

    PubMed

    Sugita, Yoshihiko; Ishizaki, Ken; Iwasa, Fuminori; Ueno, Takeshi; Minamikawa, Hajime; Yamada, Masahiro; Suzuki, Takeo; Ogawa, Takahiro

    2011-11-01

    The independent, genuine role of surface chemistry in the biological properties of titanium is unknown. Although microtopography has been established as a standard surface feature in osseous titanium implants, unfavorable behavior and reactions of osteogenic cells are still observed on the surfaces. To further enhance the biological properties of microfeatured titanium surfaces, this study tested the hypotheses that (1) the surface chemistry of microroughened titanium surfaces can be controllably varied by coating with a very thin layer of TiO(2), without altering the existing topographical and roughness features; and (2) the change in the surface chemistry affects the biological properties of the titanium substrates. Using a slow-rate sputter deposition of molten TiO(2) nanoparticles, acid-etched microroughened titanium surfaces were coated with a TiO(2) layer of 300-pm to 6.3-nm thickness that increased the surface oxygen levels without altering the existing microtopography. The attachment, spreading behavior, and proliferation of osteoblasts, which are considered to be significantly impaired on microroughened surfaces compared with relatively smooth surfaces, were considerably increased on TiO(2)-coated microroughened surfaces. The rate of osteoblastic differentiation was represented by the increased levels of alkaline phosphatase activity and mineral deposition as well as by the upregulated expression of bone-related genes. These biological effects were exponentially correlated with the thickness of TiO(2) and surface oxygen percentage, implying that even a picometer-thin TiO(2) coating is effective in rapidly increasing the biological property of titanium followed by an additional mild increase or plateau induced by a nanometer-thick coating. These data suggest that a super-thin TiO(2) coating of pico-to-nanometer thickness enhances the biological properties of the proven microroughened titanium surfaces by controllably and exclusively modulating their surface

  19. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution.

    PubMed

    Dalmau, A; Guiñón Pina, V; Devesa, F; Amigó, V; Igual Muñoz, A

    2015-03-01

    The electrochemical behavior of three different near-β titanium alloys (composed by Ti, Nb and Sn) obtained by powder metallurgy for biomedical applications has been investigated. Different electrochemical and microscopy techniques were used to study the influence of the chemical composition (Sn content) and the applied potential on the microstructure and the corrosion mechanisms of those titanium alloys. The addition of Sn below 4wt.% to the titanium powder improves the microstructural homogeneity and generates an alloy with high corrosion resistance with low elastic modulus, being more suitable as a biomaterial. When the Sn content is above 4%, the corrosion resistance considerably decreases by increasing the passive dissolution rate; this effect is enhanced with the applied potential.

  20. Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution.

    PubMed

    Pina, V Guiñón; Dalmau, A; Devesa, F; Amigó, V; Muñoz, A Igual

    2015-06-01

    The tribo-electrochemical behavior of different β titanium alloys for biomedical applications sintered by powder metallurgy has been investigated. Different mechanical, electrochemical and optical techniques were used to study the influence of the chemical composition, Sn content, and the electrochemical conditions on the tribocorrosion behavior of those alloys Ti30NbxSn alloys (where "x" is the weight percentage of Sn content, 2% and 4%). Sn content increases the active and passive dissolution rate of the titanium alloys, thus increasing the mechanically activated corrosion under tribocorrosion conditions. It also increases the mechanical wear of the alloy. Prevailing electrochemical conditions between -1 and 2V influences the wear accelerated corrosion by increasing it with the applied potential and slightly increases the mechanical wear of Ti30Nb4Sn. Wear accelerated corrosion can be predicted by existing models as a function of electrochemical and mechanical parameters of the titanium alloys.

  1. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains a minimum of 162 citations and includes a subject term index and title list.)

  2. Enhanced ingrowth of porous-coated CoCr implants plasma-sprayed with tricalcium phosphate.

    PubMed

    Chae, J C; Collier, J P; Mayor, M B; Surprenant, V A; Dauphinais, L A

    1992-01-01

    Tricalcium phosphate (TCP) is an osteo-conductive bioceramic which, when applied to a porous-coated prosthesis, may enhance osseous ingrowth and mechanical stability. TCP plasma-sprayed and unsprayed porous-coated tibial intramedullary rods were bilaterally implanted in seven adult rabbits. All rabbits were killed at 12 weeks. Pull-out tests were performed on 4 rabbits while all were evaluated histologically for osseous response and adverse tissue reaction. TCP-sprayed implants showed significantly greater osseous ingrowth in comparison to unsprayed implants. Neither implant type exhibited adverse tissue reactions. Average pull-out strengths were 69 lb for treated rods and 72 lb for controls (p greater than 0.05); quality of fit for all pull-out specimens except one was deemed poor. We conclude that plasma-sprayed TCP enhances osseous ingrowth into porous-coated devices. However, our data further suggest that enhanced ingrowth may not always lead to enhanced fixation.

  3. Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO-SiO2 coating on titanium alloy.

    PubMed

    Li, H C; Wang, D G; Chen, C Z; Weng, F

    2015-03-01

    To solve the lack of strength of bulk biomaterials for load-bearing applications and improve the bioactivity of titanium alloy (Ti-6Al-4V), CaO-SiO2 coatings on titanium alloy were fabricated by laser cladding technique. The effect of CeO2 and Y2O3 on microstructure and properties of laser cladding coating was analyzed. The cross-section microstructure of ceramic layer from top to bottom gradually changes from cellular-dendrite structure to compact cellular crystal. The addition of CeO2 or Y2O3 refines the microstructure of the ceramic layer in the upper and middle regions. The refining effect on the grain is related to the kinds of additives and their content. The coating is mainly composed of CaTiO3, CaO, α-Ca2(SiO4), SiO2 and TiO2. Y2O3 inhibits the formation of CaO. After soaking in simulated body fluid (SBF), the calcium phosphate layer is formed on the coating surface, indicating the coating has bioactivity. After soaking in Tris-HCl solution, the samples doped with CeO2 or Y2O3 present a lower weight loss, indicating the addition of CeO2 or Y2O3 improves the degradability of laser cladding sample.

  4. Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO-SiO2 coating on titanium alloy.

    PubMed

    Li, H C; Wang, D G; Chen, C Z; Weng, F

    2015-03-01

    To solve the lack of strength of bulk biomaterials for load-bearing applications and improve the bioactivity of titanium alloy (Ti-6Al-4V), CaO-SiO2 coatings on titanium alloy were fabricated by laser cladding technique. The effect of CeO2 and Y2O3 on microstructure and properties of laser cladding coating was analyzed. The cross-section microstructure of ceramic layer from top to bottom gradually changes from cellular-dendrite structure to compact cellular crystal. The addition of CeO2 or Y2O3 refines the microstructure of the ceramic layer in the upper and middle regions. The refining effect on the grain is related to the kinds of additives and their content. The coating is mainly composed of CaTiO3, CaO, α-Ca2(SiO4), SiO2 and TiO2. Y2O3 inhibits the formation of CaO. After soaking in simulated body fluid (SBF), the calcium phosphate layer is formed on the coating surface, indicating the coating has bioactivity. After soaking in Tris-HCl solution, the samples doped with CeO2 or Y2O3 present a lower weight loss, indicating the addition of CeO2 or Y2O3 improves the degradability of laser cladding sample. PMID:25637793

  5. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    NASA Astrophysics Data System (ADS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C. M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-05-01

    CaCO3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO3 continuous films on Langmuir-Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca2+, exposed to CO2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γs) were accessed. The presence of HAp increased the wettability and γs of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  6. Corrosion and cell adhesion behavior of TiN-coated and ion-nitrided titanium for dental applications

    NASA Astrophysics Data System (ADS)

    Huang, Her-Hsiung; Hsu, Chu-Hui; Pan, Szu-Jung; He, Ju-Liang; Chen, Chun-Cheng; Lee, Tien-Ling

    2005-05-01

    This study investigated the corrosion resistance and cell adhesion behavior of titanium nitride (TiN)-coated and ion-nitrided Ti substrates for dental applications. The TiN-coated specimen surface layer contained a TiN/Ti structure, while the ion-nitrided specimen contained a Ti 2N/TiN/Ti structure. The polarization curves in artificial saliva showed that the corrosion rate and passive current for the specimens ranked as: untreated Ti > ion-nitrided Ti > TiN-coated Ti. The polarization resistance obtained from the electrochemical impedance spectroscopy ranked as: TiN-coated Ti > ion-nitrided Ti > untreated Ti. After 24 h osteoblast-like U-2 OS cell incubation on the specimens, the attached cell number occurred in the order: TiN-coated Ti > ion-nitrided Ti > untreated Ti. The TiN-coating and ion-nitriding treatments can improve the corrosion resistance and cell adhesion behavior of Ti.

  7. Oxidative stress and antioxidant responses of liver and kidney tissue after implantation of titanium or titanium oxide coated plate in rat tibiae.

    PubMed

    El-Shenawy, Nahla S; Mohsen, Q; Fadl-allah, Sahar A

    2012-07-01

    Coating with titanium oxides is a promising method to improve the blood compatibility of materials to be used for medical implants. However, biodegradation of the coating can result in microparticles that subsequently cause oxidative stress. Therefore, the present study was carried out to throw some light on the mechanisms affecting the reaction of tissue surroundings Ti implants either in the form of titanium oxide or not in tibiae of rats. The serum collected twice from animals during the period of study and rats were sacrificed after two months of implantation. The complete blood picture, total proteins content and the activities of some serum enzymes were determined as liver biomarker. Kidney function was examined by measuring the levels of serum creatinine and uric acid. The level of lipid peroxidation and the activities of superoxide dismutase, catalase and glutathione S-transferase as well as glutathione content in liver and kidney tissue were evaluated. It has been indicated that the lipid peroxidation is one of the molecular mechanisms involved in Ti-plate induced cytotoxicity however; the TiO(2)-plate did not. The biodegradation of Ti-plate was very slow that could explain why the all enzymatic and non-enzymatic antioxidant not affected by implantation of Ti-plate. The total antioxidant level in serum was better in rats had TiO(2)/Ti-plate than those animals that had Ti-plate. The coating of titanium implants with titanium oxide leads to attaining of reduced the oxidative state in the cells, which enhance the healing process in comparison with the uncoated implants. PMID:22592964

  8. Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings

    PubMed Central

    Ao, Haiyong; Xie, Youtao; Tan, Honglue; Yang, Shengbing; Li, Kai; Wu, Xiaodong; Zheng, Xuebin; Tang, Tingting

    2013-01-01

    Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants. PMID:23635490

  9. Physical-mechanical and tribotechnical properties of titanium alloys with Ti-C-Mo-S gradient antifriction coatings

    NASA Astrophysics Data System (ADS)

    Savostikov, V. M.; Potekaev, A. I.; Tabachenko, A. N.; Dudarev, E. F.; Shulepov, I. A.

    2013-02-01

    The results of comprehensive investigations of physico-mechanical and tribological properties of (α+β)-titanium alloys with Ti-C-Mo-S antifriction coatings using a coarse-grained VT14 alloy and a nanostructured VT6 alloy as examples are presented. The mechanisms of formation of physico-mechanical and tribological properties of titanium alloys with composite gradient coatings composed of Ti-C-Mo-S, which are deposited by low-temperature magnetron sputtering assisted by gas-discharge plasma treatment are revealed. A significant improvement of the properties of titanium alloys with these coatings is shown. It is found out that hardness of the coatings formed by plasma-assisted magnetron sputtering is higher compared to those deposited by conventional magnetron sputtering. Moreover, adhesion (bonding strength) of these coatings to the substrate is higher. Comparative tribological unlubricated friction tests demonstrated that the average friction coefficient decreased by a factor of 7.9-9.5 and the wear intensity of the surface layer decreased by 2-3 orders of magnitude.

  10. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings

    NASA Astrophysics Data System (ADS)

    Piwoński, Ireneusz; Spilarewicz-Stanek, Kaja; Kisielewska, Aneta; Kądzioła, Kinga; Cichomski, Michał; Ginter, Joanna

    2016-06-01

    Silver nanoparticles (AgNPs) were grown on the surface of titanium dioxide coating (TiO2) using a photochemical method. The size and number of AgNPs were monitored using scanning electron microscopy (SEM) after 20, 30, 180 and 300 s of UV illumination. It was found that for short illumination times (20 s) a significant number of small nanoparticles were grown. However, after an additional 10 s of illumination, small nanoparticles were subject to decomposition and the released Ag+ ions were utilized for the growth of the existing larger nanoparticles, causing an increase in their dimensions. The observed results indicate that the nucleation and further growth of AgNPs proceed according to Ostwald ripening. For longer illumination times (180, 300 s) a coalescence of closely located particles was observed.

  11. The application of an assisting gas plasma generator for low- temperature magnetron sputtering of Ti-C-Mo-S antifriction coatings on titanium alloys

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Savostikov, V. M.; Tabachenko, A. N.; Dudarev, E. F.; Melnikova, E. A.; Shulepov, I. A.

    2015-11-01

    The positive effect of assisting influence of high-density gas plasma formed by an independent plasma generator PINK on mechanical and tribological characteristics of Ti-C- Mo-S magnetron coating on titanium alloys at lowered to 350°C temperature of coating regardless of alloy structural condition was revealed by methods of calotest, nanorecognition, scratch testing and frictional material tests. The coating formed by means of a combined magnetron plasma method reduces titanium alloys friction coefficient in multiple times and increases wear resistance by two orders of magnitude. At the same time the mechanical properties of ultra-fine-grained titanium alloys obtained by nanostructuring do not deteriorate.

  12. Microstructure and corrosion behavior of porous coatings on titanium alloy by vacuum-brazed method.

    PubMed

    Lee, T M; Chang, E; Yen, C H

    2006-05-01

    The microstructural evolution and electrochemical characteristics of brazed porous-coated Ti-6Al-4V alloy were analyzed and compared with respect to the conventionally 1300 degrees C sintering method. The titanium filler metal of low-melting-point (934 degrees C) Ti-15Cu-15Ni was used to braze commercially pure (CP) titanium beads onto the substrate of Ti-6Al-4V alloy at 970 degrees C for 2 and 8 h. Optical microscopy, scanning and transmission electron microscopy, and X-ray diffractometry (XRD) were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that the bead/substrate contact interface of the 970 degrees C brazed specimens show larger contact area and higher radius curvature in comparison with 1300 degrees C sintering method. The microstructure of brazed specimens shows the Widmanstätten structure in the brazed zone and equiaxed alpha plus intergranular beta in the Ti-6Al-4V substrate. The intermetallic Ti2Ni phase existing in the prior filler metal diminishes, while the Ti2Cu phase can be identified for the substrate at 970 for 2 h, but the latter phase decrease with time. In Hank's solution at 37 degrees C, the corrosion rates of the 1300 degrees C sintering and the 970 degrees C brazed samples are similar at corrosion potential (E(corr)) in potentiodynamic test, and the value of E(corr) for the brazed sample is noble to the sintering samples. The current densities of the brazed specimens do not exceed 100 microA/cm2 at 3.5 V (SCE). These results suggest that the vacuum-brazed method exhibits the potentiality to manufacture the porous-coated specimens for biomedical application.

  13. Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application.

    PubMed

    Chen, Haiyan; Zhang, Erlin; Yang, Ke

    2014-01-01

    In order to improve the biocompatibility and the corrosion resistance in the initial stage of implantation, a phosphate (CaZn2(PO4)2·2H2O) coating was obtained on the surface of pure iron by a chemical reaction method. The anti-corrosion property, the blood compatibility and the cell toxicity of the coated pure iron specimens were investigated. The coating was composed of some fine phosphate crystals and the surface of coating was flat and dense enough. The electrochemical data indicated that the corrosion resistance of the coated pure iron was improved with the increase of phosphating time. When the specimen was phosphated for 30min, the corrosion resistance (Rp) increased to 8006 Ω. Compared with that of the naked pure iron, the anti-hemolysis property and cell compatibility of the coated specimen was improved significantly, while the anti-coagulant property became slightly worse due to the existence of element calcium. It was thought that phosphating treatment might be an effective method to improve the biocompatibility of pure iron for biomedical application.

  14. Fabrication, characterization, and biological assessment of multilayer DNA coatings on sandblasted-dual acid etched titanium surface.

    PubMed

    Liu, Li; Song, Li-Na; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2011-06-01

    As local gene therapy has received attention, immobilizing functional gene onto irregular oral implant surface has become an advanced challenge. Electrostatic layer-by-layer (LBL) assembly technique could achieve this goal and allow local and efficient administration of genes to the target cells. In this study, multilayers of cationic lipid/plasmid DNA (pEGFP-C1) complex (LDc) and anionic hyaluronic acid were assembled onto sandblasted-dual acid etched titanium disks by the LBL technique. Surface characteristics of the coatings were performed by x-ray photospectroscopy (XPS), contact angle measurements, and scanning electron microscopy (SEM). The cell biological characteristics of the coatings were evaluated by in vitro experiments. SEM results demonstrated that the porous titanium surface was gradually flattened with the increase of the multilayer. The XPS survey indicated that the N element was found from the coating. The coating degradation and pEGFP-C1 releasing kinetics showed that the more assembled layer numbers were, the larger the amount of DNA released in the first 30 h. MC3T3-E1 cells were cultured directly on the DNA-loaded surface. Higher enhanced green fluorescent protein (EGFP) expression efficiency was achieved by increasing the number of layers when cells were cultured after 24 or 72 h. The MC3T3-E1 cell viability on the surface of multilayer DNA coatings was significantly higher than that on control porous titanium surface. It was concluded that the approach established by the LBL technique had great potential in immobilizing gene coatings onto the porous titanium surface and subsequently influenced the function of the cultured cell. PMID:21448994

  15. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    PubMed

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. PMID:26652428

  16. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    PubMed

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate.

  17. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    PubMed Central

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death. PMID:26703586

  18. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    PubMed

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  19. Osteoblastic cell response and bone formation of phosphate ion coated on plasma polymerized Ti surface.

    PubMed

    Yang, Seong-Won; Lee, Kang; Kim, Byung-Hoon

    2013-01-01

    This study examined the bone formation ability and cell response on a phosphate (PO3(4-)) ion exchanged amine plasma polymerized titanium (Ti) surface. The enhanced bone-like apatite (hydroxyapatite, HAp)-forming ability was attributed to the PO3(4-) ion exchanged amine plasma polymerized Ti (P/NH2/Ti) surface, which was formed by the reduction of PO3(4-) ions. PO3(4-) ions promote HAp nucleation and growth on Ti in SBF, and PO3(4-) ions improve the crystallinity of the HAp deposited layer. The cell viability tests revealed significantly greater cell viability on the P/NH2/Ti surfaces than on the other surfaces.

  20. Layered double hydroxide (LDH)-coated attapulgite for phosphate removal from aqueous solution.

    PubMed

    Fang-qun, Gan; Jian-min, Zhou; Huo-yan, Wang; Hong-ting, Zhao

    2011-01-01

    In this study, a composite adsorbent, layered double hydroxide (LDH)-coated attapulgite (LDH-AP), was synthesized and characterized. Its potential application for LDH stabilizer and phosphate (P) removal from aqueous solution was evaluated using the batch mode and continuous mode in a packed bed column. The batch experiments revealed that the data of P adsorption onto LDH-AP could be well described by the Freundlich equation, and the maximum adsorption capacity was estimated to be 6.9 mg/g. The column experiments were conducted in the tap water and the results indicated that the competing anions could slightly decrease phosphate removal. The saturated column was regenerated by 0.2 mol/L of NaOH and the regenerated column was examined for its reuse in phosphate removal. The results of this study suggested that attapulgite could be used as an applicable stabilizer of LDH and LDH-AP could be potentially used as a promising filtration medium for phosphate removal. PMID:22156122

  1. Poly (ε-caprolactone) coating delays vancomycin delivery from porous chitosan/β-tricalcium phosphate composites.

    PubMed

    Fang, Taolin; Wen, Jianchuan; Zhou, Jian; Shao, Zhengzhong; Dong, Jian

    2012-10-01

    The orthopedic infection, such as osteomyelitis, especially those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication of open fractures. Local vancomycin delivery is considered to provide better methods when avascular zones prevent the delivery of drugs from conventional routes of administration. Chitosan (CS) delivery system has been developed with the disadvantages, such as mechanically weakness, lacking osteoconductivity, and the initial burst of antibiotics into the environment. The aim of this study was to confirm that the prepared CS/β-tricalcium phosphate (β-TCP) composites coated with poly (ε-caprolactone) (PCL), similar to natural bone in components, had a three-dimensional porous structure and could be used as drug carriers to deliver vancomycin in a sustained and controlled manner effectively for 6 weeks at levels to inhibit MRSA proliferation. We prepared porous CS/β-TCP composites by incorporating β-TCP into the system, and coated the composites with PCL of three different concentrations. The morphological structure of composites, including pore size and porosity, was examined. The result showed that CS/β-TCP coated with 2.5w/v% PCL solution had the best coating effect and it retarded the release of vancomycin in a near zero-order mechanism from 0 to 14 days. The drug delivery was significantly delayed after coated with 2.5w/v% PCL. The quantitative release of vancomycin was extended to 42 days. Therefore PCL coating could be used to retard the release of vancomycin from CS/β-TCP composites in a sustained and controlled manner. Porous CS/β-TCP coated with PCL might be one of the candidate vancomycin carriers for treating MRSA-related osteomyelitis.

  2. Preparation and characterization of TiO2/silicate hierarchical coating on titanium surface for biomedical applications.

    PubMed

    Huang, Qianli; Liu, Xujie; Elkhooly, Tarek A; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-03-01

    In the current work, TiO2/silicate hierarchical coatings with various nanostructure morphologies were successfully prepared on titanium substrates through micro-arc oxidation (MAO) and subsequent hydrothermal treatment (HT). Moreover, the nucleation mechanism and growth behavior of the nanostructures, hydrophilicity, protein adsorption and apatite-inducing ability of various coatings were also explored. The novel TiO2/silicate hierarchical coatings comprised calcium silicate hydrate (CSH) as an outer-layer and TiO2 matrix as an inner-layer. According to the morphological features, the nanostructures were classified as nanorod, nanoplate and nanoleaf. The morphology, degree of crystallinity and crystalline phases of CSH nanostructures could be controlled by optimizing the HT conditions. The nucleation of CSH nanostructures is caused by release and re-precipitation mechanism. The TiO2/CSH hierarchical coatings exhibited some enhanced physical and biological performances compared to MAO-fabricated coating. The improvement of the hydrophilicity, fibronectin adsorption and apatite-inducing ability was found to be morphological dependent according to the following trend: nanoleaf coating>nanoplate coating>nanorod coating>MAO coating. The results indicate that the tuning of physical and morphological properties of nanostructures coated on biomaterial surface could significantly influence the hydrophilicity, protein adsorption and in vitro bioactivity of biomaterial.

  3. Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering.

    PubMed

    Al Qaysi, Mustafa; Walters, Nick J; Foroutan, Farzad; Owens, Gareth J; Kim, Hae-Won; Shah, Rishma; Knowles, Jonathan C

    2015-09-01

    Strontium- and calcium-releasing, titanium-stabilised phosphate-based glasses with a controlled degradation rate are currently under development for orthopaedic tissue engineering applications. Ca and/or Sr were incorporated at varying concentrations in quaternary phosphate-based glasses, in order to promote osteoinduction. Ti was incorporated at a fixed concentration in order to prolong degradation. Glasses of the general formula (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) were prepared via the melt-quench technique. The materials were characterised by energy-dispersive X-ray spectroscopy, X-ray diffraction, (31)P magic angle spinning nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential thermal analysis and density determination. The dissolution rate in distilled water was determined by measuring mass loss, ion release and pH change over a two-week period. In addition, the cytocompatibility and alkaline phosphatase activity of an osteoblast-like cell line cultured on the surface of glass discs was assessed. The glasses were shown to be amorphous and contained Q(1), Q(2) and Q(3) species. Fourier transform infrared spectroscopy revealed small changes in the glass structure as Ca was substituted with Sr and differential thermal analysis confirmed a decrease in crystallisation temperature with increasing Sr content. Degradation and ion release studies also showed that mass loss was positively correlated with Sr content. These results were attributed to the lower electronegativity of Sr in comparison to Ca favouring the formation of phosphate-based mineral phases. All compositions supported cell proliferation and survival and induced at least 2.3-fold alkaline phosphatase activity relative to the control. Glass containing 17.5 mol% Sr had 3.6-fold greater alkaline phosphatase activity than the control. The gradual release of Ca and Sr supported osteoinduction, indicating their potential suitability in orthopaedic tissue engineering applications.

  4. Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering.

    PubMed

    Al Qaysi, Mustafa; Walters, Nick J; Foroutan, Farzad; Owens, Gareth J; Kim, Hae-Won; Shah, Rishma; Knowles, Jonathan C

    2015-09-01

    Strontium- and calcium-releasing, titanium-stabilised phosphate-based glasses with a controlled degradation rate are currently under development for orthopaedic tissue engineering applications. Ca and/or Sr were incorporated at varying concentrations in quaternary phosphate-based glasses, in order to promote osteoinduction. Ti was incorporated at a fixed concentration in order to prolong degradation. Glasses of the general formula (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) were prepared via the melt-quench technique. The materials were characterised by energy-dispersive X-ray spectroscopy, X-ray diffraction, (31)P magic angle spinning nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential thermal analysis and density determination. The dissolution rate in distilled water was determined by measuring mass loss, ion release and pH change over a two-week period. In addition, the cytocompatibility and alkaline phosphatase activity of an osteoblast-like cell line cultured on the surface of glass discs was assessed. The glasses were shown to be amorphous and contained Q(1), Q(2) and Q(3) species. Fourier transform infrared spectroscopy revealed small changes in the glass structure as Ca was substituted with Sr and differential thermal analysis confirmed a decrease in crystallisation temperature with increasing Sr content. Degradation and ion release studies also showed that mass loss was positively correlated with Sr content. These results were attributed to the lower electronegativity of Sr in comparison to Ca favouring the formation of phosphate-based mineral phases. All compositions supported cell proliferation and survival and induced at least 2.3-fold alkaline phosphatase activity relative to the control. Glass containing 17.5 mol% Sr had 3.6-fold greater alkaline phosphatase activity than the control. The gradual release of Ca and Sr supported osteoinduction, indicating their potential suitability in orthopaedic tissue engineering applications

  5. Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering

    PubMed Central

    Al Qaysi, Mustafa; Walters, Nick J; Foroutan, Farzad; Owens, Gareth J; Kim, Hae-Won; Shah, Rishma

    2015-01-01

    Strontium- and calcium-releasing, titanium-stabilised phosphate-based glasses with a controlled degradation rate are currently under development for orthopaedic tissue engineering applications. Ca and/or Sr were incorporated at varying concentrations in quaternary phosphate-based glasses, in order to promote osteoinduction. Ti was incorporated at a fixed concentration in order to prolong degradation. Glasses of the general formula (P2O5)–(Na2O)–(TiO2)–(CaO)–(SrO) were prepared via the melt-quench technique. The materials were characterised by energy-dispersive X-ray spectroscopy, X-ray diffraction, 31P magic angle spinning nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential thermal analysis and density determination. The dissolution rate in distilled water was determined by measuring mass loss, ion release and pH change over a two-week period. In addition, the cytocompatibility and alkaline phosphatase activity of an osteoblast-like cell line cultured on the surface of glass discs was assessed. The glasses were shown to be amorphous and contained Q1, Q2 and Q3 species. Fourier transform infrared spectroscopy revealed small changes in the glass structure as Ca was substituted with Sr and differential thermal analysis confirmed a decrease in crystallisation temperature with increasing Sr content. Degradation and ion release studies also showed that mass loss was positively correlated with Sr content. These results were attributed to the lower electronegativity of Sr in comparison to Ca favouring the formation of phosphate-based mineral phases. All compositions supported cell proliferation and survival and induced at least 2.3-fold alkaline phosphatase activity relative to the control. Glass containing 17.5 mol% Sr had 3.6-fold greater alkaline phosphatase activity than the control. The gradual release of Ca and Sr supported osteoinduction, indicating their potential suitability in orthopaedic tissue engineering applications

  6. Laser processing of in situ TiN/Ti composite coating on titanium.

    PubMed

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding.

  7. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    PubMed

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (<5 nm) layer of oxide on the surface of TiSi(2). This coating helped us rule out the possibility that the measured capacity is due to surface reactions. It also stabilizes TiSi(2) to allow for the direct observation of TiSi(2) in its lithiated and delithiated states. In addition, this stabilization significantly improved the charge and discharge performance of TiSi(2). The confirmation that the lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  8. Laser processing of in situ TiN/Ti composite coating on titanium.

    PubMed

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. PMID:26344856

  9. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats.

    PubMed

    Tao, Zhou-Shan; Zhou, Wan-Shu; He, Xing-Wen; Liu, Wei; Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao; Lv, Yang-Xun; Cui, Wei; Yang, Lei

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague-Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. PMID:26952418

  10. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics

    PubMed Central

    2014-01-01

    Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more

  11. Interfaces of high-protection performance polyaryls-coated zinc phosphated steels

    SciTech Connect

    Sugama, T.

    1994-05-01

    To evaluate the ability of polyaryl thermoplastic coatings such as polyphenylenesulfide (PPS) and polyphenyletheretherketone (PEEK), to protect zinc phosphate (Zn{center_dot}Ph)-treated steels from corrosion in a wet, harsh environment (1.0 wt % H{sub 2}SO{sub 4}, 3.0 wt % NaCl and 96.0 wt % water at temperature from 250 to 200 C), we exposed them in autoclave to determine performance in heating-cooling cyclic fatigue tests (1 cycle = 12 hr at 200 C + 12 hr at 25 C) for up to 90 cycles. Although no changes in appearance were seen in the PEEK specimens after 60 cycles, extension to 90 cycles caused delamination of the coating film from the Zn{center_dot}Ph; the major reason was the degradation of the PEEK polymer caused by its hydrothermalcatalyzed esterification. In urea hydrogen peroxide (UHP)-modified PPS-coating systems, chemical reactions at the interfaces between the PPS and Zn in the Zn{center_dot}Ph layer led to the formation of a ZnS reaction product, which enhanced the Zn{center_dot}Ph-to-PPS adhesive bond; correspondingly, there were no signs of peeling nor separation of the coating after 90 cycles. In addition, because these intermediate reaction products are insoluble at high pH, they minimized the rate of delamination of the PPS coating caused by the cathodic reaction, H{sub 2}O + 1/2O{sub 2} + 2e{sup {minus}} {yields} 2OH{sup {minus}}, at the corrosion side of a defect in the film. In contrast, PEEK coatings containing non-reactive Zn{center_dot}Ph underwent cathodic delamination because of the susceptibility of Zn{center_dot}Ph to alkali dissolution.

  12. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pareta, Rajesh A.; Taylor, Erik; Webster, Thomas J.

    2008-07-01

    Bone diseases (including osteoporosis, osteoarthritis and bone cancer) are of great concern to the medical world. Drugs are available to treat such diseases, but often these drugs are not specifically targeted to the site of the disease and, thus, lack an immediate directed therapeutic effect. The optimal drug delivery system should enhance healthy bone growth with high specificity to the site of bone disease. It has been previously shown that magnetic nanoparticles can be directed in the presence of a magnetic field to any part of the body, allowing for site-specific drug delivery and possibly an immediate increase in bone density. The objective of the present study was to build off of this evidence and determine the density of osteoblasts (bone forming cells) in the presence of various uncoated and coated magnetic nanoparticles that could eventually be used in drug delivery applications. Results showed that some magnetic nanoparticles (specifically, γ-Fe2O3) significantly promoted osteoblast density (that is, cells per well) after 5 and 8 days of culture compared to controls (no particles). These magnetic nanoparticles were further coated with calcium phosphate (CaP; the main inorganic component of bone) to tailor them for treating various bone diseases. The coatings were conducted in the presence of either bovine serum albumin (BSA) or citric acid (CA) to reduce magnetic nanoparticle agglomeration, a common problem resulting from the use of nanoparticles which decreases their effectiveness. Results with these coatings showed that magnetic nanoparticles, specifically (γ-Fe2O3), coated in the presence of BSA significantly increased osteoblast density compared to controls after 1 day. In this manner, this study provided unexpected evidence that CaP-coated γ-Fe2O3 magnetic nanoparticles increased osteoblast density (compared to no particles) and, thus, should be further studied to treat numerous bone diseases.

  13. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1996-10-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent Bibliographic File with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains a minimum of 191 citations and includes a subject term index and title list.)

  15. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains a minimum of 166 citations and includes a subject term index and title list.)

  16. Effect of impression material on surface reactive layer when casting pure titanium in phosphate investment.

    PubMed

    Komasa, Y; Moriguchi, A; Asai, M; Nezumi, M; Kakimoto, K; Gonda, Y

    1998-10-01

    We evaluated the effect of impression materials used in preparation of pure titanium castings on the surface reactive layer. Surface roughness of the refractory models before and after firing was smaller when silicone rather than agar impression material was used. The surface roughness of castings prepared with T-invest varied little with the impression material. However, the surface roughness of the castings prepared with CD Titaninvest was less when silicone impression material was used. Surface hardness of the castings was slightly greater when agar impression material was used, and metallic texture analysis of the surface of the castings showed a chill layer and a columnar crystal layer extending from the surface toward the interior. A relatively non-corroded white layer and a markedly corroded black layer were observed in the chill layer, and their thickness was smaller when silicone impression material was used. Use of the Electron Probe Micro Analyzer (EPMA) to determine distribution of various elements in the superficial layer of the casting plates showed that the reactive layer contained less P and Si when silicone impression material was used rather than agar. NH4H2 PO4, which is a component of the bonding material in the investment, was present at a high concentration in the superficial layer of the agar impression material. This shows the importance of preparing refractory models with a non-water-absorbing impression material to obtain pure titanium casting plates with a smaller reactive layer.

  17. Use of a nitrogen-argon plasma to improve adherence of sputtered titanium carbide coatings on steel

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440-C steel surfaces that had been RF-sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that a small partial pressure of nitrogen (about 0.5%) markedly improves the adherence, friction, and wear properties when compared with coatings applied on sputter-etched oxidized surfaces or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  18. Effect of nitrogen-containing plasma on adherence, friction, and wear of radiofrequency-sputtered titanium carbide coatings

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440C steel surfaces that were rf sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. Both X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that the small partial pressure of nitrogen (approximately 0.5 percent) markedly improves the adherence, friction, and wear properties when compared with coatings applied to sputter-etched surfaces, oxidized surfaces, or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  19. Biomaterial Co-Cr-Mo Alloys Nano Coating Calcium Phosphate Orthopedic Treatment

    NASA Astrophysics Data System (ADS)

    Palaniappan, N.; Inwati, Gajendra Kumar; Singh, Man

    2014-08-01

    The modem study a thermal martensitic transformation of biomedical Co-Cr-Mo alloys and ultimately offers large elongation to failure while maintaining high strength. In the future study, structural evolution and dislocation slip as an elementary process in the martensitic transformation in Co-Cr-Mo alloys were investigated to reveal the origin of their enhanced phase stability due to nitrogen addition and coating of calcium phosphate specimens with and without nitrogen addition were prepared. The N-doped alloys had a single-phase matrix, whereas the N-free alloys had a duplex microstructure. Irrespective of the nitrogen content, dislocations frequently dissociated into Shockley partial dislocations with stacking faults. The Nano range coating of calcium phosphate function as obstacles to the glide of partial dislocations and consequently significantly affect the kinetics of the martensitic transformation. As a result, the formation of marten site plays a crucial role in plastic deformation and wear behavior, the developed nanostructures modification associated with nitrogen addition must be a promising strategy for highly durable orthopedic implants.

  20. The mechanism underlying calcium phosphate precipitation on titanium via ultraviolet, visible, and near infrared laser-assisted biomimetic process

    NASA Astrophysics Data System (ADS)

    Mahanti, Moumita; Nakamura, Maki; Pyatenko, Alexander; Sakamaki, Ikuko; Koga, Kenji; Oyane, Ayako

    2016-08-01

    We recently developed a rapid single-step calcium phosphate (CaP) precipitation technique on several substrates using a laser-assisted biomimetic process (LAB process). In this process, ultraviolet (UV, λ  =  355 nm) pulsed laser irradiation has been applied to a substrate that is immersed in a supersaturated CaP solution. In the present study, the LAB process for CaP precipitation on a titanium substrate was successfully expanded to include not only UV but also visible (VIS, λ  =  532 nm) and near infrared (NIR, λ  =  1064 nm) lasers. Surface heating and plasma-mediated surface reactions (micro-deformation, oxidization, photoexcitation, and wetting) generated by UV, VIS, or NIR lasers are considered to be involved in the CaP precipitation on the titanium surface in the LAB process. The kinetics of these reactions and consequently of CaP precipitation were dependent on the laser wavelength and fluence. The higher laser fluence did not always accelerate CaP precipitation on the substrate; rather, it was found that an optimal range of fluence exists for each laser wavelength. These results suggest that for efficient CaP precipitation, a suitable laser wavelength should be selected according to the optical absorption properties of the substrate material and the laser fluence should also be adjusted to induce surface heating and plasma-mediated surface reactions that are favorable for CaP precipitation.

  1. Experimental study of bone formation around a titanium rod with beta-tricalcium phosphate and prostaglandin E2 receptor agonists.

    PubMed

    Masuzawa, Michinaga; Beppu, Moroe; Ishii, Shoji; Oyake, Yuichiro; Aoki, Haruhito; Takagi, Masayuki

    2005-05-01

    beta-Tricalcium phosphate (beta-TCP) is an excellent bone-filling material that is completely absorbed by the body and replaced by autologous bone. Unfortunately, its mechanical strength is low, rendering its application at loaded regions difficult. The purpose of this study is to evaluate the histological and mechanical effects of single and combined use of beta-TCP and EP4 agonist on bone formation around a titanium rod. beta-TCP was loaded into the femoral bone marrow from the distal end of the femur, where the titanium implants were inserted, and the animals received twice-daily subcutaneous injections of EP4 agonist. Group I received the rod only and was designated the control group; group II received EP4 agonist only; group III received beta-TCP only; and group IV received both beta-TCP and EP4 agonist. Examination of decalcified specimens revealed favorable bone formation in all treatment groups compared with that in group I, with the most active bone formation seen in group IV. Mechanical evaluation revealed significant differences in maximum pull-out force compared with group I at weeks 4 and 8. There were no differences between groups II and III at either week 4 or 8, but the values seen in group IV at weeks 4 and 8 were significantly higher compared with the other groups. Combined use of beta-TCP and EP4 agonist is expected to compensate for bone defects resulting from revision total joint arthroplasty and to achieve stability at an early stage. PMID:15928895

  2. Phosphate-bonded ZrSiO4 investments added with ZrC and ZrN for casting titanium.

    PubMed

    Takahashi, Junzo; Kitahara, Kazuyoshi; Kubo, Fuminobu

    2004-09-01

    In this study, new investments for titanium were developed by adding ZrC or ZrN as chemical additive for thermal expansion to a phosphate-bonded zircon (ZrSiO4) investment. The following effects were then examined: setting expansion, residual thermal expansion, and compressive strength of these experimental investments; surface roughness of cast plate; and casting accuracy of titanium crown. For residual thermal expansion, it occurred even while investments were cooled to room temperature after firing in air atmosphere. This was due to the additives' oxidation to ZrO2--suggesting that residual thermal expansion increased with increased amount of these additives. As for casting accuracy of full-crown cast into molds at room temperature, it correlated with the ZrN content. Hence by adding the right amount of ZrN, cast titanium crowns with low surface roughness and good adaptability could be obtained. PMID:15510859

  3. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    NASA Astrophysics Data System (ADS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  4. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    NASA Astrophysics Data System (ADS)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it

  5. Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium.

    PubMed

    Hu, Hongjie; Qiao, Yuqin; Meng, Fanhao; Liu, Xuanyong; Ding, Chuanxian

    2013-01-01

    To improve the bioactivity and cytocompatibility of biomedical titanium dioxide coating, many efforts have been made to modify its surface composition and topography. Meanwhile, CaSiO(3) was commonly investigated as coating material on titanium implants for fast fixation and firm implant-bone attachment due to its demonstrated bioactivity and osteointegration. In this work, gradient TiO(2)/CaSiO(3) coating on titanium was prepared by a two-step procedure, in which porous and nanostructured TiO(2) coating on titanium was prepared by plasma electrolytic oxidation in advance, and then needle and flake-like CaSiO(3) nanocrystals were deposited on the TiO(2) coating surface by electron beam evaporation. In view of the potential clinical applications, apatite-forming ability of the TiO(2)/CaSiO(3) coating was evaluated by simulated body fluid (SBF) immersion tests, and MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. The results show that deposition of CaSiO(3) significantly enhanced the apatite-forming ability of nanostructured TiO(2) coating in SBF. Meanwhile, the MG63 cells on TiO(2)/CaSiO(3) coating show higher proliferation rate and vitality than that on TiO(2) coating. In conclusion, the porous and nanostructured TiO(2)/CaSiO(3) coating on titanium substrate with good apatite-forming ability and cytocompatibility is a potential candidate for bone tissue engineering and implant coating.

  6. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition.

    PubMed

    Chakraborty, Rajib; Sengupta, Srijan; Saha, Partha; Das, Karabi; Das, Siddhartha

    2016-12-01

    The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. PMID:27612782

  7. Comparison of apatite-coated titanium prepared by blast coating and flame spray methods--evaluation using simulated body fluid and initial histological study.

    PubMed

    Mano, Takamitsu; Ishikawa, Kunio; Harada, Koji; Umeda, Hirotsugu; Ueyama, Yoshiya

    2011-01-01

    It has previously been demonstrated that apatite may be coated on the surface of titanium (Ti) at room temperature when the titanium is blasted with apatite powder. This method is known as the blast coating (BC) method. In this study, the osteoconductivity and tissue response to Ti implants blast-coated with apatite (BC implants) were evaluated using apatite-coated Ti implants produced using the flame spraying (FS) method (FS implants) and pure Ti implants as a control. Initial evaluation using simulated body fluid demonstrated higher osteoconductivity in BC implants than in FS implants. Therefore, specimens were implanted in rat tibias for 1, 3 and 6 weeks. At one week after implantation, BC implants showed much higher bone contact ratio when compared with FS implants; the bone contact ratio of BC implants was 75.7%, while the FS and pure Ti implants had ratios of 30.8% and 5.5%, respectively. The difference in bone contact ratio between BC and FS implants decreased with implantation time and the ratios were equal after 6 weeks. In conclusion, BC implants show higher osteoconductivity than FS implants, and thus BC implants are beneficial for early fixation of implants to bone tissue. PMID:21778611

  8. In Vitro Bioactivity Study of RGD-Coated Titanium Alloy Prothesis for Revision Total Hip Arthroplasty

    PubMed Central

    Man, Zhentao; Sha, Dan; Sun, Shui; Li, Tao; Li, Bin; Yang, Guang; Wu, Changshun; Jiang, Peng

    2016-01-01

    Total hip arthroplasty (THA) is a common procedure for the treatment of end-stage hip joint disease, and the demand for revision THA will double by 2026. Ti6Al4V (Titanium, 6% Aluminum, and 4% Vanadium) is a kind of alloy commonly used to make hip prothesis. To promote the osseointegration between the prothesis and host bone is very important for the revision THA. The peptide Arg-Gly-Asp (RGD) could increase cell attachment and has been used in the vascular tissue engineering. In this study, we combined the RGD with Ti6Al4V alloy using the covalent cross-linking method to fabricate the functional Ti6Al4V alloy (FTA). The distribution of RGD oligopeptide on the FTA was even and homogeneous. The FTA scaffolds could promote mouse osteoblasts adhesion and spreading. Furthermore, the result of RT-qPCR indicated that the FTA scaffolds were more beneficial to osteogenesis, which may be due to the improvement of osteoblast adhesion by the RGD oligopeptide coated on FTA. Overall, the FTA scaffolds developed herein pave the road for designing and building more efficient prothesis for osseointegration between the host bone and prothesis in revision THA. PMID:27493968

  9. In Vitro Bioactivity Study of RGD-Coated Titanium Alloy Prothesis for Revision Total Hip Arthroplasty.

    PubMed

    Man, Zhentao; Sha, Dan; Sun, Shui; Li, Tao; Li, Bin; Yang, Guang; Zhang, Laibo; Wu, Changshun; Jiang, Peng; Han, Xiaojuan; Li, Wei

    2016-01-01

    Total hip arthroplasty (THA) is a common procedure for the treatment of end-stage hip joint disease, and the demand for revision THA will double by 2026. Ti6Al4V (Titanium, 6% Aluminum, and 4% Vanadium) is a kind of alloy commonly used to make hip prothesis. To promote the osseointegration between the prothesis and host bone is very important for the revision THA. The peptide Arg-Gly-Asp (RGD) could increase cell attachment and has been used in the vascular tissue engineering. In this study, we combined the RGD with Ti6Al4V alloy using the covalent cross-linking method to fabricate the functional Ti6Al4V alloy (FTA). The distribution of RGD oligopeptide on the FTA was even and homogeneous. The FTA scaffolds could promote mouse osteoblasts adhesion and spreading. Furthermore, the result of RT-qPCR indicated that the FTA scaffolds were more beneficial to osteogenesis, which may be due to the improvement of osteoblast adhesion by the RGD oligopeptide coated on FTA. Overall, the FTA scaffolds developed herein pave the road for designing and building more efficient prothesis for osseointegration between the host bone and prothesis in revision THA. PMID:27493968

  10. Photocatalytic activity of Ho-doped anatase titanium dioxide coated magnetite.

    PubMed

    Shi, Zhongliang; Xiang, Yongfang; Zhang, Xiaoyan; Yao, Shuhua

    2011-01-01

    A composite photocatalyst (Ho/TiO(2)/Fe(3)O(4)) with Ho-doped anatase titanium dioxide (Ho/TiO(2)) shell and a magnetite core was prepared by coating photoactive Ho/TiO(2) onto a magnetic Fe(3)O(4) core through the hydrolysis of tetrabutyltitanate (Ti(OBu)(4), TBT) in water/oil (w/o) microemulsion with precursors of Ho(NO(3))(3) and TBT in the presence of Fe(3)O(4) nanoparticles. The morphological, structural and optical properties of the prepared samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Vis diffusive reflectance spectroscopy (UV-Vis DRS). The effect of Ho ion content on the photocatalytic activity was studied. The photodegradation behavior of the prepared photocatalyst under UV and visible light was investigated in aqueous solution using methyl orange (MO) as target pollutant. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photo-oxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Ho/TiO(2) was tightly bound to Fe(3)O(4) and could be easily recovered from the medium by a simple magnetic process. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants. PMID:21208216

  11. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    PubMed

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value.

  12. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.

    PubMed

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e

    2010-12-01

    The morphology of nanomaterials significantly affects their physical, chemical, and biological properties. In the present study, nano-hydroxyapatite coatings with different morphologies were produced on the surface of a titanium-niobium shape memory alloy via a hydrothermal process. The effect of the nano-hydroxyapatite coatings on the in vitro proliferation of SaOS-2 osteoblast-like cells was investigated. Factors including crystallinity, surface micro-roughness, and surface energy of the nano-hydroxyapatite coatings were discussed. Results show that in vitro proliferation of the osteoblast-like cells was significantly enhanced on the nano-hydroxyapatite-coated titanium-niobium alloy compared to the titanium-niobium alloy without coating. The cell numbers on the nano-hydroxyapatite-coated titanium-niobium alloy changed consistently with the surface energy of the hydroxyapatite coatings. This study suggests that surface energy as a characteristic parameter influencing the in vitro proliferation of osteoblast-like cells was predominant over the crystallinity and surface micro-roughness of the nano-hydroxyapatite coatings.

  13. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.

    PubMed

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e

    2010-12-01

    The morphology of nanomaterials significantly affects their physical, chemical, and biological properties. In the present study, nano-hydroxyapatite coatings with different morphologies were produced on the surface of a titanium-niobium shape memory alloy via a hydrothermal process. The effect of the nano-hydroxyapatite coatings on the in vitro proliferation of SaOS-2 osteoblast-like cells was investigated. Factors including crystallinity, surface micro-roughness, and surface energy of the nano-hydroxyapatite coatings were discussed. Results show that in vitro proliferation of the osteoblast-like cells was significantly enhanced on the nano-hydroxyapatite-coated titanium-niobium alloy compared to the titanium-niobium alloy without coating. The cell numbers on the nano-hydroxyapatite-coated titanium-niobium alloy changed consistently with the surface energy of the hydroxyapatite coatings. This study suggests that surface energy as a characteristic parameter influencing the in vitro proliferation of osteoblast-like cells was predominant over the crystallinity and surface micro-roughness of the nano-hydroxyapatite coatings. PMID:20725978

  14. Analyses of Antibacterial Activity and Cell Compatibility of Titanium Coated with a Zr–C–N Film

    PubMed Central

    Chang, Yin-Yu; Huang, Heng-Li; Lai, Chih-Ho; Hsu, Jui-Ting; Shieh, Tzong-Ming; Wu, Aaron Yu-Jen; Chen, Chao-Ling

    2013-01-01

    Objective The purpose of this study was to verify the antibacterial performance and cell proliferation activity of zirconium (Zr)–carbon (C)–nitride (N) coatings on commercially pure titanium (Ti) with different C contents. Materials and Methods Reactive nitrogen gas (N2) with and without acetylene (C2H2) was activated by Zr plasma in a cathodic-arc evaporation system to deposit either a zirconium nitride (ZrN) or a Zr–C–N coating onto Ti plates. The bacterial activity of the coatings was evaluated against Staphylococcus aureus with the aid of SYTO9 nucleic acid staining and scanning electron microscopy (SEM). Cell compatibility, mRNA expression, and morphology related to human gingival fibroblasts (HGFs) on the coated samples were also determined by using the MTT assay, reverse transcriptase–polymerase chain reaction, and SEM. Results The Zr–C–N coating with the highest C content (21.7 at%) exhibited the lowest bacterial preservation (P<0.001). Biological responses including proliferation, gene expression, and attachment of HGF cells to ZrN and Zr–C–N coatings were comparable to those of the uncoated Ti plate. Conclusions High-C-content Zr–C–N coatings not only provide short-term antibacterial activity against S. aureus but are also biocompatible with HGF cells. PMID:23431391

  15. A titanium plasma-sprayed cup with and without hydroxyapatite-coating: a randomised radiostereometric study of stability and osseointegration.

    PubMed

    Munzinger, Urs; Guggi, Thomas; Kaptein, Bart; Persoon, Marion; Valstar, Edward; Doets, H Cornelis

    2013-01-01

    We present a prospective, two-centre radiostereometric analysis (RSA) regarding the stability of a flattened pole titanium press-fit cup (EP-FIT PLUS), and whether additional hydroxyapatite coating leads to faster bone ingrowth into the porous coating. Forty-two postmenopausal female patients (44 hips) undergoing total hip arthroplasty for primary osteoarthritis, selected to avoid hormonal factors influencing bone metabolism, were randomised to receive this cup with a titanium-plasma-sprayed surface with or without an additional hydroxyapatite coating. RSA was used to measure cup translation and rotation along three cardinal axes with respect to the host bone at the following time points: immediately postoperatively, at 6 weeks, and at 3, 6, 12, and 24 months. The most pronounced translation was proximal (0.11 mm) and posterior tilt (-0.27°). No difference in translation and rotation could be detected between the two groups. With the exception of one cup with an isolated radiolucent line <2 mm in zone 1, all cups showed complete osseointegration on conventional radiographs. The flattened pole cup provided excellent early stability and no advantage could be detected with additional hydroxyapatite coating.

  16. Ultrafine-grained commercially pure titanium and microstructure response to hydroxyapatite coating methods

    NASA Astrophysics Data System (ADS)

    Calvert, Kayla L.

    Commercially pure titanium (cp-Ti) is an ideal biomaterial as it does not evoke an inflammatory foreign body response in the body. However, the low strength of cp-Ti prevents the use in most orthopaedic load bearing applications. Therefore, many metal orthopaedic implants are commonly made of higher strength metal alloys that are less biocompatible. Nanostructured materials exhibit superior mechanical properties compared to their conventional grain sized counterparts. Severe plastic deformation (SPD) of metals has been shown to produce nanostructured materials. SPD by machining is a single-step deformation route that refines the grain microstructure, to develop an ultrafine grained (UFG) microstructure. UFG cp-Ti strips were developed with induced shear strains of up to 4.0 using a machining-based process. Both Vickers microhardness evaluation and microstructural analysis were used to characterize the as-received (annealed) and machined states. For induced shear strains between 1.9 and 4.0 in grade 2 cp-Ti the hardness was increased from 188 +/- 7 kg/mm2 in the as-received state to between 244 +/- 6 and 264 +/- 12 kg/mm 2 in the as-machined state, corresponding to an increase in hardness between 31 and 41%. The microstructural analysis revealed a grain size reduction from 34 +/- 11 mum in the as-received state to ˜ 100 nm for machined grade 2-Ti. A complete annealing study suggested that recovery/recrystallization occurs between 300 and 400°C, with a significant hardness drop between 400 and 600°C, while grain growth is continuous, starting at the lowest annealing temperature of 300°C. Hydroxyapatite (HA) is commonly applied to orthopaedic devices to promote bone growth. Machined Ti strips were coated with HA using conventional plasma spray as well as two alternative low-temperature application routes (sol-gel with calcination and anodization with hydrothermal treatment) to evaluate the thermal influence on the UFG-Ti substrate. Plasma spray produced a thick

  17. A new phosphate of trivalent titanium Mg 3Ti 4P 6O 24

    NASA Astrophysics Data System (ADS)

    Benmoussa, A.; Borel, M. M.; Grandin, A.; Leclaire, A.; Raveau, B.

    1990-02-01

    A new Ti(III) phosphate, Mg 3Ti 4P 6O 24, has been isolated; its structure has been determined from a single-crystal X-ray diffraction study. The triclinic cell, space group P¯1, is characterized by the following parameters: a = 6.9311(8)Å, b = 7.9616(5)Å, c = 9.4299(14)Å, α = 67.614(9)°, β = 69.348(12)°, γ = 79.327(8)°. The framework consists of (Ti, Mg)O 6 isolated octahedra, Ti 2O 10 and (Ti, Mg) 2O 10 octahedral units sharing their corners and linked via PO 4 tetrahedra. The M 2O 10 units are formed of two edge-sharing MO 6 octahedra. The remaining Mg are linked to five oxygen atoms which delimit a bipyramid. The relationships between this structure and those of vanadophosphates are studied.

  18. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells

    PubMed Central

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu

    2016-01-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium–yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium–yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200–500 nm in the long axis and 100–300 nm in the short axis, and a Ca/P atomic ratio of 1.5–1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor. PMID:25917827

  19. Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V.

    PubMed

    Zhou, Huan; Kong, Shiqin; Pan, Yan; Zhang, Zhiguo; Deng, Linhong

    2015-11-01

    Strontium has been shown to be a beneficial dopant to calcium phosphates when incorporated at nontoxic level. In the present work we studied the possibility of solution derived doping strontium into calcium phosphate coatings on titanium alloy Ti6Al4V based implants by a recently reported microwave-assisted method. By using this method strontium doped calcium phosphate nuclei were deposited to pretreated titanium alloy surface dot by dot to compose a crack-free coating layer. The presence of strontium in solution led to reduced roughness of the coating and finer nucleus size formed. In vitro study found that proliferation and differentiation of osteoblast cells seeded on the coating were influenced by strontium content in coatings, showing an increasing followed by a decreasing behavior with increasing substitution of calcium by strontium. It is suggested that this new microwave-assisted strontium doped calcium phosphate coatings may have great potential in implant modification.

  20. Cathodic delaminations of poly(phenyl ether ether ketone) (PEEK) coatings overlaid on zinc phosphate-deposited steels

    SciTech Connect

    Sugama, T.; Carciello, N.R. . Dept. of Applied Science)

    1993-12-10

    The melt-crystallized poly(phenyl) ether ether ketone (PEEK) polymer was overlaid on crystalline zinc phosphate (Zn [center dot] Ph) conversion coating-deposited and nondeposited cold-rolled steels at 400 C in air or in N[sub 2] environments. The ability of these coatings systems to protect the steel against corrosion was evaluated from the rate of cathodic delamination of the coating layer from the steel. Because the cathodic reaction, H[sub 2]O + 1/20[sub 2] + 2e[sup [minus

  1. Experimental Comparison of Calcium Sulfate (CaSO(4)) Scale Deposition on Coated Carbon Steel and Titanium Surfaces

    NASA Astrophysics Data System (ADS)

    Al-Otaibi, Dhawi AbdulRahman

    Calcium Sulfate (CaSO4) deposit reduces heat exchange in heat transfer equipment which adversely affects the equipment performance and plant production. This experimental study was conducted by using the Rotating Cylinder Electrode (RCE) equipment available in the university's Center for Engineering Research (CER/RI) to study and compare the effect of solution hydrodynamics on Calcium Sulfate (CaSO4) scale deposition on coated carbon steel and titanium surfaces. In addition, the Scanning Electron Microscopic was used to examine the morphology and distribution of Calcium Sulfate (CaSO 4) crystals deposited on titanium metal surfaces. In this study, the rotational speed was varied from 100 to 2000 RPM to study the behavior of Calcium Sulfate (CaSO4) accumulation on both materials. Based on the experimental results, Calcium Sulfate (CaSO4) scale obtained in the present study was almost constant on coated carbon steel in which the rate of scale deposition is equal to the rate of scale removal. However, the deposition of Calcium Sulfate (CaSO4) observed on titanium material was increased as the speed increased.

  2. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  3. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    SciTech Connect

    Xing, Weiyi; Zhang, Ping; Song, Lei; Wang, Xin; Hu, Yuan

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  4. Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, Honglei; Qiao, Haixia; Nian, Xiaofeng; Zhang, Xuejiao; Wang, Wendong; Zhang, Xiaoyun; Chang, Xiaotong; Han, Shuguang; Pang, Xiaofeng

    2015-12-01

    This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO3. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si4+ and Zn2+ were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn2+ and Si4+). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications.

  5. Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bai, Long; Hang, Ruiqiang; Gao, Ang; Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin; Zhao, Lingzhou; Chu, Paul K.

    2015-11-01

    Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium-silver (Ti-Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti-Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti-Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti-Ag coatings.

  6. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    NASA Astrophysics Data System (ADS)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  7. Lithium Iron Phosphate Powders and Coatings Obtained by Means of Inductively Coupled Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Major, K.; Veilleux, J.; Brisard, G.

    2016-01-01

    Lithium-ion batteries have high energy efficiency and good cycling life and are considered as one of the best energy storage device for hybrid and/or electrical vehicle. Still, several problems must be solved prior to a broad adoption by the automotive industry: energy density, safety, and costs. To enhance both energy density and safety, the current study aims at depositing binder-free cathode materials using inductively coupled thermal plasma. In a first step, lithium iron phosphate (LiFePO4) powders are synthesized in an inductively coupled thermal plasma reactor and dispersed in a conventional polyvinylidene fluoride (PVDF) binder. Then, binder-free LiFePO4 coatings are directly deposited onto nickel current collectors by solution precursor plasma spraying (SPPS). The morphology, microstructure, and composition of the synthesized LiFePO4 powders and coatings are fully characterized by electronic microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy (XPS). Quantifying Li with XPS requires the substitution of iron with manganese in the SPPS precursors (LiMPO4, where M = Fe or Mn). The plasma-derived cathodes (with and without PVDF binder) are assembled in button cells and tested. Under optimized plasma conditions, cyclic voltammetry shows that the electrochemical reversibility of plasma-derived cathodes is improved over that of conventional sol-gel-derived LiFePO4 cathodes.

  8. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    PubMed

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants. PMID:26510320

  9. Nanoporous aluminum oxide membranes coated with atomic layer deposition-grown titanium dioxide for biomedical applications: An in vitro evaluation

    DOE PAGES

    Kumar, Girish; Fu, Wujun; Zhang, Qin Fen; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L.; Narayan, Roger J.; Petrochenko, Peter E.

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amountmore » of initial protein adsorption via the micro bicinchoninic acid (micro-BOA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TOPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. In conclusion, the results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.« less

  10. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    PubMed

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.

  11. Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and (Ti1-xZrx)N coating on titanium

    PubMed Central

    Park, Sang-Won; Lee, Kwangmin; Kang, In-Chol; Kim, Hyun-Seung

    2015-01-01

    PURPOSE The aim of this study was to evaluate antibacterial activity and osteoblast-like cell viability according to the ratio of titanium nitride and zirconium nitride coating on commercially pure titanium using an arc ion plating system. MATERIALS AND METHODS Polished titanium surfaces were used as controls. Surface topography was observed by scanning electron microscopy, and surface roughness was measured using a two-dimensional contact stylus profilometer. Antibacterial activity was evaluated against Streptococcus mutans and Porphyromonas gingivalis with the colony-forming unit assay. Cell compatibility, mRNA expression, and morphology related to human osteoblast-like cells (MG-63) on the coated specimens were determined by the XTT assay and reverse transcriptase-polymerase chain reaction. RESULTS The number of S. mutans colonies on the TiN, ZrN and (Ti1-xZrx)N coated surface decreased significantly compared to those on the non-coated titanium surface (P<0.05). CONCLUSION The number of P. gingivalis colonies on all surfaces showed no significant differences. TiN, ZrN and (Ti1-xZrx)N coated titanium showed antibacterial activity against S. mutans related to initial biofilm formation but not P. gingivalis associated with advanced periimplantitis, and did not influence osteoblast-like cell viability. PMID:25932316

  12. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    PubMed

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. PMID:26478387

  13. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    PubMed

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure.

  14. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate

  15. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    PubMed Central

    Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2016-01-01

    Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite

  16. Detection of polynucleotide kinase activity by using a gold electrode modified with magnetic microspheres coated with titanium dioxide nanoparticles and a DNA dendrimer.

    PubMed

    Wang, Guangfeng; Chen, Ling; He, Xiuping; Zhu, Yanhong; Zhang, Xiaojun

    2014-08-21

    In this paper, we have designed a signal amplified method for the electrochemical determination of polynucleotide kinase activity. It is based on (a) the peroxidase-like activity of magnetite microspheres (MNPs), (b) the specific recognition capabilities of titanium dioxide (TiO2) with the phosphate groups of the capture probe and (c) the DNA dendrimer structure for signal amplification. MNPs coated with TiO2 (TMNPs) were prepared and characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. TMNP-DNA dendrimers were formed by the hybridization of captured nucleic acids with a link probe. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out to study the electrocatalytic process. The formation of the TMNP-DNA dendrimer structures was related to the phosphorylated capture probe and further to the activity of polynucleotide kinase, which was the base of the polynucleotide kinase detection. The TMNP-DNA dendrimer based biosensor showed sensitive detection of polynucleotide kinase with a satisfying result; a low detection of 0.003 U mL(-1) and wide linear range of 0.01 to 30 U mL(-1) were achieved. Additionally, the present TMNP-DNA dendrimer based biosensor also demonstrated excellent selectivity, stability and reproducibility. PMID:24918936

  17. Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium.

    PubMed

    Shen, Xinkun; Hu, Yan; Xu, Gaoqiang; Chen, Weizhen; Xu, Kui; Ran, Qichun; Ma, Pingping; Zhang, Yarong; Li, Jinghua; Cai, Kaiyong

    2014-09-24

    To improve the biological performance of titanium implant, a series of Zn-incorporated coatings were fabricated on the microrough titanium (Micro-Ti) via sol-gel method by spin-coating technique. The successful fabrication of the coating was verified by combined techniques of scanning electron microscopy, surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy, and water contact angle measurements. The incorporated zinc existed as ZnO, which released Zn ions in a sustained manner. The Zn-incorporated samples (Ti-Zn0.08, Ti-Zn0.16, and Ti-Zn0.24) efficiently inhibited the adhesion of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. The in vitro evaluations including cell activity, alkaline phosphatase (ALP), mineralization, osteogenic genes expressions (Runx2, ALP, OPG, Col I, OPN, and OC), and tartrate-resistant acid phosphatase, confirmed that Ti-Zn0.16 sample was the optimal one to regulate the proliferation or differentiation for both osteoblasts and osteoclasts. More importantly, in vivo evaluations including Micro-CT analysis, push-out test, and histological observations verified that Ti-Zn0.16 implants could efficiently promote new bone formation after implantation for 4 and 12 weeks, respectively. The resulting material thus has potential application in orthopedic field.

  18. Novel multifunctional titania-silica-lanthanum phosphate nanocomposite coatings through an all aqueous sol-gel process.

    PubMed

    Smitha, Venu Sreekala; Jyothi, Chembolli Kunhatta; Peer, Mohamed A; Pillai, Saju; Warrier, Krishna Gopakumar

    2013-04-01

    A novel nanocomposite coating containing titania, silica and lanthanum phosphate prepared through an all aqueous sol-gel route exhibits excellent self-cleaning ability arising from the synergistic effect of the constituents in the nanocomposite. A highly stable titania-silica-lanthanum phosphate nanocomposite sol having particle size in the range of 30-50 nm has been synthesized starting from a titanyl sulphate precursor, which was further used for the development of photocatalytically active composite coatings on glass. The coatings prepared by the dip coating technique as well as the nanocomposite powders are heat treated and characterized further for their morphology and multifunctionality. The nanocomposite containing 1.5 wt% LaPO4 has shown a surface area as high as 138 m(2) g(-1) and a methylene blue degradation efficiency of 94% in two hours of UV exposure. The composite coating has shown very good homogeneity evidenced by transparency as high as 99.5% and low wetting behaviour. The present novel approach for energy conserving, aqueous derived, self-cleaning coatings may be suitable for large scale industrial applications.

  19. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition.

    PubMed

    Qiu, Xun; Wan, Peng; Tan, Lili; Fan, Xinmin; Yang, Ke

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca-P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair.

  20. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    PubMed

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  1. Indigenous hydroxyapatite coated and bioactive glass coated titanium dental implant system – Fabrication and application in humans

    PubMed Central

    Mistry, Surajit; Kundu, Debabrata; Datta, Someswar; Basu, Debabrata; Soundrapandian, Chidambaram

    2011-01-01

    Background: The use of different bioactive materials as coating on dental implant to restore tooth function is a growing trend in modern Dentistry. In the present study, hydroxyapatite and the bioactive glass-coated implants were evaluated for their behavior in osseous tissue following implantation in 14 patients. Materials and Methods: Bioactive glass and hydroxyapatite formulated and prepared for coating on Ti-6Al-4V alloy. Hydroxyapatite coating was applied on the implant surface by air plasma spray technique and bioactive glass coating was applied by vitreous enameling technique. Their outcome was assessed after 6 months in vivo study in human. Results: Hydroxyapatite and bioactive glass coating materials were nontoxic and biocompatible. Uneventful healing was observed with both types of implants. Conclusion: The results showed bioactive glass is a good alternative coating material for dental implant. PMID:22028507

  2. In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application

    PubMed Central

    Tsou, Hsi-Kai; Chi, Meng-Hui; Hung, Yi-Wen; Chung, Chi-Jen; He, Ju-Liang

    2015-01-01

    Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on a PEEK substrate. This PEEK with TiO2 coating (TiO2/PEEK) was implanted into the femurs of New Zealand white male rabbits to evaluate its in vivo performance by the push-out test and histological observation. Analytical results show that AIP can prepare TiO2 coatings on bullet-shaped PEEK substrates as implant materials. After prolonged implantation in rabbits, no signs of inflammation existed. Newly regenerated bone formed more prominently with the TiO2/PEEK implant by histological observation. The shear strength of the bone/implant interface increases as implantation period increases. Most importantly, bone bonding performance of the TiO2/PEEK implant was superior to that of bare PEEK. The rutile-TiO2 coatings achieved better osseointegration than the anatase-TiO2 coatings. Therefore, AIP-TiO2 can serve as a novel surface modification method on PEEK for spinal interbody fusion cages. PMID:26504800

  3. In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application.

    PubMed

    Tsou, Hsi-Kai; Chi, Meng-Hui; Hung, Yi-Wen; Chung, Chi-Jen; He, Ju-Liang

    2015-01-01

    Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on a PEEK substrate. This PEEK with TiO2 coating (TiO2/PEEK) was implanted into the femurs of New Zealand white male rabbits to evaluate its in vivo performance by the push-out test and histological observation. Analytical results show that AIP can prepare TiO2 coatings on bullet-shaped PEEK substrates as implant materials. After prolonged implantation in rabbits, no signs of inflammation existed. Newly regenerated bone formed more prominently with the TiO2/PEEK implant by histological observation. The shear strength of the bone/implant interface increases as implantation period increases. Most importantly, bone bonding performance of the TiO2/PEEK implant was superior to that of bare PEEK. The rutile-TiO2 coatings achieved better osseointegration than the anatase-TiO2 coatings. Therefore, AIP-TiO2 can serve as a novel surface modification method on PEEK for spinal interbody fusion cages. PMID:26504800

  4. The Effect of Fiber Coating on the Mechanical Behavior of Silicon Carbide Fiber-Reinforced Titanium Aluminide Matrix Composites. Ph.D. Thesis

    SciTech Connect

    Chiu, H.P.

    1994-01-01

    Fiber coating is known to improve the interfacial properties of SiC fiber-reinforced titanium aluminide matrix composites. The effectiveness of several potential coating systems is investigated using criteria such as interfacial compatibility, thermal stability, thermal residual stress, interfacial bond strength, and transverse fracture characteristics. The Ag/Ta coating was shown to be the most promising to satisfy the requirements for a strong, tough, and damage-tolerant SiC fiber-reinforced titanium aluminide matrix composite. The Ag/Ta-coated SiC fiber-reinforced titanium aluminide matrix composites was then specifically selected as a model material. The mechanical properties such as tensile, flexural, creep, and fracture resistance under static and cyclic loading in both longitudinal and transverse directions were determined. The damage mechanisms were also characterized and compared with those for uncoated composites. The results indicate that the Ag/Ta coating significantly enhances the interfacial bond strength and improves the matrix morphology in the vicinity of interfaces, leading to much improved transverse tensile and flexural properties without degrading the longitudinal strength. The Ag/Ta coating also facilitates the load-transfer efficiency during the primary creep stage, and therefore reduces the transient strain and accordingly prolongs the creep rupture life. The effectiveness and stability of Ag/Ta coating is dependent on the time and temperature of thermal exposure. On the other hand, the stronger interfacial bond strength is also responsible for the worse fracture resistance behavior under both static and fatigue loading. This study validates the feasibility of applying a multilayer coating onto SiC fibers in titanium aluminide and titanium alloy matrix composites. The elimination of a reaction zone and the creation of a benign ductile beta-Ti layer have been proved to be vital in improving the mechanical behavior of the composites.

  5. Effect of ZrN coating by magnetron sputtering and sol-gel processed silica coating on titanium/porcelain interface bond strength.

    PubMed

    Xia, Yang; Zhou, Shu; Zhang, Feimin; Gu, Ning

    2011-02-01

    In this study, a coating technique was applied to improve the bond strength of titanium (Ti) porcelain. ZrN coating was prepared by magnetron sputtering, and silica coating was processed by a sol-gel method. The treated surfaces of the specimens were analyzed by X-ray diffraction, and the Ti/porcelain interface was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy. The coated specimens appeared fully coherent to the Ti substrate. The fractured bonding surface was also investigated by SEM. The residual porcelain on the metal surface could be observed in the ZrN group and silica group, but there was no obvious porcelain remaining in the control group. A three-point-bending test showed that the bonding strength of the ZrN group (45.99 ± 0.65 MPa) was higher than the silica group (37.77 ± 0.78 MPa) (P < 0.001) and control group (29.48 ± 1.01 MPa) (P < 0.001), while that of the silica group was significantly higher than the control group (P < 0.001). In conclusion, conditioning the ceramic surface with ZrN and silica coatings resulted in a stronger Ti/porcelain bond. ZrN coating by magnetron sputtering was a more effective way to improve the bond strength between Ti and porcelain compared with sol-gel processed silica coating in this study. PMID:21181240

  6. Biodegradable Calcium Phosphate Nanoparticle with Lipid Coating for Systemic siRNA Delivery

    PubMed Central

    Li, Jun; Chen, Yun-Ching; Tseng, Yu-Cheng; Huang, Leaf

    2009-01-01

    A lipid coated calcium phosphate (LCP) nanoparticle (NP) formulation was developed for efficient delivery of small interfering RNA (siRNA) to a xenograft tumor model by intravenous administration. Based on the previous formulation, liposome-polycation-DNA (LPD), which was DNA-protamine complex wrapped by cationic liposome followed by post-insertion of PEG, LCP was similar to LPD NP except that the core was replaced by a biodegradable nano-sized calcium-phosphate precipitate prepared by using water-in-oil micro-emulsions in which siRNA was entrapped. We hypothesized that after entering the cells, LCP would de-assemble at low pH in the endosome, which would cause endosome swelling and bursting to release the entrapped siRNA. Such a mechanism was demonstrated by the increase of intracellular Ca2+ concentration as shown by using a calcium specific dye Fura-2. The LCP NP was further modified by post-insertion of polyethylene glycol (PEG) with or without anisamide, a sigma-1 receptor ligand for systemic administration. Luciferase siRNA was used to evaluate the gene silencing effect in H-460 cells which were stably transduced with a luciferase gene. The anisamide modified LCP NP silenced about 70% and 50% of luciferase activity for the tumor cells in culture and those grown in a xenograft model, respectively. The un-targeted NP showed a very low silencing effect. The new formulation improved the in vitro silencing effect 3–4 folds compared to the previous LPD formulation, but had a negligible immunotoxicity. PMID:19919845

  7. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    NASA Astrophysics Data System (ADS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-08-01

    An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  8. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo.

  9. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    PubMed

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo. PMID:25293870

  10. Blood compatibility of zinc-calcium phosphate conversion coating on Mg-1.33Li-0.6Ca alloy

    NASA Astrophysics Data System (ADS)

    Zou, Yu-Hong; Zeng, Rong-Chang; Wang, Qing-Zhao; Liu, Li-Jun; Xu, Qian-Qian; Wang, Chuang; Liu, Zhi-Wei

    2016-09-01

    Magnesium alloys as a new class of biomaterials possess biodegradability and biocompatibility in comparison with currently used metal implants. However, their rapid corrosion rates are necessary to be manipulated by appropriate coatings. In this paper, a new attempt was used to develop a zinc-calcium phosphate (Zn-Ca-P) conversion coating on Mg-1.33Li-0.6Ca alloys to increase the biocompatibility and improve the corrosion resistance. In vitro blood biocompatibility of the alloy with and without the Zn-Ca-P coating was investigated to determine its suitability as a degradable medical biomaterial. Blood biocompatibility was assessed from the hemolysis test, the dynamic cruor time test, blood cell count and SEM observation of the platelet adhesion to membrane surface. The results showed that the Zn-Ca-P coating on Mg-1.33Li-0.6Ca alloys had good blood compatibility, which is in accordance with the requirements for medical biomaterials.

  11. Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

    PubMed Central

    Zemek, Josef; Neykova, Neda; Demianchuk, Roman; Chánová, Eliška Mázl; Šlouf, Miroslav; Houska, Milan; Rypáček, František

    2015-01-01

    Summary Composite materials based on a titanium support and a thin, alginate hydrogel could be used in bone tissue engineering as a scaffold material that provides biologically active molecules. The main objective of this contribution is to characterize the activation and the functionalization of titanium surfaces by the covalent immobilization of anchoring layers of self-assembled bisphosphonate neridronate monolayers and polymer films of 3-aminopropyltriethoxysilane and biomimetic poly(dopamine). These were further used to bind a bio-functional alginate coating. The success of the titanium surface activation, anchoring layer formation and alginate immobilization, as well as the stability upon immersion under physiological-like conditions, are demonstrated by different surface sensitive techniques such as spectroscopic ellipsometry, infrared reflection–absorption spectroscopy and X-ray photoelectron spectroscopy. The changes in morphology and the established continuity of the layers are examined by scanning electron microscopy, surface profilometry and atomic force microscopy. The changes in hydrophilicity after each modification step are further examined by contact angle goniometry. PMID:25821702

  12. Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater.

    PubMed

    Cui, Guirong; Liu, Min; Chen, Ying; Zhang, Wei; Zhao, Jiangqi

    2016-12-10

    Ferric hydroxide-coated cellulose nanofibers (Fe(OH)3@CNFs) were synthesized for the removal of phosphate from wastewater. The maximum sorption capacity of Fe(OH)3@CNFs for phosphate was estimated to be 142.86mg/g, demonstrating a superior adsorption capacity compared with many adsorbents reported in the literature. Batch experiments were performed to investigate various adsorption conditions on the adsorption performance. It was discovered that an increased solution ionic strength would remarkably enhance the adsorption. Additionally, Fe(OH)3@CNFs achieved a favorable adsorption performance over a wide range of pH conditions, which could result in operation cost savings. The adsorption of phosphate can be described by both the Langmuir isotherm and pseudo-second-order models. The phosphate adsorbed by Fe(OH)3@CNFs was characterized using XPS, SEM, SBET and EDS. The data obtained revealed that the electrostatic attraction and ligand exchange constituted the major forces in phosphate adsorption. This work suggested that Fe(OH)3@CNFs are a promising adsorbent for phosphate removal. PMID:27577894

  13. Interfacial interactions of poly(ether ketone ketone) polymer coatings onto oxide-free phosphate films on an aluminum surface

    SciTech Connect

    Asunskis, A. L.; Sherwood, P. M. A.

    2007-07-15

    This article continues a series of papers that shows how thin (10 nm or less) oxide-free phosphate films can be formed on a number of metals. The films formed have potential as corrosion resistant films. Previous papers have shown that it is possible to extend the range of the surface coatings that can be formed by placing a thin polymer layer over the phosphate layer. In this work it is shown how the water insoluble polymer poly(ether ketone ketone) (PEKK) can be placed over a thin oxide-free phosphate film on aluminum metal. The surface and the interfaces involved were studied by valence band and core level x-ray photoelectron spectroscopy. Difference spectra in the valence band region were used to show that there is a chemical interaction between the PEKK and phosphate thin films on the aluminum metal. Three different phosphate film compositions were studied using different phosphorous containing acids, H{sub 3}PO{sub 4}, H{sub 3}PO{sub 3}, and H{sub 3}PO{sub 2}. This type of interaction illustrates the potential of phosphates to act as adhesion promoters. The valence band spectra are interpreted by calculations.

  14. Silica-polyethylene glycol hybrids synthesized by sol-gel: Biocompatibility improvement of titanium implants by coating.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Ferrara, C; Mustarelli, P

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol-gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol-gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO2/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. PMID:26117745

  15. Silica-polyethylene glycol hybrids synthesized by sol-gel: Biocompatibility improvement of titanium implants by coating.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Ferrara, C; Mustarelli, P

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol-gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol-gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO2/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible.

  16. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications

    NASA Astrophysics Data System (ADS)

    Stefanic, Martin; Krnel, Kristoffer; Pribosic, Irena; Kosmac, Tomaz

    2012-03-01

    Octacalcium phosphate (OCP) coatings on zirconia oral implants have a great potential to improve the osseointegration of already existing ceramic implants, owing to high osteoconductive characteristics of OCP and its possibility of use as a drug delivery system. Such OCP coatings can be prepared with a simple two-step biomimetic procedure investigated in our study. In the first step, zirconia discs were immersed into the solution with a pH 7.4 and after 1 h of soaking a thin nanostructured calcium phosphate (Ca-P) layer was precipitated on the ceramic substrate via three stages: (i) precipitation of an amorphous Ca-P; (ii) precipitation of the OCP; and (iii) the transformation of the OCP to apatite. This Ca-P layer later served as a template for the rapid deposition of a thicker OCP coating in the second step of the synthesis where the substrate was immersed into the solution with pH 7.0. The main benefits of the method are a relatively quick synthesis, simplicity and a good reproducibility. Moreover, the coatings show good tensile adhesion strength according to the tape tests (ASTM D-3359). In addition, mild physiological conditions of the synthesis may allow incorporation of biologically active molecules in the coating.

  17. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    NASA Astrophysics Data System (ADS)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  18. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Carciello, Neal R.

    1987-01-01

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80.degree. C. The polyelectrolyte or the precoat is present in about 0.5-5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150.degree. C. to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2.times.10.sup.5 gave improved ductility modulus effect.

  19. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Carciello, N.R.

    1987-04-21

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80 C. The polyelectrolyte or the precoat is present in about 0.5--5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150 C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 [times] 10[sup 5] gave improved ductility modulus effect. 5 figs.

  20. A technique to remove a well-fixed titanium-coated RM acetabular cup in revision hip arthroplasty.

    PubMed

    Judas, Fernando M J; Dias, Rui F; Lucas, Francisco M

    2011-01-01

    A major concern during revision hip arthroplasty is acetabular bone loss and bleeding during the extraction of well-fixed cementless acetabular cup, because no interface exists between the host bone and the cup. Forceful removal of such component using curved gouges and osteotomes often leads to extended bone loss and compromises reimplantation of a new socket. In the following case report, we removed a well-fixed polyethylene titanium-coated RM acetabular cup with 20 years of follow-up, by significant wear of the polyethylene layer. The isoelastic femoral stem was also removed by mechanical failure. We report a technique for removal of the cementless acetabular cup using powered acetabular reamers. The RM cup was sequentially reamed and when the polyethylene layer was thin enough, the remaining cup was removed easily by hand tools. The acetabular bone stock is preserved and the risks of bone fractures and bleeding are minimized. To our knowledge, these principles were applied only in cemented cups. We have used this technique in 10 cases with excellent results and no complications were noted. This is a simple, reproducible, non-costly, non-timing consuming, safe and successful technique to remove well-fixed titanium-coated RM acetabular cups.

  1. Improved integration potential for calcium-phosphate-coated implants after glow-discharge and water-storage.

    PubMed

    Sendax, V I; Baier, R E

    1992-01-01

    Laboratory and clinical data support the conclusion that Radio-Frequency-Glow-Discharge-Treatment (RFGDT) of calcium-phosphate-coated implants can accelerate their functional integration with bone at host sites. In addition to the benefits of surface cleaning and activation associated with RFGDT, a period of water-storage prior to implantation also seems to be beneficial in eluting easily solubilized alkaline calcium components.

  2. Quantification of Osseointegration of Plasma-Polymer Coated Titanium Alloyed Implants by means of Microcomputed Tomography versus Histomorphometry

    PubMed Central

    Gabler, Carolin; Zietz, Carmen; Bieck, Richard; Göhler, Rebecca; Lindner, Tobias; Haenle, Maximilian; Meichsner, Jürgen; Testrich, Holger; Nowottnick, Mathias; Frerich, Bernhard

    2015-01-01

    A common method to derive both qualitative and quantitative data to evaluate osseointegration of implants is histomorphometry. The present study describes a new image reconstruction algorithm comparing the results of bone-to-implant contact (BIC) evaluated by means of µCT with histomorphometry data. Custom-made conical titanium alloyed (Ti6Al4V) implants were inserted in the distal tibial bone of female Sprague-Dawley rats. Different surface configurations were examined: Ti6Al4V implants with plasma-polymerized allylamine (PPAAm) coating and plasma-polymerized ethylenediamine (PPEDA) coating as well as implants without surface coating. After six weeks postoperatively, tibiae were explanted and BIC was determined by µCT (3D) and afterwards by histomorphometry (2D). In comparison to uncoated Ti6Al4V implants demonstrating low BIC of 32.4% (histomorphometry) and 51.3% (µCT), PPAAm and PPEDA coated implants showed a nonsignificant increase in BIC (histomorphometry: 45.7% and 53.5% and µCT: 51.8% and 62.0%, resp.). Mean BIC calculated by µCT was higher for all surface configurations compared to BIC detected by histomorphometry. Overall, a high correlation coefficient of 0.70 (p < 0.002) was found between 3D and 2D quantification of BIC. The μCT analysis seems to be suitable as a nondestructive and accurate 3D imaging method for the evaluation of the bone-implant interface. PMID:26064874

  3. Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal.

    PubMed

    Mishra, Sandeep K; Kannan, S

    2014-12-01

    Mechanical properties of orthopedic implants play important role in the regeneration and cell growth of the diseased body part. The present investigation was aimed at the development of a biocompatible, biodegradable and mechanically stable coating of chitosan (CS)-polyvinyl alcohol (PVA) polymer composite on Titanium (Ti) metal by employing a simple methodology at ambient conditions. The PVA to CS concentrations were maintained in fixed ratios of 1:4 weight/weight (w/w) for the development of all the coatings on Ti metal. Four different concentrations of the polymers ranging in the order of 5%, 10%, 15% and 20% weight/volume (w/v) solution of CS were selected in an aim to test their efficacy on mechanical stability. The results obtained from the analysis confirmed considerable improvement in mechanical properties of the composite polymer film comprising CS and PVA on Ti metal with the four different concentrations showing variable elastic modulus and hardness. The difference in mechanical properties of both dehydrated and hydrated coatings demonstrates the effective and efficient shielding of high mechanical properties of Ti metal in physiological conditions. The scratch tests performed on the coated specimens also indicated a good adhesion of the polymer on the Ti metal surface.

  4. Surface Modifications of Titanium Implants by Multilayer Bioactive Coatings with Drug Delivery Potential: Antimicrobial, Biological, and Drug Release Studies

    NASA Astrophysics Data System (ADS)

    Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza

    2016-04-01

    Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.

  5. Quantification of osseointegration of plasma-polymer coated titanium alloyed implants by means of microcomputed tomography versus histomorphometry.

    PubMed

    Gabler, Carolin; Zietz, Carmen; Bieck, Richard; Göhler, Rebecca; Lindner, Tobias; Haenle, Maximilian; Finke, Birgit; Meichsner, Jürgen; Testrich, Holger; Nowottnick, Mathias; Frerich, Bernhard; Bader, Rainer

    2015-01-01

    A common method to derive both qualitative and quantitative data to evaluate osseointegration of implants is histomorphometry. The present study describes a new image reconstruction algorithm comparing the results of bone-to-implant contact (BIC) evaluated by means of µCT with histomorphometry data. Custom-made conical titanium alloyed (Ti6Al4V) implants were inserted in the distal tibial bone of female Sprague-Dawley rats. Different surface configurations were examined: Ti6Al4V implants with plasma-polymerized allylamine (PPAAm) coating and plasma-polymerized ethylenediamine (PPEDA) coating as well as implants without surface coating. After six weeks postoperatively, tibiae were explanted and BIC was determined by µCT (3D) and afterwards by histomorphometry (2D). In comparison to uncoated Ti6Al4V implants demonstrating low BIC of 32.4% (histomorphometry) and 51.3% (µCT), PPAAm and PPEDA coated implants showed a nonsignificant increase in BIC (histomorphometry: 45.7% and 53.5% and µCT: 51.8% and 62.0%, resp.). Mean BIC calculated by µCT was higher for all surface configurations compared to BIC detected by histomorphometry. Overall, a high correlation coefficient of 0.70 (p < 0.002) was found between 3D and 2D quantification of BIC. The μCT analysis seems to be suitable as a nondestructive and accurate 3D imaging method for the evaluation of the bone-implant interface.

  6. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    NASA Astrophysics Data System (ADS)

    Chen, Huiqing; Li, Xiaojing; Zhao, Yuancong; Li, Jingan; Chen, Jiang; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2015-08-01

    A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  7. Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering.

    PubMed

    Stuart, Bryan W; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M

    2015-12-16

    Quinternary phosphate-based glasses of up to 2.67 μm, deposited by radio-frequency magnetron sputtering, were degraded in distilled water and phosphate-buffered saline (PBS) to investigate their degradation characteristics. Magnetron-sputtered coatings have been structurally compared to their compositionally equivalent melt-quenched bulk glass counterparts. The coatings were found to have structurally variable surfaces to melt-quenched glass such that the respective bridging oxygen to nonbridging oxygen bonds were 34.2% to 65.8% versus 20.5% to 79.5%, forming metaphosphate (PO3)(-) (Q(2)) versus less soluble (P2O7)(4-) (Q(1)) and (PO4)(3-) (Q(0)), respectively. This factor led to highly soluble coatings, exhibiting a t(1/2) degradation dependence in the first 2 h in distilled water, followed by a more characteristic linear profile because the subsequent layers were less soluble. Degradation was observed to preferentially occur, forming voids characteristic of pitting corrosion, which was confirmed by the use of a focused ion beam. Coating degradation in PBS precipitated a (PO3)(-) metaphosphate, an X-ray amorphous layer, which remained adherent to the substrate and seemingly formed a protective diffusion barrier, which inhibited further coating degradation. The implications are that while compositionally similar, sputter-deposited coatings and melt-quenched glasses are structurally dissimilar, most notably, with regard to the surface layer. This factor has been attributed to surface etching of the as-deposited coating layer during deposition and variation in the thermal history between the processes of magnetron sputtering and melt quenching.

  8. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    NASA Astrophysics Data System (ADS)

    Shi, Yanchao; Wang, Guojian

    2016-11-01

    A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played an important protecting role for the inner char residue and improved the fire protection of the coatings. TGA result demonstrated that silicon enhanced the thermo-oxidation resistance of coatings efficiently. Furthermore, real-time FTIR revealed the intumescent process of the fire resistant coatings according to the chemical structure changes of char residue.

  9. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    PubMed

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay.

  10. Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates.

    PubMed

    Oh, Ik-Hyun; Nomura, N; Chiba, A; Murayama, Y; Masahashi, N; Lee, Byong-Taek; Hanada, S

    2005-07-01

    Hydroxyapatite (HA) coating was carried out by plasma spraying on bulk Ti substrates and porous Ti substrates having a Young's modulus similar to that of human bone. The microstructures and bond strengths of HA coatings were investigated in this study. The HA coatings with thickness of 200-250 microm were free from cracks at interfaces between the coating and Ti substrates. XRD analysis revealed that the HA powder used for plasma spraying had a highly crystallized apatite structure, while the HA coating contained several phases other than HA. The bond strength between the HA coating and the Ti substrates evaluated by standard bonding test (ASTM C633-01) were strongly affected by the failure behavior of the HA coating. A mechanism to explain the failure is discussed in terms of surface roughness of the plasma-sprayed HA coatings on the bulk and porous Ti substrates.

  11. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C). PMID:25469674

  12. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  13. Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level.

    PubMed

    Cheng, Fang-Fang; He, Ting-Ting; Miao, Hai-Tiao; Shi, Jian-Jun; Jiang, Li-Ping; Zhu, Jun-Jie

    2015-02-01

    MicroRNAs (miRNAs) have emerged as new candidates as diagnostic and prognostic biomarkers for the detection of a wide variety of cancers; thus, sensitive and selective detection of microRNAs is significant for early-phase cancer diagnosis and disease prevention. A novel and simple electrochemical miRNA biosensor was developed using Cd(2+)-modified titanium phosphate nanoparticles as signal unit, two DNA as capture probes, and Ru(NH3)6(3+) as electron transfer mediator. Large quantities of cadmium ions were mounted in titanium phosphate spheres to output the electrochemical signal. Because of the presence of Ru(NH3)6(3+) molecules that interacted with DNA base-pairs as electron wire, the electrochemical signal significantly increased more than 5 times. This approach achieved a wide dynamic linear range from 1.0 aM to 10.0 pM with an ultralow limit detection of 0.76 aM, exerting a substantial enhancement in sensitivity. Moreover, the proposed biosensor was sufficiently selective to discriminate the target miRNAs from homologous miRNAs and could be used for rapid and direct analysis of miRNAs in human serum. Therefore, this strategy provides a new and ultrasensitive platform for miRNA expression profiling in biomedical research and clinical diagnosis.

  14. Bismuth oxychloride modified titanium phosphate nanoplates: A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants.

    PubMed

    Ao, Yanhui; Bao, Jiaqiu; Wang, Peifang; Wang, Chao; Hou, Jun

    2016-08-15

    In this work, BiOCl modified titanium phosphate nanoplates (BiOCl/TP) composite photocatalysts with p-n heterojunctions were prepared by a in-situ growth method. The morphology, crystal structure and optical properties of the prepared samples were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectrometry (DRS). Rhodamine B (RhB), reactive brilliant Red X-3B (X-3B), methylene blue (MB), ciprofloxacin (CIP) and phenol were used to investigate the photocatalytic performance of the prepared samples under ultraviolet light irradiation. Results showed that the BiOCl/TP exhibited much higher activity for the degradation of all these model organic pollutants than pure TP. The mechanism for the enhancement of the photocatalytic performance was established with the help of the results of photocurrent measurements and Photoluminescence spectra. The results illustrated that the enhanced activity could be attributed to the formation of p-n heterojunctions between p-type BiOCl and n-type titanium phosphate, which effectively suppressed the recombination of photo-induced electron-hole pairs. Furthermore, the possible photocatalytic mechanisms on the degradation of the organic pollutants were also proposed.

  15. Effect of strontium ions on calcification of preosteoblasts cultured on porous calcium- and phosphate-containing titanium oxide layers formed by micro-arc oxidation.

    PubMed

    Sato, Mizuki; Chen, Peng; Tsutsumi, Yusuke; Shiota, Makoto; Hanawa, Takao; Kasugai, Shohei

    2016-01-01

    Strontium (Sr) ions were added to calcium- and phosphate-containing porous titanium oxide layers formed by micro-arc oxidation (MAO) of titanium (Ti) substrates to improve their osseointegration. An MC3T3-E1 preosteoblast was used to evaluate the effect of the incorporated Sr species on cell calcification. Similar surface microporous morphologies of the oxide layers were observed for all specimens produced by MAO, while the contents of the incorporated Sr ions increased with increasing Sr concentrations in MAO electrolytes. The calcium- and phosphate-containing porous layers promoted the cell alkaline phosphatase (ALP) activity, while cell calcification was promoted by the Sr addition. In particular, the ALP activity significantly increased after 10 days of culture, and larger areas of calcified deposits were observed for the specimens treated with MAO electrolytes containing 0.15 mol L(-1) of Sr species. The effect of Sr addition on the calcification of the MAO-treated Ti oxide layers was established in this study. PMID:27477229

  16. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.

    PubMed

    Dadsetan, Mahrokh; Guda, Teja; Runge, M Brett; Mijares, Dindo; LeGeros, Racquel Z; LeGeros, John P; Silliman, David T; Lu, Lichun; Wenke, Joseph C; Brown Baer, Pamela R; Yaszemski, Michael J

    2015-05-01

    Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regeneration capacity of biodegradable, porous poly(propylene fumarate) (PPF) scaffolds. PPF scaffolds were coated with three different calcium phosphate formulations: magnesium-substituted β-tricalcium phosphate (β-TCMP), carbonated hydroxyapatite (synthetic bone mineral, SBM) and biphasic calcium phosphate (BCP). In vivo bone regeneration was evaluated by implantation of scaffolds in a critical-sized rabbit calvarial defect loaded with different doses of rhBMP-2. Our data demonstrated that scaffolds with each of the calcium phosphate coatings were capable of sustaining rhBMP-2 release and retained an open porous structure. After 6weeks of implantation, micro-computed tomography revealed that the rhBMP-2 dose had a significant effect on bone formation within the scaffolds and that the SBM-coated scaffolds regen