Sample records for phosphate composite layer

  1. Microstructure and properties of FeSiCr/PA6 composites by injection molding using FeSiCr powders by phosphating and coupling treatment

    NASA Astrophysics Data System (ADS)

    Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing

    2018-04-01

    FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.

  2. Formation of an ascorbate-apatite composite layer on titanium.

    PubMed

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-09-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 degrees C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 microg mm(-2), which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  3. Biaxially textured composite substrates

    DOEpatents

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  4. Properties of Powder Composite Polyhydroxybutyrate-Chitosan-Calcium Phosphate System

    NASA Astrophysics Data System (ADS)

    Medvecky, L.; Stulajterova, R.; Giretova, M.; Faberova, M.

    2017-12-01

    Prepared powder polyhydroxybutyrate - chitosan - calcium phosphate composite system with 10 wt % of biopolymer component can be utilized as biocement which is characterized by the prolonged setting time and achieves wash out resistance after 5 minutes of setting. The origin powder tetracalcium phosphate/nanomonetite agglomerates were coated with the thin layer of biopolymer which decelerates both the transformation rate of calcium phosphates and hardening process of composites. The porosity of hardened composite was around 62% and the compressive strength (8 MPa) was close to trabecular bone. No cytotoxicity of composite resulted from live/dead staining of osteoblasts cultured on substrates.

  5. Ascorbate-apatite composite and ascorbate-FGF-2-apatite composite layers formed on external fixation rods and their effects on cell activity in vitro.

    PubMed

    Wang, Xiupeng; Ito, Atsuo; Sogo, Yu; Li, Xia; Tsurushima, Hideo; Oyane, Ayako

    2009-09-01

    Ascorbate-apatite and ascorbate-fibroblast growth factor-2 (FGF-2)-apatite composite layers were successfully formed on anodically oxidized Ti rods clinically used for external fixation by a one-step procedure at 25 degrees C, using a metastable supersaturated calcium phosphate solution supplemented with l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg) and FGF-2. The AsMg-apatite and AsMg-FGF-2-apatite composite layers were evaluated in vitro using fibroblastic NIH3T3 and osteoblastic MC3T3-E1 cells. The AsMg-FGF-2-apatite composite layer markedly enhanced the NIH3T3 cell proliferation and procollagen type capital I, Ukrainian gene expression. Without FGF-2, the AsMg-apatite composite layer whose ascorbate content was 3.64+/-1.27microgcm(-2) obviously enhanced osteoblastic proliferation and differentiation. However, the AsMg-FGF-2-apatite composite layers whose FGF-2 contents were from 0.15+/-0.03 to 0.31+/-0.04microgcm(-2) inhibited osteoblastic differentiation in vitro. Thus, the AsMg-FGF-2-apatite composite layer should be precipitated on the surface of external fixators attached to skin and soft tissue. On the other hand, the AsMg-apatite composite layer should be precipitated at the part attached to bone tissue.

  6. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  8. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    PubMed

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells

    PubMed Central

    2010-01-01

    We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP) into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4) ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3−) in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC) was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency. PMID:20676195

  10. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  11. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    PubMed

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model.

    PubMed

    Rahim, Muhammad Imran; Tavares, Ana; Evertz, Florian; Kieke, Marc; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Willbold, Elmar; Jürgen Maier, Hans; Glasmacher, Birgit; Behrens, Peter; Hauser, Hansjörg; Mueller, Peter P

    2017-08-01

    Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017. © 2016 Wiley Periodicals, Inc.

  13. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    PubMed

    Panpisut, Piyaphong; Liaqat, Saad; Zacharaki, Eleni; Xia, Wendy; Petridis, Haralampos; Young, Anne Margaret

    2016-01-01

    This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and help remineralize demineralized dentin. Polylysine can be released from the composites at early time. This may kill residual bacteria.

  14. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  15. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    PubMed

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  16. Investigation of Tank 241-AW-104 Composite Floating Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meznarich, H. K.; Bolling, S. D.; Lachut, J. S.

    Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lowermore » than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.« less

  17. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Hsiang, Hsing-I.; Fan, Liang-Fang; Hung, Jia-Jing

    2018-02-01

    The phosphoric acid addition effect on phosphate insulation coating microstructure was investigated in this study. The relationships between the phosphate insulation coating microstructure and temperature resistance, corrosion resistance and magnetic properties of iron-based soft magnetic composites (SMCs) were studied by using SEM, TEM/EDS and FTIR. It was observed that an iron phosphate/carbonyl iron core/shell structure is formed with carbonyl iron powder after phosphatizing treatment. The iron phosphate phase was identified as amorphous and its thickness increased from 30 nm to 60 nm as the phosphoric acid concentration was increased from 1 wt% to 2 wt%. When the phosphoric acid concentration was further increased to 5 wt%, the excess iron phosphate precipitates between the soft magnetic composite particles. The temperature and corrosion resistance and resistivity of the iron-based SMCs can be effectively improved using carbonyl iron powders after phosphatizing. The initial permeability of the iron-based SMCs decreased with increasing phosphoric acid concentration due to thicker insulation layer formation. However, the imaginary permeability below the domain wall displacement resonance frequency decreased with increasing phosphoric acid concentration. The DC-bias superposition characteristic can also be improved by increasing the phosphoric acid concentration. Iron-based SMCs with superior temperature and corrosion resistance, initial permeability, magnetic loss and DC-bias superposition characteristics can be obtained by controlling the phosphoric acid concentration during phosphatizing to adjust the iron phosphate precipitate thickness on the iron powder surface.

  18. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    PubMed

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering.

    PubMed

    Li, Xiaoran; Xie, Jingwei; Yuan, Xiaoyan; Xia, Younan

    2008-12-16

    Electrospinning was employed to fabricate fibrous scaffolds of poly(epsilon-caprolactone) in the form of nonwoven mats. The surfaces of the fibers were then coated with gelatin through layer-by-layer self-assembly, followed by functionalization with a uniform coating of bonelike calcium phosphate by mineralization in the 10 times concentrated simulated body fluid for 2 h. Transmission electron microscopy, water contact angle, and scanning electron microscopy measurements confirmed the presence of gelatin and calcium phosphate coating layers, and X-ray diffraction results suggested that the deposited mineral phase was a mixture of dicalcium phosphate dehydrate (a precursor to apatite) and apatite. It was also demonstrated that the incorporation of gelatin promoted nucleation and growth of calcium phosphate. The porous scaffolds could mimic the structure, composition, and biological function of bone extracellular matrix. It was found that the preosteoblastic MC3T3-E1 cells attached, spread, and proliferated well with a flat morphology on the mineralized scaffolds. The proliferation rate of the cells on the mineralized scaffolds was significantly higher (by 1.9-fold) than that on the pristine fibrous scaffolds after culture for 7 days. These results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.

  20. Sol gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Jastrzebski, W.; Długoń, E.; Lejda, W.; Trybalska, B.; Stoch, G. J.; Adamczyk, A.

    2005-06-01

    Titanium has been used for many medical and dental applications; however, its joining to a living bone is not satisfactorily good or the implant integration with bone tissue takes several months.The aim of this work is to produce hydroxyapatite (HAP) coatings on titanium and its alloy for facilitating and shortening the processes towards osseointegration. HAP coatings were obtained by sol-gel method with sol solutions prepared from calcium nitrate tetrahydrate and triammonium phosphate trihydrate as the calcium and phosphorous sources. Two types of gelatine were added to the sol: agar-agar or animals gelatine. Both were found to enhance the formation and stability of amorphous HAP using soluble salts as the sources of calcium and phosphate. HAP coatings were deposited from HAP-GEL sol using dip-withdrawal technique, then the plates were dried and annealed at temperatures 460-750 °C. FTIR spectroscopy and XRD analysis were used to study the phase composition of phosphate coatings. Morphology and chemical analysis of HAP layers was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyser (SEM+EDX). The biological activity of sol-gel phosphate coatings was observed during thermostatic held in simulated body fluid (SBF). It was found that chemical composition and structure of HAP coatings depends on pH and final thermal treatment of the layer.

  1. The Synthesis, Structures, and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clearfield, Abraham

    2014-11-01

    In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above andmore » below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.« less

  2. The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: a comparison of serum, synovial fluid, albumin, EDTA, and water.

    PubMed

    Lewis, A C; Kilburn, M R; Heard, P J; Scott, T B; Hallam, K R; Allen, G C; Learmonth, I D

    2006-08-01

    Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition.

  3. IR Spectroscopy and X-Ray Phase Analysis of the Chemical Composition of Gallstones

    NASA Astrophysics Data System (ADS)

    Pichugina, A. A.; Tsyro, L. V.; Unger, F. G.

    2018-01-01

    The composition of the inorganic and organic parts of gallstones was investigated by x-ray phase analysis and IR spectroscopy. Cholesterol, bilirubin, calcium bilirubinate, calcium carbonate, and calcium hydrogen phosphate are all found in gallstones. The major component is cholesterol. A gallstone was separated into layers and the inorganic part was separated out by annealing. Inorganic compounds were found to predominate in the outer layer of the gallstone, which is related to the mechanism of its formation. The inorganic part contains calcium carbonate, present in both the calcite and waterite modifications.

  4. [Revisiting the chemical diversity in prostatic calculi: a SEM and FT-IR investigation].

    PubMed

    Dessombz, A; Méria, P; Bazin, D; Foy, E; Rouzière, S; Weil, R; Daudon, M

    2011-12-01

    Revisiting the chemical diversity of the crystalline phases of prostatic calculi by means of SEM and FT-IR analysis. A set of 32 prostatic calculi has been studied by FT-IR and SEM. FT-IR analysis has determined the chemical composition of each prostatic calculus and the SEM observation has described the morphology of the calculi surfaces and layers. Infrared analysis revealed that 90.7% of the stones were mainly composed of calcium phosphates. However, several mineral phases previously not reported in prostatic calculi were observed, as brushite or octocalcium phosphate pentahydrate. Prostatic calculi exhibited a diversity of crystalline composition and morphology. As previously reported for urinary calculi, relationships between composition and morphology of prostatic stones and étiopathogenic conditions could be of interest in clinical practice. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Biodegradation performance of a chitosan coated magnesium-zinc-tricalcium phosphate composite as an implant.

    PubMed

    Zhao, Jun; Chen, Liangjian; Yu, Kun; Chen, Chang; Dai, Yilong; Qiao, Xueyan; Yan, Yang

    2014-09-01

    A Mg-Zn-tricalcium phosphate composite with a chitosan coating was prepared in this investigation to study its biodegradation performance both in vitro and in vivo conditions. The in vitro test results show that the immersion corrosion rate, the pH values of the simulated body fluids and the released metal ion concentration of the chitosan coated composite are all lower than those of the uncoated composite. The in vitro cytotoxicity test shows that the chitosan coated specimens is safe for cellular applications. When the chitosan coated composite is tested in vivo, the concentration of metal ions from the composite observed in the venous blood of Zelanian rabbits is less than the uncoated composite specimens. The chitosan coating slows down the in vivo degradation of the composite after surgery. In vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys, and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. The chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed.

  6. Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4.

    PubMed

    Fagerlund, S; Massera, J; Moritz, N; Hupa, L; Hupa, M

    2012-07-01

    This work studied the influence of sintering temperature on the phase composition, compression strength and in vitro properties of implants made of bioactive glass S53P4. The implants were sintered within the temperature range 600-1000°C. Over the whole temperature range studied, consolidation took place mainly via viscous flow sintering, even though there was partial surface crystallization. The mechanical strength of the implants was low but increased with the sintering temperature, from 0.7 MPa at 635°C to 10 MPa at 1000°C. Changes in the composition of simulated body fluid (SBF), the immersion solution, were evaluated by pH measurements and ion analysis using inductively coupled plasma optical emission spectrometry. The development of a calcium phosphate layer on the implant surfaces was verified using scanning electron microscopy-electron-dispersive X-ray analysis. When immersed in SBF, a calcium phosphate layer formed on all the samples, but the structure of this layer was affected by the surface crystalline phases. Hydroxyapatite formed more readily on amorphous and partially crystalline implants containing both primary Na(2)O·CaO·2SiO(2) and secondary Na(2)Ca(4)(PO(4))(2)SiO(4) crystals than on implants containing only primary crystals. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base.

    PubMed

    Rokita, M

    2011-08-15

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    NASA Astrophysics Data System (ADS)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  9. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    PubMed

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  10. Evaluation of phytoplankton community composition in the eutrophic Masan Bay by HPLC pigment analysis.

    PubMed

    Kim, Jeong Bae; Hong, Sokjin; Lee, Won-Chan; Lee, Yong-Woo; Kim, Hyung Chul; Cho, Yoonsik

    2015-03-01

    To assess the spatiotemporal changes in phytoplankton community composition in relation to the environment of Masan Bay, a semi-enclosed bay on the southern coast of Korea, photosynthetic pigments and environmental variables were analyzed in seawater, every month between March and November 2010. The level of dissolved inorganic nutrients was highest between July and September when the freshwater influx was at its peak, whereas chlorophyll a level was highest in April and August. Phosphate concentration was low in April (average: 0.22 +/- 0.17 microM), indicating the role of phosphate as a growth-limiting factor for phytoplankton. The results of pigment analysis indicate that dinoflagellate blooms occurred under favorable conditions, where competition with diatoms occurred. Fucoxanthin- and chlorophyll b-containing phytoplankton dominated the surface layer of Masan Bay from July to September. The composition of phytoplankton community in Masan Bay changed dramatically each month according to variations in the amount and composition of nutrients introduced through surface runoff.

  11. Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Hild, Nora; Schneider, Oliver D.; Mohn, Dirk; Luechinger, Norman A.; Koehler, Fabian M.; Hofmann, Sandra; Vetsch, Jolanda R.; Thimm, Benjamin W.; Müller, Ralph; Stark, Wendelin J.

    2011-02-01

    The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a-CaP/Col/PLGA compositions were synthesised by electrospinning to mimic the actual composition of bone tissue. Immersion in simulated body fluid and in cell culture medium resulted in the deposition of a hydroxyapatite layer. Incubation of hMSC for 4 weeks allowed for assessment of the proliferation and osteogenic differentiation of the cells on both sides of the double membrane. Confocal laser scanning microscopy was used to observe the proper adhesion of the cells. Calcium and collagen content was proven by Alizarin red S and Sirius red assays. Acute cytotoxic effects of the nanoparticles or the chemicals used in the scaffold preparation could be excluded based on viability assays (alamarBlue and alkaline phosphatase activity). The findings suggest possible application of such double membranes is in treatment of bone defects with complex geometries as wound dressing material.The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a-CaP/Col/PLGA compositions were synthesised by electrospinning to mimic the actual composition of bone tissue. Immersion in simulated body fluid and in cell culture medium resulted in the deposition of a hydroxyapatite layer. Incubation of hMSC for 4 weeks allowed for assessment of the proliferation and osteogenic differentiation of the cells on both sides of the double membrane. Confocal laser scanning microscopy was used to observe the proper adhesion of the cells. Calcium and collagen content was proven by Alizarin red S and Sirius red assays. Acute cytotoxic effects of the nanoparticles or the chemicals used in the scaffold preparation could be excluded based on viability assays (alamarBlue and alkaline phosphatase activity). The findings suggest possible application of such double membranes is in treatment of bone defects with complex geometries as wound dressing material. Electronic supplementary information (ESI) available: Additional FT-IR spectra, electron micrographs, XRD patterns, ATR-IR spectra, light microscopy images, confocal laser scanning micrographs, electrospinning parameters and fibre diameters. See DOI: 10.1039/c0nr00615g

  12. Magnesium-Assisted Continuous Growth of Strongly Iron-Enriched Incisors.

    PubMed

    Srot, Vesna; Bussmann, Birgit; Salzberger, Ute; Deuschle, Julia; Watanabe, Masashi; Pokorny, Boštjan; Jelenko Turinek, Ida; Mark, Alison F; van Aken, Peter A

    2017-01-24

    Teeth are an excellent example where optimally designed nanoarchitectures with precisely constructed components consist of simple compounds. Typically, these simple constituent phases with insignificant properties show mechanical property amplifications when formed into composite architectures. Material properties of functional composites are generally regulated on the nanoscale, which makes their characterization particularly demanding. Using advanced analytical and imaging transmission electron microscopy techniques, we identified innovative microstructural adjustments combined with astonishing compositional adaptations in incisors of coypu. Unique constituents, recognized as an additional amorphous Fe-rich surface layer followed by a transition zone covering pigmented enamel, provide the required structural stability to withstand repeated mechanical load. The chemically diverse Fe-rich surface layer, including ferrihydrite and iron-calcium phosphates, gives the typical orange-brown coloration to the incisors. Within the spaces between elongated hydroxyapatite crystals in the pigmented enamel, only ferrihydrite was found, implying that enamel pigmentation is a very strictly controlled process. Most significantly, an unprecedentedly high amount of Mg was measured in the amorphous flake-like material within the dentinal tubules of the incisors, suggesting the presence of a (Mg,Ca) phosphate phase. This unusually high influx of Mg into the dentin of incisors, but not molars, suggests a substantial functionality of Mg in the initial formation stages and constant growth of incisors. The present results emphasize the strong mutual correlation among the microstructure, chemical composition, and mechanical properties of mineralized dental tissues.

  13. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    PubMed

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing improved mechanical properties and osteointegrative potential compared to degradable polymers of poly(lactic acid-glycolic acid) alone. Future work will focus on the optimization of the composite scaffold for bone tissue-engineering applications and the evaluation of the 3-D composite in an in vivo model. Copyright 2003 Wiley Periodicals, Inc.

  14. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK

    PubMed Central

    Durham, John W.; Rabiei, Afsaneh

    2015-01-01

    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength. PMID:27713592

  15. Hybrid calcium phosphate coatings for implants

    NASA Astrophysics Data System (ADS)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  16. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers.

    PubMed

    Aljabo, Anas; Abou Neel, Ensanya A; Knowles, Jonathan C; Young, Anne M

    2016-03-01

    The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size (~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Fiberglass goes green: Developing phosphate glass for use in biodegradable composites

    NASA Astrophysics Data System (ADS)

    Arendt, Christina Lee

    Composite materials, such as the glass fiber reinforced polyester thermosets known as "fiberglass," are used in many applications. However, recycling processes for these materials are inefficient and not widely available. Specially engineered degradable polymers offer an opportunity to redesign these composites. Additionally, the composite could be tailored to be multi-use, such that upon degradation, the resulting products could be used as part of a zeoponic substrate (artificial soil) for growing plants. Such a material would be beneficial for long-duration space missions, terraforming, or in other agricultural applications. The research presented in this dissertation focuses on developing phosphate glass for use as the fiber reinforcement for such a composite. Due to the under-utilization of phosphate systems, there is a lack of thermodynamic data on these systems. The modified associate species method of phase diagram calculation was used in an attempt to gain more information about the desired system, as it is a good predictor of the phase relations in oxide melts, slags, and glasses and requires less data than other methods. Further research into the thermodynamic properties of phosphates is still needed to develop accurate phase diagrams and melting temperatures for this system. Seventeen glass formulations were developed and melted. Six of these formulations were chosen for dissolution testing. Of these six, Glass 17 was chosen for intensive testing and characterization. This glass was tested in water, hydrochloric acid solutions, and citric acid solutions. The weight loss was measured and ICP-OES was performed on the leachate solution. Scanning electron microscopy (SEM) and X-ray diffraction were performed on the tested specimens. Shrinking-core models were fit to the dissolution data. Fibers were drawn from the glass and characterized using SEM. The data shows that this glass is not dissolving congruently, as is expected of phosphate glasses. Instead, selective leaching is occurring, leading to the development of a non-protective surface layer during dissolution.

  18. Ballistic Simulation Method for Lithium Ion Batteries (BASIMLIB) Using Thick Shell Composites (TSC) in LS-DYNA

    DTIC Science & Technology

    2016-08-04

    BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited  Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell

  19. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  20. Cell adhesion to borate glasses by colloidal probe microscopy.

    PubMed

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer. Published by Elsevier Ltd.

  1. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  2. Biological and medical significance of calcium phosphates.

    PubMed

    Dorozhkin, Sergey V; Epple, Matthias

    2002-09-02

    The inorganic part of hard tissues (bones and teeth) of mammals consists of calcium phosphate, mainly of apatitic structure. Similarly, most undesired calcifications (i.e. those appearing as a result of various diseases) of mammals also contain calcium phosphate. For example, atherosclerosis results in blood-vessel blockage caused by a solid composite of cholesterol with calcium phosphate. Dental caries result in a replacement of less soluble and hard apatite by more soluble and softer calcium hydrogenphosphates. Osteoporosis is a demineralization of bone. Therefore, from a chemical point of view, processes of normal (bone and teeth formation and growth) and pathological (atherosclerosis and dental calculus) calcifications are just an in vivo crystallization of calcium phosphate. Similarly, dental caries and osteoporosis can be considered to be in vivo dissolution of calcium phosphates. On the other hand, because of the chemical similarity with biological calcified tissues, all calcium phosphates are remarkably biocompatible. This property is widely used in medicine for biomaterials that are either entirely made of or coated with calcium phosphate. For example, self-setting bone cements made of calcium phosphates are helpful in bone repair and titanium substitutes covered with a surface layer of calcium phosphates are used for hip-joint endoprostheses and tooth substitutes, to facilitate the growth of bone and thereby raise the mechanical stability. Calcium phosphates have a great biological and medical significance and in this review we give an overview of the current knowledge in this subject.

  3. Calcium phosphate mineralization is widely applied in crustacean mandibles.

    PubMed

    Bentov, Shmuel; Aflalo, Eliahu D; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-02-24

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous "jaw". From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait.

  4. Calcium phosphate mineralization is widely applied in crustacean mandibles

    PubMed Central

    Bentov, Shmuel; Aflalo, Eliahu D.; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-01-01

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous “jaw”. From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait. PMID:26906263

  5. Phospho-silicate and silicate layers modified by hydroxyapatite particles

    NASA Astrophysics Data System (ADS)

    Rokita, M.; Brożek, A.; Handke, M.

    2005-06-01

    Common used metal materials do not ensure good connection between an implant and biological neighbourhood. Covering implants by thin silicate or phosphate layers enable to improve biological properties of implants and create conditions for producing the non-concrete bonding between the implant and tissue. The project includes preparing silicate sols of different concentrations and proper (powder) fraction of synthetic as well as natural ox hydroxyapatite, depositing the sol mixed with hydroxyapatite onto the base material (metal, ceramic carbon) and heat treatment. Our work includes also preparation of phospho-silicate layers deposited onto different base materials using sol-gel method. Deposited sols were prepared regarding composition, concentration and layer heat treatment conditions. The prepared layers are examined to determine their phase composition (XRD, IR spectroscopy methods), density and continuity (scanning microscopy with EDX methods). Biological activity of layers was evaluated by means of estimation of their corrosive resistance in synthetic body fluids ('in vitro' method) and of bone cells growth on the layers surface. Introducing hydroxyapatite to the layer sol should improve connection between tissue and implant as well as limit the disadvantageous, corrosive influence of implant material (metal) on the tissue.

  6. Long-Term In Vitro Degradation of a High-Strength Brushite Cement in Water, PBS, and Serum Solution

    PubMed Central

    Ajaxon, Ingrid; Öhman, Caroline; Persson, Cecilia

    2015-01-01

    Bone loss and fractures may call for the use of bone substituting materials, such as calcium phosphate cements (CPCs). CPCs can be degradable, and, to determine their limitations in terms of applications, their mechanical as well as chemical properties need to be evaluated over longer periods of time, under physiological conditions. However, there is lack of data on how the in vitro degradation affects high-strength brushite CPCs over longer periods of time, that is, longer than it takes for a bone fracture to heal. This study aimed at evaluating the long-term in vitro degradation properties of a high-strength brushite CPC in three different solutions: water, phosphate buffered saline, and a serum solution. Microcomputed tomography was used to evaluate the degradation nondestructively, complemented with gravimetric analysis. The compressive strength, chemical composition, and microstructure were also evaluated. Major changes from 10 weeks onwards were seen, in terms of formation of a porous outer layer of octacalcium phosphate on the specimens with a concomitant change in phase composition, increased porosity, decrease in object volume, and mechanical properties. This study illustrates the importance of long-term evaluation of similar cement compositions to be able to predict the material's physical changes over a relevant time frame. PMID:26587540

  7. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  8. MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Golestani-Fard, F.; Rezaie, H. R.; Mirhosseini, S. M. M.

    2012-11-01

    In this study, titanium substrates which previously oxidized through Micro arc oxidation method, was coated by Hydroxyapatite (HAp) coating once more by means of the same method. Morphology, topography and chemical properties as well as phase composition and thickness of layers were studied to reveal the effect of the electrolyte concentration on coating features. According to results, the obtained coatings are consisted of HAp and titania as the major phases along with minor amounts of calcium titanate and α-tri calcium phosphate. Ca and P are present on surface of obtained layers as well as predictable Ti and O based on the XPS results. Thickness profile of coatings figured out that by increasing the electrolyte concentration, especially by addition of more Calcium Acetate (CA) to electrolyte, the thickness of HAp layer would rise, consequently. However, the influence of coating time on thickness of obtained coatings would be more considerable than electrolyte concentration. High specific area coatings with nest morphology were obtained in Electrolyte containing 5 g/L β-Glycero Phosphate (β-GP) and 5 g/L CA. Increasing coating duration time in this kind of coatings would cause deduction of the nesting in their structure.

  9. Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.

    PubMed

    Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah

    2016-10-01

    In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.

  10. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  11. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  12. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk; Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr; Kontonasaki, Eleana, E-mail: kont@dent.auth.gr

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independentmore » of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.« less

  13. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Koschinsky, A.; Halbach, P.; Hein, J. R.; Mangini, A.

    Hydrogenetic ferromanganese crusts reflect the chemical conditions of the seawater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts. 10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2-5Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30-40Ma.

  14. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic

    USGS Publications Warehouse

    Koschinsky, A.; Halbach, P.; Hein, J.R.; Mangini, A.

    1996-01-01

    Hydrogenetic ferromanganese crusts reflect the chemical conditions of the seawater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12 Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts. 10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2-5 Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30-40 Ma.

  15. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-03-01

    The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated biomedical implants such as 316 L, DSS and Ti6Al4V.

  16. Topography, wetting, and corrosion responses of electrodeposited hydroxyapatite and fluoridated hydroxyapatite on magnesium.

    PubMed

    Assadian, Mahtab; Jafari, Hassan; Ghaffari Shahri, Seyed Morteza; Idris, Mohd Hasbullah; Almasi, Davood

    2016-08-12

    In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers.

  17. A Novel Polymer-Synthesized Ceramic Composite Based System for Bone Repair: Osteoblast Growth on Scaffolds with Varied Calcium Phosphate Content

    DTIC Science & Technology

    2005-01-01

    demongtrated the synthesis of degradable scaffolds from PLAGA /calcium phosphate composite microspheres in which an amorphous calcium phosphate is...EXPERIMENTAL DETAILS Scaffold Preparation Scaffolds were prepared as described in detail previously [3]. Briefly, PLAGA /calcium phosphate composite...culture polystyrene (TCPS) 2- pure PLAGA microspheres 64 3- composite microsphere matrices with a low polymer/ceramic ratio 4- composite microsphere

  18. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    NASA Astrophysics Data System (ADS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang

    2014-12-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10-8 S cm-1 at 323 K with ˜0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10-8 S cm-1 at 26 °C (299 K).

  19. Ammonia, phosphate, phenol, and copper(II) removal from aqueous solution by subsurface and surface flow constructed wetland.

    PubMed

    Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali

    2017-07-01

    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.

  20. Geomaterials: their application to environmental remediation

    PubMed Central

    Yamada, Hirohisa; Tamura, Kenji; Watanabe, Yujiro; Iyi, Nobuo; Morimoto, Kazuya

    2011-01-01

    Geomaterials are materials inspired by geological systems originating from the billion years long history of the Earth. This article reviews three important classes of geomaterials. The first one is smectites—layered silicates with a cation-exchange capacity. Smectites are useful for removing pollutants and as intercalation compounds, catalysts and polymer nanocomposites. The second class is layered double hydroxides (LDHs). They have an anion-exchange capacity and are used as catalysts, catalyst precursors, sorbents and scavengers for halogens. The third class of geomaterials is zeolites—microporous materials with a cation-exchange capacity which are used for removing harmful cations. Zeolite composites with LDHs can absorb ammonium and phosphate ions in rivers and lakes, whereas zeolite/apatite composites can immobilize the radioactive iodine. These geomaterials are essential for environmental remediation. PMID:27877455

  1. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structural optimization and amorphous calcium phosphate mineralization in sensory setae of a terrestrial crustacean (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Srot, Vesna; Bussmann, Birgit; Predel, Felicitas; van Aken, Peter A; Štrus, Jasna

    2018-06-09

    Terrestrial isopods possess large sensory setae on their walking legs. Increased fracture resistance of these elongated structures is of crucial importance, making the exoskeleton forming the setae an interesting durable material that may inspire biomimetic designs. We studied the cuticle of the sensory setae with analytical electron microscopy in order to gain detailed insights into its structure and composition at the nanometer scale and identify features that increase the fracture resistance of these minute skeletal elements. The setae are stiff structures formed by mineralized cuticle that are connected to the leg exoskeleton by a non-mineralized joint membrane. Our results demonstrate that different layers of the setal cuticle display contrasting organizations of the chitin-protein fibers and mineral particles. While in the externally positioned exocuticle organic fibers shift their orientation helicoidally in sequential layers, the fibers are aligned axially in the internally positioned endocuticle. In the setal cuticle, layers of structurally anisotropic cuticle likely providing strength in the axial direction are combined with layers of isotropic cuticle which may allow the setae to better resist perpendicular loading. They are further strengthened with amorphous calcium phosphate, a highly fracture resistant mineral rarely observed in invertebrate skeletons. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Compositional analysis of various layers of upper urinary tract stones by infrared spectroscopy

    PubMed Central

    He, Zhang; Jing, Zhang; Jing-Cun, Zheng; Chuan-Yi, Hu; Fei, Gao

    2017-01-01

    The objective of the present study was to determine the composition of various layers of upper urinary stones and assess the mechanisms of stone nucleation and aggregation. A total of 40 integrated urinary tract stones with a diameter of >0.8 cm were removed from the patients. All of the stones were cut in half perpendicularly to the longitudinal axis. Samples were selected from nuclear, internal and external layers of each stone. Fourier transform infrared spectroscopy (FT-IR) was adopted for qualitative and quantitative analysis of all of the fragments and compositional differences among nuclear, internal and external layers of various types of stone were subsequently investigated. A total of 25 cases of calcium oxalate (CaOx) stones and 10 cases of calcium phosphate (CaP) stones were identified to be mixed stones, while 5 uric acid (UA) calculi were pure stones (purity, >95%). In addition, the contents of CaOx and carbapatite (CA.AP) crystals in various layers of the mixed stones were found to be variable. In CaOx stones, the content of CA.AP in nuclear layers was significantly higher than that of the outer layers (32.0 vs. 6.8%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (57.6 vs. 86.6%; P<0.05). In CaP stones, the content of CA.AP in the nuclear layers was higher than that in the outer layers (74.0 vs. 47.3%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (7.0 vs. 40.0%; P<0.05). The UA stones showed no significant differences in their composition among different layers. In conclusion, FT-IR analysis of various layers of human upper urinary tract stones revealed that CaOx and CaP stones showed differences in composition between their core and surface, while all of the UA calculi were pure stones. The composition showed a marked variation among different layers of the stones, indicating that metabolism has an important role in different phases of the evolution of stones. The present study provided novel insight into the pathogenesis of urinary tract stones and may contribute to their prevention and treatment. PMID:28912866

  4. DOE/SC0001389 Final technical report: Investigation of uranium attenuation and release at column and pore scales in response to advective geochemical gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Kaye S.; Zhu, Wenyi; Barnett, Mark O.

    2013-05-13

    Experimental approach Column experiments were devised to investigate the role of changing fluid composition on mobility of uranium through a sequence of geologic media. Fluids and media were chosen to be relevant to the ground water plume emanating from the former S-3 ponds at the Oak Ridge Integrated Field Research Challenge (ORIFC) site. Synthetic ground waters were pumped upwards at 0.05 mL/minute for 21 days through layers of quartz sand alternating with layers of uncontaminated soil, quartz sand mixed with illite, quartz sand coated with iron oxides, and another soil layer. Increases in pH or concentration of phosphate, bicarbonate, ormore » acetate were imposed on the influent solutions after each 7 pore volumes while uranium (as uranyl) remained constant at 0.1mM. A control column maintained the original synthetic groundwater composition with 0.1mM U. Pore water solutions were extracted to assess U retention and release in relation to the advective ligand or pH gradients. Following the column experiments, subsamples from each layer were characterized using microbeam X-ray absorption spectroscopy (XANES) in conjunction with X-ray fluorescence mapping and compared to sediment core samples from the ORIFC, at SSRL Beam Line 2-3. Results U retention of 55-67mg occurred in phosphate >pH >control >acetate >carbonate columns. The mass of U retained in the first-encountered quartz layer in all columns was highest and increased throughout the experiment. The rate of increase in acetate- and bicarbonate-bearing columns declined after ligand concentrations were raised. U also accumulated in the first soil layer; the pH-varied column retained most, followed by the increasing-bicarbonate column. The mass of U retained in the upper layers was far lower. Speciation of U, interpreted from microbeam XANES spectra and XRF maps, varied within and among the columns. Evidence of minor reduction to U(IV) was observed in the first-encountered quartz layer in the phosphate, bicarbonate, and pH columns while only U(VI) was observed in the control and acetate columns. In the soil layer, the acetate and bicarbonate columns both indicate minor reduction to U(IV), but U(VI) predominated in all columns. In the ORIFC soils, U was consistently present as U(VI); sorption appears to be the main mechanism of association for U present with Fe and/or Mn, while U occurring with P appears in discrete particles consistent with a U mineral phase. U in soil locations with no other elemental associations shown by XRF are likely uranium oxide phases.« less

  5. Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid.

    PubMed

    Gu, Y W; Khor, K A; Pan, D; Cheang, P

    2004-07-01

    Hydroxyapatite (HA)/yttria stabilized zirconia/Ti-6Al-4V bio-composite coatings deposited onto Ti-6Al-4V substrate through a plasma spray technique were immersed in simulated body fluid (SBF) to investigate their behavior in vitro. Surface morphologies and structural changes in the coatings were analyzed by scanning electron microscopy, thin-film X-ray diffractometer, and X-ray photoelectron spectroscopy. The tensile bond strength of the coatings after immersion was also conducted through the ASTM C-633 standard for thermal sprayed coatings. Results showed that carbonate-containing hydroxyapatite (CHA) layer formed on the surface of composite coatings after 4 weeks immersion in SBF solution, indicating the composite coating possessed excellent bioactivity. The mechanical properties were found to decrease with immersion duration of maximum 56 days. However, minimal variation in mechanical properties was found subsequent to achieving supersaturation of the calcium ions, which was attained with the precipitation of the calcium phosphate layers. The mechanical properties of the composite coating were found to be significantly higher than those of pure HA coatings even after immersion in the SBF solution, indicating the enhanced mechanical properties of the composite coatings.

  6. Degradation processes of reinforced concretes by combined sulfate–phosphate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secco, Michele, E-mail: michele.secco@unipd.it; Department of Civil, Environmental and Architectural Engineering; Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk

    2015-02-15

    A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associatedmore » with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.« less

  7. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.

    PubMed

    Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara

    2016-12-01

    Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, I.; Park, B. K.; Kim, J.

    2014-12-01

    Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.

  10. Black and brown pigment gallstones differ in microstructure and microcomposition.

    PubMed

    Malet, P F; Takabayashi, A; Trotman, B W; Soloway, R D; Weston, N E

    1984-01-01

    The two subtypes of pigment gallstones, black and brown stones, differ in chemical composition and pathogenesis. We examined a black bilirubinate stone and a black phosphate stone (which represented opposite ends of the compositional spectrum of black noncarbonate stones), a black carbonate stone, and a brown pigment stone using scanning electron microscopy and microchemical techniques to determine if stone microstructure and microcomposition reflected different patterns of formation. The cross-sectional surfaces of the black bilirubinate and black phosphate stones were smooth and homogenous. Electron probe microanalysis demonstrated high concentrations of sulfur and copper in the center of the black bilirubinate stone; sulfur was in a low valence state consistent with disulfide linkages in proteins. The brown stone was rough-surfaced with lamellated bands on cross-section. The lighter-colored bands in this stone contained virtually all of the detected calcium palmitate, while the darker sections contained much more calcium bilirubinate. Plasma oxygen etching demonstrated a network of protein interdigitating with calcium bilirubinate salts in the black bilirubinate and black phosphate stones but not in the black carbonate or brown stones. Argon ion etching demonstrated that calcium bilirubinate was in a closely packed rod-shaped arrangement in all three black stones but not in the brown stone. We conclude that the marked differences in structure and composition between the black noncarbonate and brown pigment gallstones support the hypothesis that the two major pigment gallstone types form by different mechanisms. In addition, the layered structures of the black carbonate and brown stones suggest that stone growth is affected by cyclic changes in biliary composition.

  11. Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhang, Zengqiang; Awasthi, Mukesh Kumar; Du, Dan; Dang, Pengfei; Huang, Qian; Zhang, Yichen; Wang, Lu

    2018-06-13

    Metal oxide-Carbon composites have been developed tailoring towards specific functionalities for removing pollutants from contaminated environmental systems. In this study, we synthesized a novel CaO-MgO hybrid carbon composite for removal of phosphate and humate by co-pyrolysis of dolomite and sawdust at various temperatures. Increasing of pyrolysis temperature to 900 °C generated a composite rich in carbon, CaO and MgO particles. Phosphate and humate can be removed efficiently by the synthesized composite with the initial solution in the range of pH 3.0-11.0. The phosphate adsorption was best fitted by pseudo-second-order kinetic model, while the humate adsorption followed the pseudo-second-order and the intra-particle diffusion kinetic models. The maximum adsorption capabilities quantified by the Langmuir isotherm model were up to 207 mg phosphorus (or 621 mg phosphate) and 469 mg humate per one-gram composite used, respectively. Characterization of composites after adsorption revealed the contributions of phosphate crystal deposition and electrostatic attraction on the phosphate uptake and involvement of π - π interaction in the humate adsorption. The prepared composite has great potential for recovering phosphorus from wastewater, and the phosphate sorbed composite can be employed as a promising phosphorus slow-releasing fertilizer for improving plant growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Phosphate uptake behavior of layered rare earth hydroxides l-RE(OH)3 (RE = Sm, Gd, Er, and Y) from water

    NASA Astrophysics Data System (ADS)

    Jeon, Hong-Gu; Kim, Hyunsub; Jung, Hyunjin; Byeon, Song-Ho

    2018-07-01

    The use of rare earths (REs) provides various advantages for removal and recovery of phosphate from water because they have high affinity to form stable complexes with phosphates even at low concentrations. Very low solubility of rare earth phosphate REPO4 in water was expected to induce a high phosphate adsorption rate and capacity. In this study, layered rare earth hydroxides, l-RE(OH)3 (RE = Sm, Gd, Er, and Y), have been employed to remove or recover phosphate from aqueous solution. This layered polymorph of l-RE(OH)3, which is composed of hydroxocation layers, exhibited a high point of zero charge (pHpzc > 10) and significantly enhanced adsorptive ability for phosphates over a wide pH range. The isotherm and kinetics of phosphate adsorption on l-RE(OH)3 were explained dominantly by the Langmuir isotherm model and pseudo-second-order kinetic model, respectively. A strong dependence of isotherm and kinetic parameters on RE demonstrated that the adsorption of phosphate on l-RE(OH)3 is a chemisorption dominated process involving the replacement of -OH by phosphate ion to be included into the coordination polyhedra of RE. The desorption of phosphate from l-RE(OH)3 was slow but the desorption efficiency for all RE members was higher than 97% in a 1.0 M NaOH solution after 4 days at room temperature. Considering high capacity and stability as well as no significant interference in recovery of phosphate from waters containing common competing anions, this rare earth adsorbent series is proposed as a promising alternative for efficient and sensitive phosphate recovery from natural and wastewaters.

  13. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.

    PubMed

    Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid

    2016-12-01

    In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Long-term decrease in phosphate concentrations in the surface layer of the southern Japan Sea

    NASA Astrophysics Data System (ADS)

    Kodama, Taketoshi; Igeta, Yosuke; Kuga, Mizuki; Abe, Shoko

    2016-10-01

    To identify possible causes for the long-term trends in nutrient concentrations in the southern Japan Sea (JS), we studied nutrient concentrations that were obtained by the Japan Meteorological Agency. Our evaluation shows that phosphate concentrations declined in the surface layers in summer (0-20 and 21-50 m depth) and winter (0-20, 21-50, and 51-100 m depth) over the last 40 years, while no significant linear trend was observed for nitrate concentrations. The declining trend in the phosphate concentration was quantified as 1.8-3.3 nM yr-1. The increase in atmospheric nutrient deposition to the JS could not explain the decline in phosphate concentration. In addition, the mixed-layer depth during winter did not demonstrate any significant trend, and an increase in phosphate concentrations was not observed in any layers; therefore, the decrease in nutrient supply from deep JS water was not considered a major possible cause for the decline in the phosphate concentration. In contrast, the phosphate concentration in the surface of the southern JS during winter showed a significant positive correlation with the concentration in the 21-50 m depth layer of the saline East China Sea (ECS) water in the preceding summer, and the surface water of the southern JS was almost entirely replaced by water originating from the ECS during May-October. Therefore, it is concluded that the declining trend in the phosphate concentrations in the southern JS is caused by horizontal advection of ECS water.

  15. Ionic Liquids as Surfactants for Layered Double Hydroxide Fillers: Effect on the Final Properties of Poly(Butylene Adipate-Co-Terephthalate)

    PubMed Central

    Livi, Sébastien; Lins, Luanda Chaves; Peter, Jakub; Kredatusova, Jana; Pruvost, Sébastien

    2017-01-01

    In this work, phosphonium ionic liquids (ILs) based on tetra-alkylphosphonium cations combined with carboxylate, phosphate and phosphinate anions, were used for organic modification of layered double hydroxide (LDH). Two different amounts (2 and 5 wt %) of the organically modified LDHs were mixed with poly(butylene adipate-co-terephthalate) (PBAT) matrix by melt extrusion. All prepared PBAT/IL-modified-LDH composites exhibited increased mechanical properties (20–50% Young’s modulus increase), decreased water vapor permeability (30–50% permeability coefficient reduction), and slight decreased crystallinity (10–30%) compared to the neat PBAT. PMID:28956811

  16. Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion.

    PubMed

    Catt, Kasey; Li, Huaxiu; Cui, X Tracy

    2017-01-15

    Magnesium (Mg) is a promising biodegradable implant material because of its appropriate mechanical properties and safe degradation products. However, in vivo corrosion speed and hydrogen gas production need to be controlled for uses in biomedical applications. Here we report the development of a conducting polymer 3,4-ethylenedioxythiphene (PEDOT) and graphene oxide (GO) composite coating as a corrosion control layer. PEDOT/GO was electropolymerized on Mg samples in ethanol media. The coated Mg samples were subjected to various corrosion tests. The PEDOT/GO coating significantly reduced the rate of corrosion as evidenced by lower Mg ion concentration and pH of the corrosion media. In addition, the coating decreased the evolved hydrogen. Electrochemical analysis of the corroding samples showed more positive corrosion potential, a decreased corrosion current, and an increase in the polarization resistance. PEDOT/GO corrosion protection is attributed to three factors; an initial passive layer preventing solution ingress, buildup of negative charges in the film, and formation of corrosion protective Mg phosphate layer through redox coupling with Mg corrosion. To explore the biocompatibility of the coated implants in vitro, corrosion media from PEDOT/GO coated or uncoated Mg samples were exposed to cultured neurons where PEDOT/GO coated samples showed decreased toxicity. These results suggest that PEDOT/GO coating will be an effective treatment for controlling corrosion of Mg based medical implants. Coating Mg substrates with a PEDOT/GO composite coating showed a significant decrease in corrosion rate. While conducting polymer coatings have been used to prevent corrosion on various metals, there has been little work on the use of these coatings for Mg. Additionally, to our knowledge, there has not been a report of the combined used of conducting polymer and GO as a corrosion control layer. Corrosion control is attributed to an initial barrier layer followed by electrochemical coupling of the PEDOT/GO coating with the substrate to facilitate the formation of a protective phosphate layer. This coupling also resulted in a decrease in hydrogen produced during corrosion, which could further improve the host tissue integration of Mg implants. This work elaborates on the potential for electroactive polymers to serve as corrosion control methods. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    PubMed

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  19. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  20. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  1. Biodegradable ceramic-polymer composites for biomedical applications: A review.

    PubMed

    Dziadek, Michal; Stodolak-Zych, Ewa; Cholewa-Kowalska, Katarzyna

    2017-02-01

    The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  3. Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine.

    PubMed

    Forte, Lucia; Torricelli, Paola; Bonvicini, Francesca; Boanini, Elisa; Gentilomi, Giovanna Angela; Lusvardi, Gigliola; Della Bella, Elena; Fini, Milena; Vecchio Nepita, Edoardo; Bigi, Adriana

    2018-01-01

    In this work we developed new antibacterial composite materials using polydopamine (PDA) to trigger the deposition of silver nanoparticles (AgNPs) onto calcium phosphates, namely octacalcium phosphate (OCP) and α-tricalcium phosphate (αTCP). Functionalization of OCP and αTCP with a self-polymerized polydopamine layer was obtained by soaking the calcium phosphates in dopamine solution. The PDA surface of functionalized calcium phosphates (OCPd and αTCPd) promoted the deposition of AgNPs by reducing silver ions when soaked in a silver nitrate solution. The amount of deposited AgNPs can be modulated by varying the concentration of silver nitrate solution and the type of substrate. The results of in vitro tests carried out with osteoblast-like MG63 cells indicate that the combination of AgNPs with OCP provides more biocompatible materials than those obtained using αTCP as substrate. In particular, the study of osteoblast activity and differentiation was focused on the samples OCPdAg5 (silver content=8.2wt%) and αTCPdAg5 (silver content=4.7wt%), which did not show any cytotoxicity, and compared with those obtained on pure OCP and αTCP. The results demonstrate that the AgNPs loaded materials support osteoblast viability and differentiation, whereas they significantly inhibit the growth of relevant antibiotic-resistant pathogenic bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion.

    PubMed

    Nahorny, Sídnei; Zanin, Hudson; Christino, Vinie Abreu; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares, Luís Eduardo Silva

    2017-10-01

    To date is emergent the development of novel coatings to protect erosion, especially to preventive dentistry and restorative dentistry. Here, for the first time we report the effectiveness of multi-walled carbon nanotube/graphene oxide hybrid carbon-base material (MWCNTO-GO) combined with nanohydroxyapatite (nHAp) as a protective coating for dentin erosion. Fourier transform Raman spectroscopy (FT-Raman), scanning electron (SEM), and transmission electron (TEM) microscopy were used to investigated the coatings and the effect of acidulated phosphate fluoride gel (APF) treatment on bovine teeth root dentin before and after erosion. The electrochemical corrosion performance of the coating was evaluated. Raman spectra identified that: (i) the phosphate (ν 1 PO 4 3- ) content of dentin was not significantly affected by the treatments and (ii) the carbonate (ν 1 CO 3 2- ) content in dentin increased when nHAp was used. However, the nHAp/MWCNTO-GO composite exposited lower levels of organic matrix (CH bonds) after erosion compared to other treatments. Interesting, SEM micrographs identified that the nHAp/MWCNTO-GO formed layers after erosive cycling when associate with APF treatment, indicating a possible chemical bond among them. Treatments of root dentin with nHAp, MWCNTO-GO, APF_MWCNTO-GO, and APF_nHAp/MWCNTO-GO increased the carbonate content, carbonate/phosphate ratio, and organic matrix band area after erosion. The potentiodynamic polarization curves and Nyquist plot showed that nHAp, MWCNT-GO and nHAp/MWCNT-GO composites acted as protective agents against corrosion process. Clearly, the nHAp/MWCNTO-GO composite was stable after erosive cycling and a thin and acid-resistant film was formed when associated to APF treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  6. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  7. Synergistic effect of PANI-ZrO2 composite as antibacterial, anti-corrosion, and phosphate adsorbent material: synthesis, characterization and applications.

    PubMed

    Masim, Frances Camille P; Tsai, Cheng-Hsien; Lin, Yi-Feng; Fu, Ming-Lai; Liu, Minghua; Kang, Fei; Wang, Ya-Fen

    2017-11-03

    The increasing number of bacteria-related problems and presence of trace amounts of phosphate in treated wastewater effluents have become a growing concern in environmental research. The use of antibacterial agents and phosphate adsorbents for the treatment of wastewater effluents is of great importance. In this study, the potential applications of a synthesized polyaniline (PANI)-zirconium dioxide (ZrO 2 ) composite as an antibacterial, phosphate adsorbent and anti-corrosion material were systematically investigated. The results of an antibacterial test reveal an effective area of inhibition of 14 and 18 mm for the Escherichia coli and Staphylococcus aureus bacterial strains, respectively. The antibacterial efficiency of the PANI-ZrO 2 composite is twice that of commercial ZrO 2 . In particular, the introduction of PANI increased the specific surface area and roughness of the composite material, which was beneficial to increase the contact area with bacterial and phosphate. The experimental results demonstrated that phosphate adsorption studies using 200 mg P/L phosphate solution showed a significant phosphate removal efficiency of 64.4%, and the maximum adsorption capacity of phosphate on the solid surface of PANI-ZrO 2 is 32.4 mg P/g. Furthermore, PANI-ZrO 2 coated on iron substrate was tested for anti-corrosion studies by a natural salt spray test (7.5% NaCl), which resulted in the formation of no rust. To the best of our knowledge, no works have been reported on the synergistic effects of the PANI-ZrO 2 composite as an antibacterial, anti-corrosion, and phosphate adsorbent material. PANI-ZrO 2 composite is expected to be a promising comprehensive treatment method for water filters in the aquaculture industry and for use in water purification applications.

  8. Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer: interface and bulk interactions.

    PubMed

    Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla

    2011-11-15

    Phosphate adsorption mechanism by a homogenous porous layer of nano-sized magnetite particles immobilized onto granular activated carbon (nFe-GAC) was studied for both interface and bulk structures. X-ray Photoelectron Spectroscopy (XPS) analysis revealed phosphate bonding to the nFe-GAC predominantly through bidentate surface complexes. It was established that phosphate was adsorbed to the magnetite surface mainly via ligand exchange mechanism. Initially, phosphate was adsorbed by the active sites on the magnetite surface, after which it diffused into the interior of the nano-magnetite layer, as indicated by intraparticle diffusion model. This diffusion process continues regardless of interface interactions, revealing some of the outer magnetite binding sites for further phosphate uptake. Desorption, using NaOH solution, was found to be predominantly a surface reaction, at which hydroxyl ions replace the adsorbed phosphate ions only at the surface outer biding sites. Five successive fix-bed adsorption/regeneration cycles were successfully applied, without significant reduction in the nFe-GAC adsorption capacity and at high regeneration efficiency. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Levi C.; Kolb, Brian; Kolpak, Alexie M.

    Layered transition metal phosphates and phosphites (TMPs) are a class of 2D materials bound togetherviavan der Waals interactions. Through simple functionalization, band energies can be systematically controlled.

  10. Atomically resolved calcium phosphate coating on a gold substrate.

    PubMed

    Metoki, Noah; Baik, Sung-Il; Isheim, Dieter; Mandler, Daniel; Seidman, David N; Eliaz, Noam

    2018-05-10

    Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

  11. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites.

    PubMed

    Lu, Helen H; Tang, Amy; Oh, Seong Cheol; Spalazzi, Jeffrey P; Dionisio, Kathie

    2005-11-01

    Biodegradable polymer-ceramic composites are attractive systems for bone tissue engineering applications. These composites have the combined advantages of the component phases, as well as the inherent ease in optimization where desired material properties can be tailored in a well-controlled manner. This study focuses on the optimization of a polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) composite for bone tissue engineering. The first objective is to examine the effects of composition or overall BG content on the formation of a Ca-P layer on the PLAGA-BG composite. It is expected that with increasing BG content (0%, 10%, 25%, 50% by weight), the required incubation time in a simulated body fluid (SBF) for the composite to form a detectable surface Ca-P layer will decrease. Both the kinetics and the chemistry will be determined using SEM+EDAX, FTIR, and mu-CT methods. Solution phosphorous and calcium concentrations will also be measured. The second objective of the study is to determine the effects of BG content on the maturation of osteoblast-like cells on the PLAGA-BG composite. It is hypothesized that mineralization will increase with increasing BG content, and the composite will support the proliferation and differentiation of osteoblasts. Specifically, cell proliferation, alkaline phosphatase activity and mineralization will be monitored as a function of BG content (0%, 10%, 50% by weight) and culturing time. It was found that the kinetics of Ca-P layer formation and the resulting Ca-P chemistry were dependent on BG content. The response of human osteoblast-like cells to the PLAGA-BG composite was also a function of BG content. The 10% and 25% BG composite supported greater osteoblast growth and differentiation compared to the 50% BG group. The results of this study suggest that there is a threshold BG content which is optimal for osteoblast growth, and the interactions between PLAGA and BG may modulate the kinetics of Ca-P formation and the overall cellular response.

  12. Calcium phosphate coating of nickel-titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets.

    PubMed

    Choi, Jongsik; Bogdanski, Denise; Köller, Manfred; Esenwein, Stefan A; Müller, Dietmar; Muhr, Gert; Epple, Matthias

    2003-09-01

    Nickel-titanium shape-memory alloys (NiTi-SMA) were coated with calcium phosphate by dipping in oversaturated calcium phosphate solution. The layer thickness (typically 5-20 micrometer) can be varied by choice of the immersion time. The porous nature of the layer of microcrystals makes it mechanically stable enough to withstand both the shape-memory transition upon cooling and heating and also strong bending of the material (superelastic effect). This layer may improve the biocompatibility of NiTi-SMA, particulary for osteosynthetic devices by creating a more physiological surface and by restricting a potential nickel release. The adherence of human leukocytes (peripheral blood mononuclear cells and polymorphonuclear neutrophil granulocytes) and platelets to the calcium phosphate layer was analyzed in vitro. In comparison to non-coated NiTi-SMA, leukocytes and platelets showed a significantly increased adhesion to the coated NiTi-SMA.

  13. Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotopes in phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaisi, Deb P.; Kukkadapu, Ravi K.; Stout, Lisa M.

    2011-07-06

    A key question to address in the development of oxygen isotope ratios in phosphate (18Op) as a tracer of biogeochemical cycling of phosphorus in ancient and modern environments is the nature of isotopic signatures associated with uptake and cycling of mineral-bound phosphate by microorganisms. Here we present experimental results aimed at understanding the biotic and abiotic pathway of P cycling during biological uptake of phosphate sorbed to ferrihydrite and the selective uptake of specific sedimentary phosphate phases by Escherichia coli, Vibrio fischeri and Marinobacter aquaeolei. Results indicate that a significant fraction of ferrihydrite-bound phosphate is biologically available. The fraction ofmore » phosphate taken up by E. coli attained an equilibrium isotopic composition in a short time (<50 hrs) due to efficient O-isotope exchange between phosphate and water (biotic pathway). The difference in isotopic composition between newly equilibrated aqueous and residual sorbed phosphate promoted the exchange of intact phosphate radicals (abiotic pathway) so that this difference gradually became negligible. In sediment containing different P phases, E. coli and V. fischeri ‘extracted’ loosely sorbed phosphate first while M. aquaeolei preferred iron-oxide bound phosphate. Each bacterium imprinted a biotic isotopic signature on each P phase that it took up and cycled. For example, the 18Op value of the sorbed phosphate phase shifted gradually towards equilibrium isotopic composition and the value of Fe oxide-bound phosphate showed slight changes at first, but when new iron oxides were formed, co-precipitated/occluded phosphate retained 18O values of aqueous phosphate at that time. Concentrations and isotopic compositions of authigenic and detrital phosphates did not change, suggesting that these phosphate phases were not utilized by bacteria. These findings support burgeoning applications of 18Op as a tracer of phosphorus cycling in sediments, soils and aquatic environments and as an indicator of paleo- environmental conditions.« less

  14. Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopcak, T., E-mail: tsopcak@imr.saske.sk; Medvecky, L.; Giretova, M.

    The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~more » 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.« less

  15. Preparation of a bonelike apatite-polymer fiber composite using a simple biomimetic process.

    PubMed

    Yokoyama, Yoshiro; Oyane, Ayako; Ito, Atsuo

    2008-08-01

    A bonelike apatite-polymer fiber composite may be useful as an implant material to replace bone, the enthesis of a tendon, and the joint part of a ligament. We treated an ethylene-vinyl alcohol copolymer (EVOH) plate and knitted EVOH fibers with an oxygen plasma to produce oxygen-containing functional groups on their surfaces. The plasma-treated samples were alternately dipped in alcoholic calcium and phosphate ion solutions three times to deposit apatite precursors onto their surfaces. The surface-modified samples formed a dense and uniform bonelike surface apatite layer after immersion for 24 h in a simulated body fluid with ion concentrations approximately equal to those of human blood plasma. The adhesive strength between the apatite layer and the sample's surface increased with increasing power density of the oxygen plasma. The apatite-EVOH fiber composite obtained by our process has similarities to natural bone in that apatite crystals are deposited on organic polymer fibers. The resulting composite would possess osteoconductivity due to the apatite phase. With proper polymer selection and optimized synthesis techniques, a composite could be made that would have bonelike mechanical properties. Hence, the present surface modification and coating process would be a promising route to obtain new implant materials with bonelike mechanical properties and osteoconductivity. (c) 2007 Wiley Periodicals, Inc.

  16. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique

    PubMed Central

    Wilson, C. E.; van Blitterswijk, C. A.; Verbout, A. J.; de Bruijn, J. D.

    2010-01-01

    Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds. PMID:21069558

  17. Improving the bioactivity of bioglass/ (PMMA-co-MPMA) organic/inorganic hybrid.

    PubMed

    Ravarian, R; Wei, H; Dehghani, F

    2011-01-01

    Binary system of CaO-SiO(2) glasses enables the apatite formation in simulated body fluid (SBF). However, the presence of phosphate content in SiO(2)-CaO-P(2)O(5) glasses leads to the formation of orthophosphate nanocrystalline nuclei, which facilitates the generation of carbonate hydroxyapatite; this compound is more compatible with natural bone. The brittle and less flexible properties of bioactive glasses are the major obstacle for their application as bone implant. The hybridization of essential constituents of bioactive glasses and glass-ceramics with polymers such as PMMA can improve their poor mechanical properties. The aim of this study was to improve the bioactivity of nanocomposites fabricated from poly(methyl metacrylate) (PMMA) and bioglass for bone implant applications. Bioglass compounds with various phosphate contents were used for the preparation of PMMA/bioglass hybrid matrices. Since the lack of adhesion between the two phases impedes the homogenous composite formation, a silane coupling agent such as 3-(trimethoxysilyl)propyl methacrylates (MPMA) was incorporated into the polymer structure. The effect of addition of MPMA on the molecular structure of composite was investigated. Furthermore, the presence of MPMA in the system improved the homogeneity of sample. Increasing phosphate content in the inorganic segment of hybrid up to 10 mol% resulted in the formation of apatite layer on the surface; hence the hybrid was bioactive and suitable candidate for bone tissue engineering.

  18. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    PubMed

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  19. Glass formation and crystallization in the alumina-silica-lanthanum phosphate system for ceramics composites

    NASA Astrophysics Data System (ADS)

    Guo, Shuling

    The formation, structure, and dynamics of glasses in the alumina-silica-lanthanum phosphate system and their crystallization were investigated as a function of composition. These are of interest because of their potential as precursors for synthesizing ceramic-matrix-composites via co-crystallization of lanthanum monazite and either mullite or alumina into finely mixed microstructures. The glasses were characterized by X-Ray Diffraction (XRD), Raman spectroscopy, Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electron Energy Loss Spectrometry (EELS). Glass formation from rapidly quenched liquids was easiest and most consistent for compositions containing silica, such as for mullitemonazite compositions, and more difficult for alumina-monazite compositions. For mullite-monazite glasses, the glass transition temperatures increased linearly from 845°C to 906°C with increasing mullite content. An analysis of the glass structure indicated a network consisting of corner-linked aluminate, silicate and phosphate tetrahedra where aluminum played a central role of separating silicon and phosphorous. It was hypothesized that the glass network consisted of domains of aluminum silicate network edged by phosphate tetrahedra. A maximum in the crystallization temperature was attributed to the complexity of the glass network. At relatively mullite-rich compositions, simultaneous and cooperative crystallization of lanthanum phosphate and mullite correlated with the highest crystallization temperatures, and the lowest activation energies of crystallization. This was preceded by amorphous phase segregation in the glass at lower temperatures. An intermediate phase of lanthanum phosphate was discovered with an orthorhombic unit cell. For compositions of high phosphate contents, lanthanum phosphate precipitated first at about 900°C leaving an essentially pure mullite glass. Mullite crystallized at about 1000°C, matching the conditions for crystallizing pure mullite glass. The phosphate phase transformed to monazite at even higher temperatures. No amorphous phase segregation was observed in these cases. Microstructures were correlated with nucleation and growth conditions such that the continuous and isolated phases could be manipulated. Optimum nucleation temperatures were close to the glass transition temperature. Conditions were identified for forming a continuous boundary phase of monazite that isolated mullite grains, which is desired for fabricating ceramic-matrix-composites.

  20. On the origin of a phosphate enriched interval in the Chattanooga Shale (Upper Devonian) of Tennessee-A combined sedimentologic, petrographic, and geochemical study

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Schieber, Juergen

    2015-11-01

    The Devonian Chattanooga Shale contains an uppermost black shale interval with dispersed phosphate nodules. This interval extends from Tennessee to correlative strata in Kentucky, Indiana, and Ohio and represents a significant period of marine phosphate fixation during the Late Devonian of North America. It overlies black shales that lack phosphate nodules but otherwise look very similar in outcrop. The purpose of this study is to examine what sets these two shales apart and what this difference tells us about the sedimentary history of the uppermost Chattanooga Shale. In thin section, the lower black shales (PBS) show pyrite enriched laminae and compositional banding. The overlying phosphatic black shales (PhBS) are characterized by phosbioclasts, have a general banded to homogenized texture with reworked layers, and show well defined horizons of phosphate nodules that are reworked and transported. In the PhBS, up to 8000 particles of P-debris per cm2 occur in reworked beds, whereas the background black shale shows between 37-88 particles per cm2. In the PBS, the shale matrix contains between 8-16 phosphatic particles per cm2. The shale matrix in the PhBS contains 5.6% inertinite, whereas just 1% inertinite occurs in the PBS. The shale matrix in both units is characterized by flat REE patterns (shale-normalized), whereas Phosbioclast-rich layers in the PhBS show high concentrations of REEs and enrichment of MREEs. Negative Ce-anomalies are common to all samples, but are best developed in association with Phosbioclasts. Redox-sensitive elements (Co, U, Mo) are more strongly enriched in the PBS when compared to the PhBS. Trace elements associated with organic matter (Cu, Zn, Cd, Ni) show an inverse trend of enrichment. Deposited atop a sequence boundary that separates the two shale units, the PhBS unit represents a transgressive systems tract and probably was deposited in shallower water than the underlying PBS interval. The higher phosphate content in the PhBS is interpreted as the result of a combination of lower sedimentation rates with reworking/winnowing episodes. Three types of phosphatic beds that reflect different degrees of reworking intensity are observed. Strong negative Ce anomalies and abundant secondary marcasite formation in the PhBS suggests improved aeration of the water column, and improved downward diffusion of oxygen into the sediment. The associated oxidation of previously formed pyrite resulted in a lowering of pore water pH and forced dissolution of biogenic phosphate. Phosphate dissolution was followed by formation of secondary marcasite and phosphate. Repeated, episodic reworking caused repetitive cycles of phosphatic dissolution and reprecipitation, enriching MREEs in reprecipitated apatite. A generally "deeper" seated redox boundary favored P-remineralization within the sediment matrix, and multiple repeats of this process in combination with wave and current reworking at the seabed led to the formation of larger phosphatic aggregates and concentration of phosphate nodules in discrete horizons.

  1. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    PubMed

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Preparation and testing of a tetra-amine copper(II) chitosan bead system for enhanced phosphate remediation.

    PubMed

    Kumar, Ilango Aswin; Viswanathan, Natrayasamy

    2018-03-01

    A tetra-amine copper(II) chitosan bead system (TAC@CS composite beads) was developed by grafting tetra-amine copper(II) (TAC) with chitosan (CS) and utilized for phosphate removal. The prepared TAC@CS composite beads possess enhanced phosphate sorption capacity (SC) of 41.42 ± 0.071 mg/g than copper grafted chitosan (Cu@CS) composite, TAC and chitosan which were found to be 37.01 ± 0.803, 33.20 ± 0.650 and 7.24 ± 0.059 mg/g respectively. In batch mode, various adsorption influencing parameters like contact time, initial phosphate concentration, solution pH, co-anions and temperature were optimized for maximum phosphate sorption. The prepared adsorbents were characterized by FTIR, XRD, UV-Visible, SEM and EDAX analysis. The adsorption isotherms and thermodynamic parameters of the adsorbent were studied. The feasible phosphate uptake mechanism of TAC@CS biocomposite beads was reported. The reusability studies of TAC@CS composite beads were carried out using NaOH as elutant. The suitability of TAC@CS composite beads at field conditions was tested with phosphate contaminated field water samples collected from nearby areas of Dindigul district. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  4. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix.

    PubMed

    el-Ghannam, A; Ducheyne, P; Shapiro, I M

    1997-02-01

    The objective of the study was to examine the effect of alkali ion release, pH control and buffer capacity on the expression of the osteoblastic phenotype. In addition we determined the importance of modifications of the surface of porous bioactive glass (BG) on the activity of rat calvaria osteoblasts in vitro. We found that at a low tissue culture medium (TCM) volume to BG surface area (Vol/SA) ratio, the products of glass corrosion elevated the pH of the TCM to a value that adversely affected cellular activity; thus, the matrix synthesized by the cells was non-mineralized. On the other hand, when the Vol/SA was high and the buffer capacity of the medium was not exceeded, the cells generated a mineralized extracellular matrix. Addressing the second issue, we observed that modification of the composition of the BG surface markedly influenced osteoblast activity. BG that was coated with either a calcium phosphate-rich layer only or a serum protein layer changed the phenotypic characteristics of the osteoblasts. The presence of either of these surfaces lowered the alkaline phosphatase activity of the attached cells; this finding indicated that the osteoblast phenotype was not conserved. However, when the BG was coated with a bilayer of calcium phosphate and serum proteins, the alkaline phosphatase (AP) activity was elevated and the extracellular matrix contained characteristic bone markers. Our findings indicate that the calcium phosphate-rich layer promotes adsorption and concentration of proteins from the TCM, and it is utilized by the osteoblasts to form the mineralized extracellular matrix.

  5. Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries.

    PubMed

    Liu, Jian; Banis, Mohammad N; Sun, Qian; Lushington, Andrew; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang

    2014-10-08

    Atomic layer deposition is successfully applied to synthesize lithium iron phosphate in a layer-by-layer manner by using self-limiting surface reactions. The lithium iron phosphate exhibits high power density, excellent rate capability, and ultra-long lifetime, showing great potential for vehicular lithium batteries and 3D all-solid-state microbatteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass® co-sintered bioceramics.

    PubMed

    Cozza, Natascia; Monte, Felipe; Bonani, Walter; Aswath, Pranesh; Motta, Antonella; Migliaresi, Claudio

    2018-02-01

    In this study, bioactive hydroxyapatite (HAP)-based bioceramics starting from cuttlefish bone powders have been prepared and characterized. In particular, fragmented cuttlefish bone was co-sintered with 30 wt% of Bioglass ® -45S5 to synthesize HAP-based powders with enhanced mechanical properties and bioactivity. Commercial synthetic HAP was treated following the same procedure and used as a reference. The structure and composition of the bioceramics formulations were characterized using Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. After the thermal treatment of cuttlefish bone powder added with 30 wt% Bioglass, new phases with compositions of sodium calcium phosphate [Na 3 Ca 6 (PO 4 ) 5 ], β-tricalcium phosphate [Ca 3 (PO 4 )] and amorphous silica were detected. In vitro cell culture studies were performed by evaluating proliferation, metabolic activity and differentiation of human osteoblast-like cells (MG63). Scaffolds made with cuttlefish bone powder exhibited increased apatite deposition, alkaline phosphatase activity and cell proliferation compared with commercial synthetic HAP. In addition, the ceramic compositions obtained after the combination with Bioglass ® further enhanced the metabolic activity of MG63 cell and promoted the formation of a well-developed apatite layer after 7 days of incubation in Dulbecco's modified Eagle's medium. Copyright © 2017 John Wiley & Sons, Ltd.

  7. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  8. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    PubMed

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  10. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    PubMed Central

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  11. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals

    PubMed Central

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-01-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals. PMID:26515127

  12. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  13. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  14. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  15. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    NASA Astrophysics Data System (ADS)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it was shown that particles with thicker calcium phosphate coatings released smaller amounts of oxygen in a given timeframe. This study proved the hypothesis by showing a fundamental understanding of emulsion science, coating the flexible emulsion surface with a biocompatible material, and a strong particle performance with regard to stability and as an oxygen carrier.

  16. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  17. A Comparative Evaluation of the Mechanical Properties of Two Calcium Phosphate/Collagen Composite Materials and Their Osteogenic Effects on Adipose-Derived Stem Cells

    PubMed Central

    Li, Qing; Wang, Tong; Zhang, Gui-feng; Yu, Xin; Zhang, Jing; Zhou, Gang; Tang, Zhi-hui

    2016-01-01

    Adipose-derived stem cells (ADSCs) are ideal seed cells for use in bone tissue engineering and they have many advantages over other stem cells. In this study, two kinds of calcium phosphate/collagen composite scaffolds were prepared and their effects on the proliferation and osteogenic differentiation of ADSCs were investigated. The hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composite scaffolds (HTPSs), which have an additional β-tricalcium phosphate, resulted in better proliferation of ADSCs and showed osteogenesis-promoting effects. Therefore, such composite scaffolds, in combination with ADSCs or on their own, would be promising for use in bone regeneration and potential clinical therapy for bone defects. PMID:27239204

  18. Phosphorus K-edge XANES spectroscopy of mineral standards

    PubMed Central

    Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul

    2011-01-01

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905

  19. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Qingrui; Teng, Jie; Zou, Guodong; Peng, Qiuming; Du, Qing; Jiao, Tifeng; Xiang, Jianyong

    2016-03-01

    Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene.Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09303a

  20. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  1. Stabilized CdSe-CoPi composite photoanode for light-assisted water oxidation by transformation of a CdSe/cobalt metal thin film.

    PubMed

    Costi, Ronny; Young, Elizabeth R; Bulović, Vladimir; Nocera, Daniel G

    2013-04-10

    Integration of water splitting catalysts with visible-light-absorbing semiconductors would enable direct solar-energy-to-fuel conversion schemes such as those based on water splitting. A disadvantage of some common semiconductors that possess desirable optical bandgaps is their chemical instability under the conditions needed for oxygen evolution reaction (OER). In this study, we demonstrate the dual benefits gained from using a cobalt metal thin-film as the precursor for the preparation of cobalt-phosphate (CoPi) OER catalyst on cadmium chalcogenide photoanodes. The cobalt layer protects the underlying semiconductor from oxidation and degradation while forming the catalyst and simultaneously facilitates the advantageous incorporation of the cadmium chalcogenide layer into the CoPi layer during continued processing of the electrode. The resulting hybrid material forms a stable photoactive anode for light-assisted water splitting.

  2. Fabrication of Superhydrophobic Calcium Phosphate Coating on Mg-Zn-Ca alloy and Its Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Lashuang; Jiang, Yue; Zai, Wei; Li, Guangyu; Liu, Shaocheng; Lian, Jianshe; Jiang, Zhonghao

    2017-12-01

    A novel superhydrophobic calcium phosphate coating was prepared on a magnesium alloy substrate by a highly effective chemical conversion process and subsequent chemical modification. Different methods were employed to characterize the surface morphology and chemical composition as well as measure the wettability of the coating. It was demonstrated that the as-prepared superhydrophobic calcium phosphate coating has a typical three-level hierarchical structure consisted of micro-protrusions, submicro-lumps and nano-grains, conferring excellent superhydrophobicity with a water contact angle of 159°. The electrochemical measurements and appropriate equivalent circuit revealed that the corrosion-resistant performance of the superhydrophobic calcium phosphate coating was significantly improved as compared with that of the substrate, the corrosion potential of the superhydrophobic coating increases from -1.56 to -1.36 V, and its corrosion current density decreases from 1.29 × 10-4 to 1.3 × 10-6 A/cm2. The anti-corrosion mechanism of the superhydrophobic coating was also discussed. It can be indicated that the corrosion inhibitive properties of the coating are in accordance with its hydrophobicity, which is owing to the presence of a protective layer of air trapped in the grooves of the coating surface to isolate the underlying materials from the external environment.

  3. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  4. Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response.

    PubMed

    Giretova, Maria; Medvecky, Lubomir; Stulajterova, Radoslava; Sopcak, Tibor; Briancin, Jaroslav; Tatarkova, Monika

    2016-12-01

    Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified. The significantly enhanced proliferation activity with faster population growth of osteoblasts were found on enzymatically degraded biopolymer composite films with α-tricalcium phosphate and nanohydroxyapatite. No cytotoxicity of composite films prepared from lysozyme degraded scaffolds containing a large fraction of low molecular weight chitosans (LMWC), was revealed after 10 days of cultivation. Contrary to above in the higher cytotoxicity origin untreated nanohydroxyapatite films and porous composite scaffolds. The results showed that the synergistic effect of surface distribution, morphology of nanohydroxyapatite particles, microtopography and the presence of LMWC due to chitosan degradation in composite films were responsible for compensation of the cytotoxicity of nanohydroxyapatite composite films or porous composite scaffolds.

  5. Macroporous Calcium Phosphate/Chitosan Composites Prepared via Unidirectional Ice Segregation and Subsequent Freeze-Drying

    PubMed Central

    Aranaz, Inmaculada; Martínez-Campos, Enrique; Moreno-Vicente, Carolina; Civantos, Ana; García-Arguelles, Sara; del Monte, Francisco

    2017-01-01

    Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA). In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS) and hydroxyapatite (Hap) also containing acetic acid (pH = 4.5). For better characterization of the nature of the inorganic matter entrapped within the resulting composite, we performed either oxygen plasma or calcination processes to remove the organic matter. The nature of the phosphate salts was studied by XRD and NMR studies. Amorphous calcium phosphate (ACP) was identified as the mineral phase in the composites submitted to oxygen plasma, whereas crystalline Hap was obtained after calcination. SEM microscopy revealed the formation of porous structures (porosity around 80–85%) in the original composites, as well as in the inorganic matrices obtained after calcination, with porous channels of up to 50 µm in diameter in the former case and of up to 20 µm in the latter. The biocompatibility of the composites was assessed using two different cell lines: C2C12GFP premyoblastic cells and MC3T3 preosteoblastic cells. PMID:28772874

  6. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  7. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

    PubMed Central

    Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

  8. Phosphate-bonded ceramic–wood composites : R&D project overview and invitation to participate

    Treesearch

    Theodore L. Laufenberg; Matt Aro

    2004-01-01

    We are developing chemically bonded ceramic phosphate binders for the production of biofiber-based composite materials. These binders promise to have better processing and properties than some current cement and polymer resin binder systems. The ceramic phosphate binders (termed Ceramicrete), if used in place of cement and polymers, will significantly reduce the...

  9. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Treesearch

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  10. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    PubMed

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  11. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro.

    PubMed

    Huang, Ming-Hsien; Kao, Chia-Tze; Chen, Yi-Wen; Hsu, Tuan-Ti; Shieh, Den-En; Huang, Tsui-Hsien; Shie, Ming-You

    2015-04-01

    This study investigates the physicochemical and biological effects of traditional Chinese medicines on the β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composites of bone cells using human dental pulp cell. CS is an osteoconductive and bioactive material. For this research we have combined β-TCP and CS and check its effectiveness, a series of β-TCP/CS composites with different ratios of Xu Duan (XD) were prepared to make new bioactive and biodegradable biocomposites for bone repair. XD has been used in Traditional Chinese Medicine for hundreds of years as an antiosteoporosis, tonic and antiaging agent for the therapy of low back pain, traumatic hematoma, threatened abortion and bone fractures. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of XD released from β-TCP/CS composites and in vitro human dental pulp cell (hDPCs) and studied its behavior. The results show the XD-contained paste did not give any demixing when the weight ratio of XD increased to 5-10 % due to the filter-pressing effect during extrusion through the syringe. After immersion in SBF, the microstructure image showed a dense bone-like apatite layer covered on the β-TCP/CS/XD composites. In vitro cell experiments shows that the XD-rich composites promote human dental pulp cells (hDPCs) proliferation and differentiation. However, when the XD quantity in the composite is more than 5 %, the amount of cells and osteogenesis protein of hDPCs were stimulated by XD released from β-TCP/CS composites. The combination of XD in degradation of β-TCP and osteogenesis of CS gives strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials.

  12. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.

    PubMed

    Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Ma, Liang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong

    2014-09-01

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds.

  13. Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water.

    PubMed

    Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2018-03-01

    The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.

  14. Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal.

    PubMed

    Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla

    2011-05-15

    A homogeneous layer of nano-sized magnetite particles (<4 nm) was synthesized by impregnation of modified granular activated carbon (GAC) with ferric chloride, for effective removal of phosphate. A proposed mechanism for the modification and formation of magnetite onto the GAC is specified. BET results showed a significant increase in the surface area of the matrix following iron loading, implying that a porous nanomagnetite layer was formed. Batch adsorption experiments revealed high efficiency of phosphate removal, by the newly developed adsorbent, attaining maximum adsorption capacity of 435 mg PO(4)/g Fe (corresponding to 1.1 mol PO(4)/mol Fe(3)O(4)). It was concluded that initially phosphate was adsorbed by the active sites on the magnetite surface, and then it diffused into the interior pores of the nanomagnetite layer. It was demonstrated that the latter is the rate-determining step for the process. Innovative correlation of the diffusion mechanism with the unique adsorption properties of the synthesized adsorbent is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Correlation between calcium and phosphate levels to calculus accumulation on coronary heart disease patients

    NASA Astrophysics Data System (ADS)

    Cahaya, Cindy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Coronary Artery Disease (CAD) or Coronary Heart Disease (CHD) is a disease that happened because of blood flow being blocked by atherosclerosis. Atherosclerosis is a process of hardening of the arteries which characterized by thickening and loss of elasticity of the intimal layer of vascular wall, by lipid deposit. Periodontitis is a chronic multifactorial inflammatory disease caused by microorganism and characterized by progressive destruction of the tooth supporting apparatus leading to tooth loss. Many studies use saliva as a valuable source for clinically information, as an asset for early diagnosis, prognostic and reviewer for pascatherapy status. Dental calculus had happened as a consequence of saliva supersaturation by calcium and phosphate. Salivary flow rate and its composition influence the formation of calculus. Increasing salivary calcium levels is characteristic of periodontitis patients. An important hipotesis in Cardiology is chronic infections contribute in atherosclerosis. Objective: To analyse the correlation between calcium and phosphate levels in saliva to calculus accumulation on CHD patients. Result: Correlation analysis between salivary calcium levels with calculus accumulation in patients with CHD and non-CHD showed no significant p value, p=0.59 and p=0.518. Correlation analysis between salivary phosphate levels and calculus accumulation showed no significant p value, p=0.836 for CHD patients and p=0.484 for non-CHD patients. Conclusion: There are no correlation between calcium levels and phosphate levels with calculus accumulation in CHD patients. Further research need to be done.

  16. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76 North...

  17. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76 North...

  18. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76 North...

  19. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76 North...

  20. Grazing incidence synchrotron X-ray diffraction of marbles consolidated with diammonium hydrogen phosphate treatments: non-destructive probing of buried minerals

    NASA Astrophysics Data System (ADS)

    Possenti, Elena; Colombo, Chiara; Conti, Claudia; Gigli, Lara; Merlini, Marco; Plaisier, Jasper Rikkert; Realini, Marco; Gatta, G. Diego

    2018-05-01

    Diammonium hydrogen phosphate (DAP)-based consolidating treatments react with carbonatic stones and form calcium phosphates phases, whose composition depends on the availability of free calcium ions. In this work, an innovative non-destructive approach based on grazing incidence X-ray diffraction (GIXRD) with synchrotron radiation (SR) is used to investigate DAP-treated Carrara marble specimens and to study the influence of the substrate composition on the crystallization of calcium phosphate phases. The outcomes indicate that the presence of compositional micro-heterogeneity of Carrara marble favours the formation of specific phases. Dicalcium phosphate dihydrate, a calcium phosphate with a low Ca/P molar ratio, is formed on carbonatic phases with a low Ca amount, such as dolomite grains and Mg-containing veins. Furthermore, this study highlights the potentialities of SR-GIXRD as a powerful non-destructive tool for the diagnostic of Cultural Heritage objects since it allows investigating the conservation history of stone materials and their interaction with the environment.

  1. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  2. Fabrication and characterization of poly(DL-lactic-co-glycolic acid)/zirconia-hybridized amorphous calcium phosphate composites

    PubMed Central

    WHITED, BRYCE M.; GOLDSTEIN, AARON S.; SKRTIC, DRAGO; LOVE, BRIAN J.

    2010-01-01

    Several minerals, such as hydroxyapatite and β-tricalcium phosphate, have been incorporated into bioresorbable polyester bone scaffolds to increase the osteoconductivity both in vitro and in vivo. More soluble forms of calcium phosphate that release calcium and phosphate ions have been postulated as factors that increase osteoblast differentiation and mineralization. Recently, a zirconia-hybridized pyrophosphate-stabilized amorphous calcium phosphate (Zr-ACP) has been synthesized allowing controlled release of calcium and phosphate ions. When incorporated into bioresorbable scaffolds, Zr-ACP has the potential to induce osteoconductivity. In this study, 80–90% (w/v) porous poly(DL-LActic-co-glycolic acid) (PLGA) scaffolds were formed by thermal phase separation from dioxane while incorporating Zr-ACP. Scanning electron microscopy revealed a highly porous structure with a pore size ranging from a few μm to about 100 μm, smaller than we had hoped for. Zr-ACP particles were evenly dispersed in the composite structure and incorporated into the pore walls. The amorphous structure of the Zr-ACP was maintained during composite fabrication, as found by X-ray diffraction. Composite scaffolds had larger compressive yield strengths and moduli compared to pure polymer scaffolds. These initial efforts demonstrate that PLGA/Zr-ACP composites can be formed in ways that ultimately serve as promising bone scaffolds in tissue engineering. PMID:16768292

  3. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate.

    PubMed

    Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.

  4. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    PubMed

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  5. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates

    PubMed Central

    Tsiourvas, D.; Arkas, M.; Diplas, S.; Mastrogianni, E.

    2010-01-01

    This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. PMID:21069559

  6. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates.

    PubMed

    Tsiourvas, D; Tsetsekou, A; Arkas, M; Diplas, S; Mastrogianni, E

    2011-01-01

    This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid.

  7. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  8. Phosphorous doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  9. Poly(trimethylene carbonate)-based composite materials for reconstruction of critical-sized cranial bone defects in sheep.

    PubMed

    Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel

    2017-02-01

    The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    NASA Astrophysics Data System (ADS)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  11. Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin.

    PubMed

    Feng, Shenglei; He, Fupo; Ye, Jiandong

    2018-01-01

    In this study, hierarchically porous calcium phosphate scaffolds (HTCP) with unidirectional pores, transversely interconnected pores, and micropores were fabricated by the combination of extrusion and porogen burnout technique. Gelatin was incorporated into the HTCP scaffolds by vacuum-impregnation of gelatin solution and subsequent freeze-drying. The phase composition, microstructure, physical and cytobiological properties were analyzed. The results showed that the HTCP scaffolds were composed of β-tricalcium phosphate with minor hydroxyapatite. The HTCP scaffolds had unidirectional pores (~400μm), transversely interconnected pores (~130μm) and micropores (~1μm). The incorporation of gelatin significantly increased the compressive strength, toughness, and cell seeding of the HTCP scaffolds. The composite scaffolds showed excellent cytocompatibility. The hierarchically porous calcium phosphate composite scaffolds may have potential application prospects in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned and incrementally heated from 25 to 900° C, in 25° intervals. The samples were then ground to a standardized grain-size (45<63μ m), and changes in bioapatite crystallinity (CI) were determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by about 8-10‰ below 500° C, 5-6‰ between 500-700° C, and 8-10‰ above 700° C. CI and oxygen isotopic compositions of carbonate and phosphate are not well correlated. Only modest CI changes are recorded from 25-675° C, compared with much larger changes in oxygen isotopic composition, especially above 300° C. On average, original isotopic compositions are largely preserved for both phosphate (+/-1‰ ) and carbonate (+/-2‰ ) oxygen at <300° C. At higher temperatures, however, both phosphate and carbonate oxygen in the bioapatite are systematically depleted of oxygen-18 relative to original values.

  13. Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride.

    PubMed

    Ayadi, Ibticem; Ayed, Foued Ben

    2016-07-01

    The microstructure, the densification and the mechanical properties of the tricalcium phosphate - titania - MgF2 composites were investigated. The effect of MgF2 addition on the performances of the tricalcium phosphate - 40wt% titania composites is discussed. The mechanical properties were investigated by Brazilian test, Vickers indentation and the ultrasound techniques. The mechanical properties of the tricalcium phosphate - 40wt% titania composites reached optimum performances after the sintering process at 1200°C for one hour with 4wt% MgF2. Thus, the highest values of the rupture strength, Vickers hardness, Young׳s and the shear modulus reached 27MPa, 360Hv, 51GPa and 20GPa, respectively. The increase of the mechanical properties of the composites is due to the presence of the liquid phase and the formation of a new compound. Thus, the microstructure of the composites reveals the presence of a new lamella form relative to the Mg2(PO4)F. Beyond 4wt% MgF2, the performances of the composites are hindered by the exaggerated grain growth and the formation of the bubbles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].

    PubMed

    Duan, You-rong; Liu, Ke-wei; Chen, Ji-yong; Zhang, Xing-dong

    2002-06-01

    Objective. Bone-like apatite formation on the surface of calcium phosphate ceramics was believed to be the necessary step that new bone grows on the ceramics and to be relative to the osteoinductivity of the material. This study aimed at investigating the influence of the flow rate of simulated body fluid (SBF) (2 ml/min) in skeletal muscle upon the formation of bone-like apatite on porous calcium phosphate ceramics. Method. The dynamic condition was realized by controlling the SBF flowing in/out of the sample chamber of 100 ml. The flow rate of 2 ml/min is close to that in human muscle environment. The pH and inorganic ionic composition of SBF are close to those of human body fluid. Result. Bone-like apatite formation was relatively easier to occur in static SBF than in dynamic SBF. Experiment with flowing SBF (dynamic SBF) is better in mimicking the living body fluid than static SBF. Conclusion. The results from dynamic SBF may more truly show the relation between apatite layer formation and osteoinduction in biomaterials than that from in vitro experiments before.

  15. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Polymeric dental composites based on remineralizing amorphous calcium phosphate fillers

    PubMed Central

    Skrtic, Drago; Antonucci, Joseph M.

    2017-01-01

    For over two decades we have systematically explored structure-composition-property relationships of amorphous calcium phosphate (ACP)-based polymeric dental composites. The appeal of these bioactive materials stems from their intrinsic ability to prevent demineralization and/or restore defective tooth structures via sustained release of remineralizing calcium and phosphate ions. Due to the compositional similarity of the ACP to biological tooth mineral, ACP-based composites should exhibit excellent biocompatibility. Research described in this article has already yielded remineralizing sealants and orthodontic adhesives as well as a prototype root canal sealer. Our work has also contributed to a better understanding on how polymer matrix structure and filler/matrix interactions affect the critical properties of these polymeric composites and their overall performance. The addition of antimicrobial compounds to the formulation of ACP composites could increase their medical and dental regenerative treatment applications, thereby benefiting an even greater number of patients. PMID:29599572

  17. Crystal-chemistry of alteration products of vitrified wastes: Implications on the retention of polluting elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterpenich, Jerome

    2008-07-01

    Alteration products of vitrified wastes coming from the incineration of household refuse (MSW) are described. Two vitrified wastes containing 50% and 70% of fly ash and a synthetic stained-glass with a composition close to that of an ancient glass (medieval stained-glass) were altered under different pH conditions (1, 5.5 corresponding to demineralized water and 10) during 181 days. Under acidic condition, the alteration layer is made of an amorphous hydrated silica gel impoverished in most of the initial elements. A minor phase MPO{sub 4} . nH{sub 2}O, where M represents Fe, Ti, Al, Ca and K cations, also constitutes themore » altered layer of the synthetic stained-glass. Under neutral and basic conditions, the altered layer is made of an amorphous hydrated silica gel and a crystallized calcium phosphate phase. The silica gel is depleted in alkalis and alkali-earth elements but contains significant amounts of aluminium, magnesium and transition elements, whereas the calcium phosphate is a hydroxylapatite-like phase with P-Si substitutions and a Ca/P ratio depending on the pH of the solution. This study shows: (i) the strong influence of pH conditions on the crystal-chemistry of alteration products and thus on the mechanisms of weathering resulting in different trapping of polluting elements, and (ii) that glass alteration does not necessary produce thermodynamically stable phases which has to be taken into account for the prediction of the long-term behavior.« less

  18. Seawater Phosphorites of the Seamount, Southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Yoo, C.; Moon, J.; Kim, J.; Kim, K.; Lee, K.

    2002-12-01

    Phosphatized carbonate rocks associated with ferromanganese crusts (Fe-Mn crust) were investigated for better understanding of diagenetic evolution of the seamount (one of the Margellan Seamount Trail), southwestern Pacific. Three stages of phosphatization are inferred on the basis of paragenetic relation with Fe-Mn crusts, which are divided into four layers by their textures; 1) layer 1, massive, columnar growth structures with some porosity, 2) layer 2, porous, digitate growth structures with brown Fe-oxide filling, 3) layer 3, digitate and ovoidal growth structures with carbonate sediments filling, 4) layer 4, massive, parallel to undulatory laminated textures. Early phosphatization (phosphorite I) occurred before the formation of the oldest layer 4 crust. Foraminiferal-nannofossil limestones and shallow-water bioclastic limestones, encrusted by layer 4 crusts, are replaced by phosphorite I. Strontium isotope ratios (0.70743 to 0.70766) indicate that this phosphorite is formed at Late Cretaceous (85.2 to 73.5 Ma). Oxygen isotope values (-0.6 to 0.1% PDB) and shale-normalized REE pattern suggest that phosphorite I was formed in normal seawater. Phosphorite I appears as subhedral to euhedral, prismatic hexagonal crystallites approximately less than 5 æm in length. The second phosphorite (phosphorite II) is formed during the cessation of layer 4 crusts. Foraminiferal-nannofossil limestones filling the fractures developed within layer 4 crust are phosphatized during this episode. Age of phospatization II is defined as Late Eocene to Early Oligocene (36.5 to 31.6 Ma) from strontium isotope ratios (0.70777 to 0.70793). Oxygen isotope values (-2.9 to 2.9% PDB) and shale-normalized REE pattern of phosphorite II also suggest normal seawater origin. Phosphorite II replaced carbonate grain appears as anhedral, submicron-sized crystallites, whereas euhedral, prismatic hexagonal crystallites are filling the open space. Global climatic transition from a nonglacial to glacial period during Late Eocene to Early Oligocene intensified oceanic circulation and upwelling in deep-sea environment. Under this circumstance, phosphorite II may have been formed by redistribution of dissolved phosphous, accumulated in deep-sea during stable condition, to shallow environment. The last phosphatization (phosphorite III) occurred during or after the formation of layer 3 crust. Foraminiferal-nannofossil limestones filling the porosity and interstices within digitate layer 3 crust are phosphatized during this stage. Strontium isotope ratios (0.70827 to 0.70882) suggest that phosphorite III is formed from Oligocene/Miocene boundary to Middle Miocene (23.6 to 13.1 Ma). Shale-normalized REE pattern indicates this phosphorite was formed in normal seawater. Exclusively low oxygen isotope values (-10.7 to -2.4% PDB) suggest phosphorous ions responsible to phosphorite III probably provided during diagenesis of surrounding layer 3 crust.

  19. Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams.

    PubMed

    Reis, R L; Cunha, A M; Fernandes, M H; Correia, R N

    1997-12-01

    In this work, a bioactive glass is used as a percusor of calcium-phosphate (Ca-P) film deposition onto several polymer-based materials. Both bioinert (high molecular weight polyethylene, HMWPE), and biodegradable (corn starch-based blends, SEVA-C) polymers, unreinforced or reinforced with hydroxylapatite (HA), were coated by the very simple proposed route. Also polyurethane (PU) foams, with an open-cell structure, were mineralized by the proposed method. In fact, it was possible to induce the growth of the Ca-P films not only at the surface, but also in the bulk of the PU foam. These cellular materials are intended for cancellous bone replacement applications. The morphology of the formed films was strongly dependent on the used substrate, its polar character, and on the presence of HA in its composition, as observed by SEM. Nevertheless, a well defined needly like structure was observed in all samples at high magnifications. The Ca:P ratios of the films were between 1.5 and 1.7, i.e. in the range of tricalcium phosphate-hydroxylapatite. Raman spectroscopy and thin-film x-ray diffraction (XRD) evidenced the formation of mostly amorphous calcium-phosphate films. After scraping the coating from the polymer surface and heat-treating the resulting powder at 1000 degrees C for 1 h, HA and beta-tricalcium phosphate (TCP) typical peaks were found on XRD patterns.

  20. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.

    PubMed

    Ergun, Celaletdin; Liu, Huinan; Webster, Thomas J

    2009-06-01

    Lanthanum phosphate (LaPO(4), LP) was combined with either hydroxyapatite (HA) or tricalcium phosphate (TCP) to form novel composites for orthopedic applications. In this study, these composites were prepared by wet chemistry synthesis and subsequent powder mixing. These HA/LP and TCP/LP composites were characterized in terms of phase stability and microstructure evolution during sintering using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their machinability was evaluated using a direct drilling test. For HA/LP composites, LP reacted with HA during sintering and formed a new phase, Ca(8)La(2)(PO(4))(6)O(2), as a reaction by-product. However, TCP/LP composites showed phase stability and the formation of a weak interface between TCP and LP machinability when sintered at 1100 degrees C, which is crucial for achieving desirable properties. Thus, these novel TCP/LP composites fulfilled the requirements for machinability, a key consideration for manufacturing orthopedic implants. Moreover, the biocompatibility of these novel LP composites was studied, for the first time, in this paper. In vitro cell culture tests demonstrated that the LP and its composites supported osteoblast (bone-forming cell) adhesion similar to natural bioceramics (such as HA and TCP). In conclusion, these novel LP composites should be further studied and developed for more effectively treating bone related diseases or injuries. 2008 Wiley Periodicals, Inc.

  1. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    PubMed

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  2. Influence of substrate rocks on Fe Mn crust composition

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Morgan, Charles L.

    1999-05-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  3. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  4. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO-SiO2-P2O5 Glasses in Vitro: Insights from Solid-State NMR.

    PubMed

    Mathew, Renny; Turdean-Ionescu, Claudia; Yu, Yang; Stevensson, Baltzar; Izquierdo-Barba, Isabel; García, Ana; Arcos, Daniel; Vallet-Regí, María; Edén, Mattias

    2017-06-22

    When exposed to body fluids, mesoporous bioactive glasses (MBGs) of the CaO-SiO 2 -P 2 O 5 system develop a bone-bonding surface layer that initially consists of amorphous calcium phosphate (ACP), which transforms into hydroxy-carbonate apatite (HCA) with a very similar composition as bone/dentin mineral. Information from various 1 H-based solid-state nuclear magnetic resonance (NMR) experiments was combined to elucidate the evolution of the proton speciations both at the MBG surface and within each ACP/HCA constituent of the biomimetic phosphate layer formed when each of three MBGs with distinct Ca, Si, and P contents was immersed in a simulated body fluid (SBF) for variable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1 H NMR spectra mainly reflect the MBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum-single-quantum correlation 1 H NMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP and HCA component were probed selectively by heteronuclear 1 H- 31 P NMR experimentation. The initially prevailing ACP phase comprises H 2 O and "nonapatitic" HPO 4 2- /PO 4 3- groups, whereas for prolonged MBG soaking over days, a well-progressed ACP → HCA transformation was evidenced by a dominating O 1 H resonance from HCA. We show that 1 H-detected 1 H → 31 P cross-polarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31 P NMR for detecting the onset of HCA formation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprises ACP and/or forms via an ACP precursor, we discuss a recently accepted structural core-shell picture of both synthetic and biological HCA, highlighting the close relationship between the disordered surface layer and ACP.

  5. Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate, an inorganic analogue of phosphonates

    NASA Astrophysics Data System (ADS)

    Belokoneva, E. L.; Dimitrova, O. V.; Volkov, A. S.

    2015-09-01

    The new Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate (space group Pnam = Pnma, D {2/h 16}) is obtained under hydrothermal conditions. The crystal structure is determined without preliminary knowledge of the chemical formula. The structure consists of layers of MnО6 octahedra connected with PO4 tetrahedra. Water molecules are located between the layers. [IO3]- groups having a typical umbrella-like coordination are statistically implanted in layers of MnО6 octahedra at a distance of 1.2 Å from Mn atoms. Their content in the crystal is minor. The structures of the phosphate-iodate coincides with the structures of phosphonates with consideration for the replacement of one (OH) vertex of the РО4 tetrahedron by the organic methyl radical СН3. In the structures of phosphonates and earlier studied phosphates, identical layers are distinguished and the cause of the existence of two MDO varieties is established based on the analysis within the OD theory. Possible hybrid structures derived from the prototypes under consideration are predicted.

  6. The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants.

    PubMed

    Badar, Muhammad; Lünsdorf, Heinrich; Evertz, Florian; Rahim, Muhammad Imran; Glasmacher, Birgit; Hauser, Hansjörg; Mueller, Peter P

    2013-07-01

    Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Most consumed processed foods by patients on hemodialysis: Alert for phosphate-containing additives and the phosphate-to-protein ratio.

    PubMed

    Watanabe, Marcela T; Araujo, Raphael M; Vogt, Barbara P; Barretti, Pasqual; Caramori, Jacqueline C T

    2016-08-01

    Hyperphosphatemia is common in patients with chronic kidney disease (CKD) stages IV and V because of decreased phosphorus excretion. Phosphatemia is closely related to dietary intake. Thus, a better understanding of sources of dietary phosphate consumption, absorption and restriction, particularly inorganic phosphate found in food additives, is key to prevent consequences of this complication. Our aims were to investigate the most commonly consumed processed foods by patients with CKD on hemodialysis, to analyze phosphate and protein content of these foods using chemical analysis and to compare these processed foods with fresh foods. We performed a cross-sectional descriptive analytical study using food frequency questionnaires to rank the most consumed industrialized foods and beverages. Total phosphate content was determined by metavanadate colorimetry, and nitrogen content was determined by the Kjeldahl method. Protein amounts were estimated from nitrogen content. The phosphate-to-protein ratio (mg/g) was then calculated. Processed meat protein and phosphate content were compared with the nutritional composition of fresh foods using the Brazilian Food Composition Table. Phosphate measurement results were compared with data from the Food Composition Table - Support for Nutritional Decisions. An α level of 5% was considered significant. Food frequency questionnaires were performed on 100 patients (mean age, 59 ± 14 years; 57% male). Phosphate additives were mentioned on 70% of the product labels analyzed. Proteins with phosphate-containing additives provided approximately twice as much phosphate per gram of protein compared with that of fresh foods (p < 0.0001). Protein and phosphate content of processed foods are higher than those of fresh foods, as well as phosphate-to-protein ratio. A better understanding of phosphate content in foods, particularly processed foods, may contribute to better control of phosphatemia in patients with CKD. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  9. Plasma electrolytic oxidation of Titanium Aluminides

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  10. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis.

    PubMed

    Ben-Nissan, Besim; Macha, Innocent; Cazalbou, Sophie; Choi, Andy H

    2016-01-01

    During the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated. This review aims to give an update into the advancements of calcium phosphate nanocoatings and thin film nanolaminates. In particular recent research on PLA/hydroxyapatite composite thin films and coatings into the slow drug delivery for the possible treatment of osteomyelitis is covered.

  11. Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance.

    PubMed

    Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M

    2012-10-01

    In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.

  12. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    PubMed

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  13. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslova, Marina V.; Rusanova, Daniela; Naydenov, Valeri

    2008-12-15

    Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formationmore » of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.« less

  14. Environmental significance of Upper Miocene phosphorites at hominid sites in the Lukeino Formation (Tugen Hills, Kenya)

    NASA Astrophysics Data System (ADS)

    Dericquebourg, Perrine; Person, Alain; Ségalen, Loïc; Pickford, Martin; Senut, Brigitte; Fagel, Nathalie

    2015-08-01

    The Lukeino Formation contains an important sedimentary and fossiliferous record of the late Miocene (6.09-5.68 Ma), which has in particular yielded the fossil remains of the oldest East African bipedal hominid called Orrorin tugenensis. This fluvio-lacustrine sedimentary succession crops out in the Kenyan part of the East African Rift. It is mainly composed of clay to sandy clay deposits intercalated with volcanic ash horizons, and localized layers of carbonates and diatomites. A detailed sedimentological and mineralogical study of the Lukeino Formation was conducted to throw light on the environmental conditions in which the hominids lived. Several centimetric, relatively continuous and indurated phosphatic horizons, of sedimentary origin, were identified at two sites (Sunbarua and Kapcheberek). Mineralogical (XRD) and geochemical analyses as well as observations by SEM, which was coupled with an energy dispersive spectroscopy (EDS) microprobe, indicate that the autochthonous phosphate layers are composed of a micritic matrix of francolite (38-93%), with incorporation of silicates in variable proportions from one layer to another. The phosphate matrix contains very well preserved and abundant diatom frustules in the basal phosphate layer. These diatoms are identified as Aulacoseira granulata, implying a pH of 7.8-8.2 for freshwaters of the Palaeolake Lukeino. Calcitic tubular structures, linked to a possible bacterial origin, are also observed locally. Phosphate layers occur abruptly within a thick clay-sandy series, associated with an intense runoff phase during the deposition of this interval of the Lukeino Formation. The massive and cyclic input of phosphorus to the lake promoted productivity to the stage where it caused a diatom bloom. The establishment of several phosphate horizons testifies to successive phases of eutrophication of Palaeolake Lukeino. The diatom cells provided some of the organic matter, which was decomposed by bacterial activity at the bottom of the lake in suboxic conditions, but in insufficient quantities to fully form the phosphatic materials. The rest of the organic matter needed for phosphogenesis came from terrigenous supply (plant debris), suggesting the presence of dense vegetation in the catchment of the Palaeolake Lukeino, during this well-drained interval of deposition of the Lukeino Formation.

  15. Mechanical properties of experimental composites with different calcium phosphates fillers.

    PubMed

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Citrate bridges between mineral platelets in bone

    PubMed Central

    Davies, Erika; Müller, Karin H.; Wong, Wai Ching; Pickard, Chris J.; Reid, David G.; Skepper, Jeremy N.; Duer, Melinda J.

    2014-01-01

    We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, 17O NMR data on bone and compare them with 17O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate–like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets. PMID:24706850

  17. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California

    USGS Publications Warehouse

    McLaughlin, K.; Kendall, C.; Silva, S.R.; Young, M.; Paytan, A.

    2006-01-01

    A seasonal analysis assesing variations in the oxygen isotopic composition of dissolved inorganic phosphate (DIP) was conducted in the San Francisco Bay estuarine system, California. Isotopic fractionation of oxygen in DIP (exchange of oxygen between phosphate and environmental water) at surface water temperatures occurs only as a result of enzyme-mediated, biological reactions. Accordingly, if phospate demand is low relative to input and phosphate is not heavily cycled in the ecosystem, the oxygen isotopic composition of DIP (?? 18Op) will reflect the isotopic composition of the source of phosphate to the system. Such is the case for the North San Francisco Bay, an anthropogenically impacted estuary with high surface water phosphate concentrations. Variability in the ?? 18Op in the bay is primarily controlled by mixing of water masses with different ??18Op signatures. The ??18Op values range from 11.4??? at the Sacramento River to 20.1??? at the Golden Gate. Deviations from the two-component mixing model for the North Bay reflect additional, local sources of phosphate to the estuary that vary seasonally. Most notably, deviations from the mixing model occur at the confluence of a major river into the bay during periods of high river discharge and near wastewater treatment outlets. These data suggest that ??18Op can be an effective tool for identifying P point sources and understanding phosphate dynamics in estuarine systems. Copyright 2006 by the American Geophysical Union.

  18. Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes.

    PubMed

    Dias, Luisa L S; Mansur, Herman S; Donnici, Claudio Luis; Pereira, Marivalda M

    2011-01-01

    The tissue engineering strategy is a new approach for the regeneration of cementum, which is essential for the regeneration of the periodontal tissue. This strategy involves the cell cultures present in this tissue, called cementoblasts, and located on an appropriate substrate for posterior implantation in the regeneration site. Prior studies from our research group have shown that the proliferation and viability of cementoblasts increase in the presence of the ionic dissolution products of bioactive glass particles. Therefore, one possible approach to obtaining adequate substrates for cementoblast cultures is the development of composite membranes containing bioactive glass. In the present study, composite films of chitosan-polyvinyl alcohol-bioactive glass containing different glass contents were developed. Glutaraldehyde was also added to allow for the formation of cross-links and changes in the degradation rate. The glass phase was introduced in the material by a sol-gel route, leading to an organic-inorganic hybrid. The films were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Bioactivity tests were also conducted by immersion of the films in simulated body fluid (SBF). Films containing up to 30% glass phase could be obtained. The formation of calcium phosphate was observed after the immersion of the films. A calcium phosphate layer formed more quickly on materials containing higher bioactive glass contents. In the hybrid containing 23% bioactive glass, a complete layer was formed after 24 h immersion, showing the high bioactivity of this material. However, despite the higher in vitro bioactivity, the film with 23% glass showed lower mechanical properties compared with films containing up to 17% glass.

  19. Color stable phosphors for LED lamps and methods for preparing them

    DOEpatents

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  20. Osteoinductive implants: the mise-en-scène for drug-bearing biomimetic coatings.

    PubMed

    Liu, Y; de Groot, K; Hunziker, E B

    2004-03-01

    In orthopaedic and dental implantology, novel tools and techniques are being sought to improve the regeneration of bone tissue. Numerous attempts have been made to enhance the osteoconductivity of titanium prostheses, including modifications in their surface properties and coating with layers of calcium phosphate. The technique whereby such layers are produced has recently undergone a revolutionary change, which has had profound consequences for their potential to serve as drug-carrier systems. Hitherto, calcium phosphate layers were deposited upon the surfaces of metal implants under highly unphysiological physical conditions, which precluded the incorporation of proteinaceous osteoinductive drugs. These agents could only be adsorbed, superficially, upon preformed layers. Such superficially adsorbed molecules are released too rapidly within a biological milieu to be effective in their osteoinductive capacity. Now, it is possible to deposit calcium phosphate layers under physiological conditions of temperature and pH by the so-called biomimetic process, during which bioactive agents can be coprecipitated. Since these molecules are integrated into the inorganic latticework, they are released gradually in vivo as the layer undergoes degradation. This feature enhances the capacity of these coatings to act as a carrier system for osteogenic agents.

  1. Synthesis and Characterization of Ca, Mg, La- PMMA Polymer Composites for Phosphate Removal

    EPA Science Inventory

    In this study calcium, magnesium and lanthanum- PMMA polymer composites were synthesized, characterized and investigated for phosphate removal from wastewater using rapid small scale column tests. Theoretical and experimental capacity of the media was determined and unused and sp...

  2. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    PubMed

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  3. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    PubMed

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  5. Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates

    PubMed Central

    Comesaña, Rafael; Lusquiños, Fernando; del Val, Jesús; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R.; Hill, Robert G.; Pou, Juan

    2015-01-01

    Craniofacial reconstructive surgery requires a bioactive bone implant capable to provide a gradual resorbability and to adjust to the kinetics of new bone formation during healing. Biomaterials made of calcium phosphate or bioactive glasses are currently available, mainly as bone defect fillers, but it is still required a versatile processing technique to fabricate composition-gradient bioceramics for application as controlled resorption implants. Here it is reported the application of rapid prototyping based on laser cladding to produce three-dimensional bioceramic implants comprising of a calcium phosphate inner core, with moderate in vitro degradation at physiological pH, surrounded by a bioactive glass outer layer of higher degradability. Each component of the implant is validated in terms of chemical and physical properties, and absence of toxicity. Pre–osteoblastic cell adhesion and proliferation assays reveal the adherence and growth of new bone cells on the material. This technique affords implants with gradual-resorbability for restoration of low-load-bearing bone. PMID:26032983

  6. A Janus cobalt-based catalytic material for electro-splitting of water

    NASA Astrophysics Data System (ADS)

    Cobo, Saioa; Heidkamp, Jonathan; Jacques, Pierre-André; Fize, Jennifer; Fourmond, Vincent; Guetaz, Laure; Jousselme, Bruno; Ivanova, Valentina; Dau, Holger; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2012-09-01

    The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable and efficient systems for the conversion and storage of renewable energy sources. The production of hydrogen through water splitting seems a promising and appealing solution. We found that a robust nanoparticulate electrocatalytic material, H2-CoCat, can be electrochemically prepared from cobalt salts in a phosphate buffer. This material consists of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte and mediates H2 evolution from neutral aqueous buffer at modest overpotentials. Remarkably, it can be converted on anodic equilibration into the previously described amorphous cobalt oxide film (O2-CoCat or CoPi) catalysing O2 evolution. The switch between the two catalytic forms is fully reversible and corresponds to a local interconversion between two morphologies and compositions at the surface of the electrode. After deposition, the noble-metal-free coating thus functions as a robust, bifunctional and switchable catalyst.

  7. Protective layer formation on magnesium in cell culture medium.

    PubMed

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The existence of proteins in DMEM seems to hinder the formation of a corrosion layer. However, protein adsorption leads to similar results as concerns corrosion protection as the formed calcium phosphate layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Multiple prismatic calcium phosphate layers in the jaws of present-day sharks (Chondrichthyes; Selachii).

    PubMed

    Dingerkus, G; Séret, B; Guilbert, E

    1991-01-15

    Jaws of large individuals, over 2 m in total length, of the shark species Carcharodon carcharias (great white shark) and Isurus oxyrinchus (mako shark) of the family Lamnidae, and Galeocerdo cuvieri (tiger shark) and Carcharhinus leucas (bull shark) of the family Carcharhinidae were found to have multiple, up to five, layers of prismatic calcium phosphate surrounding the cartilages. Smaller individuals of these species and other known species of living chondrichthyans have only one layer of prismatic calcium phosphate surrounding the cartilages, as also do most species of fossil chondrichthyans. Two exceptions are the fossil shark genera Xenacanthus and Tamiobatis. Where it is found in living forms, this multiple layered calcification does not appear to be phylogenetic, as it appears to be lacking in other lamnid and carcharhinid genera and species. Rather it appears to be functional, only appearing in larger individuals and species of these two groups, and hence may be necessary to strengthen the jaw cartilages of such individuals for biting.

  9. Phosphate barrier on pore-filled cation-exchange membrane for blocking complexing ions in presence of non-complexing ions

    NASA Astrophysics Data System (ADS)

    Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.

    2018-06-01

    In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.

  10. Fluoride and phosphate release from carbonate-rich fluorapatite during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Schafer, David; Donn, Michael; Atteia, Olivier; Sun, Jing; MacRae, Colin; Raven, Mark; Pejcic, Bobby; Prommer, Henning

    2018-07-01

    Managed aquifer recharge (MAR) is increasingly used as a water management tool to enhance water availability and to improve water quality. Until now, however, the risk of fluoride release during MAR with low ionic strength injectate has not been recognised or examined. In this study we analyse and report the mobilisation of fluoride (up to 58 μM) and filterable reactive phosphorus (FRP) (up to 55 μM) during a field groundwater replenishment experiment in which highly treated, deionised wastewater (average TDS 33 mg/L) was injected into a siliciclastic Cretaceous aquifer. In the field experiment, maximum concentrations, which coincided with a rise in pH, exceeded background groundwater concentrations by an average factor of 3.6 for fluoride and 24 for FRP. The combined results from the field experiment, a detailed mineralogical characterisation and geochemical modelling suggested carbonate-rich fluorapatite (CFA: Ca10(PO4)5(CO3,F)F2) to be the most likely source of fluoride and phosphate release. An anoxic batch experiment with powdered CFA-rich nodules sourced from the target aquifer and aqueous solutions of successively decreasing ionic strength closely replicated the field-observed fluoride and phosphate behaviour. Based on the laboratory experiment and geochemical modelling, we hypothesise that the release of fluoride and phosphate results from the incongruent dissolution of CFA and the simultaneous formation of a depleted layer that has hydrated di-basic calcium phosphate (CaHPO4·nH2O) composition at the CFA-water interface. Disequilibrium caused by calcium removal following breakthrough of the deionised injectate triggered the release of fluoride and phosphate. Given the increasing use of highly treated, deionised water for MAR and the ubiquitous presence of CFA and fluorapatite (Ca10(PO4)6F2) in aquifer settings worldwide, the risk of fluoride and phosphate release needs to be considered in the MAR design process.

  11. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.

    PubMed

    Lee, Yi-Hsuan; Wu, Hsi-Chin; Yeh, Chia-Wei; Kuan, Chen-Hsiang; Liao, Han-Tsung; Hsu, Horng-Chaung; Tsai, Jui-Che; Sun, Jui-Sheng; Wang, Tzu-Wei

    2017-11-01

    The development of osteochondral tissue engineering is an important issue for the treatment of traumatic injury or aging associated joint disease. However, the different compositions and mechanical properties of cartilage and subchondral bone show the complexity of this tissue interface, making it challenging for the design and fabrication of osteochondral graft substitute. In this study, a bilayer scaffold is developed to promote the regeneration of osteochondral tissue within a single integrated construct. It has the capacity to serve as a gene delivery platform to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. For the subchondral bone layer, the bone matrix with organic (type I collagen, Col) and inorganic (hydroxyapatite, Hap) composite scaffold has been developed through mineralization of hydroxyapatite nanocrystals oriented growth on collagen fibrils. We also prepare multi-shell nanoparticles in different layers with a calcium phosphate core and DNA/calcium phosphate shells conjugated with polyethyleneimine to act as non-viral vectors for delivery of plasmid DNA encoding BMP2 and TGF-β3, respectively. Microbial transglutaminase is used as a cross-linking agent to crosslink the bilayer scaffold. The ability of this scaffold to act as a gene-activated matrix is demonstrated with successful transfection efficiency. The results show that the sustained release of plasmids from gene-activated matrix can promote prolonged transgene expression and stimulate hMSCs differentiation into osteogenic and chondrogenic lineages by spatial and temporal control within the bilayer composite scaffold. This improved delivery method may enhance the functionalized composite graft to accelerate healing process for osteochondral tissue regeneration. In this study, a gene-activated matrix (GAM) to promote the growth of both cartilage and subchondral bone within a single integrated construct is developed. It has the capacity to promote transfection of human mesenchymal stem cells (hMSCs) and the functional osteochondral tissues formation. The results show that the sustained release of plasmids including TGF-beta and BMP-2 from GAM could promote prolonged transgene expression and stimulate hMSCs differentiation into the osteogenic and chondrogenic lineages by spatial control manner. This improved delivery method should enhance the functionalized composite graft to accelerate healing process in vitro and in vivo for osteochondral tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.

    PubMed

    De, Bibekananda; Yadav, Amit; Khan, Salman; Kar, Kamal K

    2017-06-14

    Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO 4 ) and titanium dioxide (TiO 2 ) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.

  13. Mineral deposition in bacteria-filled and bacteria-free calcium bodies in the crustacean Hyloniscus riparius (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species.

  14. Mineral Deposition in Bacteria-Filled and Bacteria-Free Calcium Bodies in the Crustacean Hyloniscus riparius (Isopoda: Oniscidea)

    PubMed Central

    Vittori, Miloš; Rozman, Alenka; Grdadolnik, Jože; Novak, Urban; Štrus, Jasna

    2013-01-01

    Crustacean calcium bodies are epithelial sacs which contain a mineralized matrix. The objectives of this study were to describe the microscopic anatomy of calcium bodies in the terrestrial isopod Hyloniscus riparius and to establish whether they undergo molt-related structural changes. We performed 3D reconstruction of the calcium bodies from paraffin sections and analyzed their structure with light and electron microscopy. In addition, we analyzed the chemical composition of their mineralized matrices with micro-Raman spectroscopy. Two pairs of these organs are present in H. riparius. One pair is filled with bacteria while the other pair is not. In non-molting animals, the bacteria-filled calcium bodies contain apatite crystals and the bacteria-free calcium bodies enclose CaCO3-containing concretions with little organic matrix. During preparation for molt, an additional matrix layer is deposited in both pairs of calcium bodies. In the bacteria-filled calcium bodies it contains a mixture of calcium carbonate and calcium phosphate, whereas only calcium carbonate is present in bacteria-free calcium bodies. After ecdysis, all mineral components in bacteria-free calcium bodies and the additional matrix layer in bacteria-filled calcium bodies are completely resorbed. During calcium resorption, the apical surface of the calcium body epithelium is deeply folded and electron dense granules are present in spaces between epithelial cells. Our results indicate that the presence of bacteria might be linked to calcium phosphate mineralization. Calcium bodies likely provide a source of calcium and potentially phosphate for the mineralization of the new cuticle after molt. Unlike other terrestrial isopods, H. riparius does not form sternal CaCO3 deposits and the bacteria-free calcium bodies might functionally replace them in this species. PMID:23554963

  15. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dai, Chang-Song; Wei, Jie; Wen, Zhao-Hui

    2012-11-01

    In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca10(PO4)6(OH)2) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in the nHA/CS-acetic acid/ethanol suspension resulted in hydroxyapatite, chitosan, brushite (DCPD, CaHPO4·2H2O) and Ca(OH)2 in the coatings. After the as-prepared coating materials were immersed into PBS, Ca(OH)2 could be converted into HA and DCPD. The results of the electrochemical tests manifested that the corrosion resistance of the Mg alloy was improved by coating this composite film.

  16. 3D WO3 /BiVO4 /Cobalt Phosphate Composites Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Zhang, Haifeng; Zhou, Weiwei; Yang, Yaping; Cheng, Chuanwei

    2017-04-01

    A novel 3D WO 3 /BiVO 4 /cobalt phosphate composite inverse opal is designed for photoeletrochemical (PEC) water splitting, yielding a significantly improved PEC performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system.

    PubMed

    Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie

    2016-06-01

    Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical effects were enhanced for 112.49% for FeZn-LDHs, 111.89% for CoZn-LDHs and 122.67% for AlZn-LDHs. Therefore, the way of coating Zn-LDHs on the bio-ceramic efficiently improved the chemical effects in phosphate removal, supporting that it can use as potential substrates for the removal of phosphorus in CRIS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  19. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.

    PubMed

    Sprio, Simone; Guicciardi, Stefano; Dapporto, Massimiliano; Melandri, Cesare; Tampieri, Anna

    2013-01-01

    Bioactive tricalcium phosphate/titania ceramic composites were synthesized by pressureless air sintering of mixed hydroxyapatite and titania (TiO2) powders. The sintering process was optimized to achieve dense ceramic bodies consisting in a bioactive/bioresorbable matrix (β-tricalcium phosphate) reinforced with defined amounts of sub-micron sized titania particles. Extensive chemico-physical and mechanical characterization was carried out on the resulting composites, which displayed values of flexural strength, fracture toughness and elastic modulus in the range or above the typical ranges of values manifested by human cortical bone. It was shown that titania particles provided a toughening effect to the calcium-phosphate matrix and a reinforcement in fracture strength, in comparison with sintered hydroxyapatite bodies characterized by similar relative density. The characteristics of the resulting composites, i.e. bioactivity/bioresorbability and ability of manifesting biomimetic mechanical behavior, are features that can promote processes of bone regeneration in load-bearing sites. Hence, in the perspective of developing porous bone scaffolds with high bioactivity and improved biomechanical behavior, TCP/TiO2 composites with controlled composition can be considered as very promising biomaterials for application in a field of orthopedics where no acceptable clinical solutions still exist. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.

    PubMed

    Krüger, Reinhard; Seitz, Jan-Marten; Ewald, Andrea; Bach, Friedrich-Wilhelm; Groll, Jürgen

    2013-04-01

    Calcium phosphate cements are brittle biomaterials of low bending strength. One promising approach to improve their mechanical properties is reinforcement with fibers. State of the art degradable reinforced composites contain fibers made of polymers, resorbable glass or whiskers of calcium minerals. We introduce a new class of composite that is reinforced with degradable magnesium alloy wires. Bending strength and ductility of the composites increased with aspect ratio and volume content of the reinforcements up to a maximal bending strength of 139±41MPa. Hybrid reinforcement with metal and polymer fibers (PLA) further improved the qualitative fracture behavior and gave indication of enhanced strength and ductility. Immersion tests of composites in SBF for seven weeks showed high corrosion stability of ZEK100 wires and slow degradation of the magnesium calcium phosphate cement by struvite dissolution. Finally, in vitro tests with the osteoblast-like cell line MG63 demonstrate cytocompatibility of the composite materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].

    PubMed

    Lian, Qin; Zhuang, Pei; Li, Changhai; Jin, Zhongmin; Li, Dichen

    2014-03-01

    To improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/beta-tricalcium phosphate (PLA/beta-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. The designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/beta-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. Morphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and beta-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold [(21.25 +/- 1.15) MPa] was higher than that of the single-channel scaffold[ (9.76 +/- 0.64) MPa]. The double-channel composite scaffolds fabricated by 3-D printing technique have controlled complex micropipes and can significantly enhance mechanical properties, which is a promising strategy to solve the contradiction of strength and high-porosity of the ceramic scaffolds for the bone tissue engineering application.

  2. Geochemistry of Late Cretaceous phosphorites in Egypt: Implication for their genesis and diagenesis

    NASA Astrophysics Data System (ADS)

    Baioumy, H. M.; Tada, R.; Gharaie, M. H. M.

    2007-09-01

    Phosphorite deposits in Egypt, known as the Duwi Formation, are a part of the Middle East to North Africa phosphogenic province of Late Cretaceous to Paleogene age. Phosphatic grains in these deposites are classified into phosphatic mudclasts and phosphatic bioclasts. Phosphatic bioclasts are subdivided into fish bone fragments and shark tooth fragments. All phosphatic grains are composed of francolite. Chemical mapping of the phosphatic grains using Electron Probe Microanalysis (EPMA) indicated that the phosphatic mudclasts are homogeneous in their chemical composition and no concentric texture nor chemical zoning are observed. Some of the bone fragments show Fe and S zoning. No significant difference in chemical composition is observed between the phosphatic mudclasts and bioclasts. Acid-insoluble residues of the phosphorites show lower values of the Chemical Index of Alteration (CIA) compared to the associated rocks. Structural CO 2 contents in the francolites range from 3.32% to 7.21% with an average of 5.3%. The δ13C PDB values range from -4.04‰ to -8.7‰, while the δ18O PDB values range from -4.3‰ to -10.3‰. The compositional homogeneity of the mudclasts, Fe and S zoning in some of the bone fragments and the difference in the Chemical Index of Alteration between the acid-insoluble residues of the phosphorites and the associated rocks suggest that the phosphatic grains in the Duwi Formation are derived from pre-existing authigenic phosphorites, which reworked and concentrated afterward. Negative δ13C values of structural CO 2 suggest that the CO 2 was derived from degradation of organic matter. Low δ18O values of structural CO 2 can be attributed to the influence of meteoric water. Higher CO 2, SO 3 and F contents compared to the recent authigenic phosphorites and negative δ13C and δ18O values of structural CO 2 indicate that diagenesis plays an important role in the modification of the chemical composition of phosphatic grains and that the studied apatite was francolitized during diagenesis.

  3. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  4. Zirconium Phosphate Supported MOF Nanoplatelets.

    PubMed

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  5. Tracing climatic conditions during the deposition of late Cretaceous-early Eocene phosphate beds in Morocco by geochemical compositions of biogenic apatite fossils

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Yans, J.; Ulianov, A.; Amaghzaz, M.

    2012-04-01

    Morocco's Western Atlantic coast was covered by shallow seas during the late Cretaceous-early Eocene when large amount of phosphate rich sediments were deposited. This time interval envelops a major part of the last greenhouse period and gives the opportunity to study the event's characteristics in shallow water settings. These phosphate deposits are extremely rich in vertebrate fossils, while other types of fossils are rare or often poorly preserved. Hence the local stratigraphy is based on the most abundant marine vertebrate fossils, on the selachian fauna (sharks and rays). Our geochemical investigations were also carried out on these remains, though in some cases frequently found coprolites were involved as well. The main goal of our study was to test whether stable isotope compositions (δ18OPO4, δ13C) of these fossils reflect any of the hyperthermal events and/or the related perturbations in the carbon cycle during the early Paleogene (Lourens et al. 2005) and whether these geochemical signals can be used to refine the local stratigraphy. Additionally, the samples were analyzed for trace element composition in order to better assess local taphonomy and burial conditions. The samples came from two major phosphate regions, the Ouled Abdoun and the Ganntour Basins and they were collected either directly on the field during excavations (Sidi Chennane) or were obtained from museum collections with known stratigraphical position (Sidi Daoui, Ben Guerrir). The phosphate oxygen isotopic compositions of shark teeth display large range across the entire series (18.5-22.4 ) which can partly be related to the habitat of sharks. For instance the genus Striatolamnia often yielded the highest δ18O values indicating possible deep water habitat. Despite the large variation in δ18O values, a general isotope trend is apparent. In the Maastrichtian after a small negative shift, the δ18O values increase till the Danian from where the trend decrease till the Ypresian. The latter negative shift can be linked to the globally recognized Early Eocene Climatic Optimum (Zachos et al., 2001). In terms of carbon isotopic composition, shark teeth enameloid yielded often positive δ13C values, while dentine are always negative and sometimes following clear trend along the series. Coprolites have similar values to dentine, however they display greater variation reflecting the burial milieu and the special environment of phosphatization with the intensive organic matter recycling. Bone-beds show even more variations that could be caused by reworked specimens and also possible enhanced oxidation of organic matter at these levels. Nevertheless, the Sidi Chennane section shows a negative δ13C trend in the early Ypresian, which is compatible with global observations at the time. Moreover, the lowest δ13C values are from the transitional layer between the Ypresian and Thanetian beds which might relate to the Paleocene-Eocene boundary event, though it must be further confirmed. All the fossils display very similar rare earth element (REE) distribution that resembles typical seawater pattern with negative Ce-anomaly and heavy REE enrichment. However the large amount of analyses revealed a general drift in the magnitude of the Ce-anomaly from the older to younger beds that can be used in paleoenvironmental reconstruction.

  6. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.

    PubMed

    Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro

    2005-10-01

    Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.

  7. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  8. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    PubMed

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  9. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers.

    PubMed

    Suchý, Tomáš; Šupová, Monika; Klapková, Eva; Horný, Lukáš; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, Rastislav; Veselý, Jan; Chlup, Hynek; Denk, František

    2016-03-01

    Infections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%). The stability of the collagen was enhanced by means of cross-linking. Four cross-linking agents were studied, namely an ethanol solution, a phosphate buffer solution of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, genipin, and nordihydroguaiaretic acid. High performance liquid chromatography was used so as to characterize the in vitro release rates of the vancomycin and its crystalline degradation antibiotically inactive products over a 21-day period. The maximum concentration of the released active form of vancomycin (approximately 265 mg/L) exceeded the minimum inhibitory concentration up to an order of 17 times without triggering the burst releasing effect. At the end of the experiment, the minimum inhibitory concentration was exceeded by up to 6 times (approximately 100 mg/L). It was determined that the modification of collagen with hydroxyapatite nanoparticles does not negatively influence the sustainable release of vancomycin. The balance of vancomycin and its degradation products was observed after 14 days of incubation. Copyright © 2016. Published by Elsevier Inc.

  10. Direct bioactive ceramics coating via reactive Growing Integration Layer method on α-Ti-alloy.

    PubMed

    Huang, Chi-Huang; Chen, Rong-Sheng; Yoshimura, Masahiro

    2017-07-01

    This paper demonstrates Ca-P-rich bio-ceramic and hydroxyapatite (HA) coatings formed directly from the solution of calcium acetate (CA) and sodium dihydrogen phosphate (SDP) on α-Ti-alloy substrates by Growing Integration Layer (GIL) technology under DC power supply. The composition of the α-Ti-alloy was Ti7Cu5Sn. The GIL coated films formed in 30min time with different voltages applied had porous and rough ceramic surfaces. They consisted mostly of various oxides like rutile, anatase, and calcium phosphates (including hydroxyapatite) that reduce corrosion rate and increase biocompatibility. An important feature was the reduction of Cu at the surfaces of the alloys. Furthermore, along with the applied voltage, the content of HA, the size of micro-pores, and hardness all increased, while the number of micro-pores in the ceramic membrane got reduced. The potential, current and resistance of corrosion were identified by potentiodynamic (PD) polarization and electrochemical impedance spectroscopy (EIS). The higher applied voltage improved the surface quality, HA formation rate, and the anti-corrosion behavior. Consequently, the samples - prepared at 350V and surface current density of 3A/cm 2 - possessed the most compact HA films, and also had the best corrosion resistance - in 0.9wt% NaCl solution at 37±1°C. Copyright © 2017. Published by Elsevier B.V.

  11. Functionally graded bioactive glass coating on magnesia partially stabilized zirconia (Mg-PSZ) for enhanced biocompatibility.

    PubMed

    Rahaman, Mohamed N; Li, Yadong; Bal, B Sonny; Huang, Wenhai

    2008-06-01

    The coating of magnesia partially stabilized zirconia (Mg-PSZ) with a bioactive glass was investigated for enhancing the bioactivity and bone-bonding ability of Mg-PSZ orthopedic implants. Individual coatings of three different bioactive glasses were prepared by depositing a concentrated suspension of the glass particles on Mg-PSZ substrates, followed by sintering at temperatures between 750 degrees C and 850 degrees C. Two silicate-based glass compositions (designated 13-93 and 6P68), and a borosilicate glass composition (H12) were investigated. The microstructure and adhesive strength of the coatings were characterized, and the in vitro bioactivity of the glasses was compared by measuring their conversion kinetics to hydroxyapatite in an aqueous phosphate solution at 37 degrees C. The 6P68 glass provided the highest adhesive strength (40 +/- 2 MPa) but showed very limited bioactivity, whereas the H12 glass had lower adhesive strength (18 +/- 2 MPa) but the highest bioactivity. A functionally graded coating, consisting of a 6P68 interfacial layer and an H12 surface layer, was developed to provide a coating with high adhesive strength coupled with rapid in vitro bioactivity.

  12. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    NASA Astrophysics Data System (ADS)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  13. On the mineral characteristics and geochemistry of the Florida phosphate of Four Corners and Hardee County mines

    NASA Astrophysics Data System (ADS)

    Baghdady, Ashraf R.; Howari, Fares M.; Al-Wakeel, Mohamed I.

    2016-08-01

    The Florida phosphate deposits in Four Corners and Hardee County mines are composed mainly of phosphate minerals and quartz in addition to subordinate proportions of feldspars, dolomite, calcite, gypsum, kaolinite, attapulgite and montmorillonite. These phosphorites contain three structurally different types of mudclasts: massive mudclasts, mudclasts with concentric structure and mudclasts consisting of agglomerates of apatite microparticles. The latter are represented by particles resembling phosphatized fossil bacteria associated with microbial filaments, and hollow apatite particles having surfacial coatings and connected to microbial filaments. The Florida phosphate particles are reworked and vary in mineral composition, color and shape. They are composed of a mixture of well-crystalline species including carbonate fluorapatite (francolite), carbonate apatite and fluorapatite. The color variation of the phosphate particles is related to difference in mineral composition, extent of diagenetic effects and reworking. The light-colored mudclasts are characterized by the presence of carbonate apatite and aluminum hydroxide phosphate minerals, whereas the dark mudclasts are rich in iron aluminum hydroxide phosphate minerals. The Florida phosphorites are suggested to be formed partially by authigenetic precipitation, replacement of the sea floor carbonate and diatomite, and microbial processes. With respect to elemental geochemistry, the analyzed particles contain small percentages of sulfur and iron which are related to the occurrence of pyrite. Traces of silica and alumina are recorded which may be attributed to the diagenetic. Some of the tested particles are relatively rich in phosphorous, fluorine, calcium, and magnesium, while poor in silicon, potassium and sulfur. Whereas, the bioclasts (especially teeth) are relatively rich in calcium, phosphorous and fluorine while poor in silicon, aluminum, magnesium and potassium. Hence, the microchemical analyses revealed that differential diagenesis affected mudclasts more than bioclasts. There is a complete compositional gradation between clay and phosphate particles which reflects their interaction. This involved kaolinitization of the phosphate particles, phosphatization of the clay mineral particles and production of silica.

  14. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    PubMed

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1 H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.

    PubMed

    Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A

    2014-06-01

    The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.

  16. Structural and spectroscopic investigations on deuteron glasses belonging to the potassium dihydrogen phosphate family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Rajul Ranjan, E-mail: rajul@barc.gov.in; Chitra, R.; Abraham, Geogy J.

    2015-06-24

    X-ray powder diffraction and Raman measurements were performed on the mixed crystals of deuterated potassium dihydrogen phosphate (DKDP) and deuterated ammonium dihydrogen phosphate (DADP) grown at our lab. These crystals are known to behave like deuteron glasses due to frustration between ferroelectric and antiferroelectric ordering. Both spectral as well as structural studies indicate that crystals belonging to the glassy regions of the crystal composition have stronger O-D-O hydrogen bonds as compared to those belong to the ferroelectric or antiferroelectric regions of the crystal composition.

  17. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Paytan, A.

    2013-12-01

    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.

  18. Effect of calcium phosphate surface coating on bone ingrowth onto porous-surfaced titanium alloy implants in rabbit tibiae.

    PubMed

    Yang, Cheng

    2002-04-01

    The purpose of the present study was to determine whether calcium phosphate coating has a significant impact on bone ingrowth into a porous titanium implant. Porous-surfaced titanium alloy Ti-6Al-4V implants were prepared with or without the addition of a thin surface layer of calcium phosphate applied by sol-gel coating. Implants were placed into the tibiae of 16 rabbits. Implanted sites were allowed to heal for 2 weeks, after which specimens were retrieved for morphometric assessment using backscatter scanning electron microscopy. The data collected show that there is more extensive ingrowth into the porous regions of the calcium phosphate-coated implants than into the control implants. The weighted average ingrowth for the calcium phosphate-coated implants was 2.01, whereas that for the noncoated implants was 1.49; the difference is statistically significant (P <.01). The addition of a thin layer of calcium phosphate to these implants appears to promote a more extensive implant-to-bone interface by allowing the neck regions to become intimately ingrown with bone even after only 2 weeks of initial healing. Copyright 2002 American Association of Oral and Maxillofacial Surgeons

  19. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOEpatents

    Morrison, Jay Alan; Merrill, Gary Brian; Ludeman, Evan McNeil; Lane, Jay Edgar

    2001-01-01

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  20. Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions.

    PubMed

    Jung, Kyung-Won; Lee, Soonjae; Lee, Young Jae

    2017-12-01

    In this work, magnesium ferrite (MgFe 2 O 4 )/biochar magnetic composites (MFB-MCs) were prepared and utilized to remove phosphate from aqueous solutions. MFB-MCs were synthesized via co-precipitation of Fe and Mg ions onto a precursor, followed by pyrolysis. Characterization results confirmed that MgFe 2 O 4 nanoparticles with a cubic spinel structure were successfully embedded in the biochar matrix, and this offered magnetic separability with superparamagnetic behavior and enabled higher phosphate adsorption performance than that of pristine biochar and sole MgFe 2 O 4 nanoparticles. Batch experiments indicated that phosphate adsorption on the MFB-MCs is highly dependent on the pH, initial phosphate concentration, and temperature, while it was less affected by ionic strength. Analysis of activation and thermodynamic parameters as well as the isosteric heat of adsorption demonstrated that the phosphate adsorption is an endothermic and physisorption process. Lastly, highly efficient recyclability of the MFB-MCs suggested that they are a promising adsorbent for phosphate removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2.

    PubMed

    Brink, M; Turunen, T; Happonen, R P; Yli-Urpo, A

    1997-10-01

    The bioactivity, i.e., bone-bonding ability, of 26 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 was studied in vivo. This investigation of bioactivity was performed to establish the compositional dependence of bioactivity, and enabled a model to be developed that describes the relation between reactions in vivo and glass composition. Reactions in vivo were investigated by inserting glass implants into rabbit tibia for 8 weeks. The glasses and the surrounding tissue were examined using scanning electron microscopy (SEM), light microscopy, and energy-dispersive X-ray analysis (EDXA). For most of the glasses containing < 59 mol % SiO2, SEM and EDXA showed two distinct layers at the glass surface after implantation, one silica-rich and another containing calcium phosphate. The build-up of these layers in vivo was taken as a sign of bioactivity. The in vivo experiments showed that glasses in the investigated system are bioactive when they contain 14-30 mol % alkali oxides, 14-30 mol % alkaline earth oxides, and < 59 mol % SiO2. Glasses containing potassium and magnesium bonded to bone in a similar way as bioactive glasses developed so far.

  2. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    NASA Astrophysics Data System (ADS)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  3. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions.

    PubMed

    Gandolfi, Maria Giovanna; Taddei, Paola; Tinti, Anna; De Stefano Dorigo, Elettra; Rossi, Piermaria Luigi; Prati, Carlo

    2010-12-01

    The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco's phosphate-buffered saline (DPBS) or Hank's balanced salt solution (HBSS) for different times (1-180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm(-1) phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm(-1) phosphate bands. After 60-180 days, a layer approximately 200-900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm(-1)) and calcite (at 1,088, 713, 280 cm(-1)). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite-calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

  4. Multifunctional cerium-based nanomaterials and methods for producing the same

    DOEpatents

    O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.

    2018-01-09

    Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.

  5. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material.

    PubMed

    Dupraz, A; Nguyen, T P; Richard, M; Daculsi, G; Passuti, N

    1999-04-01

    An injectable composite material based on biphasic calcium phosphate (BCP) and a nonionic cellulose ether has been elaborated for use in percutaneous surgery for spine fusion. This paper reports the characterization results of this material by spectroscopic techniques including X-ray diffraction (XRD), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) fitted with an energy dispersive X-Ray analysis system and high-resolution transmission electron microscopy (HR-TEM). From FTIR and XPS results, it was observed that the adhesion between the polymer and the ceramic might be insured by oxygen bridging developed through an ionic bonding between calcium ions and (C-O) groups of the polymer. Moreover, XPS showed attraction of Ca2+ ions in the polymer matrix, while the ceramic surface was modified in a HPO4(2-) -rich layer. These results suggest a possible dissolution/precipitation process at the interface ceramic/polymer. HR-TEM observations supported this hypothesis, showing a light contrasted fringe at the surface of the ceramic grains in the composite paste. As well, changes in the XRD spectra could indicate a small decrease in the crystal size of the BCP powder through the contact to polymer solution. In addition, SEM observation showed a decrease of the initial BCP granulometry. Aggregates of 80-200 microm seemed to be mostly dissociated in micrograins. The ceramic grains were coated with and bonded between each other by the polymer matrix, which acted as spacer in between the ceramic grains, creating a macroporous-like material structure.

  6. Effect of bioglass 45S5 addition on properties, microstructure and cellular response of tetracalcium phosphate/monetite cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stulajterova, R., E-mail: rstulajterova@saske.sk

    Tetracalcium phosphate/nanomonetite (TTCPMH) cement composites with 7.5 and 15 wt% addition of melt-derived 45S5 bioactive glass were prepared by mechanical homogenization of powder components and 2% NaH{sub 2}PO{sub 4} solution was used as a hardening liquid. The properties of composites with the acidic (Ca/P ratio equal 1.5) or basic (Ca/P ratio equal 1.67) TTCPMH component were compared. Addition of glass component caused rapid rise in pH of composites up to 10. In microstructure of basic cement composite, the large bioglass particles weakly bounded to surrounding cement matrix were found contrary to a more compact microstructure of acidic cement composites withmore » the high number of spherical silica particles. Both the significant refinement of hydroxyapatite particles and the change to needle-like morphology with rise in the content of bioglass were identified in hydroxyapatite coatings created during soaking of composites in phosphate buffered saline. In acidic cement mixtures, the increase of compressive strength with an amount of bioglass was found whereas the opposite tendency was revealed in the case of basic cement mixtures. The higher concentrations of ions were verified in solutions after immersion of acidic cement composites. The severe cytotoxicity of extracts and composite cement substrates containing 15 wt% of bioglass demonstrated adverse effects of both the ionic concentrations and unappropriate surface texture on proliferation of mesenchymal stem cells. The enhanced ALP activities of cells cultured on composite cements confirmed the positive effect of bioactive glass addition on differentiation of mesenchymal stem cells. - Highlights: • Novel B45S5 bioglass/tetracalcium phosphate/nanomonetite cement composites • Cement basicity negatively affected their microstructure. • Acid composite cements had higher compressive strengths than basic composites. • Fast differentiation of MSC to osteoblast line on composite with 7.5 wt% of bioglass • Severe cytotoxicity of 24 h extracts from composites with 15 wt% of bioglass.« less

  7. Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues.

    PubMed

    Araujo, J V; Martins, A; Leonor, I B; Pinho, E D; Reis, R L; Neves, N M

    2008-01-01

    The aim of this work was to develop novel electrospun nanofiber meshes coated with a biomimetic calcium phosphate (BCP) layer that mimics the extracellular microenvironment found in the human bone structure. Poly (epsilon-caprolactone) (PCL) was selected because of its well-known medical applications, its biodegradability, biocompatibility and its susceptibility to partial hydrolysis by a straightforward alkaline treatment. The deposition of a calcium phosphate layer, similar to the inorganic phase of bone, on PCL nanofiber meshes was achieved by means of a surface modification. This initial surface modification was followed by treatment with solutions containing calcium and phosphate ions. The process was finished by a posterior immersion in a simulated body fluid (SBF) with nearly 1.5 x the inorganic concentration of the human blood plasma ions. After some optimization work, the best conditions were chosen to perform the biological assays. The influence of the bone-like BCP layer on the viability and adhesion, as well as on the proliferation of human osteoblast-like cells, was assessed. It was shown that PCL nanofiber meshes coated with a BCP layer support and enhance the proliferation of osteoblasts for long culture periods. The attractive properties of the coated structures produced in the present work demonstrated that those materials have potential to be used for applications in bone tissue engineering. This is the first time that nanofiber meshes could be coated with a biomimetic bone-like calcium phosphate layer produced in a way that the original mesh architecture can be fully maintained.

  8. Facile incorporation of hydroxyapatite onto an anodized Ti surface via a mussel inspired polydopamine coating

    NASA Astrophysics Data System (ADS)

    Zhe, Wang; Dong, Chaofang; Sefei, Yang; Dawei, Zhang; Kui, Xiao; Xiaogang, Li

    2016-08-01

    Inspired by the porous morphology of anodized Ti and the adhesive versatility of polydopamine (PDA), which can induce apatite mineralization, we fabricated a novel interface by coating a porous anodized TiO2 layer with PDA to rapidly immobilize HA on Ti-based substrates. It was found that the as-prepared PDA/anodized (HD) surface exhibited nanoscale roughness, which possessed an excellent ability to form apatite when immersed in 1.5× simulated body fluid (SBF), as observed by AFM and FE-SEM. The morphology and composition of each layer were further confirmed by XPS, XRD and FTIR. The corrosion resistance of the multilayer was investigated using potentiodynamic polarization curve and electrochemical impedance spectra (EIS) measurements in a 0.9 wt% NaCl solution, the results suggested that the HA/PDA/anodized (HDA) layer increased the corrosion resistance of pure Ti with higher corrosion potential and lower passive current, the surface wettability was also enhanced with the incorporation of HA. In vitro cellular assays showed that the HDA layer stimulated cell attachment and improved the alkaline phosphate (ALP) activity. Overall, the PDA/anodized treatment provided a viable method to quickly integrate HA, and the obtained HDA layer improved both corrosion resistance and biocompatibility of the Ti surface.

  9. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  10. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  11. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO–SiO2–P2O5 Glasses in Vitro: Insights from Solid-State NMR

    PubMed Central

    2017-01-01

    When exposed to body fluids, mesoporous bioactive glasses (MBGs) of the CaO–SiO2–P2O5 system develop a bone-bonding surface layer that initially consists of amorphous calcium phosphate (ACP), which transforms into hydroxy-carbonate apatite (HCA) with a very similar composition as bone/dentin mineral. Information from various 1H-based solid-state nuclear magnetic resonance (NMR) experiments was combined to elucidate the evolution of the proton speciations both at the MBG surface and within each ACP/HCA constituent of the biomimetic phosphate layer formed when each of three MBGs with distinct Ca, Si, and P contents was immersed in a simulated body fluid (SBF) for variable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1H NMR spectra mainly reflect the MBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum–single-quantum correlation 1H NMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP and HCA component were probed selectively by heteronuclear 1H–31P NMR experimentation. The initially prevailing ACP phase comprises H2O and “nonapatitic” HPO42–/PO43– groups, whereas for prolonged MBG soaking over days, a well-progressed ACP → HCA transformation was evidenced by a dominating O1H resonance from HCA. We show that 1H-detected 1H → 31P cross-polarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31P NMR for detecting the onset of HCA formation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprises ACP and/or forms via an ACP precursor, we discuss a recently accepted structural core–shell picture of both synthetic and biological HCA, highlighting the close relationship between the disordered surface layer and ACP. PMID:28663772

  12. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold.

    PubMed

    Yang, Le; Wang, Qinghua; Peng, Lihua; Yue, Hong; Zhang, Zhendong

    2015-08-01

    Ensuring histocompatibility in the tissue engineering of bones is a complex issue. The aim of this study was to observe the feasibility of chitosan-β-tricalcium phosphate composite in repairing limb bone defects, and to evaluate the therapeutic effects on osteogenesis. Beagle mesenchymal stem cells (MSCs) were divided into an experimental group that was cultured with an injectable form of chitosan-β-tricalcium phosphate composite and a control group. The effect of the composite on bone tissue growth was evaluated by MTT assay. In addition, 12-month-old beagles were subjected to 15-mm femur defects and subsequently implanted with scaffolds to observe the effects on osteogenesis and vascularization. The dogs were subdivided into two groups of five animals: Group A, which was implanted with scaffold-MSC compounds, and Group B, which was implanted with scaffolds alone. The dogs were observed on the 2nd, 4th, 8th and 12th weeks post-implantation. Scanning electron microscopy analysis revealed that the composite was compatible with MSCs, with similar outcomes in the control and experimental groups. MTT analysis additionally showed that the MSCs in the experimental group grew in a similar manner to those in the control group. The composite did not significantly affect the MSC growth or proliferation. In combination with MSCs, the scaffold materials were effective in the promotion of osteogenesis and vascularization. In conclusion, the chitosan-β-tricalcium phosphate composite was compatible with the MSCs and did not affect cellular growth or proliferation, therefore proving to be an effective injectable composite for tissue engineered bone. Simultaneous implantation of stem cells with a carrier composite proved to function effectively in the repair of bone defects.

  13. Synthesis of β-tricalcium phosphate.

    PubMed

    Chaair, H; Labjar, H; Britel, O

    2017-09-01

    Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. ILLUMINATING THE ROLE OF AGGLOMERATES ON CRITICAL PHYSICOCHEMICAL PROPERTIES OF AMORPHOUS CALCIUM PHOSPHATE COMPOSITES

    PubMed Central

    O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.

    2009-01-01

    Water sorption (WS), mechanical strength, and ion release of polymeric composites formulated with 40 % as-made or milled amorphous calcium phosphate (ACP) are compared after 1, 2 and 3 months of aqueous exposure. Ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate comprised the resin. The WS (mass %) peaked at 3 months. WS of as-made ACP composites was significantly higher than WS of milled ACP composites and copolymers. Both composite groups experienced decreases in biaxial flexural strength (BFS) with water aging, with milled ACP composites retaining a significantly higher BFS throughout immersion. Ion release was moderately reduced in milled ACP composites, though they remained superior to as-made ACP composites due to significantly lower WS and higher BFS after prolonged aqueous exposure. PMID:19774100

  15. Magnetite solubility and phase stability in alkaline media at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    Magnetite, Fe{sub 3}O{sub 4}, is the dominant oxide constituent of the indigenous corrosion layers that form on iron base alloys in high purity, high temperature water. The apparent simultaneous stability of two distinct oxidation states of iron in this metal oxide is responsible for its unique solubility behavior. The present work was undertaken to extend the experimental and theoretical bases for estimating solubilities of an iron corrosion product (Fe{sub 3}O{sub 4}/Fe(OH){sub 2}) over a broader temperature range and in the presence of complexing, pH-controlling reagents. These results indicate that a surface layer of ferrous hydroxide controls magnetite solubility behavior atmore » low temperatures in much the same manner as a surface layer of nickel(II) hydroxide was previously reported to control the low temperature solubility behavior of NiO. The importance of Fe(III) ion complexes implies not only that most previously-derived thermodynamic properties of the Fe(OH){sub 3}{sup {minus}} ion are incorrect, but that magnetite phase stability probably shifts to favor a sodium ferric hydroxyphosphate compound in alkaline sodium phosphate solutions at elevated temperatures. The test methodology involved pumping alkaline solutions of known composition through a bed of Fe{sub 3}O{sub 4} granules and analyzing the emerging solution for Fe. Two pH-controlling reagents were tested: sodium phosphate and ammonia. Equilibria for the following reactions were described in thermodynamic terms: (a) Fe(OH){sub 2}/Fe{sub 3}O{sub 4} dissolution and transformation, (b) Fe(II) and Fe(III) ion hydroxocomplex formation (hydrolysis), (c) Fe(II) ion amminocomplex formation, and (d) Fe(II) and Fe(III) ion phosphatocomplex formation. 36 refs.« less

  16. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells.

    PubMed

    Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Feldman, Kirill; Dora, Claudio; Stark, Wendelin J

    2012-10-01

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering.

  17. Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments.

    PubMed

    Caccamo, Lorenzo; Cocco, Giulio; Martín, Gemma; Zhou, Hao; Fundling, Sönke; Gad, Alaaeldin; Mohajerani, Matin Sadat; Abdelfatah, Mahmoud; Estradé, Sonia; Peiró, Francesca; Dziony, Wanja; Bremers, Heiko; Hangleiter, Andreas; Mayrhofer, Leonhard; Lilienkamp, Gerhard; Moseler, Michael; Daum, Winfried; Waag, Andreas

    2016-03-01

    The long-term stability of InGaN photoanodes in liquid environments is an essential requirement for their use in photoelectrochemistry. In this paper, we investigate the relationships between the compositional changes at the surface of n-type In(x)Ga(1-x)N (x ∼ 0.10) and its photoelectrochemical stability in phosphate buffer solutions with pH 7.4 and 11.3. Surface analyses reveal that InGaN undergoes oxidation under photoelectrochemical operation conditions (i.e., under solar light illumination and constant bias of 0.5 VRHE), forming a thin amorphous oxide layer having a pH-dependent chemical composition. We found that the formed oxide is mainly composed of Ga-O bonds at pH 7.4, whereas at pH 11.3 the In-O bonds are dominant. The photoelectrical properties of InGaN photoanodes are intimately related to the chemical composition of their surface oxides. For instance, after the formation of the oxide layer (mainly Ga-O bonds) at pH 7.4, no photocurrent flow was observed, whereas the oxide layer (mainly In-O bonds) at pH 11.3 contributes to enhance the photocurrent, possibly because of its reported high photocatalytic activity. Once a critical oxide thickness was reached, especially at pH 7.4, no significant changes in the photoelectrical properties were observed for the rest of the test duration. This study provides new insights into the oxidation processes occurring at the InGaN/liquid interface, which can be exploited to improve InGaN stability and enhance photoanode performance for biosensing and water-splitting applications.

  18. Anionic surfactant enhanced phosphate desorption from Mg/Al-layered double hydroxides by micelle formation.

    PubMed

    Shimamura, Akihiro; Jones, Mark I; Metson, James B

    2013-12-01

    Desorption of interlayer hydrogen phosphate (HPO4) from hydrogen phosphate intercalated Mg/Al-layered double hydroxide (LDH-HPO4) by anion exchange with surfactant anions has been investigated under controlled conditions. Three types of surfactant, Dodecylbenzenesulphonate (DBS), Dodecylsulphate (DS) and 1-Octanesulphonate (OS), anions were used for intercalation experiments over a range of concentrations, and for all solutions, it was shown that the desorption of hydrogen phosphate is enhanced at concentrations close to the critical micelle concentration (CMC). Intercalation of the surfactant anions into LDH-HPO4 was confirmed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning electron microscopy (SEM). More than 90% removal of the hydrogen phosphate was achieved at CMC. Repeat adsorption tests to investigate recyclability showed that desorption with 0.005 M DBS improved subsequent phosphate re-adsorption, allowing around 90% of the original adsorption over three cycles. This is much higher than when desorption was conducted using either Na2CO3 or NaCl-NaOH solutions, even at much higher concentrations. This study suggests potential economic and environmental advantages in using these surfactants in improving the cycling performance of LDH materials as absorbents for clean-up of water systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Effects of Stirring and Fluid Perfusion on the In Vitro Degradation of Calcium Phosphate Cement/PLGA Composites.

    PubMed

    An, Jie; Leeuwenburgh, Sander C G; Wolke, Joop G C; Jansen, John A

    2015-11-01

    In vitro degradation rates of calcium phosphate bioceramics are investigated using a large variation of soaking protocols that do not all match the dynamic conditions of the perfused physiological environment. Therefore, we studied the effect of stirring and fluid perfusion on the in vitro degradation rate of apatitic calcium phosphate cements (CPC) containing poly(lactic-co-glycolic acid) (PLGA) microspheres. The composites were soaked in phosphate-buffered saline up to 6 weeks under unstirred, stirred, or perfused conditions followed by analysis of mass loss, compression strength, porosity, crystal phase composition, and morphology of the cement composites. The results showed that fluid perfusion reduced the decrease in pH and corresponding degradation rates, while nonperfused soaking conditions (i.e., stirred and unstirred conditions) resulted into more extensive acidification, the rate of which increased with stirring. After 2 weeks, the formation of a secondary brushite phase was observed for cement composites soaked under nonperfused (i.e., stirred and unstirred) conditions, whereas this phase was not detected in cements soaked under perfused conditions. The degradation rate of cement composites decreased in the order unstirred>stirred>perfused, as evidenced by quantification of mass loss, compression strength, and pore morphology. To summarize, we have demonstrated that soaking conditions strongly affected the in vitro degradation process of CPCs. As a consequence, it can be concluded that the experimental design of current in vitro degradation studies does not allow for correlation to (pre-)clinical studies.

  20. Drug Release as a function of bioactivity, incubation regime, liquid, and initial load: Release of bortezomib from calcium phosphate-containing silica/collagen xerogels.

    PubMed

    Kruppke, Benjamin; Hose, Dirk; Schnettler, Reinhard; Seckinger, Anja; Rößler, Sina; Hanke, Thomas; Heinemann, Sascha

    2018-04-01

    The ability of silica-/collagen-based composite xerogels to act as drug delivery systems was evaluated by taking into account the initial drug concentration, bioactivity of the xerogels, liquid, and incubation regime. The proteasome inhibitor bortezomib was chosen as a model drug, used for the systemic treatment of multiple myeloma. Incubation during 14 days in phosphate-buffered saline (PBS) or simulated body fluid (SBF) showed a weak initial burst and was identified to be of first order with subsequent release being independent from the initial load of 0.1 or 0.2 mg bortezomib per 60 mg monolithic sample. Faster drug release occurred during incubation in SBF compared to PBS, and during static incubation without changing the liquid, compared to dynamic incubation with daily liquid changes. Drug-loaded xerogels with hydroxyapatite as a third component exhibited enhanced bioactivity retarding drug release, explained by formation of a surface calcium phosphate layer. The fastest release of 50% of the total drug load was observed for biphasic xerogels after 7 days during dynamic incubation in SBF. As a result, the presented concept is suitable for the intended combination of the advantageous bone substitution properties of xerogels and local application of drugs exemplified by bortezomib. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1165-1173, 2018. © 2017 Wiley Periodicals, Inc.

  1. Fiber-enriched double-setting calcium phosphate bone cement.

    PubMed

    dos Santos, Luís Alberto; Carrodéguas, Raúl Garcia; Boschi, Anselmo Ortega; Fonseca de Arruda, Antônio Celso

    2003-05-01

    Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. Copyright 2003 Wiley Periodicals, Inc.

  2. Erosion of enamel by non-carbonated soft drinks with and without toothbrushing abrasion.

    PubMed

    Hemingway, C A; Parker, D M; Addy, M; Barbour, M E

    2006-10-07

    To investigate how enamel loss due to erosion, and due to cycling of erosion and abrasion, depends on compositional parameters of soft drinks, and particularly whether the thickness of the erosive softened layer is a function of drink composition. University dental hospital research laboratory in the UK, 2004. Six drinks were chosen based on their popularity and composition: apple juice, orange juice, apple drink, orange drink, cranberry drink and 'ToothKind' blackcurrant drink. Group A samples (n = 36) were exposed to soft drinks at 36 degrees C for six consecutive 10 minute periods. Group B samples (n = 36) were subjected to alternating erosion and toothbrushing, repeated six times. Enamel loss was measured using optical profilometry. Group A: significant enamel loss was seen for all drinks (p < 0.001). Erosion was correlated with pH and calcium concentration but not phosphate concentration or titratable acidity. Group B: significant additional material loss due to toothbrush abrasion occurred with all drinks. Abrasive enamel loss differed between the drinks and was positively correlated with drink erosive potential. Enamel loss by erosion is exacerbated by subsequent abrasion. The amount of softened enamel removed by toothbrushing is a function of the chemical composition of the erosive medium.

  3. Phosphate mineral formation in Lake Baikal sediments and implications for paleoclimate

    NASA Astrophysics Data System (ADS)

    Fagel, N.; Alleman, L. Y.; André, L.; Cloots, R.; Hatert, F.; Juvigné, E.; Renson, V.

    2003-04-01

    The more than 20 million years old Lake Baikal sedimentary record provides a good climate archive. While most paleoclimate reconstructions are mainly based on biotic proxies, we tested in this study other minerogenic tracers. In particular, it was suggested that the formation of authigenic and/or diagenetic phosphate minerals in Baïkal sediments underlines transitions from glacial to interglacial periods (Deike et al., 1997). The phosphate mineral formation previously evidenced (Müller et al., 2002) may be sensitive to suspended sediment concentrations: glacial periods are characterised by high detrital discharge, interglacial intervals are marked by low detrital supply but high biogenic sedimentation. Phosphate minerals were observed in Baïkal sediments from recent to 65 kyr BP. Their abundance was related to the sedimentation rate, the phosphate enrichment layers being particularly common on low sedimentation site, i.e., the Academician Ridge. Major and trace elements have been analysed by ICP-AES and ICP-MS on four cores drilled on topographic hills, in the southern basin (Posolsky bank, CON01-604), in the central part (Academician Ridge, VER98-1-3 and VER98-1-14) and in the northern basin (Continent Ridge, CON01-603). The geochemical signature is consistent with the occurrence of Mn-Fe-phosphate minerals. For instance P2O5 reaches up to 3% wt. relative to a mean value of 0.3 in the background sediment, MnO2 presents an enrichment factor up to 6. There is no associated enrichment in any of the trace elements measured at the same levels. In the sediments, those P-Mn-Fe rich levels are related either to sparse millimetric dark concretions or to a layer (or a group of layers) defined by an alignment of numerous concretions but there is no so-called crusts. The concretions, isolated by >63 mm sieving, present a lamellar morphology. They are identified as Fe-phosphate phases with a variable proportion of Mn. The powder diffraction diagram is consistent with vivianite, a mineral that has been previously characterized in lacustrine sediments worldwide, including Baïkal. However, its precise formation process is not yet fully understood. Dean et al. (2002) emphasize that the occurrence of phosphate minerals in Elk lake (USA) is indicative of the paleo-productivity of the water-column. For Deike et al. (2002), phosphate crusts mainly accumulate under slow sedimentation conditions. We discuss the paleo-environmental implications of the occurrence of phosphate minerals in sediments. By studying the distribution of the phosphate concretions in sedimentary columns characterised under different sedimentary conditions, we would like to point up the implications of phosphate minerals for paleoclimate reconstruction. Dean et al., 2002. A 1500-year record of climatic and environmental change in Elk Lake, Cearwater County, Minnesota II : Geochemistry , mineralogy, and stable isotopes. J. Paleolimn. 27, 301-319. Müller et al., 2002. P, As, Sb, Mo, and other elements in sedimentary Fe/Mn layers of Lake Baïkal, Environmental Science and Technology, 36, 411-420. Deike et al., 1997. Formation of ferric iron crusts in quaternnary sediments of Lake Baikal, Russia and implications for paleoclimate. Marine Geology 139, 21-46.

  4. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    NASA Astrophysics Data System (ADS)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  5. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    PubMed

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Corrosion Behavior of Zirconium Treated Mild Steel with and Without Organic Coating: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Ghanbari, Alireza; Attar, Mohammadreza Mohammadzade

    2014-10-01

    In this study, the anti-corrosion performance of phosphated and zirconium treated mild steel (ZTMS) with and without organic coating was evaluated using AC and DC electrochemical techniques. The topography and morphology of the zirconium treated samples were studied using atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) respectively. The results revealed that the anti-corrosion performance of the phosphate layer was superior to the zirconium conversion layer without an organic coating due to very low thickness and porous nature of the ZTMS. Additionally, the corrosion behavior of the organic coated substrates was substantially different. It was found that the corrosion protection performance of the phosphate steel and ZTMS with an organic coating is in the same order.

  7. [Advances in research and application of beta-tricalcium phosphate, collagen and beta-tricalcium phosphate/collagen composite in bone tissue engineering].

    PubMed

    Han, Xiang-Yong; Fu, Yuan-Fei; Zhang, Fu-Qiang

    2007-02-01

    Bone defects in oral and maxillofacial region was a common problem. To repair the defect, bone grafts including autograft, allograft and artificial bone graft were used in clinic despite of their disadvantages. Nowadays, bone tissue engineering has become a commonly used method to repair bone defect. This paper reviewed the application of beta-TCP, collagen and beta-TCP/collagen composite in bone tissue engineering. It was concluded that beta-TCP/collagen composite was a promising materials in bone tissue engineering.

  8. Coating compositions and method for the treatment of metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, N.; Stastny, P.M.

    1984-09-11

    An aqeuous acidic composition provides improved coating for aluminum. The composition comprises from about 10 to about 150 ppm zirconium, from about 20 to about 250 ppm fluoride, from 30 to about 125 ppm tannin, from about about 15 to about 100 ppm phosphate and from about 5 to about 50 ppm zinc, said coating solution having a tannin to phosphate ratio in the range of at least about 1:1 to about 2:1 and a pH in the range of about 2.3 to about 2.95.

  9. Sm-Nd in marine carbonates and phosphates - Implications for Nd isotopes in seawater and crustal ages

    NASA Technical Reports Server (NTRS)

    Shaw, H. F.; Wasserburg, G. J.

    1985-01-01

    The possibility of establishing a record of variations in the isotopic composition of Nd in seawater over geologic time is explored. To construct such a record, a phase must be identified which incorporated Nd with the same isotopic composition as seawater at the time of its formation, preserves that composition, and which is relatively common in sediments. To evaluate the suitability of carbonates and phosphates, the Rb, Sr, Sm, and Nd concentrations and the Nd and Sr isotopic composition of a variety of modern and ancient marine calcite, aragonite, and apatite samples have been measured and the results are presented and discussed.

  10. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration.

    PubMed

    Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo

    2017-04-17

    The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use.

  11. Synthesis of Mg-Decorated Carbon Nanocomposites from MesoCarbon MicroBeads (MCMB) Graphite: Application for Wastewater Treatment

    DOE PAGES

    Zhang, Yan; Guo, Xingming; Yao, Ying; ...

    2016-09-19

    The potential application of a carbon nanocomposite from battery anode materials modified with magnesium (Mg) was explored to remove phosphate from aqueous solutions. Thermogravimetric analysis (TGA) shows that the Mg content of the prepared Mg/C composite is around 23.5%. Laboratory batch adsorption kinetics and equilibrium isotherm experiments demonstrate that the composite has an extremely high phosphate adsorption capacity of 406.3 mg PO 4/g, which is among the highest phosphate removal abilities reported so far. Results from XRD, SEM-EDX, and XPS analyses of the postsorption Mg/C composite indicate that phosphate adsorption is mainly controlled by the precipitation of P to formmore » Mg 3(PO 4) 2·8H 2O and MgHPO 4·1.2H 2O nanocrystals on the surface of the adsorbent. Finally, the approach of synthesizing Mg-enriched carbon-based adsorbent described in this work provides new opportunities for disposing spent batteries and developing a low-cost and high-efficiency adsorbent to mitigate eutrophication.« less

  12. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Moon, Sungmo; Chang, Doyon; Lee, Kyu Hwan

    2013-01-01

    The effect of the microstructure, particularly of β-Mg17Al12 phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the β-Mg17Al12 phase and it was dissolved into α-Mg phase during heat treatment at 400 °C. The β-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the β-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn3(PO4)2·4H2O (hopeite) and an inner which was mainly composed of MgZn2(PO4)2 and Mg3(PO4)2. A mechanism for the formation of two layers of the coatings was also proposed in this study.

  13. Influence of polarized PZT on the crystal growth of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sun, Xiaodan; Ma, Chunlai; Wang, Yude; Li, Hengde

    2002-01-01

    The effects of polarization on the crystallization of calcium phosphate are studied in this work. Crystals of calcium phosphate from saturated solution of hydroxyapatite (HA, Ca 10(PO 4) 6(OH) 2) were deposited on the surfaces of ferroelectric ceramics lead zirconate titanium (Pb(Ti,Zr)O 3, PZT). The results of the experiment demonstrated the acceleration effects of polarized PZT on the crystal growth of calcium phosphate. Furthermore, it is indicated that polarization also influenced the orientation of the deposited crystals due to the growth of a layer of (0 0 2) oriented octacalcium phosphate (OCP, Ca 8H 2(PO 4) 6·5H 2O) on the negatively charged surfaces of PZT.

  14. Dynamics and stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum zone in the eastern tropical Pacific

    NASA Astrophysics Data System (ADS)

    Franz, Jasmin; Krahmann, Gerd; Lavik, Gaute; Grasse, Patricia; Dittmar, Thorsten; Riebesell, Ulf

    2012-04-01

    The tropical South East Pacific is characterized by strong coastal upwelling on the narrow continental shelf and an intense oxygen minimum zone (OMZ) in the intermediate water layer. These hydrographic properties are responsible for a permanent supply of intermediate water masses to the surface rich in nutrients and with a remarkably low inorganic N:P stoichiometry. To investigate the impact of OMZ-influenced upwelling waters on phytoplankton growth, elemental and taxonomical composition we measured hydrographic and biogeochemical parameters along an east-west transect at 10°S in the tropical South East Pacific, stretching from the upwelling region above the narrow continental shelf to the well-stratified oceanic section of the eastern boundary regime. New production in the area of coastal upwelling was driven by large-sized phytoplankton (e.g. diatoms) with generally low N:P ratios (<16:1). While nitrate and phosphate concentrations were at levels not limiting phytoplankton growth along the entire transect, silicate depletion prohibited diatom growth further off-shore. A deep chlorophyll a maximum consisting of pico-/nano- (Synechococcus, flagellates) and microphytoplankton occurred within a pronounced thermocline in subsurface waters above the shelf break and showed intermediate N:P ratios close to Redfield proportions. High PON:POP (>20:1) ratios were observed in the stratified open ocean section of the transect, coinciding with the abundance of two strains of the pico-cyanobacterium Prochlorococcus; a high-light adapted strain in the surface layer and a low-light adapted strain occurring along the oxic-anoxic transition zone below the thermocline. Excess phosphate present along the entire transect did not appear to stimulate growth of nitrogen-fixing phytoplankton, as pigment fingerprinting did not indicate the presence of diazotrophic cyanobacteria at any of our sampling stations. Instead, a large fraction of the excess phosphate generated within the oxygen minimum zone was consumed by non-Redfield production of large phytoplankton in shelf surface waters.

  15. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-23

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  16. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  17. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  18. Effect of Phosphate on the Oxidation of Hydroxysulfate Green Rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benali, Omar; Abdelmoula, Mustapha; Genin, Jean-Marie R.

    During Hydroxysulfate green rust GR(SO{sub 4}{sup 2}) oxidation, lepidocrocite and goethite were formed. The oxidation of GR(SO{sub 4}{sup 2-}) in the presence of phosphate ions, also involved the formation of poorly crystallized lepidocrocite but not that of goethite. The dissolution of lepidocrocite is inhibited by adsorption of phosphate ions as confirmed by X-ray photoelectron spectroscopy. The formation of the poorly crystallized protective layer against corrosion is effectively due to the phosphate ions which adsorb on the surface of lepidocrocite, and prevents it to turn into a well crystallized oxide.

  19. Anti-flammable properties of cotton fabrics using eco friendly inorganic materials by layering self-assisted processing

    USDA-ARS?s Scientific Manuscript database

    A flame retardant surface has been prepared by the layer-by layer assemblies of branched polyethylenimine (BPEI), kaolin, urea, diammonium phosphate (dibasic) on cotton fabrics. Four different kinds of cotton fabrics (print cloth, mercerized print cloth, mercerized twill, and fleece) were prepared ...

  20. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    USGS Publications Warehouse

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  1. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass.

    PubMed

    Yang, Yanqiu; He, Fupo; Ye, Jiandong

    2016-12-01

    In this study, phosphate-based glass (PG) was used as a sintering aid for freeze-cast porous biphasic calcium phosphate (BCP) ceramic, which was sintered under a lower temperature (1000°C). The phase composition, pore structure, compressive strength, and cytocompatibility of calcium phosphate composite ceramics (PG-BCP) were evaluated. The results indicated that PG additive reacted with calcium phosphate during the sintering process, forming β-Ca2P2O7; the ions of sodium and magnesium from PG partially substituted the calcium sites of β-calcium phosphate in BCP. The PG-BCP showed good cytocompatibility. The pore width of the porous PG-BCP ceramics was around 50μm, regardless of the amount of PG sintering aid. As the content of PG increased from 0wt.% to 15wt.%, the compressive strength of PG-BCP increased from 0.02 MP to 0.28MPa. When the PG additive was 17.5wt.%, the compressive strength of PG-BCP dramatically increased to 5.66MPa. Addition of 15wt.% PG was the critical point for the properties of PG-BCP. PG is considered as an effective sintering aid for freeze-cast porous bioceramics. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ionothermal synthesis, characterization of a new layered gallium phosphate with an unusual heptamer SBU

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Huang, Liangliang; Ma, Yike; Jiao, Shufei; Jiang, Yansong; Bi, Yanfeng

    2017-10-01

    A new layered gallium phosphate Ga3(PO4)4(C2N2H8)·(H2C2N2H8)2·Cl (compound 1), has been ionothermally synthesized in the presence of deep eutectic solvent (DES) comprising mixtures of choline chloride and 2-imidazolidone (IMI). Single-crystal X-ray diffraction analysis reveals that compound 1 shows 2D layered framework with 10-ring windows, which is constructed from unusual heptamer second building units (SBUs). The ethylenediamine (en) units deriving from the decomposition of IMI, play a dual role as bidentate ligands coordinated with 6-fold coordinate gallium atoms and the templates. Additionally, compound 1 shows photoluminescence property in solid state at room temperature.

  3. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    PubMed

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.

  4. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro

    PubMed Central

    Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.

    2017-01-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781

  5. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique.

    PubMed

    Nie, X; Leyland, A; Matthews, A; Jiang, J C; Meletis, E I

    2001-12-15

    Hydroxyapatite (HA) coatings can be deposited using a hybrid process of plasma electrolysis and electrophoresis, called plasma-assisted electrophoretic deposition (PEPD). HA aqueous suspensions with various pH values were prepared using a modified ultrasonic cleaning bath as an agitator/stirrer. Both DC and unbalanced AC power supplies were used to bias the titanium alloy substrate materials employed in this work. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to observe and analyze coating morphology and microstructure. It was shown that the morphology and composition of the calcium phosphate coatings were significantly influenced by solution pH values; the level of "pure" HA in the coatings' composition corresponded to both solution pH and the type of power supply employed. Loss of hydroxyl radials (i.e., dehydroxylation), which degrades the performance of the hydroxyapatite coating in terms of long-term chemical and mechanical stability, can be virtually eliminated by a combination of high pH and unbalanced AC plasma power. In addition, the underlying TiO2 coatings used to support the HA layer (preproduced by plasma electrolysis process) have a nanoscaled (10-20 nm) polycrystalline structure. TEM studies also revealed a dense, continuous amorphous titania layer (10 nm in thickness) at the interface between the Ti alloy substrate and the TiO2 layer, which may play a role in improving the corrosion resistance of the substrate. Such a nanophase TiO2 layer (if used as a coating alone) may also provide a further improvement in osteoinductive properties, compared to a conventional TiO2 coating on the Ti alloy substrate. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 612-618, 2001

  6. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition.

    PubMed

    Zhang, Jie; Wen, Zhaohui; Zhao, Meng; Li, Guozhong; Dai, Changsong

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Deciphering the role and nature of phosphate species at the surface of stainless steel immersed in phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Liascukiene, I.; Ben Salah, M.; Sabot, R.; Refait, Ph.; Dhouibi, L.; Méthivier, C.; Landoulsi, J.; Jeannin, M.

    2018-03-01

    We investigate the evolution of the surface of a highly alloyed stainless steel (Sanicro 28) upon immersion in aqueous phosphoric acid solutions. For this purpose, both short- (few hours) and long-term immersion (several days) were carried out. A detailed analysis of XPS spectra allowed a distinction to be made between oxygen originating from the organic adlayer (adventitious contamination), the passive oxide layer, and adsorbed phosphate species. By estimating the fraction of oxygen due to phosphate species (Oph), it was shown that the Oph/P molar concentration ratio was ranging from about 2 to 3. This suggests the presence of a polyphosphate layer at the stainless steel surface, as also supported by Raman analysis, which influence the electrochemical behavior of SS in the acidic media.

  8. Synthesis, structure and characterization of two new organic template-directed gallium phosphate/phosphite-oxalates

    NASA Astrophysics Data System (ADS)

    Xue, Zhen-Zhen; Pan, Jie; Li, Jin-Hua; Wang, Zong-Hua; Wang, Guo-Ming

    2017-06-01

    Two new gallium phosphate/phosphite-oxalates hybrid solids, {[H2dmpip][Ga2(HPO4)2(PO4)(C2O4)0.5]·H2O} (1) and [H2apm][Ga2(H2PO3)2(HPO3)2(C2O4)] (2), where dmpip = 2,6-dimethyl-piperazine and apm = N-(3-aminopropyl)morpholine, have been synthesized and structurally characterized. Both of compounds 1 and 2 are formed by the connectivity of the Ga-based polyhedral, phosphite/phosphate groups as well as oxalate units. Compound 1 possesses a two-dimensional layer structure, in which the C2O4 units via an in-plane linkage connect two Ga center within the sheet. While in 2, the C2O4 units serve as bis-bidentates ligands bridging two GaO6 octahedra from two distinct gallium-phosphite chains to give rise to inorganic-organic hybrid layer with 8-membered rings. In these materials, the structure-directing amines reside in the interlayer region and interact with the layers by way of hydrogen-bonds.

  9. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.

    PubMed

    Massera, J; Petit, L; Cardinal, T; Videau, J J; Hupa, M; Hupa, L

    2013-06-01

    In this paper, we investigate the effect of SrO substitution for CaO in 50P₂O₅-10Na₂-(40-x)CaO-xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

  10. Optimization of calcium phosphate fine ceramic powders preparation

    NASA Astrophysics Data System (ADS)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  11. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys.

    PubMed

    Sheng, Minqi; Wang, Chao; Zhong, Qingdong; Wei, Yinyin; Wang, Yi

    2010-01-01

    In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.

  12. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode - Long term cycle life study, rate effect and charge sharing analysis

    NASA Astrophysics Data System (ADS)

    Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.

    2018-07-01

    Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.

  13. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    NASA Astrophysics Data System (ADS)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  14. Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.

    PubMed

    Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M

    2014-12-01

    β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Synthesis and evaluation of bioceramics for orthopedics and tissue culture applications

    NASA Astrophysics Data System (ADS)

    Demirkiran, Hande

    Hydroxyapatite is the most well known phosphate in the biologically active phosphate ceramic family by virtue of its similarity to natural bone mineral. Among all bioglass compositions BioglassRTM45S5 is one of the most bioactive glasses. This study initially started by adding different amounts (1, 2.5, 5, 10, and 25 wt.%) of BioglassRTM45S5 to synthetic hydroxyapatite in order to improve the bioactivity of these bioceramics. The chemistries formed by sintering and their effect on different material properties including bioactivity were identified by using various techniques, such as powder and thin film x-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption near edge spectroscopy, compression test, and nano indentation. All the results demonstrated that 10 and 25 wt.% BioglassRTM45S5 addition to hydroxyapatite and sintering at 1200°C for 4 hours yield new compositions with main Ca 5(PO4)2SiO4 and Na3Ca 6(PO4)5 crystalline phases dispersed in silicate glassy matrices, respectively. In addition, in vitro bioactivity tests such as bone like apatite formation in simulated body fluid and bone marrow stromal cell culture have shown that the crystalline and amorphous phases have an important role on improving bioactivity of these bioceramic compositions. Besides, compression test and nano indentation has given important information on compression strength and nano structure properties of these newly composed bioceramic materials and the bone like apatite layers formed on them, respectively. Finally, the effect of silicate addition on both formation and bioactivity of Na3Ca6(PO4)5 bioceramics were shown. These findings and different techniques used assisted to develop a phenomenological approach to demonstrate how the novel bioceramic compositions were composed and aid improving bioactivity of known bioceramic materials.

  16. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  17. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  18. Structure, mechanical property and corrosion behaviors of (HA+β-TCP)/Mg-5Sn composite with interpenetrating networks.

    PubMed

    Wang, X; Li, J T; Xie, M Y; Qu, L J; Zhang, P; Li, X L

    2015-11-01

    In this paper, a novel (Hydroxyapatite+β-tricalcium phosphate)/Mg-5Sn ((HA+β-TCP)/Mg-5Sn) composite with interpenetrating networks was fabricated by infiltrating Mg-5Sn alloy into porous HA+β-TCP using suction casting technique. The structure, mechanical property and corrosion behaviors of the composite have been evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion test. It is shown that the molten Mg-5Sn alloy has infiltrated not only into the pores but also into the struts of the HA+β-TCP scaffold to forming a compact composite. The microstructure observation also shows that the Mg alloy contacts to the HA+β-TCP closely, and no reaction layer can be found between Mg-5Sn alloy and scaffold. The ultimate compressive strength of the composite is as high as 176MPa, which is about four fifths of the strength of the Mg-5Sn bulk alloy. The electrochemical and immersion tests indicate that the corrosion resistance of the composite is better than that of the Mg-5Sn bulk alloy. The corrosion products on the composite surface are mainly Mg(OH)2, Ca3(PO4)2 and HA. Appropriate mechanical and corrosion properties of the (HA+β-TCP)/Mg-5Sn composite indicate its possibility for new bone tissue implant materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The structure and material composition of ossified aortic valves identified using a set of scientific methods

    NASA Astrophysics Data System (ADS)

    Zeman, Antonín; Šmíd, Michal; Havelcová, Martina; Coufalová, Lucie; Kučková, Štěpánka; Velčovská, Martina; Hynek, Radovan

    2013-11-01

    Degenerative aortic stenosis has become a common and dangerous disease in recent decades. This disease leads to the mineralization of aortic valves, their gradual thickening and loss of functionality. We studied the detailed assessment of the proportion and composition of inorganic and organic components in the ossified aortic valve, using a set of analytical methods applied in science: polarized light microscopy, scanning electron microscopy, X-ray fluorescence, X-ray diffraction, gas chromatography/mass spectrometry and liquid chromatography-tandem mass spectrometry. The sample valves showed the occurrence of phosphorus and calcium in the form of phosphate and calcium carbonate, hydroxyapatite, fluorapatite and hydroxy-fluorapatite, with varying content of inorganic components from 65 to 90 wt%, and with phased development of degenerative disability. The outer layers of the plaque contained an organic component with peptide bonds, fatty acids, proteins and cholesterol. The results show a correlation between the formation of fluorapatite in aortic valves and in other parts of the human bodies, associated with the formation of bones.

  20. Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Seifert, H. J.; Pfleging, W.

    2016-02-01

    Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.

  1. Novel Biocatalysts Based on S-Layer Self-Assembly of Geobacillus Stearothermophilus NRS 2004/3a: A Nanobiotechnological Approach

    PubMed Central

    Schäffer, Christina; Novotny, René; Küpcü, Seta; Zayni, Sonja; Scheberl, Andrea; Friedmann, Jacqueline; Sleytr, Uwe B.; Messner, Paul

    2015-01-01

    The crystalline cell-surface (S) layer sgsE of Geobacillus stearothermophilus NRS 2004/3a represents a natural protein self-assembly system with nanometer-scale periodicity that is evaluated as a combined carrier/patterning element for the conception of novel types of biocatalyst aiming at the controllable display of biocatalytic epitopes, storage stability, and reuse. The glucose-1-phosphate thymidylyltransferase RmlA is used as a model enzyme and chimeric proteins are constructed by translational fusion of rmlA to the C-terminus of truncated forms of sgsE (rSgsE 131–903, rSgsE331–903) and used for the construction of three principal types of biocatalysts: soluble (monomeric), self-assembled in aqueous solution, and recrystallized on negatively charged liposomes. Enzyme activity of the biocatalysts reaches up to 100% compared to sole RmlA cloned from the same bacterium. The S-layer portion of the biocatalysts confers significantly improved shelf life to the fused enzyme without loss of activity over more than three months, and also enables biocatalyst recycling. These nanopatterned composites may open up new functional concepts for biocatalytic applications in nanobiotechnology. PMID:17786898

  2. Electrodeposition of hydroxyapatite nanoparticles onto ultra-fine TiO2 nanotube layer by electrochemical reaction in mixed electrolyte.

    PubMed

    Park, Su-Jung; Jang, Jae-Myung

    2011-08-01

    Electrochemical depositions of HAp nanoparticles onto Ultra-fine TiO2 nanotube layer were carried out by the electrochemical reaction in mixed electrolyte of 1.6 M (NH4)H2PO4 + 0.8 M NH4F containing 0.15 and 0.25 wt% HAp. The Ca/P ratios of the HAp nanoparticles were evaluated by EDS analysis and their values were 1.53 and 1.66 respectively. The distribution quantity of Ca and P were remained at the middle region of TiO2 nanotube, but the Ti element was mainly stayed at the bottom of barrier layer from the result of line scanning diagram. Especially, adsorbed phosphate ions facilitated nucleation of nanophase calcium phosphate material inside the TiO2 nanotubu layer that resulted in vertical growth of HAp nanoparticles. These surfaces and structures were all effective for biocompatibility from the SBF tests.

  3. Effects of coating layer and release medium on release profile from coated capsules with Eudragit FS 30D: an in vitro and in vivo study.

    PubMed

    Moghimipour, Eskandar; Rezaei, Mohsen; Kouchak, Maryam; Fatahiasl, Jafar; Angali, Kambiz Ahmadi; Ramezani, Zahra; Amini, Mohsen; Dorkoosh, Farid Abedin; Handali, Somayeh

    2018-05-01

    The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.

  4. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography

    PubMed Central

    He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.

    2011-01-01

    We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical composition by varying the processing parameters, which can mimic the composition and structure of natural bone extracellular matrix and provide a more biocompatible interface for bone regeneration. PMID:21673827

  5. In vitro behaviour of three biocompatible glasses in composite implants.

    PubMed

    Varila, Leena; Lehtonen, Timo; Tuominen, Jukka; Hupa, Mikko; Hupa, Leena

    2012-10-01

    Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.

  6. Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium.

    PubMed

    Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A

    2015-01-01

    Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE-SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role.

  7. Characterisation of Calcium Phosphate Crystals on Calcified Human Aortic Vascular Smooth Muscle Cells and Potential Role of Magnesium

    PubMed Central

    Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A.

    2015-01-01

    Background Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. Methodology/Principal Findings In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. Conclusions/Significance For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role. PMID:25607936

  8. δ 18O(PO 43-) and δ 18O(CO 32-) from belemnite guards from Eastern Europe: implications for palaeoceanographic reconstructions and for the preservation of pristine isotopic values

    NASA Astrophysics Data System (ADS)

    Longinelli, Antonio; Wierzbowski, Hubert; Di Matteo, Antonella

    2003-04-01

    The oxygen isotopic composition of coexisting carbonate and phosphate from belemnite rostra was measured according to well established techniques in 42 samples of Early and Middle Jurassic age and in five samples of oyster shells. Most of the samples come from various locations in the Western Carpathians of Slovakia and Ukraine, and from central Poland. Three samples come from the Isle of Skye. The phosphate content of belemnite rostra, though variable, is systematically very low: consistently lower than about 0.3%. However, this phosphate concentration is close to that found in shells of modern marine organisms including pelecypods, gastropods and Sepia cuttlebones which, in some way, could be considered the modern belemnite counterpart. The measured oxygen isotopic composition of carbonate is within the normal range of values obtained from these fossils ranging from about -1.3 to about +0.6‰ (PDB-1) with the exception of three samples; the δ 13C values range from about -0.8 to about +2.8‰ (PDB-1). With the single exception of one sample from the Isle of Skye, the oxygen isotopic composition of phosphate from belemnite rostra ranges from +19.8 to +24.9‰ (V-SMOW), 22 of the samples measured showing δ 18O values equal to or heavier than +23.0‰. In contrast, the oyster values are considerably lighter, in the case of both carbonate and phosphate. 18O-enriched values can hardly be related to diagenetic processes that normally cause an oxygen isotope shift towards light values. If deposition temperatures are calculated from the heavily enriched values by means of the equation of Longinelli and Nuti [Earth Planet. Sci. Lett. 19 (1973) 373-376] and assuming the δ 18O of Jurassic ocean water to be equal to -1‰ taking into account the lack of ice caps during the Jurassic, the obtained temperatures range from about 8°C to about zero. These temperatures are obviously unreliable when Mesozoic palaeoceanographic conditions and palaeoclimate are taken into account. Two different hypotheses are suggested to explain these results, other hypotheses being rejected as unreliable. (1) Phosphate derived from the decaying organic matter of belemnites might have been introduced into belemnite rostra by early diagenetic fluids. If the phosphate of belemnite organic matter was isotopically heavy as happens nowadays in the flesh of molluscs, the inflow of this phosphate into the rostra could be responsible for the very positive δ 18O values shown by many belemnite rostra (this hypothesis is suggested by H.W.); (2) previous oxygen isotope measurements on Upper Cretaceous belemnites yielded δ 18O values very close to the most positive values obtained from Lower Tertiary pelecypods and fish teeth which are known to precipitate their phosphate under isotopic equilibrium conditions with seawater. These data suggest the possibility that the phosphate in belemnite rostra is primary phosphate so that the very positive data reported here can be considered the result of good preservation of the pristine isotopic composition of primary phosphate. Consequently, the only way to explain the very positive δ 18O values is to consider the oxygen isotopic composition of Jurassic ocean water to be more positive than nowadays by at least 3‰. This hypothesis is suggested by A.L. and A.D.M.

  9. Concentration of simple aldehydes by sulfite-containing double-layer hydroxide minerals: implications for biopoesis

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.

  10. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  11. Effect of the synthesis conditions on the electrochemical properties of LiFePO{sub 4} obtained from NH{sub 4}FePO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosini, Pier Paolo, E-mail: pierpaolo.prosini@enea.it; Gislon, Paola; Cento, Cinzia

    Graphical abstract: - Highlights: • Four different samples of FAP were synthesized by precipitation techniques. • The samples were used as precursors to synthesize electrochemical active LiFePO{sub 4}. • Their morphology, composition, structure and electrochemical performance were studied. • The LiFePO{sub 4} electrochemical performance resulted affected by the preparation method - Abstract: In this paper the morphological, structural and electrochemical properties of crystalline lithium iron phosphate (LiFePO{sub 4}) obtained from ferrous ammonium phosphate (FAP) have been studied. The FAP was obtained following four different processes, namely: (1) homogeneous phase precipitation, (2) heterogeneous phase precipitation from stoichiometric sodium phosphate, (3) heterogeneousmore » phase precipitation from stoichiometric ammonium phosphate, and (4) heterogeneous phase precipitation from over stoichiometric ammonium phosphate. Lithium iron phosphate was prepared by solid state reaction of FAP with lithium hydroxide. In order to evaluate the effect of reaction time and synthesis temperature the LiFePO{sub 4} was prepared varying the heating temperatures (550, 600 and 700 °C) and the reaction times (1 or 2 h). The morphology of the materials was evaluated by scanning electron microscopy while the chemical composition was determined by electron energy loss spectroscopy. X-ray diffraction was used to evaluate phase composition, crystal structure and crystallite size. The so obtained LiFePO{sub 4}'s were fully electrochemical characterized and a correlation was found between the crystal size and the electrochemical performance.« less

  12. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium.

    PubMed

    Cheng, Lei; Weir, Michael D; Zhang, Ke; Wu, Eric J; Xu, Sarah M; Zhou, Xuedong; Xu, Hockin H K

    2012-08-01

    Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean ± sd; n = 6) on composite control was 6-fold those on NACP +17.5% QADM nanocomposite. Composite control had long strings of bacterial cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the composite strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO(4) or antibacterial activity. A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good mechanical properties and a strong antibacterial activity may have potential for anti-biofilm and anti-caries restorations. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    NASA Astrophysics Data System (ADS)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of diphtheria toxin to cells.

  14. Canister, Sealing Method And Composition For Sealing A Borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  15. Effectiveness of Flame Retardants in TufFoam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abelow, Alexis Elizabeth; Nissen, April; Massey, Lee Taylor

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  16. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enhanced phosphate removal from wastewater by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) on CaCO3.

    PubMed

    Li, Yujie; He, Xiaoman; Hu, Huimin; Zhang, Tingting; Qu, Jun; Zhang, Qiwu

    2018-05-21

    Excessive existences of nutrients such as phosphate in the aqueous environment remain as a heavy concern although many researches have been reported for dealing with their removal. Based on the understanding toward the interactions of Fe compounds with phosphate and carbonate from many available researches, we designed a very simple and efficient approach for phosphate removal by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) as FeSO 4 on CaCO 3 . Addition and agitation of Fe(II) and CaCO 3 simultaneously to phosphate solution allowed an amorphous Fe(III)-P or Ca-Fe(III)-P precipitation, with a phosphate removal rate close to 100%, to reduce the residual phosphorus concentration less than 0.03 mg/L from 100 mg/L, reaching the discharge limit, even with the addition amounts of CaCO 3 as low as a stoichiometric ratio of CaCO 3 /PO 4 3- at 0.9 and ratio of Fe(II)/PO 4 3- at 1.5, and the percent of P 2 O 5 in the precipitate was as high as 19.4% enough as phosphate source for fertilizer production. Different from the alkaline process with enough OH - group, the slow hydrolysis of CaCO 3 resulting in low concentration of OH - group for the formation of Fe(OH) 2 , which was oxidized soon by air into trivalent Fe, achieved a continuous generation of fresh ferric composition for phosphate precipitation and could avoid its rapid formation and subsequent transformation into stable FeOOH of large particle size to lose the activity. These results based on the synergistic effect of using CaCO 3 and Fe(II) together may have applications in the treatment of eutrophic wastewater through a process with many advantages of easy operation and low-cost besides the high removal efficiency with phosphate percentage inside the precipitate high enough to serve for fertilizer production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  19. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms.

    PubMed

    Cheng, Lei; Weir, Michael D; Xu, Hockin H K; Antonucci, Joseph M; Lin, Nancy J; Lin-Gibson, Sheng; Xu, Sarah M; Zhou, Xuedong

    2012-07-01

    A dental composite containing amorphous calcium phosphate nanoparticles (NACP) was developed that released calcium (Ca) and phosphate (PO(4)) ions and possessed acid-neutralization capability. There has been little study on incorporation of antibacterial agents into calcium phosphate composites. The objective of this study was to investigate the effect of silver nanoparticle (NAg) mass fraction in NACP nanocomposite on mechanical properties and dental plaque microcosm biofilm for the first time. NACP nanoparticles of 116 nm were synthesized via a spray-drying technique. NAg nanoparticles were synthesized using Ag 2-ethylhexanoate and 2-(tert-butylamino)ethyl methacrylate, yielding NAg of particle size of 2.7 nm that were well-dispersed in the resin. Five NACP nanocomposites were fabricated with NAg mass fractions of 0, 0.028, 0.042, 0.088, and 0.175%, respectively. Mechanical properties of NACP nanocomposites containing 0-0.042% of NAg matched those of a commercial composite without antibacterial activity. Live/dead assay of dental plaque microcosm biofilms showed complete coverage with live bacteria on commercial composite. However, there were increasingly more dead bacteria with higher NAg content in the NACP nanocomposite. Colony-forming unit (CFU) counts for total microorganisms, total streptococci, and mutans streptococci for NACP nanocomposite with 0.042% NAg were about 1/4 those of commercial composite. Lactic acid production on NACP nanocomposite with 0.042% NAg was 1/3 that on commercial composite. In conclusion, novel NACP-NAg nanocomposites were developed which possessed good mechanical properties and potent antibacterial properties, with substantially reduced biofilm viability and lactic acid production. Hence, the NACP-NAg nanocomposites are promising for dental restorations with remineralizing and antibacterial capabilities. Copyright © 2012 Wiley Periodicals, Inc.

  20. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Xu, Sarah M.; Zhou, Xuedong

    2012-01-01

    A dental composite containing amorphous calcium phosphate nanoparticles (NACP) was developed that released calcium (Ca) and phosphate (PO4) ions and possessed acid-neutralization capability. There has been little study on incorporation of antibacterial agents into calcium phosphate composites. The objective of this study was to investigate the effect of silver nanoparticle (NAg) mass fraction in NACP nanocomposite on mechanical properties and dental plaque microcosm biofilm for the first time. NACP nanoparticles of 116 nm were synthesized via a spray-drying technique. NAg nanoparticles were synthesized using Ag 2-ethylhexanoate and 2-(tert-butylamino)ethyl methacrylate, yielding NAg of particle size of 2.7 nm that were well-dispersed in the resin. Five NACP nanocomposites were fabricated with NAg mass fractions of 0, 0.028, 0.042, 0.088, and 0.175%, respectively. Mechanical properties of NACP nanocomposites containing 0–0.042% of NAg matched those of a commercial composite without antibacterial activity. Live/dead assay of dental plaque microcosm biofilms showed complete coverage with live bacteria on commercial composite. However, there were increasingly more dead bacteria with higher NAg content in the NACP nanocomposite. Colony-forming unit (CFU) counts for total microorganisms, total Streptococci, and mutans Streptococci for NACP nanocomposite with 0.042% NAg were about 1/4 those of commercial composite. Lactic acid production on NACP nanocomposite with 0.042% NAg was 1/3 that on commercial composite. In conclusion, novel NACP–NAg nanocomposites were developed which possessed good mechanical properties and potent antibacterial properties, with substantially reduced biofilm viability and lactic acid production. Hence, the NACP–NAg nanocomposites are promising for dental restorations with remineralizing and antibacterial capabilities. PMID:22566464

  1. [Influence of adhesion on the color of glass infiltrated alumina ceramic restorations].

    PubMed

    Jiang, Li; Yang, Liu; Xu, Qiang; Guan, Hong-Yu; Wan, Qian-Bing

    2006-10-01

    To investigate the effects of luting agent on the final color of glass infiltrated alumina ceramic restorations. 12 plate-shaped specimens with 12.5 mm in diameter and 0.5 mm thickness were fabricated from GI-II (color IG2). Vitadur alpha veneering porcelain (color A2) with 1.0 mm thickness was fired to GI- II glass/alumina composite. 12 plate-shaped background specimens simulating the metal alloy post-and-core 12.5 mm in diameter and 2 mm thickness were also made from Ni-Cr alloy. All-ceramic specimens were luted to the metal alloy by Zinc Phosphate cement, glass ionomer cement and composite resin. The color shifts of the specimens were measured by colorimeter. Luting agents had effect on the final color of restorations. The influence of composite resin was least, followed by glass ionomer cement and Zinc Phosphate cement. The color difference between with and without Zinc Phosphate cement could be identified by the eye. To reduce the effect of luting agents, composite resin is recommended to all-ceramic restorations' adhesion.

  2. Phytate: impact on environment and human nutrition. A challenge for molecular breeding*

    PubMed Central

    Bohn, Lisbeth; Meyer, Anne S.; Rasmussen, Søren K.

    2008-01-01

    Phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate in PA strongly binds to metallic cations of Ca, Fe, K, Mg, Mn and Zn making them insoluble and thus unavailable as nutritional factors. Phytate mainly accumulates in protein storage vacuoles as globoids, predominantly located in the aleurone layer (wheat, barley and rice) or in the embryo (maize). During germination, phytate is hydrolysed by endogenous phytase(s) and other phosphatases to release phosphate, inositol and micronutrients to support the emerging seedling. PA and its derivatives are also implicated in RNA export, DNA repair, signalling, endocytosis and cell vesicular trafficking. Our recent studies on purification of phytate globoids, their mineral composition and dephytinization by wheat phytase will be discussed. Biochemical data for purified and characterized phytases isolated from more than 23 plant species are presented, the dephosphorylation pathways of phytic acid by different classes of phytases are compared, and the application of phytase in food and feed is discussed. PMID:18357620

  3. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  4. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    PubMed Central

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  5. Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens.

    PubMed

    Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui

    2018-06-10

    In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Scale Formation under Blended Phosphate Treatment for a Utility with Lead Pipes

    EPA Science Inventory

    Conventional wisdom hypothesizes that the orthophosphate component of blended phosphate corrosion inhibitors causes the formation of low solubility lead-orthophosphate solids which inhibit lead release into drinking water. This study characterized the composition and morphology o...

  7. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming)

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Clyde, William C.; O'Neil, James R.; Gingerich, Philip D.

    1998-07-01

    Oxygen isotope records of Cenozoic sea water temperatures indicate that a rapid warming event known as the Latest Paleocene Thermal Maximum (LPTM) occurred during the otherwise gradual increase in world temperatures during the Late Paleocene and Early Eocene. Oxygen isotope analysis of the carbonate and phosphate components of hydroxyapatite found in mammalian tooth enamel and body scales of river-dwelling fish from the Bighorn Basin in Wyoming were made to investigate corresponding changes in the terrestrial climate. A comparison of carbonate and phosphate isotope data from modern and fossil material indicates that some diagenetic alteration of the fossil material has occurred, although systematically larger intra-tooth ranges in the oxygen isotope composition of carbonate indicate that it is more likely to have been affected than phosphate. Carbonate and phosphate from the ecologically diverse mammals and fishes both record a shift to higher oxygen isotope ratios at the same time and of the same duration as the LPTM. These shifts reflect a change in the isotopic composition of regional precipitation, which in turn provides the first evidence for continental climate change during the LPTM. Assuming the present-day relation between the oxygen isotope composition of precipitation and temperature applies to conditions in the past, and that animal physiology and behavior is relatively invariant over time, the isotopic shift is equivalent to an increase of surface temperature in western North America of several degrees. This result is consistent with the magnitude of high-latitude ocean warming, and provides a basis for relating marine and terrestrial oxygen isotope records to records of terrestrial biotic change.

  8. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    PubMed

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  9. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.

    2012-01-01

    Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean±sd; n=6) on composite control was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good mechanical properties and a strong antibacterial activity may have potential for anti-biofilm and anti-caries restorations. PMID:22578992

  10. In Vivo Evaluation of Chemical Composition of Eight Types of Urinary Calculi Using Spiral Computerized Tomography in a Chinese Population.

    PubMed

    Huo, Jun; Liu, Zhong-Yuan; Wang, Ke-Feng; Xu, Zhen-Qun

    2015-09-01

    This study was conducted to evaluate the chemical composition of eight types of urinary calculi using spiral computerized tomography (CT) in vivo. From October 2011 to February 2013, upper urinary tract calculi were obtained from 122 patients in the department of urinary surgery of the First Affiliated Hospital of Soochow University. All patients were scanned with a 64-detector row helical CT scanner using 6.50 mm collimation before ureterorenoscopy. Data from the preoperative spiral CT scans and postoperative chemical composition of urinary calculi were collected. The chemical composition analysis indicates that there were five types of pure calculi and three types of mixed calculi, including 39 calcium oxalate calculi, 12 calcium phosphate calculi, 10 calcium carbonate calculi, 8 magnesium ammonium phosphate calculi, 6 carbonated apatite, 21 uric acid/ammonium urate calculi, 10 uric acid/calcium oxalate calculi, and 16 calcium oxalate/calcium phosphate calculi. There were significant differences in the mean CT values among the five types of pure calculi (P < 0.001). Furthermore, we also observed significant differences in the mean CT values among three types of mixed calculi (P < 0.001). Significant differences in the mean CT values were also found among eight types of urinary calculi (P < 0.001). However, no statistically significant difference was observed between the mean CT values of magnesium ammonium phosphate calculi and uric acid/calcium oxalate calculi (P = 0.262). Our findings suggest that spiral CT could be a promising tool for determining the chemical composition of upper urinary tract calculi. © 2014 Wiley Periodicals, Inc.

  11. Aluminum phosphate coatings

    DOEpatents

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  12. Modelling aqueous corrosion of nuclear waste phosphate glass

    NASA Astrophysics Data System (ADS)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  13. Autologous Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    DTIC Science & Technology

    2009-01-01

    scaffold. II. BODY During the past project year, research focused on the following: 1. Novel magnetic calcium phosphate nanoparticles were...the achievement related to the development of navel calcium phosphate nanoparticles and hyaluronic acid-collagen composite scaffolds. A. Novel...Magnetic Calcium Phosphate Nanoparticles as Non-Viral Vectors 1. Background The goal was to employ nanoparticles to deliver genes for neurotrophic

  14. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  15. Natural clinoptilolite composite membranes on tubular stainless steel supports for water softening.

    PubMed

    Adamaref, Solmaz; An, Weizhu; Jarligo, Maria Ophelia; Kuznicki, Tetyana; Kuznicki, Steven M

    2014-01-01

    Disk membranes generated from high-purity natural clinoptilolite mineral rock have shown promising water desalination and de-oiling performance. In order to scale up production of these types of membranes for industrial wastewater treatment applications, a coating strategy was devised. A composite mixture of natural clinoptilolite from St. Cloud (Winston, NM, USA) and aluminum phosphate was deposited on the inner surface of porous stainless steel tubes by the slip casting technique. The commercial porous stainless steel tubes were pre-coated with a TiO2 layer of about 10 μm. Phase composition and morphology of the coating materials were investigated using X-ray diffraction and scanning electron microscopy. Water softening performance of the fabricated membranes was evaluated using Edmonton (Alberta, Canada) municipal tap water as feed source. Preliminary experimental results show a high water flux of 7.7 kg/(m(2) h) and 75% reduction of hardness and conductivity in a once-through membrane process at 95 °C and feed pressure of 780 kPa. These results show that natural zeolite coated, stainless steel tubular membranes have high potential for large-scale purification of oil sands steam-assisted gravity drainage water at high temperature and pressure requirements.

  16. Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Li, Baoe; Liang, Chunyong; Wang, Hongshui; Qiao, Zhixia

    2016-01-01

    A hydroxyapatite (HA)/TiO2 composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca-P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca2+ ions which diffused into the coating decreased more rapidly than that of PO43- or HPO42-. The adhesive strength between the apatite and TiO2 coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO2 layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  17. Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.

    PubMed

    Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng

    2016-05-01

    Poly-L-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10 wt.% β-TCP, but it decreased as the addition amount increased from 10 wt.% to 20 wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite.

    PubMed

    Huang, Yan; Liu, Debao; Anguilano, Lorna; You, Chen; Chen, Minfang

    2015-09-01

    A biodegradable magnesium matrix and beta-tricalcium phosphate (β-TCP) particles reinforced composite Mg-2Zn-0.5Ca/1beta-TCP (wt.%) was fabricated for biomedical applications by the novel route of combined high shear solidification (HSS) and equal channel angular extrusion (ECAE). The as-cast composite obtained by HSS showed a fine and equiaxed grain structure with globally uniformly distributed β-TCP particles in aggregates of 2-25 μm in size. The ECAE processing at 300 °C resulted in further microstructural refinement and the improvement of β-TCP particle distribution. During ECAE, the β-TCP aggregates were broken into smaller ones or individual particles, forming a dispersion in the matrix. Such fabricated composite exhibited enhanced hardness and in vitro corrosion resistance. The enhanced hardness was attributed to both the addition of β-TCP particles and grain refinement while the development of a Ca-P rich surface layer from β-TCP during corrosion was responsible for the improvement in corrosion resistance. The composite was characterized in terms of microstructural evolution during fabrication, mechanical properties and electrochemical performance during polarization and immersion tests in a simulated body fluid. Discussions are made on the benefits of both HSS and ECAE and the mechanisms responsible for the enhanced corrosion resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Limkangwalmongkol, Penwadee; Hack, Gary D.; Xu, Hockin H. K.; Chen, Qianming; Zhou, Xuedong

    2012-01-01

    Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R2 ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries. PMID:22190356

  20. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites †

    PubMed Central

    O’Donnell, Justin N.R.; Schumacher, Gary E.; Antonucci, Joseph M.; Skrtic, Drago

    2009-01-01

    Our studies of amorphous calcium phosphate (ACP)-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/re-mineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC) and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and, ultimately, the suitability of the composites for clinical evaluation. PMID:21966588

  1. The Effect of Single, Binary and Ternary Anions of Chloride, Carbonate and Phosphate on the Release of 2,4-Dichlorophenoxyacetate Intercalated into the Zn-Al-layered Double Hydroxide Nanohybrid

    NASA Astrophysics Data System (ADS)

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj.; Zainal, Zulkarnain

    2009-11-01

    Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D) intercalated into the interlayer of Zn-Al-layered double hydroxide (ZAN) have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree, Hevea brasiliensis.

  2. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition.

    PubMed

    Qiu, Xun; Wan, Peng; Tan, Lili; Fan, Xinmin; Yang, Ke

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca-P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Fe{sub 2.5}[BP{sub 2}O{sub 7}(OH){sub 2}][PO{sub 3}(OH)][PO{sub 3}(O{sub 0.5}OH{sub 0.5})] · H{sub 2}O, a new phosphate-borophosphate with a microporous structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Dimitrova, O. V.

    2015-05-15

    A new phosphate-borophosphate Fe{sub 2.5}{sup 3+}[BP{sub 2}O{sub 7}(OH){sub 2}][PO{sub 3}(OH)][PO{sub 3}(O{sub 0.5}OH{sub 0.5})] · H{sub 2}O, space group P12{sub 1}/n, is obtained under hydrothermal conditions. Blocks (Fe{sup 3+}(PO{sub 4}){sub 6}){sup 15−} consisting of vertex-sharing (Fe1,Fe2)O{sub 6} octahedra and six PO{sub 4} tetrahedra are distinguished in the structure of the new phase, which was determined without preliminary knowledge of the chemical formula. Such blocks are known for many phosphates (borophosphates), germanates, gallates, and silicates. Blocks form layers connected by BO{sub 4} tetrahedra into a framework with large pores reaching ∼9.5 Å, which are occupied by water molecules. The out-of-layer octahedral positionmore » of the Fe3 atom is split and occupied statistically. The anion radical is characterized as a phosphate-borophosphate: it consists of two isolated PO4 tetrahedra and a borophosphate soro group [BP{sub 2}O{sub 7}(OH){sub 2}] first found in NaIn[BP{sub 2}O{sub 8}(OH)]. A layer of octahedra is characterized by higher local symmetry corresponding to the orthorhombic group Pm2{sub 1}n.« less

  4. Layer by layer assembled films between hemoglobin and multiwall carbon nanotubes for pH-switchable biosensing.

    PubMed

    Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying

    2015-05-01

    Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. pH-responsive drug delivery system based on AIE luminogen functionalized layered zirconium phosphate nano-platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongdong, E-mail: lidongdong@jlu.edu.cn; Zhang, Yuping; Zhou, Bingbing

    2015-05-15

    Aggregation-induced emission (AIE) luminogen, quaternary tetraphenylethene cation (TPEN), was successfully incorporated into layered α-zirconium phosphate (α-ZrP) by using co-precipitation method to form inorganic–organic hybrid materials. The obtained materials show the characteristic hexagonal platelet shape with the interlayer distance did not reveal significant difference compared with pure α-ZrP. In addition, the obtained hybrid materials emit strong blue emission centered at 476 nm in aqueous media due to the electrostatic interactions of TPEN with the anionic framework of α-ZrP, which largely restrict their intramolecular rotation. More importantly, the materials provide a pH dependent release of doxorubicin (DOX), suggesting that AIE luminogen functionalizedmore » α-ZrP may be used as an imaging guided and pH-responsive delivery system for targeting therapy. - Graphical abstract: AIE luminogen was successfully incorporated into layered α-zirconium phosphate by a co-precipitation method to form inorganic–organic hybrid materials, showing a pH dependent release of DOX. - Highlights: • AIE luminogen cation was incorporated into layered α-ZrP by co-precipitation method. • The obtained material emits strong blue emission upon UV irradiation. • The material exhibits pH dependent release of DOX. • The AIE functionalized α-ZrP has potential applications in imaging guided therapy.« less

  6. Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges.

    PubMed

    Liang, Kunneng; Xiao, Shimeng; Wu, Junling; Li, Jiyao; Weir, Michael D; Cheng, Lei; Reynolds, Mark A; Zhou, Xuedong; Xu, Hockin H K

    2018-04-01

    Previous studies investigated short-term dentin remineralization; studies on long-term dentin remineralization after fluid challenges mimicking fluids in oral environment are lacking. The objective of this study was to develop a long-term remineralization method to via poly(amido amine) (PAMAM) and rechargeable composite containing nanoparticles of amorphous calcium phosphate (NACP) after fluid challenges for the first time. NACP composite was immersed at pH 4 to exhaust its calcium (Ca) and phosphate (P) ions, and then recharged with Ca and P ions, to test the remineralization of the exhausted and recharged NACP composite. Dentin was acid-etched with 37% phosphoric acid. Four groups were prepared: (1) dentin control, (2) dentin with PAMAM, (3) dentin with the recharged NACP composite, and (4) dentin with PAMAM plus recharged NACP composite. PAMAM-coated dentin was immersed in phosphate-buffered saline with shaking for 72 days, because there is fluid flow in the mouth which could potentially detach the PAMAM from dentin. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 35 days. After 72days of immersion plus shaking, the PAMAM still successfully fulfilled its mineralization nucleation. The recharged NACP composite still provided acid-neutralization and ion re-release, which did not decrease with increasing the number of recharge cycles. The immersed-PAMAM plus NACP achieved complete dentin remineralization and restored the hardness to that of healthy dentin. In conclusion, superior long-term remineralization of the PAMAM plus NACP method was demonstrated for the first time. The immersed-PAMAM plus recharged NACP completely remineralized the pre-demineralized dentin, even after prolonged fluid-challenge similar to that in oral environment. The novel PAMAM plus NACP composite method is promising to provide long-term tooth protection and caries inhibition. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Determination of Ultramicro Quantities of Elemental Phosphorus in Water by Neutron Activation Analysis.

    DTIC Science & Technology

    1977-06-10

    HYPOPHOSPHITE :80x I0O4 PHOSPHITE I1.8 x 10- PHOSPHATE 8.0 x 1- SODIUM SALTS: 10 mg/I 16 mad NSWC/WOL TR 77-49 TABLE 3 RECOVERY OF PHOSPHORUS IN NITRIC ACID...of the benzene extract by shaking with aqueous nitric acid resulted in nitric acid oxidation of P4 to phosphate ion. which then nassed into the...aqueous phase. The treatment was carrie out in a mechanical shaker or magnetic stirrer. The aqueous layer, containing phosphate , was isolated in a

  8. Hollow fiber membranes and methods for forming same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer whichmore » includes the polysiloxane of the second composition.« less

  9. Biocomposite coatings based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium phosphates obtained by MAPLE for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Raşoga, O.; Sima, L.; Chiriţoiu, M.; Popescu-Pelin, G.; Fufǎ, O.; Grumezescu, V.; Socol, M.; Stǎnculescu, A.; Zgurǎ, I.; Socol, G.

    2017-09-01

    The aim of our research was to synthesize and investigate the physico-chemical and biological features of composite coatings based on poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and commercial calcium phosphates (CaPs), hydroxyapatite and β-tricalcium phosphate, obtained by means of matrix assisted pulsed laser evaporation (MAPLE) technique. In this respect, laser fluence and dropcast studies were performed for pristine polymer and PHBV-CaPs composites. The microstructure of the synthesized coatings was investigated by scanning electron microscopy, while for the chemical structure and functional integrity we performed Fourier transform infrared spectroscopy comparative analysis. By using the X-ray diffraction measurements we experimentally evaluated the crystalline nature of the obtained composite materials, while relevant data regarding the hydrophilic/hydrophobic behavior of the synthesized coatings were obtained by performing static CA measurements. The biocompatibility of PHBV/CaPs coatings was evaluated by performing cellular adhesion and differentiation in vitro assays on mesenchymal stem cells.

  10. Oxygen isotope variations in phosphate of deer bones

    NASA Astrophysics Data System (ADS)

    Luz, Boaz; Cormie, Allison B.; Schwarcz, Henry P.

    1990-06-01

    Variations of δ 18O of bone phosphate (δ p) of white tailed deer were studied in samples with wide geographic distribution in North America. Bones from the same locality have similar isotopic values, and the difference between specimens (0.4‰) is not large relative to the measurement error (0.3‰). The total range of δ p values is about 12‰. This indicates that deer use water from a relatively small area, and thus their δ p indicates local environmental conditions. Multiple regression analysis between oxygen isotope composition of deer bone phosphate and of local relative humidity and precipitation (δ w) yields a high correlation coefficient (0.95). This correlation is significantly better than the linear correlation (0.81) between δ p and δ w of precipitation alone. Thus δ p depends on both isotopic composition of precipitation and on relative humidity. This is because deer obtain most of their water from leaves, the isotopic composition of which is partly controlled by relative humidity through evaporation/transpiration.

  11. Evaluation of calcination temperature and phase composition ratio for new hyroxyapatite

    NASA Astrophysics Data System (ADS)

    Salimi, M. N. Ahmad; Chin, H. S.

    2017-10-01

    The demand of production of hydroxyapatite (HA) has been increasing for the purpose of medical and dental application. HA possesses the excellent properties leads to the priority choice for ceramic bone replacement. Synthesis route by wet chemical precipitation is commonly practised in industrial scale. Calcium hydroxide and Orthophosphoric acid are the precursors for production scale. The synthesis of HA is conducted by varying the synthetic condition: stirring rate, calcium-phosphate and calcination temperature. This paper is focused on the properties of HA produced by regulating the synthetic condition so that the qualities of HA can be well performed. Characterization studies were also carried out by Fourier Transform Infrared Spectroscopy (FT-IR) for functional group identification, Scanning Electron Microscope (SEM) for surface morphology analysis and X-Ray Diffraction (XRD) for phase composition and crystallinity respectively. Narrow particle size distribution contributed to better quality of hydroxyapatite for bone replacement. Both calcium-phosphate ratio and calcination temperature would affect the phase composition of calcium phosphate.

  12. Composition and biodegradation of a synthetic oil spilled on the perennial ice cover of Lake Fryxell, Antarctica.

    PubMed

    Jaraula, Caroline M B; Kenig, Fabien; Doran, Peter T; Priscu, John C; Welch, Kathleen A

    2009-04-15

    A helicopter crashed in January 2003 on the 5 m-thick perennial ice cover of Lake Fryxell, spilling synthetic turbine oil Aeroshell 500. Molecular compositions of the oils were analyzed by gas chromatography-mass spectrometry and compared to the composition of contaminants in ice, meltwater, and sediments collected a year after the accident. Aeroshell 500 is based on C20-C33 Pentaerythritol triesters (PET) with C5-C10 fatty acids susbstituents and contain a number of antioxidant additives, such as tricresyl phosphates. Biodegradation of this oil in the ice cover occurs when sediments are present PETs with short fatty acids substituents are preferentially degraded, whereas long chain fatty acids seem to hinder esters from hydrolysis by esterase derived from the microbial assemblage. It remains to be seen if the microbial ecosystem can degrade tricresyl phosphates. These more recalcitrant PET species and tricresyl phosphates are likely to persist and comprise the contaminants that may eventually cross the ice cover to reach the pristine lake water.

  13. In situ pH within particle beds of bioactive glasses.

    PubMed

    Zhang, Di; Hupa, Mikko; Hupa, Leena

    2008-09-01

    The in vitro behavior of three bioactive glasses with seven particle size distributions was studied by measuring the in situ pH inside the particle beds for 48h in simulated body fluid (SBF). After immersion, the surface of the particles was characterized with a field emission scanning electron microscope equipped with an energy-dispersive X-ray analyzer. In addition, the results were compared with the reactions of the same glasses formed as plates. A similar trend in pH as a function of immersion time was observed for all systems. However, the pH inside the particle beds was markedly higher than that in the bulk SBF of the plates. The pH decreased as power functions with increasing particle size, i.e. with decreasing surface area. The in vitro reactivity expressed as layer formation strongly depended on the particle size and glass composition. The average thickness of the total reaction layer decreased with the increase in sample surface area. Well-developed silica and calcium phosphate layers typically observed on glass plates could be detected only on some particles freely exposed to the solution. No distinct reaction layers were observed on the finest particles, possibly because the layers spread out on the large surface area. Differences in the properties of the bulk SBF and the solution inside the particle bed were negligible for particles larger than 800microm. The results enhance our understanding of the in vitro reactions of bioactive glasses in various product forms and sizes.

  14. Comparisons between bone and cementum compositions and the possible basis for their layered appearances.

    PubMed

    Cool, S M; Forwood, M R; Campbell, P; Bennett, M B

    2002-02-01

    In humans, age estimation from the adult skeleton represents an attempt to determine chronological age based on growth and maturational events. In teeth, such events can be characterized by appositional growth layers in midroot cementum. The purpose of this study was to determine the underlying cause of the layered microstructure of human midroot cementum. Whether cementum growth layers are caused by changes in relative mineralization, collagen packing and/or orientation, or by variations in organic matrix apposition was investigated by subjecting midroot sections of human canine teeth to analysis using polarized light and scanning electron microscopy (SEM). Polarized light was used to examine transverse midroot sections in both mineralized and demineralized states. Mineralized sections were also reexamined following subsequent decollagenization. Polarized light was additionally used in the examination of mineralized sections taken transversely, longitudinally, and obliquely from the same tooth root. From the birefringence patterns it was concluded that collagen orientation does not change with varying section plane. Instead, the mineral phase was most responsible for the birefringence of the cementum. SEM studies suggested that neither collagen packing nor collagen orientation change across the width of the cementum, confirming and validating the results of the polarized light examination. Also, SEM analysis using electron backscatter and the electron probe suggested no changes in the mean atomic number density, calcium, phosphate, and sulfur levels across the width of the cementum. Therefore, we conclude that crystalline orientation and/or size is responsible for the layered appearance of cementum.

  15. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    NASA Astrophysics Data System (ADS)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that biological activity and Pb mobilization are intimately connected: in humid regions with high biological activity in soil, Pb might be precipitated rapidly due to biologically-released phosphate, whereas Pb will be released to the environment from ore deposits or mine dumps much more easily in arid regions with low biological activity, because pyromorphite cannot form due to limited supply of phosphorus. Phosphate from magmatic, metamorphic or sedimentary rocks: The most important phosphate-bearing mineral in such rocks is apatite (Ca5[(PO4)3(F,Cl,OH)]). In magmatic and metamorphic rocks it generally occurs as fluorapatite (Piccoli and Candela, 2002; Filippelli, 2008), whereas sedimentary rocks may also contain considerable amounts of carbonate-fluorapatite. Phosphorites are present in the geological record since the Lower Proterozoic (Cook and McElhinny, 1979; Shemesh et al., 1983). Alteration with low-pH fluids can dissolve apatite and thereby release geochemical phosphate (Filippelli, 2008). Low pH values may be attained by dissolution of atmospheric CO2 or by reaction with sulfides present in the rocks or in adjacent ore deposits. Phosphate of organic origin, such as from plants, animals or microorganisms: Phosphorus is required in most biological systems, as it is an essential element in major organic molecules such as adenosine triphosphate in the energy cycle, or in phospholipids, which form cell walls (Bucher, 2007; Filippelli, 2008). Organisms take up phosphorus as dissolved inorganic phosphate and cycle it through metabolic processes (intracellular enzyme activity). Once entering the soil, the organic material is decomposed by extracellular enzyme activity (hydrolysis of ester bonds) and phosphate is being released (Bünemann et al., 2011). Phosphate of anthropogenic origin: Since phosphate is a limiting factor in organism growth, it is an important ingredient of fertilizers in the agricultural industry. Also, phosphate can be found as ingredients in detergents, toothpaste and as a release of waste water treatment plants (Young et al., 2009). Anthropogenic effects will not be discussed further in the following. On this basis, we consider three different cases of pyromorphite formation as illustrated on the conceptual scheme of Fig. 1. Case 1: Pyromorphite grown recently (within the last hundreds of years) on rock surfaces in former mines. Both, phosphate released geochemically from igneous rocks and phosphate released biologically during leaching from litter/lysis of microbial cells and soil organic matter decomposition are possible sources. Case 2: Pyromorphite formation on mine dumps, below vegetation (recent, during tens to hundreds of years). Based on the specific setting of these samples investigated here (they were found exclusively below a large fern; see more details in the section on sample description), biologically-mediated P release provides the phosphate for pyromorphite growth. Case 3: Pyromorphite growth in the oxidized zones of ore bodies prior to human interference. Most samples of our study belong to this case.Phosphorus generally forms very strong covalent bonds (Huminicki and Hawthorne, 2002) and there is only negligible exchange of oxygen isotopes between phosphate and ambient water under most near-surface conditions without biological activity (Winter et al., 1940; Longinelli, 1965). The only important exchange of oxygen isotopes between phosphate and ambient water involves biological activity and the oxygen isotope composition of phosphate (δ18OP) may be modified by different enzymatic/cellular processes. Once phosphate is taken up by organisms, intracellular pyrophosphatase mediates internal P cycling. This is associated with a temperature-dependent equilibrium isotope fractionation due to the reversible exchange of O atoms between the phosphate molecule and cell water. As a result the δ18OP is equilibrated with the ambient water, and the equilibrium temperature can be calculated following the revised empirical equation from Longinelli and Nuti (1973) presented by Puceat et al. (2010): T(°C)=118.7-4.22[(δ18OP+(22.6-δ18ONBS120c))-δ18OW] where T is the temperature of the ambient water, δ18OP is the oxygen isotope composition of the phosphate at equilibrium conditions, δ18ONBS120c is the oxygen isotope composition of reference material NBS120c according to Vennemann et al. (2002) and δ18OW is the oxygen isotope composition of the ambient water. Knowledge of the δ18OP of ambient water and its temperature renders it possible to calculate a theoretical equilibrium value for δ18OP. If phosphate is again released from organisms into the soil, it will reflect the δ18OP of the cell-internal P cycling. In addition, extracellular enzymes are released in soil if the demand for P requires the hydrolysis of organic P in soil (McGill and Cole, 1981). Extracellular enzymes also transfer O atoms from water to phosphate and thus, change δ18OP. The associated isotopic fractionation factors vary between -10‰ (enzyme: 5‧-nucleotidase) and -30‰ (enzyme: alkaline phosphatase; Liang and Blake, 2006, 2009). All recent publications on δ18OP of phosphate in the readily available P fraction in soil (resin P) showed δ18OP values in the range calculated for isotopic equilibrium fractionation irrespective of environmental conditions (parent material, climate, biome). At most 20% down to 0% of the measured δ18OP fell outside the calculated isotopic equilibrium range (Angert et al., 2011, 2012; Tamburini et al., 2012). We therefore infer a dominant role of intracellular enzyme activity for δ18OP values in resin P in soil.Theoretical calculations by Lecuyer et al. (1999) imply that oxygen isotope exchange between phosphate and water can also occur in the absence of biological activity. An extrapolation of their equations to temperatures of 10 °C shows, however, that it takes more than 6000 years to exchange 10% of the phosphate oxygen (Colman et al., 2005). Traditionally, the oxygen isotope composition of phosphate has been used as a tool for determining paleotemperatures (e.g., Longinelli, 1984), but recent studies suggested to test its suitability for tracing phosphate sources in aquatic systems (Gruau et al., 2005; Elsbury et al., 2009; Young et al., 2009). Most of these studies deal with short-term ecological cycles and therefore the inorganic exchange of oxygen is negligible. However, this effect has to be considered for processes that happen in geological timescales.Due to the low phosphate concentrations in natural waters (Blake et al., 2005) and the low solubility product of pyromorphite, it is reasonable to assume almost all phosphate to precipitate as pyromorphite without any fractionation. Accordingly, the δ18OP of pyromorphite reflects the oxygen isotope composition of the dissolved phosphate in the water from which it precipitated and records the source, if this phosphate was not modified during fluid transport.Different phosphate reservoirs differ in their oxygen-isotope composition and with more and more data available it is possible to discriminate between different sources. Data for phosphates in aquatic systems are provided by Young et al. (2009): Phosphates of anthropogenic origin (fertilizers and the corresponding processing stages, detergents and toothpaste) show δ18OP values between +13.3‰ and +22.3‰, for phosphates from organic sources (vegetation leachate and animal waste) values between +14.2‰ and +23.1‰ are reported and a range between +8.4‰ and +14.2‰ is covered by phosphates of waste water treatment plants. For terrestrial ecosystems, Tamburini et al. (2012) reported δ18OP values between +4.5‰ and +31.4‰ with most data falling in the range of +12.4‰ to +31.4‰ for phosphate in plants (N = 11). Microbial phosphate in soil covered a range of +11‰ to +19‰. Resin-extractable P in soil as the readily available P fraction in soil from which P-containing minerals would precipitate, showed a range of 14.5-20.0‰ (Angert et al., 2011, 2012; Weiner et al., 2011; Tamburini et al., 2012). Additionally, Tamburini et al., 2012 reported values for apatite, most likely from the metamorphosed granitic bedrock, to be about +7‰. This is consistent with theoretical considerations by Shemesh et al. (1983) and with data from a gabbro (+4.1‰) and a tonalite (+6.7‰) reported by Taylor and Epstein (1962). Mizota et al. (1992) analyzed δ18OP of apatites from carbonatites, volcanic ashes and hydrothermal vugs covering a range of +0.2 to +12.2‰ (N = 10), whereas phosphate from phosphorites have higher values of up to +20‰ (e.g., Shemesh et al. (1983).This study investigates the oxygen isotope composition of phosphate in pyromorphite and in apatite from crystalline rocks. To evaluate possible phosphate sources, the results will be checked for isotopic equilibrium with different ambient waters and possible phosphate sources will be discussed.

  16. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties.

    PubMed

    Zheng, Xiaotong; Zhou, Shaobing; Yu, Xiongjun; Li, Xiaohong; Feng, Bo; Qu, Shuxin; Weng, Jie

    2008-07-01

    The in vitro degradation characteristic and shape-memory properties of poly(D,L-lactide) (PDLLA)/beta-tricalcium phosphate (beta-TCP) composites were investigated because of their wide application in biomedical fields. In this article, PDLLA and crystalline beta-TCP were compounded and interesting shape-memory behaviors of the composite were first investigated. Then, in vitro degradation of the PDLLA/beta-TCP composites with weight ratios of 1:1, 2:1, and 3:1 was performed in phosphate buffer saline solution (PBS) (154 mM, pH 7.4) at 37 degrees C. The effect of in vitro degradation time for PDLLA/beta-TCP composites on shape-memory properties was studied by scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The changes of structural morphology, glass transition temperature (T(g)), molecular weight, and weight loss of composites matrix and pH change of degradation medium indicated that shape-memory effects at different degradation time were nonlinearly influenced because of the breaking down of polymer chain and the formation of degradation products. Furthermore, the results from XRD and FTIR implied that the degradation products, for example, hydroxyapatite (HA), calcium hydrogen phosphate (CaHPO(4)), and calcium pyrophosphate (Ca(2)P(2)O(7)) phases also had some effects on shape-memory properties during the degradation. 2007 Wiley Periodicals, Inc.

  17. Synthesis of Calcium Phosphate Composite Organogels by Using Emulsion Method for Dentine Occlusion Materials

    NASA Astrophysics Data System (ADS)

    Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.

    2018-03-01

    Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.

  18. Paleoenvironmental conditions and strontium isotope stratigraphy in the Paleogene Gafsa Basin (Tunisia) deduced from geochemical analyses of phosphatic fossils

    NASA Astrophysics Data System (ADS)

    Kocsis, László; Ounis, Anouar; Chaabani, Fredj; Salah, Neili Mohamed

    2013-06-01

    Fossil shark teeth and coprolites from three major phosphorite occurrences in the Gafsa Basin (southwestern Tunisia) were investigated for their geochemical compositions to improve local stratigraphy and to better assess paleoenvironmental conditions. 87Sr/86Sr isotope ratios of shark teeth from the Early Maastrichtian El Haria Formation and from the Early Eocene Métlaoui s.s. Formation yielded Sr isotope ages of 68 ± 1 and 47.9 ± 1.3 Ma, respectively, which accord with the expected stratigraphic positions of these sediments. Conversely, shark teeth from the Paleocene-Eocene Chouabine Formation have large variation in Sr isotope ratios even within individual layers. After statistical treatment and then elimination of certain outlier samples, three age-models are proposed and discussed. The most reasonable solution includes three subsequent Sr ages of 61.8 ± 2.2 Ma, 57.2 ± 1.8 and 54.6 ± 1.6 for layer IX, layers VIII-V and layers IV-0, respectively. Three scenarios are discussed for explanation of the presence of the outliers: (1) diagenesis, (2) re-working and (3) locally controlled seawater Sr isotope ratio. The most plausible account for the higher 87Sr/86Sr ratios relative to the global ocean in some fossils is enhanced intrabasinal re-working due to low sea level. Conversely, the sample with lower 87Sr/86Sr than the global seawater may link to diagenesis or to seawater influenced by weathering of Late Cretaceous marine carbonates, which latter is supported by model calculation as well. The ɛNd values of these fossils are very similar to those reported for Paleogene and Late Cretaceous Tethyan seawater and are compatible with the above interpretations. The relatively low oxygen isotope values in shark teeth from the topmost phosphate bed of the Chouabine Formation, together with the Sr isotope results, point toward recovering better connections with the open sea. These δ18O data reflect elevated ambient temperature, which may link to the Early Eocene Climatic Optimum.

  19. Further damage induced by water in micro-indentations in phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Jian, Qingyun; Yuan, Weifeng; Gu, Bin; Ji, Fang; Huang, Wen

    2014-02-01

    Using a microhardness tester, artificial flaws were made by micro-indentation in N31 Nd-doped phosphate laser glass. Indentation fracture toughness, KIC, was estimated as 0.45-0.53 MPa m1/2 from these indentations. The glasses with indentations were then immersed in ultrapure water to investigate further water-induced damage of these indentations. Stress-enhanced hydrolysis leads to the propagations of radial crack, lateral cracks and microcracks in the subsurface. These crack propagations therefore cause deformation in subsurface to form annular reflections regions around the indentations and further material collapse within imprints. After the residual stresses are exhausted, the leaching plays a more dominated role in glass corrosion in the further immersion. After immersion, the material structure slackens around micro-indentation, which decreases the contact stiffness and results in a lower nano-hardness. For the surface far away from flaws, water immersion presents a weak effect on the near-surface mechanical since the matrix leaching in phosphate glass restricts the formation of hydration layer. During first 20 min immersion, due to higher chemical activity and lower fracture toughness, the radial cracks show a faster propagation in phosphate glass compared with that in K9 silicate glass. For further immersion, crack healing occurs in silicate glass but not in phosphate glass. Analysis shows that the formation of hydration layer on crack walls plays an important role in crack healing in glasses.

  20. Composition and immuno-stimulatory properties of extracellular DNA from mouse gut flora.

    PubMed

    Qi, Ce; Li, Ya; Yu, Ren-Qiang; Zhou, Sheng-Li; Wang, Xing-Guo; Le, Guo-Wei; Jin, Qing-Zhe; Xiao, Hang; Sun, Jin

    2017-11-28

    To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro . TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.

  1. Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis

    NASA Astrophysics Data System (ADS)

    Moreno-Tost, Ramón; Jiménez-Jiménez, José; Infantes-Molina, Antonia; Cavalcante, Celio L.; Azevedo, Diana C. S.; Soriano, María Dolores; López Nieto, José Manuel; Jiménez-López, Antonio; Rodríguez-Castellón, Enrique

    Porous phosphate heterostructures (PPHs) are solids formed by a layered metal(IV) phosphate expanded with silica galleries obtained by combining the two main strategies for obtaining mesoporous materials [pillared layered structures (PLS') and MCM-41]. The different synthetic pathways for obtaining mesoporous phosphate structures with silica galleries with Zr- or Ti-doped silica, the study of their structural, textural and acid properties, its functionalisation with different organic substances such as propionitrile, 3-aminopropyl triethoxysilane, (3-mercaptopropyl)trimethoxysilane, vinyltrimethoxysilane, phenyltriethoxysilane and 3-(triethoxysilyl)propionitrile are discussed. The preparation of metal-supported catalysts and their application in gas separation, adsorption and catalysis are reviewed. Specifically, the use of Cu- and Fe-exchanged PPH for the adsorption of benzothiophene and the separation of propane/propene is the main application as adsorbent. The hydrotreating of aromatic hydrocarbons using ruthenium-impregnated catalysts via hydrogenation and hydrogenolysis/hydrocracking for the production of clean diesel fuels, the selective catalytic reduction of NO from stationary and mobile sources by using Cu-PPH with 1, 3 and 7 wt% of Cu and the selective oxidation of hydrogen sulphide to sulphur with vanadium-containing PPH are the three catalytic reactions of environmental interest studied.

  2. The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Kim, Sun; McLeod, John A.; Li, Jun; Guo, Xiaoxuan; Sham, Tsun-Kong; Liu, Lijia

    2017-02-01

    The crystallization process of bioactive calcium phosphate (CaP) species via biomimetic deposition onto anodic TiO2 nanotubes is investigated. The porous surface of nanostructured TiO2 provides an ideal substrate for CaP crystallization. The compositions of CaP coatings are studied using X-ray absorption near-edge structures (XANES) at the Ca K-edge. Using detection modes with different probing depths, both the surface of the CaP coating and the CaP-TiO2 interface are simultaneously analyzed. Calcium phosphate (CaP) species, such as hydroxyapatite (HAp), octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O, OCP), brushite (CaHPO4·2H2O, DCPD), and amorphous calcium phosphate (ACP), are found in the CaP coatings. TiO2 nanotubes of amorphous and anatase phases are comparatively studied to determine their effect on the efficiency of CaP formation and the phase transformation among CaP species in prolonged deposition time. It is found the composition of CaP coating has a strong dependency on the crystal structure of TiO2 substrate and the kinetics (deposition time).

  3. Effect Of Gravity On Porous Tricalcium Phosphate And Nonstoichiometric Titanium Carbide Produced Via Combustion Synthesis

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Novel processing techniques, such as self-propagating high temperature synthesis (SHS), have the capability to rapidly produce advanced porous materials that are difficult to fabricate by other methods. This processing technique is also capable of near net shape synthesis, while variable gravity allows the manipulation of the structure and composition of the material. The creation of porous tricalcium phosphate (TCP) is advantageous in the biomaterials field, since it is both a biocompatible material and an osteoconductive material. Porous tricalcium phosphate produced via SHS is an excellent candidate for bone scaffold material in the bone regeneration process. The porosity allows for great vascularization and ingrowth of tissue. Titanium Carbide is a nonstoichiometric biocompatible material that can be incorporated into a TiC-Ti composite system using combustion synthesis. The TiC-Ti composite exhibits a wide range of mechanical and chemical properties. Both of these material systems (TCP and TiC-Ti) can be used to advantage in designing novel bone replacement materials. Gravity plays an important role in both the pore structure and the chemical uniformity of these composite systems and offers considerable potential in advanced bone engineering.

  4. The use of reinforced composite resin cement as compensation for reduced post length.

    PubMed

    Nissan, J; Dmitry, Y; Assif, D

    2001-09-01

    Cements that yield high retentive values are believed to allow use of shorter posts. This study investigated the use of reinforced composite resin cement as compensation for reduced dowel length. The retention values of stainless steel posts (parallel-sided ParaPost and tapered Dentatus in 5-, 8-, and 10-mm lengths) luted with Flexi-Flow titanium-reinforced composite resin and zinc phosphate cements were evaluated. Single-rooted extracted human teeth with crowns (n = 120), removed at the cementoenamel junction, were randomly divided into 4 groups of 30 samples each. Different post lengths were luted with either Flexi-Flow or zinc phosphate. Each sample was placed into a specialized jig and on a tensile testing machine with a crosshead speed of 2 mm/min, applied until failure. The effect of different posts and cements on the force required to dislodge the dowels was evaluated with multiple analyses of variance (ANOVA). One-way ANOVA with Scheffé contrast was applied to determine the effect of different post lengths on the retentive failure of posts luted with the 2 agents. Flexi-Flow reinforced composite resin cement significantly increased retention of ParaPost and Dentatus dowels (P<.001) compared with zinc phosphate. One-way ANOVA revealed no statistically significant difference (P>.05) between mean retention of both dowels luted with Flexi-Flow for all posts length used (5 mm = 8 mm = 10 mm). Mean retention values of the groups luted with zinc phosphate showed a statistically significant difference (P<.001) for the different post lengths (10 > 8 > 5 mm). Parallel-sided ParaPost dowels demonstrated a higher mean retention than tapered Dentatus dowels (P<.001). In this study, Flexi-Flow reinforced composite resin cement compensated for the reduced length of shorter parallel-sided ParaPost and tapered Dentatus dowels.

  5. Design of nanocoatings by in situ phosphatizing reagent catalyzed polysilsesquioxane for corrosion inhibition and adhesion promotion on metal alloys

    NASA Astrophysics Data System (ADS)

    Henderson, Kimberly B.

    When a metal reacts with oxygen and water, a redox reaction happens, which will cause corrosion. Current surface pretreatment for inhibiting corrosion on metal alloys is a phosphate conversion bath. The phosphate conversion bath will generate a phosphate-chromate layer to adhere strongly to a metal substrate. However, it is toxic and unfriendly to the environment. Our group proposed an innovative coating that contains a phosphate component (ISPR-In-situ Phosphatizing Reagent) within a protective coating. The ISPR coating will form a bound phosphate layer on the metal surface acting as the corrosion barrier and enhancing adhesion into the metal surface; moreover, it is low in cost and non-toxic. Within this dissertation, there are four projects that investigate design of ISPR nanocoatings for the use of corrosion inhibition and adhesion promotion. Surface modification and adjusting concentrations of materials with the different formulations are explored. The first project focuses on the adhesion enhancement of a coating created by modifying the surface of an aluminum panel. Secondly, the next project will discuss and present the use of three rare earth element formulations as a replacement for phosphate conversion coatings on magnesium alloy, AZ61. The third project is the design of a nanocoating by using heat dissipating materials to fill in small vacant spaces in the ISPR network coating on various metal alloys. The last project, studies the strategic selection of incorporating metal components into ISPR network by the reduction potential values on several different alloys. Many methods of analysis are used; SEM, TEM, ASTM B117, ASTM D1308, ASTM D3359, EIS, and thickness probe. It was found that the addition of ISPR in the nanocoatings dramatically improves the vitality of metal alloys and these results will be presented during this dissertation.

  6. Intermediate-range order in simple metal-phosphate glasses: The effect of metal cations on the phosphate anion distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, B.C.; Boatner, L.A.; Ramey, J.O.

    1997-06-01

    The technique of high-performance liquid chromatography (HPLC) has been used to probe the phosphate anion distribution in a variety of metal phosphate glasses including glasses made with trivalent metal cations (Al, In, Ga, La). The composition of each glass was chosen so that the average phosphate chain length was between 2 and 4 PO{sub 4} tetrahedra. The widths of the resulting phosphate anion distributions were determined directly from an analysis of the HPLC chromatograms. Literature values for the free energy of formation of the crystalline metal-orthophosphate compounds with respect to P{sub 2}O{sub 5} and the metal oxide, were compared tomore » the chromatogram widths. It was found that the smaller the energy of formation, the wider the distribution of phosphate chains, and the greater the ease of glass formation.« less

  7. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.

    PubMed

    Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B

    2012-07-01

    For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. The effect of the type of HA on the degradation of PLGA/HA composites.

    PubMed

    Naik, Ashutosh; Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E

    2017-01-01

    The aim of this study is to explore the importance of the potentially competing effects of buffering effects of the calcium phosphate filler and particle-mediated water sorption on the degradation products of poly(d,l lactide-co-glycolide (50:50))(PLGA)/hydroxyapatite(HA) composites. Further the influence of type of HA on the mechanical properties of the composites was investigated. Phase pure HA was synthesised via a reaction between aqueous solutions of calcium hydroxide and orthophosphoric acid. The powder produced was either used as produced (uncalcined) or calcined in air or calcined in a humidified argon atmosphere. An in-vitro degradation study was carried out in phosphate buffered saline (PBS). The results obtained indicated that the degradation rate of the composite might be better understood if both the buffering effects and the rate of water sorption by the composites are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  10. Bonded and Stitched Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)

    2014-01-01

    A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.

  11. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported for acid phosphatases (6). In contrast, the results from assays with phytase from Aspergillus niger indicate that the exchange of oxygen occurs at more than one third of the total 24 oxygen which are associated to the phosphates in IP6. In addition, we observe a change in the oxygen isotope composition of Pi when using myo-inositol and potassium-dihydrogen-phosphate as sole substrates in the enzymatic assays with phytase from Aspergillus niger. These observations suggest that the reformation of IP6 from the two products of the reaction (myo-inositol and Pi) is taking place at a rate, which is within the time scale of the experiment. In this case, the isotopic fractionation caused by phytase from Aspergillus niger will be determined by the equilibrium of the reaction. Further experiments are in process to verify these findings.

  12. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin.

    PubMed

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro . The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti ( p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control ( n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo , suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  13. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  14. National Academy of Sciences - National Research Council Resident Research Associateship Program (RRA)

    DTIC Science & Technology

    1992-03-11

    calcim phosphate ceranuc- organic acid composites were prepared from hydroxyapatite , tricalcium phosphate, or zinc calcium phosphate, with malic acid...pressures during deposition. The film processing parameters and the basic mechanisms for the optimized conditions have been established for a possible...encountered laboratory influences detrimental to your Proposed research? Explain. Comments: JI - ve r " i O wt4 w 4 h0 - Ic hto cm pxtc 1/C Brie.f resume oa

  15. Effect of pH values on surface modification and solubility of phosphate bioglass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Cai, Shu; Zhang, Wenjuang; Xu, Guohua; Zhou, Wei

    2009-08-01

    The bioactive glass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system were synthesized by the sol-gel technique, and then chemically treated at different pH values to study the solubility and surface modification. Samples sintered at 650 °C for 4 h consisted of the crystalline phase β-Ca 2P 2O 7 and the glass matrix. After soaking in the solution at pH 1.0, the residual glass matrix on the surface appeared entirely dissolved and no new phase could be detected. Whereas at pH 3.0, web-like layer exhibiting peaks corresponding to CaP 2O 6 was formed and covered the entire surface of the sample. When conducted at pH 10.0, only part of the glass matrix was dissolved and a new phase Ca 4P 6O 19 was precipitated, forming the petaline layer. The chemical treatment can easily change the surface morphologies and phase composition of this bioactive glass-ceramics. The higher level of surface roughness resulting from the new-formed layer would improve the interface bonding and benefit for cell adhesion.

  16. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.

    PubMed

    Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe

    2014-09-01

    Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential

    USDA-ARS?s Scientific Manuscript database

    An innovative synthesis was developed to produce engineered biochar from magnesium (Mg) enriched tomato tissues through slow pyrolysis in a N2 environment. The resulting Mg-biochar composites showed excellent sorption ability to phosphate in aqueous solutions. The engineered biochar contained nanosc...

  18. Novel rechargeable calcium phosphate nanocomposite with antibacterial activity to suppress biofilm acids and dental caries.

    PubMed

    Al-Dulaijan, Yousif A; Cheng, Lei; Weir, Michael D; Melo, Mary Anne S; Liu, Huaibing; Oates, Thomas W; Wang, Lin; Xu, Hockin H K

    2018-05-01

    Rechargeable calcium phosphate (CaP) composites were developed recently. However, none of the rechargeable CaP composites was antibacterial. The objectives of this study were to develop the first rechargeable CaP composite that was antibacterial, and to investigate the effects of adding dimethylaminohexadecyl methacrylate (DMAHDM) into rechargeable CaP composite on ion rechargeability and re-release as well as biofilm properties. DMAHDM was synthesized via a Menschutkin reaction. Nanoparticles of amorphous calcium phosphate (NACP) were synthesized using a spray-drying technique. The resin contained ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). Two composites were fabricated: rechargeable NACP composite, and rechargeable NACP-DMAHDM composite. Mechanical properties and ion release and recharge were measured. A dental plaque microcosm biofilm model using saliva was tested. Flexural strength and elastic modulus of rechargeable NACP and NACP-DMAHDM composites matched commercial control composite (p > 0.1). NACP-DMAHDM inhibited biofilm metabolic activity and lactic acid, and reduced biofilm colony-forming units (CFU) by 3-4 log. NACP and NACP-DMAHDM showed similar Ca and P ion recharge and re-release (p > 0.1). Therefore, adding DMAHDM did not compromise the ion rechargeability. One recharge yielded continuous release for 42 d. The release was maintained at the same level with increasing number of recharge cycles, indicating long-term ion release and remineralization capability. The first CaP rechargeable and antibacterial composite was developed. Adding DMAHDM into the rechargeable NACP composite did not adversely affect the Ca and P ion release and recharge, and the composite had much less biofilm growth and lactic acid production, with CFU reduction by 3-4 log. This novel CaP rechargeable composite with long-term remineralization and antibacterial properties is promising for tooth restorations to inhibit caries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.

    PubMed

    Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2013-10-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. © 2013.

  20. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles.

    PubMed

    Natale, Livia C; Rodrigues, Marcela C; Alania, Yvette; Chiari, Marina D S; Boaro, Leticia C C; Cotrim, Marycel; Vega, Oscar; Braga, Roberto R

    2018-08-01

    to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites. Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD. Besides the functionalized particles, non-functionalized DCPD was also tested. DC after 24 h (n = 3) was determined by FTIR spectroscopy. The strain gage method was used to obtain PS 5 min after photoactivation (n = 5). Flexural strength and modulus (n = 10) were calculated based on the biaxial flexural test results, after specimen storage for 24 h or 60 days in water. The same storage times were used for fracture toughness testing (FT, n = 10). Calcium and phosphate release up to 60 days was quantified by ICP-OES (n = 3). Data were analyzed by ANOVA/Tukey test (alpha: 5%). Composites containing functionalized DCPD presented higher DC than the control (p < 0.001). The material containing DEGDMA-functionalized particles showed higher PS than the other composites (p < 0.001). After 60 days, only the composite with DEGDMA-functionalized DCPD presented fracture strength similar to the control, while for flexural modulus only the composite with TEGDMA-functionalized particles was lower than the control (p < 0.001). FT of all composites containing DCPD was higher than the control after 60 days (p < 0.005). Calcium release was higher for the composite with non-functionalized DCPD at 15 days and no significant reductions were observed for composites with functionalized DCPD during the observation period (p < 0.001). For all the tested composites, phosphate release was higher at 15 days than in the subsequent periods, and no difference among them was recorded at 45 and 60 days (p < 0.001). DCPD functionalization affected all the studied variables. The composite with DEGDMA-functionalized particles was the only material with strength similar to the control after 60 days in water; however, it also presented the highest shrinkage. The presence of DCPD improved FT, regardless of functionalization. DCPD functionalization reduced ion release only during the first 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. In vitro evaluation of the retention of composite fiber and stainless steel posts.

    PubMed

    Gallo, John R; Miller, Troy; Xu, Xiaoming; Burgess, John O

    2002-03-01

    This study compared the tensile retentive strength of composite fiber-reinforced dowels luted with a resin cement to stainless steel dowels luted with zinc phosphate cement. The crowns of 40 extracted human mandibular premolars were removed with a separating disc 1-mm coronal to the cementoenamel junction. The teeth were randomly divided into 4 groups (n = 10). A post space was prepared in each specimen to a depth of 9 mm, using the drill supplied by the respective manufacturer. For the stainless steel post group, 1.25-mm-diameter posts were cemented with zinc phosphate cement. For the composite fiber reinforced groups, posts with diameters of 1.00, 1.25, and 1.50 mm were luted with a Bisphenol A-Glycidyl Methacrylate (BIS-GMA) resin bonding system (Jeneric/Pentron, Wallingford, CT) according to manufacturer specifications. The specimens were stored in a sealed container with a moist environment for 24 hours, placed in a fixture in an 801 Materials Test Systems (MTS) machine (MTS Systems Corp, Minneapolis, MN), and loaded in tension at a rate of 5.0 mm/min until failure. Differences among the 4 groups were determined using a one-way analysis of variance and Tukey-B post-hoc tests (alpha = 0.05). The mean loads to failure ranged from 43.9 +/- 10.4 kg for the stainless steel dowel group to 19.9 +/- 5.7 kg for the composite fiber-reinforced 1.00-mm-diameter group. The stainless steel post luted with zinc phosphate cement provided significantly greater tensile resistance than all composite fiber dowel groups. The retention of the 1.00-mm composite fiber-reinforced post was significantly less than the remaining groups. Under the conditions of this study, the stainless steel dowel luted with zinc phosphate cement provided significantly greater retention. Copyright 2002 by The American College of Prosthodontists.

  2. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, Daphne L.; Tien, Albert J.

    1995-01-01

    A method and process for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate).

  3. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  4. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    NASA Astrophysics Data System (ADS)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  5. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants.

    PubMed

    Maçon, Anthony L B; Kim, Taek B; Valliant, Esther M; Goetschius, Kathryn; Brow, Richard K; Day, Delbert E; Hoppe, Alexander; Boccaccini, Aldo R; Kim, Ill Yong; Ohtsuki, Chikara; Kokubo, Tadashi; Osaka, Akiyoshi; Vallet-Regí, Maria; Arcos, Daniel; Fraile, Leandro; Salinas, Antonio J; Teixeira, Alexandra V; Vueva, Yuliya; Almeida, Rui M; Miola, Marta; Vitale-Brovarone, Chiara; Verné, Enrica; Höland, Wolfram; Jones, Julian R

    2015-02-01

    The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.

  6. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    PubMed

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Composition and application of novel sprayable phosphate cement (grancrete) that bonds to styrofoam

    DOEpatents

    Wagh, Arun S.; Paul, Jr., James W.

    2007-01-09

    A dry mix particulate composition of a calcined oxide of Mg and/or Ca, an acid phosphate, and fly ash or equivalent, wherein the calcined oxide is present in the range of from about 17% to about 40% by weight and the acid phosphate is present in the range of from about 29% to about 52% by weight and the fly ash or equivalent is present in the range of from about 24% to about 39% by weight when sand is added to the dry mix, it is present in the range of from about 39% to about 61% by weight of the combined dry mix and sand. A method of forming a structural member is also disclosed wherein an aqueous slurry of about 8 12 pounds of water is added to dry mix and sand.

  8. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    PubMed

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.

  9. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  10. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    PubMed

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    PubMed

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (α=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate.

  12. Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite.

    PubMed

    Liang, Kunneng; Weir, Michael D; Xie, Xianju; Wang, Lin; Reynolds, Mark A; Li, Jiyao; Xu, Hockin H K

    2016-11-01

    The objective of this study was to investigate the effects of poly (amido amine) (PAMAM), composite with nanoparticles of amorphous calcium phosphate (NACP), and the combined PAMAM+NACP nanocomposite treatment, on remineralization of demineralized dentin in a cyclic artificial saliva/lactic acid environment for the first time. Dentin specimens were prepared and demineralized with 37% phosphoric acid for 15s. Four groups were prepared: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP composite, (4) dentin with PAMAM+NACP. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21days. Acid neutralization and calcium (Ca) and phosphate (P) ion concentrations were measured. The remineralized dentin specimens were examined by scanning electron microscopy (SEM) and hardness testing. NACP nanocomposite had mechanical properties similar to commercial control composites (p>0.1). NACP composite had acid-neutralization and Ca and P ion release capability. PAMAM or NACP composite each alone achieved remineralization and increased the hardness of demineralized dentin (p<0.05). PAMAM+NACP nanocomposite achieved the greatest mineral regeneration in demineralized dentin and the greatest hardness increase in demineralized dentin, which approached the hardness of healthy dentin (p>0.1). The superior remineralization efficacy of PAMAM+NACP was demonstrated for the first time. PAMAM+NACP induced remineralization in demineralized dentin in an acid challenge environment, when conventional remineralization methods such as PAMAM did not work well. The novel PAMAM+NACP composite approach is promising for a wide range of dental applications to inhibit caries and protect tooth structures. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  14. Optimization of a model of red blood cells for the study of anti-oxidant drugs, in terms of concentration of oxidant and phosphate buffer.

    PubMed

    Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M

    2005-08-01

    The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.

  15. Nucleotide composition analysis of tRNA from leukemia patient cell samples and human cell lines.

    PubMed Central

    Agris, P F

    1975-01-01

    A technique developed for analysis of less than microgram quantities of tRNA has been applied to the study of human leukemia. Leucocytes from peripheal blood and bone marrow samples of six, untreated leukemia patients and cells of five different established human cell lines were maintained for 18 hours in media containing (32P)-phosphate. Incorporation of radioactive phosphate into the cells from the patient samples was slightly less than that of the cell lines. Likewise, incorporation of (32P)-phosphate into the tRNA of the patient samples (approximately 5 x 106 DPM/mug tRNA) was also less then that incorporated into the tRNA of the cell lines. The major and minor nucleotide compositions of the unfractionated tRNA preparations from each patient sample and each cell line were determined and compared. Similarities and differences in the major and minor nucleotide compositions of the tRNA preparations are discussed with reference to types of leukemia and the importance of patient sample analysis versus analysis of cultured human cells. PMID:1057159

  16. Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge.

    PubMed

    Kuroda, Kyohei; Hatamoto, Masashi; Nakahara, Nozomi; Abe, Kenichi; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi

    2015-04-01

    Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.

  17. Magnesium coated bioresorbable phosphate glass fibres: investigation of the interface between fibre and polyester matrices.

    PubMed

    Liu, Xiaoling; Grant, David M; Parsons, Andrew J; Harper, Lee T; Rudd, Chris D; Ahmed, Ifty

    2013-01-01

    Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg(2+) in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness.

  18. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    PubMed Central

    Liu, Xiaoling; Grant, David M.; Parsons, Andrew J.; Harper, Lee T.; Rudd, Chris D.; Ahmed, Ifty

    2013-01-01

    Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness. PMID:24066297

  19. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    PubMed

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  20. Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0-5000 m) off the Galician coast (NW Iberian margin)

    NASA Astrophysics Data System (ADS)

    Dobal-Amador, Vladimir; Nieto-Cid, Mar; Guerrero-Feijoo, Elisa; Hernando-Morales, Victor; Teira, Eva; Varela-Rozados, Marta M.

    2016-08-01

    The processes mediated by microbial planktonic communities occur along the entire water column, yet the microbial activity and composition have been studied mainly in surface waters. This research examined the vertical variation in bacterial abundance, activity and community composition and structure from surface down to 5000 m depth following a longitudinal transect off the Galician coast (NW Iberian margin, from 43°N, 9°W to 43°N, 15°W). Community activity and composition changed with depth. The leucine incorporation rates decreased from the euphotic layer to the bathypelagic waters by three orders of magnitude, whereas prokaryotic abundance decreased only by one order of magnitude. The relative abundance of SAR11 and Alteromonas, determined by catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH), decreased with depth. Meanwhile, the contribution of SAR 202 and SAR324 was significantly higher in the deeper layers (i.e. NEADW, North East Atlantic Deep Water and LDW, Lower Deep Water) than in the euphotic zone. Bacterial community structure, assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was depth-specific. A distance based linear model (DistLM) revealed that the variability found in bacterial community structure was mainly explained by temperature nitrate, phosphate, dissolved organic matter (DOM) fluorescence, prokaryotic abundance, leucine incorporation and to a lesser extent salinity, oxygen, CDOM absorbance and dissolved organic carbon concentration. Our results displayed a bacterial community structure shaped not only by depth-related physicochemical features but also by DOM quality, indicating that different prokaryotic taxa have the potential to metabolize particular DOM sources.

  1. Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Nardi, Rachel Prado Russo Delorenzo; Braz, Celso Eduardo; de Camargo, Andrea S. S.; Ribeiro, Sidney J. L.; Rocha, Lucas A.; Cassanjes, Fábia Castro; Poirier, Gael

    2015-11-01

    Tungsten phosphate glasses are known to be promising materials for several applications in optics such as non linear optical properties, lower phonon energy or photochromic effects related with tungsten oxide incorporation inside the phosphate network. In this study, lead fluoride has been incorporated in a 60NaPO3-40WO3 glass composition according to the ternary molar compositions (100 - x)[0.6NaPO3-0.4WO3]-xPbF2 with x varying from 0 to 60 mol%. The structural changes as a function of composition were investigated by thermal analysis, UV-visible absorption, Raman spectroscopy, X-ray diffraction of the crystallized samples, and Eu3+ emission in the visible. While DSC analyzes points out a strong decrease in the glass network connectivity and higher crystallization tendency with increasing PbF2 contents, Raman spectra clearly identify a progressive incorporation of PbF2 in the phosphate network with the formation of terminal Psbnd F and Wsbnd F bonds. These results are also in agreement with the crystallization of β-PbF2 observed for the most lead fluoride concentrated samples. Investigation of Eu3+ emission data in the visible showed longer 5D0 excited state lifetime values and higher quantum efficiencies. These results are discussed in terms of the assumption of higher local symmetry around Eu3+ with increasing PbF2 contents.

  2. Quality analysis, miceller behavior, and environmental impact of some laundry detergents available in Bangladesh.

    PubMed

    Nur-E-Alam, M; Islam, M Monirul; Islam, M Nazrul; Rima, Farhana Rahman; Islam, M Nurul

    2016-03-01

    The cleansing efficiencies of laundry detergents depend on composition and variation of ingredients such as surfactants, phosphate, and co-builders. Among these ingredients, surfactants and phosphate are considered as hazardous materials. Knowledge on compositions and micellar behavior is very useful for understanding their cleansing efficiencies and environmental impact. With this view, composition, critical micelle concentration, and dissolved oxygen level in aqueous solution of some laundry detergents available in Bangladesh such as keya, Wheel Power White, Tibet, Surf Excel, and Chaka were determined. Surfactant and phosphate were found to be maximum in Surf Excel and Wheel Power White, respectively, while both of the ingredients were found to be minimum in Tibet. The critical micelle concentration decreased with increasing surfactant content. The amount of laundry detergents required for efficient cleansing was found to be minimum for Surf Excel and maximum for Chaka; however, cleansing cost was the highest for Surf Excel and the lowest for Tibet. The maximum amount of surfactants and phosphate was discharged by Surf Excel and Wheel Power White, respectively, while discharges of both of the ingredients were minimum for Tibet. The maximum decrease of dissolved oxygen level was caused by Surf Excel and the minimum by Tibet. Therefore, it can be concluded that Tibet is cost-effective and environment friendly, whereas Surf Excel and Wheel Power White are expensive and pose a threat to water environment.

  3. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin.

    PubMed

    Yoshihara, Kumiko; Nagaoka, Noriyuki; Hayakawa, Satoshi; Okihara, Takumi; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2018-04-28

    Although the functional monomer glycero-phosphate dimethacrylate (GPDM) has since long been used in several dental adhesives and more recently in self-adhesive composite cements and restoratives, its mechanism of chemical adhesion to hydroxyapatite (HAp) is still unknown. We therefore investigated the chemical interaction of GPDM with HAp using diverse chemical analyzers and ultra-structurally characterized the interface of a GPDM-based primer formulation with dentin. HAp particles were added to a GPDM solution for various periods, upon which they were thoroughly washed with ethanol and water prior to being air-dried. As control, 10-methacryloyloxydecyl dihydrogen phosphate (MDP) was used. The molecular interaction of GPDM with HAp was analyzed using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR) spectroscopy. Crystal formation upon application of GPDM onto dentin was analyzed using thin-film XRD (TF-XRD). Its hydrophobicity was measured using contact-angle measurement. The interaction of GPDM with dentin was characterized using transmission electron microscopy (TEM). XRD revealed the deposition of dicalcium phosphate dihydrate (DCPD: CaHPO 4 ·2H 2 O) on HAp after 24h. NMR confirmed the adsorption of GPDM onto HAp. However, GPDM was easily removed after washing with water, unlike MDP that remained adhered to HAp. Dentin treated with GPDM appeared more hydrophilic compared to dentin treated with MDP. TEM disclosed exposed collagen in the hybrid layer produced by the GPDM-based primer formulation. Although GPDM adsorbed to HAp, it did not form a stable calcium salt. The bond between GPDM and HAp was weak, unlike the strong bond formed by MDP to HAp. Due to its high hydrophilicity, GPDM might be an adequate monomer for an etch-and-rinse adhesive, but appears less appropriate for a 'mild' self-etch adhesive that besides micro-retention ionically interacts with HAp, or for a self-adhesive restorative material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  4. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.

    PubMed

    Kim, Hae-Won; Knowles, Jonathan C; Kim, Hyoun-Ee

    2004-01-01

    Hydroxyapatite (HA) porous scaffold was coated with HA and polycaprolactone (PCL) composites, and antibiotic drug tetracycline hydrochloride was entrapped within the coating layer. The HA scaffold obtained by a polymeric reticulate method, possessed high porosity ( approximately 87%) and controlled pore size (150-200 microm). Such a well-developed porous structure facilitated usage in a drug delivery system due to its high surface area and blood circulation efficiency. The PCL polymer, as a coating component, was used to improve the brittleness and low strength of the HA scaffold, as well to effectively entrap the drug. To improve the osteoconductivity and bioactivity of the coating layer, HA powder was hybridized with PCL solution to make the HA-PCL composite coating. With alteration in the coating concentration and HA/PCL ratio, the morphology, mechanical properties, and biodegradation behavior were investigated. Increasing the concentration rendered the stems thicker and some pores to be clogged; as well increasing the HA/PCL ratio made the coating surface be rough due to the large amount of HA particles. However, for all concentrations and compositions, uniform coatings were formed, i.e., with the HA particles being dispersed homogeneously in the PCL sheet. With the composite coating, the mechanical properties, such as compressive strength and elastic modulus were improved by several orders of magnitude. These improvements were more significant with thicker coatings, while little difference was observed with the HA/PCL ratio. The in vitro biodegradation of the composite coatings in the phosphate buffered saline solution increased linearly with incubation time and the rate differed with the coating concentration and the HA/PCL ratio; the higher concentration and HA amount caused the increased biodegradation. At short period (<2 h), about 20-30% drug was released especially due to free drug at the coating surface. However, the release rate was sustained for prolonged periods and was highly dependent on the degree of coating dissolution, suggesting the possibility of a controlled drug release in the porous scaffold with HA+PCL coating.

  5. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  6. Crystallization of dicalcium phosphate dihydrate with presence of glutamic acid and arginine at 37 °C.

    PubMed

    Li, Chengfeng; Ge, Xiaolu; Li, Guochang; Bai, Jiahai; Ding, Rui

    2014-08-01

    The formations of non-metabolic stones, bones and teeth were seriously related to the morphology, size and surface reactivity of dicalcium phosphate dihydrate (DCPD). Herein, a facile biomimetic mineralization method with presence of glutamic acid and arginine was employed to fabricate DCPD with well-defined morphology and adjustable crystallite size. In reaction solution containing more arginine, crystallization of DCPD occurred with faster rate of nucleation and higher density of stacked layers due to the generation of more OH(-) ions after hydrolysis of arginine at 37 °C. With addition of fluorescein or acetone, the consumption of OH(-) ions or desolvation reaction of Ca(2+) ions was modulated, which resulted in the fabrication of DCPD with adjustable crystallite sizes and densities of stacked layers. In comparison with fluorescein-loading DCPD, dicalcium phosphate anhydrate was prepared with enhanced photoluminescence properties due to the reduction of self-quenching effect and regular arrangement of encapsulated fluorescein molecules. With addition of more acetone, DCPD was prepared with smaller crystallite size via antisolvent crystallization. The simulated process with addition of amino acids under 37 °C would shed light on the dynamic process of biomineralization for calcium phosphate compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  8. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells.

    PubMed

    Wu, Chengtie; Han, Pingping; Liu, Xiaoguo; Xu, Mengchi; Tian, Tian; Chang, Jiang; Xiao, Yin

    2014-01-01

    The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel's adhesive versatility, which is thought to be due to the plaque-substrate interface being rich in 3,4-dihydroxy-l-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of β-tricalcium phosphate (β-TCP) bioceramics by soaking β-TCP bioceramics in Tris-dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris-HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of β-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the β-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of β-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.

    2016-10-01

    Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.

  10. Bioactive Polymeric Materials for Tissue Repair

    PubMed Central

    Bienek, Diane R.; Tutak, Wojtek; Skrtic, Drago

    2017-01-01

    Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP)-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field. PMID:28134776

  11. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy.

    PubMed

    Chen, Jun; Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-03-08

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO₄·3H₂O, MnHPO₄·2.25H₂O, BaHPO₄·3H₂O, BaMg₂(PO₄)₂, Mg₃(PO₄)₂·22H₂O, Ca₃(PO₄)₂·xH₂O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl.

  12. Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization.

    PubMed

    Douglas, Timothy E L; Schietse, Josefien; Zima, Aneta; Gorodzha, Svetlana; Parakhonskiy, Bogdan V; KhaleNkow, Dmitry; Shkarin, Roman; Ivanova, Anna; Baumbach, Tilo; Weinhardt, Venera; Stevens, Christian V; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Vanhaecke, Frank; Slośarczyk, Anna; Surmeneva, Maria A; Surmenev, Roman A; Skirtach, Andre G

    2018-03-01

    Mineralized hydrogels are increasingly gaining attention as biomaterials for bone regeneration. The most common mineralization strategy has been addition of preformed inorganic particles during hydrogel formation. This maintains injectability. One common form of bone cement is formed by mixing particles of the highly reactive calcium phosphate alpha-tricalcium phosphate (α-TCP) with water to form hydroxyapatite (HA). The calcium ions released during this reaction can be exploited to crosslink anionic, calcium-binding polymers such as the polysaccharide gellan gum (GG) to induce hydrogel formation. In this study, three different amounts of α-TCP particles were added to GG polymer solution to generate novel, injectable hydrogel-inorganic composites. Distribution of the inorganic phase in the hydrogel was studied by high resolution microcomputer tomography (µCT). Gelation occurred within 30 min. α-TCP converted to HA. µCT revealed inhomogeneous distribution of the inorganic phase in the composites. These results demonstrate the potential of the composites as alternatives to traditional α-TCP bone cement and pave the way for incorporation of biologically active substances and in vitro and in vivo testing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 822-828, 2018. © 2017 Wiley Periodicals, Inc.

  13. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, D.L.; Tien, A.J.

    1995-09-26

    A method and process are disclosed for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate). 6 figs.

  14. Structure and dynamics of phosphate ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Pribil, Andreas B; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2008-11-15

    A simulation of phosphate in aqueous solution was carried out employing the new QMCF MD approach which offers the possibility to investigate composite systems with the accuracy of a QMMM method but without the time consuming creation of solute-solvent potential functions. The data of the simulations give a clear picture of the hydration shells of the phosphate anion. The first shell consists of 13 water molecules and each oxygen of the phosphate forms in average three hydrogens bonds to different solvent molecules. Several structural parameters such as radial distribution functions and coordination number distributions allow to fully characterize the embedding of the highly charged phosphate ion in the solvent water. The dynamics of the hydration structure of phosphate are described by mean residence times of the solvent molecules in the first hydration shell and the water exchange rate. 2008 Wiley Periodicals, Inc.

  15. Evaluation of transport parameters for PVC based polyvinyl alcohol Ce(IV) phosphate composite membrane.

    PubMed

    Khan, Mohammad Mujahid Ali; Rafiuddin; Inamuddin

    2013-05-01

    The aim of this study was to investigate the preparation of novel membrane and the characterization of their properties. A new class of polyvinyl chloride (PVC) based polyvinyl alcohol Ce(IV) phosphate composite membrane was successfully prepared by solution casting method. The structural formation was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and morphological studies. The thermal property was investigated by thermogravimetry analysis (TGA) method. The order of surface charge density for various electrolytes was found to be LiCl

  16. Layer-by-Layer Assembly of Halogen-Free Polymeric Materials on Nylon/Cotton Blend for Flame Retardant Applications

    DTIC Science & Technology

    2015-07-01

    phosphate) and renewable materials such as chitosan , phytic acid and graphene oxide [18–26]. However, polysiloxane containing FR materials have...98:627–634. 24. Laufer G, Kirkland C, Cain AA, Grunlan JC. Clay– chitosan nanobrick walls: completely renewable gas barrier and flame-retardant

  17. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric

    USDA-ARS?s Scientific Manuscript database

    Cotton fabric was treated with flame-retardant coatings composed of poly (sodium phosphate), PSP, which acts as the acid source, and poly (allylamine), PAAm, which is used as the blowing agent, prepared via layer-by-layer (LbL) assembly. By applying these thin coating on fabric, after-glow is elimi...

  18. Migration and transformation of different phosphorus forms in rainfall runoff in bioretention system.

    PubMed

    Song, Yujia; Song, Shoufa

    2018-06-04

    Artificial bioretention system consisting of Ophiopogon japonicus infiltration medium was used to simulate an infiltration experiment of rainfall runoff. Continuous extraction method was used to detect contents of inorganic phosphorus (P) under exchangeable state (Ex-P) and aluminium phosphate (Al-P) and iron phosphate (Fe-P) at different depths (0, 5, 15 and 35 cm) of soil infiltration medium in bioretention system. Effluent total P (TP) concentration of the system was also monitored. Results indicated that the adsorption of inorganic P, Al-P and Fe-P by soil infiltration medium was implemented layer by layer from top to bottom and gradually weakened. Moreover, Ex-P was gradually transformed into Al-P and Fe-P, whereas Al-P was gradually transformed into Fe-P; thus, Ex-P content reduced layer by layer, whereas Al-P and Fe-P gradually accumulated. The TP removal rate in runoff rainwater by the system was more than 90%, where the TP that was not used by plants was under dynamic equilibrium in water-soil-root system/biological system.

  19. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    PubMed

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  20. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  1. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  2. An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Sun, Changzhi; Huang, Xiao; Jin, Jun; Lu, Yang; Wang, Qing; Yang, Jianhua; Wen, Zhaoyin

    2018-02-01

    Lithium (Li) metal plays an indispensable role in Li-S batteries, but its fast degradation seriously impedes the practical application of Li-S batteries. Here, an ion-conductive LAGP-based composite protective layer (CPL) consisting of lithium aluminum germanium phosphate (Li1.5Al0.5Ge1.5(PO4)3) and polyvinylidene fluoride (PVDF) is prepared on Li metal anode via a facile casting method. In the presence of LAGP, the negative effect of CPL on the diffusion of Li+ is minimized. Hence, it can not only effectively resist corrosive action of lithium polysulfides (LiPSs) on Li metal anode, but also reduce interfacial polarization and restrain dendritic Li growth. The protected Li anode exhibits exceptional cycling stability and low voltage polarization (∼30 mV at 0.5 mA cm-2) for 300 h. The electrochemical performance of Li-S batteries with protected Li anode is also greatly enhanced. The discharge specific capacity of 832.1 mAh g-1 and an average coulombic efficiency of 92% are obtained for up to 100 cycles at 0.5 C in LiNO3-free electrolyte. Additionally, the rate capability of Li-S batteries is significantly improved, delivering a reversible capacity of 565 mAh g-1 at 4 C. Our results also indicate this protection strategy can be extended to the Li-S pouch cells.

  3. Performance of a hydrogen uranyl phosphate-carbon double-layer solid capacitor

    NASA Astrophysics Data System (ADS)

    Pham-Thi, M.; Adet, Ph.; Velasco, G.; Colomban, Ph.

    1986-05-01

    A mixture of commercially available carbon black (C) powders and hydrogen uranyl phosphate (HUP) precipitate can be used as the electrode material for miniaturized double-layer capacitors. A solid cell of C-HUP/HUP/C-HUP has a capacitance of 1 F which, given the device area and thickness of 0.8 sq cm and 0.2 cm respectively, corresponds to an energy density of more than 5 J/cu cm. The charge x voltage factor is higher than 5 x 10 to the -6th s and the working voltage is over 1.6 V. The leakage current is lower than 3 microamps at room temperature. The electrolyte can be operated up to about 120 C if the device is hermetically sealed.

  4. Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-01-01

    Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827

  5. The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light

    NASA Astrophysics Data System (ADS)

    Peng, Wen-Chao; Wang, Xi; Li, Xiao-Yan

    2014-06-01

    The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water.The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01654h

  6. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.

    PubMed

    Pina, S; Canadas, R F; Jiménez, G; Perán, M; Marchal, J A; Reis, R L; Oliveira, J M

    2017-01-01

    The treatment and regeneration of bone defects caused by traumatism or diseases have not been completely addressed by current therapies. Lately, advanced tools and technologies have been successfully developed for bone tissue regeneration. Functional scaffolding materials such as biopolymers and bioresorbable fillers have gained particular attention, owing to their ability to promote cell adhesion, proliferation, and extracellular matrix production, which promote new bone growth. Here, we present novel biofunctional scaffolds for bone regeneration composed of silk fibroin (SF) and β-tricalcium phosphate (β-TCP) and incorporating Sr, Zn, and Mn, which were successfully developed using salt-leaching followed by a freeze-drying technique. The scaffolds presented a suitable pore size, porosity, and high interconnectivity, adequate for promoting cell attachment and proliferation. The degradation behavior and compressive mechanical strengths showed that SF/ionic-doped TCP scaffolds exhibit improved characteristics for bone tissue engineering when compared with SF scaffolds alone. The in vitro bioactivity assays using a simulated body fluid showed the growth of an apatite layer. Furthermore, in vitro assays using human adipose-derived stem cells presented different effects on cell proliferation/differentiation when varying the doping agents in the biofunctional scaffolds. The incorporation of Zn into the scaffolds led to improved proliferation, while the Sr- and Mn-doped scaffolds presented higher osteogenic potential as demonstrated by DNA quantification and alkaline phosphatase activity. The combination of Sr with Zn led to an influence on cell proliferation and osteogenesis when compared with single ions. Our results indicate that biofunctional ionic-doped composite scaffolds are good candidates for further in vivo studies on bone tissue regeneration. © 2017 S. Karger AG, Basel.

  7. Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates.

    PubMed

    Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D

    2013-05-01

    Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.

  8. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer

    PubMed Central

    Li, Hong; Gong, Min; Yang, Aiping; Ma, Jian; Li, Xiangde; Yan, Yonggang

    2012-01-01

    Background and methods A nano calcium-deficient hydroxyapatite (n-CDHA)-multi(amino acid) copolymer (MAC) composite bone substitute biomaterial was prepared using an in situ polymerization method. The composition, structure, and compressive strength of the composite was characterized, and the in vitro degradability in phosphate-buffered solution and preliminary cell responses to the composite were investigated. Results The composite comprised n-CDHA and an amide linkage copolymer. The compressive strength of the composite was in the range of 88–129 MPa, varying with the amount of n-CDHA in the MAC (ranging from 10 wt% to 50 wt%). Weight loss from the composite increased (from 32.2 wt% to 44.3 wt%) with increasing n-CDHA content (from 10 wt% to 40 wt%) in the MAC after the composite was soaked in phosphate-buffered solution for 12 weeks. The pH of the soaking medium varied from 6.9 to 7.5. MG-63 cells with an osteogenic phenotype were well adhered and spread on the composite surface. Viability and differentiation increased with time, indicating that the composite had no negative effects on MG-63 cells. Conclusion The n-CDHA-MAC composite had good cytocompatibility and has potential to be used as a bone substitute. PMID:22457591

  9. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  10. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, Jack L.

    1998-01-01

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.

  11. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  12. Effect of Phosphate on the Corrosion of Carbon Steel and on the Composition of Corrosion Products in Two-Stage Continuous Cultures of Desulfovibrio desulfuricans†

    PubMed Central

    Weimer, Paul J.; Van Kavelaar, Margaret J.; Michel, Charles B.; Ng, Thomas K.

    1988-01-01

    A field isolate of Desulfovibrio desulfuricans was grown in defined medium in a two-stage continuous culture apparatus with different concentrations of phosphate in the feed medium. The first state (V1) was operated as a conventional chemostat (D = 0.045 h−1) that was limited in energy source (lactate) or phosphate. The second stage (V2) received effluent from V1 but no additional nutrients, and contained a healthy population of transiently starved or resting cells. An increase in the concentration of phosphate in the medium fed to V1 resulted in increased corrosion rates of carbon steel in both V1 and V2. Despite the more rapid corrosion observed in growing cultures relative to that in resting cultures, corrosion products that were isolated under strictly anaerobic conditions from the two culture modes had similar bulk compositions which varied with the phosphate content of the medium. Crystalline mackinawite (Fe9S8), vivianite [Fe3(PO4)2 · 8H2O], and goethite [FeO(OH)] were detected in amounts which varied with the culture conditions. Chemical analyses indicated that the S in the corrosion product was almost exclusively in the form of sulfides, while the P was present both as phosphate and as unidentified components, possibly reduced P species. Some differential localization of S and P was observed in intact corrosion products. Cells from lactate-limited, but not from phosphate-limited, cultures contained intracellular granules that were enriched in P and Fe. The results are discussed in terms of several proposed mechanisms of microbiologically influenced corrosion. Images PMID:16347552

  13. Mineral induced formation of pentose-2,4-bisphosphates

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Pitsch, S.; Arrhenius, G.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Formation of rac.-pentose-2,4-bisphosphates is demonstrated, starting from glycolaldehyde phosphate and glyceraldehyde-2-phosphate, and induced by mixed valence double layer metal hydroxide minerals. The reactions proceed from dilute aqueous reactant solutions (1.5 mM) at near neutral pH. Conditions have been established, where ribose-2,4-bisphosphate is the major product (approximately 48%) among the pentose-2,4-bisphosphates, which are formed with up to 25% yield.

  14. Preparation of titanium phosphates with additives in hydrothermal process and their powder properties for cosmetics.

    PubMed

    Onoda, Hiroaki; Yamaguchi, Taisuke

    2013-04-01

    In this study, titanium phosphates were prepared from titanium chloride and phosphoric acid, sodium pyrophosphate and sodium triphosphate solutions with water retention compounds in hydrothermal process as a novel white pigment for cosmetics. Their chemical composition, powder properties, photo catalytic activity, water retention and smoothness were studied. The addition of glycerin in the preparation from sodium pyrophosphate has the useful method to obtain homogenized spherical particles of titanium phosphate pigments for the cosmetics. These titanium phosphates had less photo catalytic activity to protect the sebum on the skin. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust.

    PubMed

    He, Ming-Jing; Lu, Jun-Feng; Ma, Jing-Ye; Wang, Huan; Du, Xiao-Fan

    2018-06-01

    Human hair and street dust from rural and urban areas in Chongqing were collected to analyze Organophosphate esters (OPEs) and phthalate esters (PAEs). Concentrations of OPEs in urban hair were significantly higher than those in rural hair, whereas PAEs concentrations in rural hair were significantly higher than those in urban hair. Different composition patterns of OPEs were observed in rural and urban hair, where tris (2-chloroisopropyl) phosphate (TCIPP), tris (butyl) phosphate (TNBP) and triphenyl phosphate (TPHP) were the dominating analogues in rural hair, accounting for 62.1% of the OPEs burden, and tris (methylphenyl) phosphate (TMPP) exhibited a high contribution in urban hair, responsible for 51.3% of total OPEs, which differed from the composition profiles in corresponding street dust. Analogous composition patterns of PAEs were found in hair of both areas. Di-(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DNBP), diisobutyl phthalate (DIBP) and diethyl phthalate (DEP) were the most abundant analogues in hair samples, while DEHP was the predominant analogue in dust samples. No clear tendency was obtained between the increasing ages and the concentrations of both compounds. Most OPEs and PAEs congeners showed significantly positive correlation with one another in rural hair. On the contrary, different correlation patterns were observed in urban hair for OPEs and PAEs, indicating multiple or additional sources existed in urban areas. Significant correlations of OPEs and PAEs were found between hair and corresponding street dust samples, but poor correlations of OPEs and PAEs were observed between rural hair and rural indoor dust, suggesting that street dust may be a predominant exogenous source for human exposure to OPEs and PAEs in this area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.

    PubMed

    Cui, Wenguo; Li, Xiaohong; Zhou, Shaobing; Weng, Jie

    2007-09-15

    Development of nanocomposites of hydroxyapatite (HA) and polylactic acid (PLA) is attractive, as the advantageous properties of the two types of materials can be combined to suit better the mechanical and biological demands for biomedical uses. To solve the problematic issue of agglomeration of HA crystallites in the PLA matrix, a novel method is introduced in the present study to use electrospun nanofibers as the reaction confinement for composite fabrication. Poly(DL-lactide) ultrafine fibers with calcium nitrate entrapment were prepared by electrospinning and then incubated in phosphate solution to form in situ calcium phosphate on the polymer matrix. The formation of nonstoichiometric nanostructured HA and well dispersion of HA particles on the electrospun fibers were observed. Higher crystalline HA phase was indicated in samples after sintering at 1200 degrees C. The formation of the calcium-phosphate phase was dependent upon the precipitation conditions, and the effects of the incubation time, temperature, and the pH values of the incubation medium were investigated on the spontaneous precipitation and amorphous-crystalline transformation of HA in the current study. Considering the biodegradability of matrix polymer and the crystallinity and uniform dispersal of HA, optimal conditions for composite preparation were incubating calcium-containing ultrafine fibers at 37 degrees C in pH 7.4 or at 25 degrees C in pH 9.0 of diammonium hydrogen phosphate solutions for 7 days. Around 25%-34% of mineral contents can be synthesized in the resulting composites, which was higher than the theoretical value due to the nonstoichiometric HA formed in the composite, and the fiber degradation and partial calcium nitrate involved in the HA formation. Copyright 2007 Wiley Periodicals, Inc.

  17. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  18. Poly(amido amine) and calcium phosphate nanocomposite remineralization of dentin in acidic solution without calcium phosphate ions.

    PubMed

    Liang, Kunneng; Zhou, Han; Weir, Michael D; Bao, Chongyun; Reynolds, Mark A; Zhou, Xuedong; Li, Jiyao; Xu, Hockin H K

    2017-07-01

    Patients with dry mouth often have an acidic oral environment lacking saliva that provides calcium (Ca) and phosphate (P) ions. However, there has been no study on dentin remineralization by placing samples in an acidic solution without Ca and P ions. Previous studies used saliva-like solutions with neutral pH and Ca and P ions. Therefore, the objective of this study was to investigate a novel method of combining poly(amido amine) (PAMAM) with a composite of nanoparticles of amorphous calcium phosphate (NACP) on dentin remineralization in an acidic solution without Ca and P ions for the first time. Demineralized dentin specimens were tested into four groups: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP nanocomposite, (4) dentin with PAMAM plus NACP composite. Specimens were treated with lactic acid at pH 4 without initial Ca and P ions for 21 days. Acid neutralization and Ca and P ion concentrations were measured. Dentin specimens were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and hardness testing vs. remineralization efficacy. NACP composite had mechanical properties similar to commercial control composites (p>0.1). NACP composite neutralized acid and released Ca and P ions. PAMAM alone failed to induce dentin remineralization. NACP alone achieved mild remineralization and slightly increased dentin hardness at 21days (p>0.1). In contrast, the PAMAM+NACP nanocomposite method in acid solution without initial Ca and P ions greatly remineralized the pre-demineralized dentin, restoring its hardness to approach that of healthy dentin (p>0.1). Dentin remineralization via PAMAM+NACP in pH 4 acid without initial Ca and P ions was demonstrated for the first time, when conventional methods such as PAMAM did not work. The novel PAMAM+NACP nanocomposite method is promising to protect tooth structures, especially for patients with reduced saliva to inhibit caries. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Method for preparing hydrous iron oxide gels and spherules

    DOEpatents

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  20. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials.

    PubMed

    Jing, Linjing; Chen, Li; Peng, Haitao; Ji, Mizhi; Xiong, Yi; Lv, Guoyu

    2017-12-01

    Owing to the good degradability and biocompatibility of polyphosphoesters (PPEs), the aim of the current study was to investigate a novel degradable composite of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) with cyclophosphate (CPE) via in situ melting polymerization to improve the degradation of n-HA/PAA. The structure of each composite was characterized via Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The degradation properties were studied in terms of the weight loss and pH in a phosphate-buffered saline (PBS) solution, while the surface morphology was examined using a scanning electron microscope-energy dispersive spectrometer (SEM-EDS) after soaking the surface in simulated body fluid (SBF). The cell proliferation, cell adhesion, and alkaline phosphatase (ALP) activity were used for the analysis of cytocompatibility. The weight loss results showed that the n-HA/PAA composite was 9.98 wt%, weighed after soaking in the PBS solution for 12 weeks, whereas the nano-hydroxyapatite/polyphosphoester-amino acid (n-HA/PPE-AA) composite was 46.94 wt%. The pH of the composites was in a suitable range between 6.64 to 7.06 and finally stabilized at 7.39. The SEM and EDS results revealed the formation of an apatite-like layer on the surface of the n-HA/PPE-AA composites after soaking in SBF for one week. The cell counting Kit 8 (CCK-8) assay of the cell culture in the leaching liquid of the n-HA/PPE-AA composites exhibited non-cytotoxicity and high-proliferation, and the cell adhesion showed the well spreading and normal phenotype extension of the cells on the n-HA/PPE-AA composites surface. Concurrently, the co-culture results of the composites and cells confirmed that the n-HA/PPE-AA composites exhibited a higher ALP activity. In summary, the results demonstrated that the n-HA/PPE-AA composites had a controllable degradation property, good bioactivity, and cytocompatibility.

  1. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  2. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nucleation, growth and evolution of calcium phosphate films on calcite.

    PubMed

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Khor, K. A.; Cheang, P.

    1998-03-01

    Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.

  5. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-04-01

    Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  6. Bacterial Phosphating of Mild (Unalloyed) Steel

    PubMed Central

    Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.

    2000-01-01

    Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888

  7. Preparation and properties of the multi-layer aerogel thermal insulation composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian

    2018-03-01

    Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.

  8. Availability of residual phosphorus from broiler litter ash and layer manure ash amended soil for Paspalum vaginatum uptake

    USDA-ARS?s Scientific Manuscript database

    It has been hypothesized by several scientists that poultry litter ash could be used as a slow releasing phosphorus fertilizer that will become available over time. To test this hypothesis, a greenhouse study was conducted using a broiler litter ash, layer manure ash and calcium phosphate to determ...

  9. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

    PubMed

    Rodrigues, Márcia T; Martins, Albino; Dias, Isabel R; Viegas, Carlos A; Neves, Nuno M; Gomes, Manuela E; Reis, Rui L

    2012-11-01

    Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(ϵ-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in gBMSCs osteogenic differentiation. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Ammonia-treated phosphate glasses useful for sealing to metals metals

    DOEpatents

    Brow, Richard K.; Day, Delbert E.

    1991-01-01

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  11. Ammonia-treated phosphate glasses useful for sealing to metals

    DOEpatents

    Brow, R.K.; Day, D.E.

    1991-09-03

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  12. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  13. Preparation research of Nano-SiC/Ni-P composite coating under a compound field

    NASA Astrophysics Data System (ADS)

    Zhou, H. Z.; Wang, W. H.; Gu, Y. Q.; Liu, R.; Zhao, M. L.

    2016-07-01

    In this paper, the preparation process of Ni-P-SiC composite coatings on 45 steel surfaces with the assistance of magnetic and ultrasound fields was researched. The influence of external field on the surface morphology and performance of the composite layer is also discussed. Experimental results showed that when prepared under magnetic and ultrasonic fields, composite layers are significantly more dense and uniform than coatings made without external fields. Nano-SiC particles, dispersed uniformly in the layer, significantly improve the hardness of the composite layer, and the composite layer under the external field had the highest hardness at 680 HV The external fields can also accelerate deposition and increase the thickness of the layer. Compared to layers processed without the assistance of external fields, the thickness of the layers increased by nearly ten µm.

  14. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiang

    2006-01-01

    This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystalmore » structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was published in Ceramic Engineering and Science Proceedings (the 29th International Conference on Advanced Ceramics and Composites - Advances in Bioceramics and Biocomposites) [5].« less

  15. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  16. In vivo corrosion of four magnesium alloys and the associated bone response.

    PubMed

    Witte, F; Kaese, V; Haferkamp, H; Switzer, E; Meyer-Lindenberg, A; Wirth, C J; Windhagen, H

    2005-06-01

    Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone-implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation.

  17. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi

    PubMed Central

    Hodgkinson, A.

    1971-01-01

    A better understanding of the physico-chemical principles underlying the formation of calculus has led to a need for more precise information on the chemical composition of stones. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi which is suitable for routine use is presented. The procedure involves five simple qualitative tests followed by the quantitative determination of calcium, magnesium, inorganic phosphate, and oxalate. These data are used to calculate the composition of the stone in terms of calcium oxalate, apatite, and magnesium ammonium phosphate. Analytical results and derived values for five representative types of calculi are presented. PMID:5551382

  18. Spectroscopic studies of gel grown zinc doped calcium hydrogen phosphate dihydrate crystals

    NASA Astrophysics Data System (ADS)

    Suryawanshi, V. B.; Chaudhari, R. T.

    2018-05-01

    The influence of zinc doping on the gel grown calcium hydrogen phosphate dihydrate crystals was studied using the spectroscopic techniques, which included SEM, FTIR and EDAX. It was found that, zinc ions transform the morphology of brushite crystals from rectangular plate shaped crystals to branching microcrystal patterns. However in FT-IR spectroscopy, as compared to undoped brushite crystals few vibrations were shifted to higher value. The observed changes in the vibrations were due to the impact of zinc ions. EDAX techniques is use to determine the percentage composition of elements present in the doped crystals. It revealed that the sample was of a mixed composition.

  19. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements.

    PubMed

    Babaie, Elham; Lin, Boren; Goel, Vijay K; Bhaduri, Sarit B

    2016-10-07

    This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA). Additionally, PVA enables a controlled growth of the final phase via a biomimetic process. The AMP powder was synthesized using a precipitation method. The powder, when in contact with the aqueous PVA solution, forms a putty resulting in a nanocrystalline magnesium phosphate phase of cattiite. The as-prepared cement compositions were evaluated for setting times, exothermicity, compressive strength, biodegradation, and microstructural features before and after soaking in SBF, and in vitro cytocompatibility. Since cattiite is relatively unexplored in the literature, a first time evaluation reveals that it is cytocompatible, just like the other phases in the MgO-P 2 O 5 (Mg-P) system. The cement composition prepared with 15% PVA in an aqueous medium achieved clinically relevant setting times, mechanical properties, and biodegradation. Simulated body fluid (SBF) soaking resulted in coating of bobierrite onto the cement particle surfaces.

  20. Synthesis and Performance of LiFe1-xMnxPO4 in Lithium-ion Battery

    NASA Astrophysics Data System (ADS)

    Bazzi, Khadije; Nazri, Maryam; Vaishnava, Prem; Naik, Vaman; Nazri, Gholam-Abbas; Naik, Ratna

    2013-03-01

    Olivine-type lithium transition metal phosphates (i.e. LiFePO4) have been intensively investigated as promising electrode materials for rechargeable lithium-ion batteries. There have been attempts to improve energy density and voltage quality of phosphate based electrode. In this study, we have partially substituted FeII/FeIII redox center with MnII/MnIII in LiFePO4 that provides over 600 mV higher voltage. We prepared various compositions of LiFe1-xMnxPO4 (x =0, 0.2, 0.4, 0.6, 0.8 and 1) between the two end members (LiFePO4 - LiMnPO4) . Due to intrinsic low electronic conductivity of lithium transition metal phosphates, we coat these materials with a uniform conductive carbon through a unique sol-gel process developed in our laboratory. In addition, we made a composite of the carbon coated phosphate with carbon nano-tubes to develop a highly conductive matrix electrode. We report the materials structure, morphology, electrical conductivity and electrochemical performances of LiFe1-xMnxPO4 using XRD, Raman spectroscopy, SEM, TEM, XPS, electrical conductivity and galvanostatic charge/discharge measurements.

  1. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.

    PubMed

    Linh, Nguyen Tb; Paul, Kallyanashis; Kim, Boram; Lee, Byong-Taek

    2016-11-01

    A functionally modified peptide-conjugated hydrogel system was fabricated with oxidized alginate/gelatin loaded with biphasic calcium phosphate to improve its biocompatibility and functionality. Sodium alginate was treated by controlled oxidation to transform the cis-diol group into an aldehyde group in a controlled manner, which was then conjugated to the amine terminus of glycine-arginine-glycine-aspartic. Oxidized alginate glycine-arginine-glycine-aspartic was then combined with gelatin-loaded biphasic calcium phosphate to form a hydrogel of composite oxidized alginate/gelatin/biphasic calcium phosphate that displayed enhanced human adipose stem cell adhesion, spreading and differentiation. 1 H nuclear magnetic resonance and electron spectroscopy for chemical analysis confirmed that the glycine-arginine-glycine-aspartic was successfully grafted to the oxidized alginate. Co-delivery of glycine-arginine-glycine-aspartic and human adipose stem cell in a hydrogel matrix was studied with the results indicating that hydrogel incorporated modified with glycine-arginine-glycine-aspartic and seeded with human adipose stem cell enhanced osteogenesis in vitro and bone formation in vivo. © The Author(s) 2016.

  2. Impact of annealing on features of BCP coating on NiTi shape memory alloy: Preparation and physicochemical characterization

    NASA Astrophysics Data System (ADS)

    Dulski, Mateusz; Dudek, Karolina; Grelowski, Michał; Kubacki, Jerzy; Hertlein, Justyna; Wojtyniak, Marcin; Goryczka, Tomasz

    2018-04-01

    A multifunctional composite structure consisting of resorbable tricalcium phosphate with non-resorbable hydroxyapatite and NiTi shape memory alloy (SMA) has been manufactured to develop a biocompatible system for long-term implant applications. The hybrid system has been vacuum sintered to consolidate and form chemical binding between phosphate biomaterials and NiTi SMA. In this context, the impact of sintering on biomaterial's features in relation to initial material has been analyzed using a combination of structural and surface sensitive approaches. Moreover, a partial decomposition of the NiTi parent phase to the equilibrium Ti2Ni with cubic structure, and non-equilibrium Ti3Ni4 with hexagonal structure has been detected. Moreover, a sintering has provided a reconstruction of the orthophosphate surface through the disintegration of calcium phosphate material and increase of hydroxyapatite with smaller particles in volume. The biomaterial surface has become more enriched in calcium in relation to the initial composition, with a simultaneous decline of the roughness parameters due to the gradual consolidation of orthophosphates. Finally, surface modification accompanied with heat treatment has led to an increase of surface Young's modulus as an effect of partial recrystallization of calcium phosphates.

  3. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.

    PubMed

    Li, Xiangfeng; Guo, Bo; Xiao, Yumei; Yuan, Tun; Fan, Yujiang; Zhang, Xingdong

    2016-01-01

    The influences of steam sterilization on the physicochemical properties of calcium phosphate (Ca-P) porous bioceramics, including β-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP) and hydroxyapatite (HA) are investigated. After being steam sterilized in an autoclave (121 °C for 40 min), the porous bioceramics are dried and characterized. The steam sterilization has no obvious effects on the phase composition, thermal stability, pH value and dissolubility of β-TCP porous bioceramic, but changes its morphology and mechanical strength. Meanwhile, the steam sterilization leads to the significant changes of the morphology, phase composition, pH value and dissolubility of BCP porous bioceramic. The increase of dissolubility and mechanical strength, the decrease of pH value of the immersed solution and partial oriented growth of crystals are also observed in HA porous bioceramic after steam sterilization. These results indicate that the steam sterilization can result in different influences on the physicochemical properties of β-TCP, BCP and HA porous bioceramics, thus the application of the steam sterilization on the three kinds of Ca-P porous bioceramics should be considered carefully based on the above changed properties.

  4. Crystal structure of bis-(1,3-di-meth-oxy-imidazolin-2-yl-idene)silver(I) hexa-fluorido-phosphate, N-heterocyclic carbene (NHC) complex.

    PubMed

    Rietzler, Barbara; Laus, Gerhard; Kahlenberg, Volker; Schottenberger, Herwig

    2015-12-01

    The title salt, [Ag(C5H8N2O2)2]PF6, was obtained by deprotonation and metalation of 1,3-di-meth-oxy-imidazolium hexa-fluorido-phosphate using silver(I) oxide in methanol. The C-Ag-C angle in the cation is 178.1 (2)°, and the N-C-N angles are 101.1 (4) and 100.5 (4)°. The meth-oxy groups adopt an anti conformation. In the crystal, anions (A) are sandwiched between cations (C) in a layered arrangement {C…A…C} n stacked along [001]. Within a C…A…C layer, the hexafluoridophosphate anions accept several C-H⋯F hydrogen bonds from the cationic complex.

  5. A study to investigate the chemical stability of gallium phosphate oxide/gallium arsenide phosphide

    NASA Technical Reports Server (NTRS)

    Kuhlman, G. J.

    1979-01-01

    The elemental composition with depth into the oxide films was examined using secondary ion mass spectrometry. Results indicate that the layers are arsenic-deficient through the bulk of the oxide and arsenic-rich near both the oxide surface and the oxide-semiconductor interface region. Phosphorus is incorporated into the oxide in an approximately uniform manner. The MIS capacitor structures exhibited deep-depletion characteristics and hysteresis indicative of electron trapping at the oxide-semiconductor interface. Post-oxidation annealing of the films in argon or nitrogen generally results in slightly increased dielectric leakage currents and decreased C-V hysteresis effects, and is associated with arsenic loss at the oxide surface. The results of bias-temperature stress experiments indicate that the major instability effects are due to changes in the electron trapping behavior. No changes were observed in the elemental profiles following electrical stressing, indicating that the grown films are chemically stable under device operating conditions.

  6. Thermally Induced Lateral Motion of α-Zirconium Phosphate Layers Intercalated with Hexadecylamines

    NASA Astrophysics Data System (ADS)

    Char, Kookheon

    2005-03-01

    Well-defined intercalated structure, either interdigitated layers or bilayers, of hexadecylamines (HDAs) in a confined space of a highly-functionalized layered material, α- zirconium phosphate (α-ZrP), was prepared and these two distinct intercalated structures can serve as model systems to investigate the interaction of the two monolayers whose amphiphilic tails are adjacent to each other. Acidic functional groups (-POH) on the α-ZrP are in well-ordered array and the number of functional group is quite high (i.e., cationic exchange capacity (CEC) = 664 mmole/100 g, area per one charge site = 0.24 nm^2) enough to realize the bilayers (i.e., discrete two monolayers) of HDAs within the α-ZrP interlayer. We employed the two-step intercalation mechanism for the preparation of well- ordered interdigitated layers as well as the bilayers of alkyl chains attached to both sides of the α-ZrP intergallery. An intriguing lateral motion of the α-ZrP sheets was observed with in-situ SAXS measurements for the interdigitated layer during heating and cooling cycle and verified with TEM. This lateral motion is believed to be due to the transition from the tilted to the untilted conformation of the interdigitated HDA chains and this transition is found to be thermally reversible.

  7. Rate of precipitation of calcium phosphate on heated surfaces.

    PubMed

    Barton, K P; Chapman, T W; Lund, D

    1985-03-01

    Fouling of a heated stainless steel surface by calcium phosphate precipitation has been studied in an annular flow apparatus, instrumented to provide a constant heat flux while measuring local metal-surface temperatures. Models of the heat and mass-transfer boundary layers are used to estimate interfacial temperatures and concentrations, from which the heterogeneous reaction rate is inferred. The analysis indicates that the reaction rate is a function of both chemical kinetics and mass transfer limitations.

  8. Temporal and Spatial Patterns of Accumulation of the Transcript of Myo-Inositol-1-Phosphate Synthase and Phytin-Containing Particles during Seed Development in Rice1

    PubMed Central

    Yoshida, Kaoru T.; Wada, Tomikichi; Koyama, Hiroshi; Mizobuchi-Fukuoka, Ritsuko; Naito, Satoshi

    1999-01-01

    Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds. PMID:9880347

  9. The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy

    PubMed Central

    Lan, Xiangna; Wang, Chao; Zhang, Qinyong

    2018-01-01

    Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO4·3H2O, MnHPO4·2.25H2O, BaHPO4·3H2O, BaMg2(PO4)2, Mg3(PO4)2·22H2O, Ca3(PO4)2·xH2O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl. PMID:29518038

  10. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    DOEpatents

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  11. Apparatus and method of manufacture for depositing a composite anti-reflection layer on a silicon surface

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.

  12. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  13. Functionally Graded Multifunctional Hybrid Composites for Extreme Environments

    DTIC Science & Technology

    2010-02-01

    Develop multifunctional FGHC with multiple layers: a ceramic thermal barrier layer, a graded ceramic /metal composite (GCMeC) layer and a high...AFOSR-MURI Functionally Graded Hybrid Composites Actively Cooled PMC White (UIUC) FGHC Fabrication Team Graded Ceramic Metal Composites (GCMeC...Composites Fabrication and Characterization of Bulk Ceramic MAX Phase and MAX–Metal Composites AFOSR-MURI Functionally Graded Hybrid Composites Mn

  14. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    PubMed

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  15. Fabrication of graphene oxide-modified chitosan for controlled release of dexamethasone phosphate

    NASA Astrophysics Data System (ADS)

    Sun, Huanghui; Zhang, Lingfan; Xia, Wei; Chen, Linxiao; Xu, Zhizhen; Zhang, Wenqing

    2016-07-01

    Functionalized graphene oxide with its unique physical and chemical properties is widely applied in biomaterials, especially in drug carrier materials. In the past few years, a number of different drugs have been loaded on functionalized graphene oxide via π-π stacking and hydrophobic interactions. The present report described a new approach, dexamethasone phosphate successfully loaded onto graphene oxide-chitosan nanocomposites as drug carrier materials by covalent bonding of phosphate ester linkage. Compared with the graphene oxide-chitosan nanocomposites that dexamethasone phosphate was loaded on via simple physical attachment, covalently linked composites as drug carrier materials were more biocompatible which effectively reduced the burst release of drug, and controlled the release of drug in different pH conditions.

  16. Metabolic Response of “Candidatus Accumulibacter Phosphatis” Clade II C to Changes in Influent P/C Ratio

    PubMed Central

    Welles, Laurens; Abbas, Ben; Sorokin, Dimitry Y.; Lopez-Vazquez, Carlos M.; Hooijmans, Christine M.; van Loosdrecht, Mark C. M.; Brdjanovic, Damir

    2017-01-01

    The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, “Candidatus Accumulibacter phosphatis” clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels. PMID:28111570

  17. Tight ceramic UF membrane as RO pre-treatment: the role of electrostatic interactions on phosphate rejection.

    PubMed

    Shang, Ran; Verliefde, Arne R D; Hu, Jingyi; Zeng, Zheyi; Lu, Jie; Kemperman, Antoine J B; Deng, Huiping; Nijmeijer, Kitty; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can potentially be adopted as an effective process for RO pre-treatment in order to constrain biofouling by phosphate limitation. This paper focuses on electrostatic interactions during tight UF filtration. Despite the larger pore size, the 3 kDa ceramic membrane exhibited greater phosphate rejection than the 1 kDa membrane, because the 3 kDa membrane has a greater negative surface charge and thus greater electrostatic repulsion against phosphate. The increase of pH from 6 to 8.5 led to a substantial increase in phosphate rejection by both membranes due to increased electrostatic repulsion. At pH 8.5, the maximum phosphate rejections achieved by the 1 kDa and 3 kDa membrane were 75% and 86%, respectively. A Debye ratio (ratio of the Debye length to the pore radius) is introduced in order to evaluate double layer overlapping in tight UF membranes. Threshold Debye ratios were determined as 2 and 1 for the 1 kDa and 3 kDa membranes, respectively. A Debye ratio below the threshold Debye ratio leads to dramatically decreased phosphate rejection by tight UF membranes. The phosphate rejection by the tight UF, in combination with chemical phosphate removal by coagulation, might accomplish phosphate-limited conditions for biological growth and thus prevent biofouling in the RO systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  19. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  20. Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan

    2018-01-01

    Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707

  1. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate

    PubMed Central

    Caetano, Guilherme; Vyas, Cian; Diver, Carl; Bártolo, Paulo

    2018-01-01

    The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physically and chemically assessed, considering mechanical, wettability, scanning electron microscopy and thermal gravimetric tests. Cell viability, attachment and proliferation tests were performed using human adipose derived stem cells (hADSCs). Results show that scaffolds containing HA present better biological properties and TCP scaffolds present improved mechanical properties. It was also possible to observe that the addition of ceramic particles had no effect on the wettability of the scaffolds. PMID:29342890

  2. Effect of surface condition of dental zirconia ceramic (Denzir) on bonding.

    PubMed

    Uo, Motohiro; Sjögren, Göran; Sundh, Anders; Goto, Mitsunari; Watari, Fumio; Bergman, Maud

    2006-09-01

    Yttria partially stabilized zirconia (YPSZ) ceramics are suitable for dental and medical use because of their high fracture toughness and chemical durability. The purpose of this study was to examine the bonding behavior of a dental YPSZ ceramic, Denzir. After being subjected to various surface treatments, Denzir specimens were bonded to each other using an adhesive resin composite, glass ionomer, or zinc phosphate cement. Bonding strength was then determined by the shearing test. No significant differences (p>0.05) were observed between SiC- and Al2O3-blasted specimens. In all surface treatments, the shear bond strength significantly (p<0.05) increased in the order of adhesive resin composite cement > glass ionomer cement > zinc phosphate cement. Moreover, silanization with methacryloxy propyl trimethoxysilane slightly increased the bonding strength of the adhesive resin composite cement.

  3. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    PubMed

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  4. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.

    Our objective was to investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to localmore » structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significantly, for the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.« less

  5. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites

    DOE PAGES

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...

    2014-07-28

    Our objective was to investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to localmore » structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significantly, for the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.« less

  6. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites

    PubMed Central

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Vaudin, Mark D.; Skrtic, Drago; Antonucci, Joseph M.; Hoffman, Kathleen M.; Giuseppetti, Anthony A.; Ilavsky, Jan

    2014-01-01

    Objective To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP) -to-apatite transition in ACP based dental composite materials. Methods Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. Results We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significance For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified. PMID:25082155

  7. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  8. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  9. The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase.

    PubMed

    Grandfield, Kathryn; Chattah, Netta Lev-Tov; Djomehri, Sabra; Eidelmann, Naomi; Eichmiller, Frederick C; Webb, Samuel; Schuck, P James; Nweeia, Martin; Ho, Sunita P

    2014-08-01

    In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a "biological interphase" between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000 μm graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100 μm wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 ± 0.5 GPa for collagen fiber bundle compared to 3 ± 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 ± 0.05 GPa, 0.33 ± 0.03 GPa, and 0.3 ± 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function. © IMechE 2014.

  10. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    PubMed Central

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  11. Dental glass-reinforced composite for caries inhibition: Calcium phosphate ion release and mechanical properties

    PubMed Central

    Xu, Hockin H. K.; Moreau, Jennifer L.

    2010-01-01

    The two main challenges facing dental composite restorations are secondary caries and bulk fracture. Previous studies developed whisker-reinforced Ca-PO4 composites that were relatively opaque. The objective of this study was to develop an esthetic glass particle-reinforced, photo-cured calcium phosphate composite. Tetracalcium phosphate (TTCP) particles were incorporated into a resin for Ca and PO4 release, while glass particles provided reinforcement. Ion release and mechanical properties were measured after immersion in solutions with pH of 7, 5.5, and 4. For the composite containing 40% mass fraction of TTCP, incorporating glass fillers increased the strength (p < 0.05). Flexural strength (mean ± sd; n = 6) at 30% glass was (99 ± 18) MPa, higher than (54 ± 20) MPa at 0% glass (p < 0.05). Elastic modulus was 11 GPa at 30% glass, compared to 2 GPa without glass. At 28 d, the released Ca ion concentration was (4.61 ± 0.18) mmol/L at pH of 4, much higher than (1.14 ± 0.07) at pH of 5.5, and (0.27 ± 0.01) at pH of 7 (p < 0.05). PO4 release was also dramatically increased at cariogenic, acidic pH. The TTCP-glass composite had strength 2-3 fold that of a resin-modified glass ionomer control. In conclusion, the photo-cured TTCP-glass composite was “smart” and substantially increased the Ca and PO4 release when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit tooth caries. Its mechanical properties were significantly higher than previous Ca, PO4 and fluoride releasing restoratives. Hence, the photo-cured TTCP-glass composite may have potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities. PMID:19810118

  12. Lightweight armor system and process for producing the same

    DOEpatents

    Chu, Henry S.; Bruck, H. Alan; Strempek, Gary C.; Varacalle, Jr., Dominic J.

    2004-01-20

    A lightweight armor system may comprise a substrate having a graded metal matrix composite layer formed thereon by thermal spray deposition. The graded metal matrix composite layer comprises an increasing volume fraction of ceramic particles imbedded in a decreasing volume fraction of a metal matrix as a function of a thickness of the graded metal matrix composite layer. A ceramic impact layer is affixed to the graded metal matrix composite layer.

  13. Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea

    PubMed Central

    Rodrigues, Marta V.; Borges, Nuno

    2016-01-01

    ABSTRACT Glycerophosphoinositol (GPI) is a compatible solute present in a few hyperthermophiles. Interestingly, different GPI stereoisomers accumulate in Bacteria and Archaea, and the basis for this domain-dependent specificity was investigated herein. The archaeon Archaeoglobus fulgidus and the bacterium Aquifex aeolicus were used as model organisms. The synthesis of GPI involves glycerol phosphate cytidylyltransferase (GCT), which catalyzes the production of CDP-glycerol from CTP and glycerol phosphate, and di-myo-inositol phosphate-phosphate synthase (DIPPS), catalyzing the formation of phosphorylated GPI from CDP-glycerol and l-myo-inositol 1-phosphate. DIPPS of A. fulgidus recognized the two CDP-glycerol stereoisomers similarly. This feature and the ability of 31P nuclear magnetic resonance (NMR) to distinguish the GPI diastereomers provided a means to study the stereospecificity of GCTs. The AF1418 gene and genes aq_185 and aq_1368 are annotated as putative GCT genes in the genomes of A. fulgidus and Aq. aeolicus, respectively. The functions of these genes were determined by assaying the activity of the respective recombinant proteins: AQ1368 and AQ185 are GCTs, while AF1418 has flavin adenine dinucleotide (FAD) synthetase activity. AQ185 is absolutely specific for sn-glycerol 3-phosphate, while AQ1368 recognizes the two enantiomers but has a 2:1 preference for sn-glycerol 3-phosphate. In contrast, the partially purified A. fulgidus GCT uses sn-glycerol 1-phosphate preferentially (4:1). Significantly, the predominant GPI stereoforms found in the bacterium and the archaeon reflect the distinct stereospecificities of the respective GCTs: i.e., A. fulgidus accumulates predominantly sn-glycero-1-phospho-3-l-myo-inositol, while Aq. aeolicus accumulates sn-glycero-3-phospho-3-l-myo-inositol. IMPORTANCE Compatible solutes of hyperthermophiles show high efficacy in thermal protection of proteins in comparison with solutes typical of mesophiles; therefore, they are potentially useful in several biotechnological applications. Glycerophosphoinositol (GPI) is synthesized from CDP-glycerol and l-myo-inositol 1-phosphate in a few hyperthermophiles. In this study, the molecular configuration of the GPI stereoisomers accumulated by members of the Bacteria and Archaea was established. The stereospecificity of glycerol phosphate cytidylyltransferase (GCT), the enzyme catalyzing the synthesis of CDP-glycerol, is crucial to the stereochemistry of GPI. However, the stereospecific properties of GCTs have not been investigated thus far. We devised a method to characterize GCT stereospecificity which does not require sn-glycerol 1-phosphate, a commercially unavailable substrate. This led us to understand the biochemical basis for the distinct GPI stereoisomer composition observed in archaea and bacteria. PMID:27795311

  14. Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea.

    PubMed

    Rodrigues, Marta V; Borges, Nuno; Santos, Helena

    2017-01-01

    Glycerophosphoinositol (GPI) is a compatible solute present in a few hyperthermophiles. Interestingly, different GPI stereoisomers accumulate in Bacteria and Archaea, and the basis for this domain-dependent specificity was investigated herein. The archaeon Archaeoglobus fulgidus and the bacterium Aquifex aeolicus were used as model organisms. The synthesis of GPI involves glycerol phosphate cytidylyltransferase (GCT), which catalyzes the production of CDP-glycerol from CTP and glycerol phosphate, and di-myo-inositol phosphate-phosphate synthase (DIPPS), catalyzing the formation of phosphorylated GPI from CDP-glycerol and l-myo-inositol 1-phosphate. DIPPS of A. fulgidus recognized the two CDP-glycerol stereoisomers similarly. This feature and the ability of 31 P nuclear magnetic resonance (NMR) to distinguish the GPI diastereomers provided a means to study the stereospecificity of GCTs. The AF1418 gene and genes aq_185 and aq_1368 are annotated as putative GCT genes in the genomes of A. fulgidus and Aq. aeolicus, respectively. The functions of these genes were determined by assaying the activity of the respective recombinant proteins: AQ1368 and AQ185 are GCTs, while AF1418 has flavin adenine dinucleotide (FAD) synthetase activity. AQ185 is absolutely specific for sn-glycerol 3-phosphate, while AQ1368 recognizes the two enantiomers but has a 2:1 preference for sn-glycerol 3-phosphate. In contrast, the partially purified A. fulgidus GCT uses sn-glycerol 1-phosphate preferentially (4:1). Significantly, the predominant GPI stereoforms found in the bacterium and the archaeon reflect the distinct stereospecificities of the respective GCTs: i.e., A. fulgidus accumulates predominantly sn-glycero-1-phospho-3-l-myo-inositol, while Aq. aeolicus accumulates sn-glycero-3-phospho-3-l-myo-inositol. Compatible solutes of hyperthermophiles show high efficacy in thermal protection of proteins in comparison with solutes typical of mesophiles; therefore, they are potentially useful in several biotechnological applications. Glycerophosphoinositol (GPI) is synthesized from CDP-glycerol and l-myo-inositol 1-phosphate in a few hyperthermophiles. In this study, the molecular configuration of the GPI stereoisomers accumulated by members of the Bacteria and Archaea was established. The stereospecificity of glycerol phosphate cytidylyltransferase (GCT), the enzyme catalyzing the synthesis of CDP-glycerol, is crucial to the stereochemistry of GPI. However, the stereospecific properties of GCTs have not been investigated thus far. We devised a method to characterize GCT stereospecificity which does not require sn-glycerol 1-phosphate, a commercially unavailable substrate. This led us to understand the biochemical basis for the distinct GPI stereoisomer composition observed in archaea and bacteria. Copyright © 2016 American Society for Microbiology.

  15. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  16. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    NASA Astrophysics Data System (ADS)

    Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.

    2016-11-01

    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g-1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g-1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.

  17. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    PubMed Central

    Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.

    2016-01-01

    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications. PMID:27898104

  18. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes.

    PubMed

    Loveridge, M J; Lain, M J; Johnson, I D; Roberts, A; Beattie, S D; Dashwood, R; Darr, J A; Bhagat, R

    2016-11-29

    Lithium iron phosphate, LiFePO 4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g -1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g -1 for over 1 50 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.

  19. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.

    PubMed

    Gaur, Swati; Singh Raman, R K; Khanna, A S

    2014-09-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface-known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Calcium phosphates: what is the evidence?

    PubMed

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  1. Towards Synthesis and Usage of Actinide-Bearing REE Phosphate age Standards: A Progress Report

    NASA Astrophysics Data System (ADS)

    Pyle, J. M.; Cherniak, D. J.

    2006-05-01

    Electron microprobe (EMP) dates result from a concentration-time unit conversion, so use of a concentration- based (rather than isotope-ratio based) fictive age standard is warranted. This observation has motivated our mineral synthesis program, aimed at producing actinide-doped REE phosphate EMP dating standards that meet the following criteria: 1) known concentrations of U, Th, and Pb; 2) homogeneous intragrain distribution of all components; 3) of suitable size, either as a single-crystal or polycrystalline sintered ceramic. Single-crystal synthesis of actinide-doped LaPO4 by flux-growth methods results in disproportionation of lanthanide and flux, alkali, and actinide components into phosphate and oxide phases, respectively, and flux- growth methods were abandoned. Actinide-doped La phosphate is successfully prepared by high-T annealing and hydrothermal processing of microcrystalline phosphate; both homogeneity and charge-balance of (Ca, Th, Pb)-bearing LaPO4 increase with increasing solvent acidity during cold-seal hydrothermal synthesis. A combination of pressing and high-T (1400° C) sintering transforms fine-grained (0.1-10 μm) run- products to ceramic pellets with 90-95% theoretical density. Our most recent runs focused on a target composition of La80(CaTh)17(CaU)2(PbTh)1PO4 processed with 6% 2M HCl at 820° C, 0.75 kbar for 1 week. The run products are 0.1-2 μm crystals identified by XRD as La-actinide phosphate solid solution. 2 μm grains (N=16) give a composition (mean±2 sd) of La79.77(1.26)(CaTh)17.87(1.00)(CaU)1.53(0.42)(PbTh)0.82(0.09)PO4. Th (8.07-9.13 wt. %) is homogeneous at the level of analytical precision, and the Pb concentration range (3500-4350 ppm) is restricted relative to untreated precipitate. Uranium concentration values are more variable (6500-10000 ppm). This run yields a fictive age of 702±4 Ma (mean±2 se), compared to the fictive age of 794 Ma for the target composition.

  2. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response.

    PubMed

    Brauer, Delia S; Rüssel, Christian; Vogt, Sebastian; Weisser, Jürgen; Schnabelrauch, Matthias

    2008-01-01

    The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P(2)O(5)-CaO-MgO-Na(2)O-TiO(2), which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.

  3. In vitro investigation of nanohydroxyapatite/poly(L-lactic acid) spindle composites used for bone tissue engineering.

    PubMed

    Yan, W; Zhang, C Y; Xia, L L; Zhang, T; Fang, Q F

    2016-08-01

    Calcium phosphate ceramics such as synthetic hydroxyapatite and tricalcium phosphate are widely used in the clinic, but they stimulate less bone regeneration. In this paper, nano-hydroxyapatite/poly(L-lactic acid) (nano-HA/PLLA) spindle composites with good mechanical performance were fabricated by a modified in situ precipitation method. The HA part of composite, distributing homogenously in PLLA matrix, is spindle shape with size of 10-30 nm in diameter and 60-100 nm in length. The molar ratio of Ca/P in the synthesized nano-HA spindles was deduced as 1.52 from the EDS spectra, which is close to the stoichiometric composition of HA (Ca/P & 1.67). The compress strength is up to 150 MPa when the HA content increase to 20 %. The in vitro tests indicate that HA/PLLA bio-composites have good biodegradability and bioactivity when immersed in simulated body fluid solutions. All the results suggested that HA/PLLA nano-biocomposites are appropriate to be applied as bone substitute in bone tissue engineering.

  4. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca (2+) -Sensing Receptor Signaling.

    PubMed

    Zhang, Xuehui; Meng, Song; Huang, Ying; Xu, Mingming; He, Ying; Lin, Hong; Han, Jianmin; Chai, Yuan; Wei, Yan; Deng, Xuliang

    2015-01-01

    Calcium phosphate- (CaP-) based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP) and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR) was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca(2+)-sensing receptor signaling.

  5. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties

    PubMed Central

    Islam, Paromita; Water, Jorrit J.; Bohr, Adam; Rantanen, Jukka

    2016-01-01

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6–10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems. PMID:28025505

  6. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties.

    PubMed

    Islam, Paromita; Water, Jorrit J; Bohr, Adam; Rantanen, Jukka

    2016-12-22

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6-10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems.

  7. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin

    2016-12-01

    The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Surface and interface investigation of aluminosilicate biomaterial by the “in vivo” experiments

    NASA Astrophysics Data System (ADS)

    Oudadesse, H.; Derrien, A. C.; Martin, S.; Chaair, H.; Cathelineau, G.

    2008-11-01

    Porous mixtures of aluminosilicate/calcium phosphate have been studied for biomaterials applications. Aluminosilicates formed with an inorganic polymeric constitution present amorphous zeolites because of their 3D network structure and present the ability to link to bone matrix. Amorphous geopolymers of the potassium-poly(sialate)-nanopolymer type were synthesised at low temperature and studied for their use as potential biomaterials. They were mixed with 13% weight of calcium phosphate like biphasic hydroxyapatite and β-tricalcium phosphate. In this study, " in vivo" experiments were monitored to evaluate the biocompatibility, the surface and the interface behaviour of these composites when used as bone implants. Moreover, it has been demonstrated using histological and physicochemical studies that the developed materials exhibited a remarkable bone bonding when implanted in a rabbit's thighbone for a period of 1 month. The easy synthesis conditions (low temperature) of this composite and the fast intimate links with bone constitute an improvement of synthetic bone graft biomaterial.

  9. Dynamic Light Scattering and Zeta Potential of Colloidal Mixtures of Amelogenin and Hydroxyapatite in Calcium and Phosphate Rich Ionic Milieus

    PubMed Central

    Uskoković, Vuk; Odsinada, Roselyn; Djordjevic, Sonia; Habelitz, Stefan

    2011-01-01

    The concept of zeta-potential has been used for more than a century as a basic parameter in controlling the stability of colloidal suspensions, irrespective of the nature of their particulate ingredients – organic or inorganic. There are prospects that self-assembly of peptide species and the protein-mineral interactions related to biomineralization may be controlled using this fundamental physicochemical parameter. In this study, we have analyzed the particle size and zeta-potential of the full-length recombinant human amelogenin (rH174), the main protein of the developing enamel matrix, in the presence of calcium and phosphate ions and hydroxyapatite (HAP) particles. As calcium and phosphate salts are introduced to rH174 sols in increments, zeta-potential of the rH174 nanospheres is more affected by negatively charged ions, suggesting their tendency to locate within the double charge layer. Phosphate ions have a more pronounced effect on both the zeta-potential and aggregation propensity of rH174 nanospheres compared to calcium ions. The isoelectric point of amelogenin was independent on the ionic strength of the solution and the concentration of calcium and/or phosphate ions. Whereas rH174 shows a higher affinity for phosphate than for calcium, HAP attracts both of these ions to the shear plane of the double layer. The parallel size and zeta-potential analysis of HAP and rH174 colloidal mixtures indicated that at pH 7.4, despite both HAP and rH174 particles being negatively charged, rH174 adsorbs well onto HAP particles. The process is slower at pH 7.4 than at pH 4.5 when the HAP surface is negatively charged and the rH174 nanosphere carries an overall positive charge. The results presented hereby demonstrate that electrostatic interactions can affect the kinetics of the adsorption of rH174 onto HAP. PMID:21146151

  10. Extrusion-based, three-dimensional printing of calcium-phosphate scaffolds

    NASA Astrophysics Data System (ADS)

    Witek, Lukasz

    Small or large bone defects, can occur due to a variety of reasons: congenital disorders, infections, tumors, or traumas which can lead to significant disabilities. There is an assortment of bone grafting procedures, each having their own respective advantages and disadvantages and exhibiting certain essential characteristics. Among the available grafts, autogenous (autograft), allograft, xenograft, and alloplasts, all exhibit a minimum of two-thirds of the essential characteristics and have been proven useful in fully or partially repairing skeletal defects. However, different host-to-grafting material responses have been reported and should be taken into consideration when determining treatment options. A large range of physical and chemical properties can be achieved with calcium phosphate based materials, which possess two of the ideal characteristics for grafting procedures: osteoconduction and osseointegration. Calcium phosphate based scaffolds composed of hydroxyapatite (HA), beta-tri-calcium phosphate (beta-TCP), or a combination of both (HA/beta-TCP) were investigated as materials for three-dimensional printing process to create layer-by-layer structures for use as bone regeneration scaffolds. Different calcium-phosphate phases will result in different degrees of in vivo dissolution and/or cell-mediated resorption. There has been a growing interest in BCP because it has been shown that this material improves the formation of new bone inside the implanted scaffold. The literature indicates that the faster dissolution rate of ?-TCP would be greatly responsible of this enhancement. However, in vitro tests indicate that fast dissolution can decrease the mechanical strength of BCP scaffolds. Furthermore, studies reported that HA has higher mechanical strength and lower degradation rate than beta-TCP. Therefore, the HA/beta-TCP ratio is a key parameter controlling the performance of the scaffold for bone repair applications, since it determines degradation rate, calcium (Ca2+) and phosphate (PO4) release and mechanical properties of the material.

  11. Influence of pulse ratio on codeposition of copper species with calcium phosphate coatings on titanium by means of electrochemically assisted deposition.

    PubMed

    Wolf-Brandstetter, Cornelia; Oswald, Steffen; Bierbaum, Susanne; Wiesmann, Hans-Peter; Scharnweber, Dieter

    2014-01-01

    Aim of this study was to combine the well-known biocompatibility and ostoeconductivity of thin calcium phosphate coatings on titanium with proangiogenic signals from codeposited copper species. Copper species could be integrated in mineral layers based on hydroxyapatite by means of electrochemically assisted deposition from electrolytes containing calcium, phosphate, and copper ions. Different combinations of duration and intensity of galvanostatic pulses result in different amounts of deposited calcium phosphate and of copper species even for the same applied total charge. Absolute amounts of copper varied between 2.1 and 6.9 μg/cm², and the copper was distributed homogeneously as shown by EDX mapping. The presence of copper did not change the crystalline phase of deposited calcium phosphate (hydroxyapatite) but provoked a significant decrease in deposited amounts by factor 3 to 4. The copper was deposited mainly as Cu(I) species with a minor fraction of basic copper phosphates. Reduction of copper occurred not only at the surface of titanium but also within the hydroxyapatite coating due to the reaction with hydrogen produced by the electrolysis of water during the cathodic polarization of the substrate. Copyright © 2013 Wiley Periodicals, Inc.

  12. Manure derived biochar can successfully replace phosphate rock amendment in peatland restoration.

    PubMed

    Pouliot, Rémy; Hugron, Sandrine; Rochefort, Line; Godbout, Stéphane; Palacios, Joahnn H; Groeneveld, Elisabeth; Jarry, Isabelle

    2015-07-01

    Phosphate rock fertilization is commonly used in peatland restoration to promote the growth of Polytrichum strictum, a nurse plant which aids the establishment of Sphagnum mosses. The present study tested whether 1) phosphorus fertilization facilitates the germination of P. strictum spores and 2) biochar derived from local pig manure can replace imported phosphate rock currently used in peatland restoration. Various doses of biochar were compared to phosphate rock to test its effect directly on P. strictum stem regeneration (in Petri dishes in a growth chamber) and in a simulation of peatland restoration with the moss layer transfer technique (in mesocoms in a greenhouse). Phosphorus fertilization promoted the germination of P. strictum spores as well as vegetative stem development. Biochar can effectively replace phosphate rock in peatland restoration giving a new waste management option for rural regions with phosphorus surpluses. As more available phosphorus was present in biochar, an addition of only 3-9 g m(-2) of pig manure biochar is recommended during the peatland restoration process, which is less than the standard dose of phosphate rock (15 g m(-2)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques

    NASA Astrophysics Data System (ADS)

    Kleine-Boymann, Matthias; Rohnke, Marcus; Henss, Anja; Peppler, Klaus; Sann, Joachim; Janek, Juergen

    2014-08-01

    The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.

  14. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  15. Magnetic nanofiber composite materials and devices using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xing; Zhou, Ziyao

    2017-04-11

    A nonreciprocal device is described. It includes a housing, a waveguide layer and at least one layer of magnetic nanofiber composite. The magnetic nanofiber composite layer is made up of a polymer base layer, a dielectric matrix comprising magnetic nanofibers. The nanofibers have a high aspect ratio and wherein said dielectric matrix is embedded in the polymer base layer.

  16. The Effect of 3% Phosphate Ascorbyl Gel on Bond Strength of Composite Resin to Enamel treated with 35% Hydrogen Peroxide.

    PubMed

    de Castro, Milena de Fátima Schalcher; Silva, Alice Carvalho; Franco, Marcela Mayana Pereira; Silva, Ana Paula Brito; Bramante, Fausto da Silva; da Silva, Monica Barros; Lima, Darlon Martins; Pereira, Adriana de Fátima Vasconcelos

    2015-05-01

    To evaluate the effect of 3% phosphate ascorbyl gel (PA) in different times onto the microshear bond strength of composite resin (CR) to bovine enamel treated with 35% hydrogen peroxide (HP). Thirty enamel blocks of bovine incisors were made and divided into 5 groups (n = 6) with three specimens per group (n = 18), according to treatment: G1= No bleaching + CR; G2 = HP + CR after 15d; G3 = HP + CR after 24 hours; G4 = HP + PA (15 min) + CR after 24 hours; G5 = HP + PA (2 hours) + CR after 24 hours. The resin cylinders were made by Tygon matrices. Microshear bond strength test was performed using universal testing machine with a 50N load at a speed of 0.5 mm/min. Fracture modes were assessed by a stereomicroscope 40 ×. Microshear bond strength values were submitted to the analysis of variance (ANOVA) one-way and Tukey test (p < 0.05). G1 had significant results when compared to G3 and G5 (p < 0.01). However, G2, G3, G4 and G5 have showed no significant differences among groups (p > 0.05). Failure modes were categorized into adhesive (90%) and mixed (10%). The use of 3% phosphate ascorbyl gel for 15 minutes was able to improve bond strength of composite resin to bleached bovine enamel, but when 3% phosphate ascorbyl gel was applied during 40 minutes it negatively interfered in the adhesion of the resin to bleached bovine enamel.

  17. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patternedmore » conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.« less

  18. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    PubMed

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Carbon nanostructures modified LiFePO4 cathodes for lithium ion battery applications: optimized porosity and composition

    NASA Astrophysics Data System (ADS)

    Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed

    2016-12-01

    Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.

  20. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.

    PubMed

    Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol

    2014-01-22

    Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina.

Top