Science.gov

Sample records for phosphate composites bonded

  1. AMORPHOUS CALCIUM PHOSPHATE COMPOSITES AND THEIR EFFECT ON COMPOSITE-ADHESIVE-DENTIN BONDING

    PubMed Central

    Antonucci, J.M.; O’Donnell, J.N.R.; Schumacher, G.E.; Skrtic, D.

    2009-01-01

    This study evaluates the bond strength and related properties of photo-polymerizable, remineralizing amorphous calcium phosphate (ACP) polymeric composite-adhesive systems to dentin after various periods of aqueous aging at 37 °C. An experimental ACP base and lining composite was made from a photo-activated resin comprising 2,2-bis[p-(2’-hydroxy-3’-methacryloxypropoxy)phenyl]propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and zirconyl dimethacrylate (ZrDMA); designated BTHZ. An experimental orthodontic composite was formulated from a photo-activated resin comprising ethoxylated bisphenol A dimethacrylate (EBPADMA), TEGDMA, HEMA and methacryloxyethyl phthalate (MEP); designated ETHM. In both composite series three fillers were compared: 1) freshly precipitated zirconium-modified ACP freshly precipitated (as-prepared Zr-ACP), 2) milled Zr-ACP and 3) an ion-leachable fluoride glass. In addition to the shear bond strength (SBS), work to fracture and failure modes of the orthodontic composites were determined. The SBS of the base and lining ACP composites appeared unaffected by filler type or immersion time. In the orthodontic ACP composite series, milled ACP composites showed initial mechanical advantages over as-prepared ACP composites, and produced higher incidence of a failure mode consistent with stronger adhesion. After six months of aqueous exposure, 80 % of specimens failed at the dentin-primer interface, with a 42 % overall reduction in bond strength. BTHZ and ETHM based ACP composites are potentially effective anti-demineralizing-remineralizing agents with possible clinical utility as protective base-liners and orthodontic cements, respectively. The analysis of the bond strength and failure modalities suggests that milled ACP composites may offer greater potential in clinical applications. PMID:19696914

  2. ADHESION OF AMORPHOUS CALCIUM PHOSPHATE COMPOSITES BONDED TO DENTIN: A STUDY IN FAILURE MODALITY

    PubMed Central

    O’Donnell, J.N.R.; Schumacher, G.E.; Antonucci, J.M.; Skrtic, D.

    2009-01-01

    Aims As a bioactive filler capable of remineralizing tooth structures, the main disadvantage of as-made amorphous calcium phosphate (am-ACP) are its large agglomerates. The objective of this study was to mill ACP, and compare the adhesive strength to dentin, work to fracture, and failure modes of both groups to glass-filled composites and one commercial compomer after 24 h, 1 week, 1, 3 and 6 months of exposure to simulated saliva solution (SLS). Flat dentin surfaces were acid-etched, primed, and photopolymerized. Composites were applied, photo-cured, and debonded in shear. The resin used in each composite was identical: ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate. Fillers consisted of am-ACP and milled ACP (m-ACP), and a strontium-containing glass (Sr-glass) at respective mass fractions of (40, 60, and 75) %. Findings 90 % of the fracture surfaces in this study showed adhesive failure, with most of these occurring at the dentin/primer interface. 52 % of failures after 24 h immersion occurred at the primer/composite interface. After six months of SLS exposure, 80 % of specimens failed at the dentin/primer interface, with a 42 % overall reduction in bond strength. Conclusions Milled ACP composites showed initial mechanical advantages over am-ACP composites and the compomer, and produced a higher incidence of a failure mode consistent with stronger adhesion. Evidence is provided which suggests that milled ACP composites may offer enhanced potential in clinical bonding applications. PMID:19107798

  3. Composition and application of novel sprayable phosphate cement (grancrete) that bonds to styrofoam

    DOEpatents

    Wagh, Arun S.; Paul, Jr., James W.

    2007-01-09

    A dry mix particulate composition of a calcined oxide of Mg and/or Ca, an acid phosphate, and fly ash or equivalent, wherein the calcined oxide is present in the range of from about 17% to about 40% by weight and the acid phosphate is present in the range of from about 29% to about 52% by weight and the fly ash or equivalent is present in the range of from about 24% to about 39% by weight when sand is added to the dry mix, it is present in the range of from about 39% to about 61% by weight of the combined dry mix and sand. A method of forming a structural member is also disclosed wherein an aqueous slurry of about 8 12 pounds of water is added to dry mix and sand.

  4. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  5. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  6. Critical surface energy of composite cement containing MDP (10-methacryloyloxydecyl dihydrogen phosphate) and chemical bonding to hydroxyapatite.

    PubMed

    Dabsie, Firas; Grégoire, Geneviève; Sharrock, Patrick

    2012-01-01

    Self-adhesive composite cements are increasingly used for cementing inlays/onlays, intraradicular posts, crowns and laminate veneers. Wider clinical acceptance is driven by simpler and faster handling procedures, much like observed for self-etching adhesives. 10-Methacryloyloxydecyl dihydrogen phosphate (MDP) is a bi-functional monomer incorporated as the reactive ingredient in a contemporary self-adhesive cement. We have examined the surface free energy parameters of this cement and studied the mode of action of the cement on dentine substrate by contact angle measurements to determine the critical surface energy of the cement. Retention of the infrared absorption bands characteristic of the acrylate moieties on the surface of hydroxyapatite particles suggests that MDP contributes to the overall bonding to dentine by forming ionic chemical bonds with surface calcium ions in dentine crystalites.

  7. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  8. Ultrasonic phosphate bonding of nanoparticles.

    PubMed

    Bassett, David C; Merle, Geraldine; Lennox, Bruce; Rabiei, Reza; Barthelat, François; Grover, Liam M; Barralet, Jake E

    2013-11-06

    Low intensity ultrasound-induced radicals interact with surface adsorbed orthophosphate to bond nanoparticles with high mechanical strength and surface area. Dissimilar materials could be bonded to form robust metallic, ceramic, and organic composite microparticles. 3D nanostructures of a hydrated and amorphous electrocatalyst with carbon nanotubes were also constructed which exceeded the resistance-limited efficiency of 2D electrodes.

  9. Effects of sandblasting, H2SO4/HCl etching, and phosphate primer application on bond strength of veneering resin composite to commercially pure titanium grade 4.

    PubMed

    Egoshi, Takafumi; Taira, Yohsuke; Soeno, Kohyoh; Sawase, Takashi

    2013-01-01

    This study investigated the effects of surface treatments on the bond strength of a resin composite to a commercially pure titanium. The bonding surfaces of all titanium specimens were ground with 1,000-grit silicon carbide paper and then subjected to one or more of these surface treatments: sandblasting with alumina (sand), etching with 45wt% H2SO4 and 15wt% HCl (SH-etchant) at 70°C for 10 min, and/or phosphate primer (MDP-primer) application. Specimens not subjected to any surface treatment were used as controls. After resin composite veneer placement and 24-h water immersion, the shear bond strengths of the specimens in descending order were: sand/SH-etchant/MDP-primer, sand/SH-etchant/no primer, no sand/SH-etchant/MDP-primer, sand/no etch/MDP-primer, no sand/SH-etchant/no primer, sand/no etch/no primer, no sand/no etch/MDP-primer, no sand/no etch/no primer. Scanning electron microscope observations revealed that sandblasting and SH-etchant created many micro- and nanoscale cavities on the titanium surface. Results showed that a combined use of sandblasting, SH-etchant, and MDP-primer application had a cooperative effect on titanium bonding.

  10. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  11. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements.

    PubMed

    Mestres, G; Abdolhosseini, M; Bowles, W; Huang, S-H; Aparicio, C; Gorr, S-U; Ginebra, M-P

    2013-09-01

    The main objective of this work was to assess the antimicrobial properties and the dentin-bonding strength of novel magnesium phosphate cements (MPC). Three formulations of MPC, consisting of magnesium oxide and a phosphate salt, NH4H2PO4, NaH2PO4 or a mixture of both, were evaluated. As a result of the setting reaction, MPC transformed into either struvite (MgNH4PO4·6H2O) when NH4H2PO4 was used or an amorphous magnesium sodium phosphate when NaH2PO4 was used. The MPC had appropriate setting times for hard tissue applications, high early compressive strengths and higher strength of bonding to dentin than commercial mineral trioxide aggregate cement. Bacteriological studies were performed with fresh and aged cements against three bacterial strains, Escherichia coli, Pseudomonas aeruginosa (planktonic and in biofilm) and Aggregatibacter actinomycetemcomitans. These bacteria have been associated with infected implants, as well as other frequent hard tissue related infections. Extracts of different compositions of MPC had bactericidal or bacteriostatic properties against the three bacterial strains tested. This was associated mainly with a synergistic effect between the high osmolarity and alkaline pH of the MPC. These intrinsic antimicrobial properties make MPC preferential candidates for applications in dentistry, such as root fillers, pulp capping agents and cavity liners.

  12. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  13. Evaluation of composite bonded joints

    SciTech Connect

    Whitworth, H.A.; Othieno, M.; Yin, S.W.

    1995-12-31

    The present investigation evaluates the influence of joining technique on the static and fatigue behavior of composite bonded joints. Specimens used in this investigation were LDF AS4/PEKK graphite/thermoplastic composites and IM6/3501-6 graphite/poxy composite laminates. Joints were made by either adhesive bonding or fusing bonding. For the adhesive bonded joints, in some cases specimens were bonded without any surface pretreatment while in other cases the surfaces were either grit blast or corona. treated prior to bonding. For the fusion bonded joints, joints were prepared by either induction welding or thermabonding. In addition, some specimens were conditioned in a wet environment for thirty days in order to observe the influence of moisture on the static strengths. During fatigue testing, the residual stiffness was continually monitored in order to assess the extent of fatigue damage development.

  14. Bonded and Stitched Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)

    2014-01-01

    A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.

  15. Effect of fluoride in phosphate buffer solution on bonding to artificially carious enamel.

    PubMed

    Wang, Hao; Shimada, Yasushi; Tagami, Junji

    2007-09-01

    The purpose of the present study was to evaluate the effect of fluoride on resin bonding to artificially carious enamel. Specimens from demineralized human enamel sections were prepared using two commercially available adhesives (Clearfil SE Bond, Kuraray; Single Bond, 3M) and a composite resin (Clearfil AP-X, Kuraray) according to manufacturers' instructions. They were then immersed in phosphate buffered saline solution with varied fluoride concentrations at 0, 0.1, 0.5, 1, and 10 ppm. After immersion in each solution for one, three, or seven days, microshear bond strength was measured. The bond strengths of both adhesive systems to artificially carious enamel significantly increased after immersion in fluoride-phosphate buffer solution. Based on the findings obtained, we thus proposed not to remove the white enamel lesions for bonding in the clinic. They might be preserved and treated using fluoride applications.

  16. Phosphate Bonded Solidification of Radioactive Incinerator Wastes

    SciTech Connect

    Walker, B. W.

    1999-04-13

    The incinerator at the Department of Energy Savannah River Site burns low level radioactive and hazardous waste. Ash and scrubber system waste streams are generated during the incineration process. Phosphate Ceramic technology is being tested to verify the ash and scrubber waste streams can be stabilized using this solidification method. Acceptance criteria for the solid waste forms include leachability, bleed water, compression testing, and permeability. Other testing on the waste forms include x-ray diffraction and scanning electron microscopy.

  17. Dipentaerythritol penta-acrylate phosphate - an alternative phosphate ester monomer for bonding of methacrylates to zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Tay, Franklin R.; Lu, Zhicen; Chen, Chen; Qian, Mengke; Zhang, Huaiqin; Tian, Fucong; Xie, Haifeng

    2016-12-01

    The present work examined the effects of dipentaerythritol penta-acrylate phosphate (PENTA) as an alternative phosphate ester monomer for bonding of methacrylate-based resins to yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and further investigated the potential bonding mechanism involved. Shear bond strength testing was performed to evaluate the efficacy of experimental PENTA-containing primers (5, 10, 15, 20 or 30 wt% PENTA in acetone) in improving resin-Y-TZP bond strength. Bonding without the use of a PENTA-containing served as the negative control, and a Methacryloyloxidecyl dihydrogenphosphate(MDP)-containing primer was used as the positive control. Inductively coupled plasma-mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the potential existence of chemical affinity between PENTA and Y-TZP. Shear bond strengths were significant higher in the 15 and 20 wt% PENTA groups. The ICP-MS, XPS and FTIR data indicated that the P content on the Y-TZP surface increased as the concentration of PENTA increased in the experimental primers, via the formation of Zr–O–P bond. Taken together, the results attest that PENTA improves resin bonding of Y-TZP through chemical reaction with Y-TZP. Increasing the concentration of PENTA augments its binding affinity but not its bonding efficacy with zirconia.

  18. Dipentaerythritol penta-acrylate phosphate - an alternative phosphate ester monomer for bonding of methacrylates to zirconia

    PubMed Central

    Chen, Ying; Tay, Franklin R.; Lu, Zhicen; Chen, Chen; Qian, Mengke; Zhang, Huaiqin; Tian, Fucong; Xie, Haifeng

    2016-01-01

    The present work examined the effects of dipentaerythritol penta-acrylate phosphate (PENTA) as an alternative phosphate ester monomer for bonding of methacrylate-based resins to yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and further investigated the potential bonding mechanism involved. Shear bond strength testing was performed to evaluate the efficacy of experimental PENTA-containing primers (5, 10, 15, 20 or 30 wt% PENTA in acetone) in improving resin-Y-TZP bond strength. Bonding without the use of a PENTA-containing served as the negative control, and a Methacryloyloxidecyl dihydrogenphosphate(MDP)-containing primer was used as the positive control. Inductively coupled plasma-mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the potential existence of chemical affinity between PENTA and Y-TZP. Shear bond strengths were significant higher in the 15 and 20 wt% PENTA groups. The ICP-MS, XPS and FTIR data indicated that the P content on the Y-TZP surface increased as the concentration of PENTA increased in the experimental primers, via the formation of Zr–O–P bond. Taken together, the results attest that PENTA improves resin bonding of Y-TZP through chemical reaction with Y-TZP. Increasing the concentration of PENTA augments its binding affinity but not its bonding efficacy with zirconia. PMID:28000765

  19. Porcelain laminate veneer restorations bonded with a three-liquid silane bonding agent and a dual-activated luting composite.

    PubMed

    Matsumura, Hideo; Aida, Yukiko; Ishikawa, Yumi; Tanoue, Naomi

    2006-12-01

    This clinical report describes the fabrication and bonding of porcelain laminate veneer restorations in a patient with anterior open spaces. Laminate veneer restorations made of feldspathic porcelain were etched with 5% hydrofluoric acid, rinsed under tap water, ultrasonically cleaned with methanol, and primed with a chemically activated three-liquid silane bonding agent (Clearfil Porcelain Bond). The enamel surfaces were etched with 40% phosphoric acid, rinsed with water, and primed with a two-liquid bonding agent (Clearfil New Bond) that contained a hydrophobic phosphate (10-methacryloyloxydecyl dihydrogen phosphate; MDP). The restorations were bonded with a dual-activated luting composite (Clapearl DC). The veneers have been functioning satisfactorily for an observation period of one year. Combined use of the Clearfil bonding agents and Clapearl DC luting composite is an alternative to conventional materials for seating porcelain laminate veneer restorations, although the system is inapplicable to dentin bonding.

  20. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOEpatents

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  1. Bonded composite repair of composite structures

    NASA Astrophysics Data System (ADS)

    Mahler, Mary A.

    Repair and maintenance cost drives a large percentage of the lifetime cost of aircraft structures. Understanding repair issues can lead to a structure that significantly lowers the lifetime cost. Advanced composite materials, while offering the potential to increase aircraft capabilities with minimum weight, are more susceptible to repairable damage than conventional aircraft materials. Improved inspection and repair methods are required to ensure structural integrity and aircraft readiness in the existing operational environment. Many of today's innovative composite designs may result in aircraft structures that are unreasonably difficult to repair. As a first step, technical issues associated with bonded composite repair of composite structures were investigated. An extensive literature review identified many areas where real world composite repairs are being used successfully. An electronic database was developed summarizing the publications found during the literature review. The database includes publication, experimental test results and analytical results of advanced composite bonded repairs. The current analysis of repair does not account for the variations that exist in repair. To facilitate the analysis, a finite element interface was developed to provide analysts with a tool that would create complete finite element models of repaired structures efficiently and in a 3-dimensional view. The finite element models created by the developed interface were successfully correlated to test data for accuracy of the results. Parametric studies were performed using the interface to evaluate effects of repair variables. Thermal impact of repair on the repair panel is one area lacking attention in the repair literature. To understand the impact of heat and thermal gradients of the repair, an analytical investigation was performed to evaluate. the parameters affected by heat. For a solid laminate, the temperature at the adhesive bondline was investigated. The primary

  2. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN; Ertem, Gozen

    1990-01-01

    The 2(prime)-d-5(prime)-GMP and 2(prime)-d-5(prime)-AMP bind 2 times more strongly to montmorillonite 22A than do 2(prime)-d-5(prime)-CMP and 5(prime)-TMP. The dinucleotide d(pG)2 forms in 9.2 percent yield and the cyclic dinucleotide c(dpG)2 in 5.4 percent yield in the reaction of 2(prime)-d-5(prime)-GMP with EDAC in the presence of montmorillonite 22A. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5(prime)-ImdpA on montmorillonite 22A. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  3. Recycling of used commercial phosphate-bonded investments with additional mono-ammonium phosphate.

    PubMed

    Zhang, Zutai; Tamaki, Yukimichi; Hotta, Yasuhiro; Miyazaki, Takashi

    2005-03-01

    Industrial waste is on the increase, resulting in severe environmental contamination. Against this background, this study sought to investigate the possibility of recycling used phosphate-bonded investments. Commercial phosphate-bonded investment was mixed and heated according to manufacturer's instructions, then powdered with a ball mill machine to be used as recycled investment (Code: R). Mono-ammonium phosphate (NH4H2PO4) of 2, 5, 8, 11, and 14 g were added to 100 g of R because of residual MgO, and coded as Ra, Rb, Rc, Rd, and Re respectively. Investment properties were then examined. Particle size of R was 50.66 microm and close to the original investment. It was found that more NH4H2PO4 led to larger setting expansion, smaller thermal expansion, and lower fired strength. The data of Re in these three aspects were 1.42 +/- 0.09%, 0.78 +/- 0.21%, and 8.85 +/- 0.88 MPa respectively, and differences against the original investment were significant. Ra showed significantly longer setting time than other investments. Based on the results of this study, we concluded that it was possible to set used phosphate-bonded investments by adding NH4H2PO4; in particular, Rd showed suitable expansion and acceptable mechanical properties.

  4. Leaching behavior of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.; Dorf, M.

    1996-04-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. We have developed a magnesium phosphate ceramic to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  5. Casein Phosphopeptide-Amorphous Calcium Phosphate and Shear Bond Strength of Adhesives to Primary Teeth Enamel

    PubMed Central

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-01-01

    Background: CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. Objectives: This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. Materials and Methods: This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P < 0.05 was considered as significance level. Results: Shear bond strengths of different adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. Conclusions: To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth

  6. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  7. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics.

    PubMed

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-12-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics.

  8. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  9. Ultrasonic characterization of interfaces in composite bonds

    SciTech Connect

    Wang, N.; Lobkis, O. I.; Rokhlin, S. I.; Cantrell, J. H.

    2011-06-23

    The inverse determination of imperfect interfaces from reflection spectra of normal and oblique incident ultrasonic waves in adhesive bonds of multidirectional composites is investigated. The oblique measurements are complicated by the highly dispersed nature of oblique wave spectra at frequencies above 3MHz. Different strategies for bond property reconstruction, including a modulation method, are discussed. The relation of measured interfacial spring density to the physico-chemical model of a composite interface described by polymer molecular bonds to emulate loss of molecular strength on an adhesive composite interface is discussed. This potentially relates the interfacial (adhesion) strength (number of bonds at the adhesive substrate interface) to the spring constant (stiffness) area density (flux), which is an ultrasonically measurable parameter.

  10. Ultrasonic Characterization of Interfaces in Composite Bonds

    NASA Technical Reports Server (NTRS)

    Wang, N.; Lobkis, O. I.; Rokhlin, S. I.; Cantrell, J. H.

    2010-01-01

    The inverse determination of imperfect interfaces from reflection spectra of normal and oblique incident ultrasonic waves in adhesive bonds of multidirectional composites is investigated. The oblique measurements are complicated by the highly dispersed nature of oblique wave spectra at frequencies above 3MHz. Different strategies for bond property reconstruction, including a modulation method, are discussed. The relation of measured interfacial spring density to the physico-chemical model of a composite interface described by polymer molecular bonds to emulate loss of molecular strength on an adhesive composite interface is discussed. This potentially relates the interfacial (adhesion) strength (number of bonds at the adhesive substrate interface) to the spring constant (stiffness) area density (flux), which is an ultrasonically measurable parameter.

  11. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    SciTech Connect

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe{sub 3}O{sub 4}) and haematite (Fe{sub 2}O{sub 3}). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350{degrees}C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy`s mixed waste streams.

  12. Wollastonite based-Chemically Bonded Phosphate Ceramics with lead oxide contents under gamma irradiation

    NASA Astrophysics Data System (ADS)

    Colorado, H. A.; Pleitt, J.; Hiel, C.; Yang, J. M.; Hahn, H. T.; Castano, C. H.

    2012-06-01

    The shielding properties to gamma rays as well as the effect of lead concentration incorporated into Chemically Bonded Phosphate Ceramics (CBPCs) composites are presented. The Wollastonite-based CBPC was fabricated by mixing a patented aqueous phosphoric acid formulation with Wollastonite powder. CBPC has been proved to be good structural material, with excellent thermal resistant properties, and research already showed their potential for radiation shielding applications. Wollastonite-based CBPC is a composite material itself with several crystalline and amorphous phases. Irradiation experiments were conducted on different Wollastonite-based CBPCs with lead oxide. Radiation shielding potential, attenuation coefficients in a broad range of energies pertinent to engineering applications and density experiments showing the effect of the PbO additions (to improve gamma shielding capabilities) are also presented. Microstructure was identified by using scanning electron microscopy and X-ray diffraction.

  13. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    PubMed

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH(-) or (•)OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  14. Stabilization of hazardous ash waste with newberyite-rich chemically bonded magnesium phosphate ceramic

    SciTech Connect

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1995-11-01

    A novel newberyite-rich magnesium-phosphate ceramic, intended for the stabilization of the US Department of Energy`s low-level mixed-waste streams, has been developed by an acid-base reaction between magnesium oxide and a phosphoric acid solution. The reaction slurry, formed at room temperature, sets rapidly and forms a lightweight hard ceramic with low open porosity and a high compression strength of {approx} 6,200 psi. It is a composite of stable mineral phases of newberyite, luenebergite, and residual Mg oxide. Using this matrix, the authors developed superior waste forms for a surrogate ash waste stream. The final waste form is a low-permeability structural-quality ceramic, in which hazardous contaminants are chemically fixed and physically encapsulated. The compression strength of the waste form is an order of magnitude higher than the land disposal requirement, even at high waste loading. The high compression strength is attributed to stronger bonds in the waste form that result from participation of ash waste in the setting reactions. Long-term leaching studies show that the waste form is stable in an aqueous environment. The chemically bonded phosphate ceramic approach in this study may be a simple, inexpensive, and efficient method for fabricating high-performance waste forms either for stabilizing waste streams or for developing value-added construction materials from high-volume benign waste streams.

  15. Method for Producing Chemically Bonded Phosphate Ceramics and for Stabilizing Contaminants Encapsulated therein Utilizing Reducing Agents

    SciTech Connect

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    1999-05-05

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions is stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  16. Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    2000-01-01

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  17. EVALUATION OF CHEMICALLY BONDED PHOSPHATE CERAMICS FOR MERCURY STABILIZATION OF A MIXED SYNTHETIC WASTE

    EPA Science Inventory

    This experimental study was conducted to evaluate the stabilization and encapsulation technique developed by Argonne National Laboratory, called the Chemically Bonded Phosphate Ceramics technology for Hg- and HgCl2-contaminated synthetic waste materials. Leachability ...

  18. Mechanical properties of magnesium ammonium phosphate cements and their zeolite composites

    SciTech Connect

    Wagh, A.S.; Singh, D.; Subhan, W.; Chawla, N.

    1993-04-01

    Phosphate-bonded cements have been proposed as candidates for solidification and stabilization of mixed wastes. Magnesium ammonium phosphate (MAP) has been investigated as a candidate material. Detailed physical and mechanical properties of MAP cement are reported. It is synthesized by the route of reaction of calcined MgO and ammonium phosphate solution. Samples are made by setting the cement at room temperature and slight pressure. The porosity is reduced to {approximately}11% by impregnation of ammonium phosphate solution. Detailed mechanical properties such as flexural strength, fracture toughness and compression strength are reported and fracture mechanical analyses supported with scanning electron microscopy are provided. Properties of composites of these cements with zeolites, which may be used for containment of radioactive as well as chemical waste are studied. We demonstrate that the strengths of these composites compare well with portland cement even after 50% loading of zeolites. Fracture mechanical implications of such loadings are given.

  19. Polyimide adhesives for titanium and composite bonding

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.

    1978-01-01

    Approach results in synthesis of addition polyimide adhesives with exceptional high temperature capabilities that show excellent potential for bonding titanium metal, polyimide/graphite composites, and combinations of these materials. Adhesives compatible with materials used in high performance aircraft and spacecraft structures also prove highly desirable in many other applications involving similar adherents.

  20. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes a new process, particle-bonding technology, to produce biopolymer composites from agricultural commodities. In this technology, matrix-protein complexes are formed by the interaction of micrometer-scale matrix material with an adhesive protein, zein. This spontaneous process m...

  1. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization.

    PubMed

    Tanase, Constantin E; Popa, Marcel I; Verestiuc, Liliana

    2012-04-01

    A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl(2) and NaH(2) PO(4) on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37°C and pH = 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between -NH3(+) and Ca(2+) on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application.

  2. Analysis of bolted and bonded composite

    NASA Astrophysics Data System (ADS)

    Tan, Seng C.

    1992-09-01

    In the analysis and design of bonded and bolted composite joints, certain input data are required that are not readily available. Many engineering hours at the depots are expended in obtaining the required information. Even when the data are obtained, the accuracy of it is sometimes questionable. The availability of this information in a computerized database would greatly facilitate composite joint analysis and design. The work described in this report involved an extensive search of the technical literature for adhesive and composite material property data as well as bonded and bolted joint properties. The data collected in the literature search were tabulated into a user friendly format for ready retrieval. The data in this tabulation include, in addition to material properties, discussions of fastener and joint design parameters, loading and environmental effects, and test methods.

  3. Seam bonding of graphite reinforced composite panels

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.; Tyeryar, James R.

    1986-01-01

    An account is given of the design features and operating characteristics of a method for the joining of composite parts, at a rate of 2 to 6 inches/min, in which the heating process responsible for adhesive flow at 800 F is focused upon the overlapped seam. The heating element is a self-tuning solid state power oscillator whose ferrite's toroid geometry generates a uniform, concentrated magnetic flux in the component to be bonded. Specimens cut from graphite/epoxy panels bonded with epoxy-phenolic adhesive by this process have exhibited average lap-shear strengths of the order of 3400 lbs/sq in.

  4. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content.

  5. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions.

    PubMed

    Un, Sun; Bruch, Eduardo M

    2015-11-02

    Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes.

  6. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  7. Dental Composites with Calcium / Strontium Phosphates and Polylysine

    PubMed Central

    Panpisut, Piyaphong; Liaqat, Saad; Zacharaki, Eleni; Xia, Wendy; Petridis, Haralampos; Young, Anne Margaret

    2016-01-01

    Purpose This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Materials and Methods Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Results Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. Conclusion The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help

  8. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Cade-Menun, Barbara J.; Paytan, Adina

    2006-11-01

    Elkhorn Slough, a small seasonal estuary in central California, has been subjected to increased nutrient loading from agricultural and other non-point sources. However, because nutrients do not behave conservatively, tracing nutrient sources and cycling in ecosystems like Elkhorn Slough has been difficult to assess. This is particularly true of phosphorus (P), which has only one stable isotope and cannot be used as an isotopic tracer. However, isotopic fractionation of oxygen in phosphate at surface water temperatures only occurs as a result of enzyme-mediated, biochemical reactions. Thus, if phosphate demand is low relative to input and is not heavily cycled within the ecosystem, the δ18O of phosphate will reflect the isotopic composition of phosphate sources to the system. We utilized the δ18O of dissolved inorganic phosphate (DIP) within the main channel of the slough and nearby Moss Landing Harbor and the δ18O of reactive phosphate from sediment and soil samples collected within the watershed to understand phosphate sources and cycling within Elkhorn Slough. Trends in the δ18O of DIP were seasonally consistent with high values near the mouth reflecting oceanic phosphate (19.1‰-20.3‰), dropping to a minimum value near Hummingbird Island in the central slough (point source, 14.1‰-14.4‰), and increasing again near the head of the slough, reflecting fertilizer input (18.9‰-19.3‰). Reactive phosphate δ18O values extracted from sediments and soils in the watershed range from 10.6‰ in a drainage ditch to 22.3‰ in creek sediments near agriculture fields. The wide range in phosphate δ18O values reflects the variations in land use and application of different fertilizers in this agriculturally dominated landscape. These data suggest that phosphate δ18O can be an effective tool for identifying P sources and understanding phosphate dynamics in estuarine ecosystems.

  9. Mechanical properties of tricalcium phosphate-alumina composites

    NASA Astrophysics Data System (ADS)

    Sakka, S.; Ben Ayed, F.; Bouaziz, J.

    2012-02-01

    Tricalcium phosphate and alumina powder were mixed in order to elaborate biphasic ceramics composites. This study deals to produce bioceramics composites sintered at various temperatures for differents times. The characterization of samples, before and after the sintering process was investigated, using X-Ray diffraction, scanning electronic microscopy, 31P and 27Al nuclear magnetic resonance and differential thermal analysis. Mechanical properties of biphasic composites were studied using Brazilian test. The tricalcium phosphate - 75 wt% alumina composites mechanical resistance increased with sintered temperature. The mechanical resistance reach it's optimum value (8.6 MPa) at 1550°C for two hours.

  10. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  11. Criterion for mixed mode fracture in composite bonded joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1986-01-01

    A study was undertaken to characterize the debond growth mechanism of adhesively bonded composite joints under mode I, mixed mode I-II, and mode II static loadings. The bonded system consisted of graphite-epoxy composite adherends bonded with a toughened epoxy adhesive. The mode I, mode II and mixed mode I-II fracture energies of the tested adhesives were found to be equal to each other. The criterion for mixed mode fracture in composite bonded joints was found.

  12. Porosity of dental phosphate-bonded investments after setting and heating processes.

    PubMed

    Asaoka, Kenzo; Bae, Ji-Young; Lee, Hae-Hyoung

    2012-01-01

    Porosities of set and burnout compacts of phosphate-bonded investments were determined. A gas pycnometer was used to measure the volumes, and hence the densities, of fine powders and porous compacts. Porosities of set and burnout compacts were then obtained from these data for as-received powders and dry set compacts by a numerical simulation method, subsequently leading on to the estimated compositions of conventional and rapid-heating investments used in this study. Excess water content in the hardening investment compact was evaluated as a function of setting time elapsed from the start of mixing. Porosities were about 24-32% for set compacts and 43% for burnout compacts, which well agreed with the numerically computed results. It was concluded that the functional composition of investment powder needed to achieve the optimal porosity as well as process parameters such as water-powder (W/P) ratio and keeping time of mixed investment casting slurry before heat treatment could be determined using the numerical simulation method developed in this study.

  13. Equipment and techniques for rapid bonding of composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.; Johnston, David F.

    1985-01-01

    Rapid adhesive bonding concepts have been developed at NASA Langley which employ induction heating of thermoplastic composite matrices directly along the bond line and/or adherends without heating the entire structure, the supports, and the fixtures of the bonding assembly. Short term thermal cycling and water boil exposures have shown encouraging environmental stability for these rapid bonds. These bonding techniques have been extended to continuous seam bonding of metallic and composite panels with promising results for the bonding of both like and unlike adherends; the portability of the apparatus suggests that field repairs of damaged structures are possible.

  14. Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  15. Rapid adhesive bonding of advanced composites and titanium

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.

    1985-01-01

    Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.

  16. Bench-Scale Evaluation Of Chemically Bonded Phosphate Ceramic Technology To Stabilize Mercury Waste Mixtures

    EPA Science Inventory

    This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...

  17. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive

  18. Effect of temporary filling materials on repair bond strengths of composite resins.

    PubMed

    Erdemir, Ali; Eldeniz, Ayce Unverdi; Belli, Sema

    2008-08-01

    Endodontic access cavities sometimes can be prepared through a permanent composite restoration. Between the appointments, temporary cements are used to seal access cavities and may have negative effect on bonding of further composite restoration. The purpose of this study was to compare shear bond strength of composite to composite which had been in contact with various temporary filling materials. Standard cavities were prepared on 160 acrylic resin blocks, obturated with composite resin (Clearfil AP-X, Kuraray, Japan) and randomly divided into eight groups (n = 20). Group 1 received no treatment. From group 2-8, composite surfaces were covered with the following cements temporarily: Zinc-oxide/calcium-sulphate (Cavit-G, ESPE, Germany), two different Zinc-Oxide-Eugenol materials (ZnOE, Cavex, Holland and IRM, Dentsply, USA), Zinc-phosphate cement (Adhesor, Spofa-Dental, Germany), Zinc-polycarboxylate cement (Adhesor-Carbofine, Spofa-Dental, Germany), Glass-Ionomer-Cement (Argion-Molar, Voco, Germany), or light curing temporary material (Clip, Voco, Germany). The cements were removed mechanically after 1 week storage in distilled water at 37 degrees C and composite surfaces were treated with a self-etch adhesive system (SE-Bond, Kuraray, Japan). Composite resin build-ups were created on composite surfaces. Shear bond strength values were measured using universal testing machine at crosshead speed of 1 mm/min. The data was calculated in MPa and statistically analyzed using one-way ANOVA and Tukey tests. Eugenol-containing cements significantly reduced shear bond strengths of composite to composite (p < 0.05), while the other temporary materials had no adverse effect on shear bond strength (p > 0.05). These findings suggested that temporary filling materials except eugenol-containing materials have no negative effect on composite repair bond strengths.

  19. Shear bond strength between an indirect composite veneering material and zirconia ceramics after thermocycling.

    PubMed

    Komine, Futoshi; Kobayashi, Kazuhisa; Saito, Ayako; Fushiki, Ryosuke; Koizumi, Hiroyasu; Matsumura, Hideo

    2009-12-01

    The present study evaluated the shear bond strength between an indirect composite material and zirconium dioxide (zirconia) ceramics after thermocycling. A total of 80 zirconia (Katana) discs were divided into five groups and primed with one of following agents: All Bond 2 Primer B (ABB), Alloy Primer (ALP), AZ Primer (AZP), Estenia Opaque Primer (EOP), and Porcelain Liner M Liquid A (PLA). An indirect composite material (Estenia C&B) was then bonded to the primed zirconia. One-half of the specimens (n = 8) in each group were stored in distilled water at 37 degrees C for 24 h, and the remaining eight specimens were thermocycled 5,000 times before shear bond strength testing. Mean bond strengths before thermocycling varied from 10.1 to 15.6 MPa; bond strengths after thermocycling ranged from 4.3 to 17.6 MPa. The ALP group had the highest strengths after thermocycling; there were no significant differences among the PLA, AZP, and EOP groups. The bond strength values for PLA, AZP, EOP, and ALP did not decrease with thermocycling. The application of an acidic functional monomer containing carboxylic anhydride (4-META), phosphonic acid (6-MHPA), or phosphate monomer (MDP) provided durable bond strength between Estenia C&B indirect composite and Katana zirconia.

  20. Bond strengths of lingual orthodontic brackets bonded with light-cured composite resins cured by transillumination.

    PubMed

    King, L; Smith, R T; Wendt, S L; Behrents, R G

    1987-04-01

    A method of curing light-cured composite resins by transillumination to cement acid-etched fixed partial dentures was adapted to bond solid mesh-backed lingual orthodontic brackets. Results of this investigation showed that the bond strengths of the orthodontic brackets bonded with light-cured composite resins were significantly less (P less than 0.05) than the bond strengths of the orthodontic brackets cemented with traditional adhesives and orthodontic composite resins. Notwithstanding, the bond strengths achieved with the transilluminated light-cured composite resins should be adequate to withstand the forces of mastication and orthodontic movements. There was no correlation of bond strengths of the brackets cemented with the transilluminated light-cured composite resins when compared to the faciolingual widths of the teeth.

  1. Biomimetic synthesis of poly(propylene-fumarate)-calcium phosphate composites for tissue engineering

    NASA Astrophysics Data System (ADS)

    Hakimi Mehr, Dorna

    A novel in-situ co-precipitation process for the synthesis of poly(propylene-fumarate)-calcium phosphate composites was developed. In this process the calcium phosphate phase nucleates and grows in the presence of poly(propylene-fumarate) (PPF), in a novel two-solvent system including tetrahydrofuran (THF) and water. It was found that the presence of the organic solvent (THF) does not affect the phase evolution of the calcium phosphate. Both in the presence and absence of THF crystalline dicalcium phosphate dihydrate (DCPD, brushite) and poorly crystalline hydroxyapatite (HAp) form, and transform to crystalline HAp after 24 hours of synthesis time. Contrary to the organic solvent, PPF has a significant influence on the calcium phosphate phase that forms in its presence. It is found that PPF provides a template for the formation of the calcium phosphate phase through a coordination bond between the calcium ion and the carbonyl group of the polymer. As a result of this templating, hydroxyapatite can form in a significantly shorter period of time (˜1 hr) compared to the system where PPF is not present (24 hrs). The nature of the calcium phosphate phase that forms in the presence of PPF depends on the molecular weight and concentration of PPF. High concentration of PPF in the composite (e.g. 80%) stabilizes an amorphous calcium phosphate (ACP) phase and hinders its transformation to crystalline apatite, while low concentration of PPF (e.g. 5%) promotes the formation of crystalline apatite. Higher molecular weight PPF (Mw = 4500) is found to be more efficient in stabilizing the amorphous phase compared to lower molecular weight PPF (Mw = 1800). While high molecular weight PPF stabilizes ACP, low molecular weight PPF promotes its conversion to crystalline apatite. TEM observations revealed that flake-like hydroxyapatite crystals form in the absence of PPF while spherical ACP particles form in a composite containing 80% PPF. The ACP nano-particles (50-100 nm in diameter

  2. Chemically bonded phosphate ceramic sealant formulations for oil field applications

    SciTech Connect

    Wagh, Arun S.; Jeong, Seung-Young; McDaniel, Richard

    2008-10-21

    A sealant for an oil or geothermal well capable of setting within about 3 to about 6 hours at temperatures less than about 250.degree. F. for shallow wells less than about 10,000 feet and deep wells greater than about 10,000 feet having MgO present in the range of from about 9.9 to about 14.5%, KH.sub.2PO.sub.4 present in the range of from about 29.7 to about 27.2%, class C fly ash present in the range of from about 19.8 to about 36.3%, class F fly ash present in the range of from about 19.8 to about 0%, boric acid or borax present in the range of from about 0.39 to about 1.45%, and water present in the range of from about 20.3 to about 21.86% by weight of the sealant.A method of sealing wells is disclosed as are compositions for very high temperature wells is disclosed as is a composition for treating oil field wastes.

  3. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  4. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, Marcus A.; Wohl, Christopher J.; Connell, John W.

    2009-01-01

    A Nd:YAG laser was used to etch patterns conducive to adhesive bonding onto CFRP surfaces. These were compared to typical pre-bonding surface treatments including grit blasting, manual abrasion, and peel ply. Laser treated composites were then subjected to optical microscopy, contact angle measurements, and post-bonding mechanical testing.

  5. Bonding of strain gages to fiber reinforced composite plastic materials

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hanson, M. P.; Serafini, T. T.

    1970-01-01

    Strain gage is installed during molding of composite and utilizes the adhesive properties of the matrix resin in the composite to bond the strain gage in place. Gages thus embedded provide data at all temperatures that the matrix can withstand.

  6. Evaluation of composite adhesive bonds using digital image correlation

    NASA Astrophysics Data System (ADS)

    Shrestha, Shashi Shekhar

    Advanced composite materials are widely used for many structural applications in the aerospace/aircraft industries today. Joining of composite structures using adhesive bonding offers several advantages over traditional fastening methods. However, this technique is not yet employed for fastening the primary structures of aircrafts or space vehicles. There are several reasons for this: There are not any reliable non-destructive evaluation (NDE) methods that can quantify the strength of the bonds, and there are no certifications of quality assurance for inspecting the bond quality. Therefore, there is a significant need for an effective, reliable, easy to use NDE method for the analysis of composite adhesive joints. This research aimed to investigate an adhesively bonded composite-aluminum joints of variable bond strength using digital image correlation (DIC). There are many future possibilities in continuing this research work. As the application of composite materials and adhesive bond are increasing rapidly, the reliability of the composite structures using adhesive bond should quantified. Hence a lot of similar research using various adhesive bonds and materials can be conducted for characterizing the behavior of adhesive bond. The results obtained from this research will set the foundation for the development of ultrasonic DIC as a nondestructive approach for the evaluation of adhesive bond line.

  7. Effect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Ramamurthy, G.

    1989-01-01

    An experimental investigation of composite to composite bonded joints was undertaken to study the effect of bond thickness on debond growth rate under cyclic loading and critical strain energy release rate under static loading. Double cantilever beam specimens of graphite/epoxy adherends bonded with EC 3445 were tested under mode I loading. A different behavior of fracture and fatigue strength was observed with variation of bondline thickness.

  8. Critical hydrogen bonds and protonation states of pyridoxal 5'-phosphate revealed by NMR.

    PubMed

    Limbach, Hans-Heinrich; Chan-Huot, Monique; Sharif, Shasad; Tolstoy, Peter M; Shenderovich, Ilya G; Denisov, Gleb S; Toney, Michael D

    2011-11-01

    In this contribution we review recent NMR studies of protonation and hydrogen bond states of pyridoxal 5'-phosphate (PLP) and PLP model Schiff bases in different environments, starting from aqueous solution, the organic solid state to polar organic solution and finally to enzyme environments. We have established hydrogen bond correlations that allow one to estimate hydrogen bond geometries from (15)N chemical shifts. It is shown that protonation of the pyridine ring of PLP in aspartate aminotransferase (AspAT) is achieved by (i) an intermolecular OHN hydrogen bond with an aspartate residue, assisted by the imidazole group of a histidine side chain and (ii) a local polarity as found for related model systems in a polar organic solvent exhibiting a dielectric constant of about 30. Model studies indicate that protonation of the pyridine ring of PLP leads to a dominance of the ketoenamine form, where the intramolecular OHN hydrogen bond of PLP exhibits a zwitterionic state. Thus, the PLP moiety in AspAT carries a net positive charge considered as a pre-requisite to initiate the enzyme reaction. However, it is shown that the ketoenamine form dominates in the absence of ring protonation when PLP is solvated by polar groups such as water. Finally, the differences between acid-base interactions in aqueous solution and in the interior of proteins are discussed. This article is part of a special issue entitled: Pyridoxal Phosphate Enzymology.

  9. Criterion for mixed mode fracture in composite bonded joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1986-01-01

    A study was undertaken to characterize the debond growth mechanism of adhesively bonded composite joints under mode I, mixed mode I-II, and mode II static loadings. The bonded system consisted of graphite/epoxy (T300/5208) composite adherends bonded with a toughened epoxy (EC 3445) adhesive. The mode I, mode II and mixed-mode I-II fracture energies of the tested adhesive were found to be equal to each other. Furthermore, the criterion for mixed mode fracture in composite bonded joints was determined.

  10. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    PubMed Central

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (P<0.001) with more adhesive remaining on the teeth bonded with composite resin. Conclusion: RMGIs have significantly lower SBS compared to composite resin for orthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  11. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    SciTech Connect

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-06-21

    binder components from the waste form surface. Waste forms for ANS 16.1 leach testing contained appropriate amounts of rhenium and iodine as radionuclide surrogates, along with the additives silver-loaded zeolite and tin chloride. The leachability index for Re was found to range from 7.9 to 9.0 for all the samples evaluated. Iodine was below detection limit (5 ppb) for all the leachate samples. Further, leaching of sodium was low, as indicated by the leachability index ranging from 7.6-10.4, indicative of chemical binding of the various chemical species. Target leachability indices for Re, I, and Na were 9, 11, and 6, respectively. Degradation was observed in some of the samples post 90-day ANS 16.1 tests. Toxicity characteristic leaching procedure (TCLP) results showed that all the hazardous contaminants were contained in the waste, and the hazardous metal concentrations were below the Universal Treatment Standard limits. Preliminary scale-up (2-gal waste forms) was conducted to demonstrate the scalability of the Ceramicrete process. Use of minimal amounts of boric acid as a set retarder was used to control the working time for the slurry. Flexibility in treating waste streams with wide ranging compositional make-ups and ease of process scale-up are attractive attributes of Ceramicrete technology.

  12. Bond strength of composite resin to pulp capping biomaterials after application of three different bonding systems.

    PubMed

    Jaberi-Ansari, Zahra; Mahdilou, Maryam; Ahmadyar, Maryam; Asgary, Saeed

    2013-01-01

    Background and aims. Bonding of composite resin filling materials to pulp protecting agents produces an adhesive joint which is important for the quality of filling as well as success of restoration. We aimed to assess the bond strength of composite resin to three pulp capping biomaterials: Pro Root mineral trioxide aggregate (PMTA), Root MTA (RMTA) and calcium enriched mixture (CEM) cement, using three bonding systems [a total-etch (Single Bond) and two self-etch systems (Protect bond and SE Bond)]. Materials and methods. Ninety acrylic molds, each containing a 6×2-mm hole, were divided into 3 groups and filled with PMTA, RMTA and CEM cements. The samples in each experimental group were then randomly divided into 3 sub-groups; Single Bond, Protect Bond and SE Bond bonding systems were applied to the tested materials. Cylindrical forms of composite resin (Z100, 2×2 mm) were placed onto the samples and cured. Shear bond strength values were measured for 9 subgroups using a universal testing machine. Data were analyzed using two-way ANOVA. Results. The average shear bond strengths of Z100 composite resin after application of Single Bond, Protect Bond and SE Bond systems were as follows; PMTA: 5.1±2.42, 4.56±1.96 and 4.52±1.7; RMTA: 4.71±1.77, 4.31±0.56 and 4.79±1.88; and CEM cement: 4.75±1.1, 4.54±1.59 and 4.64±1.78 MPa, respectively. The type of pulp capping material, bonding system and their interacting effects did not have a significant effect on the bond strengths of composite resin to pulp capping biomaterials. Conclusion. Within the limitations of this in vitrostudy, bond strength of composite resin to two types of MTA as well as CEM cement were similar following application of the total-etch or self-etch bonding systems.

  13. Bond Strength of Composite Resin to Pulp Capping Biomaterials after Application of Three Different Bonding Systems

    PubMed Central

    Jaberi-Ansari, Zahra; Mahdilou, Maryam; Ahmadyar, Maryam; Asgary, Saeed

    2013-01-01

    Background and aims. Bonding of composite resin filling materials to pulp protecting agents produces an adhesive joint which is important for the quality of filling as well as success of restoration. We aimed to assess the bond strength of composite resin to three pulp capping biomaterials: Pro Root mineral trioxide aggregate (PMTA), Root MTA (RMTA) and calcium enriched mixture (CEM) cement, using three bonding systems [a total-etch (Single Bond) and two self-etch systems (Protect bond and SE Bond)]. Materials and methods. Ninety acrylic molds, each containing a 6×2-mm hole, were divided into 3 groups and filled with PMTA, RMTA and CEM cements. The samples in each experimental group were then randomly divided into 3 sub-groups; Single Bond, Protect Bond and SE Bond bonding systems were applied to the tested materials. Cylindrical forms of composite resin (Z100, 2×2 mm) were placed onto the samples and cured. Shear bond strength values were measured for 9 subgroups using a universal testing machine. Data were analyzed using two-way ANOVA. Results. The average shear bond strengths of Z100 composite resin after application of Single Bond, Protect Bond and SE Bond systems were as follows; PMTA: 5.1±2.42, 4.56±1.96 and 4.52±1.7; RMTA: 4.71±1.77, 4.31±0.56 and 4.79±1.88; and CEM cement: 4.75±1.1, 4.54±1.59 and 4.64±1.78 MPa, respectively. The type of pulp capping material, bonding system and their interacting effects did not have a significant effect on the bond strengths of composite resin to pulp capping biomaterials. Conclusion. Within the limitations of this in vitrostudy, bond strength of composite resin to two types of MTA as well as CEM cement were similar following application of the total-etch or self-etch bonding systems. PMID:24082986

  14. Calcium phosphate porous composites and ceramics prospective as bone implants

    NASA Astrophysics Data System (ADS)

    Rabadjieva, D.; Tepavitcharova, S.; Gergulova, R.; Sezanova, K.; Ilieva, R.; Gabrashanska, M.; Alexandrov, M.

    2013-12-01

    Two types of calcium phosphate materials prospective as bone implants were prepared in the shape of granules and their biochemical behavior was tested by in vivo studies: (i) composite materials consisting of gelatin and bi-phase ion modified calcium phosphate Mg,Zn-(HA + β-TCP); and (ii) ceramics of ion modified calcium phosphate Mg,Zn-(HA + β-TCP). The starting fine powders were prepared by the method of biomimetic precipitation of the precursors followed by hightemperature treatment. Then granules were prepared by dispersion in liquid paraffin of a thick suspension containing 20% of gelatin gel and thus prepared calcium phosphate powders (1:1 ratios). The composite granules were obtained by subsequent hardening in a glutaraldehyde solution, while the highly porous ceramic granules - by further sintering at 1100°C. The in vivo behavior of both types of granules was tested in experimental rat models. Bone defects were created in rat tibia and were filled with the implants. Biochemical studies were performed. Three months after operation both bio-materials displayed analogous behavior.

  15. Rapid induction bonding of composites, plastics, and metals

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.

    1991-01-01

    The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.

  16. Twelve-month bracket failure rate with amorphous calcium phosphate bonding system.

    PubMed

    Hammad, Shaza M; El Banna, Mai S; Elsaka, Shaymaa E

    2013-10-01

    The aim of the study was to compare the survival rate of orthodontic brackets over a 12-month period using amorphous calcium phosphate (ACP) bonding system with a conventional adhesive (CA). In 30 patients with a mean age of 15 years 7 months, one operator bonded 138 brackets with a split-mouth design, using a resin-based CA and ACP-containing adhesive. The survival rate of the brackets was estimated by Kaplan-Meier analysis. Bracket survival distributions with respect to bonding procedure, dental arch, type of tooth (incisor, canine, and premolar), and patients' gender were compared using the log-rank test. The bond failure interface was determined using the Adhesive Remnant Index (ARI). The bond failure rates of the CA and ACP-containing adhesive were 2.67 and 3.8 per cent, respectively. There was no significant difference between the failure rates of ACP and CA-bonded systems (P > 0.05). Survival rates did not show significant differences between the upper and lower dental arches (P > 0.05). Lower survival rates were found for canine and premolar teeth than incisors (P < 0.05). Bond failure rates were higher for males than females (P < 0.05). There was a significant difference for ARI scores between the adhesive materials (P = 0.028); more of the ACP-based adhesive was left on the tooth at debond. ACP-containing adhesive can be effectively used to bond orthodontic brackets and can serve as a practicable alternative to the conventional bonding adhesives.

  17. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Limkangwalmongkol, Penwadee; Hack, Gary D.; Xu, Hockin H. K.; Chen, Qianming; Zhou, Xuedong

    2012-01-01

    Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R2 ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries. PMID:22190356

  18. Marginal adaptation of dentin bonded ceramic inlays: effects of bonding systems and luting resin composites.

    PubMed

    Haller, Bernd; Hässner, Katrin; Moll, Karlheinz

    2003-01-01

    This in vitro study evaluated the marginal adaptation of bonded inlays of lucite-reinforced glass ceramic (Empress) to dentin as influenced by different bonding systems and by luting resin composites (LRCs) with different curing modes. Forty-eight Empress inlays etched with 5% hydrofluoric acid and treated with a silane-coupling agent (Monobond-S) were bonded to two-surface Class II cavities. Two total-etch bonding systems (OptiBond FL, Nexus) and one bonding system with selective enamel etching and a self-conditioning dentin primer (ART Bond) were included in the study. ART Bond was tested with and without the pre-curing of a first layer of adhesive resin selectively applied to the cervical cavity floor (selective double-bond technique). Each bonding system was used in combination with a light-cured resin composite (Prodigy) and a dual-cured LRC (Nexus or Vita Cerec Duo Cement). Marginal integrity was evaluated before and after thermocycling (TC) in a scanning electron microscope (SEM). Dye penetration tests were performed after TC was completed. The median percentages of continuous margin in dentin ranged from 80% to 100% before TC and from 53.5% to 96.1 % after TC. After TC, the influence of the bonding system was more pronounced than that of the LRC. In combination with the LC resin composite, ART Bond with precuring was significantly higher and the Nexus bonding system had significantly lower proportions of continuous margin than all the other bonding systems investigated. Swelling of the adhesive along the gingival margins was frequently found with the Nexus bonding system and with ART Bond without pre-curing. Microleakage was detected with all bonding system/LRC combinations, with somewhat lower rates in specimens completed using the selective double-bond technique. With the exception of the Nexus bonding system, post-TC marginal integrity was not influenced by the curing mode of the LRC (LC vs DC). In conclusion, the marginal quality of dentin bonded

  19. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent

  20. Review of methods for fusion bonding thermoplastic composites

    SciTech Connect

    Benatar, A.; Gutowski, T.G.

    1987-02-01

    Bonding of thermoplastic composites is a critical step in the manufacture of aerospace structures. The objective of this project is to investigate different methods for fusion bonding thermoplastic composites quickly, with a good bond strength, and without warping and deconsolidation. This is best accomplished by heating and melting the thermoplastic on the bond surface only, and then pressing the parts together for a fusion bond. For this purpose, a variety of surface heating techniques were examined for bonding of PEEK and J Polymer composites. These included: resistance heating, infrared heating, induction heating, dielectric/microwave heating, and ultrasonic welding. In resistance heating, a single prepreg ply was placed between the composites and heated by passing electric current through the graphite fibers. With induction heating, a single ply of nickel coated graphite fibers was placed between the composites and heated. Ultrasonic welding was done by molding thermoplastic-only energy directors into the composites; the ultrasonic vibration melted these energy directors thereby fusion bonding the parts. 20 references.

  1. Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.

    PubMed

    Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P < 0.05) to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  2. Selective Sensing of Phosphates by a New Bis-heteroleptic Ru(II) Complex through Halogen Bonding: A Superior Sensor over Its Hydrogen-Bonding Analogue.

    PubMed

    Chowdhury, Bijit; Sinha, Sanghamitra; Ghosh, Pradyut

    2016-12-12

    The selective phosphate-sensing property of a bis-heteroleptic Ru(II) complex, 1[PF6 ]2 , which has a halogen-bonding iodotriazole unit, is demonstrated and is shown to be superior to its hydrogen-bonding analogue, 2[PF6 ]2 . Complex 1[PF6 ]2 , exploiting halogen-bonding interactions, shows enhanced phosphate recognition in both acetonitrile and aqueous acetonitrile compared with its hydrogen-bonding analogue, owing to considerable amplification of the Ru(II) -center-based metal-to-ligand charge transfer (MLCT) emission response and luminescence lifetime. Detailed solution-state studies reveal a higher association constant, lower limit of detection, and greater change in lifetime for complex 1 in the presence of phosphates compared with its hydrogen-bonding analogue, complex 2. The (1) H NMR titration study with H2 PO4(-) ascertains that the binding of H2 PO4(-) occurs exclusively through halogen-bonding or hydrogen-bonding interactions in complexes 1[PF6 ]2 and 2[PF6 ]2 , respectively. Importantly, the single-crystal X-ray structure confirms the first ever report on metal-assisted second-sphere recognition of H2 PO4(-) and H2 P2 O7(2-) with 1 through a solitary C-I⋅⋅⋅anion halogen-bonding interaction.

  3. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  4. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  5. Fatigue of boron-aluminum composites bonds and joints

    NASA Technical Reports Server (NTRS)

    Hersh, M. S.

    1973-01-01

    Study examines effects of boron filament diameter on bonds and joints in boron-aluminum composite. Data include static strength, fatigue, and dynamic moduli of elasticity. Manson-Coffin analyses and metallurgical and fracture surface evaluation were also performed.

  6. Bonded composite resin crowns for primary incisors: technique update.

    PubMed

    Croll, T P

    1990-02-01

    A technique for restoration of carious primary maxillary incisors with a hybrid visible light-curing composite resin and a dentinal bonding agent is described. Careful use of this technique and the new materials can provide a restoration that is esthetic and resistant to fracture and displacement. The technique requires careful preparation of the operative field and precise handling of the restorative materials. The method is illustrated by the placement of bonded composite resin crowns in a 3-year-old boy.

  7. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  8. Structure of selected basic zinc/copper (II) phosphate minerals based upon near-infrared spectroscopy - Implications for hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Reddy, B. Jagannadha; Palmer, Sara J.; Keeffe, Eloise C.

    2011-03-01

    The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12,000-7600 cm -1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm -1. A broad spectral feature observed for ferrous ion in the 12,000-9000 cm -1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm -1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm -1 region resulting from the combinations of vibrational modes of (PO 4) 3- units.

  9. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  10. Magnesia-ammonium phosphate-bonded cordierite refractory castables: Phase evolution on heating and mechanical properties

    SciTech Connect

    Hipedinger, Nora E.; Scian, Alberto N.; Aglietti, Esteban F

    2004-01-01

    A cordierite refractory castable was developed using the MgO-NH{sub 4}H{sub 2}PO{sub 4} reaction. This castable was made with cordierite-mullite aggregates from scrap refractory material and a cement paste based on magnesia, calcined alumina, silica fume, and ammonium dihydrogen phosphate, which forms cordierite (2MgO{center_dot}2Al{sub 2}O{sub 3}{center_dot}5SiO{sub 2}) during heating at high temperature. The mix with water was cast into steel molds; the cold setting occurs within 30 min. The set castables were thermally treated and the evolution of the phases was observed. Struvite (NH{sub 4}{center_dot}MgPO{sub 4}{center_dot}6H{sub 2}O) was identified at room temperature; between 110 and 750 deg. C, the present phosphates were amorphous to X-ray diffraction (XRD). At 1100 deg. C, magnesium orthophosphate (Mg{sub 3}(PO{sub 4}){sub 2}) and aluminum orthophosphate (AlPO{sub 4}) were present. At 1350 deg. C, the main crystalline phases were cordierite and mullite. Cold and hot flexural strength, thermal shock resistance, and physical properties were measured. The properties of magnesia-phosphate-bonded cordierite castables were compared with cordierite material obtained by conventional slip-casting method from aggregates, clay, talc, and calcined alumina.

  11. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.

    1996-03-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  12. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  13. Mechanical properties of tricalcium phosphate-fluorapatite-alumina composites

    NASA Astrophysics Data System (ADS)

    Bouslama, N.; Ben Ayed, F.; Bouaziz, J.

    2009-11-01

    This study deals to produce tricalcium phosphate - fluorapatite composites sintering at various temperatures (1300∘ C, 1350∘ C and 1400∘ C) and with different alumina additives amounts (2.5 wt%, 5 wt%, 7.5 wt%, 10 wt% and 20 wt%). The characterization of samples before and after sintering was investigated, using X-ray diffraction, infrared spectroscopy, scanning electronic microscopy and by analysis using 31P and 27Al nuclear magnetic resonance. Mechanical properties have been measured by Brazilian test. The evolution of composite rupture strength was studied as a function of sintering temperature. The effect of sintering on the mechanical properties was measured with the change in composition and microstructure of the composite. The mechanical resistances of composites were increased with the temperatures and with concentrations of alumina. At 1350∘ C, the mechanical resistance reaches its maximum value with 5 wt% Al2O3 (13.6 MPa) whereas the optimum density is about 90% with 2.5 wt% Al2O3.

  14. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    PubMed

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0.05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin-nickel interface. Durable bonding to super-elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  15. Metallic and intermetallic-bonded ceramic composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  16. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes a new technology to produce biopolymer composites at room temperature. During the process, micrometer-scale raw material is coated with zein that has strong adhesive property, which is then compressed to form a rigid material. Since this technology does not require purificati...

  17. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel

    PubMed Central

    Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti

    2015-01-01

    Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P < 0.05 as the level of significance. Results: In comparison between applied and non-applied CPP-ACP subgroups, there was no significant decrease in the shear bond strength to enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond. PMID:25878683

  18. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  19. Calcium phosphate glasses: silanation process and effect on the bioactivity behavior of glass-PMMA composites.

    PubMed

    Alonso, Lizette Morejón; García-Menocal, José Ángel Delgado; Aymerich, Mariona Tarragó; Guichard, Julio Ándrés Álvarez; García-Vallés, Maite; Manent, Salvador Martínez; Ginebra, Maria-Pau

    2014-02-01

    This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glass- poly(methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2 O5 -11Na2 O (BV11) and 44.5CaO-44.5P2 O5 -6Na2 O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG) techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 ± 0.02 wt % for BV11sil glass and 0.93 ± 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 (2-) and HPO4 (2-) in its structure after soaking for 30 days occurred.

  20. Progress in the Reliability of Bonded Composite Structures

    NASA Astrophysics Data System (ADS)

    Crane, Robert; Dillingham, Giles; Oakley, Brietta

    2017-02-01

    This paper reviews recent research progress in the detection of contamination on composites surfaces before bonding. Results to date indicate that it is possible to use a simple handheld instrument to determine if a composite surface is in such a state that a durable bond can be achieved. This study examined both airborne and contact contamination and found that contact contaminants can originate from unexpected sources. Monitoring of airborne contaminants in various manufacturing locations indicated that discrete contamination events can occur that are potentially detrimental to adhesion.

  1. Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments

    SciTech Connect

    Shirish Patil; Godwin A. Chukwu; Gang Chen; Santanu Khataniar

    2008-12-31

    Novel chemically bonded phosphate ceramic borehole sealant, i.e. Ceramicrete, has many advantages over conventionally used permafrost cement at Alaska North Slope (ANS). However, in normal field practices when Ceramicrete is mixed with water in blenders, it has a chance of being contaminated with leftover Portland cement. In order to identify the effect of Portland cement contamination, recent tests have been conducted at BJ services in Tomball, TX as well as at the University of Alaska Fairbanks with Ceramicrete formulations proposed by the Argonne National Laboratory. The tests conducted at BJ Services with proposed Ceramicrete formulations and Portland cement contamination have shown significant drawbacks which has caused these formulations to be rejected. However, the newly developed Ceramicrete formulation at the University of Alaska Fairbanks has shown positive results with Portland cement contamination as well as without Portland cement contamination for its effective use in oil well cementing operations at ANS.

  2. The Adhesive Bonding of Thermoplastic Composites

    DTIC Science & Technology

    1989-09-19

    contact angle analyses results , since both of these experimental methods attempt to assess the surface intermolecular forces . Secondly, the data from...TPFC) materials will be presented. The materials used in the present research work will then be described. Finally, the surface pretreatment...composite interface. It was precisely for the above reason that the current research work was undertaken. In the last year or two there has been some

  3. Laser ablation assisted adhesive bonding of automotive structural composites

    SciTech Connect

    Boeman, R.G.; Paulauskas, F.L.; Warren, C.D.

    1999-07-03

    Laser ablation has been evaluated as a surface pretreatment prior to adhesive bonding. In prior experimental work, it was observed that when adhesively bonded, composite, single lap shear samples fail, the fracture often occurs at either the adhesive/adherend interface or in the resin rich surface layer of the composite. These two areas represent the weakest portion of the joint. Laser ablation pretreatment generates areas where the resin on the composite surface is selectively removed leaving behind exposed reinforcing fibers which are the major load bearing members of the composite. In a subsequent adhesive bonding operation, this allows portions of the fibers to be encapsulated in the adhesive while other portions of the fiber remain in the composite resin. This type of pretreatment permits fibers to bridge and reinforce the interface between adhesive and adherend. A secondary benefit is the removal of surface contaminantes by pyrolysis. Microscopic observation of laser ablated surfaces indicates a prominent, fiber rich area. Results of the mechanical evaluation indicated that the lap shear strength for laser ablated samples was significantly higher than specimens with no pretreatment or with solvent cleaning only, but were slightly lower than specimens that were mechanically roughened and cleaned with solvents prior to bonding.

  4. Microtensile bond strength of repaired indirect resin composite

    PubMed Central

    Suputtamongkol, Kallaya; Angkoonsit, Duangjai; Kaewthong, Sunattha; Charoonanan, Piyanan

    2017-01-01

    PURPOSE The objective of this study was to investigate the effect of surface treatments on microtensile bond strengths (MTBSs) of two types of indirect resin composites bonded to a conventional direct resin composite. MATERIALS AND METHODS Indirect resin composite blocks of Ceramage and SR Nexco were prepared in a plastic mold having a dimension of 10 × 10 × 4 mm. These composite blocks were divided into three groups according to their surface treatments: Group1: Sandblast (SB); Group2: Sandblast and ultrasonically clean (SB+UL); Group3: Sandblast plus silane (SB+SI). After bonding with direct resin composite, indirect-direct resin composite blocks were kept in distilled water for 24 hours at 37℃ and cut into microbars with the dimension of 1 × 1 × 8 mm. Microbar specimens (n = 40 per group) were loaded using a universal testing machine. Failure modes and compositions were evaluated by SEM. The statistical analyses of MTBS were performed by two-way ANOVA and Dunnett's test at α = .05. RESULTS Surface treatments and brands had effects on the MTBS without an interaction between these two factors. For SR Nexco, the MTBSs of SB and SB+SI group were significantly higher than that of SB+UL. For Ceramage, the MTBSs of SB and SB+SI were significantly higher than that of SB+UL. The mean MTBS of the Ceramage specimens was significantly higher than that of SR Nexco for all surface treatments. CONCLUSION Sandblasting with or without silane application could improve the bond strengths of repaired indirect resin composites to a conventional direct resin composite. PMID:28243390

  5. NMR Scalar Couplings across Intermolecular Hydrogen Bonds between Zinc-Finger Histidine Side Chains and DNA Phosphate Groups.

    PubMed

    Chattopadhyay, Abhijnan; Esadze, Alexandre; Roy, Sourav; Iwahara, Junji

    2016-10-10

    NMR scalar couplings across hydrogen bonds represent direct evidence for the partial covalent nature of hydrogen bonds and provide structural and dynamic information on hydrogen bonding. In this article, we report heteronuclear (15)N-(31)P and (1)H-(31)P scalar couplings across the intermolecular hydrogen bonds between protein histidine (His) imidazole and DNA phosphate groups. These hydrogen-bond scalar couplings were observed for the Egr-1 zinc-finger-DNA complex. Although His side-chain NH protons are typically undetectable in heteronuclear (1)H-(15)N correlation spectra due to rapid hydrogen exchange, this complex exhibited two His side-chain NH signals around (1)H 14.3 ppm and (15)N 178 ppm at 35 °C. Through various heteronuclear multidimensional NMR experiments, these signals were assigned to two zinc-coordinating His side chains in contact with DNA phosphate groups. The data show that the Nδ1 atoms of these His side chains are protonated and exhibit the (1)H-(15)N cross-peaks. Using heteronuclear (1)H, (15)N, and (31)P NMR experiments, we observed the hydrogen-bond scalar couplings between the His (15)Nδ1/(1)Hδ1 and DNA phosphate (31)P nuclei. These results demonstrate the direct involvement of the zinc-coordinating His side chains in the recognition of DNA by the Cys2His2-class zinc fingers in solution.

  6. Analysis of Bolted and Bonded Composite

    DTIC Science & Technology

    1992-09-01

    blank) 2. REPORT DATE 3 . REPORT TYPE AND DATES COVERED I September 1992 Interim; May 1991-June 1992 4. TITLE AND SUBTITLE S. FUNDING NUMBERS C - F33615-89...Unannounced DI justification ....................... B y ................. Distribution I Availability Codes Iodes iDis 1.01 iiir,(TFT 3 TABLE OF...CONTENTS Chapter Page I Bolted Joints in Laminated Composites 1 1.1 INTRODUCTION 1 1.2 MAJOR PARAMETERS 2 1.3 JOINT CONFIGURATIONS 3 1.4 FAILURE MODES 4 1.5

  7. Bond Strength of Composite Resin to Enamel: Assessment of Two Ethanol Wet-Bonding Techniques

    PubMed Central

    Khoroushi, Maryam; Rafizadeh, Mojgan; Samimi, Pouran

    2014-01-01

    Objective Ethanol wet-bonding (EWB) technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength. Materials and Methods: Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL) adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control);Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher’s exact test (α=0.05). Results: There were no significant differences in bond strength between the groups (P=0.73). However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3. Conclusion: In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel. PMID:24910690

  8. An evaluation and comparison of shear bond strength of composite resin to dentin, using newer dentin bonding agents

    PubMed Central

    Hegde, Mithra N; Bhandary, Shruti

    2008-01-01

    The purpose of this study was to assess the shear bond strength of Total etch Prime and Bond NT and self etch newer dentin bonding agents Clearfil S3, Xeno III Bond, Clearfil Protect Bond and G Bond used to bond composite resin to dentin, and to compare the difference in the shear bond strengths of the self etch newer dentin bonding agents. Hundred freshly extracted noncarious human maxillary premolar teeth were selected. The occlusal surfaces of each tooth were ground to prepare flat dentin surfaces at a depth of 1.5 mm and were randomly grouped, with twenty specimens in each: Group I - Prime and Bond NT, Group II - Clearfil Protect Bond, Group III - Xeno III Bond, Group IV - Clearfil S3 Bond, Group V - G Bond. Each group was treated with its respective bonding agents, as per the manufacturers' instructions Clearfill – Kuraray, Japan, G bond – GC Tokyo, Japan, Xeno- De Trey Densply, Germany. Blocks or Cylinders of composite resin were built up using Teflon mold and cured. Shear bond strengths were tested using Instron Universal testing machine and recorded in Mpa. The results were statistically analyzed using One-way anova and Tukeys HSD test. The total etch adhesive showed higher shear bond strength than self etching adhesives (P < 0.001). Within the limitations of this in vitro study, it can be concluded that all the adhesive agents evaluated showed optimal shear bond strength 17-20 Mpa, except G bond. However, shear bond strength of composite resin to dentin is better with one bottle total etch adhesive than with the newer self etching bonding agents. PMID:20142888

  9. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  10. Fracture surface analysis in composite and titanium bonding

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1985-01-01

    To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.

  11. Alternation and tunable composition in hydrogen bonded supramolecular copolymers.

    PubMed

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P

    2014-03-07

    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  12. Bonded and Bolted Graphite/Polyimide Composite Joints

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.; Cushman, J. B.

    1985-01-01

    Four types of high-temperature joints designed for control surfaces. Design, analysis, and testing performed to develop four types of graphite/polyimide bonded and bolted composite joints for lightly loaded control surfaces on advanced transportation systems that operate at temperatures up to 550 degrees F (288 degrees C).

  13. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin

    2000-01-01

    A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.

  14. Production of composites by using gliadin as a bonding material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In our previous papers, a new technology that produces biopolymer composites by particle-bonding was introduced. During the manufacturing process, micrometer-scale raw material was coated with a corn protein, zein, which is then processed to form a rigid material. The coating of raw-material particl...

  15. The effect of surface treatments and bonding regimens on microtensile bond strengths of repaired composite: An in vitro study

    PubMed Central

    Acharya, Gouri Smita; Manjunath, MK

    2012-01-01

    Aim: To assess the microtensile bond strength of repaired composite resin that was surface treated by diamond point or silicon carbide followed by bonding using either only total- etch bonding regimen or silane coupling agent with adhesive resin. Materials and Methods: Fourteen composite blocks were aged under deionized water for 14 days. The bonding surface was prepared with coarse diamond point or silicon carbide. Two blocks with no surface treatment were used as control groups. The bonding regimen was either total-etch bonding regimen or silane coupling agent and bonding agent. The aged samples were then bonded to new composite. Five sections per block (each 1mm thick) were prepared; cut to obtain an adhesive zone of approximately 1mm2 and subjected to microtensile bond strength testing. Results: The highest bond strength was obtained by surface treatment by coarse diamond point and total etch bonding regimen and least by silicon carbide and silane. A statistically significant difference was seen in all the four groups. Conclusions: Surface treatment by a coarse diamond point and total-etch bonding regimen provides highest bond strength. Thus, a simpler treatment regimen can contribute to a better bond strength in repaired composites. PMID:23112489

  16. Effect of fluorapatite additive on the mechanical properties of tricalcium phosphate-zirconia composites

    NASA Astrophysics Data System (ADS)

    Sallemi, I.; Ben Ayed, F.; Bouaziz, J.

    2012-02-01

    The effect of fluorapatite addition on the mechanical properties of tricalcium phosphate - 50 wt% zirconia composites was investigated during the sintering process. The Brazilian test was used to measure the mechanical resistance of bioceramics. The mechanical properties of composites increase with the sintering temperature and with fluorapatite additive. At 1400°C, the fluorapatite additive ameliorates the densification and the mechanical resistance of tricalcium phosphate - 50 wt% zirconia composites. The 31P magic angle spinning nuclear magnetic resonance analysis of tricalcium phosphate - zirconia composites sintered with fluorapatite additives reveals the presence of tetrahedral P sites.

  17. Hysteresis heating based induction bonding of composite materials

    NASA Astrophysics Data System (ADS)

    Suwanwatana, Witchuda

    The viability of using magnetic particulate susceptor materials for induction heating during bonding of polymer matrix composites is well established in this work. The unique ability to offer localized heating, geometric flexibility, and self-controlled temperature is the major advantage of this technique. Hysteresis heating is tailored through careful design of the microstructure of nickel particulate polymer films (Ni/PSU). An excellent heating rate can be attained in the frequency range of 1 to 10 MHz for particle volume fraction below percolation of 0.26. The diameter of nickel particle should be kept between 65 nm to 10 mum to ensure multi-domain heating, Curie temperature control, negligible shielding effect, minimum eddy current, and slight particle oxidation. The hysteresis heating behavior of the Ni/PSU films is found to be volumetric in nature and proportional to the cube of applied magnetic field. On the other hand, heat generation is inversely proportional to the size of the multi-domain particles. The frequency effect; however, provide maximum heat generation at the domain wall resonance frequency. Curie temperature control is observed when sufficiently high magnetic fields (˜138 Oe) are applied. The master curves of AC heat generation in Ni/PSU films are established and show a strong particle size effect. Hysteresis fusion bonding of glass/polyphenylene sulfide thermoplastic composites using a magnetic film as the thermoplastic adhesive shows that the bond strength of hysteresis-welded materials is comparable to that of autoclave-welded materials while offering an order of magnitude reduction in cycle time. The relative contribution of the intimate contact and healing mechanisms to the fusion bonding process indicates that hysteresis bonding is controlled by intimate contact. The macroscopic failure modes vary from mostly adhesive composite/film (low bond strength) to a combination of adhesive composite/film, cohesive film, cohesive composite and

  18. Behavior of Plastic Bonded Composite Explosives During High Acceleration

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Y.

    1998-03-01

    The mechanical behavior of plastic bonded composite explosives has been studied during high acceleration in an ultracentrifuge. The pressed explosives studied include LX-14 [95% HMX (cyclotetramethylene- tetranitramine), 5% Estane], Composition A3 type II [91% RDX (cyclotrimethylene-trinitramine), 99% BDNPF (bis-dinitropropyl acetal formal), 6% CAB (cellulose acetate butyrate)], and PAX-3 (85% HMX, 9% BDNPF, 6% CAB/25% Aluminum). The fracture strength of LX-14 is greater than all pressed explosives studied to date. The fracture strength of Composition A3 type II is smaller than all pressed explosives studied to date.

  19. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    NASA Technical Reports Server (NTRS)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  20. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding.

    PubMed

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa.

  1. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding

    PubMed Central

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    Abstract In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa. PMID:27877852

  2. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    NASA Astrophysics Data System (ADS)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    , toothpaste and as a release of waste water treatment plants (Young et al., 2009). Anthropogenic effects will not be discussed further in the following. On this basis, we consider three different cases of pyromorphite formation as illustrated on the conceptual scheme of Fig. 1. Case 1: Pyromorphite grown recently (within the last hundreds of years) on rock surfaces in former mines. Both, phosphate released geochemically from igneous rocks and phosphate released biologically during leaching from litter/lysis of microbial cells and soil organic matter decomposition are possible sources. Case 2: Pyromorphite formation on mine dumps, below vegetation (recent, during tens to hundreds of years). Based on the specific setting of these samples investigated here (they were found exclusively below a large fern; see more details in the section on sample description), biologically-mediated P release provides the phosphate for pyromorphite growth. Case 3: Pyromorphite growth in the oxidized zones of ore bodies prior to human interference. Most samples of our study belong to this case.Phosphorus generally forms very strong covalent bonds (Huminicki and Hawthorne, 2002) and there is only negligible exchange of oxygen isotopes between phosphate and ambient water under most near-surface conditions without biological activity (Winter et al., 1940; Longinelli, 1965). The only important exchange of oxygen isotopes between phosphate and ambient water involves biological activity and the oxygen isotope composition of phosphate (δ18OP) may be modified by different enzymatic/cellular processes. Once phosphate is taken up by organisms, intracellular pyrophosphatase mediates internal P cycling. This is associated with a temperature-dependent equilibrium isotope fractionation due to the reversible exchange of O atoms between the phosphate molecule and cell water. As a result the δ18OP is equilibrated with the ambient water, and the equilibrium temperature can be calculated following the revised

  3. Hydroxyapatite-alumina composites and bone-bonding.

    PubMed

    Li, J; Fartash, B; Hermansson, L

    1995-03-01

    Hydroxyapatite-alumina (HA/Al2O3) composites, with HA contents of 15, 25, 30 and 70, and pure HA as well as pure Al2O3, were densified at 1275 degrees C at a top pressure of 200 MPa for 2 h, using glass-encapsulated hot isostatic pressing. From the sintered ceramics, cylinders 2.8 x 6 mm2 were prepared by ultrasonic machining and implanted into the femoral cortical bones of 12 New Zealand White rabbits for 3 months. After killing the animals, the femur was dissected out and cut into three sections, each containing one cylinder. The specimens were mounted in a push-out device and force was applied along the long axis of the cylinder. The maximum force required to loosen the implant was recorded and the fracture surface of the bone implant was studied by scanning electron microscopy (SEM). The results indicate the important role of HA in new bone apposition to the implants, reflected by increasing bonding strength with increasing HA content in the composites. However, the relationship between HA content and the bonding strength was not linear. The composite with 70% HA and the pure HA ceramic had the same level of bonding strength and similar fracture interfaces in SEM, which supports the high bonding strength detected (about 15 MPa). Fractures occurred both in the bone and in the implant, indicating the stress transfer ability of the contact zone. This study presents qualitatively and quantitatively HA-dependent characteristics in bone-bonding. The mechanical strength of the composites was measured by a three-point bending test. The bending strength of the materials decreases with increasing HA content.

  4. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    NASA Astrophysics Data System (ADS)

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-01

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO 3- compound and its H 2PO 4--intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO 42- caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO 42- and H 2PO 4-. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  5. Deoxyguanosine phosphate mediated sacrificial bonds promote synergistic mechanical properties in nacre-mimetic nanocomposites.

    PubMed

    Martikainen, Lahja; Walther, Andreas; Seitsonen, Jani; Berglund, Lars; Ikkala, Olli

    2013-08-12

    We show that functionalizing polymer-coated colloidal nanoplatelets with guanosine groups allows synergistic increase of mechanical properties in nacre-mimetic lamellar self-assemblies. Anionic montmorillonite (MTM) was first coated using cationic poly(diallyldimethylammonium chloride) (PDADMAC) to prepare core-shell colloidal platelets, and subsequently the remaining chloride counterions allowed exchange to functional anionic 2'-deoxyguanosine 5'-monophosphate (dGMP) counterions, containing hydrogen bonding donors and acceptors. The compositions were studied using elemental analysis, scanning and transmission electron microscopy, wide-angle X-ray scattering, and tensile testing. The lamellar spacing between the clays increases from 1.85 to 2.14 nm upon addition of the dGMP. Adding dGMP increases the elastic modulus, tensile strength, and strain 33.0%, 40.9%, and 5.6%, respectively, to 13.5 GPa, 67 MPa, and 1.24%, at 50% relative humidity. This leads to an improved toughness seen as a ca. 50% increase of the work-to-failure. This is noteworthy, as previously it has been observed that connecting the core-shell nanoclay platelets covalently or ionically leads to increase of the stiffness but to reduced strain. We suggest that the dynamic supramolecular bonds allow slippage and sacrificial bonds between the self-assembling nanoplatelets, thus promoting toughness, still providing dynamic interactions between the platelets.

  6. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion.

  7. Molecular bonding characteristics of Self-plasticized bamboo composites.

    PubMed

    Xue, Qiu; Peng, Wanxi; Ohkoshi, Makoto

    2014-07-01

    Bamboo biomass fibers were gradually separated, prepared, and then self-plasticized for immune composites. The molecular bonding characteristics of the self-plasticized bamboo composites were investigated by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and thermo gravimetric analysis (TG). The important results were as follows. (1) During self-plasticizing of bamboo biomass, the cross-linking between celluloses mainly depended on carboxylic acid anhydrides and carboxylic acid esters, that between cellulose and lignin depended on carboxylic acid esters and C=O groups of aliphatic hydrocarbons, and that of hemi cellulose had a ether bond and ester bond bridging effect between lignin and cellulose. The cross-linking effects of hemi cellulose, lignin, and cellulose could be stacked and coupled. (2) After self-plasticization, the crystallinity of the lingo cellulosic biomass, lignin cellulose, and cellulose were increased by 5.8%, 2.28%, and 11.67%, respectively. While the TG curves of all samples were basically similar in shape, the weight loss rate turning points of the self-plasticized samples were delayed compared with those of the bamboo biomass fibers. This result demonstrated that the molecular integration of the bamboo biomass was increased after self-plasticization, and confirmed that bond cross-linking between the hemi cellulose, lignin and cellulose of the bamboo biomass had occurred.

  8. Nondestructive inspection of bonded composite doublers for aircraft

    NASA Astrophysics Data System (ADS)

    Roach, Dennis P.; Moore, David; Walkington, Phillip D.

    1996-11-01

    One of the major thrusts established under the FAA's National Aging Aircraft Research Program is to foster new technologies associated with civil aircraft maintenance. Recent DOD and other government developments in the use of bonded composite doublers on metal structures has supported the need for research and validation of such doubler applications on US certificated airplanes. Composite doubler technology is rapidly maturing and shows promise of cost savings on aging aircraft. While there have been numerous studies and military aircraft installations of composite doublers, the technology has not been certified for use on commercial aircraft. Before the use of composite doublers can be accepted by the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. This paper reports on a series of NDI tests which have been conducted on laboratory test structures and on a fuselage section cut from a retired L-1011 aircraft. Specific challenges, unique to bonded composite doubler applications, will be highlighted. In order to quickly integrate this technology into existing aircraft maintenance depots, the use of conventional NDI, ultrasonics, x-ray, and eddy current, is stressed. The application of these NDI technique to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are

  9. Effect of Casein Phosphopeptide-amorphous Calcium Phosphate Treatment on Microtensile Bond Strength to Carious Affected Dentin Using Two Adhesive Strategies

    PubMed Central

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf

    2014-01-01

    Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832

  10. Development of explosively bonded TZM wire reinforced Columbian sheet composites

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Carpenter, S. H.

    1972-01-01

    Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.

  11. Effect of Intermediate Agents and Preheated Composites on Repair Bond Strength of Silorane-Based Composites

    PubMed Central

    Shafiei, Fereshteh; Daryadar, Marzieh

    2015-01-01

    Objectives: Repairing composite restorations is a challenging procedure especially when two different types of composites are used. This study aimed to compare the repair strength of silorane-based composite (SC) (Filtek P90) with that of preheated SC, methacrylate composite (MC)(Z250), flowable MC (Filtek Supreme Plus) and different adhesive/composite combinations. Materials and Methods: Eighty-four SC specimens were fabricated and randomly divided into seven groups (G). In the control group (G7), SC was bonded immediately to SC. The other specimens were water-aged for two months and were then roughened, etched and repaired with the following materials: G1) Silorane Adhesive Bond (SAB)/SC; G2) Preheated SC; G3) SAB/MC; G4) Adper Single Bond (SB)/MC; G5) Flowable MC/MC; G6) Preheated MC. After water storage and thermocycling, the repaired specimens were subjected to shear bond strength testing. The data were analyzed using ANOVA and Tukey’s test. Results: Preheated SC and MC, flowable MC and SAB/SC resulted in bond strength comparable to that of the control group. Preheated SC showed significantly higher bond strength when compared to SAB/MC (P=0.04) and SB/MC (P<0.001). Bond strength of SB/MC was significantly lower than that of the other groups (P<0.05), except for SAB/SC and SAB/MC. Conclusion: All repairing materials except for SB/MC resulted in bond strength values comparable to that of the control group. Repair with preheated SC yielded the highest bond strength. PMID:27148378

  12. Installation of adhesively bonded composites to repair carbon steel structure.

    SciTech Connect

    Roach, Dennis Patrick; Dunn, Dennis P.; Rackow, Kirk A.

    2003-02-01

    In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the viability and durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, efforts are underway to adapt bonded composite repair technology to civil structures. This paper presents a study in the application of composite patches on large trucks and hydraulic shovels typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. It is believed that the use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, will help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel structure and accommodating large repairs on extremely thick structures. This paper will focus on the first phase of this study which evaluated the performance of different mechanical and chemical surface preparation techniques. The factors influencing the durability of composite patches in severe field environments will be discussed along with related laminate design and installation issues.

  13. 31 CFR 359.15 - When is the composite rate applied to Series I savings bonds?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false When is the composite rate applied to... OF UNITED STATES SAVINGS BONDS, SERIES I General Information § 359.15 When is the composite rate applied to Series I savings bonds? The most recently announced composite rate applies to a bond during...

  14. 31 CFR 359.15 - When is the composite rate applied to Series I savings bonds?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false When is the composite rate applied to... OF UNITED STATES SAVINGS BONDS, SERIES I General Information § 359.15 When is the composite rate applied to Series I savings bonds? The most recently announced composite rate applies to a bond during...

  15. 31 CFR 359.15 - When is the composite rate applied to Series I savings bonds?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false When is the composite rate applied to... OF UNITED STATES SAVINGS BONDS, SERIES I General Information § 359.15 When is the composite rate applied to Series I savings bonds? The most recently announced composite rate applies to a bond during...

  16. 31 CFR 359.15 - When is the composite rate applied to Series I savings bonds?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false When is the composite rate applied to... OF UNITED STATES SAVINGS BONDS, SERIES I General Information § 359.15 When is the composite rate applied to Series I savings bonds? The most recently announced composite rate applies to a bond during...

  17. 31 CFR 359.15 - When is the composite rate applied to Series I savings bonds?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false When is the composite rate applied to... OFFERING OF UNITED STATES SAVINGS BONDS, SERIES I General Information § 359.15 When is the composite rate applied to Series I savings bonds? The most recently announced composite rate applies to a bond during...

  18. Synthesis and Characterization of Ca, Mg, La- PMMA Polymer Composites for Phosphate Removal

    EPA Science Inventory

    In this study calcium, magnesium and lanthanum- PMMA polymer composites were synthesized, characterized and investigated for phosphate removal from wastewater using rapid small scale column tests. Theoretical and experimental capacity of the media was determined and unused and sp...

  19. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  20. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  1. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2.

    PubMed

    Zhang, Z; Tamaki, Y; Miyazaki, T

    2001-12-01

    In previous study, we found that Mg(H2PO4)2 instead of NH4H2PO4 was available as a binder material for phosphate-bonded investments and possibly could be used to develop the phosphate-bonded investment without ammonia gas release. The purpose of the present study was to develop the experimental ammonia-free phosphate-bonded investments by investigating suitable refractories. Mg(H2PO4)2.nH2O and MgO were prepared as a binder. Cristobalite and quartz were selected as refractories. The power ratio of MgO/Mg(H2PO4)2.nH2O was set constant at 1.2 according to our previous findings. Fundamental properties of dental investment such as strength, manipulation and expansion were evaluated. Using cristobalite as the refractory material, further investigations were performed. The refractory/binder ratio was definitely effective. The increase of this ratio led to low mold strength and large mold expansion. The present findings suggested that C5 was desirable for dental investment.

  2. Implications of protonation and substituent effects for C-O and O-P bond cleavage in phosphate monoesters.

    PubMed

    Loncke, Paul G; Berti, Paul J

    2006-05-10

    A recent study of phosphate monoesters that broke down exclusively through C-O bond cleavage and whose reactivity was unaffected by protonation of the nonbridging oxygens (Byczynski et al. J. Am. Chem. Soc. 2003, 125, 12541) raised several questions about the reactivity of phosphate monoesters, R-O-P(i). Potential catalytic strategies, particularly with regard to selectively promoting C-O or O-P bond cleavage, were investigated computationally through simple alkyl and aryl phosphate monoesters. Both C-O and O-P bonds lengthened upon protonating the bridging oxygen, R-O(H(+))-P(i), and heterolytic bond dissociation energies, DeltaH(C)(-)(O) and DeltaH(O)(-)(P), decreased. Which bond will break depends on the protonation state of the phosphoryl moiety, P(i), and the identity of the organosubstituent, R. Protonating the bridging oxygen when the nonbridging oxygens were already protonated favored C-O cleavage, while protonating the bridging oxygen of the dianion form, R-O-PO(3)(2)(-), favored O-P cleavage. Alkyl R groups capable of forming stable cations were more prone to C-O bond cleavage, with tBu > iPr > F(2)iPr > Me. The lack of effect on the C-O cleavage rate from protonating nonbridging oxygens could arise from two precisely offsetting effects: Protonating nonbridging oxygens lengthens the C-O bond, making it more reactive, but also decreases the bridging oxygen proton affinity, making it less likely to be protonated and, therefore, less reactive. The lack of effect could also arise without bridging oxygen protonation if the ratio of rate constants with different protonation states precisely matched the ratio of acidity constants, K(a). Calculations used hybrid density functional theory (B3PW91/6-31++G) methods with a conductor-like polarizable continuum model (CPCM) of solvation. Calculations on Me-phosphate using MP2/aug-cc-pVDZ and PBE0/aug-cc-pVDZ levels of theory, and variations on the solvation model, confirmed the reproducibility with different

  3. Numerical Characterization of a Composite Bonded Wing-Box

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lovejoy, Andrew E.; Satyanarayana, Arunkumar

    2008-01-01

    The development of composite wing structures has focused on the use of mechanical fasteners to join heavily-loaded areas, while bonded joints have been used only for select locations. The focus of this paper is the examination of the adhesive layer in a generic bonded wing box that represents a "fastenerless" or unitized structure in order to characterize the general behavior and failure mechanisms. A global/local approach was applied to study the response of the adhesive layer using a global shell model and a local shell/solid model. The wing box was analyzed under load to represent a high-g up-bending condition such that the strains in the composite sandwich face sheets are comparable to an expected design allowable. The global/local analysis indicates that at these wing load levels the strains in the adhesive layer are well within the adhesive's elastic region, such that yielding would not be expected in the adhesive layer. The global/local methodology appears to be a promising approach to evaluate the structural integrity of the adhesively bonded structures.

  4. Bond strength of dental nanocomposites repaired with a bulkfill composite

    PubMed Central

    Kerimova, Leyla; Baltacioglu, İsmail H.; Kiremitçi, Arlin

    2017-01-01

    Background The aim of this study was to analyze the bond strength of aged resin based nanocomposites repaired with the same and bulk fill composites. Material and Methods Seventy-two disc shaped resin composites consisted of three different nanocomposite resins (Filtek Ultimate/FU, Herculite XRV Ultra/HXRV, and Reflectys/R) were produced. After storing the samples for 8 weeks in distilled water, each material was combined with the same material or the bulk-fill composite resin system (Filtek Ultimate+Filtek Ultimate/Group-1; Filtek Ultimate+Tetric BF/Group-2; Herculite XRV+Herculite XRV/Group-3; Herculite XRV+Tetric BF/ Group-4; Reflectys+Reflectys/Group 5; Reflectys+Tetric BF/Group-6), for repair. Then specimens were subjected to shear bond strength testing(SBS), and the debonded surfaces were examined. Results There was a significant difference among three materials(repaired with itself+bulk fill) for SBS testing values (p=0.001). FU and R were found to be similar, while HXRV was significantly different from them. A significant difference between group-1 and 2 (p=0.006) was detected, while there were no differences between group 3 and 4 (p= 0.142), and 5 and 6 (p=0.346). Among the six groups, repair SBS testing values with TBF were higher than repair with itself except for FU. Conclusions The bulk-fill repaired materials showed higher bond strength except for FU, which showed the highest SBS value when repaired with itself. An increased incidence of adhesive fracture was observed at low strengths. Key words:Resin-based composites, nanofillers, surface treatment, macro-shear, repair. PMID:28298988

  5. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    PubMed Central

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  6. Shear bond strength of new self-adhesive flowable composite resins.

    PubMed

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent.

  7. Sintering and mechanical properties of the alumina-tricalcium phosphate-titania composites.

    PubMed

    Sakka, Siwar; Bouaziz, Jamel; Ben Ayed, Foued

    2014-07-01

    The objective of this study was to determine the effect of the content of titania and the sintering process on the transformation phase, the densification, the rupture strength and the microstructures of the alumina-10 wt.% tricalcium phosphate composites. After the sintering process, the samples were examined by using (31)P and (27)Al magic angle scanning nuclear magnetic resonance, X-ray powder diffraction and scanning electron microscopy analysis. The Brazilian test was used to measure the rupture strength of the samples. The present results provide new information about solid-state reactivity in the ternary system α-alumina-β-tricalcium phosphate-anatase-titania. The differential thermal analysis of the α-alumina-β-tricalcium phosphate-titania composites shows two endothermic peaks, at 1360 °C and at 1405 °C, which are caused by the reactions between titania/alumina and titania/tricalcium phosphate, respectively. Thus, the presence of titania in the alumina-10 wt.% tricalcium phosphate leads to the formation of β-Al2TiO5 at 1360 °C. At 1600 °C, the alumina-10 wt.% tricalcium phosphate-5 wt.% titania composites displayed the highest rupture strength (74 MPa), compared to the alumina-10 wt.% tricalcium phosphate composites (13.5 MPa). Accordingly, the increase of the rupture strength is due to the formation of the new β-Al2TiO5 phase.

  8. Fracture-mechanics parameters of the composite-enamel bond.

    PubMed

    de Groot, R; van Elst, H C; Peters, M C

    1990-01-01

    In a previous study, the critical values of the opening mode stress intensity factor (K1), its equivalent, the strain energy-release rate (G1), and the J integral (J1) (in the elastic case being equal to that of G1) were determined for resin composite. In this study, the strength of the composite-tooth interface was investigated. The critical values of K1 and J1 were measured with single-edge notched-bend (SENB) specimens of resin composite bonded to enamel, with the notch at midspan at the bonded interface. Due to enamel's anisotropy, the values of Klc and Jlc to be used in a fracture-mechanics application for failure prediction of a structure depend on the enamel prism orientation relative to the adhesive interface. Where interfacial failure is to be expected, the following values for Jlc and Klc can be used: Silux, Jlc = 145 +/- 35 Jm-2 and Klc = 0.84 +/- 0.16 MNm-3/2; P-30, Jlc = 163 +/- 13 Jm-2 and Klc = 1.02 +/- 0.07 MNm-3/2. Where enamel failure is expected or where the failure mode cannot be predicted, the following values can be applied: Silux, Jlc = 89 +/- 15 Jm-2 and Klc = 0.84 +/- 0.16 MNm-3/2; P-30, Jlc = 89 +/- 15 Jm-2 and Klc = 0.75 +/- 0.10 MNm-3/2.

  9. The Surface Structure and Thermal Properties of Novel Polymer Composite Films Based on Partially Phosphorylated Poly(vinyl alcohol) with Aluminum Phosphate

    PubMed Central

    Mohamed Saat, Asmalina

    2014-01-01

    Partially phosphorylated polyvinyl alcohol (PPVA) with aluminum phosphate (ALPO4) composites was synthesized by solution casting technique to produce (PPVA)100−y − (ALPO4)y (y = 0, 1, and 2). The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4. PMID:25506069

  10. Effect of calcium phosphate-based fillers on the structure and bonding strength of novel gelatin-alginate bioadhesives.

    PubMed

    Cohen, Benny; Panker, Maoz; Zuckerman, Eyal; Foox, Maytal; Zilberman, Meital

    2014-05-01

    Interest in soft and hard tissue adhesives as alternatives for conventional wound closing and bone fixation applications has increased in recent decades as a result of numerous possible advantages such as better comfort and lower cost. A novel bioadhesive based on the natural polymers GA has recently been developed and studied in our laboratory. Hydroxyapatite and tricalcium phosphate are two bioactive ceramics known for their ability to enhance bone regeneration. In the current study, these two bioactive fillers were incorporated into the bioadhesive at concentrations of 0.125, 0.25 and 0.5% w/v, and their effects on the resulting adherence properties to soft and hard tissues were studied. Porcine skin and cortical portions of bovine femurs were used as soft and hard tissue specimens, respectively. The bonding strength was evaluated using an Instron universal testing machine in tensile mode, and the microstructure analysis was based on environmental scanning electron microscope observations. Both bioactive fillers were found to have a reinforcing effect on the adhesives, significantly improving their adhesion to soft tissues in certain concentrations. The best bonding strength results were obtained for 0.25% hydroxyapatite and 0.5% w/v tricalcium phosphate-18.1 ± 4.0 and 15.2 ± 2.6 kPa, respectively, compared with 8.4 ± 2.3 kPa for adhesive with no fillers. The improved adherence is probably related to the stiffness of the insoluble hydroxyapatite and tricalcium phosphate particles which reinforce the adhesive. These particles can clearly be observed in the environmental scanning electron microscope analysis. The potential of these fillers to increase the bonding strength of the adhesive to hard tissues was also demonstrated. Hydroxyapatite and tricalcium phosphate thus improve our new gelatin-alginate bioadhesives, which can be used for both soft and hard tissue adhesive applications.

  11. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  12. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  13. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  14. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration.

    PubMed

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C; Kim, Hae-Won

    2014-03-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8-1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement-alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate-hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement-alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone.

  15. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    PubMed Central

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  16. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    PubMed

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration

  17. Nondestructive inspection of bonded composite doublers for aircraft

    SciTech Connect

    Roach, D.; Moore, D.; Walkington, P.

    1996-12-31

    One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No single NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.

  18. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    NASA Astrophysics Data System (ADS)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  19. Promising aquivion composite membranes based on fluoroalkyl zirconium phosphate for fuel cell applications.

    PubMed

    Donnadio, Anna; Pica, Monica; Subianto, Surya; Jones, Deborah J; Cojocaru, Paula; Casciola, Mario

    2014-08-01

    Layered zirconium phosphate (ZP) that bears fluorinated alkyl chains bonded covalently to the layers (ZPR) was used as a nanofiller in membranes based on a short-side-chain perfluorosulfonic acid (PFSA) to mechanically reinforce the PFSA hydrophobic component. Compared to the pristine PFSA, membranes with a ZPR loading up to 30 wt% show enhanced mechanical properties, and the largest improvement of elastic modulus (E) and yield stress (σY ) are observed for the 10 wt% ZPR membrane: ΔE/E up to 90% and ΔσY /σY up 70% at 70°C and 80% relative humidity (RH). In the RH range 50-95%, the in-plane conductivity of the composite membranes reaches 0.43 S cm(-1) for 10 wt% ZPR at 110°C and is on average 30% higher than the conductivity of the pristine PFSA. The 10 wt % ZPR membrane is as hydrated as the neat PFSA membrane at 50% RH but becomes progressively less hydrated with increasing RH both at 80 and 110°C. The fuel cell performance of this membrane, at 80°C and 30% RH, is better than that of the unmodified PFSA.

  20. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  1. Polyorganosilazane preceramic binder development for reaction bonded silicon nitride composites

    SciTech Connect

    Mohr, D.L.; Starr, T.L.

    1992-11-01

    This study has examined the use of two commercially available polyorganosilazanes for application as preceramic binders in a composite composed of silicon carbide fibers in a reaction bonded silicon nitride (RBSN) matrix. Ceramic monolithic and composite samples were produced. Density of monolithic and whisker reinforced RBSN samples containing the polysilazane binder was increased. Mercury intrusion porosimetry revealed a significant decrease in the pore sizes of samples containing a polyorganosilazane binder. Electron micrographs of samples containing the preceramic binder looked similar to control samples containing no precursor. Overall, incorporation of the polysilazane into monolithic and whisker reinforced samples resulted in significantly increased density and decreased porosity. Nitriding of the RBSN was slightly retarded by addition of the polysilazane binder. Samples with the preceramic binders contained increased contents of {alpha} versus {beta}-silicon nitride which may be due to interaction of hydrogen evolved from polysilazane pyrolysis with the nitriding process. Initial efforts to produce continuous fiber reinforced composites via this method have not realized the same improvements in density and porosity which have been observed for monolithic and whisker reinforced samples. Further, the addition of perceramic binder resulted in a more brittle fracture morphology as compared to similar composites made without the binder.

  2. Polyorganosilazane preceramic binder development for reaction bonded silicon nitride composites

    SciTech Connect

    Mohr, D.L.; Starr, T.L. )

    1992-11-01

    This study has examined the use of two commercially available polyorganosilazanes for application as preceramic binders in a composite composed of silicon carbide fibers in a reaction bonded silicon nitride (RBSN) matrix. Ceramic monolithic and composite samples were produced. Density of monolithic and whisker reinforced RBSN samples containing the polysilazane binder was increased. Mercury intrusion porosimetry revealed a significant decrease in the pore sizes of samples containing a polyorganosilazane binder. Electron micrographs of samples containing the preceramic binder looked similar to control samples containing no precursor. Overall, incorporation of the polysilazane into monolithic and whisker reinforced samples resulted in significantly increased density and decreased porosity. Nitriding of the RBSN was slightly retarded by addition of the polysilazane binder. Samples with the preceramic binders contained increased contents of [alpha] versus [beta]-silicon nitride which may be due to interaction of hydrogen evolved from polysilazane pyrolysis with the nitriding process. Initial efforts to produce continuous fiber reinforced composites via this method have not realized the same improvements in density and porosity which have been observed for monolithic and whisker reinforced samples. Further, the addition of perceramic binder resulted in a more brittle fracture morphology as compared to similar composites made without the binder.

  3. Composite resin bond strength to primary dentin prepared with Er, Cr:YSSG laser.

    PubMed

    Sung, Eric C; Chenard, Torin; Caputo, Angelo A; Amodeo, Michael; Chung, Evelyn M; Rizoiu, Ioana M

    2005-01-01

    This in vitro study evaluated the shear bond strength of a hybrid composite resin bonded to primary dentin prepared with an Er, Cr:YSGG hydrokinetic laser compared to conventional bur prepared primary dentin. The results suggest that primary dentin surfaces treated with the Er, Cr:YSGG laser, with or without etching, may provide comparable or increased composite resin bond strengths depending upon bonding agent used.

  4. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    PubMed

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  5. Mechanical Behavior and Thermal Stability of Acid-Base Phosphate Cements and Composites Fabricated at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Colorado Lopera, Henry Alonso

    This dissertation presents the study of the mechanical behavior and thermal stability of acid-base phosphate cements (PCs) and composites fabricated at ambient temperature. These materials are also known as chemically bonded phosphate ceramics (CBPCs). Among other advantages of using PCs when compared with traditional cements are the better mechanical properties (compressive and flexural strength), lower density, ultra-fast (controllable) setting time, controllable pH, and an environmentally benign process. Several PCs based on wollastonite and calcium and alumino phosphates after thermal exposure up to 1000°C have been investigated. First, the thermo-mechanical and chemical stability of wollastonite-based PC (Wo-PC) exposed to temperatures up to 1000°C in air environment were studied. The effects of processing conditions on the curing and shrinkage of the wollastonite-based PC were studied. The chemical reactions and phase transformations during the fabrication and during the thermal exposure are analyzed in detail using scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermo-gravimetric analysis (TGA Then, the thermo-mechanical and chemical stability of glass, carbon and basalt fiber reinforced Wo-PC composites, were studied using SEM, XRD, TGA. The flexural strength and Weibull statistics were analyzed. A significant strength degradation in the composites were found after the thermal exposure at elevated temperatures due to the interdifusion and chemical reactions across the fibers and the matrix at temperatures over 600°C. To overcome this barrier, we have developed a new PC based on calcium and alumino-phosphates (Ca-Al PCs). The Ca-Al PCs were studied in detail using SEM, XRD, TGA, curing, shrinkage, Weibull statistics, and compression tests. Our study has confirmed that this new composite material is chemically and mechanically stable at temperatures up to 1000°C. Moreover, the compression strength increases after exposure to 1000

  6. Caul and method for bonding and curing intricate composite structures

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis S. (Inventor); Goodno, Kenneth N. (Inventor)

    1993-01-01

    The invention disclosed here is a method for forming and curing an intricate structure of criss-crossing composite stringers and frames that are bonded to a skin panel. A structure constructed in accordance with the invention would be well-suited for use as a portion of an aircraft fuselage, a boat hull, or the like. The method is preferably practiced by applying uncured composite stringers to an uncured composite sheet panel. This is followed by placing cured frames crosswise over the stringers. The frames have openings at the locations where they intersect with the stringers which enables the frames to come into direct contact with the skin along most of their length. During the forming and curing process, the stringers are covered with a plurality of cauls, and the entire assembly of skin panel, stringers, frames and cauls is subjected to a vacuum bagging and curing process. The cauls serve to maintain both part shape and to control the flow of resin within the stringers as they are cured. Further, they probably eliminate the need for intermediate protective materials between the vacuum bag and the stringers.

  7. Bond strength of resin composite to differently conditioned amalgam.

    PubMed

    Ozcan, M; Vallittu, P K; Huysmans, M-C; Kalk, W; Vahlberg, T

    2006-01-01

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N=84) were condensed into acrylic and randomly assigned to one of the following treatments (N=6): (1) Alloy primer + opaquer, (2) Air-particle abrasion (50 micro m Al(2)O(3)) + alloy primer + opaquer, (3) Silica coating (30 micro m SiO(x)) + silanization + opaquer, (4) Opaquer + pre-impregnated continuous bidirectional E-glass fibre sheets, (5) Silica coating + silanization + fibre sheets, (6) Silica coating + silanization + opaquer + fibre sheet application. Non-conditioned amalgam surfaces were considered as control group (7). The mean surface roughness depth (R(Z)) was measured from the control group and air-abraded amalgam surfaces. The resin composite was bonded to the conditioned amalgam specimens using polyethylene molds. All specimens were tested under dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. The shear bond strength of resin composite to amalgam substrates was measured in a universal testing machine (1 mm/min). Surface roughness values for the non-conditioned control group (R(Z) approximately 0.14 micro m) and for air-particle abraded surfaces with either Al(2)O(3) or SiO(x) (R(Z) approximately 0.19 micro m and R(Z) approximately 0.16 micro m, respectively) did not show significant differences (p=0.23) (One-way ANOVA). In dry conditions, silica coating and silanization followed by fibre sheet application exhibited significantly higher results (14.8+/-5.6 MPa) than those of the groups conditioned with alloy primer (2.2+/-0.7 MPa) (p<0.001), air-particle abrasion+alloy primer (4.4+/-2.0 MPa, p<0.001), silica coating+silanization alone (6.2+/-0.8 MPa, p=0.009) or non-conditioned group (1.4+/-0.6, p<0.001). Silica coating and silanization followed

  8. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  9. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  10. Lysine Decarboxylase with an Enhanced Affinity for Pyridoxal 5-Phosphate by Disulfide Bond-Mediated Spatial Reconstitution

    PubMed Central

    Sagong, Hye-Young; Kim, Kyung-Jin

    2017-01-01

    Lysine decarboxylase (LDC) catalyzes the decarboxylation of l-lysine to produce cadaverine, an important industrial platform chemical for bio-based polyamides. However, due to high flexibility at the pyridoxal 5-phosphate (PLP) binding site, use of the enzyme for cadaverine production requires continuous supplement of large amounts of PLP. In order to develop an LDC enzyme from Selenomonas ruminantium (SrLDC) with an enhanced affinity for PLP, we introduced an internal disulfide bond between Ala225 and Thr302 residues with a desire to retain the PLP binding site in a closed conformation. The SrLDCA225C/T302C mutant showed a yellow color and the characteristic UV/Vis absorption peaks for enzymes with bound PLP, and exhibited three-fold enhanced PLP affinity compared with the wild-type SrLDC. The mutant also exhibited a dramatically enhanced LDC activity and cadaverine conversion particularly under no or low PLP concentrations. Moreover, introduction of the disulfide bond rendered SrLDC more resistant to high pH and temperature. The formation of the introduced disulfide bond and the maintenance of the PLP binding site in the closed conformation were confirmed by determination of the crystal structure of the mutant. This study shows that disulfide bond-mediated spatial reconstitution can be a platform technology for development of enzymes with enhanced PLP affinity. PMID:28095457

  11. Coupling of functional hydrogen bonds in pyridoxal-5'-phosphate-enzyme model systems observed by solid-state NMR spectroscopy.

    PubMed

    Sharif, Shasad; Schagen, David; Toney, Michael D; Limbach, Hans-Heinrich

    2007-04-11

    We present a novel series of hydrogen-bonded, polycrystalline 1:1 complexes of Schiff base models of the cofactor pyridoxal-5'-phosphate (PLP) with carboxylic acids that mimic the cofactor in a variety of enzyme active sites. These systems contain an intramolecular OHN hydrogen bond characterized by a fast proton tautomerism as well as a strong intermolecular OHN hydrogen bond between the pyridine ring of the cofactor and the carboxylic acid. In particular, the aldenamine and aldimine Schiff bases N-(pyridoxylidene)tolylamine and N-(pyridoxylidene)methylamine, as well as their adducts, were synthesized and studied using 15N CP and 1H NMR techniques under static and/or MAS conditions. The geometries of the hydrogen bonds were obtained from X-ray structures, 1H and 15N chemical shift correlations, secondary H/D isotope effects on the 15N chemical shifts, or directly by measuring the dipolar 2H-15N couplings of static samples of the deuterated compounds. An interesting coupling of the two "functional" OHN hydrogen bonds was observed. When the Schiff base nitrogen atoms of the adducts carry an aliphatic substituent such as in the internal and external aldimines of PLP in the enzymatic environment, protonation of the ring nitrogen shifts the proton in the intramolecular OHN hydrogen bond from the oxygen to the Schiff base nitrogen. This effect, which increases the positive charge on the nitrogen atom, has been discussed as a prerequisite for cofactor activity. This coupled proton transfer does not occur if the Schiff base nitrogen atom carries an aromatic substituent.

  12. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.

    PubMed

    Krüger, Reinhard; Seitz, Jan-Marten; Ewald, Andrea; Bach, Friedrich-Wilhelm; Groll, Jürgen

    2013-04-01

    Calcium phosphate cements are brittle biomaterials of low bending strength. One promising approach to improve their mechanical properties is reinforcement with fibers. State of the art degradable reinforced composites contain fibers made of polymers, resorbable glass or whiskers of calcium minerals. We introduce a new class of composite that is reinforced with degradable magnesium alloy wires. Bending strength and ductility of the composites increased with aspect ratio and volume content of the reinforcements up to a maximal bending strength of 139±41MPa. Hybrid reinforcement with metal and polymer fibers (PLA) further improved the qualitative fracture behavior and gave indication of enhanced strength and ductility. Immersion tests of composites in SBF for seven weeks showed high corrosion stability of ZEK100 wires and slow degradation of the magnesium calcium phosphate cement by struvite dissolution. Finally, in vitro tests with the osteoblast-like cell line MG63 demonstrate cytocompatibility of the composite materials.

  13. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    PubMed

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms.

  14. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  15. Cytocompatibility and Mechanical Properties of Short Phosphate Glass Fibre Reinforced Polylactic Acid (PLA) Composites: Effect of Coupling Agent Mediated Interface

    PubMed Central

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew; Walker, Gavin; Scotchford, Colin

    2012-01-01

    In this study three chemical agents Amino-propyl-triethoxy-silane (APS), sorbitol ended PLA oligomer (SPLA) and Hexamethylene diisocyanate (HDI) were identified to be used as coupling agents to react with the phosphate glass fibre (PGF) reinforcement and the polylactic acid (PLA) polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm) in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa) was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS) helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP) control, supporting the use of these materials as coupling agent’s within medical implant devices. PMID:24955744

  16. NMR studies of coupled low- and high-barrier hydrogen bonds in pyridoxal-5'-phosphate model systems in polar solution.

    PubMed

    Sharif, Shasad; Denisov, Gleb S; Toney, Michael D; Limbach, Hans-Heinrich

    2007-05-16

    The 1H and 15N NMR spectra of several 15N-labeled pyridoxal-5'-phosphate model systems have been measured at low temperature in various aprotic and protic solvents of different polarity, i.e., dichloromethane-d2, acetonitrile-d3, tetrahydrofuran-d8, freon mixture CDF3/CDClF2, and methanol. In particular, the 15N-labeled 5'-triisopropyl-silyl ether of N-(pyridoxylidene)-tolylamine (1a), N-(pyridoxylidene)-methylamine (2a), and the Schiff base with 15N-2-methylaspartic acid (3a) and their complexes with proton donors such as triphenylmethanol, phenol, and carboxylic acids of increasing strength were studied. With the use of hydrogen bond correlation techniques, the 1H/15N chemical shift and scalar coupling data could be associated with the geometries of the intermolecular O1H1N1 (pyridine nitrogen) and the intramolecular O2H2N2 (Schiff base) hydrogen bonds. Whereas O1H1N1 is characterized by a series of asymmetric low-barrier hydrogen bonds, the proton in O2H2N2 faces a barrier for proton transfer of medium height. When the substituent on the Schiff base nitrogen is an aromatic ring, the shift of the proton in O1H1N1 from oxygen to nitrogen has little effect on the position of the proton in the O2H2N2 hydrogen bond. By contrast, when the substituent on the Schiff base nitrogen is a methyl group, a proton shift from O to N in O1H1N1 drives the tautomeric equilibrium in O2H2N2 from the neutral O2-H2...N2 to the zwitterionic O2-...H2-N(2+) form. This coupling is lost in aqueous solution where the intramolecular O2H2N2 hydrogen bond is broken by solute-solvent interactions. However, in methanol, which mimics hydrogen bonds to the Schiff base in the enzyme active site, the coupling is preserved. Therefore, the reactivity of Schiff base intermediates in pyridoxal-5'-phosphate enzymes can likely be tuned to the requirements of the reaction being catalyzed by differential protonation of the pyridine nitrogen.

  17. Effect of hyperbaric oxygen profiles on the bond strength of repaired composite resin

    PubMed Central

    Mossa, Hossam; ElKhatat, Essam; Hassan, Ahmed M.; Baroudi, Kusai; Beshr, Khaled

    2016-01-01

    Objective: This study was performed to evaluate the bond strength of repaired three types of composite resins under various hyperbaric oxygen (HBO) profiles with various session numbers. Materials and Methods: Sixty specimens of three types of composite resin (nanofilled composite, nanohybrid composite and microfilled composite) each type of composite was divided into four group according to various profiles of HBO treatment (control, 2bar, 3 bar and 5 bar). Then, the specimens were repaired; thermocycled, the tensile bond strength were measured. Then the data were analyzed by One-way ANOVA followed by Tukey's post hoc test (α = 0.05). Results: The highest bond strength was obtained for the repaired nanofilled composite resin specimens while; the lowest bond strength was obtained for the repaired microfilled composite resin specimens. The highest tensile bond strength was recorded for the specimens who treated with the highest pressure of HBO. Conclusion: The bond strength of repaired nanofilled composite resins is better than the other types of composite resin. The highest pressure of HBO, the highest bond strength of repaired composite resins. PMID:27195232

  18. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the poor results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  19. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the por results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  20. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line.

  1. Comparison of Shear Bond Strength of Composite to Stainless Steel Crowns Using Two Mechanical Surface Treatments and Two Bonding Systems

    PubMed Central

    Ghadimi, Sara; Heidari, Alireza

    2016-01-01

    Objectives: This study aimed to compare the shear bond strength (SBS) of composite to stainless steel crowns (SSC) using two mechanical surface treatments (MSTs) and two bonding systems. Materials and Methods: Eighty-four SSCs were divided into six groups of 14; Group1: No MST+Scotchbond Universal adhesive (N+U), Group 2: Surface roughening by a diamond bur+Scotchbond Universal adhesive (R+U), Group 3: Sandblasting+Scotchbond Universal adhesive (S+U), Group 4: No MST+Alloy Primer+Clearfil SE Primer and Bond (N+A), Group 5: Surface roughening by a diamond bur+Alloy Primer+Clearfil SE Primer and Bond (R+A), Group 6: Sandblasting+Alloy Primer+Clearfil SE Primer and Bond (S+A). After MST and bonding procedure, composite cylinders were bonded to the lingual surface of SSCs, then the SBS of composite to SSCs was measured using a universal testing machine following thermocycling. Results: The SBS of groups R+U and S+U was significantly higher than that of group N+U. No significant difference was noted in SBS of groups R+U and S+U. The SBS of group S+A was significantly higher than that of groups N+A and R+A. No significant difference was noted in the SBS of groups N+A and R+A (P>0.05). Conclusions: In Scotchbond Universal adhesive groups, sandblasting and surface roughening by diamond bur significantly increased the SBS of composite to SSCs compared to no MST. In Alloy Primer groups, sandblasting significantly increased the SBS of composite to SSC compared to surface roughening with diamond bur and no MST. PMID:27536330

  2. Ultrasonic guided wave monitoring of composite bonded joints using macro fiber composite transducers

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Coccia, Stefano; Lanza di Scalea, Francesco; Oliver, Joseph; Kosmatka, John; Park, Gyuhae; Farrar, Charles

    2006-03-01

    The monitoring of adhesively-bonded joints through the use of ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of Unmanned Aerial Vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly-cured adhesive and disbonded interfaces. The guided wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by utilizing macro fiber composite (MFC) transducers which are inexpensive, flexible, highly robust, and viable candidates for application in on-board monitoring systems. Based upon change in energy transmission, the presence of damage is successfully identified through features extracted in both the time domain and discrete wavelet transform domain. A unique "passive" version of the diagnostic system is also demonstrated experimentally, whereby MFC sensors are utilized for detecting and locating simulated active damage in an aluminum plate. By exploiting the directivity behavior of MFC sensors, a damage location algorithm which is independent of wave speed is developed. Application of this approach in CFRP components may alleviate difficulties associated with damage location in highly anisotropic systems.

  3. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  4. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  5. A 3-year randomized clinical trial evaluating two different bonded posterior restorations: Amalgam versus resin composite

    PubMed Central

    Kemaloglu, Hande; Pamir, Tijen; Tezel, Huseyin

    2016-01-01

    Objective: To compare the performance and postoperative sensitivity of a posterior resin composite with that of bonded amalgam in 40 (n = 20) large sized cavities and to evaluate whether resin composite could be an alternative for bonded amalgam. Materials and Methods: This was a randomized clinical trial. Twenty patients in need of at least two posterior restorations were recruited. Authors randomly assigned one half of the restorations to receive bonded amalgam and the other half to composite restorations. Forty bonded amalgams (n = 20) and composites (n = 20) were evaluated for their performance on modified-US Public Health Service criteria and postoperative sensitivity using visual analogue scale (VAS) for 36-months. Results: Success rate of this study was 100%. First clinical alterations were rated as Bravo after 1 year in marginal discoloration, marginal adaptation, anatomical form, and surface roughness for both amalgam and composite. At the 3rd year, overall “Bravo” rated restorations were 12 for bonded amalgam and 13 for resin composites. There were no significant differences among the VAS scores of composites and bonded amalgams for all periods (P > 0.05) except for the comparisons at the 3rd year evaluation (P < 0.05). Conclusions: Within the limitation of this study, both resin composite and bonded amalgam were clinically acceptable. Postoperative sensitivity results tend to decrease more in composite restorations rather than amalgams. Therefore, it was concluded that posterior resin composite can be used even in large sized cavities. PMID:27011734

  6. Effects of cyclic stressing on attachment bond strength using glass ionomer cement and composite resin.

    PubMed

    Moseley, H C; Horrocks, E N; Pearson, G J; Davies, E H

    1995-02-01

    Bonded orthodontic brackets were subjected to cyclic loading in order to simulate the effect of occlusal forces. The subsequent effect on bond strength was determined. Stainless steel, mesh-based brackets were bonded to extracted teeth with either composite resin or glass ionomer cement. A jig was designed to subject each bracket to a preselected loading level and the 24-hour shear/peel bond strength of both stressed and unstressed brackets was subsequently measured. Cyclic loading brought about a comparative decrease in bond strength when using both types of material. The potential implications of selecting these different types of bonding material for clinical use are discussed.

  7. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    PubMed

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  8. Conducting and non-conducting biopolymer composites produced by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this report, we introduce two types of processes for the production of biopolymer composites: one is fabricated by bonding biopolymers with corn protein or wheat protein and the other by bonding starch with a synthetic polymer. These two types of biopolymer composites make use of the strong bon...

  9. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    SciTech Connect

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  10. Acid Gradient across Plasma Membrane Can Drive Phosphate Bond Synthesis in Cancer Cells: Acidic Tumor Milieu as a Potential Energy Source

    PubMed Central

    Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam

    2015-01-01

    Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623

  11. Compositions containing amino acids, phosphate and manganese and their uses

    DOEpatents

    Daly, Michael J.; Gaidamakova, Elena K.

    2016-01-12

    The invention provides methods of producing vaccines directed against microorganisms, with the methods comprising culturing, harvesting and/or suspending the microorganism in the presence of a radiation-protective composition and irradiating the bacteria or viruses with a dose of radiation sufficient to render the microorganism replication-deficient and/or non-infective. The radiation-protective compositions used in the methods of the present invention comprise at least one nucleoside, at least one antioxidant and at least one small peptide. The invention also provides methods of rendering bacteria in culture resistant to ionizing radiation (IR), with these methods comprising culturing the bacteria in the presence of a radiation-protective composition.

  12. RBS and XPS analyses of the composite calcium phosphate coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Yamaguchi, Tetsuro; Tanaka, Yoshikazu

    2005-12-01

    The calcium phosphate coatings on metallic implants are widely used for biomedical applications. The calcium phosphate coatings require mechanical strength, strong adhesion to the metallic implants, chemical stability and low dissolution into the human body fluid for stable functioning in the corrosive environment of the human body. In this study, a novel approach for improving the calcium phosphate coatings is utilized by adding trace metallic element into the coatings. We focused on teeth enamel, which is the hardest calcium phosphate tissue in the human body. Zn concentration increases exponentially from the interior to the surface of the enamel. As the Zn concentration increases, so the local hardness increases. Our previous studies suggest that Zn has influence on the hardness and other properties of enamel, calcium phosphate tissue. Calcium phosphate coatings doped with Zn was fabricated and characterized. The atomic composition and chemical state were investigated by using Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectrometer (XPS), respectively. Scratch test was also carried out for measuring the adhesion of the coatings.

  13. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    USGS Publications Warehouse

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  14. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  15. ILLUMINATING THE ROLE OF AGGLOMERATES ON CRITICAL PHYSICOCHEMICAL PROPERTIES OF AMORPHOUS CALCIUM PHOSPHATE COMPOSITES

    PubMed Central

    O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.

    2009-01-01

    Water sorption (WS), mechanical strength, and ion release of polymeric composites formulated with 40 % as-made or milled amorphous calcium phosphate (ACP) are compared after 1, 2 and 3 months of aqueous exposure. Ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate comprised the resin. The WS (mass %) peaked at 3 months. WS of as-made ACP composites was significantly higher than WS of milled ACP composites and copolymers. Both composite groups experienced decreases in biaxial flexural strength (BFS) with water aging, with milled ACP composites retaining a significantly higher BFS throughout immersion. Ion release was moderately reduced in milled ACP composites, though they remained superior to as-made ACP composites due to significantly lower WS and higher BFS after prolonged aqueous exposure. PMID:19774100

  16. Total Phosphate Influences the Rate of Hydrocarbon Degradation but Phosphate Mineralogy Shapes Microbial Community Composition in Cold-Region Calcareous Soils.

    PubMed

    Siciliano, Steven D; Chen, Tingting; Phillips, Courtney; Hamilton, Jordan; Hilger, David; Chartrand, Blaine; Grosskleg, Jay; Bradshaw, Kris; Carlson, Trevor; Peak, Derek

    2016-05-17

    Managing phosphorus bioaccessibility is critical for the bioremediation of hydrocarbons in calcareous soils. This paper explores how soil mineralogy interacts with a novel biostimulatory solution to both control phosphorus bioavailability and influence bioremediation. Two large bore infiltrators (1 m diameter) were installed at a PHC contaminated site and continuously supplied with a solution containing nutrients and an electron acceptor. Soils from eight contaminated sites were prepared and pretreated, analyzed pretrial, spiked with diesel, placed into nylon bags into the infiltrators, and removed after 3 months. From XAS, we learned that three principal phosphate phases had formed: adsorbed phosphate, brushite, and newberyite. All measures of biodegradation in the samples (in situ degradation estimates, mineralization assays, culturable bacteria, catabolic genes) varied depending upon the soil's phosphate speciation. Notably, adsorbed phosphate increased anaerobic phenanthrene degradation and bzdN catabolic gene prevalence. The dominant mineralogical constraints on community composition were the relative amounts of adsorbed phosphate, brushite, and newberyite. Overall, this study finds that total phosphate influences microbial community phenotypes whereas relative percentages of phosphate minerals influences microbial community genotype composition.

  17. Cross-linked PEG via degradable phosphate ester bond: synthesis, water-swelling, and application as drug carrier.

    PubMed

    Liu, Zhaoxing; Wang, Lei; Bao, Chunyan; Li, Xinxin; Cao, Lei; Dai, Kerong; Zhu, Linyong

    2011-06-13

    A new series of degradable and water-swellable cross-linked PEG phosphoester polymers (CPPs) based on a facile cross-linked reaction between diphosphoesters of polyethylene glycol (P-PEG-P) and diglycidyl ether of polyethylene glycol (E-PEG-E) has been prepared and characterized. The molecular weights and ratios of the prepolymers played an important role for the properties of CPPs polymers, such as mechanical property, swelling, and degradation rates. In the curing process, the glycidyl ether was consumed by both hydroxyl of the phosphoester (P-OH) and hydroxyl generated from the opened glycidyl ethers (C-OH) with the presence of acid, which generated degradable phosphate esters as cross-linked points and ether bonds as the short branches, respectively. Drug entrapment and release test and biological cytotoxicity studies in vitro suggested that the polymers and generated hydrogels have great potential applications in drug delivery system and biological materials.

  18. Effects of colloidal silica suspension mixing on porosity of phosphate-bonded investments after setting and heating processes.

    PubMed

    Bae, Ji-Young; Asaoka, Kenzo

    2013-01-01

    A numerical simulation model, which was based on the setting and heating reactions of the binder phase of phosphate-bonded investment compacts, was developed to compute the porosities of set and burnout compacts. Densities and concentrations of microsilica particles in dilute suspension were measured and input into the simulation model. Validity of the model was confirmed by experimental results, that is, colloidal silica suspensions were prepared using different silica concentrations and mixed with investment powders. Porosities of these set and burnout compacts were experimentally measured. Effects of these factors on the porosity of compacts were examined using the developed simulation model: liquid/powder (L/P) ratio, concentration of microsilica particles in colloidal silica suspension, and ratio of binder component (NH₄H₂PO₄) in investment powder. It was concluded that numerical simulation is a viable tool for dental materials research.

  19. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy.

    PubMed

    Song, Yingwei; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L(-1) nicotinic acid (NA) solution, named as vitamin B3, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings.

  20. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    NASA Astrophysics Data System (ADS)

    Maslova, Marina V.; Rusanova, Daniela; Naydenov, Valeri; Antzutkin, Oleg N.; Gerasimova, Lidia G.

    2008-12-01

    Decomposition of mineral sphene, CaTiOSiO 4, by H 3PO 4 is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO 4) 2·H 2O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO 4) 2·H 2O proceeds via formation of meta-stable titanium phosphate phases, Ti(H 2PO 4)(PO 4)·2H 2O and Ti(H 2PO 4)(PO 4). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H 3PO 4 concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H 3PO 4 is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO 4) 2·H 2O-SiO 2 composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO 4·2H 2O fertilizer.

  1. Amorphous Calcium Phosphate-Based Bioactive Polymeric Composites for Mineralized Tissue Regeneration

    PubMed Central

    Skrtic, D.; Antonucci, J. M.; Eanes, E. D.

    2003-01-01

    Amorphous calcium phosphate (ACP), a postulated precursor in the formation of biological hydroxyapatite, has been evaluated as a filler phase in bioactive polymeric composites that utilize dental monomers to form the matrix phase on polymerization. In addition to excellent biocompatibility, these composites provided sustained release of calcium and phosphate ions into simulated saliva milieus. In an effort to enhance the physicochemical and mechanical properties and extend the utility of remineralizing ACP composites to a greater variety of dental applications, we have focused on: a) hybridizing ACP by introducing silica and/or zirconia, b) assessing the efficacy of potential coupling agents, c) investigating the effects of chemical structure and compositional variation of the resin matrices on the mechanical strength and ion-releasing properties of the composites, and d) improving the intrinsic adhesiveness of composites by using bifunctional monomers with an affinity for tooth structure in resin formulations. Si- and Zr-modified ACPs along with several monomer systems are found useful in formulating composites with improved mechanical and remineralizing properties. Structure-property studies have proven helpful in advancing our understanding of the remineralizing behavior of these bioactive composites. It is expected that this knowledge base will direct future research and lead to clinically valuable products, especially therapeutic materials appropriate for the healing or even regeneration of defective teeth and bone structures. PMID:27413603

  2. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    PubMed Central

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  3. Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-06-01

    The purpose of this study was to investigate the shear bond strength (SBS) and surface free-energy (SFE) of short fiber-reinforced resin composite (SFRC), using different adhesive systems, in comparison with other composite restoratives. The resin composites used were everX Posterior (EP), Clearfil AP-X (CA), and Filtek Supreme Ultra Universal Restorative (FS). The adhesive systems used were Scotchbond Multi-Purpose (SM), Clearfil SE Bond (CS), and G-Premio Bond (GB). Resin composite was bonded to dentin, and SBS was determined after 24 h of storage in distilled water and after 10,000 thermal cycles (TCs). The SFEs of the resin composites and the adhesives were determined by measuring the contact angles of three test liquids. The SFE values and SFE characteristics were not influenced by the type of resin composite, but were influenced by the type of adhesive system. The results of this study suggest that the bonding performance and interfacial characteristics of SFRC are the same as for other composite restoratives, but that these parameters are affected by the type of adhesive system. The bonding performance of SFRC was enhanced by thermal cycling in a manner similar to that for other composite restoratives.

  4. Aminoalcohol functionalized zirconium phosphate as versatile filler for starch-based composite membranes.

    PubMed

    Pica, Monica; Donnadio, Anna; Bianchi, Valentina; Fop, Sacha; Casciola, Mario

    2013-08-14

    Microcrystalline zirconium phosphate was exfoliated by treatment with aqueous solutions of α,ω-alkylaminoalcohols and employed for the fabrication of potato starch composite membranes. Glycerol-based and glycerol-free composite membranes, containing 5 wt% of filler, were prepared from gelatinized starch and characterized for their physico-chemical properties. Despite of a partial filler reaggregation, as revealed by XRD and SEM analysis, all the composites exhibited a significant increase in the Young's modulus with respect to the glycerol-starch membrane, up to 80% and 190% for the glycerol-based and the glycerol-free composites, respectively. For both kinds of membranes the filler delays to a large extent the starch decomposition above about 300°C. A significant reduction in the water uptake of the composites was also observed with respect to the neat glycerol-based membrane, up to about 70% for the glycerol-free composites.

  5. The engineering of construction specifications for externally bonded FRP composites

    NASA Astrophysics Data System (ADS)

    Yang, Xinbao

    This dissertation, consisting of six technical papers, presents the results of research on the theme of developing engineering and the construction specifications for externally bonded FRP composites. For particular, the work focuses on three critical aspects of the performance of FRP systems: fiber misalignment, corner radius, and lap splice length. Based on both experimental and theoretical investigations, the main contribution of this work is the development of recommendations on fiber misalignment limit, minimum corner radius, lap splice length to be used as guidance in the construction practice of FRP strengthening of concrete structures. The first three papers focus on the strength and stiffness degradation of CFRP laminates from fiber misalignment. It was concluded that misalignment affects strength more than stiffness. In practice, when all fibers in a laminate can be regarded as through fibers, it is recommended to use a reduction factor for strength and no reduction factor for stiffness to account for fiber misalignment. Findings from concrete beams strengthened with misaligned CFRP laminates verified these recommendations. The fourth and fifth papers investigate the effect of corner radius on the mechanical properties of CFRP laminates wrapped around a rectangular cross section. A unique reusable test device was fabricated to determine fiber stress and radial stress of CFRP laminates with different corner radii. Comparison performed with finite element analyses shows that the test method and the reusable device were viable and the stress concentration needs to be considered in FRP laminate wrapped corners. A minimum of 1.0 in. corner radius was recommended for practice. The sixth paper summarizes the research on the lap splice length of FRP laminates under static and repeated loads. Although a lap splice length of 1.5 in. is sufficient for CFRP laminates to develop the ultimate static tensile strength, a minimum of 4.0 in. is recommended in order to

  6. Delamination Arrestment in Bonded-Bolted Composite Structures by Fasteners

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Ho Eric

    Laminated composites have exceptional in-plane strengths and fatigue properties. However, they are susceptible to the interlaminar mode of failure, namely disbond and delamination. This failure mode challenges the edges of structural interface, such as the skin-stringer flange and run-out, where interlaminar tension, shear, and opening moment are concentrated. The fasteners provide a substantiation path for the FAA damage tolerance requirement for composite bonded joints (FAR 23.573). A comprehensive understanding of delamination arrestment by fasteners was developed. The fastener provides crack arrest capability by three main mechanisms: 1) mode I suppression, 2) crack-face friction, and 3) fastener joint shear stiffness. The fastener mechanically closes the crack tip, suppressing mode I fracture and forcing the crack to propagate in pure mode II with higher fracture toughness. Fastener preload generates significant friction force on the cracked surfaces which reduces crack-tip forces and moments. The fastener shear joint provides an alternate load path around the crack tip that becomes more effective as crack length increases. The three mechanisms work in concert to provide various degrees of crack arrestment and retardation capability. A novel test technique was developed to quantify the delamination arrestment capability by fasteners under in-plane dominated loading, i.e. mode II propagation. The test results show that the fastener is highly capable of delamination arrestment and retardation. The test also demonstrates that fastener installation preload, which is directly related to crack-face friction, is an important factor in delamination arrestment. A computationally efficient analytical method was developed to capture the behavior and efficacy of delamination arrestment by fasteners. The solution method is based on the principle of minimum potential energy and beam-column modeling of the delaminating structure. The fastener flexibility approach is used to

  7. Supramolecular open-framework based on 1-D iron phosphate-diphosphate chains assembled through hydrogen bonding

    SciTech Connect

    Salvado, Miguel A.; Pertierra, Pilar; Trobajo, Camino; Garcia, Jose R.

    2008-05-15

    Fe(H{sub 2}PO{sub 4})(H{sub 2}P{sub 2}O{sub 7}).C{sub 5}H{sub 5}N, a new iron(III) phosphate with an open-framework has been synthesized hydrothermally using pyridine as organic template. The crystal structure was solved ab initio using conventional powder X-ray diffraction data. The unit cell is orthorhombic, a=9.5075(2), b=10.1079(1), c=13.3195(2) A, space group P2{sub 1}2{sub 1}2{sub 1}, Z=4. The structure consists of FeO{sub 6} octahedra joined by H{sub 2}PO{sub 4} and H{sub 2}P{sub 2}O{sub 7} groups forming linear chains interconnected by hydrogen bonding to give rise to a supramolecular framework enclosing tunnels in which the pyridine molecules reside. - Graphical abstract: The low temperature hydrothermal synthesis offers many possibilities in the preparation of new materials with mixed octahedral-tetrahedral open-frameworks. Fe(H{sub 2}PO{sub 4})(H{sub 2}P{sub 2}O{sub 7}).C{sub 5}H{sub 5}N is constituted by linear chains of FeO{sub 6} octahedra joined through of both dihydrogenphosphate and dihydrogendiphosphate bridges, interconnected by hydrogen bonds, originating channels where the pyridine molecules are located.

  8. The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites.

    PubMed

    Schnieders, Julia; Gbureck, Uwe; Vorndran, Elke; Schossig, Michael; Kissel, Thomas

    2011-11-01

    The influence of porosity on release profiles of antibiotics from calcium phosphate composites was investigated to optimize the duration of treatment. We hypothesized, that by the encapsulation of vancomycin-HCl into biodegradable microspheres prior admixing to calcium phosphate bone cement, the influence of porosity of the cement matrix on vancomycin release could be reduced. Encapsulation of vancomycin into a biodegradable poly(lactic co-glycolic acid) copolymer (PLGA) was performed by spray drying; drug-loaded microparticles were added to calcium phosphate cement (CPC) at different powder to liquid ratios (P/L), resulting in different porosities of the cement composites. The effect of differences in P/L ratio on drug release kinetics was compared for both the direct addition of vancomycin-HCl to the cement liquid and for cement composites modified with vancomycin-HCl-loaded microspheres. Scanning electron microscopy (SEM) was used to visualize surface and cross section morphology of the different composites. Brunauer, Emmett, and Teller-plots (BET) was used to determine the specific surface area and pore size distribution of these matrices. It could be clearly shown, that variations in P/L ratio influenced both the porosity of cement and vancomycin release profiles. Antibiotic activity during release study was successfully measured using an agar diffusion assay. However, vancomycin-HCl encapsulation into PLGA polymer microspheres decreased porosity influence of cement on drug release while maintaining antibiotic activity of the embedded substance.

  9. Permeability testing of composite material and adhesive bonds for the DC-XA composite feedline program

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1995-01-01

    Hercules IM7/8552 carbon/epoxy and Hysol EA 9394 epoxy adhesive bonded between composite/titanium were tested for permeability after various numbers of thermal cycles between 100 C and liquid nitrogen (-196 C). The specimens were quenched from the 100 C temperature into liquid nitrogen to induce thermal shock into the material. Results showed that the carbon/epoxy system was practically impermeable even after 12 thermal cycles. The EA 9394 adhesive bondline was more permeable than the carbon/epoxy, but vacuum mixing minimized the permeability and kept it within allowable limits. Thermal cycling had little effect on the permeability values of the bondline specimens.

  10. In vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold.

    PubMed

    Peter, S J; Miller, S T; Zhu, G; Yasko, A W; Mikos, A G

    1998-07-01

    This study was designed to investigate the in vivo biodegration and biocompatibility of a poly(propylene fumarate) (PPF)-based orthopedic biomaterial. The effects of varying the PPF to N-vinyl pyrrolidinone ratio and PPF to beta-tricalcium phosphate content were studied. The composite mechanical properties and local tissue interactions were analyzed over 12 weeks. An initial increase in both compressive modulus and strength was seen for composite formulations that incorporated beta-tricalcium phosphate. The samples incorporating a higher PPF to N-vinyl pyrrolidinone ratio reached a maximal compressive strength of 7.7 MPa and a maximal compressive modulus of 191.4 MPa at 3 weeks. The lower PPF to N-vinyl pyrrolidinone ratio samples gained a maximum compressive strength of 7.5 MPa initially and a compressive modulus of 134.0 MPa at 1 week. At 6 weeks, all samples for formulations incorporating beta-tricalcium phosphate crumbled upon removal and were not mechanically tested. Samples that did not incorporate beta-tricalcium phosphate were very weak and insufficient for bone replacement at the 4-day time point and beyond. Tissue interactions resulted in a mild inflammatory response at the initial time points and mature fibrous encapsulation by 12 weeks.

  11. Reconstructing Cambro-Ordovician Seawater Composition using Clumped Isotope Paleothermometry on Calcitic and Phosphatic Brachiopods

    NASA Astrophysics Data System (ADS)

    Bergmann, K.; Robles, M.; Finnegan, S.; Hughes, N. C.; Eiler, J. M.; Fischer, W. W.

    2012-12-01

    A secular increase in δ18O values of marine fossils through early Phanerozoic time raises questions about the evolution of climate and the water cycle. This pattern suggests two end-member hypotheses 1) surface temperatures during early Paleozoic time were very warm, in excess of 40°C (tropical MAT), or 2) the isotopic composition of seawater increased by up to 7-8‰. It has been difficult to evaluate these hypotheses because the δ18O composition of fossils depends on both temperature and the δ18O of water. Furthermore, primary isotopic signatures can be overprinted by diagenetic processes that modify geological materials. This too could explain the decrease in δ18O values of marine fossils with age. Carbonate clumped isotope thermometry can constrain this problem by providing an independent measure of crystallization temperature and, when paired with classical δ18O paleothermometry, can determine the isotopic composition of the fluid the mineral last equilibrated with. Combined with traditional tools, this method has the potential to untangle primary isotopic signatures from diagenetic signals. We measured the isotopic ordering of CO3 groups (Δ47) substituted into the phosphate lattice of phosphatic brachiopods in Cambrian strata. Phosphatic fossils are generally less soluble than carbonates in surface and diagenetic environments, and so are hypothesized to provide a more robust record of primary growth conditions. They also provide an archive prior to the rise of thick shelled calcitic fossils during the Ordovician Radiation. Additionally, measurements of the δ18O of the CO3 groups can be compared with the δ18O of PO4 groups to test whether their mutual fractionation is consistent with primary growth and the apparent temperature recorded by carbonate clumped isotope measurements. We are constructing a phosphatic brachiopod calibration for carbonate clumped isotope thermometry, and Δ47 values of CO2 extracted from modern phosphatic brachiopods suggest

  12. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    SciTech Connect

    Maslova, Marina V.; Rusanova, Daniela Naydenov, Valeri; Antzutkin, Oleg N.; Gerasimova, Lidia G.

    2008-12-15

    Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formation of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.

  13. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.

    PubMed

    Prabhakar, Roopa L; Brocchini, Steve; Knowles, Jonathan C

    2005-05-01

    A series of polycaprolactone and ternary-based (Na(2)O)(0.55-x)(CaO)(x)(P(2)O(5))(0.45) glass composites were created, each containing 20% volume percentage of glass with various calcium compositions. A short-term degradation study was carried out to investigate the physical and ion release behaviour of these composites, utilising analytical techniques such as dynamical mechanical analysis, and ion chromatography. All the composites experienced significant loss of weight and stiffness throughout the study, with the 24 mol% calcium composites losing the greatest amount of weight and stiffness. The pH profile of the aqueous solutions in which the composites were placed were initially acidic, but began to neutralise mid-way through the study, with the 36 mol% solution achieving the most acidic conditions. The ion release behaviour mirrored the mass loss behaviour of the glass component of the composites. The cations (sodium and calcium ions) release was comparable with the initial stages of composite mass degradation, both of which exhibited almost immediate release when placed into solution. The 24 mol% composites underwent rapid rates of cation release, while the 36 mol% experienced the slowest rates of release. By contrast, anion (phosphates and polyphosphates) release showed a dissimilar trend, with rapid release of the P(2)O(7) and P(3)O(10) occurring during the first few hours in solution, whilst the P(3)O(9) structure released steadily during the first 48 h in solution. Finally, PO(4) release was at a constant rate over the duration of the study, releasing up to 300 ppm from the 32 and 36 mol% samples by the end of 200 h. To summarise, these results show that by combining phosphate glasses with biodegradable polymer, it is possible to create composites whose rate of degradation can be controlled to meet the needs of their end application.

  14. Chaotic insonification for health monitoring of an adhesively bonded composite stiffened panel

    NASA Astrophysics Data System (ADS)

    Fasel, T. R.; Todd, M. D.

    2010-07-01

    Time series prediction algorithms combined with ultrasonic chaotic excitations have shown the ability to locate and identify loss of preload in a bolted aluminum joint in previous research [1,2]. This study examines the ability of this method to classify various bond state damage conditions of a composite bonded joint, including various disbond sizes and poorly cured bonds. The stiffened panel test structure is intended to be a simplification of a wing skin-to-spar bonded joint. An active excitation signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the bonded joint and sensed using an equivalent MFC patch on the opposite side of the joint. There is an MFC actuator/sensor pair for each bond condition to be identified. A novel statistical classification feature is developed from information theory concepts of cross-prediction and interdependence.

  15. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering.

    PubMed

    Shavandi, Amin; Bekhit, Alaa El-Din A; Sun, Zhifa; Ali, Azam; Gould, Maree

    2015-10-01

    Squid pen chitosan was used in the fabrication of biocomposite scaffolds for bone tissue engineering. Hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) obtained from waste mussel shells were used as the calcium phosphate source. The composite was prepared using 2.5% tripolyphosphate (TPP) and 1% glycerol as a cross-linker and plasticizer, respectively. The weight percent (wt.%) ratios of the ceramic components in the composite were 20/10/70, 30/20/50 and 40/30/30 (HA/β-TCP/Chi). The biodegradation rate and structural properties of the scaffolds were investigated. Scanning electron microscopy (SEM) and microCT(μCT) results indicated that the composites have a well defined lamellar structure with an average pore size of 200 μm. The porosity of the composites decreased from 88 to 56% by increasing the ratio of HA/β-TCP from 30 to 70%. After 28 days of incubation in a physiological solution, the scaffolds were degraded by approximately 30%. In vitro investigations showed that the composites were cytocompatible and supported the growth of L929 and Saos-2 cells. The obtained data suggests that the squid pen chitosan composites are potential candidates for bone regeneration.

  16. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period.

  17. Amorphous calcium phosphate/urethane methacrylate resin composites. I. Physicochemical characterization.

    PubMed

    Regnault, William F; Icenogle, Tonya B; Antonucci, Joseph M; Skrtic, Drago

    2008-02-01

    Urethane dimethacrylate (UDMA), an oligomeric poly(ethylene glycol) extended UDMA (PEG-U) and a blend of UDMA/PEG-U were chosen as model systems for introducing both hydrophobic and hydrophilic segments and a range of compliances in their derived polymers. Experimental composites based on these three resins with amorphous calcium phosphate (ACP) as the filler phase were polymerized and evaluated for mechanical strength and ion release profiles in different aqueous media. Strength of all composites decreased upon immersion in saline (pH = 7.4). Both polymer matrix composition and the pH of the liquid environment strongly affected the ion release kinetics. In saline, the UDMA/PEG-U composite showed a sustained release for at least 350 h. The initially high ion release of the PEG-U composites decreased after 72 h, seemingly due to the mineral re-deposition at the composite surface. Internal conversion from ACP to poorly crystallized apatite could be observed by X-ray diffraction. In various lactic acid (LA) environments (initial pH = 5.1) ion release kinetics was much more complex. In LA medium without thymol and/or carboxymethylcellulose, as a result of unfavorable changes in the internal calcium/phosphate ion stoichiometry, the ion release rate greatly increased but without observable conversion of ACP to apatite.

  18. Fiberglass goes green: Developing phosphate glass for use in biodegradable composites

    NASA Astrophysics Data System (ADS)

    Arendt, Christina Lee

    Composite materials, such as the glass fiber reinforced polyester thermosets known as "fiberglass," are used in many applications. However, recycling processes for these materials are inefficient and not widely available. Specially engineered degradable polymers offer an opportunity to redesign these composites. Additionally, the composite could be tailored to be multi-use, such that upon degradation, the resulting products could be used as part of a zeoponic substrate (artificial soil) for growing plants. Such a material would be beneficial for long-duration space missions, terraforming, or in other agricultural applications. The research presented in this dissertation focuses on developing phosphate glass for use as the fiber reinforcement for such a composite. Due to the under-utilization of phosphate systems, there is a lack of thermodynamic data on these systems. The modified associate species method of phase diagram calculation was used in an attempt to gain more information about the desired system, as it is a good predictor of the phase relations in oxide melts, slags, and glasses and requires less data than other methods. Further research into the thermodynamic properties of phosphates is still needed to develop accurate phase diagrams and melting temperatures for this system. Seventeen glass formulations were developed and melted. Six of these formulations were chosen for dissolution testing. Of these six, Glass 17 was chosen for intensive testing and characterization. This glass was tested in water, hydrochloric acid solutions, and citric acid solutions. The weight loss was measured and ICP-OES was performed on the leachate solution. Scanning electron microscopy (SEM) and X-ray diffraction were performed on the tested specimens. Shrinking-core models were fit to the dissolution data. Fibers were drawn from the glass and characterized using SEM. The data shows that this glass is not dissolving congruently, as is expected of phosphate glasses. Instead

  19. Data on granulometric composition of calcium phosphate obtained by dispersion method

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Chikanova, E. S.; Malyshev, A. V.; Mylnikova, T. S.

    2015-04-01

    The kinetics of calcium phosphate crystallization from model solutions of saliva and liquid phase of dental plaque has been studied by the dispersion method. It was found that the composition of the saliva model system is favorable for the growth of larger crystals. The size of the particles in crystallization varies nonlinearly. As supersaturation grows, the amount of formed particles increases, however, the average rate of crystallite growth decreases.

  20. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76...

  1. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76...

  2. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76...

  3. 40 CFR Table Z-1 to Subpart Z of... - Default Chemical Composition of Phosphate Rock by Origin

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Default Chemical Composition of Phosphate Rock by Origin Z Table Z-1 to Subpart Z of Part 98 Protection of Environment ENVIRONMENTAL... Phosphate Rock by Origin Origin Total carbon(percent by weight) Central Florida 1.6 North Florida 1.76...

  4. Osteogenic activity of cyclodextrin-encapsulated doxycycline in a calcium phosphate PCL and PLGA composite.

    PubMed

    Trajano, V C C; Costa, K J R; Lanza, C R M; Sinisterra, R D; Cortés, M E

    2016-07-01

    Composites of biodegradable polymers and calcium phosphate are bioactive and flexible, and have been proposed for use in tissue engineering and bone regeneration. When associated with the broad-spectrum antibiotic doxycycline (DOX), they could favor antimicrobial action and enhance the action of osteogenic composites. Composites of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and a bioceramic of biphasic calcium phosphate Osteosynt® (BCP) were loaded with DOX encapsulated in β-cyclodextrin (βCD) and were evaluated for effects on osteoblastic cell cultures. The DOX/βCD composite was prepared with a double mixing method. Osteoblast viability was assessed with methyl tetrazolium (MTT) assays after 1day, 7day, and 14days of composite exposure; alkaline phosphatase (AP) activity and collagen production were evaluated after 7days and 14days, and mineral nodule formation after 14days. Composite structures were evaluated by scanning electron microscopy (SEM). Osteoblasts exposed to the composite containing 25μg/mL DOX/βCD had increased cell proliferation (p<0.05) compared to control osteoblast cultures at all experimental time points, reaching a maximum in the second week. AP activity and collagen secretion levels were also elevated in osteoblasts exposed to the DOX/βCD composite (p<0.05 vs. controls) and reached a maximum after 14days. These results were corroborated by Von Kossa test results, which showed strong formation of mineralization nodules during the same time period. SEM of the composite material revealed a surface topography with pore sizes suitable for growing osteoblasts. Together, these results suggest that osteoblasts are viable, proliferative, and osteogenic in the presence of a DOX/βCD-containing BCP ceramic composite.

  5. Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid.

    PubMed

    Liang, Kunneng; Weir, Michael D; Reynolds, Mark A; Zhou, Xuedong; Li, Jiyao; Xu, Hockin H K

    2017-03-01

    The objectives of this study were to develop a novel method to remineralize dentin lesions, and investigate the remineralization effects of poly (amido amine) (PAMAM) dendrimer plus a bonding agent with nanoparticles of amorphous calcium phosphate (NACP) in a cyclic artificial saliva/lactic acid environment for the first time. Dentin lesions were produced via phosphoric acid. Four groups were tested: (1) dentin control, (2) dentin with PAMAM, (3) dentin with NACP bonding agent, and (4) dentin with PAMAM plus NACP bonding agent. Specimens were treated with cyclic artificial saliva/lactic acid. The remineralized dentin was examined using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). NACP bonding agent yielded a dentin shear bond strength similar to commercial controls (Prime & Bond NT, Dentsply; Scotchbond Multi-purpose, 3M) (p>0.1). Increasing NACP in bonding agent from 0 to 40% did not affect bond strength. NACP bonding agent neutralized the acid and released Ca ions with concentrations of 4 to 20mmol/L, and P ions of 2 to 9mmol/L. PAMAM or NACP bonding agent alone achieved slight remineralization. The PAMAM+NACP group achieved the greatest dentin remineralization p<0.05). At 20days, PAMAM+NACP increased the hardness of pre-demineralized dentin to reach the normal dentin hardness (p>0.1). In conclusion, superior remineralization of PAMAM+NACP bonding agent was demonstrated for the first time. PAMAM+NACP bonding agent induced dentin remineralization under acid challenge, when conventional remineralization methods such as PAMAM alone did not work well. The novel PAMAM+NACP bonding agent method is promising to improve the longevity of resin-dentin bonds, inhibit caries, and protect teeth.

  6. Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi

    2013-10-01

    Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

  7. Effect of prebonding procedures on shear bond strength of resin composite to pressable ceramic.

    PubMed

    Estafan, D; Dussetschleger, F; Estafan, A; Jia, W

    2000-01-01

    Low bond strength between tooth structure and restorative ceramic material is a major cause of ceramic fractures or failures. Prebonding measures performed on pressable ceramic material were evaluated and the different shear bond strengths obtained by each method were tabulated. The three individual groups were subjected to 9% hydrofluoric (HF) acid gel for 0, 1, and 5 minutes. The different acid-etched time groups were chemically treated with silane coupler alone, silane coupling agent with bonding agent, and bonding agent alone. The silane coupling agent produced the highest bond strength between the composite structure and the pressable ceramic restorative material. High bond values were achieved by etching the porcelain for one minute. The use of the silane coupling agent with a one minute 9% HF acid etch yielded the greatest bond strength.

  8. Factors associated with shear bond strength of composite resin to human enamel.

    PubMed

    Gray, G B; MacMillan, S; Payne, A P; McGadey, J

    1996-12-01

    The preparation of enamel surfaces before etching by removing 0.5 mm of surface tooth structure is common-place in modern restorative dentistry. This study was designed to measure and compare the shear bond strength of composite resin bonded to prepared and unprepared enamel using various proprietary bonding systems. The analysed results failed to show significant differences between the shear bond strengths of the prepared and unprepared enamel specimens. Conditioning enamel surfaces for 60 seconds using 2.5% nitric acid where the solution was allowed to desiccate, resulted in significantly lower bond strengths compared to the other regimes. A correlation of the etchant pH with the mean shear bond strength of the adhesive systems to enamel was observed. The surface topography of the etched enamel surfaces correlated moderately well with the bond strengths obtained.

  9. Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts

    NASA Astrophysics Data System (ADS)

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration

    2013-06-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.

  10. Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts

    NASA Astrophysics Data System (ADS)

    Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.

    2014-05-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.

  11. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites†

    PubMed Central

    O’Donnell, Justin N.R.; Schumacher, Gary E.; Antonucci, Joseph M.; Skrtic, Drago

    2009-01-01

    Our studies of amorphous calcium phosphate (ACP)-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/re-mineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC) and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and, ultimately, the

  12. Results from FAA program to validate bonded composite doublers for commercial aviation use

    SciTech Connect

    Roach, D.P.

    1997-09-01

    The number of commercial airframes exceeding twenty years of service continues to grow. In addition, Service Life Extension Programs are attempting to extend the {open_quotes}economic{close_quotes} service life of commercial airframes to thirty years. The use of bonded composites may offer the airframe manufacturers and aircraft maintenance facilities a cost effective method to extend the lives of their aircraft. The Federal Aviation Administration Assurance NDI Validation Center (AANC) to validate the use of bonded composite doublers on commercial aircraft.

  13. Involvement of disulphide bonds in the renal sodium/phosphate co-transporter NaPi-2.

    PubMed Central

    Xiao, Y; Boyer, C J; Vincent, E; Dugré, A; Vachon, V; Potier, M; Béliveau, R

    1997-01-01

    The rat renal brush border membrane sodium/phosphate co-transporter NaPi-2 was analysed in Western blots with polyclonal antibodies raised against its N-terminal and C-terminal segments. Under reducing conditions, proteins of 45-49 and 70-90 kDa (p45 and p70) were detected with N-terminal antibodies, and proteins of 40 and 70-90 kDa (p40 and p70) were detected with C-terminal antibodies. p40 and p45 apparently result from a post-translational cleavage of NaPi-2 but remain linked through one or more disulphide bonds. Glycosidase digestion showed that both polypeptides are glycosylated; the cleavage site could thus be located between Asn-298 and Asn-328, which have been shown to constitute the only two N-glycosylated residues in NaPi-2. In the absence of reducing agents, both N-terminal and C-terminal antibodies detected p70 and a protein of 180 kDa (p180), suggesting the presence of p70 dimers. Much higher concentrations of beta-mercaptoethanol were required to produce a given effect in intact membrane vesicles than in solubilized proteins, indicating that the affected disulphide bonds are not exposed at the surface of the co-transporter. Phosphate transport activity decreased with increasing concentrations of reducing agents [beta-mercaptoethanol, dithiothreitol and tris-(2-carboxyethyl)phosphine] and was linearly correlated with the amount of p180 detected. The target sizes estimated from the radiation-induced loss of intensity of p40, p70 and p180 were all approx. 190 kDa, suggesting that NaPi-2 exists as an oligomeric protein in which the subunits are sufficiently close to one another to allow substantial energy transfer between the monomers. When protein samples were pretreated with beta-mercaptoethanol [2.5% and 5% (v/v) to optimize the detection of p40 and p70] before irradiation, target sizes estimated from the radiation-induced loss of intensity of p40 and p70 were 74 and 92 kDa respectively, showing the presence of disulphide bridges in the molecular

  14. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    PubMed Central

    Pereira, Jefferson Ricardo; Júnior, Lindomar Corrêa; de Souza Almeida, Mauro; do Valle, Accácio Lins; Honório, Heitor Marques; Vidotti, Hugo Alberto; De Souza, Grace Mendonca

    2015-01-01

    Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse). Two composite resin cylinders were built up on each dentin surface (n = 10) and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal–Wallis one-way analysis of variance and Tukey test (P = 0.05). Results: According to the results, Kruskal–Wallis test evidenced at least one statistical significant difference (P = 0.001). The Tukey test showed statistically significant differences among the group (P < 0.05). Group PSM8 (P90 + SM) showed statically significant higher results when compared with groups PSP4 (P90 + SP), PSB2 (P90 + SB), and ZSE5 (Z250 + SE). Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin. PMID:26752846

  15. Optimizing and evaluating the biocompatibility of fiber composites with calcium phosphate additives.

    PubMed

    Suchý, Tomáš; Balík, Karel; Sucharda, Zbyněk; Sochor, Miroslav; Lapčíková, Monika; Sedláček, Radek

    2011-10-01

    Composite materials based on a polyamide fabric (aramid) and a polydymethylsiloxane (PDMS) matrix were designed for application in bone surgery. In order to increase the bioactivity, 2, 5, 10, 15, 20, and 25 vol.% of nano/micro hydroxyapatite (HA) and tricalcium phosphate (TCP) were added. We studied the effect of the additives on the biocompatibility of the composite. It appears that nano additives have a more favorable effect on mechanical properties than microparticles. 15 vol.% of nano hydroxyapatite additive is an optimum amount for final application of the composites as substitutes for bone tissue: in this case both the mechanical properties and the biological properties are optimized without distinct changes in the inner structure of the composite.

  16. Evaluation of the bond strength between aged composite cores and luting agent

    PubMed Central

    2015-01-01

    PURPOSE The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to 55℃) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at α=.05. RESULTS Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between 7.07 ± 2.11 and 26.05 ± 6.53 N. The highest bond strength of 26.05 ± 6.53 N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success. PMID:25932308

  17. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins

    PubMed Central

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G.

    2014-01-01

    Background: Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). Materials and Methods: In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P < 0.05 was selected as the level of statistical significance in this study. Results: The results showed that for enamel (24 h), the μ-SBS of the Wave MV and Wave HV groups were significantly lower than the Margin Bond group. Tukey test indicated the absence of a significant difference between the μ-SBS of the Wave group and the Margin Bond group. However, the μ-SBS of the Grandioflow group was significantly higher than the one for the Margin Bond as a bonding agent. In enamel (9 months), there was a significant difference between the Grandioflow and Margin Bond groups. Regarding bonding to the porcelain the one-way ANOVA test did not show a significant difference among the groups. Conclusion: This study revealed that flowable composites (filled resins) can be used instead of unfilled resins in bonding composite

  18. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  19. Ultrasonic characterization of the fiber-matrix interfacial bond in aerospace composites.

    PubMed

    Aggelis, D G; Kleitsa, D; Matikas, T E

    2013-01-01

    The properties of advanced composites rely on the quality of the fiber-matrix bonding. Service-induced damage results in deterioration of bonding quality, seriously compromising the load-bearing capacity of the structure. While traditional methods to assess bonding are destructive, herein a nondestructive methodology based on shear wave reflection is numerically investigated. Reflection relies on the bonding quality and results in discernable changes in the received waveform. The key element is the "interphase" model material with varying stiffness. The study is an example of how computational methods enhance the understanding of delicate features concerning the nondestructive evaluation of materials used in advanced structures.

  20. Ultrasonic Characterization of the Fiber-Matrix Interfacial Bond in Aerospace Composites

    PubMed Central

    Aggelis, D. G.; Kleitsa, D.; Matikas, T. E.

    2013-01-01

    The properties of advanced composites rely on the quality of the fiber-matrix bonding. Service-induced damage results in deterioration of bonding quality, seriously compromising the load-bearing capacity of the structure. While traditional methods to assess bonding are destructive, herein a nondestructive methodology based on shear wave reflection is numerically investigated. Reflection relies on the bonding quality and results in discernable changes in the received waveform. The key element is the “interphase” model material with varying stiffness. The study is an example of how computational methods enhance the understanding of delicate features concerning the nondestructive evaluation of materials used in advanced structures. PMID:23935408

  1. In-vitro comparison of the effect of different bonding strategies on the micro-shear bond strength of a silorane-based composite resin to dentin

    PubMed Central

    Samimi, Pouran; Alizadeh, Vahid; Fathpour, Kamyar; Mazaheri, Hamid; Mortazavi, Vajihosadat

    2016-01-01

    Background: The current study evaluated the micro-shear bond strengths of a new low-shrinkage composite resin to dentin. Materials and Methods: In this in-vitro study, 70 extracted premolars were assigned to one of seven groups (n = 10): Group 1: OptiBond Solo Plus (Opt; Kerr); Group 2: SE Bond (SE; Kuraray); Group 3: Silorane System Adhesive (SSA; 3M ESPE); Group 4: OptiBond Solo Plus + LS Bond (Opt LS); Group 5: SE Bond + LS Bond (SE LS); Group 6: OptiBond Solo Plus (Opt Po); and Group 7: SE Bond (SE Po). Occlusal dentin was exposed and restored with Filtek LS (3M ESPE) in groups 1 to 5 and Point 4 (Kerr) in groups 6 and 7. After thermocycling (1000 cycles at 5/55΀C), micro-shear bond test was carried out to measure the bond strengths. The results were submitted to analysis of variance and post hoc Tukeytests (P < 0.05). Results: Two-way ANOVA showed no significant differences between the two types of composite resin (P = 0.187), between bonding agents (P = 0.06) and between composite resin and bonding agents (P = 0.894). Because P value of bonding agents was near the significance level, one-way ANOVA was used separately between the two composite groups. This analysis showed significant differences between silorane composite resin groups (P = 0.045) and Tukey test showed a significant difference between Groups 4 and 5 (P = 0.03). Conclusion: The application of total-etch and self-etch methacrylate-based adhesives with and without use of a hydrophobic resin coating resulted in acceptable bond strengths. PMID:27076826

  2. Reaction-bonded Si3N4 and SiC matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Behrendt, Donald R.

    1992-01-01

    A development status evaluation is presented for the reaction-bonded SiC- and Si3N4-matrix types of fiber-reinforced ceramic-matrix composite (FRCMC). A variety of reaction-bonding methods are being pursued for FRCMC fabrication: CVI, CVD, directed metal oxidation, and self-propagating high-temperature synthesis. Due to their high specific modulus and strength, toughness, and fabricability, reaction-bonded FRCMC are important candidate materials for such heat-engine components as combustor liners, nozzles, and turbine and stator blading. The improvement of long-term oxidative stability in these composites is a major goal of current research.

  3. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep.

    PubMed

    Bohner, M; Theiss, F; Apelt, D; Hirsiger, W; Houriet, R; Rizzoli, G; Gnos, E; Frei, C; Auer, J A; von Rechenberg, B

    2003-09-01

    A hydraulic calcium phosphate cement having dicalcium phosphate dihydrate (DCPD) as end-product of the setting reaction was implanted in a cylindrical defect in the diaphysis of sheep for up to 6 months. The composition of the cement was investigated as a function of time. After setting, the cement composition consisted essentially of a mixture of DCPD and beta-tricalcium phosphate (beta-TCP). In the first few weeks of implantation, the edges of the cement samples became depleted in DCPD, suggesting a selective dissolution of DCPD, possibly due to low pH conditions. The cement resorption at this stage was high. After 8 weeks, the resorption rate slowed down. Simultaneously, a change of the color and density of the cement center was observed. These changes were due to the conversion of DCPD into a poorly crystalline apatite. Precipitation started after 6-8 weeks and progressed rapidly. At 9 weeks, the colored central zone reached its maximal size. The fraction of beta-TCP in the cement was constant at all time. Therefore, this study demonstrates that the resorption rate of DCPD cement is more pronounced as long as DCPD is not transformed in vivo.

  4. Phosphoserine--a convenient compound for modification of calcium phosphate bone cement collagen composites.

    PubMed

    Reinstorf, A; Ruhnow, M; Gelinsky, M; Pompe, W; Hempel, U; Wenzel, K W; Simon, P

    2004-04-01

    Temporary bone replacement materials on the basis of calcium phosphates and hydroxyapatite (HAP) are used in surgery for filling bone defects. Components which are able to control the nucleation and crystal growth of HAP through their functional groups and which can additionally activate bone cells may be helpful in the development of materials with enhanced remodelling in vivo. In this study, the influence of O-phospho-L-serine (PS) on the materials properties of calcium phosphate bone cement composites was investigated. For up to an addition of 25 mg/g PS a strong increase in the stability of the cements under load was determined. The material was studied by scanning electron microscopy and transmission electron microscopy. A more dense microstructure and a plate-like morphology of the HAP-crystals were detected in the modified composites compared with the non-modified samples. By X-ray powder diffraction an inhibition of the dissolution of alpha-tricalcium phosphate (alpha-TCP) and dicalciumphosphate anhydrous (DCPA) particles was found. alpha-TCP and DCPA are the main constituents of the cement precursor. The results of cell culture studies using rat calvaria osteoblasts demonstrate a good viability of the cells on the PS-modified material. Furthermore, the proliferation and differentiation were found to be enhanced on the PS-modified material.

  5. Properties of concretes and wood composites using a phosphate-based binder

    NASA Astrophysics Data System (ADS)

    Hong, Luong Thanh

    Magnesium potassium phosphate ceramics are from the family of phosphate-based cements which can be used as alternatives to Portland cements. In this study, concretes and wood composites were produced using magnesium potassium phosphate ceramic binders and supplementary materials including fly ash, sand, silica fume and sawdust. Bentonite, Delvo Stabilizer and baking soda were used as additives to increase the workability and the setting time of the fresh mixutres and decrease the density of the hardened products. The materials were then reinforced with chopped glass-fibers or textile glass-fabrics to increase their hardened properties. At 50% fly ash by total mass of the binder, the concretes had compressive strength and density of 33 MPa and 2170 kg/m3, respectively, after 90 days of simple curing. At 20% fly ash by total mass of the binder, the wood composites had compressive strength and density of 13 MPa and 1320 kg/m3, respectively, after 90 days. The flexural strengths were about 10% to 47% of the corresponding cylinder compressive strengths for these mixes. Increases in both compressive and flexural strengths for these mixes were observed with the addition of chopped glass-fibers or textile glass-fabrics.

  6. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  7. Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration.

    PubMed

    Kim, Hae-Won; Lee, Eun-Jung; Jun, In-Kook; Kim, Hyoun-Ee; Knowles, Jonathan C

    2005-10-01

    Phosphate-based glass (P-glass) and poly(epsilon-caprolactone) (PCL) composites were fabricated in a sheet form by solvent extraction and thermal pressing methods, and the antibiotic drug Vancomycin was loaded within the composites for use as a hard-tissue regenerative. The degradation and drug-release rate of the composites in vitro were tailored by modifying the glass composition: 0.45 P(2)O(5)-x CaO-(0.55-x)Na(2)O, where x=0.2, 0.3, 0.4, and 0.5. Compared to pure PCL, all the P-glass/PCL composites degraded to a higher degree, and the composite with lower-CaO glass showed a higher material loss. This was attributed mainly to the dissolution of the glass component. The glass dissolution also increased the degradation of PCL component in the composites. The Vancomycin release from the composites was strongly dependent on the glass composition. Drug release in pure PCL was initially abrupt and flattened out over a prolonged period. However, glass/PCL composites (particularly in the glass containing higher-CaO) exhibited a reduced initial burst and a higher release rate later. Preliminary cell tests on the extracts from the glass/PCL composites showed favorable cell proliferation, but the level was dependent on the ionic concentration of the extracts. The cell proliferation on the diluted extracts from the composite with higher-CaO glass was significantly higher than that on the blank culture dish. These observations confirmed that the P-glass/PCL composites are potentially applicable for use as hard-tissue regeneration and wound-healing materials because of their controlled degradation and drug-release profile as well as enhanced cell viability.

  8. The Effect of Different Disinfecting Agents on Bond Strength of Resin Composites

    PubMed Central

    Mohammed Hassan, Ahmed; Ali Goda, Ahmed; Baroudi, Kusai

    2014-01-01

    Objective. The aim of this study was to evaluate the effect of different disinfectant agents on bond strength of two types of resin composite materials. Methods. A total of 80 sound posterior teeth were used. They were divided into four groups (n = 20) according to the dentin surface pretreatment (no treatment, chlorhexidine gluconate 2%, sodium hypochlorite 4%, and EDTA 19%). Each group was divided into two subgroups according to the type of adhesive (prime and bond 2.1 and Adper easy one). Each subgroup was further divided into two subgroups according to the type of resin composite (TPH spectrum and Tetric EvoCeram). Shear bond strength between dentin and resin composite was measured using Universal Testing Machine. Data collected were statistically analyzed by t-test and one-way ANOVA followed by Tukey's post hoc test. Results. It was found that dentin treated with EDTA recorded the highest shear bond strength values followed by sodium hypochlorite and then chlorhexidine groups while the control group showed the lowest shear bond strength. Conclusions. The surface treatment of dentin before bonding application has a great effect on shear bond strength between resin composite and dentin surface. PMID:25477961

  9. Bond Strength of Repaired Acrylic Denture Teeth Using Visible Light Cure Composite Resin

    PubMed Central

    Muhsin, Saja Ali

    2017-01-01

    Background: Although bonding to denture teeth after surface treatment with chemical agents is desirable, there is little information on the use of Visible Light Cure composite resin (VLC) as bonding denture materials. Objectives: To determine the effect of various surface treatments on shear bond strength between Visible Light Cure composite resin and the acrylic denture teeth interface. Methods: Forty cylindrical sticks of acrylic resin with denture teeth mounted atop were prepared. Various treatments were implemented upon the acrylic resin teeth surfaces. The samples were divided into four groups (n = 10). Light-cured composite resin (LC) was applied over all treated and untreated surfaces of tested groups. The shear bond was tested using a universal tensile testing apparatus with the knife-edge of a 0.8mm shear tester. Data were statistically analyzed using one-way ANOVA performed at a confidence level of 95% and significant P-value of (P ≤ 0.05). Results: Analysis of variance (ANOVA) showed statistically significant difference (P < 0.05) between treated and untreated teeth surfaces. The treated surfaces exhibited various levels of bond strength depending on the type of treatment. Conclusion: Application of VLC bonding agent with prior treatment of methylmethacrylate (MMA) on the acrylic resin denture teeth resulted in maximum bond strength with composite resin.

  10. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words:Bond

  11. Sintering and the mechanical properties of the tricalcium phosphate-titania composites.

    PubMed

    Ayadi, Ibticem; Ben Ayed, Foued

    2015-09-01

    The sintering of the tricalcium phosphate with different percentages of titania was investigated. The samples were characterized by differential thermal analysis, dilatometry analysis, X-Ray diffraction, infrared spectroscopy, magic angle scanning nuclear magnetic resonance and scanning electronic microscopy measurements. The samples were examined by using the mechanical properties such as rupture strength, Vickers hardness and elastic modulus. The sintering of the tricalcium phosphate-titania composites indicates the evolution of the microstructure, the densification and the mechanical properties. The performances of the composites increase with both the sintering temperature and the addition of the titania. The highest values of the composites of rupture strength (33 MPa), Vickers hardness (270 Hv), Young׳s modulus (33.1GPa) and shear modulus (15.7 GPa) were obtained after the sintering process with 40 wt% titania at 1200 °C. The increase of these performances is due to the formation of the liquid-phase which helps to fill the pores in the microstructure. Above 40 wt% TiO2, the mechanical properties of the composites are hindered by the exaggerated grain growth formation.

  12. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2 solution.

    PubMed

    Takashiba, Shigeyuki; Zhang, Zutai; Tamaki, Yukimichi

    2002-12-01

    In our previous study, we investigated ammonia-free phosphate-bonded investments using Mg (H2PO4)2 powder. The purpose of the present study was to attempt usage of 50 wt% Mg (H2PO4)2 solution instead of powder. Magnesium oxide (MgO) was prepared as a binder and cristobalite was selected as a refractory. After arranging six kinds of experimental investments (A-F) with different cristobalite/MgO ratios, the fundamental properties of the dental investments were examined. The properties of the molds were influenced by the amount of MgO. Decreases in MgO showed lower mold strengths, longer setting time and larger setting expansion. According to XRD analysis, the peaks of MgH(PO4)3 x 3H2O newly formed, cristobalite and MgO were detected in the A set, but MgO peaks in F set were reduced. On the other hand, the surface of F was entirely covered by phosphorus. From these results, it was found that the usage of Mg(H2PO4)2 solution was possible for ammonia-free investments.

  13. Evaluating Resin-Dentin Bond by Microtensile Bond Strength Test: Effects of Various Resin Composites and Placement Techniques

    PubMed Central

    Moosavi, Horieh; Maleknejad, Fatemeh; Forghani, Maryam; Afshari, Elham

    2015-01-01

    Objectives: This in vitro study evaluated the microtensile bond strength (MTBS) of a methacrylate-based compared to a silorane-based resin composite in Class I cavity using different placement techniques. Materials and Methods: Class I cavities with dimension of (4 mm long, 4 mm wide, 3 mm deep) were prepared in extracted sound human molars. The teeth were randomly divided into six groups. The first three groups were filled with Filtek P90 using three methods of insertion; bulk, incremental and snow-plow, and the remaining three groups were filled with Clearfil AP-X using the same three placement techniques. After 24 hours of storage in water at 37°C, the specimens were thermocycled to 1000 cycles. Specimens were prepared for MTBS testing by creating bonded beams obtained from the pulpal floor. Statistical analysis used: Statistical analyses of data were performed by two-way ANOVA/Tukey (α=.05). Results: The experiment showed significant differences between the two resin composites with regard to filling techniques (P<0.05). The MTBS was significantly higher in each of Filtek P90 subgroup compared to Clearfil AP-X ones (P<0.05). With respect to filling technique in both resin composites, bulk insertion showed the significantly lowest MTBS (P<0.05), while no significant difference was found between the outcome of incremental and snow-plow techniques (P>0.05). Conclusion: Silorane-based resin composite as opposed to methacrylate based resin composite and layering placements in contrast to bulk filling method had higher microtensile bond strength. PMID:26966466

  14. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction.

    PubMed

    Guo, H; Wei, J; Liu, C S

    2006-12-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement.

  15. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  16. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.

    PubMed

    Ahola, Niina; Veiranto, Minna; Rich, Jaana; Efimov, Alexander; Hannula, Markus; Seppälä, Jukka; Kellomäki, Minna

    2013-11-01

    There is an increasing need for synthetic bone substitute materials that decrease the need for allografts and autografts. In this study, composites of β-tricalcium phosphate and a biodegradable poly(L-lactide-co-ε-caprolactone) were manufactured using extrusion to form biodegradable composites with high β-tricalcium phosphate contents for osteoconductivity. The hydrolytic degradation of the composites containing 0, 10, 20, 35 and 50% of β-tricalcium phosphate was studied in vitro for 52 weeks. During the study, it was observed that β-tricalcium phosphate did not have an effect on the degradation rate of the polymer matrix. However, the crystallinity of the materials increased throughout the test series and changes in glass transition temperatures were also observed as the comonomer ratio of the polymer matrix changed as the degradation proceeded. The results show that the materials have desirable degradation properties and, thus, possess great potential as bioabsorbable and osteoconductive bone filling materials.

  17. In Vitro Investigation of Bioactive Glass-Ceramic Composites Based on Biogenic Hydroxyapatite or Synthetic Calcium Phosphates.

    PubMed

    Pinchuk, Nataliia; Parkhomey, Oleksandr; Sych, Olena

    2017-12-01

    This in vitro investigation of the behavior of two types of calcium phosphate glass ceramics on the basis of phosphates of biogenic or synthetic origin prepared from initial mixtures with different particle size has revealed that some different factors affect the behavior, namely the phase composition of composite, fraction of open porosity, and average diameter of pore channels. It was established that the solubility of the composites on the basis of synthetic calcium phosphates and glass after 2 and 7 days contact with saline composites is the highest among the materials under study. First of all, this fact is related to the peculiarities of their phase composition, high fraction of open porosity, and high permeability. As for biogenic hydroxyapatite/glass materials, their solubility is several times lower in spite of close total porosity. The particle size of initial mixture practically does not affect the material solubility; the latter is only slightly lower for smaller particles.

  18. In Vitro Investigation of Bioactive Glass-Ceramic Composites Based on Biogenic Hydroxyapatite or Synthetic Calcium Phosphates

    NASA Astrophysics Data System (ADS)

    Pinchuk, Nataliia; Parkhomey, Oleksandr; Sych, Olena

    2017-02-01

    This in vitro investigation of the behavior of two types of calcium phosphate glass ceramics on the basis of phosphates of biogenic or synthetic origin prepared from initial mixtures with different particle size has revealed that some different factors affect the behavior, namely the phase composition of composite, fraction of open porosity, and average diameter of pore channels. It was established that the solubility of the composites on the basis of synthetic calcium phosphates and glass after 2 and 7 days contact with saline composites is the highest among the materials under study. First of all, this fact is related to the peculiarities of their phase composition, high fraction of open porosity, and high permeability. As for biogenic hydroxyapatite/glass materials, their solubility is several times lower in spite of close total porosity. The particle size of initial mixture practically does not affect the material solubility; the latter is only slightly lower for smaller particles.

  19. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents

    PubMed Central

    Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Introduction Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the “enamel-only” preparations will also benefit from wet enamel bonding and contemporary DBA. Aim The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. Materials and Methods The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Results Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Conclusion Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for “enamel-only” tooth preparations. PMID:28274042

  20. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.

    1998-07-28

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.

  1. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Moorhead, Arthur J.

    1998-01-01

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.

  2. Polymerization shrinkage and stress development in amorphous calcium phosphate/urethane dimethacrylate polymeric composites

    PubMed Central

    Antonucci, J.M.; Regnault, W. F.; Skrtic, D.

    2010-01-01

    This study explores how substituting a new high molecular mass oligomeric poly(ethylene glycol) extended urethane dimethacrylate (PEG-U) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated urethane dimethacrylate (UDMA) resins affects degree of vinyl conversion (DC), polymerization shrinkage (PS), stress development (PSSD) and biaxial flexure strength (BFS) of their amorphous calcium phosphate (ACP) composites. The composites were prepared from four types of resins (UDMA, PEG-U, UDMA/HEMA and UDMA/PEG-U) and zirconia-hybridized ACP. Introducing PEG-U improved DC while not adversely affecting PS, PSSD and the BFS of composites. This improvement in DC is attributed to the long, more flexible structure between the vinyl groups of PEG-U and its higher molecular mass compared to poly(HEMA). The results imply that PEG-U has the potential to serve as an alternative to HEMA in dental and other biomedical applications. PMID:20169007

  3. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  4. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    NASA Astrophysics Data System (ADS)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  5. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.

    PubMed

    Mondal, Dibakar; Nguyen, Linh; Oh, Ik-Hyun; Lee, Byong-Taek

    2013-05-01

    Important issues in developing hydroxyapatite (HAp)- and titanium (Ti)-based composite biomaterials for orthopedic or dental devices include the dissociation of HAp during fabrication and its influences in the microstructure and biocompatibility of the final composite. During the densification by sintering of HAp/Ti composites, Ti reacts with -OH freed from HAp to form TiO2 thus dissociated HAp into Ca3(PO4)2, CaO, CaTiO3, TiP, and so forth. To inhibit this reaction, composites were fabricated with Ti and 30, 50, and 70 vol % β-tricalcium phosphate (β-TCP) instead of HAp by spark plasma sintering at 1200°C. It has been observed that after sintering at 1200°C, Ti also reacted with TCP, but unlike HAp/Ti composites, the final TCP/Ti composites contained significant amounts of unreacted TCP and Ti phases. The initial 70 vol % TCP/Ti composite showed compressive strength of 388.5 MPa, Young's modulus of 3.23 GPa, and Vickers hardness of 361.9 HV after sintering. The in vitro cytotoxicity and proliferation of osteoblast cells on the composites surfaces showed that the addition of a higher amount of TCP with Ti was beneficial by increasing cell viability, cell-composite attachment and proliferation. Osteopontin and collagen type II protein expression from osteoblasts cultured onto the 70% TCP-Ti composite was also higher than other composites and pure Ti. In vivo study verified that within 3 months of implantation in an animal body, 70% TCP-Ti had an excellent bone-implant interface compared with a pure Ti metal implant.

  6. Analytical approach to peel stresses in bonded composite stiffened panels

    NASA Technical Reports Server (NTRS)

    Barkey, Derek A.; Madan, Ram C.; Sutton, Jason O.

    1987-01-01

    A closed-form solution was obtained for the stresses and displacements of two bonded beams. A system of two fourth-order and two second-order differential equations with the associated boundary equations was determined using a variational work approach. A FORTRAN computer program was devised to solve for the eigenvalues and eigenvectors of this system and to calculate the coefficients from the boundary conditions. The results were then compared with NASTRAN finite-element solutions and shown to agree closely.

  7. Microtensile bond strength of fiber-reinforced composite with semi-interpenetrating polymer matrix to dentin using various bonding systems.

    PubMed

    Tezvergil-Mutluay, Arzu; Lassila, Lippo V J; Vallittu, Pekka K

    2008-11-01

    This study investigated the microtensile bond strength (microTBS) of fiber-reinforced composite (FRC) to dentin using various adhesive systems. Forty eight (n = 8/group) human molars were flattened to expose dentin. A layer of preimpregnated unidirectional FRC (everStick) was applied on the dentin surface after treatment with either a single-step self-etching adhesive, two-step self-etching system, or a conventional three-step adhesive system. For the control, particulate filler composite (PFC) (Filtek Z250) layering without FRC was used. After 24-hour water storage at 37 degrees C, the specimens were sectioned, further water-stored at 37 degrees C for 30 days and then tested. Data were analyzed using ANOVA and Tukey's test, and reliability was analyzed with Weibull distribution. microTBS values differed significantly according to the adhesive material used (p < 0.05). Single-step self-etching adhesive showed the lowest bond reliability and microTBS values with both FRC and PFC, whereas conventional three-step and two-step self-etching systems showed higher bond reliability and microTBS with both materials.

  8. Structural Performance Evaluation of Composite-To-Steel Weld Bonded Joint

    SciTech Connect

    Shah, Bhavesh; Frame, Barbara J; Dove, Caroline; Fuchs, Hannes

    2010-01-01

    The Automotive Composites Consortium (ACC), a collaboration of Chrysler, Ford, General Motors, and the US Department of Energy is conducting a focal project to demonstrate the use of composite materials in high volume structural applications such as an underbody capable of carrying crash loads. One of the critical challenges is to attach the composite part to the steel structure in a high-volume automotive manufacturing environment and meet the complex requirements for crash. Weld-bonding, a combination of adhesive bonding and spot welding, was selected as the primary joining method. A novel concept of bonding doubler steel strips to composite enabled the spot welding to the steel structure, ensuring the compability with the OEM assembly processes. The structural performance of the joint, including durability, was assessed via analytical and physical testing under quasi-static loading at various temperatures. This paper discusses the results of the experiments designed to generate key modeling parameters for Finite Element Analysis of the joint.

  9. Calcium and phosphate ion releasing composite: Effect of pH on release and mechanical properties

    PubMed Central

    Xu, Hockin H. K.; Weir, Michael D.; Sun, Limin

    2009-01-01

    Objectives Secondary caries and restoration fracture are the two main challenges facing tooth cavity restorations. The objective of this study was to develop a composite using tetracalcium phosphate (TTCP) fillers and whiskers to be stress-bearing, and to be “smart” to increase the calcium (Ca) and phosphate (PO4) ion release at cariogenic pH. Methods TTCP was ball-milled to obtain four different particle sizes: 16.2 μm, 2.4 μm, 1.3 μm, and 0.97 μm. Whiskers fused with nano-sized silica were combined with TTCP as fillers in a resin. Filler level mass fractions varied from 0% to 75%. Ca and PO4 ion release were measured vs. time at pH of 7.4, 6, and 4. Composite mechanical properties were measured via three-point flexure before and after immersion in solutions at the three pH. Results TTCP composite without whiskers had flexural strength similar to a resin-modified glass ionomer (Vitremer) and previous Ca-PO4 composites. With whiskers, the TTCP composite had a flexural strength (mean ± sd; n = 5) of (116 ± 9) MPa, similar to (112 ± 14) MPa of a stress-bearing, non-releasing hybrid composite (TPH) (p > 0.1). The Ca release was (1.22 ± 0.16) mmol/L at pH of 4, higher than (0.54 ± 0.09) at pH of 6, and (0.22 ± 0.06) at pH of 7.4 (p < 0.05). PO4 release was also dramatically increased at acidic pH. After immersion, the TTCP-whisker composite matched the strength of TPH at all three pH (p > 0.1); both TTCP-whisker composite and TPH had strengths about 3-fold that of a releasing control. Significance The new TTCP-whisker composite was “smart” and increased the Ca and PO4 release dramatically when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit caries. Its strength was 2–3 fold higher than previously-known Ca-PO4 composites and resin-modified glass ionomer. This composite may have the potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities. PMID:19101026

  10. Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite

    PubMed Central

    Rizvi, Abbas; Zafar, Muhammad S.; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib

    2016-01-01

    Objective: This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Materials and Methods: Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results: Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). Conclusions: CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone. PMID:27403057

  11. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

    PubMed Central

    Han, In-Hae; Kang, Dong-Wan; Chung, Chae-Heon; Choe, Han-Cheol

    2013-01-01

    PURPOSE This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS Thirty zirconia specimens were divided into three groups according to the repair method: Group I- CoJet™ Repair System (3M ESPE) [chairside silica coating with 30 µm SiO2 + silanization + adhesive]; Group II- Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III- Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (α=.05). RESULTS Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I (7.80 ± 0.76 MPa) and III (8.98 ± 1.39 MPa). Group II (3.21 ± 0.78 MPa) showed a significant difference from other groups (P<.05). CONCLUSION The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia. PMID:24049565

  12. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    NASA Astrophysics Data System (ADS)

    Perton, M.; Blouin, A.; Monchalin, J.-P.

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  13. Observation of calcium phosphate powder mixed with an adhesive monomer experimentally developed for direct pulp capping and as a bonding agent.

    PubMed

    Katoh, Yoshiroh; Suzuki, Masaya; Kato, Chikage; Shinkai, Koichi; Ogawa, Masaaki; Yamauchi, Junichi

    2010-01-01

    In this study, morphological shape, elemental distribution and elution properties of Ca, P, Mg in four types of calcium phosphate powder were investigated using SEM, EPMA and ICP-AES. Calcium phosphate powder: OHAp, DCPD, beta-TCP and OCP were observed in the white powder form and in the photopolymerized adhesive monomer they scattered like dispersed fillers in resin composite. In elemental analysis, CaKalpha showed a relatively high concentration in relation to PKalpha. In elution analysis, each calcium phosphate showed different elution of Ca and P. But Mg was almost equal to the detection limit of ICP-AES. Namely it was suggested that reparative dentin formation was effectively promoted under the following conditions: a calcification promoting effect by direct contact of the calcium phosphate powder, an ionic effect of Ca and P eluted from the powder located in the vicinity of the exposed pulp and environmental pH change of the surface in exposed pulp.

  14. Porcine gelatin microsphere/calcium phosphate cement composites: an in vitro degradation study.

    PubMed

    Habraken, Wouter J E M; Wolke, Joop G C; Mikos, Antonios G; Jansen, John A

    2009-11-01

    Scaffolds for bone tissue engineering preferably should be mechanically stable, osteoconductive, biodegradable and porous. To comply with these characteristics, calcium phosphate cements (CPCs) with porcine (type A) gelatin microspheres were formulated. In this experiment, in vitro degradation of 10 wt % gelatin type A microsphere CPCs (GELA CPCs) was followed for 12 weeks in proteolytic medium. Results showed a gradual decrease in mass, compression strength and E-modulus. Morphology investigation showed that degradation of the spheres started at the surface of the composite and gradually proceeded to the inner part. Overall, porcine gelatin microspheres can be used to generate in situ macroporosity into an injectable CPC.

  15. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles

    PubMed Central

    Wu, Junling; Weir, Michael D.; Melo, Mary Anne S.; Xu, Hockin H. K.

    2015-01-01

    Objectives Fracture and secondary caries are the primary reasons for dental restoration failure. The objective of this study was to develop a self-healing composite to heal cracks, while containing dimethylaminohexadecyl methacrylate (DMAHDM) for antibacterial function and nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Methods Microcapsules were synthesized with poly(urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid. Composite contained 20 mass% of NACP and 35% glass fillers. In addition, composite contained 0%, 2.5%, 5%, 7.5%, or 10% of microcapsules. A single edge V-notched beam method measured fracture toughness (KIC) and self-healing efficiency. A dental plaque microcosm biofilm model was used to test the antibacterial properties. Results Incorporation of microcapsules up to 7.5% into the composite did not adversely affect the mechanical properties (p > 0.1). Successful self-healing was achieved, with KIC recovery of 65–81% (mean ± sd; n = 6) to regain the load-bearing capability after composite fracture. The self-healing DMAHDM-NACP composite displayed a strong antibacterial potency, inhibiting biofilm viability and lactic acid production, and reducing colony-forming units by 3–4 orders of magnitude, compared to control composite without DMAHDM. Conclusions A dental composite was developed with triple benefits of self-healing after fracture, antibacterial activity, and remineralization capability for the first time. Clinical significance The self-healing, antibacterial and remineralizing composite may be promising for tooth cavity restorations to combat bulk fracture and secondary caries. The method of using triple agents (self-healing microcapsules, DMAHDM, and NACP) may have wide applicability to other dental composites, adhesives, sealants and cements. PMID:25625674

  16. Synthesis of cryptocrystalline magnesite/bentonite clay composite and its application for removal of phosphate from municipal wastewaters.

    PubMed

    Masindi, V; Gitari, W M; Pindihama, K G

    2016-01-01

    In the present study, nanocomposite of cryptocrystalline magnesite-bentonite clay was used as a novel technology for removal of phosphates from municipal effluents. Vibratory ball miller was used for fabrication of the composite. Removal of phosphate from an aqueous solution was achieved using batch experimental procedures. The parameters optimized include time, dosage, concentration and pH. An optimization experiment revealed that 30 mins of shaking time, 1 g of composite, 100 mg L(-1) of phosphate, 1: 100 S/L ratios, 250 rpm, pH 10 and room temperature are the optimum conditions for removal of phosphate. Adsorption data fitted well to the Langmuir adsorption isotherm than Freundlich adsorption isotherms, thus confirming monolayer adsorption. Adsorption kinetics data fitted well to pseudo second-order kinetics than first-order kinetics, thus suggesting chemisorption. This comparative study showed better adsorption of the composite as compared to conventional methods of phosphate removal. The results suggest that the fabricated composite has the potential for remediation of phosphate-contaminated waters.

  17. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

    PubMed

    Inzana, Jason A; Olvera, Diana; Fuller, Seth M; Kelly, James P; Graeve, Olivia A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2014-04-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.

  18. 3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration

    PubMed Central

    Inzana, Jason A.; Olvera, Diana; Fuller, Seth M.; Kelly, James P.; Graeve, Olivia A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.

    2014-01-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1–2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing. PMID:24529628

  19. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    PubMed Central

    Caixeta, Rodrigo Vieira; Guiraldo, Ricardo Danil; Kaneshima, Edmilson Nobumitu; Barbosa, Aline Silvestre; Picolotto, Cassiana Pedrotti; Lima, Ana Eliza de Souza; Gonini Júnior, Alcides; Berger, Sandrine Bittencourt

    2015-01-01

    The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED). Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10) followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa) were submitted to Student's t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x). Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites. PMID:26457322

  20. The effect of additional etching and curing mechanism of composite resin on the dentin bond strength

    PubMed Central

    Lee, In-Su; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2013-01-01

    PURPOSE The aim of this study was to evaluate the effects of additional acid etching and curing mechanism (light-curing or self-curing) of a composite resin on the dentin bond strength and compatibility of one-step self-etching adhesives. MATERIALS AND METHODS Sixteen human permanent molars were randomly divided into eight groups according to the adhesives used (All-Bond Universal: ABU, Clearfil S3 Bond: CS3), additional acid etching (additional acid etching performed: EO, no additional acid etching performed: EX), and composite resins (Filtek Z-250: Z250, Clearfil FII New Bond: CFNB). Group 1: ABU-EO-Z250, Group 2: ABU-EO-CFNB, Group 3: ABU-EX-Z250, Group 4: ABU-EX-CFNB, Group 5: CS3-EO-Z250, Group 6: CS3-EO-CFNB, Group 7: CS3-EX-Z250, Group 8: CS3-EX-CFNB. After bonding procedures, composite resins were built up on dentin surfaces. After 24-hour water storage, the teeth were sectioned to make 10 specimens for each group. The microtensile bond strength test was performed using a microtensile testing machine. The failure mode of the fractured specimens was examined by means of an optical microscope at ×20 magnification. The data was analyzed using a one-way ANOVA and Scheffe's post-hoc test (α=.05). RESULTS Additional etching groups showed significantly higher values than the no additional etching group when using All-Bond Universal. The light-cured composite resin groups showed significantly higher values than the self-cured composite resin groups in the Clearfil S3 Bond. CONCLUSION The additional acid etching is beneficial for the dentin bond strength when using low acidic one-step self-etch adhesives, and low acidic one-step self-etch adhesives are compatible with self-cured composite resin. The acidity of the one-step self-etch adhesives is an influencing factor in terms of the dentin bonding strength and incompatibility with a self-cured composite resin. PMID:24353889

  1. Effect of preliminary irradiation on the bond strength between a veneering composite and alloy.

    PubMed

    Matsumoto, Yoshifumi; Furuchi, Mika; Oshima, Akiko; Tanoue, Naomi; Koizumi, Hiroyasu; Matsumura, Hideo

    2010-01-01

    The shear bond strength of a veneering composite (Solidex) and silver-palladium-copper-gold alloy (Castwell M.C.12) was evaluated for different duration times and irradiance for preliminary photo-polymerization. A veneering composite was applied onto a cast disk. Preliminary photo irradiation was performed using different duration times or irradiance. After final polymerization, the bond strength and the spectral distribution of each curing unit were determined. Shear bond strength was significantly higher for 90 s (12.4 MPa), than that for 0 s (8.3 MPa). With regard to the effect of irradiance, that from Solidilite (11.4 MPa) was significantly higher than that from Sublite S at 3 cm (8.7 MPa). The irradiance of Hyper LII and Sublite S at 3 cm was higher than Sublite S at 15 cm or Solidilite unit. Long time irradiation and low intensity is effective for preliminary irradiation in order to enhance the bond strength.

  2. Effect of composition of experimental fluorinated soft lining materials on bond strength to denture base resin.

    PubMed

    Hoshino, Yoshihito; Nakajima, Hiroshi; Akiba, Norihisa; Hibino, Yasushi; Nagasawa, Yuko; Sumi, Yasunori; Minakuchi, Shunsuke

    2014-01-01

    The purpose of the present study was to investigate the effect of the composition of experimental fluorinated soft lining materials on bond strength to denture base resin. Vinylidene fluoride/hexafluoro propylene copolymer (2-6F), tridecafluorooctyl methacrylate (13FMA), methoxy diethylene glycol methacrylate (MDGMA), and silica (as filler) were used for fabrication of the experimental soft lining materials. Nine experimental soft lining materials having various compositions of 2-6F, 13FMA, and MDGMA were prepared. Shear and tensile bond strength tests were performed before and after immersion in water. The water sorption for the materials was also measured. An increase in the content of acrylic monomer, MDGMA, in the experimental materials increased the bond strength before immersion in water but reduced the bond strength after immersion in water as compared to that before immersion in water. The inclusion of fluorinated monomer (13FMA) in the materials appeared to affect water sorption.

  3. “Evaluation of shear bond strength of a composite resin to white mineral trioxide aggregate with three different bonding systems”-An in vitro analysis

    PubMed Central

    Patil, Anand C.

    2016-01-01

    Background Mineral trioxide aggregate (MTA) is a biomaterial that has been investigated for endodontic applications. With the increased use of MTA in pulp capping, pulpotomy, perforation repair, apexification and obturation, the material that would be placed over MTA as a final restoration is an important matter. As composite resins are one of the most widely used final restorative materials, this study was conducted to evaluate the shear bond strength of a composite resin to white mineral trioxide aggregate (WMTA) using three different bonding systems namely the two-step etch and rinse adhesive, the self-etching primer and the All-in-one system. Material and Methods Forty five specimens of white MTA (Angelus) were prepared and randomly divided into three groups of 15 specimens each depending on the bonding systems used respectively. In Group A, a Two-step etch and rinse adhesive or ‘total-etch adhesive’, Adper Single Bond 2 (3M/ESPE) and Filtek Z350 (3M ESPE, St Paul, MN) were placed over WMTA. In group B, a Two-step self-etching primer system, Clearfil SE Bond (Kuraray, Medical Inc) and Filtek Z350 were used. In Group C, an All-in-one system, G Bond (GC corporation, Tokyo, Japan) and Filtek Z350 were used. The shear bond strength was measured for all the specimens. The data obtained was subjected to One way Analysis of Variance (ANOVA) and Scheffe’s post hoc test. Results The results suggested that the Two-step etch and rinse adhesive when used to bond a composite resin to white MTA gave better bond strength values and the All-in-one exhibited the least bond strength values. Conclusions The placement of composite used with a Two-step etch and rinse adhesive over WMTA as a final restoration may be appropriate. Key words:Composite resins, dentin bonding agents, mineral trioxide aggregate, shear bond strength. PMID:27398177

  4. [Effects of different surface conditioning agents on the bond strength of resin-opaque porcelain composite].

    PubMed

    Liu, Wenjia; Fu, Jing; Liao, Shuang; Su, Naichuan; Wang, Hang; Liao, Yunmao

    2014-04-01

    The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P < 0.05) and most specimens of SPP and RCP performed combined failures (failure occurred in bond surface and within opaque porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could

  5. Effects of three surface conditioning techniques on repair bond strength of nanohybrid and nanofilled composites

    PubMed Central

    Nassoohi, Negin; Kazemi, Haleh; Sadaghiani, Morad; Mansouri, Mona; Rakhshan, Vahid

    2015-01-01

    Background: Repair bond strength of different composite resins has been assessed in few studies. In addition, reports on the efficacy of surface treatments are debated. Therefore, this in vitro study was conducted to evaluate the effect of three surface treatments on two nanocomposites versus a microhybrid composite. Materials and Methods: In this experimental study, 135 composite blocks (45 specimens per composite) of microhybrid (Filtek Supreme Z250, 3M ESPE, USA), nanohybrid (Filtek Supreme XT, 3M ESPE), and nanofilled (Filtek Supreme Z350, 3M ESPE) were thermocycled (5000 rounds) and then surface roughened (except in a control group of 9 specimens of three composite types). Each composite type was divided into three subgroups of surface treatments: (1) Bur abrading and phosphoric acid (PA) etching, (2) sandblasting and PA etching, and (3) hydrofluoric etching and silane application (n = 15 × 9, complying with ISO TR11405). Composite blocks were repaired with the same composite type but of a different color. Microtensile bond strength and modes of failure were analyzed statistically using two-way analyses of variance, Tukey and Chi-square tests (α = 0.05). Results: There were significant differences between three composite resins (P < 0.0001) and treatment techniques (P < 0.0001). Their interaction was nonsignificant (P = 0.228). The difference between nanofilled and nanohybrid was not significant. However, the microhybrid composite showed a significantly higher bond strength (Tukey P < 0.05). Sandblasting was significantly superior to the other two methods, which were not different from each other. Conclusion: Within the limitations of this in vitro study, it seems that microhybrid composite might have higher repair strengths than two evaluated nanocomposites. Among the assessed preparation techniques, sandblasting followed by PA etching might produce the highest bond strength. PMID:26759592

  6. Performance analysis of bonded composite doublers on aircraft structures

    SciTech Connect

    Roach, D.

    1995-08-01

    Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.

  7. Effect of warm air on the shear bond strength of composite resins.

    PubMed

    Allen, J D; Breeding, L C; Pashley, D H

    1992-04-01

    This investigation evaluated the operating characteristics of a recently introduced tooth dryer and its effect on the bond strength of three composite resins to etched enamel. The effect of varying air pressure, distance from the tip of the tooth dryer, and distance laterally from mid-air stream on temperature were measured using a rapid-response thermocouple. Specimens were subjected to shear forces either immediately after bonding or after 5 days of water storage. The air stream required from 32 to 41 seconds to reach maximal temperature; however, more than 90% of the maximal temperature was obtained in 20 seconds. There was an increase in temperature with increased air pressure and a decrease in temperature with increasing distance from the tip. The temperature dropped rapidly laterally from the center of the air stream. The shear bond strength measurements were significantly higher for the specimens prepared using the tooth dryer for one composite resin tested immediately after bonding; there was no statistically significant difference for the other resins. The effect of warm air on the shear bond strength of composite resins to etched enamel may be dependent on the resin used and the time between bonding and testing.

  8. Clinical safety and efficacy of implantation of octacalcium phosphate collagen composites in tooth extraction sockets and cyst holes.

    PubMed

    Kawai, Tadashi; Tanuma, Yuji; Matsui, Keiko; Suzuki, Osamu; Takahashi, Tetsu; Kamakura, Shinji

    2016-01-01

    It was demonstrated that octacalcium phosphate collagen composite achieved notable bone regeneration in bone defects in preclinical studies. On the basis of the research results, an investigator-initiated exploratory clinical trial was conducted after approval from a local Institutional Review Board. This clinical study was performed as a single-arm non-randomized intervention study. Octacalcium phosphate collagen composite was implanted into a total of 10 cases of alveolar bone defects after tooth extractions and cystectomy. Safety assessment was performed in terms of the clinical course and several consecutive laboratory examinations, and sequential radiographs were used for efficacy assessment. All participants uneventfully completed the clinical trial without major problems in their general condition. Postoperative wound swelling was observed, as also commonly seen in tooth extraction or cystectomy. Although no serious liver dysfunction, renal dysfunction, electrolyte imbalance, or abnormal urinalysis results were recognized, the number of white blood cells and C-reactive protein level temporarily increased after the operation. An increase in radiopacity in the octacalcium phosphate collagen composite-implanted site was observed in all cases. Finally, the border between the original bone and the octacalcium phosphate collagen composite-implanted site became indistinguishable. These results suggest that octacalcium phosphate collagen composite could be utilized safely in clinical situations in the future.

  9. The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites.

    PubMed

    Hasan, M S; Ahmed, I; Parsons, A J; Walker, G S; Scotchford, C A

    2013-12-01

    Completely resorbable composites are an attractive alternative for metallic bone-fracture fixation devices. However, failure of their interfacial integrity within aqueous environments, which can lead to a rapid loss of overall mechanical properties, has been reported in the literature. In this study coupling agents were investigated for phosphate glass fibre reinforced poly(lactic acid) composites. Three coupling agents with varying wettability were employed to improve initial mechanical properties and their retention in vitro via improvement of the interfacial bond between polymer matrix and fibres. Coupling agents were grafted onto the glass fibres by dip-coating in coupling agent solution at optimised concentrations. Three-aminopropyltriethoxy silane and sorbitol ended PLA oligomer treatments improved the initial flexural properties (27% strength with APS and 17% modulus via SPLA treatment) of the composites and 3-aminopropyltriethoxy silane and hexamethylene diisocyanate (HDI) treatments also decreased the loss of flexural strength and modulus during degradation. HDI treated samples retained 57.2% and 64.7% of their initial strength and modulus, respectively compared to control where only 34% of initial strength and 52% of initial modulus was retained after 28 days of degradation in PBS solution. Initial improvements in flexural properties were associated with improved shear bond strength at the interface due to covalent bonding between the glass fibres and polymer matrix provided by the coupling agents. Delay in mechanical property loss with degradation was suggested to be due to the hydrophobicity at the interface, which could have hindered the interfacial integrity loss and consequently loss of mechanical integrity of the composites. All coupling agent treated and control composites were tested for cytocompatibility using a primary human osteoblast cell line. A comparable response to the control, in terms of cell adhesion, proliferation and differentiation

  10. Fabrication of novel calcium phosphate/poly(lactic acid) fiber composites.

    PubMed

    Kothapalli, Chandrasekhar R; Shaw, Montgomery T; Olson, James R; Wei, Mei

    2008-01-01

    Composites using high-modulus polylactic acid (PLA) fibers coated with calcium phosphate (CaP) were prepared using a cyclic precipitation technique. Scanning electron microscopy revealed that small nuclei of CaP formed after the first soaking cycle, while large quantities of CaP particles were observed after the sixth cycle. The amount of CaP deposited on the PLA yarn increased with deposition time in Ca(2+) and PO(4) (3-) solutions and number of cycles, and decreased with stirring rate during washing cycles. It was observed that around 35 wt % of CaP was deposited on the yarn surface after six cycles of cyclic-soaking. Based on the results, a heterogeneous nucleation and growth mechanism was proposed for the CaP deposition on the surface of hydrolyzed polyester. Composites comprising the coated fibers in a poly(caprolactone) matrix exhibited flexural moduli within the range of that of the cortical bone.

  11. Lamb wave based active damage identification in adhesively bonded composite lap joints

    NASA Astrophysics Data System (ADS)

    Jolly, Prateek

    Bonding composite structures using adhesives offers several advantages over mechanical fastening such as better flow stress, weight saving, improved fatigue resistance and the ability to join dissimilar structures. The hesitation to adopt adhesively bonded composite joints stems from the lack of knowledge regarding damage initiation and propagation mechanisms within the joint. A means of overcoming this hesitation is to continuously monitor damage in the joint. This study proposes a methodology to conduct structural health monitoring (SHM) of an adhesively bonded composite lap joint using acoustic, guided Lamb waves by detecting, locating and predicting the size of damage. Finite element modeling of a joint in both 2D and 3D is used to test the feasibility of the proposed damage triangulation technique. Experimental validation of the methodology is conducted by detecting the presence, location and size of inflicted damage with the use of tuned guided Lamb waves.

  12. Bio-inspired carbon nanotube-polymer composite yarns with hydrogen bond-mediated lateral interactions.

    PubMed

    Beese, Allison M; Sarkar, Sourangsu; Nair, Arun; Naraghi, Mohammad; An, Zhi; Moravsky, Alexander; Loutfy, Raouf O; Buehler, Markus J; Nguyen, SonBinh T; Espinosa, Horacio D

    2013-04-23

    Polymer composite yarns containing a high loading of double-walled carbon nanotubes (DWNTs) have been developed in which the inherent acrylate-based organic coating on the surface of the DWNT bundles interacts strongly with poly(vinyl alcohol) (PVA) through an extensive hydrogen-bond network. This design takes advantage of a toughening mechanism seen in spider silk and collagen, which contain an abundance of hydrogen bonds that can break and reform, allowing for large deformation while maintaining structural stability. Similar to that observed in natural materials, unfolding of the polymeric matrix at large deformations increases ductility without sacrificing stiffness. As the PVA content in the composite increases, the stiffness and energy to failure of the composite also increases up to an optimal point, beyond which mechanical performance in tension decreases. Molecular dynamics (MD) simulations confirm this trend, showing the dominance of nonproductive hydrogen bonding between PVA molecules at high PVA contents, which lubricates the interface between DWNTs.

  13. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  14. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  15. Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Chen, Ningna; Zhou, Jinhua; Kang, Qi; Ji, Hongmei; Zhu, Guoyin; Zhang, Yu; Chen, Shanyong; Chen, Jing; Feng, Xiaomiao; Hou, Wenhua

    2017-03-01

    Amorphous vanadyl phosphate/graphene nanohybrids is successfully synthesized by first exfoliating bulk layered vanadyl phosphate (VOPO4·2H2O) into nanosheets, and then hydrothermal treatment with graphene oxide (GO). The electrochemical properties of the resulted materials are systematically investigated. It is found that a phase transformation from crystalline to amorphous is occurred to VOPO4·2H2O. As supercapacitor electrode material, the amorphous VOPO4/graphene composite exhibits a high specific capacitance (508 F g-1 at 0.5 A g-1), an excellent rate capability (359 F g-1 at 10 A g-1), and a good cycling stability (retention 80% after 5000 cycles at 2 A g-1). Particularly, it simultaneously has a greatly enhanced energy density of 70.6 Wh·kg-1 with a power density of 250 W kg-1. The outstanding energy storage performance mainly originates from the generation of amorphous VOPO4 phase that facilitates ion transport by shortening ion diffusion paths and provides more reversible and fast faradic reaction sites, the hybridization with graphene that greatly improves the electric conductivity and structure stability, and the unique layer-on-sheet nanohybrid structure that effectively enhances the structure integrity. This work not only provides a facile method for the preparation of amorphous VOPO4/graphene composites, but also demonstrates the enhanced energy density and rate capability of amorphous VOPO4-based materials for potential application in supercapacitors.

  16. Processing and properties of FeAl-bonded composites

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.; Alexander, K.B.; Becher, P.F.

    1996-12-31

    Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.

  17. Production of Degradable Biopolymer Composites by Particle-bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventionally, polymer composites had been manufactured by mixing the component materials in the extruder at high temperature. Agricultural biopolymers are usually mixtures of many types of compounds; when used as raw materials, however, high-temperature process causes unwanted consequences such a...

  18. Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor

    NASA Astrophysics Data System (ADS)

    Avci, Ercan

    2014-12-01

    Herein we report a facile and efficient solid state synthesis of carbon coated lithium iron phosphate (LiFePO4/C) cathode material achieved through the pyrolysis of polytetrafluoroethylene (PTFE). The current investigation is comparatively analyzed with the results of the composites of LiFePO4/C (LFP/C) synthesized using polystyrene-block-polybutadiene (PS-b-PBD), polyethyhylene (PE) and sucrose as carbon precursors. The optimized LFP/CPTFE composite is synthesized at 700 °C using 10 wt.% PTFE. The composite exhibits remarkable improvement in capacity, cyclability and rate capability compared to those of LFP/C synthesized using (PS-b-PBD), PE and sucrose. The specific discharge capacities as high as 166 mA h g-1 (theoretical capacity: 170 mA h g-1) at 0.2 C and 114 mA h g-1 at 10 C rates were achieved with LFP/CPTFE. In addition, the composite exhibits a long-term cycling stability with the capacity loss of only 11.4% after 1000 cycles. PTFE shifts the size distribution of the composite to nanometer scale (approximately 120 nm), however the addition of sucrose and other polymers do not have such an effect. According to TEM and XPS analysis, LFP/CPTFE particles are mostly coated with a few nanometers thick carbon layer forming a core-shell structure. Residual carbon does not contain fluorine.

  19. Effects of calcium phosphate nanoparticles on Ca-PO4 composite.

    PubMed

    Xu, H H K; Weir, M D; Sun, L; Takagi, S; Chow, L C

    2007-04-01

    Nano-particles of dicalcium phosphate anhydrous (DCPA) were synthesized for the first time. The objectives of this study were to incorporate DCPA nano-particles into resin for Ca-PO(4) release to combat dental caries, and to investigate the filler level effects. Nano-DCPA and nano-silica-fused silicon nitride whiskers at a 1:1 ratio were used at filler mass fractions of 0-75%. The flexural strengths in MPa (mean +/- SD; n = 6) of DCPA-whisker composites ranged from (106 +/- 39) at 0% fillers to (114 +/- 23) at 75% fillers, similar to (112 +/- 22) of a non-releasing composite (TPH) (p > 0.1). The composite with 75% fillers in a NaCl solution (133 mmol/L, pH = 7.4, 37 degrees C) yielded a Ca concentration of (0.65 +/- 0.02) mmol/L and PO(4) of (2.29 +/- 0.07) mmol/L. Relationships were established between ion-release and DCPA volume fraction V(DCPA): Ca = 4.46 V(DCPA)(1.6,) and = 66.9 V(DCPA)(2.6). Nano-DCPA-whisker PO(4) composites had high strength and released high levels of Ca-PO(4) requisite for remineralization. These new nano-composites could provide the needed combination of stress-bearing and caries-inhibiting capabilities.

  20. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  1. Calcium phosphate cement - gelatin powder composite testing in canine models: Clinical implications for treatment of bone defects.

    PubMed

    Yomoda, Mitsuhiro; Sobajima, Satoshi; Kasuya, Akihiro; Neo, Masashi

    2015-05-01

    Previous studies have reported the excellent biocompatibility of calcium phosphate cement. However, calcium phosphate cement needs further improvement in order for it to promote bone replacement and eventual bone substitution, as it exhibits slow biodegradability and thus remains in the body over an extended period of time. In this study, we mixed calcium phosphate cement with gelatin powder in order to create a composite containing macropores with interconnectivity, and we then implanted it into canine femurs from the diaphysis to the distal metaphysis. Eight dogs were divided into the sham group, the control (C0) group with 100 wt% calcium phosphate cement, the C10 group with 90 wt% calcium phosphate cement and 10 wt% gelatin powder, and the C15 group with 85 wt% calcium phosphate cement and 15 wt% gelatin powder. Bone replaceability in C10 and C15 at 3 and 6 months was evaluated by radiography, micro-CT, histomorphometry, and mineral apposition rate. New bone formation was seen in C10 and C15 although that was not seen in C0 at six months. The mineral apposition rate was significantly higher in C15 than in C10 in both the diaphysis and metaphysis, and the composite was found to have excellent biodegradability and bone replaceability in canine subjects. As the composite is easily and rapidly prepared, it is likely to become a new bone substitute for use in clinical settings.

  2. Laser Surface Preparation of Epoxy Composites for Secondary Bonding: Optimization of Ablation Depth

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Hopkins, John; Wohl, Christopher J.; Lin, Yi; Connell, John W.; Belcher, Marcus A.; Blohowiak, Kay Y.

    2015-01-01

    Surface preparation has been identified as one of the most critical aspects of attaining predictable and reliable adhesive bonds. Energetic processes such as laser ablation or plasma treatment are amenable to automation and are easily monitored and adjusted for controlled surface preparation. A laser ablation process was developed to accurately remove a targeted depth of resin, approximately 0.1 to 20 micrometers, from a carbon fiber reinforced epoxy composite surface while simultaneously changing surface chemistry and creating micro-roughness. This work demonstrates the application of this process to prepare composite surfaces for bonding without exposing or damaging fibers on the surface. Composite panels were prepared in an autoclave and had a resin layer approximately 10 micrometers thick above the fiber reinforcement. These composite panels were laser surface treated using several conditions, fabricated into bonded panels and hygrothermally aged. Bond performance of aged, experimental specimens was compared with grit blast surface treated specimens using a modified double cantilever beam test that enabled accelerated saturation of the specimen with water. Comparison of bonded specimens will be used to determine how ablation depth may affect average fracture energies and failure modes.

  3. Effect of interfacial chemical bonding and surface topography on adhesion in carbon fiber/epoxy composites

    SciTech Connect

    Drzal, L.T.; Sugiura, N.; Hook, D. |

    1994-12-31

    A series of PAN-based IM6 carbon fibers having varying amounts of surface treatment were, pretreated with compounds representing the constituents encountered in epoxy composites to pre-react any groups on the fiber surface before composite fabrication in order to determine the effect of chemical bonding on fiber-matrix adhesion. Chemical bonding was quantified using XPS. Chemical bonding between reactive groups in amine cured epoxy matrices and the surface groups present on IN46 carbon fibers as a result of commercial surface treatments has been detected although the absolute amount of chemical bonding is low (1-3%). It was found that reaction with monofunctional epoxy groups having hydrocarbon functionalities blocked the surface from further reaction and reduced the adhesion that could be attained to its lowest value. Prereaction with difunctional amines had little effect on adhesion when compared to normal composite fabrication procedures. Prereaction with difunctional epoxy groups did enhance adhesion levels over the level attained in normal composite fabrication methods. These results showed that chemical bonding between epoxy and the carbon fiber surface could increases the adhesion between fiber and matrix about 25% while between the amino group and the carbon fiber surface about 15%. Quantitative measurements of the fiber surface microtopography were made with scanning tunneling microscopy. An increase in roughness was detected with increasing surface treatment. It was concluded that surface roughness also accounted for a significant increase in fiber-matrix adhesion.

  4. Clinical evaluation of the failure rate of metallic brackets bonded with orthodontic composites.

    PubMed

    Romano, Fábio Lourenço; Valério, Rodrigo Alexandre; Gomes-Silva, Jaciara Miranda; Ferreira, José Tarcísio Lima; Faria, Gisele; Borsatto, Maria Cristina

    2012-01-01

    The purpose of the present study was to evaluate in vivo the failure rate of metallic brackets bonded with two orthodontic composites. Nineteen patients with ages ranging from 10.5 to 38.7 years needing corrective orthodontic treatment were selected for study. The enamel surfaces from second premolars to second premolars were treated with Transbond Plus-Self Etching Primer (3M Unitek). Next, 380 orthodontic brackets were bonded on maxillary and mandibular teeth, as follows: 190 with Transbond XT composite (3M Unitek) (control) and 190 with Transbond Plus Color Change (3M Unitek) (experimental) in contralateral quadrants. The bonded brackets were light cured for 40 s, and initial alignment archwires were inserted. Bond failure rates were recorded over a six-month period. At the end of the evaluation, six bond failures occurred, three for each composite. Kaplan-Meyer method and log-rank test (Mantel-Cox) was used for statistical analysis, and no statistically significant difference was found between the materials (p=0.999). Both Transbond XT and Transbond Plus Color Change composites had low debonding rates over the study period.

  5. Design of bonded joints in composite materials. [computerized analysis of material suitability

    NASA Technical Reports Server (NTRS)

    Corvelli, N.

    1972-01-01

    The primary form of joining high strength advanced composite materials is adhesive bonded joints. The stepped bonded joint is an efficient configuration where the adhesive and composite matrix are co-cured. A design procedure for this type of joint is described along with the analysis technique upon which it is based. A modified elastic analysis accounts for the nonlinear behavior of the adhesive. A computer program with minimum running time and simplified input is utilized for analysis and becomes an efficient link in an iterative design procedure. Comparisons between analytical results and test results are shown. Material properties which are needed for design and methods of measuring these properties are discussed.

  6. Effect of Chemical Structure and Composition of the Resin Phase on Vinyl Conversion of Amorphous Calcium Phosphate-filled Composites

    PubMed Central

    Skrtic, D.; Antonucci, J.M.

    2008-01-01

    The objective of this study was to elucidate the effect of chemical structure and composition of the polymer matrix on the degree of vinyl conversion (DC) of copolymers (unfilled resins) and their amorphous calcium phosphate (ACP) composites attained upon photo-polymerization. The DC can also be an indicator of the relative potential of these polymeric materials to leach out into the oral environment un-reacted monomers that could adversely affect their biocompatibility. The following resins were examined: 1) 2,2-bis[p-(2′-hydroxy-3′-methacryloxypropoxy)phenyl]propane (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (1:1 mass ratio; BT resin) combined with hydroxyethyl methacrylate (HEMA; BTH resin) and with HEMA and zirconyl dimethacrylate (BTHZ resin), 2) urethane dimethacrylate (UDMA)/HEMA resins, and 3) pyromellitic glycerol dimethacrylate (PMGDMA)/TEGDMA (PT resin). To make composite specimens, resins were mixed with a mass fraction of 40 % zirconia-hybridized ACP. Copolymers and their composites were evaluated by near infra-red spectroscopy for DC after 1 d and 28 d post-cure at 23 °C. Inclusion of HEMA into the BT and UDMA resins yielded copolymers and composites with the highest DCs. The significantly lower DCs of PT copolymers and their composites are attributed to the rigid aromatic core structure, tetra-vinyl functionality and limited methacrylate side-chain flexibility of the surface-active PMGDMA monomer. There was, however, an increase in the 28 d DC for the PT materials as there was for the BTHZ system. Surprisingly, the usual decrease observed in DC in going from unfilled polymer to composite was reversed for the PT system. PMID:18714369

  7. Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture.

    PubMed

    Ahmed, I; Jones, I A; Parsons, A J; Bernard, J; Farmer, J; Scotchford, C A; Walker, G S; Rudd, C D

    2011-08-01

    Internal fixation for bone fractures with rigid metallic plates, screws and pins is a proven operative technique. However, refracture's have been observed after rigid internal fixation with metal plates and plate fixation has been known to cause localised osteopenia under and near the plate. In the present study, resorbable composites comprising a PLA matrix reinforced with iron doped phosphate glass fibres were investigated. Non-woven random mat laminates of approximately 30% and 45% fibre volume fraction (V(f)) were produced, along with unidirectional and 0°-90° samples of approximately 20% V(f). The non-woven composite laminates achieved maximum values of 10 GPa modulus and 120 MPa strength. The 0-90º samples showed unexpectedly low strengths close to matrix value (~50 MPa) although with a modulus of 7 GPa. The UD specimens exhibited values of 130 MPa and 11.5 GPa for strength and modulus respectively. All the modulus values observed were close to that expected from the rule of mixtures. Samples immersed in deionised water at 37°C revealed rapid mechanical property loss, more so for the UD and 0-90º samples. It was suggested that continuous fibres wicked the degradation media into the composite plates which sped up the deterioration of the fibre-matrix interface. The effect was less pronounced in the non-woven random mat laminates due to the discontinuous arrangement of fibres within the composite, making it less prone to wicking. Random mat composites revealed a higher mass loss than the UD and 0°-90° specimens, it was suggested this was due to the higher fibre volume fractions of these composites and SEM studies revealed voidage around the fibres by day 3. Studies of pH of the degradation media showed similar profiles for all the composites investigated. An initial decrease in pH was attributed to the release of phosphate ions into solution followed by a gradual return back to neutral.

  8. Bond strength between fiber posts and composite resin core: influence of temperature on silane coupling agents.

    PubMed

    Novais, Veridiana Resende; Simamotos Júnior, Paulo Cézar; Rontani, Regina Maria Puppin; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2012-01-01

    This study evaluated the effect of air drying temperature and different silane coupling agents on the bond strength between glass fiber posts and composite resin core. The post surface was cleaned with alcohol and treated with different silane coupling agents, being three prehydrolyzed silanes [Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE)] and one two-component silane [Silane Coupling Agent (Dentsply)]. Two post-silanization air drying temperatures, 23ºC and 60ºC, were applied. A cylindrical plastic matrix was placed around the silanized post and filled with composite resin. Each bonded post provided 7 slices for push-out testing. Each slice was loaded to failure under compression at a cross-head speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Scott-Knott tests (α=0.05). Dunnett's test was used to compare the mean of the control group with that of each experimental group. Scanning electron microscopy (SEM) was used to evaluate the interface of the fractured slices. For the 23ºC air drying temperature, the use of RelyX Ceramic Primer resulted in significantly lower bond strength than the other silane coupling agents, while the bond strength with Silane Coupling Agent was the highest of all groups. Only with Silane Coupling Agent, the bond strength for the 23ºC air drying temperature was significantly higher than that for 60ºC air drying. In conclusion, the use of warm air drying after silane application produced no increase in the bond strength between the fiber-reinforced composite post and the composite core. The two-component silane produced higher bond strength than all prehydrolyzed silanes when it was used with air drying at room temperature.

  9. Prediction and Measurement of Residual Strains for a Composite Bonded Joint

    NASA Astrophysics Data System (ADS)

    Schoeppner, G. A.; Mollenhauer, D. H.; Iarve, E. V.

    2004-03-01

    A quasi-isotropic composite laminate/adherend of IM6/3501-6 and a composite bonded specimen were manufactured and tested. The bonded specimen was fabricated by postbonding composite adherends together using a 177°C adhesive resin. Predictions for the residual curing strains in the composite adherends and the adhesively bonded composite specimen were performed using a thermomechanical linearly elastic analysis. The analysis was performed using a computer program based on a polynomial spline displacement approximation method [1]. The residual strains of the specimens were measured using the moiré interferometry technique. Diffraction gratings were replicated at room temperature onto the edges of polished laminated adherends and on the edge of a fully cured adhesively bonded specimen. The specimens were cut through their entire thickness in the middle of the diffraction grating area, resulting in a redistribution of the residual curing stresses, with corresponding changes in the strain field at the edges of the cut. A full-field deformation pattern was obtained in the grating area by analyzing the recorded fringe patterns. The deformation field induced by the cut in the laminated adherends and the adhesive bondline were estimated by the linear thermomechanical analysis. A good agreement between the analysis and the experimental results was obtained.

  10. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  11. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites.

    PubMed

    Mohammadi, M Shah; Ahmed, I; Muja, N; Almeida, S; Rudd, C D; Bureau, M N; Nazhat, S N

    2012-04-01

    Reinforcing biodegradable polymers with phosphate-based glass fibres (PGF) is of interest for bone repair and regeneration. In addition to increasing the mechanical properties, PGF can also release bioinorganics, as they are water soluble, a property that may be controllably translated into a fully degradable composite. Herein, the effect of Si and Fe on the solubility of calcium-containing phosphate-based glasses (PG) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x=0, 5 and 10 mol.%) were investigated. On replacing SiO(2) with Fe(2)O(3), there was an increase in the glass transition temperature and density of the PG, suggesting greater crosslinking of the phosphate chains. This significantly reduced the dissolution rates of degradation and ion release. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into polycaprolactone (PCL). Initially, the flexural strength and modulus significantly increased with PGF incorporation. In deionized water, PCL-Fe(5)Si(5) displayed a significantly greater weight loss and ion release compared with PCL-Fe10. In simulated body fluid, brushite was formed only on the surface of PCL-Fe(5)Si(5). Dynamic mechanical analysis in phosphate buffered saline (PBS) at 37°C revealed that the PCL-Fe10 storage modulus (E') was unchanged up to day 7, whereas the onset of PCL-Fe(5)Si(5)E' decrease occurred at day 4. At longer-term ageing in PBS, PCL-Fe(5)Si(5) flexural strength and modulus decreased significantly. MC3T3-E1 preosteoblasts seeded onto PCL-PGF grew up to day 7 in culture. PGF can be used to control the properties of biodegradable composites for potential application as bone fracture fixation devices.

  12. Chemical composition of strata of the Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation

    USGS Publications Warehouse

    Herring, J.R.; Grauch, R.I.; Siems, D.F.; Tysdal, R.G.; Johnson, E.A.; Zielinski, R.A.; Desborough, G.A.; Knudsen, A.; Gunter, M.E.

    2001-01-01

    This study, one in a series, reports bulk chemical composition of rock samples collected from a core, referred to as Measured Section J, drilled at a site that subsequently was developed into the Enoch Valley phosphate mine in southeastern Idaho. The core is continuous and cuts through the entire thickness of the Meade Peak Phosphatic Shale Member of the Phosphoria Formation. The steeply dipping Meade Peak extends from 182 to 495 feet below the ground surface, which is the greatest below-ground depth of rock that has been sampled to date. The core was drilled before the start of mining, and the rocks consequently have not been exposed to the atmosphere or surficial weathering processes or fractured as a result of mining as are the rocks from other described sections. Hence, this section of the Meade Peak in the core is the least altered section of this member sampled in this series of studies. The channel-sampled rocks from Section J form a set of contiguous intervals across the entire thickness of the Meade Peak. These channel samples characterize?in ascending order?the lower phosphate ore, interlayered middle waste shale, upper phosphate ore, and upper waste shale units of the member. The Section J channel-sample suite includes 3 composite samples of the uppermost 7 feet of the Grandeur Tongue of the Permian Park City Formation, a dolomitic unit that directly underlies the Meade Peak. It also includes an analysis of a 0.1 foot section of chert directly overlying the Meade Peak. The concentrations of the chemical elements in the channel samples are compared with those of Measured Sections Aand B that were obtained from the same mine. In addition to the channel samples, 85 rock samples were selected from the core to address specific geochemical questions that resulted from examination of the core. For example, several of these samples correspond to cored rock that had unusual concentrations of various elements that were determined using a hand-held, x

  13. Evaluation of shear bond strengths of gingiva-colored composite resin to porcelain, metal and zirconia substrates

    PubMed Central

    An, Hong-Seok; Park, Ji-Man

    2011-01-01

    PURPOSE The purpose of this study is to evaluate and compare the shear bond strength of the gingiva-colored composite resin and the tooth-colored composite resin to porcelain, metal and zirconia. MATERIALS AND METHODS Sixty cylindrical specimens were fabricated and divided into the following 6 groups (Group 1-W: tooth-colored composite bonded to porcelain, Group 1-P: gingiva-colored composite bonded to porcelain, Group 2-W: tooth-colored composite bonded to base metal, Group 2-P: gingiva-colored composite bonded to base metal, Group 3-W: toothcolored composite bonded to zirconia, Group 3-P: gingiva-colored composite bonded to zirconia). The shear bond strength was measured with a universal testing machine after thermocycling and the failure mode was noted. All data were analyzed using the two-way analysis of variance test and the Bonferroni post-hoc test at a significance level of 0.05. RESULTS The mean shear bond strength values in MPa were 12.39, 13.42, 8.78, 7.98, 4.64 and 3.74 for Group 1-W, 1-P, 2-W, 2-P, 3-W and 3-P, respectively. The difference between the two kinds of composite resin was not significant. The shear bond strength of Group 1 was the highest and that of Group 3 was the lowest. The differences among Group 1, 2 and 3 were all significant (P<.05). CONCLUSION The shear bond strength of the gingiva-colored composite was not less than that of the tooth-colored composite. Thus, repairing or fabricating ceramic restorations using the gingiva-colored composite resin can be regarded as a practical method. Especially, the prognosis would be fine when applied on porcelain surfaces. PMID:22053249

  14. Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering.

    PubMed

    Alge, Daniel L; Bennett, Jeffrey; Treasure, Trevor; Voytik-Harbin, Sherry; Goebel, W Scott; Chu, Tien-Min Gabriel

    2012-07-01

    Calcium phosphate cements have many desirable properties for bone tissue engineering, including osteoconductivity, resorbability, and amenability to rapid prototyping-based methods for scaffold fabrication. In this study, we show that dicalcium phosphate dihydrate (DCPD) cements, which are highly resorbable but also inherently weak and brittle, can be reinforced with poly(propylene fumarate) (PPF) to produce strong composites with mechanical properties suitable for bone tissue engineering. Characterization of DCPD-PPF composites revealed significant improvements in mechanical properties for cements with a 1.0 powder to liquid ratio. Compared with nonreinforced controls, flexural strength improved from 1.80 ± 0.19 MPa to 16.14 ± 1.70 MPa, flexural modulus increased from 1073.01 ± 158.40 MPa to 1303.91 ± 110.41 MPa, maximum displacement during testing increased from 0.11 ± 0.04 mm to 0.51 ± 0.09 mm, and work of fracture improved from 2.74 ± 0.78 J/m(2) to 249.21 ± 81.64 J/m(2) . To demonstrate the utility of our approach for scaffold fabrication, 3D macroporous scaffolds were prepared with rapid prototyping technology. Compressive testing revealed that PPF reinforcement increased scaffold strength from 0.31 ± 0.06 MPa to 7.48 ± 0.77 MPa. Finally, 3D PPF-DCPD scaffolds were implanted into calvarial defects in rabbits for 6 weeks. Although the addition of mesenchymal stem cells to the scaffolds did not significantly improve the extent of regeneration, numerous bone nodules with active osteoblasts were observed within the scaffold pores, especially in the peripheral regions. Overall, the results of this study suggest that PPF-DCPD composites may be promising scaffold materials for bone tissue engineering.

  15. Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites.

    PubMed

    Le Nihouannen, Damien; Saffarzadeh, Afchine; Aguado, Eric; Goyenvalle, Eric; Gauthier, Olivier; Moreau, Françoise; Pilet, Paul; Spaethe, Reiner; Daculsi, Guy; Layrolle, Pierre

    2007-02-01

    Calcium phosphate (Ca-P) ceramics are currently used in various types of orthopaedic and maxillofacial applications because of their osteoconductive properties. Fibrin glue is also used in surgery due to its haemostatic, chemotactic and mitogenic properties and also as scaffolds for cell culture and transplantation. In order to adapt to surgical sites, bioceramics are shaped in blocks or granules and preferably in porous forms. Combining these bioceramics with fibrin glue provides a mouldable and self-hardening composite biomaterial. The aim of this work is to study the osteogenic properties of this composite material using two different animal models. The formation of newly formed bone (osteoinduction) and bone healing capacity (osteconduction) have been study in the paravertebral muscles of sheep and in critical sized defects in the femoral condyle of rabbits, respectively. The different implantations sites were filled with composite material associating Ca-P granules and fibrin glue. Ca-P granules of 1-2 mm were composed with 60% of hydroxyapatite and 40% of beta tricalcium phosphate in weight. The fibrin glue was composed of fibrinogen, thrombin and other biological factors. After both intramuscular or intraosseous implantations for 24 weeks and 3, 6, 12 and 24 weeks, samples were analyzed using histology and histomorphometry and mechanical test. In all cases, the newly formed bone was observed in close contact and around the ceramic granules. Depending on method of quantification, 6.7% (with BSEM) or 17% (with micro CT) of bone had formed in the sheep muscles and around 40% in the critical sized bone rabbit defect after 24 weeks. The Ca-P/fibrin material could be used for filling bone cavities in various clinical indications.

  16. Thermal cycling effect of dicalcium phosphate-reinforced composites on auto-mineralized dental resin.

    PubMed

    Chen, Wen-Cheng; Chang, Kai-Chi; Wu, Hui-Yu; Ko, Chia-Ling; Huang, Chien-Lin

    2014-12-01

    The mineralizing capabilities of surface-modified dicalcium phosphate anhydrous (DCPA), reinforced and treated with nanocrystals and capped with silane, in composite resins were analyzed via thermal cycling. We compared two light-curable composites that were mixed at filler-to-resin mass ratios of 30/70 and 50/50. The strengths, elastic moduli, and topographical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 and 2400 cycles. Silane-capped particles decreased the strength but enhanced the mineralizing capability of the composites. Nanocrystal-treated filler surfaces significantly increased the strength and moduli of the composites after 600 thermal cycles. However, these values declined after 2400 thermal cycles. The nanocrystal-treated filler surfaces prevented the reduction in strength before and after 2400 thermal cycles. Prior to silane capping, the nanocrystal-treated DCPA filler surfaces exhibited good mineralization capability without compromising strength. The potential for barrier generation through mineralization yielded positive effects and prevented micro-leakages.

  17. Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration.

    PubMed

    Matsuno, Tomonori; Nakamura, Tatsuo; Kuremoto, Koh-ichi; Notazawa, Syunsuke; Nakahara, Taka; Hashimoto, Yoshiya; Satoh, Tazuko; Shimizu, Yasuhiko

    2006-03-01

    Synthetic biomaterials have been developed and used for bone grafting. Here, we developed a biodegradable sponge composite for bone tissue engineering by combining beta-tricalcium phosphate (beta-TCP) and collagen. In addition, we sought to determine the optimal beta-TCP granules/collagen ratio by evaluating and bone formation in vivo. Porous beta-TCP granules were mixed with atelocollagen hydrochloride solution at various ratios--0.02, 0.05, 0.1, and 0.2 g/mL. The resultant mixtures were freeze-dried and subjected to dehydrothermal treatment in vacuo. The final composites obtained were designated beta-TCP/collagen sponge composites (beta-TCP/CS). Through compression testing, it was found that the stress values for beta-TCP/CS (0.2 g/mL) were higher than those of the other three composites over the whole strain range. Histological evaluation at four weeks after implantation revealed that the collagen sponge had degraded and newly formed bone was present on the surface of the beta-TCP granules. At 12 weeks, the beta-TCP granules were completely degraded and remodeling of the lamellar bone was observed.

  18. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure

    PubMed Central

    He, Fupo; Ye, Jiandong

    2013-01-01

    In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid) and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair. PMID:27877603

  19. Manufacture of bonded-particle nuclear fuel composites

    DOEpatents

    Stradley, J.G.; Sease, J.D.

    1973-10-01

    A preselected volume of nuclear fuel particles are placed in a cylindrical mold cavity followed by a solid pellet of resin--carbon matrix material of preselected volume. The mold is heated to liquefy the pellet and the liquefied matrix forced throughout the interstices of the fuel particles by advancing a piston into the mold cavity. Excess matrix is permitted to escape through a vent hole in the end of the mold opposite to that end where the pellet was originally disposed. After the matrix is resolidified by cooling, the resultant fuel composite is removed from the mold and the resin component of the matrix carbonized. (Official Gazette)

  20. Ceramic matrix composites properties/microstresses with complete and partial interphase bond

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    A multilevel substructuring technique which includes a unique fiber substructuring concept is used for the analysis of continuous fiber reinforced ceramic matrix composites. This technique has four levels of substructuring--from laminate to ply, to supply, and then to fiber. A stand-alone computer code CEMCAN (Ceramic Matrix Composites Analyzer), incorporating this technique and specifically for the simulation of ceramic matrix composites behavior, is currently under development at NASA Lewis Research Center in Cleveland, Ohio. The thermal and mechanical properties, along with the microstresses, for a SiC/RBSN (silicon carbide fiber and reaction bonded silicon nitride matrix) composite at different fiber volume ratios and varying degrees of interfacial bond around the fiber circumference are computed. Values predicted by CEMCAN computer code are shown to bound the experimentally measured values. Results also show that transverse tensile strength test can be a sensitive test method to assess interfacial conditions.

  1. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  2. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.

    PubMed

    Liu, Changsheng; Chen, Chien-Wen; Ducheyne, Paul

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 degrees C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO(4) and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 microm and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  3. [Bond strength to dentin of resin composites associated with filled and unfilled adhesive systems].

    PubMed

    Youssef, J A; Turbino, M L; Youssef, M N; Matson, E

    2001-01-01

    This study analyzed in vitro two brands of one-step adhesive systems of fourth generation (Optisolo--Kerr, filled; and Single Bond--3M, unfilled) and two composite resins (Prodigy--Kerr and Z100--3M), aiming at evaluating their bond strength to dentin. Eighty human extracted molars were embedded in acrylic resin and grounded until dentin was exposed in longitudinal direction. The specimens were divided in 4 groups. Composite resin cones were bonded to the specimens using the mentioned adhesive systems, following the instructions of the manufacturers. The test-specimens were submitted to tensile tests using a 4442 Universal Mini-Instron Machine with the speed of 0.5 mm/min. The results were converted into MPa, according to the area of adhesion, and submitted to statistical analysis with ANOVA. There was significant statistical difference (p < 0.01) between the adhesive systems (F = 7.24). Optisolo (m = 11.03 +/- 4.23) showed better bond strength than Single Bond (m = 8.37 +/- 4.54). There was no significant statistical difference (p > 0.05) between the composites (F = 0.43).

  4. Supersonic Retropulsion Surface Preparation of Carbon Fiber Reinforced Epoxy Composites for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Belcher, Marcus A.; Wohl, Christopher J.; Blohowiak, Kay Y.; Connell, John W.

    2013-01-01

    Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented.

  5. Effect of phosphate-buffered saline on push-out bond strength of a new bioceramic sealer to root canal dentin

    PubMed Central

    Shokouhinejad, Noushin; Hoseini, Atefeh; Gorjestani, Hedayat; Raoof, Maryam; Assadian, Hadi; Shamshiri, Ahmad Reza

    2012-01-01

    Background: The aim of this study was to compare push-out bond strength of a new bioceramic endodontic sealer, EndoSequence BC sealer (Brasseler USA, Savannah, GA), used with gutta-percha in the presence or absence of phosphate-buffered saline solution (PBS) within the root canals. Materials and Methods: Forty single-rooted human teeth were prepared and randomly divided into four groups. Samples in groups 1 and 2 were dried, but those in groups 3 and 4 were moistened with PBS before obturation. All root canals were obturated with gutta-percha/EndoSequence BC sealer. The specimens were stored in PBS for 7 days in groups 1 and 3 and for 2 months in groups 2 and 4. Push-out bond strength values and failure modes were evaluated. The data on push-out bond strength were analyzed using two-way ANOVA. Results: The mean value for the bond strength of the obturation material in moistened canals was significantly higher than that in dried ones at 1 week (P = 0.00). Contrarily, there was no significant difference between dried and moistened root canals at 2 months (P = 0.61). In dried canals, bond strength increased significantly with time but in moistened ones, the difference was not significant. Inspection of the specimens revealed the bond failure to be mainly cohesive for all groups. Conclusion: The presence of PBS within the root canals increased the bond strength of EndoSequence BC sealer/gutta-percha at 1 week. However, no difference was found between the bond strength of EndoSequence BC sealer/gutta-percha in the presence or absence of PBS in the root canals at 2 months. PMID:23559925

  6. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  7. Bond strength investigations and structural applicability of composite fiber-reinforced polymer (FRP) rebars

    NASA Astrophysics Data System (ADS)

    Kachlakev, Damian Ivanov

    The composite FRP rebars research at Oregon State University was initiated in 1993 principally to develop a non-metallic hollow reinforcement. It was recognized that the tensile properties of such reinforcement are unquestionably superior to steel, but its performance in concrete could be problematic. The bond between FRP rebars and concrete was identified as a critical area of concern. The purpose of this study is (i) to analyze a variety of FRP and steel reinforcing units; (ii) to advance the knowledge of bond mechanism, failure modes, and parameters influencing the bond strength; (iii) to compare composite rebars to conventional steel and to assess their applicability as reinforcing members. Commercially available FRP rebars were investigated. Particular emphasis was given to a hollow glass FRP rod designed at Oregon State University. Several parameters were investigated, including: failure mode, concrete compressive strength, rebar diameter and circumference/cross section ratio, embedment length, concrete cover, and microstructure of the composite rebars. It was recognized that the ASTM C234-90 pull-out standard is test of concrete strength. Therefore, a modified pull-out test was developed for evaluating the bond strength behavior. A newly developed European bond test procedure was compared with locally modified version of the pull-out method. The new procedure was used for the first time in the United States. The study demonstrated a phenomenon, not reported in the published research at this time, defined as a size effect. The size effects result in lower bond strength with increasing area of the interface between FRP bars and concrete. The next phase of the research was dedicated to the hollow glass FRP rebar. The goal was to compare its bond properties to conventional steel and solid FRP bars. The study led to two new phenomena not described in the literature previously. Results showed that the concrete compressive strength does not significantly affect the

  8. Retort braze bonding of borsic/aluminum composite sheet to titanium

    NASA Technical Reports Server (NTRS)

    Webb, B. A.; Dolowy, J. F., Jr.

    1975-01-01

    Braze bonding studies between Borsic/aluminum composite and titanium sheet were conducted to establish acceptable brazing techniques and to assess potential joint efficiencies. Excellent braze joints were produced which exhibited joint strengths exceeding 117 MPa (17,000 psi) and which retained up to 2/3 of this strength at 589 K (600 F). Noticeable composite strength degradation resulting from the required high temperature braze cycle was found to be a problem.

  9. Analysis techniques for the prediction of springback in formed and bonded composite components

    NASA Technical Reports Server (NTRS)

    Gasick, Michael F.; Renieri, Gary D.

    1992-01-01

    Two finite element analysis codes are used to model the effects of cooling on the dimensional stability of formed and bonded composite parts. The two analysis routines, one h-version and one p-version, are compared for modeling time, analysis execution time, and exactness of solution as compared to actual test results. A recommended procedure for predicting temperature effects on composite parts is presented, based on the results of this study.

  10. Bioapatite Recrystallization During Burning and its Effects on Phosphate Stable Oxygen Isotope Composition

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-04-01

    Stable oxygen isotopic compositions of phosphate from mammal bones are commonly used in palaeoenvironmental reconstructions. However, preservation of the primary bone oxygen isotopic composition is of concern during post-mortem alteration. Particularly in studies of archaeological interest, bone samples are often obtained from contexts where they have been heated, either in middens, or near hearths. Hence, in addition to alteration resulting from natural diagenetic processes, burning may also have contributed to modification of the primary oxygen isotopic signal. Various techniques can be employed to evaluate the degree of preservation of bone during burning. Anthropologists commonly use colour comparisons (Munsell Colour Chart) to assess the temperature of burning. Recrystallization of the carbonated hydroxyapatite, i.e., bioapatite, in bone is more rigorously assessed using X-ray diffraction and infra-red spectroscopy. In this study, freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned, incrementally burned, colour-typed, ground to a standardized grain-size (45<63mm), and analysed using differential thermal analysis (DTA), thermogravimetric analysis (TGA), rotating anode X-ray diffraction (XRD), and Fourier transform infra-red spectroscopy (FTIR). Heating temperatures ranged from 25 to 900^oC, increasing in intervals of 25^oC. Two major stages of weight loss were recorded in the DTA/TGA data, 25-260^oC representing dehydration, and 270-600^oC reflecting incineration of organic matter. The end-product (900^oC) resembled pure hydroxyapatite. XRD patterns of the bioapatite remained virtually unchanged from 25-250^oC, after which peak intensity, sharpness and the XRD crystallinity index (XRD CI) increased from 0.80 at 250^oC to 1.26 at 900^oC. FTIR patterns showed analogous behaviour, demonstrating minimal fluctuations in the FTIR crystallinity

  11. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  12. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, R.L.; Shell, T.E.

    1985-05-20

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  13. Heat transfer mechanisms in fiber-reinforced polymer composites bonded to concrete

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa

    2007-04-01

    This research project investigated heat transfer mechanisms that occur during radiant heating of glass/epoxy composites bonded to concrete. The ultimate goal is to develop a field procedure for estimating the thickness of fiber-reinforced polymer (FRP) composites used to strengthen existing reinforced concrete structures. Thickness is an important parameter in the design and implementation of nondestructive testing procedures that evaluate bond in FRP systems. Four concrete samples (15 cm x 30 cm x 5 cm) were constructed with glass/epoxy composite bonded to the surface. The thickness of the composite varied from 1mm to 4mm and thermocouples were placed at 1mm intervals through the depth of the composite. Experimental data was compared with a simple theoretical model that predicts the surface temperature response of a layered system subjected to a uniform heat flux. Two factors were shown to significantly influence the heat transfer mechanism: surface absorptivity of the FRP composite and convective cooling. Additional analytical modeling using the finite element method was performed to account for these affects in an effort to obtain a better estimate of FRP thickness based on experimental data.

  14. Effect of surface treatment on micro shear bond strength of two indirect composites

    PubMed Central

    Moezizadeh, Maryam; Ansari, Zahra Jaberi; Fard, Fatemeh Matin

    2012-01-01

    Aim: To determine the effect of surface treatment on micro shear bond strength of two indirect composites. Materials and Methods: Blocks of 2 × 7 × 20 mm dimensions were made from two kinds of resin composites, Gradia and Signum plus. Samples were subjected to secondary curing to complete polymerization. They were divided into five groups: control without any preparation, second group sandblasted with aluminum oxide, third, fourth and fifth groups were lased under a beam of 0.5, 1 and 2 W respectively. Panavia resin cement was placed on the composite blocks using tygon tubes and cured and micro shear bond strength was measured. One sample of each group was observed under electronic microscope. Data was analyzed by two-way ANOVA and Tukey's multiple comparison tests. Results: For Gradia composite, the sandblasted group showed highest strength (25.7±2.9 MPa) followed by the laser beam of 1 W group (with 23.6± 2.8 MPa). In Signum composite, the laser beam of 1 W (21.4±4.2 MPa) showed the highest strength followed by the sandblasted group (with 19.4±3.2 MPa). Conclusion: Surface treatments using sandblast and laser beam of 1W power along with silane are two effective methods to increase the bond strength of composites. PMID:22876007

  15. Influence of dentin pretreatment with synthetic hydroxyapatite application on the bond strength of fiber posts luted with 10-methacryloyloxydecyl dihydrogen phosphate-containing luting systems.

    PubMed

    Scotti, Nicola; Bergantin, Emanuele; Tempesta, Riccardo; Turco, Gianluca; Breschi, Lorenzo; Farina, Elena; Pasqualini, Damiano; Berutti, Elio

    2016-10-01

    The aim of this in vitro study was evaluate the effect of application of synthetic hydroxyapatite on fiber post bond strength to radicular dentine. Forty, single-root teeth were endodontically treated and an 8 mm post space was prepared. Specimens were randomly placed in four groups (n = 10 in each) and treated using the following fiber post luting procedures: group 1, 17% EDTA + Panavia SA; group 2, 17% EDTA + Teethmate Desensitizer + Panavia SA; group 3, All-Bond Universal + Duo-Link Universal; and group 4, All-Bond Universal + Teethmate Desensitizer + Duo-Link Universal. Fiber posts were luted in the post space and light-cured for 120 s using a light-emitting diode (LED) lamp. After 7 d of storage at 37°C, the teeth were cut into 1-mm-thick slices, which were subjected to a push-out test until failure using a universal testing machine. Two specimens per group were prepared for scanning electron microscopy analysis. An energy-dispersive X-ray spectroscopy detector was used for elemental analysis of the specimen surface. The results were statistically analyzed using one-way anova. The fiber post bond strength was statistically significantly increased after the application of Teethmate Desensitizer to post space walls, either with a 10-MDP-containing self-adhesive cement or with a universal adhesive. Scanning electron microscopy and EDAX analysis showed that Teethmate Desensitizer created a calcium phosphate precipitate over post space dentinal tubules, which significantly improved the bond strength of the fiber post luted with 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP)-containing adhesive systems.

  16. Effect of noble metal adhesive systems on bonding between an indirect composite material and a gold alloy.

    PubMed

    Nagano, Kiyoshi; Tanoue, Naomi; Atsuta, Mitsuru; Koizumi, Hiroyasu; Matsumura, Hideo

    2004-12-01

    In this study, the bond strength between an indirect composite and a gold alloy was determined for the purpose of evaluating noble metal bonding systems. A single liquid primer designed for conditioning noble metal alloys (Infis Opaque Primer) and tri-n-butylborane-initiated adhesive resins (Super-Bond C & B), with or without the powder component, were assessed. Cast gold alloy disks (Casting Gold type IV) were air-abraded with alumina, followed by six surface preparations, and were then bonded with a light-activated composite material (New Metacolor Infis). Shear testing was performed both before and after thermocycling for evaluation of bond durability. The results showed that three primed groups improved post-thermocycling bond strengths compared to each of the corresponding unprimed groups (P < 0.01). The bond strength was reduced for all six groups by the application of thermocycling (P < 0.01). After thermocycling, the group primed with the Infis Opaque Primer material and bonded with the Super-Bond C & B resin exhibited the greatest bond strength (23.4 MPa). The Infis Opaque Primer and Super-Bond bonding system increased the post-thermocycling bond strength of the control group by a factor of approximately ten. This simple technique is applicable in the fabrication of composite veneered restorations and cone-telescope dentures.

  17. INVESTIGATION OF TITANIUM BONDED GRAPHITE FOAM COMPOSITES FOR MICRO ELECTRONIC MECHANICAL SYSTEMS (MEMS) APPLICATIONS

    SciTech Connect

    Menchhofer, Paul A.

    2016-04-01

    PiMEMS Inc. (Santa Barbara, CA) in collaboration with ORNL investigated the use of Titanium Bonded Graphite Foam Composites (TBGC) for thermal mitigation in Micro Electronic Mechanical Systems (MEMS) applications. Also considered were potentially new additive manufacturing routes to producing novel high surface area micro features and diverse shaped heat transfer components for numerous lightweight MEMs applications.

  18. The influence of bonding agents in improving interactions in composite propellants determined using image analysis.

    PubMed

    Dostanić, J; Husović, T V; Usćumlić, G; Heinemann, R J; Mijin, D

    2008-12-01

    Binder-oxidizer interactions in rocket composite propellants can be improved using adequate bonding agents. In the present work, the effectiveness of different 1,3,5-trisubstituted isocyanurates was determined by stereo and metallographic microscopy and using the software package Image-Pro Plus. The chemical analysis of samples was performed by a scanning electron microscope equipped for energy dispersive spectrometry.

  19. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials.

    PubMed

    Kozłowska, J; Sionkowska, A

    2015-03-01

    The purpose of this study is the preparation and characterization of porous collagen/calcium phosphates (Col/CaP) composites. Collagen scaffolds with high porosity were prepared by freeze-drying technique. Col/CaP scaffold were created by new method--by deposition of calcium phosphate within collagen matrix in two steps using freeze-drying process before immersing samples in calcium solution. To find the optimal preparative method, we prepared diverse Col/CaP scaffolds using different collagen concentration and various crosslinking method: crosslinking with carbodiimide (EDC/NHS) and dehydrothermal treatment (DHT). This study explores the effect of the different crosslinking method on the properties of scaffolds, such as: microstructure (porosity and density), dissolution, water uptake, mechanical properties and collagenase degradation. The results obtained showed that crosslinking the scaffolds by either EDC/NHS or DHT have good mechanical and morphological properties compatible with their potential application in bone regeneration. The results demonstrated that properties of Col/CaP scaffolds changed significantly with different crosslinking method. However, while EDC/NHS increased the scaffolds' resistance to dissolution and degradation by collagenase, DHT decreased the swelling ratio and resistance to dissolution in PBS solution. Based on our study, 2% collagen concentration and EDC/NHS as crosslinking reagent are recommended to design the scaffold for use in bone engineering.

  20. Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification.

    PubMed

    Hamlet, Stephen; Ivanovski, Saso

    2011-05-01

    Nanoscale surface modification of titanium dental implants with calcium phosphate (CaP) has been shown to achieve superior bone wound healing and osseointegration compared with smooth or microrough titanium surfaces alone. As bone healing has been shown to be influenced by the action of cytokines, this study examined whether changes in cytokine gene expression from RAW 264.7 cells cultured on commercially pure and titanium alloy (Ti-6Al-4V) microrough or nanoscale crystalline CaP-modified surfaces, may influence downstream events in bone wound healing and osseointegration. Whilst no significant difference in the attachment or proliferation of RAW 264.7 cells was observed, the nanoscale CaP-modified surface elicited a gene expression profile with marked down-regulation of a number of pro-inflammatory cytokines and chemokines. Inflammatory cytokine gene expression was further influenced by chemical composition, with lower levels of pro-inflammatory markers noted following exposure of the macrophage-like cells to titanium alloy (Ti-6Al-4V) compared with the commercially pure titanium surface. Down-regulation of pro-inflammatory cytokine gene expression (confirmed at the protein level for TNFα and CCL5), may thus facilitate the enhanced bone wound healing and osseointegration observed clinically with nanoscale calcium phosphate-modified implant surfaces.

  1. Compressive fatigue properties of an acidic calcium phosphate cement-effect of phase composition.

    PubMed

    Ajaxon, Ingrid; Öhman Mägi, Caroline; Persson, Cecilia

    2017-03-01

    Calcium phosphate cements (CPCs) are synthetic bone grafting materials that can be used in fracture stabilization and to fill bone voids after, e.g., bone tumour excision. Currently there are several calcium phosphate-based formulations available, but their use is partly limited by a lack of knowledge of their mechanical properties, in particular their resistance to mechanical loading over longer periods of time. Furthermore, depending on, e.g., setting conditions, the end product of acidic CPCs may be mainly brushite or monetite, which have been found to behave differently under quasi-static loading. The objectives of this study were to evaluate the compressive fatigue properties of acidic CPCs, as well as the effect of phase composition on these properties. Hence, brushite cements stored for different lengths of time and with different amounts of monetite were investigated under quasi-static and dynamic compression. Both storage and brushite-to-monetite phase transformation was found to have a pronounced effect both on quasi-static compressive strength and fatigue performance of the cements, whereby a substantial phase transformation gave rise to a lower mechanical resistance. The brushite cements investigated in this study had the potential to survive 5 million cycles at a maximum compressive stress of 13 MPa. Given the limited amount of published data on fatigue properties of CPCs, this study provides an important insight into the compressive fatigue behaviour of such materials.

  2. An Experimental Investigation of Silicone-to-Metal Bond Strength in Composite Space Docking System Seals

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing a new universal docking mechanism for future space exploration missions called the Low Impact Docking System (LIDS). A candidate LIDS main interface seal design is a composite assembly of silicone elastomer seals vacuum molded into grooves in an electroless nickel plated aluminum retainer. The strength of the silicone-tometal bond is a critical consideration for the new system, especially due to the presence of small areas of disbond created during the molding process. In the work presented herein, seal-to-retainer bonds of subscale seal specimens with different sizes of intentional disbond were destructively tensile tested. Nominal specimens without intentional disbonds were also tested. Tension was applied either uniformly on the entire seal circumference or locally in one short circumferential length. Bond failure due to uniform tension produced a wide scatter of observable failure modes and measured load-displacement behaviors. Although the preferable failure mode for the seal-to-retainer bond is cohesive failure of the elastomer material, the dominant observed failure mode under the uniform loading condition was found to be the less desirable adhesive failure of the bond in question. The uniform tension case results did not show a correlation between disbond size and bond strength. Localized tension was found to produce failure either as immediate tearing of the elastomer material outside the bond region or as complete peel-out of the seal in one piece. The obtained results represent a valuable benchmark for comparison in the future between adhesion loads under various separation conditions and composite seal bond strength.

  3. Shear bond strength of composite resin to dentin after application of cavity disinfectants – SEM study

    PubMed Central

    Sharma, Vivek; Rampal, Poonam; Kumar, Sukesh

    2011-01-01

    Aim: The aim was to evaluate the effect of different cavity disinfectants on dentin bond strengths of composite resin applied with two different adhesive systems. Materials and Methods: Two-hundred mandibular molars were sectioned parallel to the occlusal surface to expose dentin in the midcoronal one-third. The dentinal surfaces were polished with waterproof-polishing papers. The specimens were randomly divided into five groups of 40 teeth each as follows: group 1(control) -- specimens were not treated with any cavity disinfectants. Groups 2--5 (experimental groups) -- dentin surfaces were treated with the following cavity disinfectants, respectively; 2% chlorhexidine solution, 0.1% benzalkonium chloride-based disinfectant, 1% chlorhexidine gel, and an iodine potassium iodide/copper sulfate-based disinfectant. The specimens were then randomly divided into two subgroups including 20 teeth each to evaluate the effect of different bonding systems. Dentin bonding systems were applied to the dentin surfaces and the composite buildups were done. After the specimens were stored in an incubator for 24 hours, the shear bond strength was measured at a crosshead speed of 1 mm/min. The specimens were then statistically analyzed. Statistical Analysis Used: One way analysis of variance and Tukey-HSD tests were used. Results: There was no significant difference between chlorhexidine gel and control groups regardless of the type of the bonding agent used (P>0.05). On the other hand, pretreatment with benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions had a negative effect on the shear bond strength of self-etching bonding systems. Conclusions: The findings of this study suggest that when benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions are used as a cavity disinfectant, an etch-and-rinse bonding system should be preferred. PMID:22090756

  4. Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials.

    PubMed

    Danoux, Charlène B S S; Bassett, David C; Othman, Ziryan; Rodrigues, Ana I; Reis, Rui L; Barralet, Jake E; van Blitterswijk, Clemens A; Habibovic, Pamela

    2015-04-01

    The biological performance of bone graft substitutes based on calcium phosphate bioceramics is dependent on a number of properties including chemical composition, porosity and surface micro- and nanoscale structure. However, in contemporary bioceramics these properties are interlinked, therefore making it difficult to investigate the individual effects of each property on cell behavior. In this study we have attempted to investigate the effects of calcium and inorganic phosphate ions independent from one another by preparing composite materials with polylactic acid (PLA) as a polymeric matrix and calcium carbonate or sodium phosphate salts as fillers. Clinically relevant bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on these composites and proliferation, osteogenic differentiation and ECM mineralization were investigated with time and were compared to plain PLA control particles. In parallel, cells were also cultured on conventional cell culture plates in media supplemented with calcium or inorganic phosphate to study the effect of these ions independent of the 3D environment created by the particles. Calcium was shown to increase proliferation of cells, whereas both calcium and phosphate positively affected alkaline phosphatase enzyme production. QPCR analysis revealed positive effects of calcium and of inorganic phosphate on the expression of osteogenic markers, in particular bone morphogenetic protein-2 and osteopontin. Higher levels of mineralization were also observed upon exposure to either ion. Effects were similar for cells cultured on composite materials and those cultured in supplemented media, although ion concentrations in the composite cultures were lower. The approach presented here may be a valuable tool for studying the individual effects of a variety of soluble compounds, including bioinorganics, without interference from other material properties.

  5. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers

    PubMed Central

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P < 0.05). Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements. PMID:26539485

  6. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  7. Clinical safety and efficacy of implantation of octacalcium phosphate collagen composites in tooth extraction sockets and cyst holes

    PubMed Central

    Kawai, Tadashi; Tanuma, Yuji; Matsui, Keiko; Suzuki, Osamu; Takahashi, Tetsu; Kamakura, Shinji

    2016-01-01

    It was demonstrated that octacalcium phosphate collagen composite achieved notable bone regeneration in bone defects in preclinical studies. On the basis of the research results, an investigator-initiated exploratory clinical trial was conducted after approval from a local Institutional Review Board. This clinical study was performed as a single-arm non-randomized intervention study. Octacalcium phosphate collagen composite was implanted into a total of 10 cases of alveolar bone defects after tooth extractions and cystectomy. Safety assessment was performed in terms of the clinical course and several consecutive laboratory examinations, and sequential radiographs were used for efficacy assessment. All participants uneventfully completed the clinical trial without major problems in their general condition. Postoperative wound swelling was observed, as also commonly seen in tooth extraction or cystectomy. Although no serious liver dysfunction, renal dysfunction, electrolyte imbalance, or abnormal urinalysis results were recognized, the number of white blood cells and C-reactive protein level temporarily increased after the operation. An increase in radiopacity in the octacalcium phosphate collagen composite–implanted site was observed in all cases. Finally, the border between the original bone and the octacalcium phosphate collagen composite–implanted site became indistinguishable. These results suggest that octacalcium phosphate collagen composite could be utilized safely in clinical situations in the future. PMID:27757220

  8. Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate

    SciTech Connect

    Cheng, Ping; Lan, Tian; Wang, Wanjun; Wu, Haixia; Yang, Haijun; Guo, Shouwu

    2010-05-15

    We reported a composite electrolyte prepared by incorporating layered {alpha}-titanium phosphate ({alpha}-TiP) into a binary ionic liquid of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF{sub 4}) (volume ratio, 13:7) electrolyte. The addition of {alpha}-TiP markedly improved the photovoltaic properties of dye-sensitized solar cells (DSSCs) compared to that without {alpha}-TiP. The enhancement was explained by improved diffusion of tri-iodide (I{sub 3}{sup -}) ions, suppressed electron recombination with I{sub 3}{sup -} in the electrolyte and increased lifetime of electrons in mesoscopic TiO{sub 2} film. (author)

  9. Evaluating the Microshear Bond Strength and Microleakage of Flowable Composites Containing Zinc Oxide Nano-particles

    PubMed Central

    Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra

    2016-01-01

    Introduction Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. Methods This experimental in-vitro study was carried out in the Dental Material Research Center of Babol University of Medical Sciences in 2015. One nanohybrid and one nanofill flowable resin composite were chosen and modified with the incorporation of 1% and 3% Wt NZnO particles. Six groups (n=10, 0%, 1%, and 3%) of resin composite sticks on dental enamel (2×2mm) were prepared to be placed in the microtensile tester. The microshear bond strength magnitude (MPa) was recorded at the point of failure. A class I box (3×0.8×1 mm) was prepared on 60 premolars and filled using the resin composites (6 groups, n=10). The specimens were immersed in a 5% basic fuschin solution and sectioned bucco-lingually to view the microleakage using a stereomicroscope. One-way ANOVA and Tukey tests for microshear and Wilcoxon and Kruskal–Wallis tests for microleakage were used to analyze the data in the IBM SPSS Statistics version 22 software. Results The bond strength of the 3% clearfill group significantly decreased while no significant change occurred in the bond strength in other groups. The Z-350 group had significantly lower microleakage as nanoparticles increased. No significant difference was observed in the clearfill group. Conclusion Up to 3% Wt incorporation of NZnO particles will not diversely alter the bond strength, but it will be beneficial in providing antimicrobial effects with lower microleakage rates. PMID:28070263

  10. Gatifloxacine-loaded PLGA and β-tricalcium phosphate composite for treating osteomyelitis.

    PubMed

    Tamazawa, Gaku; Ito, Atsuo; Miyai, Takahiro; Matsuno, Tomonori; Kitahara, Kazuki; Sogo, Yu; Kimishima, Kaori; Satoh, Tazuko

    2011-01-01

    Gatifloxacine (GFLX)-containing poly(lactide-co-glycolide) (PLGA) was introduced to the pores and surfaces of porous β-tricalcium phosphate (βTCP) granules by melt compounding whereby no toxic solvent was used. The granular composite of GFLX-loaded PLGA and βTCP released GFLX for 42 days in Hanks' balanced solution and exhibited sufficient in vitro bactericidal activity against Streptococcus milleri and Bacteroides fragilis for at least 21 days. For in vivo evaluation, the granular composite was implanted in the dead space created by the debridement of osteomyelitis lesion induced by S. milleri and B. fragilis in rabbit mandible. After a 4-week implantation, the inflammation area within the debrided area was markedly reduced accompanied with osteoconduction and vascularization in half of the rabbits, and even disappeared in one of the six rabbits without any systemic administration of antibiotics. Outside the debrided area, inflammation and sequestrum were observed but the largest of such affected areas amounted to only 0.125 times of the originally infected and debrided area. These findings showed that the granular composite was effective for the local treatment of osteomyelitis as well as an osteoconductive scaffold which supported and encouraged vascularization.

  11. Characterization of bond in steel-fiber-reinforced cementitious composites under tensile loads

    SciTech Connect

    Namur, G.G.

    1989-01-01

    Investigated was bonding in steel fiber reinforced cementitious composites, like fiber-reinforced mortar. The study was basically analytical, consisting primarily of two analytical models that predict the bond shear stress distribution at the interface between the fibers and the matrix, as well as the normal tensile distributions in the fibers and the matrix. The two models were, however, based on separate assumptions. While the first model assumed a known bond shear stress versus slip relationship at the interface between the fibers and the surrounding matrix, the second model was based on a mechanism of force transfer between the fibers and the matrix, hence circumventing the rather complex task of determining the relationship between the bond stress and the slip for the given type of fiber and matrix. Some applications to this second model, such as the bond modulus, the debonding stress, the length of the debonded zone were also investigated. A theoretical study of the pull-out process of steel fibers in cementitious matrices is included. The problem consisted of relating an idealized bond shear stress versus slip relationship to a pull-out curve. The derivation as based on the assumption that this relationship is linearly elastic-perfectly frictional, and then extended to the case of a fiction decaying linearly with the slip. The problem was subdivided into two components: a primal problem, whereby the pull-out curve is predicted from an assumed bond shear stress-slip relationship, and the dual problem, in which an experimentally obtained pull-out curve was used to predict the interfacial constitutive model, namely the bond-slip curve. Model application was illustrated by three examples of pull-out tests. The pull-out curves obtained in the laboratory, which featured the pull-out force versus the end slip of the pull-out fiber, were used to predict bond shear stress-slip relationships.

  12. Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants.

    PubMed

    Bandyopadhyay, Amit; Dittrick, Stanley; Gualtieri, Thomas; Wu, Jeffrey; Bose, Susmita

    2016-04-01

    Calcium phosphate (CaP)-titanium (Ti) composites were processed using a commercial laser engineered net shaping (LENS™) machine to increase wear resistance of articulating surfaces of load-bearing implants. Such composites could be used to cover the surface of titanium implants and potentially increase the lifetime of a joint replacement. It was hypothesized that adding calcium phosphate to commercially pure titanium (CP-Ti) and Ti6Al4V alloy via laser processing would decrease the material loss when subjected to wear. This added protection would be due to the in situ formation of a CaP tribofilm. Different amounts of CaP were mixed by weight with pure Ti and Ti6Al4V powders. The mixed powders were then made into cylindrical samples using a commercial LENS™-750 system. Microstructures were observed and it was found the CaP had integrated into the titanium metal matrix. Compression test revealed that CaP significantly increased the 0.2% offset yield strength as well as the ultimate compressive strength of CP-Ti. It was found that the addition of CaP to pure titanium reduced the material loss and increased wear resistance. This was due to the formation of CaP tribofilm on the articulating surface. The in situ formed tribofilm also lowered the coefficient of friction and acted as a solid lubricant between the two interacting metal surfaces. Overall, CaP addition to Ti and its alloy Ti6Al4V show an effective way to minimize wear induced damage due to the formation of in situ tribofilm at the articulating surface, a strategy that can be utilized in various biomedical devices.

  13. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance.

    PubMed

    Urquia Edreira, Eva R; Wolke, Joop G C; Aldosari, Abdullah AlFarraj; Al-Johany, Sulieman S; Anil, Sukumaran; Jansen, John A; van den Beucken, Jeroen J J P

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings have been used to enhance the biocompatibility and osteoconductive properties of metallic implants. The chemical composition of these ceramic coatings is an important parameter, which can influence the final bone performance of the implant. In this study, the effect of phase composition of CaP-sputtered coatings was investigated on in vitro dissolution behavior and in vivo bone response. Coatings were prepared by a radio frequency (RF) magnetron sputtering technique; three types of CaP target materials were used to obtain coatings with different stoichiometry and calcium to phosphate ratios (hydroxyapatite (HA), α-tricalciumphosphate (α-TCP), and tetracalciumphosphate (TTCP)) were compared with non-coated titanium controls. The applied ceramic coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma optical emission spectroscopy. The in vitro dissolution/precipitation of the CaP coatings was evaluated using immersion tests in simulated body fluid (SBF). To mimic the in vivo situation, identical CaP coatings were also evaluated in a femoral condyle rabbit model. TCPH and TTCPH showed morphological changes during 4-week immersion in SBF. The results of bone implant contact (BIC) and peri-implant bone volume (BV) showed a similar response for all experimental coatings. An apparent increase in tartrate resistant acid phosphatase (TRAP) positive staining was observed in the peri-implant region with decreasing coating stability. In conclusion, the experimental groups showed different coating properties when tested in vitro and an apparent increase in bone remodeling with increasing coating dissolution in vivo.

  14. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: Quantitative micro-radiographic study

    PubMed Central

    Langhorst, S.E.; O'Donnell, J.N.R.; Skrtic, D.

    2009-01-01

    Objective: This study explores the efficacy of an experimental orthodontic amorphous calcium phosphate (ACP) composite to remineralize in vitro subsurface enamel lesions microradiographically similar to those seen in early caries. Methods: Lesions were artificially created in extracted human molars. Single tooth sections a minimum of 120 μm thick were cut and individually placed in holders exposing only the carious enamel surface. The exposed surfaces were either left untreated (control) or coated with a 1 mm thick layer of the experimental ACP composite (mass fraction 40 % zirconiahybridized ACP and 60 % photo-activated resin), or a commercial fluoride-releasing orthodontic cement. The composite-coated sections were then photo-cured and microradiographic images were taken of all three groups of specimens before the treatment. Specimens were then cyclically immersed in demineralizing and remineralizing solutions for one month at 37 °C to simulate the pH changes occurring in the oral environment. Microradiographs of all specimens were taken before and after treatment. Results: Quantitative digital image analysis of matched areas from the contact microradiographs taken before and after treatment indicated higher mineral recovery with ACP composites compared to the commercial orthodontic F-releasing cement (14.4 % vs. 4.3 %, respectively), while the control specimens showed an average of 55.4 % further demineralization. Significance: Experimental ACP composite efficiently established mineral ion transfer throughout the body of the lesions and restored the mineral lost due to acid attack. It can be considered a useful adjuvant for the control of caries in orthodontic applications. PMID:19215975

  15. The Calcium Phosphate Matrix of FGF-2-Apatite Composite Layers Contributes to Their Biological Effects

    PubMed Central

    Mutsuzaki, Hirotaka; Ito, Atsuo; Sogo, Yu; Sakane, Masataka; Oyane, Ayako; Yamazaki, Masashi

    2014-01-01

    The purpose of the present study was to fabricate fibroblast growth factor (FGF)-2-apatite composite layers on titanium (Ti) pins in one step at 25 °C using a supersaturated calcium phosphate (CaP) solution, and to evaluate the physicochemical characteristics and biological effects of the coated Ti pins compared with coated Ti pins fabricated at 37 °C. Ti pins were immersed in a supersaturated CaP solution containing 0.5, 1.0, or 2.0 µg/mL FGF-2 at 25 °C for 24 h (25F0.5, 25F1.0, and 25F2.0) or containing 4.0 µg/mL FGF-2 at 37 °C for 48 h (37F4.0). Except for the 25F0.5, the chemical compositions and the mitogenic activity levels of FGF-2 of the composite layers formed by these two methods were similar, except for the Ca/P molar ratio, which was markedly smaller at 25 °C (1.55–1.56 ± 0.01–0.02, p = 0.0008–0.0045) than at 37 °C (1.67 ± 0.11). Thus, either the apatite was less mature or the amount of amorphous calcium phosphate was higher in the composite layer formed at 25 °C. In vivo, the pin tract infection rate by visual inspection for 37F4.0 (45%) was lower than that for 25F1.0 (80%, p = 0.0213), and the rate of osteomyelitis for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p = 0.0341). The extraction torque for 37F4.0 (0.276 ± 0.117 Nm) was higher than that for 25F0.5 (0.192 ± 0.117 Nm, p = 0.0142) and that for 25F1.0 (0.176 ± 0.133 Nm, p = 0.0079). The invasion rate of S. aureus for 37F4.0 (35%) was lower than that for 25F0.5 (75%, p = 0.0110). On the whole, the FGF-2-apatite composite layer formed at 25 °C tended to be less effective at improving fixation strength in the bone-pin interface and resisting pin tract infections. These results suggest that the chemistry of the calcium phosphate matrix that embeds FGF-2, in addition to FGF-2 content and activity, has a significant impact on composite infection resistance and fixation strength. PMID:24918287

  16. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-10-01

    The purpose of this study was to determine the relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. As controls, micro-hybrid and nano-hybrid resin composites were tested. The universal adhesives used were Scotchbond Universal, Adhese Universal, and G-Premio Bond. The fracture toughness and flexural properties of resin composites, and shear bond strength and shear fatigue strength of universal adhesive with resin composite using both total-etch and self-etch modes were determined. In the results, short fiber-reinforced resin composite showed significantly higher fracture toughness than did micro-hybrid and nano-hybrid resin composites. The flexural strength and modulus of short fiber-reinforced and nano-hybrid resin composites were significantly lower than were those of micro-hybrid resin composites. Regardless of etching mode, the shear bond strength of universal adhesives with short fiber-reinforced resin composite did not show any significant differences from micro-hybrid and nano-hybrid resin composites. The shear fatigue strength of universal adhesives with short fiber-reinforced resin composite and micro-hybrid resin composites were significantly higher than that of nano-hybrid resin composites. The results of this study suggest that the mechanical properties of short fiber-reinforced resin composite improve their bond durability with universal adhesive.

  17. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    PubMed

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p < 0.001) and the groups cooled to 4 °C exhibited the lowest MSBS (p < 0.001). The CSE showed higher MSBS than the other adhesives (p < 0.001). This study concludes that preheating of composite resins may be an alternative way to increase the MSBS of composites on dentin.

  18. Flexural Upgrading of Steel-Concrete Composite Girders Using Externally Bonded CFRP Reinforcement

    NASA Astrophysics Data System (ADS)

    Kabir, Mohammad Z.; Eshaghian, M.

    2010-04-01

    This study focuses on the flexural performance of composite steel-concrete beam girders retrofitted with CFRP. The current work is a numerical study of the load carrying capacity of a section which is strengthened by externally bonding of CFRP to the tension flange. At the primarily stage of the work, the model is verified by published experimental data. The three dimensional interactive failure Tsai-Wu criteria was implemented to retrofitted composite girder in order to identify the failure mode. Then a detailed parametric study is carried out to investigate the effects of geometry parameters and material characteristics on flexural performance of a composite section.

  19. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  20. Environmental Aging of Scotch-Weld(TradeMark) AF-555M Structural Adhesive in Composite to Composite Bonds

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Miner, Gilda A.; Lowther, Sharon E.; Connell, John W.; Baughman, James M.

    2010-01-01

    Fiber reinforced resin matrix composites have found increased usage in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance is not well established. In this study, adhesive bonds were prepared by the secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminate. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of single-lap-shear (SLS) specimen was measured to determine thickness and inspected visually for voids. A three-year environmental aging plan for the SLS specimens at 82 C and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The aging results of strength retention and failure modes to date are reported.

  1. Effects of Incorporating Nanosized Calcium Phosphate Particles on Properties of Whisker-Reinforced Dental Composites

    PubMed Central

    Xu, Hockin H. K.; Sun, Limin; Weir, Mike D.; Takagi, Shozo; Chow, Laurence C.; Hockey, Bernard

    2009-01-01

    Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1–56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean ± SD; n = 5) decreased from 174 ± 26 MPa to 138 ± 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 ± 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 ± 0.04 mmol/L to 1.74 ± 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 ± 0.21 mmol/L to 9.95 ± 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction vMCPM in the resin: [Ca]= 42.9 vMCPM2.7, and [PO4] = 48.7 vMCPM1.4. In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca–PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials. PMID:16924611

  2. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.

    PubMed

    Yamadi, Shusaku; Kobayashi, Satoshi

    2009-01-01

    Bioactive ceramic/bioresorbable plastic composites have been expected as materials for the bone fracture fixations which have more biocompatibility than monolithic bioresorbable plastics. Many studies have been conducted on these materials. Most studies, however, focused on the mechanical properties under static loading. In the actual usage, these materials are loaded dynamically. In this study, effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) (TCP/PLLA) composites were investigated experimentally and analytically. The TCP/PLLA composites containing three different TCP contents (5, 10 and 15 wt.%) were prepared by injection molding. In order to characterize the mechanical properties, tensile and compressive tests were conducted. The results of tensile tests indicated that the Young's moduli of composites increased with increasing TCP contents. For each TCP contents, tensile Young's modulus kept constant up to strain rate of 10(-1)/s. On the other hand, tensile strength increased with increasing strain rate. The effect of strain rate became larger with decreasing TCP contents, which means the strain rate dependency of the PLLA is more effective than that of TCP. From the results of compressive tests, similar results with tensile tests were obtained. That is, compressive Young's modulus kept constant up to strain rate of 10(-1)/s and the 0.2% proof stress increased with increasing strain rate. In order to predict the mechanical behavior of TCP/PLLA composites, the micro-damage mechanics was proposed. In this analysis, 3-phases particle reinforced composites, which include the intact particles, damaged particles and matrix, are assumed. The elastic constants are calculated with micromechanics based on the analyses by Eshelby and Mori and Tanaka. Only the debonding between particle and matrix are assumed as the damage. The nonlinearity in the stress-strain behavior of matrix PLLA is also considered. The debonding particles

  3. A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions

    NASA Astrophysics Data System (ADS)

    Hawthorne, Frank C.

    2012-11-01

    Here, I describe a theoretical approach to the structure and chemical composition of minerals based on their bond topology. This approach allows consideration of many aspects of minerals and mineral behaviour that cannot be addressed by current theoretical methods. It consists of combining the bond topology of the structure with aspects of graph theory and bond-valence theory (both long range and short range), and using the moments approach to the electronic energy density-of-states to interpret topological aspects of crystal structures. The structure hierarchy hypothesis states that higher bond-valence polyhedra polymerize to form the (usually anionic) structural unit, the excess charge of which is balanced by the interstitial complex (usually consisting of large low-valence cations and (H2O) groups). This hypothesis may be justified within the framework of bond topology and bond-valence theory, and may be used to hierarchically classify oxysalt minerals. It is the weak interaction between the structural unit and the interstitial complex that controls the stability of the structural arrangement. The principle of correspondence of Lewis acidity-basicity states that stable structures will form when the Lewis-acid strength of the interstitial complex closely matches the Lewis-base strength of the structural unit, and allows us to examine the factors that control the chemical composition and aspects of the structural arrangements of minerals. It also provides a connection between a structure, the speciation of its constituents in aqueous solution and its mechanism of crystallization. The moments approach to the electronic energy density-of-states provides a link between the bond topology of a structure and its thermodynamic properties, as indicated by correlations between average anion coordination number and reduced enthalpy of formation from the oxides for [6]Mg{/m [4]}Si n O( m+2 n) and MgSO4(H2O) n .

  4. [Is amalgam stained dentin a proper substrate for bonding resin composite?].

    PubMed

    Scholtanus, J D

    2016-06-01

    After the removal of amalgam restorations, black staining of dentin is often observed, which is attributed to the penetration of corrosion products from amalgam. A study was carried out to determine whether this amalgam stained dentin is a proper substrate for bonding resin composites. A literature study and an in vitro study showed that Sn and Zn in particular are found in amalgam stained dentin, and this was the case only in demineralised dentin. In vitro, demineralised dentin acted as porte d'entrÈe for amalgam corrosion products. Bond strength tests with 5 adhesive strategies showed no differences between bond strengths to amalgam stained and to sound dentin, but did show different failure types. A clinical study showed good survival of extensive cusp replacing resin composite restorations. No failures were attributed to inadequate adhesion. It is concluded that staining of dentin by amalgam corrosion products has no negative effect upon bond strength of resin composite. It is suggested that Sn and Zn may have a beneficial effect upon dentin, thus compensating the effects of previous carious attacks, preparation trauma and physico-chemical challenges during clinical lifetime.

  5. Shear test of composite bonded to dentin: Er:YAG laser versus dental handpiece preparations

    NASA Astrophysics Data System (ADS)

    Visuri, Steven R.; Gilbert, Jeremy L.; Walsh, Joseph T., Jr.; Wigdor, Harvey A.

    1995-05-01

    The erbium:YAG laser coupled with a cooling stream of water appears to be an effective means of removing dental hard tissues. However, before the procedure is deemed clinically viable, there are several important issues of safety and efficacy that need to be explored. In this study we investigated the surface that remains following laser ablation of dentin and compared the results to the use of a dental handpiece. Specifically, we studied the effect the laser radiation had on the bonding of composite to dentin. The crowns of extracted human molars were removed revealing the underlying dentin. An additional thickness of material was removed with either a dental handpiece or an Er:YAG laser by raster scanning the samples under a fixed handpiece or laser. Comparable surface roughnesses were achieved. A cylinder of composite was bonded onto the prepared surfaces following the manufacturer's directions. The dentin-composite bond was then shear stressed to failure on a universal testing apparatus and the maximum load recorded. Preliminary results indicated that laser irradiated samples had improved bond strengths. SEM photographs of the surfaces were also taken to compare the two methods of tooth preparation.

  6. Adhesively bonded steel and composites-durability in substitute ocean water

    SciTech Connect

    Aartun, L.; Dillard, J.G.

    1996-12-31

    Ocean water, marine life and certain oil-well fluids constitute a highly aggressive environment for most metals. In the offshore oil industry, the economic driving force to seek new materials points towards polymeric composites which offer reduction of weight and elimination of corrosion. However, a combined use of steel and composites creates a joining problem. Exposure to humid air and liquid water affects adhesive bonds in a negative manner, and adhesively bonded metal systems are even less durable in marine than in non-ocean environments. In marine environments and sea coast atmospheres, marine life and salts can contribute to the degradation process. On an operating oil rig, repair and replacements involving adhesive bonding are forced to be carried out under non-ideal conditions because of environmental regulations (affecting surface treatments) and safety requirements (affecting the curing method). The objective of this work is to develop environmentally friendly surface preparations and to study, the influence of salt water on the durability of adhesively bonded steel/composite systems.

  7. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  8. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis.

    PubMed

    Makarov, C; Cohen, V; Raz-Pasteur, A; Gotman, I

    2014-10-01

    In this work, osteoconductive composite materials comprising a large volume fraction of a bioresorbable calcium phosphate ceramic (CaP) and a smaller amount of a polycaprolactone polymer (PCL) were studied as a degradable antibiotic carrier material for treatment of osteomyelitis. Beads loaded with 1 and 4wt.% vancomycin were prepared by admixing dissolved drug to an in situ synthesized dicalcium phosphate (DCP)-PCL or solution-mixed beta-tricalcium phosphate (βTCP)-PCL composite powder followed by high pressure consolidation of the blend at room temperature. Vancomycin release was measured in phosphate-buffered saline (PBS) at 37°C. All the beads gradually released the drug over the period of 4-11weeks, depending on the composite matrix homogeneity and porosity. Mathematical modeling using the Peppas equation showed that vancomycin elution was diffusion controlled. The stability of the antibiotic after high pressure application at room temperature was demonstrated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) studies and MIC testing. The preservation of the structure and activity of vancomycin during the processing of composite beads and its sustained in vitro release profile suggest that high pressure consolidated CaP-PCL beads may be useful in the treatment of chronic bone infections as resorbable delivery vehicles of vancomycin and even of thermally unstable drug substances.

  9. Control of the size, shape and composition of highly uniform, non-agglomerated, sub-micrometer β-tricalcium phosphate and dicalcium phosphate platelets.

    PubMed

    Galea, Laetitia; Bohner, Marc; Thuering, Juerg; Doebelin, Nicola; Aneziris, Christos G; Graule, Thomas

    2013-09-01

    Calcium phosphates (CaPs) are widely used as bone graft substitutes but are inherently brittle, hence restricting their use to mechanically protected environments. Combining them with a tough polymer matrix could potentially lead to a composite with load-bearing properties. However, the highest mechanical properties can only be achieved if the CaP particles possess very precise features: they should be uniform in size and shape, non-agglomerated, elongated and thin. The aim of the present study therefore was to assess a novel method to produce such particles. This involved the precipitation of CaP particles in ethylene glycol at moderate temperatures (90-170 °C) and the variation of different reaction parameters (temperature, concentration, pH, etc) to study their influence on particle composition, size, shape and dispersion was studied. As a result, two main CaP phases were obtained as well-dispersed and highly uniform platelets in the form of: (i) β-tricalcium phosphate (β-TCP) hexagonal prisms and (ii) monetite (DCP) flat parallelepipeds. The size dispersion was the narrowest for β-TCP (standard deviation/mean < 5%) whereas the aspect ratio was the highest for DCP (up to 25). In both cases, the thickness of the platelets was below 300 nm which should be ideal for the synthesis of strong CaP-based composites.

  10. Multi-walled carbon nanotubes covalently bonded cellulose composite for chemical vapor sensor

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Yang, Sang Yeol; Kim, Jaehwan

    2010-04-01

    A cellulose solution was prepared by dissolving cotton pulp in LiCl/ N,N-Dimethylacetamide (DMAc) solution, and functionalized multi-walled carbon nanotubes (MWCNTs) were reacted with N, N-Carbonyldiimidazoles to obtain MWCNTs-imidazolides. By acylation of cellulose with MWCNTs-imidazolides, MWCNTs were covalently bonded with cellulose chains. Using the product, MWCNTs covalently bonded cellulose composite (M/C) composite was fabricated with mechanical stretching to align MWCNTs with cellulose. Finally, inter-digital comb electrode was formed on the composite via lift-off process. Chemo-electrical properties of the M/C composite in response of absorption of the volatile vapors corresponding to 1-propanol, 1-butanol, methanol and ethanol were investigated. Due to sensitive and reversible expansion/contraction of the M/C composite matrix in response to absorption of each analyte, the M/C composite showed fast and reversible change in chemo-electrical property. The ranking of relative resistance response of the composite was methanol < ethanol < 1-propanol < 1-butanol.

  11. Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels

    NASA Technical Reports Server (NTRS)

    Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.

    2008-01-01

    This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.

  12. Shear bond strength of composite resin to titanium according to various surface treatments

    PubMed Central

    Lee, Seung-Yun; Yang, Hong-So; Park, Sang-Won; Park, Ha-Ok; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera™, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at 25℃ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-5®, United Calibration, USA). These values were statistically analyzed. RESULTS 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION Within the limitations of this study, all methods of surface treatment used in this study are clinically available. PMID:21165258

  13. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  14. Preparation of Calcium Phosphate Cement and Polymethyl Methacrylate for Biological Composite Bone Cements

    PubMed Central

    Yang, Jun; Zhang, Kairui; Zhang, Sheng; Fan, Jiping; Guo, Xinhui; Dong, Weiqiang; Wang, Shengnan; Chen, Yirong; Yu, Bin

    2015-01-01

    Background We studied the biological safety, biomechanics, and tissue compatibility of calcium phosphate cement and Polymethyl Methacrylate composite bone cement mixed in different ratios. Material/Methods CPC and PMMA were mixed in different ratios (3: 1, 2: 1, 1: 1, 1: 2, 1: 5, 1: 10, 1: 15, and 1: 20). PMMA solvent is a general solvent containing a dissolved preparation of the composite bone cement specific to a given specimen to determine biological safety, biomechanics, and tissue compatibility. Results The CPC/PMMA (33%) group, CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group were more in line with the composite bone cement without cytotoxicity requirements. The compressive strength of the CPC/PMMA (67%) group and CPC/PMMA (75%) group was 20Mpa–30Mpa, while that of the CPC/PMMA (4.8%) group, CPC/PMMA (6.25%) group, CPC/PMMA (9.1%) group, CPC/PMMA (16.7%) group, CPC/PMMA (33%) group, and CPC/PMMA (50%) group was 40Mpa–70Mpa. Curing time was longer in the CPC group (more than 11 min) and shorter in the PMMA group (less than 2 min). The results of weight loss rate showed that there were no significant differences between the CPC/PMMA group (4.8%, 6.25%, 9.1%, 16.7%, 33%) and PMMA control group (p>0.05). With the decrease of CPC content, the rate of weight loss gradually decreased. Conclusions The CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group provide greater variability and selectivity for the composite bone cement in obtaining better application. PMID:25904398

  15. Effect of 10% sodium ascorbate hydrogel and delayed bonding on shear bond strength of composite resin and resin-modified glass ionomer to bleached enamel

    PubMed Central

    Danesh-Sani, Seyed Amir; Esmaili, Maryam

    2011-01-01

    Objective: The aim of this study was to comparatively investigate the neutralizing effect of antioxidant treatment and delayed bonding after bleaching with hydrogen peroxide on the shear bond strength of a composite resin (CR) and resin-modified glass ionomer (RmGI) to enamel. Materials and Methods: Ninety-six freshly extracted human 3rd molars with flat enamel surfaces were divided into six experimental groups (n=12/group) and two control groups (n=12/group). After initial preparation, specimens in Groups 1 and 5 (control groups) were not bleached and the buccal enamel surface of specimens were bonded immediately with CR and RmGI. The samples of the remaining groups were all bleached six hours a day for seven days consecutively. Immediately after bleaching, groups two and six specimens were bonded with CR and RmGI. Groups 3 and 7 specimens were immersed in distilled water at 37°C for 7 days and the specimens in Groups 4 and 8 were treated with 10% sodium ascorbate as an antioxidant agent after bleaching. Specimens in Groups 3 and 4 were bonded with CR and Groups 7 and 8 specimens were bonded with RmGI immediately. After specimens were bonded, the shear bond strength (SBS) was measured. The SBS data analyses were subjected to one-way analysis of variance (ANOVA) followed by Tukey test for comparison of specific mean values. Results: The mean SBS value in Group 2 (immediately bonded with CR after bleaching) was significantly lower than other CR groups (P=0.045). RmGI did not bond to buccal enamel surface of specimens in group 6. There was no significant difference between other groups bonded with RmGI (P>0.05). Conclusions: Applying 10% sodium ascorbate hydrogel and one week delay before bonding resulted in reversal of reduced bond strength of CR and RmGI to bleached enamel. PMID:22025826

  16. Effect of light-tip distance on the shear bond strengths of composite resin.

    PubMed

    Cacciafesta, Vittorio; Sfondrini, Maria Francesca; Scribante, Andrea; Boehme, Andreas; Jost-Brinkmann, Paul-Georg

    2005-05-01

    The purpose of this study was to assess the effect of light-tip distance on the shear bond strength and failure site of brackets cured with three different light curing units: a high-intensity halogen (Astralis 10, 10-second curing), a light-emitting diode (LED, e-Light, six-second curing), and a plasma arc (PAC System, four-second curing). One hundred and thirty-five bovine permanent mandibular incisors were randomly allocated to nine groups of 15 specimens each. Stainless steel brackets were bonded with a composite resin to the teeth, and each curing light was tested at zero, three, and six mm from the bracket. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for shear bond strength. When the three light curing units were compared at a light-tip distance of zero mm, the three lights showed no significantly different shear bond strengths. At light-tip distances of three and six mm, no significant differences were found between the halogen and plasma arc lights, but both lights showed significantly higher shear bond strengths than the LED light. When evaluating the effect of the light-tip distance on each light curing unit, the halogen light showed no significant differences between the three distances. However, the LED light produced significantly lower shear bond strengths at a greater light-tip distance, and the plasma arc lamp showed significantly higher shear bond strengths at a greater light-tip distance. In hard-to-reach areas, the use of PAC system is suggested, whereas the LED evaluated in this study is not recommended.

  17. Microtensile bond strength of composite resin to glass-infiltrated alumina composite conditioned with Er,Cr:YSGG laser.

    PubMed

    Eduardo, Carlos de Paula; Bello-Silva, Marina Stella; Moretto, Simone Gonçalves; Cesar, Paulo Francisco; de Freitas, Patricia Moreira

    2012-01-01

    Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 μm Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 μm SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 μm, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37°C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (α ≤0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.

  18. An In vitro Evaluation of the Effect of Four Dentin Bonding System on the Bond Strength between Quartz Fiber Post and Composite Core

    PubMed Central

    Shirinzad, M.; Ebadi, Sh.; Shokripour, M.; Darabi, MA.

    2014-01-01

    Statement of Problem: A strong bond of fiber post to resin core, as well as to dentin would critically ensure the durability of restorations in endodontically treated teeth. Purpose: The purpose of this study was to evaluate the effect of etch-and-rinse dentin bonding systems on the bond strength between resin core and fiber post after application of 24% hydrogen peroxide.  Materials and Method: 24 fiber posts (RTD; St. Egèven, France) were treated with 24% hydrogen peroxide for 10 minutes. They were randomly divided into 4 groups (n=6) based on the bonding agent used: Group P: Prime&Bond, Group O: One Step, Group S: Single Bond and Group E: Excite. Each group was prepared according to the manufacturer’s instructions. For all posts, a flowable composite core (ÆliteFlo; Bisco, USA) was built-up over the bonded area. Each specimen was sectioned to produce 2 sticks, 1mm in thickness and underwent microtensile bond strength (µTBS). Data were analyzed using one-way ANOVA at the 0.05 level. The fractured surfaces of all sticks were evaluated by stereomicroscope (× 20). Scanning electron microscopy(SEM) assessment of two sticks from each group was performed to evaluate the surface morphology. Results: The means and SDs of µTBS were: Group P: 10.95±1.74; Group S: 10.25±2.39; Group E: 9.52±2.07; and Group O: 9.12±1.34. There was no statistically significant difference in bond strength means between the groups tested (p> 0.05).   Conclusion: The results of this study indicated the bonding agents used had no significant influence on the bond strength of fiber post to composite core. PMID:24738086

  19. Damage tolerance assessment of bonded composite doubler repairs for commercial aircraft applications

    SciTech Connect

    Roach, D.

    1998-08-01

    The Federal Aviation Administration has sponsored a project at its Airworthiness Assurance NDI Validation Center (AANC) to validate the use of bonded composite doublers on commercial aircraft. A specific application was chosen in order to provide a proof-of-concept driving force behind this test and analysis project. However, the data stemming from this study serves as a comprehensive evaluation of bonded composite doublers for general use. The associated documentation package provides guidance regarding the design, analysis, installation, damage tolerance, and nondestructive inspection of these doublers. This report describes a series of fatigue and strength tests which were conducted to study the damage tolerance of Boron-Epoxy composite doublers. Tension-tension fatigue and ultimate strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. An array of design parameters, including various flaw scenarios, the effects of surface impact, and other off-design conditions, were studied. The structural tests were used to: (1) assess the potential for interply delaminations and disbonds between the aluminum and the laminate, and (2) determine the load transfer and crack mitigation capabilities of composite doublers in the presence of severe defects. A series of specimens were subjected to ultimate tension tests in order to determine strength values and failure modes. It was demonstrated that even in the presence of extensive damage in the original structure (cracks, material loss) and in spite of non-optimum installations (adhesive disbonds), the composite doubler allowed the structure to survive more than 144,000 cycles of fatigue loading. Installation flaws in the composite laminate did not propagate over 216,000 fatigue cycles. Furthermore, the added impediments of impact--severe enough to deform the parent aluminum skin--and hot-wet exposure did not effect the doubler`s performance. Since the tests were conducting

  20. Repair bond strength of dual-cured resin composite core buildup materials

    PubMed Central

    El-Deeb, Heba A.; Ghalab, Radwa M.; Elsayed Akah, Mai M.; Mobarak, Enas H.

    2015-01-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers’ instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm2) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64–86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage. PMID:26966567

  1. Repair bond strength of dual-cured resin composite core buildup materials.

    PubMed

    El-Deeb, Heba A; Ghalab, Radwa M; Elsayed Akah, Mai M; Mobarak, Enas H

    2016-03-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers' instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm(2)) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64-86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage.

  2. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  3. Shear Bond Strength of the Repair Composite Resin to Zirconia Ceramic by Different Surface Treatment

    PubMed Central

    Arami, Sakineh; Hasani Tabatabaei, Masoumeh; Namdar, Fatemeh; Safavi, Nassimeh; Chiniforush, Nasim

    2014-01-01

    Introduction: The purpose of this study is the evaluation of the amount of surface roughness (Ra) of Zirconia Ceramic following different surface treatments as well as the assessment of its shear bond strength to composite resin. Methods: 40 sintered zirconia ceramic block samples were randomly divided in 4 groups of 10 and underwent the following surface treatments: a) Control group without treatment b) Air abrasion with Al2O3 particles (50um) c) Er:YAG laser with 2W power for 10s d) Nd:YAG laser with 1.5W power for 2min Then the mean surface roughness (Ra) was evaluated by profilometer. In the next step, Alloy primer was used on a section of 9mm2 on the samples following the manufacturer’s instructions. After that Clearfil AP-X composite resin in cylinder shape with an internal diameter and height of 3mm were cured on the sections mentioned. At the end, all samples were tested to assess the shear bond strength by the Universal Testing Machine at a speed of 0.5mm/min until fracture occurred. The mean shear bond strengths were calculated and statistically analyzed by One Way ANOVA. Results: ANOVA analysis showed that roughness (Ra) was significantly different between the groups (P≤0.05). Ra was higher in the Nd:YAG group compared to the other groups (P≤0.05). The lower Ra was related to the control group. Air abrasion group showed highest amounts of shear bond strength and Nd:YAG laser group demonstrated lower amounts of shear bond strength (P≤0.05). Conclusion: Various surface treatments are differently effective on bond strength. Air abrasion is the most effective method to condition zirconia ceramic surfaces. PMID:25653817

  4. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications.

    PubMed

    Bellucci, Devis; Sola, Antonella; Cannillo, Valeria

    2016-04-01

    Calcium phosphates are among the most common biomaterials employed in orthopaedic and dental surgery. The efficacy of such systems as bone substitutes and bioactive coatings on metallic prostheses has been proved by several clinical studies. Among these materials, hydroxyapatite (HA) and tricalcium phosphate (TCP) play a prominent role in medical practice since the '80s. In the last years, numerous attempts to combine HA or TCP with bioactive glasses have been made. There are two main motivations for sintering calcium phosphates with a glassy phase: on the one hand, it is possible to tune the dissolution of the final system and to enhance its biological response through the synergistic combination of two bioactive phases; on the other hand, the glass acts as a sintering aid with the aim to increase the densification of the composite and thus its mechanical strength. In this sense, TCP and HA are penalized by their relatively poor fracture toughness and tensile strength compared to natural bone, which makes it impossible to use them in load-bearing applications. Moreover, the bioactivity index of pure calcium phosphates is typically lower with respect to that of many bioactive glasses. In this review, the state of the art and current applications of composites, based on HA or TCP with bioactive glass as second phase, are presented and discussed. A special emphasis is given to the processing and mechanical behaviour of these systems, together with their biological implications, as a function of the composition of the glass employed as second phase.

  5. Multitechnique monitoring of fatigue damage in adhesively bonded composite lap-joints

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Dib, Gerges; Haq, Mahmoodul; Udpa, Lalita

    2015-03-01

    The requirement for reduced structural weight has driven the development of adhesively bonded joints. However, a major issue preventing their full acceptance is the initiation of premature failure in the form of a disbond between adherends, mainly due to fatigue, manufacturing flaws or impact damage. This work presents the integrated approach for in-situ monitoring of degradation of the adhesive bond in the GFRP composite lap-joint using ultrasonic guided waves and dynamic measurements from strategically embedded FBG sensors. Guided waves are actuated with surface mounted piezoelectric elements and mode tuning is used to provide high sensitivity to the degradation of the adhesive layer parameters. Composite lap-joints are subjected to fatigue loading, and data from piezoceramic transducers are collected at regular intervals to evaluate the progression of damage. Results demonstrate that quasi-static loading affects guided wave measurements considerably, but FBG sensors can be used to monitor the applied load levels and residual strains in the adhesive bond. The proposed technique shows promise for determining the post-damage stiffness of adhesively bonded joints.

  6. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain.

    PubMed

    Guo, Litong; Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei; Li, Baoe; Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO2 nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO2 content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO2 content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity.

  7. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.

    PubMed

    Song, Jiang-Ning; Wang, Ming-Lei; Li, Wei-Jiang; Xu, Wen-Bo

    2004-05-21

    In this paper, a novel approach has been introduced to predict the disulfide-bonding state of cysteines in proteins by means of a linear discriminator based on their dipeptide composition. The prediction is performed with a newly enlarged dataset with 8114 cysteine-containing segments extracted from 1856 non-homologous proteins of well-resolved three-dimensional structures. The oxidation of cysteines exhibits obvious cooperativity: almost all cysteines in disulfide-bond-containing proteins are in the oxidized form. This cooperativity can be well described by protein's dipeptide composition, based on which the prediction accuracy of the oxidation form of cysteines scores as high as 89.1% and 85.2%, when measured on cysteine and protein basis using the rigorous jack-knife procedure, respectively. The result demonstrates the applicability of this new relatively simple method and provides superior prediction performance compared with existing methods for the prediction of the oxidation states of cysteines in proteins.

  8. Resistance of composite and amalgam core foundations retained with and without pins and bonding agents.

    PubMed

    Imbery, Terence A; Swigert, Ryan; Richman, Brian; Sawicki, Vincent; Pace, Lauren; Moon, Peter C

    2010-01-01

    To compare the resistance of different amalgam and composite core foundations retained by pins, bonding agents, or both, 100 molars were mounted in acrylic resin and their occlusal surfaces were reduced to expose dentin. Pins were inserted at the four line angles of the teeth and matrices were placed. Bonding agents were applied according to the manufacturers' instructions. Amalgam was handcondensed and composite was incrementally added and photocured. Restorations were adjusted to produce specimens (n = 10) 5 mm in height with a 1 mm bevel at the axial-occlusal surface. After immersion in deionized water for 24 hours, specimens were loaded at a 45 degree angle on their beveled surfaces in a Universal Testing Machine at a crosshead speed of 0.02 in./minute. ANOVA and Tukey's tests indicated that FluoroCore 2 (with or without pins) was statistically stronger than all other combinations (p < 0.05).

  9. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs.

    PubMed

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  10. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    PubMed Central

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  11. Emergency reattachment of fractured tooth. Using dentin bonding agent and flowable composite.

    PubMed

    Small, B W

    1996-10-01

    A case has been described that employed two restorative techniques used in novel ways. A dentin bonding system was used to reattach a fractured tooth fragment and a new flowable resin composite was placed to "fill in the cracks." This technique was recommended only as a temporary restoration and was used during an emergency visit. The restoration was accomplished in a timely fashion and can be recommended for use if excellent technique, including the use of the rubber dam, is followed.

  12. Effect of Porcelain Surface Pretreatments on Composite Resin-Porcelain Shear Bond Strength

    DTIC Science & Technology

    1991-05-01

    composite resin and dental porcelain has drawn much attention in recent years. This bond’is important in dentistry because without it, porcelain...of this research were to determine the effects that six dental porcelain surface pretreatments, two types of silane , and thermocycling had on...used in the principal study. The principal study compared six porcelain surface pretreatments, two silanes , and two specimen aging protocols. The six

  13. Relationship between non-destructive OCT evaluation of resins composites and bond strength in a cavity

    NASA Astrophysics Data System (ADS)

    Bakhsh, T. A.; Sadr, A.; Shimada, Y.; Khunkar, S.; Tagami, J.; Sumi, Y.

    2012-01-01

    Objectives: Formation of microgaps under the composite restorations due to polymerization stress and other causes compromise the adhesion to the dental substrate and restoration durability. However, the relationship between cavity adaptation and bond strength is not clear. In this paper, we introduce a new testing method to assess cavity adaptation by swept-source optical coherence tomography (SS-OCT) and microtensile bond strength (MTBS) in the same class-I cavity. Methods: Round class-I cavities 3 mm in diameter and 1.5 mm in depth were prepared on 10 human premolars. After application of Tokuyama Bond Force adhesive, the cavities were filled by one of the two techniques; incremental technique using Estelite Sigma Quick universal composite or flowable lining using Palfique Estelite LV with bulk filling using the universal composite. Ten serial B-scan images were obtained throughout each cavity by SS-OCT. Significant peaks in the signal intensity were detected at the bonded interface of the cavity floor and to compare the different filling techniques. The specimens were later cut into beams (0.7x0.7 mm) and tested to measure MTBS at the cavity floor. Results: Flowable lining followed by bulk filling was inferior in terms of cavity adaptation and MTBS compared to the incremental technique (p<0.05, t-test). The adaptation (gap free cavity floor) and MTBS followed similar trends in both groups. Conclusion: Quantitative assessment of dental restorations by OCT can provide additional information on the performance and effectiveness of dental composites and restoration techniques. This study was supported by Global Center of Excellence, Tokyo Medical and Dental University and King Abdulaziz University.

  14. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Everleigh, Carl A.; Moorhead, Arthur J.

    1998-01-01

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads.

  15. Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew E.

    2004-01-01

    A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the

  16. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Everleigh, C.A.; Moorhead, A.J.

    1998-04-21

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads. 9 figs.

  17. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite.

    PubMed

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A

    2017-02-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO4) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV-Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl>NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO4 material also observed to be decreased in the order K(+)>Na(+) and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO4 matrix, as the material can release up to 87% of its total loaded drug over a 90min period. Finally, the cell viability and proliferation studies tested

  18. Development of collagen-hydroxyapatite nanostructured composites via a calcium phosphate precursor mechanism

    NASA Astrophysics Data System (ADS)

    Jee, Sang Soo

    Bone is an interpenetrating inorganic/organic composite that consists of mineralized collagen fibrils, which is hierarchically organized into various structures. The structure of mineralized collagen fibril, in which nano-crystals of hydroxyapatite are embedded within the collagen fibrils, provides remarkable mechanical and bio-resorptive properties. Therefore, there have been many attempts to produce collagen-hydroxyapatite composites having a bone-like structure. However, duplication of even the most fundamental level of bone structure has not been easily achieved by conventional nucleation and growth techniques, which are based on the most widely accepted hypothesis of bone mineralization. In nature, the collagen fibril is mineralized via intrafibrillar mineralization, which produces preferentially oriented hydroxyapatite nano-crystals occupying the interstices in collagen fibrils. Our group has demonstrated that intrafibrillar mineralization can be achieved by using a new method based on the Polymer-Induced Liquid-Precursor (PILP) mineralization process. In the PILP process, a poly-anionic additive can produce an amorphous calcium phosphate precursor which enables us to achieve intrafibrillar mineralization of collagen. It is thought that the precursor is pulled into the interstices of the collagen fibrils via capillary forces, and upon solidification and crystallization of the precursor produces an interpenetrating composite with the nanostructured architecture of bone. In this dissertation, to demonstrate the effectiveness of the PILP process on the intrafibrillar mineralization of collagen fibril, various collagen scaffolds, such as turkey tendon, bovine tendon and synthetic collagen sponge, were mineralized by the PILP process. Various poly-aspartates with different molecular weight were also used for the optimization of the PILP process for the mineralization of the collagen scaffolds. With the systematic researches, we discovered that the molecular weight

  19. Non-destructive Evaluation of Bonds Between Fiberglass Composite and Metal

    NASA Technical Reports Server (NTRS)

    Zhao, Selina; Sonta, Kestutis; Perey, Daniel F.; Cramer, K. E.; Berger, Libby

    2015-01-01

    To assess the integrity and reliability of an adhesive joint in an automotive composite component, several non-destructive evaluation (NDE) methodologies are correlated to lap shear bond strengths. A glass-fabric-reinforced composite structure was bonded to a metallic structure with a two-part epoxy adhesive. Samples were subsequently cut and tested in shear, and flaws were found in some areas. This study aims to develop a reliable and portable NDE system for service-level adhesive inspection in the automotive industry. The results of the experimental investigation using several NDE methods are presented and discussed. Fiberglass-to-metal bonding is the ideal configuration for NDE via thermography using excitation with induction heating, due to the conductive metal and non-conductive glass-fiber-reinforced composites. Excitation can be either by a research-grade induction heater of highly defined frequency and intensity, or by a service-level heater, such as would be used for sealing windshields in a body shop. The thermographs thus produced can be captured via a high-resolution infrared camera, with principal component analysis and 2D spatial Laplacian processing. Alternatively, the thermographs can be captured by low resolution thermochromic microencapsulated liquid crystal film imaging, which needs no post-processing and can be very inexpensive. These samples were also examined with phased-array ultrasound. The NDE methods are compared to the lap shear values and to each other for approximate cost, accuracy, and time and level of expertise needed.

  20. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite

    PubMed Central

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-01-01

    Statement of the Problem The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. Purpose The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Materials and Method Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (p< 0.05). Results There were significant differences between groups 1 and 4 (RMGI groups, p= 0.025), and groups 3 and 6 (RMGI+ nano-HA groups, p= 0.012). However, among Z350 and P90 specimens, no statistically significant difference was detected in the SBS values (p= 0.19, p= 0.083, respectively). Conclusion RMGI containing HA can improve the bond strength to methacrylate-based in comparison to silorane-based composite resins. Meanwhile, RMGI

  1. Development of bonded composite doublers for the repair of oil recovery equipment.

    SciTech Connect

    Roach, David W.; Rackow, Kirk A.

    2005-06-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures

  2. Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates

    NASA Astrophysics Data System (ADS)

    Farnoush, Hamidreza; Muhaffel, Faiz; Cimenoglu, Huseyin

    2015-01-01

    In the present study, micro-arc oxidation (MAO) was carried out on commercially pure titanium (CP-Ti) to fabricate porous titanium oxide coatings containing calcium phosphates (CaP) at different applied voltages of 300, 330 and 360 V for 5 min. Subsequently, nano-hydroxyapatite (HA) and HA-45S5 bioglass (BG) composite were effectively coated on micro-arc oxidized substrate by electrophoretic deposition (EPD) at a constant voltage of 30 V for 120 s. The phase, structural agents, microstructure and composition of MAO interlayer and subsequent EPD coatings were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Thermal stability of the as-deposited coatings was analyzed by simultaneous differential scanning calorimetry and thermal gravimetery. The pull-off adhesion tests showed the highest bonding strength was obtained for HA-BG coating on micro-oxidized sample at 360 V. The results of potentiodynamic polarization and impedance spectroscopic measurements in simulated body fluid solution depicted that the combination of MAO treatment at 360 V and EPD of HA-BG composite could effectively increase the corrosion resistance of CP-Ti substrates.

  3. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    PubMed

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.

  4. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    PubMed

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO2 by sol-gel method to prepare Ins/ZrP@TiO2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO2-coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  5. Influence of casein phosphopeptide-amorphous calcium phosphate application, smear layer removal, and storage time on resin-dentin bonding*

    PubMed Central

    Lin, Jun; Zheng, Wei-ying; Liu, Peng-ruo-feng; Zhang, Ning; Lin, Hui-ping; Fan, Yi-jing; Gu, Xin-hua; Vollrath, Oliver; Mehl, Christian

    2014-01-01

    The aim of this study is to evaluate the influence of Tooth Mousse (TM) application, smear layer removal, and storage time on resin-dentin microtensile bond strength (μTBS). Dentin specimens were divided into two groups: (1) smear layer covered; (2) smear layer removed using 15% EDTA for 90 s. In each group, half the specimens were treated once with TM for 60 min. After bonding procedures using a two-step self-etching adhesive (Clearfil SE Bond (CSE); Kuraray Medical, Tokyo, Japan), an all-in-one adhesive (G-Bond (GB); GC Corp, Tokyo, Japan), and a total-etch adhesive (Adper Single Bond 2 (SB); 3M ESPE, St. Paul, MN, USA), the specimens were stored for 3 d or 6 months in deionized water at 37 °C, and μTBS was tested and analyzed. With the exception of SB (no TM application) and GB, the μTBS was significantly increased for CSE and SB using EDTA pre-conditioning and 3 d of storage (P≤0.001). Bond strength of GB decreased significantly when using EDTA (3 d storage, P<0.05). TM application only increased the μTBS of GB (no EDTA) and SB (with EDTA) after 3 d (P≤0.02). Comparing the adhesives after 3 d of storage, CSE exhibited the greatest μTBS values followed by GB and SB (P≤0.02). The factors of adhesive, EDTA, and TM did not show any significant impact on μTBS when specimens were stored for 6 months (P>0.05). The additional application of TM and EDTA for cavity preparation seems only to have a short-term effect, and no influence on μTBS of dentin bonds after a period of 6 months. PMID:25001224

  6. Development and validation of bonded composite doubler repairs for commercial aircraft.

    SciTech Connect

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing repair using a

  7. Characterization of polysulfone-epoxy/amine interphase for bonding themoplastic composites

    SciTech Connect

    Immordino, K.M.; McKnight, S.H.; Gillespie, J.W. Jr.

    1996-12-31

    Thermoplastic matrix composites offer several advantages over thermoset matrix composites such as higher interlaminar toughness and infinite shelf life and rapid manufacturing. However, traditional welding techniques for joining thermoplastics require intimate contact between the components, localized heating at the interface and moderate consolidation pressure. Assembly tolerances represent a challenge in scaling welding techniques to large structures where any gaps in the bondline may result in overheating and poor joint quality and performance. Thermoset adhesives offer a low pressure solution to fill gaps. However joining thermoplastic composite components with structural thermoset adhesives often requires elaborate surface treatment of the thermoplastic composite adherents. These surface treatments have several limitations in production environments including finite shelf life, cost, and possible restrictions on part size and shape. These limitations may potentially hinder the widespread use of these materials in structural applications. Other methods for enhancing the bond performance are available. Previous work at the authors` institution has shown that adhesion between thermoplastic composites and epoxy-based adhesives is improved in instances where polymer interdiffusion across the interface is suspected. The improved joint performance has been attributed to interfacial diffusion of the adhesive pre-polymers into the thermoplastic material during processing. Upon final cure, bonding is believed to be enhanced through entanglements between the thermoplastic polymer chains and the network structure of the adhesive. Optimization of this bonding process requires an understanding of the rate of diffusion of the adhesive prepolymers into the thermoplastic and the structure and properties of the interfacial region. This paper focuses on the diffusion study.

  8. Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties.

    PubMed

    Kakinuma, H; Ishii, K; Ishihama, H; Honda, M; Toyama, Y; Matsumoto, M; Aizawa, M

    2015-01-01

    We developed a novel antibacterial implant by forming a hydroxyapatite (HAp) film on polyetheretherketone (PEEK) substrate, and then immobilizing silver ions (Ag(+) ) on the HAp film based on the chelate-bonding ability of inositol phosphate (IP6). First, the PEEK surface was modified by immersion into concentrated sulfuric acid for 10 min. HAp film was formed on the acid-treated PEEK via the soft-solution process using simulated body fluid (SBF), urea, and urease. After HAp coating, specimens were immersed into IP6 solution, and followed by immersion into silver nitrite solution at concentrations of 0, 0.5, 1, 5 or 10 mM. Ag(+) ions were immobilized on the resulting HAp film due to the chelate-bonding ability of IP6. On cell-culture tests under indirect conditions by Transwell, MC3T3-E1 cells on the specimens derived from the 0.5 and 1 mM Ag(+) solutions showed high relative growth when compared with controls. Furthermore, on evaluation of antibacterial activity in halo test, elution of Ag(+) ions from Ag(+) -immobilized HAp film inhibited bacterial growth. Therefore, the above-mentioned results demonstrated that specimens had both biocompatibility and strong antibacterial activity. The present coating therefore provides bone bonding ability to the implant surface and prevents the formation of biofilms in the early postoperative period.

  9. Chemical composition, electrochemical, and morphological properties of iron phosphate conversion coatings

    SciTech Connect

    Warburton, Y.J.; Gibbon, D.L.; Jackson, K.M.; Gate, L.F.; Rodnyansky, A.; Warburton, P.R.

    1999-09-01

    Iron phosphate conversion coatings are used widely in the pretreatment industry to enhance paint adherence to metal substrates and therefore improve corrosion resistance. However, very limited nonproprietary literature describing the properties of iron phosphate coating is available, as compared to volumes dedicated to zinc phosphate coating. The present study described chemical, electrochemical, and morphological characterizations of iron phosphate coating using x-ray photoelectron spectroscopy (XPS), potentiodynamic scans, and scanning electron microscopy (SEM). For the samples under investigation, the mode of operation of iron phosphate coating was to promote paint adhesion, and the coating itself did not impart significant corrosion protection to the metal substrate. It also was shown that the Fe/P ratio in the phosphate coating ranged from 1:2 to 1:1. When tested in pH 7 buffered phosphate solution, the phosphate coating displayed a passivation region, which also possessed the highest impedance value. The phosphate coating was found to comprise two layers: a dense, adherent layer and a loose, granular top layer. For samples with coating weights of 20 mg/ft{sup 2} to 30 mg/ft{sup 2} (0.22 g/m{sup 2} to 0.32 g/m{sup 2}), the corresponding coating thickness was {approximately} 0.1 {micro}m to 0.3 {micro}m.

  10. Effect of aluminum phosphate additions on composition of three-component plasma-sprayed solid lubricant

    NASA Technical Reports Server (NTRS)

    Jacobson, T. P.; Young, S. G.

    1982-01-01

    Image analysis (IA) and electron microprobe X-ray analysis (EMXA) were used to characterize a plasma-sprayed, self-lubricating coating, NASA LUBE PS106, specified by weight percent as 35NiCr-35Ag-30CaF2. To minimize segregation of the powder mixture during the plasma-spraying procedure, monoaluminum phosphate was added to form agglomerate particles. Three concentrations of AlPO4 were added to the mixtures: 1.25, 2.5, and 6.25 percent by weight. Analysis showed that 1.25 wt% AlPO4 yielded a CaF2 deficiency, 2.5 wt% kept the coating closest to specification, and 6.25 wt% yielded excess CaF2 as well as more impurities and voids and a deficiency in silver. Photomicrographs and X-ray maps are presented. The methods of IA and EMXA complement each other, and the reasonable agreement in the results increases the confidence in determining the coating composition.

  11. Asymmetric composite membranes from chitosan and tricalcium phosphate useful for guided bone regeneration.

    PubMed

    Tai, Hung-Yin; Chou, Shiu-Huey; Cheng, Liao-Ping; Yu, Hung-Te; Don, Trong-Ming

    2012-01-01

    To fulfill the properties of barrier membranes useful for guided bone tissue regeneration in the treatment of periodontitis, in this study a simple process combining lyophilization with preheating treatment to produce asymmetric barrier membranes from biodegradable chitosan (CS) and functional β-tricalcium phosphate (TCP) was proposed. By preheating TCP/CS (3:10, w/w) in an acetic acid solution at 40°C, a skin layer that could greatly increase the mechanical properties of the membrane was formed. The asymmetric membrane with a skin layer had a modulus value almost 4-times that of the symmetric porous membrane produced only by lyophilization. This is beneficial for maintaining a secluded space for the bone regeneration, as well as to prevent the invasion of other tissues. The subsequent lyophilization at -20°C then gave the rest of material an interconnected pore structure with high porosity (83.9-90.6%) and suitable pore size (50-150 μm) which could promote the permeability and adhesiveness to bone cells, as demonstrated by the in vitro cell-culture of hFOB1.19 osteoblasts. Furthermore, the TCP particles added to CS could further increase the rigidity and the cell attachment and proliferation of hFOB1.19. The TCP/CS asymmetric composite membrane thus has the potential to be used as the barrier membrane for guided bone regeneration.

  12. Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems.

    PubMed

    Matos, Ana C; Marques, Catarina F; Pinto, Rosana V; Ribeiro, Isabel A C; Gonçalves, Lídia M; Vaz, Mário A; Ferreira, J M F; Almeida, António J; Bettencourt, Ana F

    2015-07-25

    Antibiotic-loaded acrylic bone cements (ALABCs) are well-established and cost-effective materials to control the occurrence of bone and joint infections. However, the inexistence of alternative antibiotics other than those already commercially available and the poor ability to bind to bone tissue hampering its biological function are still major drawbacks of ALABCs clinical application. The concept of this research work is to develop a novel bone cement (BC) drug delivery system composed by Mg- and Sr-doped calcium phosphate (CaP) particles as drug carriers loaded into a lactose-modified acrylic BC, which, to the best of our knowledge, has never been reported. CaP particles are known to promote bone ingrowth and current research is focused on using these carriers as antibiotic delivery systems for the treatment of bone infections, like osteomyelitis. Levofloxacin is a fluoroquinolone with anti-staphylococcal activity and adequate penetration into osteoarticular tissues and increasingly being recommended to manage bone-related infections. Also, the lactose-modified BC matrix, with a more porous structure, has already proved to enhance antibiotic release from the BC inner matrix. This novel BC composite biomaterial has shown improved mechanical integrity, biocompatibility maintenance, and sustained release of levofloxacin, with concentrations over the minimum inhibitory concentration values after a 48h while maintaining antibacterial activity over an 8-week period against Staphyloccocus aureus and Staphyloccocus epidermidis, common pathogens associated with bone infections.

  13. Structure and dynamics of phosphate glasses: From ultra- to orthophosphate composition

    SciTech Connect

    Loong, C.K.; Price, D.L.; Sales, B.C.; Boatner, L.A.

    1997-07-14

    The short- and intermediate-range order as well as atomic dynamics in various phosphate glasses were investigated using neutron diffraction and inelastic scattering. The 3-D network of corner-sharing PO{sub 4} tetrahedra in g-P{sub 2}O{sub 5} is highly unstable and hygroscopic. Depolymerization of the network to chain-like structure and eventually to unconnected PO{sub 4} units by incorporating alkali, alkali-earth or transition-metal modifiers is clearly evident in the structure factor S(Q) in the Q < 4 {angstrom}{sup -1} region. The dynamic response to such structural changes is equally strong: e.g., the broad P-O stretching band extending to 170 meV in g-P{sub 2}O{sub 5} is sharpened and shifted down to {approximately}125 meV in the orthophosphate composition. The correlation between the microscopic structure and physical properties for a series of P-glasses is discussed.

  14. Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications.

    PubMed

    Mirghni, Abdulmajid Abdallah; Madito, Moshawe Jack; Masikhwa, Tshifhiwa Moureen; Oyedotun, Kabir O; Bello, Abdulhakeem; Manyala, Ncholu

    2017-05-15

    Manganese phosphate (Mn3(PO4)2 hexagonal micro-rods and (Mn3(PO4)2 with different graphene foam (GF) mass loading up to 150mg were prepared by facile hydrothermal method. The characterization of the as-prepared samples proved the successful synthesis of Mn3(PO4)2 hexagonal micro-rods and Mn3(PO4)2/GF composites. It was observed that the specific capacitance of Mn3(PO4)2/GF composites with different GF mass loading increases with mass loading up to 100mg, and then decreases with increasing mass loading up to 150mg. The specific capacitance of Mn3(PO4)2/100mg GF electrode was calculated to be 270Fg(-1) as compared to 41Fg(-1) of the pristine sample at a current density of 0.5Ag(-1) in a three-electrode cell configuration using 6M KOH. Furthermore, the electrochemical performance of the Mn3(PO4)2/100mg GF electrode was evaluated in a two-electrode asymmetric cell device where Mn3(PO4)2/100mg GF electrode was used as a positive electrode and activated carbon (AC) from coconut shell as a negative electrode. AC//Mn3(PO4)2/100mg GF asymmetric cell device was tested within the potential window of 0.0-1.4V, and showed excellent cycling stability with 96% capacitance retention over 10,000 galvanostatic charge-discharge cycles at a current density of 2Ag(-1).

  15. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1981-01-01

    The isotopic compositions of uranium and lead in Ca-Al-rich inclusions from the Allende chondrite and in whitlockite from the St. Severin chondrite and the Angra dos Reis achondrite are reported. Isoptopic analysis of acid soluble fractions of the Allende inclusions and the meteoritic whitlockite, which show isotopic anomalies in other elements, reveals U-235/U-238 ratios from 1/137.6 to 1/138.3, within 20 per mil of normal terrestrial U abundances. The Pb isotopic compositions of five coarse-grained Allende inclusions give a mean Pb-207/Pb-206 model age of 4.559 + or - 0.015 AE, in agreement with the U results. Pb isotope ratios of two fine-grained inclusions and a coarse-grained inclusion with strong mass fractionation and some nonlinear isotopic anomalies indicate that the U-Pb systems of these inclusions have evolved differently from the rest of Allende. Th/U abundance ratios in the Allende inclusions and meteoritic phosphate are found to range from 3.8 to 96, presumably indicating an optimal case for Cm/U fractionation, although the normal U concentrations do not support claims of abundant live Cm-247 or Cm-247/U-238 fractionation at the time of meteorite formation, in contrast to previous results. A limiting Cm-247/U-235 ratio of 0.004 at the time of meteorite formation is calculated which implies that the last major r process contribution at the protosolar nebula was approximately 100 million years prior to Al-26 formation and injection.

  16. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Phillips, Ronald E.

    1990-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  17. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Rhatt, R. T.; Phillips, R. E.

    1988-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  18. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.

  19. Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement.

    PubMed

    Soares, Carlos José; Giannini, Marcelo; Oliveira, Marcelo Tavares de; Paulillo, Luis Alexandre Maffei Sartini; Martins, Luis Roberto Marcondes

    2004-03-01

    The purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1- control, 600-grit SiC paper (C); 2- silane priming (SI); 3- sandblasting with 50 mm Al2O3 for 10s (SA); 4- etching with 10% hydrofluoric acid for 60 s (HF); 5- HF + SI; 6 - SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.

  20. Effect of three different antioxidants on the shear bond strength of composite resin to bleached enamel: An in vitro study

    PubMed Central

    Subramonian, Rajalekshmy; Mathai, Vijay; Christaine Angelo, Jeya Balaji Mano; Ravi, Jotish

    2015-01-01

    Objective: The effect of 10% sodium ascorbate, 10% grape seed extract, and 10% pine bark extract on the shear bond strength of composite resin to bleached enamel was evaluated. Materials and Methods: Ninety recently extracted human premolars were divided into six groups of 15 teeth each. Except Group I (negative control), the labial enamel surface of all specimens in the other groups were bleached with 37.5% hydrogen peroxide. After bleaching, Group II specimens were stored in artificial saliva for 3weeks before composite bonding. Immediately following bleaching; Groups III, IV, and V specimens were treated with antioxidants 10% sodium ascorbate, 10% grape seed extract, and 10% pine bark extract, respectively, for 10 min and bonded with composite resin. In Group VI (positive control), the composite bonding was done immediately after bleaching. All specimens were stored in deionized water for 24 h at 37΀C before shear bond strength testing. The data obtained were tabulated and statistically analyzed using analysis of variance (ANOVA) and Duncan's multiple range test. Results: The unbleached teeth showed the highest shear bond strength followed by the bleached teeth treated with the antioxidant 10% pine bark extract. Conclusion: Within the limitations of this study, it was observed that the use of antioxidants effectively reversed the compromised bond strength of bleached enamel. Among the antioxidants, 10% pine bark extract application after bleaching showed better bond strength. PMID:25829695

  1. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials.

    PubMed

    Kuśnierczyk, Katarzyna; Basista, Michał

    2016-07-01

    Magnesium alloys are modern biocompatible materials suitable for orthopaedic implants due to their biodegradability in biological environment. Many studies indicate that there is a high demand to design magnesium alloys with controllable in vivo corrosion rates and required mechanical properties. A solution to this challenge can be sought in the development of metal matrix composites based on magnesium alloys with addition of relevant alloying elements and bioceramic particles. In this study, the corrosion mechanisms along with corrosion protection methods in magnesium alloys are discussed. The recently developed magnesium alloys for biomedical applications are reviewed. Special attention is given to the newest research results in metal matrix composites composed of magnesium alloy matrix and calcium phosphates, especially hydroxyapatite or tricalcium phosphate, as the second phase with emphasis on the biodegradation behavior, microstructure and mechanical properties in view of potential application of these materials in bone implants.

  2. Effects of gatifloxaine content in gatifloxacine-loaded PLGA and β-tricalcium phosphate composites on efficacy in treating osteomyelitis.

    PubMed

    Kimishima, Kaori; Matsuno, Tomonori; Makiishi, Jun; Tamazawa, Gaku; Sogo, Yu; Ito, Atsuo; Satoh, Tazuko

    2016-01-01

    Composites of gatifloxacin (GFLX)-loaded poly (lactic-co-glycolic) acid (PLGA) and β-tricalcium phosphate (βTCP) containing 0, 1, and 10 wt % GFLX (0, 1, and 10 wt % GFLX composites), and GFLX-loaded PLGA containing 1, 5, and 10 wt % GFLX (1, 5, and 10wt % GFLX-PLGA) as controls were fabricated and characterized in vitro and in vivo. On in vitro evaluation, the 10 wt % GFLX composite released GFLX over at least 28 days in Hanks' balanced solution and exhibited clinically sufficient bactericidal activities against Streptococcus milleri and Bacteroides fragilis from 1 h to 10 days. The 0, 1, and 10 wt % GFLX composites and 10 wt % GFLX-PLGA were implanted in bone defects created by debridement of osteomyelitis lesions induced by S. milleri and B. fragilis in the mandible of rabbits (n = 5). Four weeks after implantation of the 10 wt % GFLX composite, inflammation in the debrided area disappeared in all the rabbits, while inflammation remained in all the rabbits after implantation of the 0 wt % GFLX composite and 10 wt % GFLX-PLGA, and in three rabbits after implantation of the 1 wt % GFLX composite. Bone formation appears to be less intense for the 10 wt % GFLX composite than for the 1 wt % GFLX composite probably owing to the rapid degradation of the 10 wt % GFLX composite. These findings show that the GFLX composite is effective for the local treatment of osteomyelitis.

  3. Failure analysis of adhesively bonded composite joint: an elasto-plastic approach

    NASA Astrophysics Data System (ADS)

    Pradhan, S. C.; Kishore, N. N.; Iyengar, N. G. R.

    1993-09-01

    Joints are important load transferring members in large assembled structures. In joining similar and dissimilar materials, the use of adhesives offers many advantages when compared to other conventional methods. Most commonly used adhesives are the polymers, which exhibit nonlinear behavior. Finite element analysis with paired nodes along the crack path is employed to predict the crack initiation and growth leading to failure. The bond strength is predicted by investigating the possibility of propagation of a crack at the interface of adherend and adhesive. Paired nodes are opened in a sequence, modelling the crack growth. The adhesive is treated to be elasto-plastic for its response. Effect of the parameters such as, stacking sequences in composite adherend, crack growth locations, bond length, bond thicknesses and adhesive stiffnesses on the failure load is studied. The growth of plastic zone as the crack propagates is also examined. On the basis of this study optimal geometrical and material parameters are suggested. The elasto-plastic analysis predicts higher failure loads as compared to linear elastic analysis. The computed bond strength assuming elastic behavior for the adhesive shows satisfactory comparison with experimental results.

  4. Shock adhesion test for composite bonded assembly using a high pulsed power generator

    NASA Astrophysics Data System (ADS)

    Gay, E.; Berthe, L.; Buzaud, E.; Boustie, M.; Arrigoni, M.

    2013-07-01

    In a context of the rising use of composite assemblies in aeronautic or defense fields, the assessment of their strength is a key issue. The method developed in this study attempts to provide solutions. A shock adhesion test based on short compressive loads, obtained by a high pulsed power generator, is proposed as a proof test to ensure the quality of composite bonded assemblies. A calibrated load induces a local tensile stress able to damage the bond interface. The high pulsed power source is the GEnerateur de Pression Isentropique device (Isentropic Pressure Generator), used to generate the required stresses, with a 450 ns pulse duration to test assemblies above the mm thickness range. The understanding of the mechanisms of wave propagation and tensile stress generation within these multilayer assemblies are scientific challenges. The ability of the technique to induce a tensile stress able to disbond the laminates and the assemblies is demonstrated. This paper details the response of carbon epoxy laminates and their bonded assemblies to a shock loading near the damage threshold.

  5. Effectiveness of bonding fiber posts to root canals and composite core build-ups.

    PubMed

    Rathke, Andreas; Haj-Omer, Dima; Muche, Rainer; Haller, Bernd

    2009-10-01

    This study investigated the effects of fiber posts, silanization, and luting agents on the interfacial strength to root dentin and composite cores. Root canals of 120 crownless human teeth were instrumented. Three different posts (opaque and translucent), with and without silane treatment, were bonded using etch-and-rinse, self-etch, and self-adhesive luting agents. The restored roots were built up with dual-curing composite. After storage in water for 24 h at 37 degrees C, 2-mm-thick slices were cut from each sample: one from the composite core and one from the restored root. Interfacial push-out bond strengths of the posts were determined in a universal testing machine. Failure modes were analyzed using scanning electron microscopy. The post type and the luting agent had significant effects on both the post-to-dentin and post-to-core strengths. Silanization did not significantly influence post-to-dentin strengths, but enhanced post-to-core strengths. With etch-and-rinse luting agents, debonding occurred predominantly between the post and the cement, while the self-etch and self-adhesive luting agents showed more failures on root dentin. No failures occurred between the composite core and the cement. The combination of translucent posts and etch-and-rinse dual-curing luting agents can positively influence the retention of fiber posts in root canals. Silanization seems to be less relevant for intra-root canal bonding, but may have beneficial effects on post-to-core strengths.

  6. Stability and disperse composition of water-in-oil microemulsions in a tributyl phosphate-nitric acid system

    SciTech Connect

    Vinogradov, I.V.; Zakharkin, V.S.; Shepel'kov, S.V.

    1988-05-01

    An investigation has been made of the influence of the concentrations of tributyl phosphate (TBP) and nitric acid on the surface and bulk distribution, the stability, and the disperse composition of water-in-oil microemulsions. A correlation has been established between the interphase tension and the time for complete stratification of the microemulsions. The process of forming stable microemulsions is interpreted on the basis of views on the surfactant properties of TBP hydratosolvates.

  7. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, D.L.; Tien, A.J.

    1995-09-26

    A method and process are disclosed for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate). 6 figs.

  8. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, Daphne L.; Tien, Albert J.

    1995-01-01

    A method and process for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate).

  9. Validation of bonded composite doubler technology through application oriented structural testing

    NASA Technical Reports Server (NTRS)

    Roach, Dennis; Graf, Darin

    1996-01-01

    One of the major thrusts established under the FAA's National Aging Aircraft Research Program is to foster new technologies associated with civil aircraft maintenance. Recent DOD and other government developments in the use of bonded composite patches on metal structures has supported the need for research and validation of such doubler applications on U.S. certificated airplanes. Composite patching is a rapidly maturing technology which shows promise of cost savings on aging aircraft. Sandia Labs is conducting a proof-of-concept project with Delta Air Lines, Lockheed Martin, Textron, and the FAA which seeks to remove any remaining obstacles to the approved use of composite doublers. By focusing on a specific commercial aircraft application - reinforcement of the L-1011 door frame - and encompassing all 'cradle-to-grave' tasks such as design, analysis, installation, and inspection, this program is designed to prove the capabilities of composite doublers. This paper reports on a series of structural tests which have been conducted on coupons and subsize test articles. Tension-tension fatigue and residual strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. Also, structures which modeled key aspects of the door corner installation were subjected to extreme tension, shear, and bending loads. In this manner it was possible to study strain fields in and around the Lockheed-designed composite doubler using realistic aircraft load scenarios and to assess the potential for interply delaminations and disbonds between the aluminum and the laminate. The data acquired was also used to validate finite element models (FEM) and associated Damage Tolerance Analyses.

  10. Validation of bonded composite doubler technology through application oriented structural testing

    SciTech Connect

    Roach, D.; Graf, D.

    1996-08-01

    One of the major thrusts established under the FAA`s National Aging Aircraft Research Program is to foster new technologies associated with civil aircraft maintenance. Recent DOD and other government developments in the use of bonded composite patches on metal structures has supported the need for research and validation of such doubler applications on U.S. certificated airplanes. Composite patching is a rapidly maturing technology which shows promise of cost savings on aging aircraft. Sandia Labs is conducting a proof-of-concept project with Delta Air Lines, Lockheed Martin, Textron, and the FAA which seeks to remove any remaining obstacles to the approved use of composite doublers. By focusing on a specific commercial aircraft application - reinforcement of the L-1011 door frame - and encompassing all {open_quotes}cradle-to-grave{close_quotes} tasks such as design, analysis, installation, and inspection, this program is designed to prove the capabilities of composite doublers. This paper reports on a series of structural tests which have been conducted on coupons and subsize test articles. Tension-tension fatigue and residual strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. Also, structures which modeled key aspects of the door corner installation were subjected to extreme tension, shear, and bending loads. In this manner it was possible to study strain fields in and around the Lockheed-designed composite doubler using realistic aircraft load scenarios and to assess the potential for interply delaminations and disbonds between the aluminum and the laminate. The data acquired was also used to validate finite element models (FEM) and associated Damage Tolerance Analyses.

  11. Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1988-01-01

    An experimental investigation of adhesively bonded composite joint was conducted to characterize the debond growth mechanism under mode II static and fatigue loadings. For this purpose, end-notched flexure specimens of graphite/epoxy (T300/5208) adherends bonded with EC 3445 adhesive were tested. In all specimen tested, the fatigue failure occurred in the form of cyclic debonding. The present study confirmed the result of previous studies that total strain-energy-release rate is the driving parameter for cyclic debonding. Further, the debond growth resistance under cyclic loading with full shear reversal (i.e., stress ratio, R = -1) is drastically reduced in comparison to the case when subjected to cyclic shear loading with no shear reversal (i.e., R = 0.1).

  12. Evaluation of the interfacial bond properties between carbon phenolic and glass phenolic composites

    NASA Technical Reports Server (NTRS)

    Jordan, K.; Clinton, R.; Jeelani, S.

    1991-01-01

    The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials have been studied. Test results indicate that moisture substantially degrades the integrity of the interfacial bond between C/P and G/P materials. The apparent effect of the autoclave curing of the C/P material reduces the ultimate interlaminar shear length of the C/P material by 20 percent compared to the hydroclave curing of the C/P material. The variation in applied surface finishes is found to have no appreciable effect on the ultimate interlaminar shear strength of the interface in the wet laminate.

  13. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    NASA Technical Reports Server (NTRS)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  14. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells.

    PubMed

    Tahmasebi Birgani, Zeinab; van Blitterswijk, Clemens A; Habibovic, Pamela

    2016-03-01

    Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, a monolithic composite comprising nano-sized CaP and poly(lactic acid) (PLA) and a CaP-coated PLA were comparatively investigated for their ability to support proliferation and osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells (hMSCs). Both, the PLA/CaP composite, produced using physical mixing and extrusion and CaP-coated PLA, resulting from a biomimetic coating process at near-physiological conditions, supported proliferation of hMSCs with highest rates at PLA/CaP composite. Enzymatic alkaline phosphatase activity as well as the mRNA expression of bone morphogenetic protein-2, osteopontin and osteocalcin were higher on the composite and coated polymer as compared to the PLA control, while no significant differences were observed between the two methods of combining CaP and PLA. The results of this study confirmed the importance of CaP in osteogenic differentiation while the exact properties and the method of incorporation into the hybrid material played a less prominent role.

  15. Comparison of Shear Bond Strength and Estimation of Adhesive Remnant Index between Light-cure Composite and Dual-cure Composite: An in vitro Study

    PubMed Central

    Trehan, Mridula; Sharma, Sunil

    2013-01-01

    ABSTRACT Aims and objectives: To measure and compare the shear bond strength and adhesive remnant index of light-cure composite. (Enlight, Ormco.) and dual-cure composite (Phase II dual cure, Reliance Ortho). Materials and methods: Sixty extracted human premolar teeth were divided into two groups: group I (blue): conventional light cure composite resin. (Enlight, Ormco.) and group II (green): dual cure composite resin. (Phase II dual cure, Reliance Ortho.) with 30 teeth in each group. These samples were tested on the universal testing machine to measure the shear bond strength. Results: Student t-test showed that the mean shear bond strength of the conventional light cure group (8.54 MPa - 10.42 MPa) was significantly lower than dual cure group (10.45 MPa -12.17 MPa). Conclusion: These findings indicate that the shear bond strength of dual-cure composite resin (Phase II dual cure, Reliance Ortho) is comparatively higher than conventional light-cure composite resin (Enlight, Ormco). In the majority of the samples, adhesive remnant index (ARI) scores were 4 and 5 in both the groups whereas score 1 is attained by the least number of samples in both the groups. How to cite this article: Verma G, Trehan M, Sharma S. Comparison of Shear Bond Strength and Estimation of Adhesive Remnant Index between Light-cure Composite and Dual-cure Composite: An in vitro Study. Int J Clin Pediatr Dent 2013;6(3):166-170. PMID:25206216

  16. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2002-01-01

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  17. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2006-04-18

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  18. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility.

    PubMed

    Liu, Wenjuan; Zhai, Dong; Huan, Zhiguang; Wu, Chengtie; Chang, Jiang

    2015-07-01

    Although inorganic bone cements such as calcium phosphate cements have been widely applied in orthopaedic and dental fields because of their self-setting ability, development of high-strength bone cement with bioactivity and biodegradability remains a major challenge. Therefore, the purpose of this study is to prepare a tricalcium silicate/magnesium phosphate (C3S/MPC) composite bone cement, which is intended to combine the excellent bioactivity of C3S with remarkable self-setting properties and mechanical strength of MPC. The self-setting and mechanical properties, in vitro induction of apatite formation and degradation behaviour, and cytocompatibility of the composite cements were investigated. Our results showed that the C3S/MPC composite cement with an optimal composition had compressive strength up to 87 MPa, which was significantly higher than C3S (25 MPa) and MPC (64 MPa). The setting time could be adjusted between 3 min and 29 min with the variation of compositions. The hydraulic reaction products of the C3S/MPC composite cement were composed of calcium silicate hydrate (CSH) derived from the hydration of C3S and gel-like amorphous substance. The C3S/MPC composite cements could induce apatite mineralization on its surface in SBF solution and degraded gradually in Tris-HCl solution. Besides, the composite cements showed good cytocompatibility and stimulatory effect on the proliferation of MC3T3-E1 osteoblast cells. Our results indicated that the C3S/MPC composite bone cement might be a new promising high-strength inorganic bioactive material which may hold the potential for bone repair in load-bearing site.

  19. Post silanization improves bond strength of translucent posts to flowable composite resins.

    PubMed

    Albaladejo, Alberto; Osorio, Raquel; Papacchini, Federica; Goracci, Cecilia; Toledano, Manuel; Ferrari, Marco

    2007-08-01

    The aim of the study is to evaluate the effect of post silanization on the microtensile bond strength (MTBS) of translucent fiber posts to seven flowable composite resins used as core material. Seventy fiber posts were employed. In half of the posts, silanization was performed with Monobond-S. A cylindrical plastic matrix was placed around the post and filled with different resins: UniFil Flow Experimental, UniFil Low Flow Plus Experimental, Venus Flow, Revolution Formula 2, Point 4 Flowable, X-Flow, and Wave mv. Five posts were bonded per group. After polymerization, two longitudinal cuts were made on two opposite sides of the post at its outermost periphery. Then, each specimen was serially sectioned, obtaining 30-35 beams with 1-mm(2) cross-sectional area. Each beam was tested in tension in an Instron machine at 0.5 mm/min. ANOVA and Student Newman Keuls tests were performed. The different resin composite materials and the post silanization procedure had a significant effect on MTBS. The application of a silane coupling agent increased MTBS of flowable composite resins to translucent posts. X-flow and Point 4 attained the highest MTBS regardless of the silane treatment.

  20. The effect of various primers on shear bond strength of zirconia ceramic and resin composite

    PubMed Central

    Sanohkan, Sasiwimol; Kukiattrakoon, Boonlert; Larpboonphol, Narongrit; Sae-Yib, Taewalit; Jampa, Thibet; Manoppan, Satawat

    2013-01-01

    Aims: To determine the in vitro shear bond strengths (SBS) of zirconia ceramic to resin composite after various primer treatments. Materials and Methods: Forty zirconia ceramic (Zeno, Wieland Dental) specimens (10 mm in diameter and 2 mm thick) were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10). Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE), AP (Alloy Primer, Kuraray Medical), and MP (Monobond Plus, Ivoclar Vivadent AG). One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE) cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE) and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa) were analyzed with one-way analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Results: Group AP yielded the highest mean and standard deviation (SD) value of SBS (16.8 ± 2.5 MPa) and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa). The SBS did not differ significantly among the groups (P = 0.079). Conclusions: Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different. PMID:24347881

  1. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  2. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    PubMed

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres.

  3. Amino-functionalized nano-size composite materials for dispersive solid-phase extraction of phosphate in water samples.

    PubMed

    Zhang, Yun; Pan, Shengdong; Shen, Haoyu; Hu, Meiqin

    2012-01-01

    An efficient analytical method for the preconcentration and determination of phosphate in water samples at trace levels was proposed. The method was based on sample enrichment using dispersive solid-phase extraction (dSPE) with tetraethylenepentamine (TEPA)-functionalized nano-size composite materials (TEPA-NCMs) as sorbents, which were fully characterized. Various parameters affecting the extraction efficiency were systematically investigated. After extraction, the post-adsorbed TEPA-NCMs were eluted by a NaOH solution for desorption of the phosphate. The resulting eluate containing phosphate was determined by a spectrophotometric method. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.29 and 0.96 μg L(-1), respectively. The relative standard deviations (RSDs) were lower than 8.0% with average recoveries ranging from 91 to 118%. The present method was successfully applied to the determination of phosphate at trace levels in real water samples, and it was confirmed that the TEPA-NCMs are highly effective dSPE materials.

  4. Influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives.

    PubMed

    Yokokawa, Miho; Rikuta, Akitomo; Tsujimoto, Akimasa; Tsuchiya, Kenji; Shibasaki, Syo; Matsuyoshi, Saki; Miyazaki, Masashi

    2015-02-01

    The influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives was investigated. The surface free-energies were determined by measuring the contact angles of test liquids placed on composites that had been immersed in different concentrations of methyl mercaptan (0.01, 0.1, and 1.0 M). To determine the repair bond strength, self-etch adhesives were applied to the aged composite, and then newly added composites were condensed. Ten samples of each specimen were subjected to shear testing at a crosshead speed of 1.0 mm min(-1). Samples were analyzed using two-way ANOVA followed by Tukey's honestly significant difference (HSD) test. Although the dispersion force of the composites remained relatively constant, their polar force increased slightly as the concentration of methyl mercaptan increased. The hydrogen-bonding forces were significantly higher after immersion in 1.0 M methyl mercaptan, leading to higher surface-free energies. However, the repair bond strengths for the repair restorations prepared from composites immersed in 1.0 M methyl mercaptan were significantly lower than for those immersed in 0.01 and 0.10 M methyl mercaptan. Considering the results of this study, it can be concluded that the repair bond strengths of both the aged and newly added composites were affected by immersion in methyl mercaptan solutions.

  5. Dissolved inorganic nitrogen composition, transformation, retention, and transport in naturally phosphate-rich and phosphate-poor tropical streams

    USGS Publications Warehouse

    Triska, F.J.; Pringle, C.M.; Zellweger, G.W.; Duff, J.H.; Avanzino, R.J.

    1993-01-01

    In Costa Rica, the Salto River is enriched by geothermal-based soluble reactive phosphorus (SRP), which raises the concentration up to 200 ??g/L whereas Pantano Creek, an unimpacted tributary, has an SRP concentration <10 ??g/L. Ammonium concentration in springs adjacent to the Salto and Pantano was typically greater than channel water (13 of 22 locations) whereas nitrate concentration was less (20 of 22 locations). Ground waters were typically high in ammonium relative to nitrate whereas channel waters were high in nitrate relative to ammonium. Sediment slurry studies indicated nitrification potential in two sediment types, firm clay (3.34 ??g N.cm-3.d-1) and uncompacted organic-rich sediment (1.76 ??g N.cm-3.d-1). Ammonium and nitrate amendments to each stream separately resulted in nitrate concentrations in excess of that expected after correlation for dilution using a conservative tracer. SRP concentration was not affected by DIN amendment to either stream. SRP concentration in the Pantano appeared to be regulated by abiotic sediment exchange reactions. DIN composition and concentration were regulated by a combination of biotic and abiotic processes. -from Authors

  6. Elastomer toughened polyimide adhesives. [bonding metal and composite material structures for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1985-01-01

    A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.

  7. Nanostructured BN-Mg composites: features of interface bonding and mechanical properties.

    PubMed

    Kvashnin, Dmitry G; Krasheninnikov, Arkady V; Shtansky, Dmitry; Sorokin, Pavel B; Golberg, Dmitri

    2016-01-14

    Magnesium (Mg) is one of the lightest industrially used metals. However, wide applications of Mg-based components require a substantial enhancement of their mechanical characteristics. This can be achieved by introducing small particles or fibers into the metal matrix. Using first-principles calculations, we investigate the stability and mechanical properties of a nanocomposite made of magnesium reinforced with boron nitride (BN) nanostructures (BN nanotubes and BN monolayers). We show that boron vacancies at the BN/Mg interface lead to a substantial increase in BN/Mg bonding establishing an efficient route towards the development of BN/Mg composite materials with enhanced mechanical properties.

  8. A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing

    DTIC Science & Technology

    2016-09-13

    AFRL-AFOSR-VA-TR-2016-0317 A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing Pavana...PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...PERFORMING ORGANIZATION REPORT NUMBER 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  9. Bending effects of unsymmetric adhesively bonded composite repairs on cracked aluminum panels

    NASA Astrophysics Data System (ADS)

    Arendt, Cory; Sun, C. T.

    1994-09-01

    The bending effects of unsymmetrically bonded composite repairs on cracked aluminum panels were quantified using a plate linear finite element model. Stress intensity factors and strain energy release rates were obtained from the model twice, once with out-of-plane displacement suppressed and another time without these restrictions. Several configurations were examined, crack growth stability was identified, and the effect of a debond was considered. The maximum stress intensity factor was also analyzed. Previous work by other authors was found to underpredict the bending effect.

  10. Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation.

    PubMed

    Fang, Hsu-Wei; Kao, Wei-Yu; Lin, Pei-I; Chang, Guang-Wei; Hung, Ya-Jung; Chen, Ruei-Ming

    2015-08-01

    Bone tissue engineering utilizing biomaterials to improve osteoblast growth has provided de novo consideration for therapy of bone diseases. Polypropylene carbonate (PPC) is a polymer with a low glass transition temperature but high elasticity. In this study, we developed a new PPC-derived composite by mixing poly-lactic acid (PLA) and tricalcium phosphate (TCP), called PPC/PLA/TCP elastic (PPTE) scaffolds. We also evaluated the beneficial effects of PPTE composites on osteoblast growth and maturation and the possible mechanisms. Compared to PPC polymers, PPTE composites had similar pore sizes and porosities but possessed better hydrophilic surface structures. Biological evaluations further revealed that PPTE composites attracted adhesion of mouse osteoblasts, and these bone cells extended along the porous scaffolds to produce accurate fibroblast-like morphologies. In parallel, seeding mouse osteoblasts onto PPTE composites time-dependently increased cell growth. Sequentially, PPTE composites augmented DNA replication and cell proliferation. Consequently, PPTE composites significantly improved osteoblast mineralization. As to the mechanism, treatment with PPTE composites induced osteopontin (OPN) mRNA and protein expression and alkaline phosphatase activity. Taken together, this study showed that PPTE composites with porous and hydrophilic surfaces can stimulate osteoblast adhesion, proliferation, and maturation through an OPN-dependent mechanism. Therefore, the de novo PPTE scaffolds may have biomaterial potential for bone regeneration.

  11. Effect of Different Surface Treatments on Microtensile Bond Strength of Composite Resin to Normal and Fluorotic Enamel After Microabrasion

    PubMed Central

    Bassir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Hosseini, Zahra Malek

    2016-01-01

    Objectives: This study aimed to determine the effect of surface treatments such as tooth reduction and extending the etching time on microtensile bond strength (μTBS) of composite resin to normal and fluorotic enamel after microabrasion. Materials and Methods: Fifty non-carious anterior teeth were classified into two groups of normal and fluorotic (n=25) using Thylstrup and Fejerskov index (TFI=4–6). Teeth in each group were treated with five modalities as follows and restored with OptiBond FL and Z350 composite resin: 1-Etching (30 seconds), bonding, filling (B); 2-Tooth reduction (0.3mm), etching, bonding, filling (R-B); 3-Microabrasion (120 seconds), etching, bonding, filling (MB); 4- Microabrasion, tooth reduction, etching, bonding, filling (M-R-B); and 5- Microabrasion, etching (60 seconds), bonding, filling (M-2E-B). Ten experimental groups (n=5) were designed; 150 rectangular samples (10 in each group) with a cross-sectional area of 1×1mm2 were prepared for μTBS test. Failure mode was determined under a stereomicroscope and one specimen was selected from each group for scanning electron microscopy (SEM) analysis. Data were analyzed using two-way ANOVA and Tukey’s test. Results: The μTBS to normal enamel was higher than to fluorotic enamel in all groups except for group (R-B). The Maximum and minimum μTBS were noted in the group (normal, reduction, bonding) and (fluorosed, microabrasion, bonding), respectively. Tooth reduction increased μTBS more effectively than extended etching time after microabrasion. Conclusions: Fluorosis may reduce μTBS of composite resin to enamel. Microabrasion reduced the bond strength. Tooth reduction and extended etching time increased μTBS of composite resin to both normal and fluorotic enamel. PMID:28243305

  12. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    PubMed Central

    PAMIR, Tijen; ŞEN, Bilge Hakan; EVCIN, Özgür

    2012-01-01

    Objective This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. Material and Methods Conventional (KetacTM Molar Quick ApplicapTM) or resin-modified (PhotacTM Fil Quick AplicapTM) glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2) or single-step self-etching adhesive (AdperTM PromptTM L-PopTM) was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1) no etching, (2) 15 s of etching with 35% phosphoric acid, (3) 30 s of etching, and (4) 60 s of etching. Following the placement of the composite resin (FiltekTM Z250), the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA) followed by the Tukey's HSD post hoc analysis (p=0.05). Then, the fractured surfaces were examined by scanning electron microscopy. Results The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p<0.001). No significant differences were determined between the self-etching and etch-rinse & bond adhesives at any etching time (p>0.05). However, a greater bond strength was obtained with 30 s of phosphoric acid application. Conclusions The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal. PMID:23329245

  13. The bond strength of highly filled flowable composites placed in two different configuration factors

    PubMed Central

    Sagsoz, Omer; Ilday, Nurcan Ozakar; Karatas, Ozcan; Cayabatmaz, Muhammed; Parlak, Hatice; Olmez, Melek Hilal; Demirbuga, Sezer

    2016-01-01

    Objective: The aim of this study was to evaluate the microtensile bond strength (μTBS) of different flowable composite resins placed in different configuration factors (C-factors) into Class I cavities. Materials and Methods: Fifty freshly extracted human molars were divided into 10 groups. Five different composite resins; a universal flowable composite (AeliteFlo, BISCO), two highly filled flowable composites (GrandioSO Flow, VOCO; GrandioSO Heavy Flow, VOCO), a bulk-fill flowable composite (smart dentin replacement [SDR], Dentsply), and a conventional paste-like composite (Filtek Supreme XT, 3M ESPE) were placed into Class I cavities (4 mm deep) with 1 mm or 2 mm layers. Restored teeth were sectioned vertically with a slow-speed diamond saw (Isomet 1000, Buehler) and four micro-specimens (1 mm × 1 mm) were obtained from each tooth (n = 20). Specimens were subjected to μTBS test. Data were recorded and statistically analyzed with two-way analysis of variance and Tukey's post-hoc test. Fractured surfaces were examined using a scanning electron microscope. Results: The μTBS in SDR-1 mm were higher than other groups, where Filtek Supreme XT-2 mm and GrandioSO Flow-2 mm were lower. No significant differences were found between C-factors for any composite resin (P > 0.05). Conclusion: Bulk-fill flowable composite provided more satisfactory μTBS than others. Different C-factors did not affect mean μTBS of the materials tested. PMID:26957788

  14. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    SciTech Connect

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the

  15. Effect of acid etching duration on tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet laser-prepared dentine. Preliminary study.

    PubMed

    Chousterman, M; Heysselaer, D; Dridi, S M; Bayet, F; Misset, B; Lamard, L; Peremans, A; Nyssen-Behets, C; Nammour, S

    2010-11-01

    The purpose of this study was to compare the tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet (Er:YAG) laser-prepared dentine after different durations of acid etching. The occlusal third of 68 human third molars was removed in order to expose the dentine surface. The teeth were randomly divided into five groups: group B (control group), prepared with bur and total etch system with 15 s acid etching [37% orthophosphoric acid (H(3)PO(4))]; group L15, laser photo-ablated dentine (200 mJ) (laser irradiation conditions: pulse duration 100 micros, air-water spray, fluence 31.45 J/ cm(2), 10 Hz, non-contact hand pieces, beam spot size 0.9 mm, irradiation speed 3 mm/s, and total irradiation time 2 x 40 s); group L30, laser prepared, laser conditioned and 30 s acid etching; group L60, laser prepared, laser conditioned and 60 s acid etching; group L90, laser prepared, laser conditioned and 90 s acid etching. A plot of composite resin was bonded onto each exposed dentine and then tested for tensile bond strength. The values obtained were statistically analysed by analysis of variance (ANOVA) coupled with the Tukey-Kramer test at the 95% level. A 90 s acid etching before bonding showed the best bonding value (P < 0.05) when compared with all the other groups including the control group. There is no significance difference between other groups, nor within each group and the control group. There was a significant increase in tensile bond strength of the samples acid etched for 90 s.

  16. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  17. In-Vitro Evaluation of the Effect of Herbal Antioxidants on Shear Bond Strength of Composite Resin to Bleached Enamel

    PubMed Central

    Khamverdi, Zahra; Khadem, Parvin; Soltanian, Aliraza; Azizi, Maryam

    2016-01-01

    Objectives: A reduction in bond strength of composite to bleached enamel has been reported immediately after bleaching treatment. Application of some antioxidant agents may decrease the adverse effects of whitening agents on bond strength and enhance composite bond to enamel. This study aimed to assess the effect of green tea, sodium ascorbate, sage and grape seed extract on bond strength of composite to bleached enamel. Materials and Methods: In this in-vitro study, 90 human enamel surfaces were randomly divided into six groups as follows (n=15): G1, no bleaching; G2, bleaching with 40% hydrogen peroxide (HP); G3, HP+1000 μmol epigallocatechin gallate (EGCG) for 10 minutes; G4, HP+10% sodium ascorbate for 10 minutes; G5, HP+10% sage for 10 minutes and G6, HP+5% grape seed extract for 10 minutes. The specimens were bonded to composite in all groups. The shear bond strength of specimens was measured in Megapascals (MPa). Data were analyzed using one-way ANOVA and Tukey’s HSD test (α=0.05). Results: The highest and the lowest mean shear bond strength values were observed in group 1 (22.61±3.29MPa) and group 2 (5.87±1.80MPa), respectively. The reduction in bond strength in group 2 was greater than that in other groups (P<0.001). No significant difference was found among groups 1, 3, 4, 5 and 6 (P>0.05). Conclusions: All the herbal antioxidants used in this study equally compensated for the reduced bond strength of composite to bleached enamel. PMID:28127316

  18. Composite resin bond strength to tooth structure treated with an erbium,chromium:YSGG-laser-powered hydrokinetic system

    NASA Astrophysics Data System (ADS)

    Lin, Sean; Caputo, Angelo A.; Rizoiu, Ioana-Mihaela; Eversole, Lewis R.

    1998-04-01

    Er;YAG and Er,Cr;YSGG Lasers that emit in the near red wave lengths cut both enamel and dentine. Dental preparations are often restored with composite resins that bond to enamel. The purpose of this investigation was to assess the shear strength of composite resin bonded to tooth structure cut by an Er,Cr;YSGG powered hydrokinetic system (HKS), (Millennium SystemTM, BioLase Technology, Inc, San Clemente, CA) as compared to surfaces cut with a carbide bur. Extracted human molars devoid of caries and restorations were treated with both systems, with and without acid etching. Shear bond strengths (SBS) for composite resin adherence to these surfaces were measured and compared. There was no significant difference between bur and HKS prepared surfaces in the etched enamel group. The SBS for composite bonded to nonetched enamel was significantly higher with the HKS treatment compared with the bur cut surfaces. There were no significant differences between acid etched bur cut and non etched HKS enamel surfaces. Bonded to nonetched dentin was found to be higher for bur cut surfaces. It is concluded that the Er,Cr;YSGG hydrokinetic system produces surface characteristics that allow for adequate bonding of composite resin to both etched and nonetched enamel.

  19. Phosphate, inositol and polyphosphates.

    PubMed

    Livermore, Thomas M; Azevedo, Cristina; Kolozsvari, Bernadett; Wilson, Miranda S C; Saiardi, Adolfo

    2016-02-01

    Eukaryotic cells have ubiquitously utilized the myo-inositol backbone to generate a diverse array of signalling molecules. This is achieved by arranging phosphate groups around the six-carbon inositol ring. There is virtually no biological process that does not take advantage of the uniquely variable architecture of phosphorylated inositol. In inositol biology, phosphates are able to form three distinct covalent bonds: phosphoester, phosphodiester and phosphoanhydride bonds, with each providing different properties. The phosphoester bond links phosphate groups to the inositol ring, the variable arrangement of which forms the basis of the signalling capacity of the inositol phosphates. Phosphate groups can also form the structural bridge between myo-inositol and diacylglycerol through the phosphodiester bond. The resulting lipid-bound inositol phosphates, or phosphoinositides, further expand the signalling potential of this family of molecules. Finally, inositol is also notable for its ability to host more phosphates than it has carbons. These unusual organic molecules are commonly referred to as the inositol pyrophosphates (PP-IPs), due to the presence of high-energy phosphoanhydride bonds (pyro- or diphospho-). PP-IPs themselves constitute a varied family of molecules with one or more pyrophosphate moiety/ies located around the inositol. Considering the relationship between phosphate and inositol, it is no surprise that members of the inositol phosphate family also regulate cellular phosphate homoeostasis. Notably, the PP-IPs play a fundamental role in controlling the metabolism of the ancient polymeric form of phosphate, inorganic polyphosphate (polyP). Here we explore the intimate links between phosphate, inositol phosphates and polyP, speculating on the evolution of these relationships.

  20. Effects of Nano-biphasic Calcium Phosphate Composite on Bioactivity and Osteoblast Cell Behavior in Tissue Engineering Applications

    PubMed Central

    Ebrahimian-Hosseinabadi, Mehdi; Etemadifar, Mohammadreza; Ashrafizadeh, Fakhredin

    2016-01-01

    In this paper, preparation, bioactivity, and osteoblast cell behavior of cortical bone derived nano-biphasic calcium phosphate (nano-BCP) are presented. The calcined bovine bone samples with the addition of di-ammonium hydrogen phosphate were heated at 700°C for 100 min, and thus nano-BCP with the composition of 63/37 hydroxyapatite (HA)/β-tricalcium phosphate (β-TCP) was produced. Scanning electron microscopy (SEM) images, energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analysis of immersed samples in simulated body fluid (SBF) solution showed that a uniform layer was formed on the surface after 7 days with the chemical composition of HA. The results indicated that the nano-BCP sample developed excellent bioactivity after 28 days. The nano-BCP samples showed better cell proliferation compared to pure HA samples. After 7 days in cell culture, the prepared nano-BCP (HA/β-TCP) exhibited the maximum proliferation of the MG-63 osteoblast cells. PMID:28028500