Science.gov

Sample records for phosphate cotransporter napi-iib

  1. Localization of a renal sodium-phosphate cotransporter gene to human chromosome 5q35

    SciTech Connect

    Kos, C.H.; Tenenhouse, H.S. ); Tihy, F.; Lemieux, N. ); Econs, M.J. ); Murer, H. )

    1994-01-01

    Several Mendelian disorders of renal phosphate reabsorption, associated with hypophosphatemia and bone disease, have been described. These include X-linked hypophosphatemia (XLH), hereditary hypophosphatemic rickets with hypercalciuria, hypophosphatemic bone disease, and autosomal dominant and autosomal recessive hypophosphatemic rickets. The underlying mechanisms for renal phosphate wasting in these disorders remain unknown. The proximal tubule is the major site of renal phosphate reabsorption. Thus, mutations in genes that participate in the transepithelial transport of phosphate in this segment of the nephron may be responsible for these disorders. Recently, a cDNA encoding a renal proximal tubular, brush-border membrane Na[sup +]-phosphate cotransporter (NaP[sub i]-3) was cloned from human kidney cortex. As a first step in establishing whether mutations in the NaP[sub i]-3 gene are the cause of inherited disorders in phosphate homeostasis, the authors sought to determine its chromosomal localization. 9 refs., 1 fig.

  2. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake24

    PubMed Central

    Kirchner, Séverine; Muduli, Anjali; Casirola, Donatella; Prum, Kannitha; Douard, Véronique; Ferraris, Ronaldo P

    2008-01-01

    Background While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. Objective We tested the hypothesis that luminal fructose regulates NaPi-2b. Design We perfused into the intestine fructose, glucose, and non-metabolizable or poorly transported glucose analogs as well as phlorizin. Results NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were ≈30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)–activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) enhanced and the fatty acid synthase–AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylene-butyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. Conclusions Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies ≈10% of caloric intake by Americans clearly affects absorption of

  3. Arsenate transport by sodium/phosphate cotransporter type IIb

    SciTech Connect

    Villa-Bellosta, Ricardo; Sorribas, Victor

    2010-08-15

    Arsenic is a metalloid that causes the dysfunction of critical enzymes, oxidative stress, and malignancies. In recent years several transporters of As{sup III} have been identified, including aquaglyceroporins (AQP) and multidrug resistance proteins (MRP). As{sup V} transport, however, has not been sufficiently studied because it has been assumed that arsenate is taken up by mammalian cells through inorganic phosphate (Pi) transporters. In this paper we have analyzed the role of Pi transporters in the uptake of arsenate by directly using {sup 73}As{sup V} as a radiotracer in phosphate transporter-expressing Xenopus laevis oocytes. The affinities of Pi transporters for H{sub 3}AsO{sub 4} were lower than the affinities for Pi. NaPiIIa, NaPiIIc, Pit1, and Pit2 showed a K{sub m} for arsenate that was > 1 mM (i.e., at least ten times lower than the affinities for Pi). The NaPiIIb isoform showed the highest affinity for As{sup V} in mouse (57 {mu}M), rat (51 {mu}M), and human (9.7 {mu}M), which are very similar to the affinities for Pi. Therefore, NaPiIIb can have a prominent role in the toxicokinetics of arsenic following oral exposure to freshwater or food contaminated with As{sup V}.

  4. Regulation of the sodium-phosphate cotransporter Pit-1 and its role in vascular calcification.

    PubMed

    Gonzalez, Magdalena; Martínez, Rafael; Amador, Cristián; Michea, Luis

    2009-10-01

    Vascular calcification is caused by the deposition of basic calcium phosphate crystals in blood vessels, myocardium, and/or cardiac valves. Calcification decreases artery wall compliance, and arterial calcification is associated to mortality in hyperphosphatemic renal failure and diabetes mellitus. The calcification of the tunica media characterizes the arteriosclerosis observed with age, diabetes and end stage-renal disease, and it can develop independently from intima calcification. As part of the vascular calcification mechanism, vascular smooth muscle cells (VSMC) experience a transition from a contractile to an osteochondrogenic phenotype and a sequence of molecular events that are typical of endochondral ossification. The current evidence indicates a key role of increased phosphate uptake by VSMC for calcification, which supplies the substrate for hydroxyapatite formation and could trigger or potentiate VSMC transdiferentiation. The present review analyzes the sodium-phosphate cotransporter Pit-1, which is implicated in calcification. On the basis of the available data obtained in the study of vascular and osteoblastic experimental models, we discuss potential regulatory mechanisms that could lead to increased sodium-dependent phosphate uptake in vascular calcification.

  5. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion.

    PubMed

    Nguyen, Tuyet Thi; Quan, Xianglan; Xu, Shanhua; Das, Ranjan; Cha, Seung-Kuy; Kong, In Deok; Shong, Minho; Wollheim, Claes B; Park, Kyu-Sang

    2016-12-01

    Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcification and defective insulin secretion. The underlying molecular mechanisms of these complications remain poorly understood. We demonstrated the role of Pi transport across the plasmalemma on Pi toxicity in INS-1E rat clonal β cells and rat pancreatic islet cells. Type III sodium-phosphate cotransporters (NaPis) are the predominant Pi transporters expressed in insulin-secreting cells. Transcript and protein levels of sodium-dependent phosphate transporter 1 and 2 (PiT-1 and -2), isotypes of type III NaPi, were up-regulated by high-Pi incubation. In patch-clamp experiments, extracellular Pi elicited a Na(+)-dependent, inwardly rectifying current, which was markedly reduced under acidic extracellular conditions. Cellular uptake of Pi elicited cytosolic alkalinization; intriguingly, this pH change facilitated Pi transport into the mitochondrial matrix. Increased mitochondrial Pi uptake accelerated superoxide generation, mitochondrial permeability transition (mPT), and endoplasmic reticulum stress-mediated translational attenuation, leading to reduced insulin content and impaired glucose-stimulated insulin secretion. Silencing of PiT-1/2 prevented Pi-induced superoxide generation and mPT, and restored insulin secretion. We propose that Pi transport across the plasma membrane and consequent cytosolic alkalinization could be a therapeutic target for protection from Pi toxicity in insulin-secreting cells, as well as in other cell types.-Nguyen, T. T., Quan, X., Xu, S., Das, R., Cha, S.-K., Kong, I. D., Shong, M., Wollheim, C. B., Park, K.-S. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. © FASEB.

  6. Expression of Pit2 sodium-phosphate cotransporter during murine odontogenesis is developmentally regulated.

    PubMed

    Zhao, Dawei; Vaziri Sani, Forugh; Nilsson, Jeanette; Rodenburg, Michaela; Stocking, Carol; Linde, Anders; Gritli-Linde, Amel

    2006-12-01

    Different sodium-dependent inorganic phosphate (P(i)) uptake mechanisms play a major role in cellular P(i) homeostasis. The function and detailed distribution patterns of the type III Na(+)-phosphate cotransporter, PiT-2, in different organs during development are still largely unknown. We therefore examined the temporospatial expression patterns of Pit2 during murine odontogenesis. Odontoblasts were always devoid of Pit2 expression, whereas a transient, but strong, expression was detected in young secretory ameloblasts. However, the stratum intermedium and, later on, the papillary layer and cells of the subodontoblastic layer, exhibited high levels of Pit2 mRNA, which increased gradually as the tooth matured. Hormonal treatment or P(i) starvation of tooth germs in vitro did not alter Pit2 levels or patterns of expression, indicating mechanisms of regulation different from those of PiT-1 or other cell types. PiT-2 also functions as a retroviral receptor, and functional membrane-localized protein was confirmed throughout the dental papilla/pulp by demonstrating cellular permissiveness to infection by a gammaretrovirus that uses PiT-2 as a receptor. The distinct pattern of Pit2 expression during odontogenesis suggests that its P(i)-transporter function may be important for homeostasis of dental cells and not specifically for mineralization of the dental extracellular matrices. The expression of viral receptors in enamel-forming cells and the dental pulp may be of pathological significance.

  7. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate

    SciTech Connect

    Villa-Bellosta, Ricardo Sorribas, Victor

    2008-10-01

    Inorganic arsenate (As{sup V}) is a common contaminant of underground water. Following oral exposure, it is assumed that As{sup V} is distributed and crosses cell membranes through inorganic phosphate (Pi) transporters. We have tested this hypothesis by studying the inhibition of rat Na/Pi cotransporters by As{sup V} in Xenopus laevis oocytes and in several rat tissues. The ubiquitously expressed type III Pi transporters (PiT-1 and PiT-2) showed a low affinity for As{sup V} (K{sub i} {approx} 3.8 mM), similar to the Pi transport system in aortic vascular smooth muscle cells (K{sub i} 1.5 mM). The type II renal isoforms, NaPi-IIa and NaPi-IIc, were also poorly inhibited by As{sup V} (K{sub i} {approx} 1 mM), similar to the Pi transport from kidney cortex brush-border membrane (BBM) vesicles. Conversely, the high-affinity intestinal transporter, NaPi-IIb, was very efficiently inhibited with a K{sub i} of 51 {mu}M, similar to the Pi transport from intestinal BBM vesicles. Taking into account the 1.1 mM Pi in blood and renal ultrafiltrate, and the nanomolar range of As{sup V} exposures, we have determined that the contribution by Na/Pi cotransporters to As{sup V} membrane transport is negligible, given that 10-15 mM As{sup V} would be necessary in these fluids to be significantly transported. Intestinal transport is an exception, because Pi competition is weak, thereby considering that its concentration in lumen mainly depends on low Pi levels from ingested fresh water, and because As{sup V} very efficiently inhibits Pi intestinal transport. Our data agree with current toxicokinetic knowledge, and they explain the asymmetric excretion of trivalent and pentavalent arsenic species into bile and urine.

  8. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.

    PubMed

    Villa-Bellosta, Ricardo; Sorribas, Víctor

    2008-10-01

    Inorganic arsenate (As(V)) is a common contaminant of underground water. Following oral exposure, it is assumed that As(V) is distributed and crosses cell membranes through inorganic phosphate (Pi) transporters. We have tested this hypothesis by studying the inhibition of rat Na/Pi cotransporters by As(V) in Xenopus laevis oocytes and in several rat tissues. The ubiquitously expressed type III Pi transporters (PiT-1 and PiT-2) showed a low affinity for As(V) (K(i) approximately 3.8 mM), similar to the Pi transport system in aortic vascular smooth muscle cells (K(i) 1.5 mM). The type II renal isoforms, NaPi-IIa and NaPi-IIc, were also poorly inhibited by As(V) (K(i) approximately 1 mM), similar to the Pi transport from kidney cortex brush-border membrane (BBM) vesicles. Conversely, the high-affinity intestinal transporter, NaPi-IIb, was very efficiently inhibited with a K(i) of 51 microM, similar to the Pi transport from intestinal BBM vesicles. Taking into account the 1.1 mM Pi in blood and renal ultrafiltrate, and the nanomolar range of As(V) exposures, we have determined that the contribution by Na/Pi cotransporters to As(V) membrane transport is negligible, given that 10-15 mM As(V) would be necessary in these fluids to be significantly transported. Intestinal transport is an exception, because Pi competition is weak, thereby considering that its concentration in lumen mainly depends on low Pi levels from ingested fresh water, and because As(V) very efficiently inhibits Pi intestinal transport. Our data agree with current toxicokinetic knowledge, and they explain the asymmetric excretion of trivalent and pentavalent arsenic species into bile and urine.

  9. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.

    PubMed

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤1.8‰) occurred

  10. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P.

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8

  11. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers.

    PubMed

    Huber, Korinna; Zeller, Ellen; Rodehutscord, Markus

    2015-05-01

    Dietary phosphorus (P) is known as a main modulator of phosphate (Pi) transporter expression. The effect of supplemented mineral P with or without phytase on protein expression of two sodium-dependent Pi (NaPi) transporters and a calcium channel was studied in the small intestine of broilers. Thirty-six broilers were randomly assigned to six different diets at 15 days of age. Two levels of total P (tP, adjusted by monocalcium phosphate (MCP) supplementation), 0.39% (BD-) and 0.47% (BD+) were fed until day 25; and at each tP level, three levels of phytase were used with 0, 500, and 12,500 FTU/kg of an E. coli phytase. Mucosa samples from jejunum and ileum were taken and apical membranes were isolated by MgCl2 precipitation. Protein expression of NaPi IIb, NaPi type III (PiT1) and the calcium channel TRPV6 were semiquantitatively measured by Western blotting and jejunal mucosal phytase activity by measurement of Pi release. The jejunal NaPi IIb transporter was expressed with two distinct bands, which were modulated differently by diet. NaPi IIb Band1 increased (P < 0.05) and Band2 decreased (P < 0.05) with phytase supplementation but was not affected by MCP supplementation. This inverse modulation of Band1 and Band2 was significantly related to the amount of net absorbed P with higher expression of Band1 at higher amounts of net absorbed P. In addition, a second Pi transporter, PiT1, was detected in which ileal expression decreased (P < 0.05) in response to higher phytase supplementation. The expression of the calcium channel TRPV6 was increased in BD+ groups. A trend for an interaction between MCP and phytase supplementation on mucosal phytase activity was observed (P = 0.079) with a decrease in activity when BD+ with 12,500 FTU/kg phytase was fed. Chicken intestinal epithelial cells responded to dietary supplemented phytase and MCP by changing the Pi transporter expression in apical membranes. In conclusion, availability of Pi is most likely the key modulator of

  12. Thyroid hormones regulate phosphate homoeostasis through transcriptional control of the renal type IIa sodium-dependent phosphate co-transporter (Npt2a) gene.

    PubMed

    Ishiguro, Mariko; Yamamoto, Hironori; Masuda, Masashi; Kozai, Mina; Takei, Yuichiro; Tanaka, Sarasa; Sato, Tadatoshi; Segawa, Hiroko; Taketani, Yutaka; Arai, Hidekazu; Miyamoto, Ken-Ichi; Takeda, Eiji

    2010-03-15

    The type IIa renal sodium-dependent phosphate (Na/Pi) co-transporter Npt2a is implicated in the control of serum phosphate levels. It has been demonstrated previously that renal Npt2a protein and its mRNA expression are both up-regulated by the thyroid hormone T3 (3,3',5-tri-iodothyronine) in rats. However, it has never been established whether the induction was mediated by a direct effect of thyroid hormones on the Npt2a promoter. To address the role of Npt2a in T3-dependent regulation of phosphate homoeostasis and to identify the molecular mechanisms by which thyroid hormones modulate Npt2a gene expression, mice were rendered pharmacologically hypo- and hyper-thyroid. Hypothyroid mice showed low levels of serum phosphate and a marked decrease in renal Npt2a protein abundance. Importantly, we also showed that Npt2a-deficient mice had impaired serum phosphate responsiveness to T3 compared with wild-type mice. Promoter analysis with a luciferase assay revealed that the transcriptional activity of a reporter gene containing the Npt2a promoter and intron 1 was dependent upon TRs (thyroid hormone receptors) and specifically increased by T3 in renal cells. Deletion analysis and EMSAs (electrophoretic mobility-shift assays) determined that there were unique TREs (thyroid-hormone-responsive elements) within intron 1 of the Npt2a gene. These results suggest that Npt2a plays a critical role as a T3-target gene, to control phosphate homoeostasis, and that T3 transcriptionally activates the Npt2a gene via TRs in a renal cell-specific manner.

  13. Oral peptide specific egg antibody to intestinal sodium-dependent phosphate co-transporter-2b is effective at altering phosphate transport in vitro and in vivo.

    PubMed

    Bobeck, Elizabeth A; Hellestad, Erica M; Sand, Jordan M; Piccione, Michelle L; Bishop, Jeff W; Helvig, Christian; Petkovich, Martin; Cook, Mark E

    2015-06-01

    Hyperimmunized hens are an effective means of generating large quantities of antigen specific egg antibodies that have use as oral supplements. In this study, we attempted to create a peptide specific antibody that produced outcomes similar to those of the human pharmaceutical, sevelamer HCl, used in the treatment of hyperphosphatemia (a sequela of chronic renal disease). Egg antibodies were generated against 8 different human intestinal sodium-dependent phosphate cotransporter 2b (NaPi2b) peptides, and hNaPi2b peptide egg antibodies were screened for their ability to inhibit phosphate transport in human intestinal Caco-2 cell line. Antibody produced against human peptide sequence TSPSLCWT (anti-h16) was specific for its peptide sequence, and significantly reduced phosphate transport in human Caco-2 cells to 25.3±11.5% of control nonspecific antibody, when compared to nicotinamide, a known inhibitor of phosphate transport (P≤0.05). Antibody was then produced against the mouse-specific peptide h16 counterpart (mouse sequence TSPSYCWT, anti-m16) for further analysis in a murine model. When anti-m16 was fed to mice (1% of diet as dried egg yolk powder), egg yolk immunoglobulin (IgY) was detected using immunohistochemical staining in mouse ileum, and egg anti-m16 IgY colocalized with a commercial goat anti-NaPi2b antibody. The effectiveness of anti-m16 egg antibody in reducing serum phosphate, when compared to sevelamer HCl, was determined in a mouse feeding study. Serum phosphate was reduced 18% (P<0.02) in mice fed anti-m16 (1% as dried egg yolk powder) and 30% (P<0.0001) in mice fed sevelamer HCl (1% of diet) when compared to mice fed nonspecific egg immunoglobulin. The methods described and the findings reported show that oral egg antibodies are useful and easy to prepare reagents for the study and possible treatment of select diseases.

  14. Reconstitution of the renal brush-border membrane sodium/phosphate co-transporter.

    PubMed Central

    Vachon, V; Delisle, M C; Laprade, R; Béliveau, R

    1991-01-01

    A simple and rapid procedure was developed for the reconstitution of Na(+)-dependent phosphate-transport activity from bovine kidney brush-border membranes. The phosphate transporter appears to be particularly sensitive to extraction conditions. To prevent its inactivation, the phosphate carrier was solubilized in a buffer containing its substrates, Na+ and phosphate, CHAPS, dithiothreitol, brush-border membrane lipids and glycerol. The uptake of phosphate by reconstituted vesicles was strongly stimulated by the presence of a transmembrane Na+ gradient. This stimulation was abolished when the Na+ gradient was dissipated by monensin. The affinity of the carrier for phosphate was similar in proteoliposomes and in brush-border membrane vesicles (apparent Kt = 40 microM). The transporter was also stimulated by the presence of a high concentration of phosphate on the trans side of the membrane. The reconstituted transport activity was inhibited by arsenate, a known inhibitor of phosphate transport. However, the bovine phosphate carrier, intact or reconstituted, was much less sensitive to inhibition by phosphonoformic and phosphonoacetic acids than were those of other species studied so far. SDS/PAGE revealed that only a small number of brush-border membrane proteins were incorporated into the proteoliposomes. This reconstitution procedure should be useful for the purification and identification of the carrier protein. Images Fig. 5. PMID:1832858

  15. Involvement of disulphide bonds in the renal sodium/phosphate co-transporter NaPi-2.

    PubMed Central

    Xiao, Y; Boyer, C J; Vincent, E; Dugré, A; Vachon, V; Potier, M; Béliveau, R

    1997-01-01

    The rat renal brush border membrane sodium/phosphate co-transporter NaPi-2 was analysed in Western blots with polyclonal antibodies raised against its N-terminal and C-terminal segments. Under reducing conditions, proteins of 45-49 and 70-90 kDa (p45 and p70) were detected with N-terminal antibodies, and proteins of 40 and 70-90 kDa (p40 and p70) were detected with C-terminal antibodies. p40 and p45 apparently result from a post-translational cleavage of NaPi-2 but remain linked through one or more disulphide bonds. Glycosidase digestion showed that both polypeptides are glycosylated; the cleavage site could thus be located between Asn-298 and Asn-328, which have been shown to constitute the only two N-glycosylated residues in NaPi-2. In the absence of reducing agents, both N-terminal and C-terminal antibodies detected p70 and a protein of 180 kDa (p180), suggesting the presence of p70 dimers. Much higher concentrations of beta-mercaptoethanol were required to produce a given effect in intact membrane vesicles than in solubilized proteins, indicating that the affected disulphide bonds are not exposed at the surface of the co-transporter. Phosphate transport activity decreased with increasing concentrations of reducing agents [beta-mercaptoethanol, dithiothreitol and tris-(2-carboxyethyl)phosphine] and was linearly correlated with the amount of p180 detected. The target sizes estimated from the radiation-induced loss of intensity of p40, p70 and p180 were all approx. 190 kDa, suggesting that NaPi-2 exists as an oligomeric protein in which the subunits are sufficiently close to one another to allow substantial energy transfer between the monomers. When protein samples were pretreated with beta-mercaptoethanol [2.5% and 5% (v/v) to optimize the detection of p40 and p70] before irradiation, target sizes estimated from the radiation-induced loss of intensity of p40 and p70 were 74 and 92 kDa respectively, showing the presence of disulphide bridges in the molecular

  16. Parathyroid hormone (PTH) decreases sodium-phosphate cotransporter type IIa (NpT2a) mRNA stability.

    PubMed

    Murray, Rebecca D; Holthouser, Kristine; Clark, Barbara J; Salyer, Sarah A; Barati, Michelle T; Khundmiri, Syed J; Lederer, Eleanor D

    2013-04-15

    The acute inhibitory effects of parathyroid hormone (PTH) on proximal tubule Na(+)-K(+)-ATPase (Na-K) and sodium-dependent phosphate (NaPi) transport have been extensively studied, while little is known about the chronic effects of PTH. Patients with primary hyperparathyroidism, a condition characterized by chronic elevations in PTH, exhibit persistent hypophosphatemia but not significant evidence of salt wasting. We postulate that chronic PTH stimulation results in differential desensitization of PTH responses. To address this hypothesis, we compared the effects of chronic PTH stimulation on Na-P(i) cotransporter (Npt2a) expression and Na-K activity and expression in Sprague Dawley rats, transgenic mice featuring parathyroid-specific cyclin D1 overexpression (PTH-D1), and proximal tubule cell culture models. We demonstrated a progressive decrease in brush-border membrane (BBM) expression of Npt2a from rats treated with PTH for 6 h or 4 days, while Na-K expression and activity in the basolateral membranes (BLM) exhibited an initial decrease followed by recovery to control levels by 4 days. Npt2a protein expression in PTH-D1 mice was decreased relative to control animals, whereas levels of Na-K, NHERF-1, and PTH receptor remained unchanged. In PTH-D1 mice, NpT2a mRNA expression was reduced by 50% relative to control mice. In opossum kidney proximal tubule cells, PTH decreased Npt2a mRNA levels. Both actinomycin D and cycloheximide treatment prevented the PTH-mediated decrease in Npt2a mRNA, suggesting that the PTH response requires transcription and translation. These findings suggest that responses to chronic PTH exposure are selectively regulated at a posttranscriptional level. The persistence of the phosphaturic response to PTH occurs through posttranscriptional mechanisms.

  17. Effects of phosphonoformic acid and renagel on renal type IIa sodium-dependent phosphate cotransporter mRNA expression in hyperphosphatemia rats.

    PubMed

    Zeng, Ming; Wang, Xiaoyun; Wang, Xiaobing; Zhao, Xiufen

    2012-01-01

    To investigate the effects of phosphonoformic acid (PFA) and sevelamer hydrochloride (Renagel) on renal type IIa sodium-dependent phosphate cotransporter (NaPi-2) mRNA expression in hyperphosphatemia rats. Thirty rats were randomly divided into five groups based on the diet for 2 weeks after 5/6 nephrectomy (Nx): Nx + high-phosphate (HP; 1.2% P) diet; Nx + low-phosphate (LP; 0.2% P) diet; HP + PFA (injected with 0.15 g/kg PFA daily); HP + Saline (injected with the same amount of saline daily); and HP + Renagel (2%) group. Another 12 rats were sham operated and divided into Sham + HP and Sham + LP groups. Serum ionized calcium, phosphorus (P), and intact parathyroid hormone (iPTH) were measured on days 2, 7, and 14. Serum 1,25(OH)2D3 was measured on day 14 and NaPi-2 mRNA levels were assayed by RT-PCR. PFA decreased iPTH level but had no effect on NaPi-2 mRNA expression. Renagel decreased serum P and iPTH levels, but upregulated renal NaPi-2 mRNA expression. Both PFA and Renagel are effective drugs to decrease iPTH level and they might be potential candidates for treatment of clinical secondary hyperparathyroidism. Renagel can also decrease serum P and upregulate renal NaPi-2 mRNA expression.

  18. Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment

    PubMed Central

    Saito, Atsushi; Nikolaidis, Nikolaos M.; Amlal, Hassane; Uehara, Yasuaki; Gardner, Jason C.; LaSance, Kathleen; Pitstick, Lori B.; Bridges, James P.; Wikenheiser-Brokamp, Kathryn A.; McGraw, Dennis W.; Woods, Jason C.; Sabbagh, Yves; Schiavi, Susan C.; Altinişik, Göksel; Jakopović, Marko; Inoue, Yoshikazu; McCormack, Francis X.

    2016-01-01

    Pulmonary alveolar microlithiasis (PAM) is a rare, autosomal recessive lung disorder associated with progressive accumulation of calcium phosphate microliths. Inactivating mutations in SLC34A2, which encodes the NPT2b sodium-dependent phosphate cotransporter, has been proposed as a cause of PAM. We show that epithelial deletion of Npt2b in mice results in a progressive pulmonary process characterized by diffuse alveolar microlith accumulation, radio-graphic opacification, restrictive physiology, inflammation, fibrosis, and an unexpected alveolar phospholipidosis. Cytokine and surfactant protein elevations in the alveolar lavage and serum of PAM mice and confirmed in serum from PAM patients identify serum MCP-1 (monocyte chemotactic protein 1) and SP-D (surfactant protein D) as potential biomarkers. Microliths introduced by adoptive transfer into the lungs of wild-type mice produce marked macrophagerich inflammation and elevation of serum MCP-1 that peaks at 1 week and resolves at 1 month, concomitant with clearance of stones. Microliths isolated by bronchoalveolar lavage readily dissolve in EDTA, and therapeutic whole-lung EDTA lavage reduces the burden of stones in the lungs. A low-phosphate diet prevents microlith formation in young animals and reduces lung injury on the basis of reduction in serum SP-D. The burden of pulmonary calcium deposits in established PAM is also diminished within 4 weeks by a low-phosphate diet challenge. These data support a causative role for Npt2b in the pathogenesis of PAM and the use of the PAM mouse model as a preclinical platform for the development of biomarkers and therapeutic strategies. PMID:26560359

  19. Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment.

    PubMed

    Saito, Atsushi; Nikolaidis, Nikolaos M; Amlal, Hassane; Uehara, Yasuaki; Gardner, Jason C; LaSance, Kathleen; Pitstick, Lori B; Bridges, James P; Wikenheiser-Brokamp, Kathryn A; McGraw, Dennis W; Woods, Jason C; Sabbagh, Yves; Schiavi, Susan C; Altinişik, Göksel; Jakopović, Marko; Inoue, Yoshikazu; McCormack, Francis X

    2015-11-11

    Pulmonary alveolar microlithiasis (PAM) is a rare, autosomal recessive lung disorder associated with progressive accumulation of calcium phosphate microliths. Inactivating mutations in SLC34A2, which encodes the NPT2b sodium-dependent phosphate cotransporter, has been proposed as a cause of PAM. We show that epithelial deletion of Npt2b in mice results in a progressive pulmonary process characterized by diffuse alveolar microlith accumulation, radiographic opacification, restrictive physiology, inflammation, fibrosis, and an unexpected alveolar phospholipidosis. Cytokine and surfactant protein elevations in the alveolar lavage and serum of PAM mice and confirmed in serum from PAM patients identify serum MCP-1 (monocyte chemotactic protein 1) and SP-D (surfactant protein D) as potential biomarkers. Microliths introduced by adoptive transfer into the lungs of wild-type mice produce marked macrophage-rich inflammation and elevation of serum MCP-1 that peaks at 1 week and resolves at 1 month, concomitant with clearance of stones. Microliths isolated by bronchoalveolar lavage readily dissolve in EDTA, and therapeutic whole-lung EDTA lavage reduces the burden of stones in the lungs. A low-phosphate diet prevents microlith formation in young animals and reduces lung injury on the basis of reduction in serum SP-D. The burden of pulmonary calcium deposits in established PAM is also diminished within 4 weeks by a low-phosphate diet challenge. These data support a causative role for Npt2b in the pathogenesis of PAM and the use of the PAM mouse model as a preclinical platform for the development of biomarkers and therapeutic strategies. Copyright © 2015, American Association for the Advancement of Science.

  20. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency.

    PubMed

    Breusegem, Sophia Y; Takahashi, Hideaki; Giral-Arnal, Hector; Wang, Xiaoxin; Jiang, Tao; Verlander, Jill W; Wilson, Paul; Miyazaki-Anzai, Shinobu; Sutherland, Eileen; Caldas, Yupanqui; Blaine, Judith T; Segawa, Hiroko; Miyamoto, Ken-ichi; Barry, Nicholas P; Levi, Moshe

    2009-08-01

    Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694-704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160-49171, 2004). Here we investigated the role of the renal Na-P(i) cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P(i) transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations.

  1. Mice with hypomorphic expression of the sodium-phosphate cotransporter PiT1/Slc20a1 have an unexpected normal bone mineralization.

    PubMed

    Bourgine, Annabelle; Pilet, Paul; Diouani, Sara; Sourice, Sophie; Lesoeur, Julie; Beck-Cormier, Sarah; Khoshniat, Solmaz; Weiss, Pierre; Friedlander, Gérard; Guicheux, Jérôme; Beck, Laurent

    2013-01-01

    The formation of hydroxyapatite crystals and their insertion into collagen fibrils of the matrix are essential steps for bone mineralization. As phosphate is a main structural component of apatite crystals, its uptake by skeletal cells is critical and must be controlled by specialized membrane proteins. In mammals, in vitro studies have suggested that the high-affinity sodium-phosphate cotransporter PiT1 could play this role. In vivo, PiT1 expression was detected in hypertrophic chondrocytes of murine metatarsals, but its implication in bone physiology is not yet deciphered. As the complete deletion of PiT1 results in embryonic lethality at E12.5, we took advantage of a mouse model bearing two copies of PiT1 hypomorphic alleles to study the effect of a low expression of PiT1 on bone mineralization in vivo. In this report, we show that a 85% down-regulation of PiT1 in long bones resulted in a slight (6%) but significant reduction of femur length in young mice (15- and 30-day-old). However, despite a defect in alcian blue / alizarin red S and Von Kossa staining of hypomorphic 1-day-old mice, using X-rays micro-computed tomography, energy dispersive X-ray spectroscopy and histological staining techniques we could not detect differences between hypomorphic and wild-type mice of 15- to 300-days old. Interestingly, the expression of PiT2, the paralog of PiT1, was increased 2-fold in bone of PiT1 hypomorphic mice accounting for a normal phosphate uptake in mutant cells. Whether this may contribute to the absence of bone mineralization defects remains to be further deciphered.

  2. Ontogenesis of epithelial phosphate transport systems in goats.

    PubMed

    Huber, Korinna; Roesler, Uta; Muscher, Alexandra; Hansen, Kathrin; Widiyono, Irkham; Pfeffer, Ernst; Breves, Gerhard

    2003-02-01

    The rapid development of precocial goats in the first weeks after birth requires an adequate adaptation of phosphate transport systems to maintain the P homeostasis at each developmental stage. Here we examined the age-related development of Na+-Pi transport systems in small intestines, kidneys, and parotid glands of goats. Kinetic parameters were determined by brush-border membrane vesicle uptake studies, and relative expression of NaPi type II mRNA and protein was recorded by molecular biological methods. High intestinal Pi transport capacity was already present on the first day of life. Within the first 3 wk of life there seemed to be a change in the type of Na+-dependent Pi transporter, and NaPi IIb was expressed increasingly up to the fifth month of life. Renal Na+-Pi transport capacity was also high at birth, and this was associated with high expression levels of NaPi IIa mRNA, indicating the important role of this transporter for renal Pi reabsorption. At weaning an increase in both intestinal and renal Na+-Pi transport balanced the increasing requirements for Pi to establish the endogenous Pi cycle. Salivary Pi concentration and parotid NaPi II mRNA rose markedly to guarantee an adequate Pi supply for rumen microbes. We concluded that the high demand for Pi in young goats was assured by high basal Na+-Pi transport capacity of small intestines and kidney expressed continuously during ontogenesis.

  3. Characterization of the isoforms of type IIb sodium-dependent phosphate cotransporter (Slc34a2) in yellow catfish, Pelteobagrus fulvidraco, and their vitamin D3-regulated expression under low-phosphate conditions.

    PubMed

    Chen, Pei; Huang, Yanqing; Bayir, Abdulkadir; Wang, Chunfang

    2017-02-01

    In this study, two isoforms slc34a2 genes (type IIb sodium-dependent phosphate cotransporter), slc34a2a2 and slc34a2b, were cloned from intestine and kidney of yellow catfish (Pelteobagrus fulvidraco), with rapid amplification of cDNA ends. The structure differences and the regulation effects of dietary VD3 under low phosphorus were compared among three isoforms of slc34a2 in yellow catfish. The predicted Slc34a2a2 and Slc34a2b proteins match 65 % and 53.8 % sequence identity, with Slc34a2a1, respectively. The membrane-spanning domains were different among these three isoforms. Intestinal Slc34a2a1 and Slc34a2a2 proteins had eight and eleven transmembrane domains, while renal Slc34a2b protein had nine. The tissue distribution study showed that same as slc34a2a1, slc34a2a2 mRNA was mainly distributed in intestine and slc34a2b mRNA in kidney. The effect of vitamin D3 (VD3) level on slc34a2 subfamily expression under low-phosphate conditions, induced by the addition of 0 (VD0), 324 (VD1), 1243 (VD2), 3621 (VD3), 8040 (VD4), or 22700 (VD5) IU VD3/kg feed, was assessed by qPCR. The dose-responsive expression of intestinal slc34a2a2 and high expression of intestinal slc34a2a2 in VD5 together with peak expression of kidney slc34a2b in VD3 coincided with the accumulation of body phosphate content. These data suggested that appropriate level of dietary VD3 up-regulated slc34a2a1, slc34a2a2, and slc34a2b mRNA levels, which increased phosphate retention. In conclusion, the current study provided another possible approach to improve dietary phosphate utilization by adding appropriate level of VD3 to a low-phosphate diet to regulate intestinal and renal slc34a2 gene expression and thus minimize the excretion of phosphorus in yellow catfish.

  4. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.

    PubMed

    Myakala, Komuraiah; Motta, Sarah; Murer, Heini; Wagner, Carsten A; Koesters, Robert; Biber, Jürg; Hernando, Nati

    2014-04-15

    The proximal renal epithelia express three different Na-dependent inorganic phosphate (Pi) cotransporters: NaPi-IIa/SLC34A1, NaPi-IIc/SLC34A3, and PiT2/SLC20A2. Constitutive mouse knockout models of NaPi-IIa and NaPi-IIc suggested that NaPi-IIa mediates the bulk of renal reabsorption of Pi whereas the contribution of NaPi-IIc to this process is minor and probably restricted to young mice. However, many reports indicate that mutations of NaPi-IIc in humans lead to hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report the generation of a kidney-specific and inducible NaPi-IIc-deficient mouse model based on the loxP-Cre system. We found that the specific removal of the cotransporter from the kidneys of young mice does not impair the capacity of the renal epithelia to transport Pi. Moreover, the levels of Pi in plasma and urine as well as the circulating levels of parathyroid hormone, FGF-23, and vitamin D3 remained unchanged. These findings are in agreement with the data obtained with the constitutive knockout model and suggest that, under steady-state conditions of normal dietary Pi, NaPi-IIc is not an essential Na-Pi cotransporter in murine kidneys. However, and unlike the constitutive mutants, the kidney-specific depletion of NaPi-IIc does not result in alteration of the homeostasis of calcium. This suggests that the calcium-related phenotype observed in constitutive knockout mice may not be related to inactivation of the cotransporter in kidney.

  5. Characterizing and evaluating the expression of the type IIb sodium-dependent phosphate cotransporter (slc34a2) gene and its potential influence on phosphorus utilization efficiency in yellow catfish (Pelteobagrus fulvidraco).

    PubMed

    Chen, Pei; Tang, Qin; Wang, Chunfang

    2016-02-01

    A sodium-dependent phosphate cotransporter gene, NaPi-IIb (slc34a2), was isolated from yellow catfish (Pelteobagrus fulvidraco) intestine through homology cloning and the rapid amplification of cDNA ends. The full-length cDNA of slc34a2 consisted of 2326 bp with an open reading frame encoding 621 amino acids, a 160-bp 5' untranslated region, and a 300-bp 3' untranslated region. The deduced amino acid sequence showed 79.0 and 70.9% sequence identity to Astyanax mexicanus and Pundamilia nyererei, respectively. The membrane-spanning domains based on the hydrophilic and hydrophobic properties of the deduced amino acids were predicted, and results showed that the putative protein had eight transmembrane domains, with the intracellular NH2 and COOH termini. Two functional regions including first intracellular loop and third extracellular loop as well as the six N-glycosylation sites in second extracellular loop were found. The slc34a2 mRNA in the tested tissues was examined through semiquantitative reverse transcription polymerase chain reaction and quantitative real-time PCR, with the highest level found in the anterior intestine, followed by the posterior and middle intestines. The slc34a2 mRNA expression in the whole intestine under different dietary phosphorus (P) treatments was detected using qPCR. The results showed that the slc34a2 expression levels in the low-P groups (0.33 and 0.56%) were significantly higher (p < 0.05) than levels in the sufficient-P (0.81%) and high-P (1.15, 1.31, and 1.57%) groups. High expression of slc34a2 mRNA in low-P groups stimulated P utilization efficiency, indicating the close relationship between genotype and phenotype in yellow catfish. In contrast with conventional strategies (formula and feeding strategies), this study provided another possible approach by using molecular techniques to increase the P utilization in yellow catfish.

  6. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  7. [Pathophysiological aspects of K+: Cl- cotransporters].

    PubMed

    Mercado, Adriana; Melo, Zesergio

    2014-01-01

    The K+:Cl- cotransporters or KCCs are membrane proteins that move K+ and Cl- ions across the membrane without changing the transmembrane potential. KCCs belong to the SLC12 (Solute Carrier Family 12) family of electroneutral cation-chloride cotransporters (CCC), and they are secondary active ion transporters because use the established gradients from the primary active transporter through the Na+/K+- ATPase. Although there are nine members identify in this family, up today only seven genes had been characterized. Among them are two loop diuretics-sensitive Na+:K+:2Clcotransporters (NKCC1/NKCC2), the thiazide-sensitive Na+:Cl- cotransporter (NCC), and finally the K+:Cl- cotransporters (KCC), encoded for at least four homologous genes (KCC1-KCC4), and from which there are many isoforms due to alternative splicing. KCC1 is a ubiquitous isoform, KCC3 and KCC4 isoforms are widely expressed, particularly in epithelial cells, while KCC2 is restricted to the central nervous system (CNS). All these cotransporters play an essential role in many physiological processes such as cell volume regulation, transepithelial salt transport and regulation of the intraneuronal chloride concentration. This review has the purpose to show briefly the molecular characteristics as well as the physiological importance and roles of the KCCs in several pathologies.

  8. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters.

    PubMed

    Forster, I C; Loo, D D; Eskandari, S

    1999-04-01

    The stoichiometry of the rat and flounder isoforms of the renal type II sodium-phosphate (Na+-Pi) cotransporter was determined directly by simultaneous measurements of phosphate (Pi)-induced inward current and uptake of radiolabeled Pi and Na+ in Xenopus laevis oocytes expressing the cotransporters. There was a direct correlation between the Pi-induced inward charge and Pi uptake into the oocytes; the slope indicated that one net inward charge was transported per Pi. There was also a direct correlation between the Pi-induced inward charge and Na+ influx; the slope indicated that the influx of three Na+ ions resulted in one net inward charge. This behavior was similar for both isoforms. We conclude that for both Na+-Pi cotransporter isoforms the Na+:Pi stoichiometry is 3:1 and that divalent Pi is the transported substrate. Steady-state activation of the currents showed that the Hill coefficients for Pi were unity for both isoforms, whereas for Na+, they were 1.8 (flounder) and 2.5 (rat). Therefore, despite significant differences in the apparent Na+ binding cooperativity, the estimated Na+:Pi stoichiometry was the same for both isoforms.

  9. Inhibition of Na-K-Cl cotransport in Ehrlich ascites cells by antiserum against purified proteins of the cotransporter

    SciTech Connect

    Dunham, P.B. ); Jessen, F.; Hoffmann, E.K. )

    1990-09-01

    Two proteins were purified earlier from solubilized membranes of Ehrlich ascites cells by using a bumetanide-Sepharose affinity column. These proteins were proposed to be constituents of the Na-K-Cl cotransporter. However, the specificity of binding of bumetanide to the cotransporter was insufficient evidence for this proposal. The authors now have direct evidence that the purified protein contains components of the cotransporter. Antiserum raised against the bumetanide-binding proteins strongly inhibits Na-K-Cl cotransport measured by two independent methods. Cotransport was induced by hypertonic challenge and was measured as the bumetanide-sensitive portion of unidirectional Cl influx and as regulatory cell volume increase. In both assays, contransport was strongly inhibited by antiserum. Fab fragments of the antibodies inhibited cotransport to a similar extent.

  10. Direct Effects of Phosphate on Vascular Cell Function

    PubMed Central

    Lau, Wei Ling; Pai, Ashwini; Moe, Sharon M.; Giachelli, Cecilia M.

    2011-01-01

    Elevated serum phosphate has clinically been associated with vascular stiffness and cardiovascular mortality. Mechanistic studies over the past decade looking at phosphate’s local effects on the vessel wall have lent insight into various pathways that culminate in vascular calcification.Smooth muscle cell phenotype change and apoptosis play prominent roles. The sodium-phosphate cotransporter PiT-1 is required for the osteochondrogenic differentiation of smooth muscle cellsin vitro. Less is known about phosphate-driven valve interstitial cell calcification and elastin degradation.In this paper, we review the current knowledge about phosphate-induced changes in the vascular wall. PMID:21406295

  11. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  12. Cation-chloride cotransporters in neuronal development, plasticity and disease

    PubMed Central

    Kaila, Kai; Price, Theodore J.; Payne, John A.; Puskarjov, Martin; Voipio, Juha

    2015-01-01

    Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K+–Cl− cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease. PMID:25234263

  13. Correlating charge movements with local conformational changes of a Na(+)-coupled cotransporter.

    PubMed

    Patti, Monica; Forster, Ian C

    2014-04-15

    To gain insight into the steady-state and dynamic characteristics of structural rearrangements of an electrogenic secondary-active cotransporter during its transport cycle, two measures of conformational change (pre-steady-state current relaxations and intensity of fluorescence emitted from reporter fluorophores) were investigated as a function of membrane potential and external substrate. Cysteines were substituted at three believed-new sites in the type IIb Na(+)-coupled inorganic phosphate cotransporter (SLC34A2 flounder isoform) that were predicted to be involved in conformational changes. Labeling at one site resulted in substantial suppression of transport activity, whereas for the other sites, function remained comparable to the wild-type. For these mutants, the properties of the pre-steady-state charge relaxations were similar for each, whereas fluorescence intensity changes differed significantly. Fluorescence changes could be accounted for by simulations using a five-state model with a unique set of apparent fluorescence intensities assigned to each state according to the site of labeling. Fluorescence reported from one site was associated with inward and outward conformations, whereas for the other sites, including four previously indentified sites, emissions were associated principally with one or the other orientation of the transporter. The same membrane potential change induced complementary changes in fluorescence at some sites, which suggested that the microenvironments of the respective fluorophores experience concomitant changes in polarity. In response to step changes in voltage, the pre-steady-state current relaxation and the time course of change in fluorescence intensity were described by single exponentials. For one mutant the time constants matched well with and without external Na(+), providing direct evidence that this label reports conformational changes accompanying intrinsic charge movement and cation interactions.

  14. Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp(986), Asp(988) and kNBC1-carbonic anhydrase II binding.

    PubMed

    Gross, Eitan; Pushkin, Alexander; Abuladze, Natalia; Fedotoff, Olga; Kurtz, Ira

    2002-11-01

    The HCO(3)(-) : Na(+) cotransport stoichiometry of the electrogenic sodium bicarbonate cotransporter kNBC1 determines the reversal potential (E(rev)) and thus the net direction of transport of these ions through the cotransporter. Previously, we showed that phosphorylation of kNBC1-Ser(982) in the carboxy-terminus of kNBC1 (kNBC1-Ct), by cAMP-protein kinase A (PKA), shifts the stoichiometry from 3 : 1 to 2 : 1 and that binding of bicarbonate to the cotransporter is electrostaticaly modulated. These results raise the possibility that phosphorylated kNBC1-Ser(982), or other nearby negatively charged residues shift the stoichiometry by blocking a bicarbonate-binding site. In the current study, we examined the role of the negative charge on Ser(982)-phosphate and three aspartate residues in a D986NDD custer in altering the stoichiometry of kNBC1. mPCT cells expressing kNBC1 mutants were grown on filters and mounted in an Ussing chamber for electrophysiological studies. Enhanced green fluorescence protein (EGFP)-tagged mutant constructs expressed in the same cells were used to determine the phosphorylation status of kNBC1-Ser(982). The data indicate that both kNBC1-Asp(986) and kNBC1-Asp(988), but not kNBC1-Asp(989), are required for the phosphorylation-induced shift in stoichiometry. A homologous motif (D887ADD) in the carboxy-terminus of the anion exchanger AE1 binds to carbonic anhydrase II (CAII). In isothermal titration calorimetry experiments, CAII was found to bind to kNBC1-Ct with a K(D) of 160 +/- 10 nM. Acetazolamide inhibited the short-circuit current through the cotransporter by 65 % when the latter operated in the 3 : 1 mode, but had no effect on the current in the 2 : 1 mode. Acetazolamide did not affect the cotransport stoichiometry or the ability of 8-Br-cAMP to shift the stoichiometry. Although CAII does not affect the transport stoichiometry, it may play an important role in enhancing the flux through the transporter when kNBC1-Ser(982) is

  15. Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding

    PubMed Central

    Gross, Eitan; Pushkin, Alexander; Abuladze, Natalia; Fedotoff, Olga; Kurtz, Ira

    2002-01-01

    The HCO3−:Na+ cotransport stoichiometry of the electrogenic sodium bicarbonate cotransporter kNBC1 determines the reversal potential (Erev) and thus the net direction of transport of these ions through the cotransporter. Previously, we showed that phosphorylation of kNBC1-Ser982 in the carboxy-terminus of kNBC1 (kNBC1-Ct), by cAMP-protein kinase A (PKA), shifts the stoichiometry from 3:1 to 2:1 and that binding of bicarbonate to the cotransporter is electrostaticaly modulated. These results raise the possibility that phosphorylated kNBC1-Ser982, or other nearby negatively charged residues shift the stoichiometry by blocking a bicarbonate-binding site. In the current study, we examined the role of the negative charge on Ser982-phosphate and three aspartate residues in a D986NDD custer in altering the stoichiometry of kNBC1. mPCT cells expressing kNBC1 mutants were grown on filters and mounted in an Ussing chamber for electrophysiological studies. Enhanced green fluorescence protein (EGFP)-tagged mutant constructs expressed in the same cells were used to determine the phosphorylation status of kNBC1-Ser982. The data indicate that both kNBC1-Asp986 and kNBC1-Asp988, but not kNBC1-Asp989, are required for the phosphorylation-induced shift in stoichiometry. A homologous motif (D887ADD) in the carboxy-terminus of the anion exchanger AE1 binds to carbonic anhydrase II (CAII). In isothermal titration calorimetry experiments, CAII was found to bind to kNBC1-Ct with a KD of 160 ± 10 nm. Acetazolamide inhibited the short-circuit current through the cotransporter by 65 % when the latter operated in the 3:1 mode, but had no effect on the current in the 2:1 mode. Acetazolamide did not affect the cotransport stoichiometry or the ability of 8-Br-cAMP to shift the stoichiometry. Although CAII does not affect the transport stoichiometry, it may play an important role in enhancing the flux through the transporter when kNBC1-Ser982 is unphosphorylated. PMID:12411514

  16. Inhibition of Na(+)-K(+)-2Cl(-) cotransport by mercury.

    PubMed

    Jacoby, S C; Gagnon, E; Caron, L; Chang, J; Isenring, P

    1999-10-01

    Mercury alters the function of proteins by reacting with cysteinyl sulfhydryl (SH(-)) groups. The inorganic form (Hg(2+)) is toxic to epithelial tissues and interacts with various transport proteins including the Na(+) pump and Cl(-) channels. In this study, we determined whether the Na(+)-K(+)-Cl(-) cotransporter type 1 (NKCC1), a major ion pathway in secretory tissues, is also affected by mercurial substrates. To characterize the interaction, we measured the effect of Hg(2+) on ion transport by the secretory shark and human cotransporters expressed in HEK-293 cells. Our studies show that Hg(2+) inhibits Na(+)-K(+)-Cl(-) cotransport, with inhibitor constant (K(i)) values of 25 microM for the shark carrier (sNKCC1) and 43 microM for the human carrier. In further studies, we took advantage of species differences in Hg(2+) affinity to identify residues involved in the interaction. An analysis of human-shark chimeras and of an sNKCC1 mutant (Cys-697-->Leu) reveals that transmembrane domain 11 plays an essential role in Hg(2+) binding. We also show that modification of additional SH(-) groups by thiol-reacting compounds brings about inhibition and that the binding sites are not exposed on the extracellular face of the membrane.

  17. Regulation of erythrocyte Na-K-2Cl cotransport by threonine phosphorylation.

    PubMed

    Matskevich, Ioulia; Hegney, Karen L; Flatman, Peter W

    2005-08-01

    A method is described to measure threonine phosphorylation of the Na-K-2Cl cotransporter in ferret erythrocytes using readily available antibodies. We show that most, if not all, cotransporter in these cells is NKCC1, and this was immunoprecipitated with T4. Cotransport rate, measured as 86Rb influx, correlates well with threonine phosphorylation of T4-immunoprecipitated protein. The cotransporter effects large fluxes and is significantly phosphorylated in cells under control conditions. Transport and phosphorylation increase 2.5- to 3-fold when cells are treated with calyculin A or Na+ arsenite. Both fall to 60% control when cell [Mg2+] is reduced below micromolar or when cells are treated with the kinase inhibitors, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or staurosporine. Importantly, these latter interventions do not abolish either phosphorylation or transport suggesting that a phosphorylated form of the cotransporter is responsible for residual fluxes. Our experiments suggest protein phosphatase 1 (PrP-1) is extremely active in these cells and dephosphorylates key regulatory threonine residues on the cotransporter. Examination of the effects of kinase inhibition after cells have been treated with high concentrations of calyculin indicates that residual PrP-1 activity is capable of rapidly dephosphorylating the cotransporter. Experiments on cotransporter precipitation with microcystin sepharose suggest that PrP-1 binds to a phosphorylated form of the cotransporter.

  18. Studies on the topology of the renal type II NaPi-cotransporter.

    PubMed

    Lambert, G; Traebert, M; Hernando, N; Biber, J; Murer, H

    1999-05-01

    The rat type II sodium/phosphate cotransporter (NaPi-2) is a 85- to 90-kDa glycosylated protein located at the proximal tubular brush border membrane. Hydropathy predictions suggest eight transmembrane domains (sTM) with a large glycosylated loop between sTM 3 and sTM 4. We have studied the membrane topology of NaPi-2 expressed in oocytes. A 33-amino-acid fragment containing the FLAG epitope was inserted into seven loops connecting the sTMs and into the NH2- and COOH-ends of the protein. FLAG-antibody binding suggested that the loops connecting sTM 1 and sTM 2 as well as sTM 3 and sTM 4 are located extracellularly. Based on the lack of FLAG-antibody binding we suggest intracellular locations for the NH2- and COOH-termini and the region connecting sTM 4 and sTM 5. Immunoprecipitation studies of in vitro translated protein also suggest that the NH2-terminus is sited extracellularly. In immunohistochemical studies with NaPi-2-transfected MDCK cells, an interaction with NH2- and COOH- terminal antipeptide antibodies could only be obtained after membrane permeabilization. The presented data are an experimental documentation of the intracellular location of the NH2- and COOH-termini, and of the extracellular location of extracellular loops 1 and 2.

  19. Effect of co-transporter blockers on non-synaptic epileptiform activity—computational simulation

    NASA Astrophysics Data System (ADS)

    Rodrigues Lopes, Mariana; Canton Santos, Luiz Eduardo; Márcio Rodrigues, Antônio; Antônio Duarte, Mario; Catelli Infantosi, Antonio Fernando; Alexandre Scorza, Fulvio; Arida, Ricardo Mario; Madureira, Ana Paula; Amaral da Silveira, Gilcélio; dos Santos, Ivans Carlos; Abrão Cavalheiro, Esper; Guimarães de Almeida, Antônio-Carlos

    2013-10-01

    The important role of cation-chloride co-transporters in epilepsy is being supported by an increasing number of investigations. However, enormous complexity is involved since the action of these co-transporters has effects on the ionic homeostasis influencing directly the neuronal excitability and the tissue propensity to sustain seizure. To unravel the complex mechanisms involving the co-transporters action during seizure, this paper shows simulations of non-synaptic epileptiform activity and the effect of the blockage of the two different types of cation-chloride co-transporters present in the brain: Na, K and 2Cl co-transporter (NKCC) and K and Cl co-transporter (KCC). The simulations were performed with an electrochemical model representing the non-synaptic structure of the granule cell layer of the dentate gyrus (DG) of the rat hippocampus. The simulations suggest: (i) the potassium clearance is based on the systemic interplay between the Na/K pump and the NKCC co-transporters; (ii) the simultaneous blockage of the NKCC of the neurons and KCC of glial cells acts efficiently suppressing the epileptiform activities; and (iii) the simulations show that depending on the combined blockage of the co-transporters, the epileptiform activities may be suppressed or enhanced.

  20. Inflammatory cytokine TNF-α inhibits Na(+)-glutamine cotransport in intestinal epithelial cells.

    PubMed

    Talukder, Jamilur R; Boyd, Brittney; Griffin, Ashley; Jaima, Antara; Rajendran, Vazhaikkurichi M

    2013-04-01

    Glutamine (Gln), a preferred fuel source for enterocytes, is critical for intestinal epithelial cell integrity and barrier function. Chronic enteritis inhibits apical Na(+)-Gln cotransport. It is not known whether inflammatory cytokines that are secreted during inflammation inhibit Na(+)-Gln cotransport. Thus, this study aimed to examine whether TNF-α would affect apical Na(+)-Gln cotransport in intestinal epithelial cells. In this study, the presence of Na(+)-Gln cotransport was established by measuring Gln uptake in 10 days postconfluent IEC-6 cells grown on transwell plates. Cation, amino acid specificity, and siRNA transfection studies established that Na(+)-Gln cotransport is mediated via B(0)AT1. Immunoblotting and immunofluorescence studies established the apical membrane localization of B(0)AT1 in IEC-6 cells. Tumour necrosis factor α (TNF-α) inhibited Na(+)-Gln cotransport in a concentration- and time-dependent manner with an inhibitory concentration of 1.53 nmol·L(-1). Quantitative real-time PCR and Western blot analyses indicated that TNF-α did not alter B(0)AT1-specific transcripts or protein expression level. Kinetic studies revealed that TNF-α inhibited Na(+)-Gln cotransport by reducing the affinity of the cotransporters for Gln, and this effect was antagonized by genistein. Thus, we conclude that the TNF-α inhibition of Na(+)-Gln cotransport occurs at the post-translational level, and that the IEC-6 cell line is an excellent system to study the role of cytokines in Na(+)-Gln cotransport.

  1. The clinical significance of K-Cl cotransport activity in red cells of patients with HbSC disease.

    PubMed

    Rees, David C; Thein, Swee Lay; Osei, Anna; Drasar, Emma; Tewari, Sanjay; Hannemann, Anke; Gibson, John S

    2015-05-01

    HbSC disease is the second commonest form of sickle cell disease, with poorly understood pathophysiology and few treatments. We studied the role of K-Cl cotransport activity in determining clinical and laboratory features, and investigated its potential role as a biomarker. Samples were collected from 110 patients with HbSC disease and 41 with sickle cell anemia (HbSS). K-Cl cotransport activity was measured in the oxygenated (K-Cl cotransport(100)) and deoxygenated (K-Cl cotransport(0)) states, using radioactive tracer studies. K-Cl cotransport activity was high in HbSC and decreased significantly on deoxygenation. K-Cl cotransport activity correlated significantly and positively with the formation of sickle cells. On multiple regression analysis, K-Cl cotransport increased significantly and independently with increasing reticulocyte count and age. K-Cl cotransport activity was increased in patients who attended hospital with acute pain in 2011 compared to those who did not (K-Cl cotransport(100): mean 3.87 versus 3.20, P=0.009, independent samples T-test; K-Cl cotransport(0): mean 0.96 versus 0.68, P=0.037). On logistic regression only K-Cl cotransport was associated with hospital attendance. Increased K-Cl cotransport activity was associated with the presence of retinopathy, but this effect was confounded by age. This study links variability in a fundamental aspect of cellular pathology with a clinical outcome, suggesting that K-Cl cotransport is central to the pathology of HbSC disease. Increased K-Cl cotransport activity is associated with increasing age, which may be of pathophysiological significance. Effective inhibition of K-Cl cotransport activity is likely to be of therapeutic benefit.

  2. A novel analytical method for in vivo phosphate tracking

    PubMed Central

    Gu, Hong; Lalonde, Sylvie; Okumoto, Sakiko; Looger, Loren L.; Scharff-Poulsen, Anne Marie; Grossman, Arthur R.; Kossmann, Jens; Jakobsen, Iver; Frommer, Wolf B.

    2009-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) sensors for phosphate (Pi) (FLIPPi) were engineered by fusing a predicted Synechococcus phosphate-binding protein (PiBP) to eCFP and Venus. Purified fluorescent indicator protein for inorganic phosphate (FLIPPi), in which the fluorophores are attached to the same PiBP lobe, shows Pi-dependent increases in FRET efficiency. FLIPPi affinity mutants cover Pi changes over eight orders of magnitude. COS-7 cells co-expressing a low-affinity FLIPPi and a Na+/Pi co-transporter exhibited FRET changes when perfused with 100 µM Pi, demonstrating concentrative Pi uptake by PiT2. FLIPPi sensors are suitable for real-time monitoring of Pi metabolism in living cells, providing a new tool for fluxomics, analysis of pathophysiology or changes of Pi during cell migration. PMID:17034793

  3. A novel analytical method for in vivo phosphate tracking.

    PubMed

    Gu, Hong; Lalonde, Sylvie; Okumoto, Sakiko; Looger, Loren L; Scharff-Poulsen, Anne Marie; Grossman, Arthur R; Kossmann, Jens; Jakobsen, Iver; Frommer, Wolf B

    2006-10-30

    Genetically-encoded fluorescence resonance energy transfer (FRET) sensors for phosphate (P(i)) (FLIPPi) were engineered by fusing a predicted Synechococcus phosphate-binding protein (PiBP) to eCFP and Venus. Purified fluorescent indicator protein for inorganic phosphate (FLIPPi), in which the fluorophores are attached to the same PiBP lobe, shows P(i)-dependent increases in FRET efficiency. FLIPPi affinity mutants cover P(i) changes over eight orders of magnitude. COS-7 cells co-expressing a low-affinity FLIPPi and a Na(+)/P(i) co-transporter exhibited FRET changes when perfused with 100 microM P(i), demonstrating concentrative P(i) uptake by PiT2. FLIPPi sensors are suitable for real-time monitoring of P(i) metabolism in living cells, providing a new tool for fluxomics, analysis of pathophysiology or changes of P(i) during cell migration.

  4. [Sodium-dependent inorganic phosphate transporters and biomineralization].

    PubMed

    Tatsumi, Sawako; Fujii, Osamu; Miyagawa, Atsumi; Miyamoto, Kenichi

    2014-02-01

    Phosphate (Pi), one of most abundant anions in living organisms, plays a crucial role in biomineralization. An adequate plasma Pi concentration is required to maintain the calcium × phosphate ion product within a range sufficient for physiological bone mineralization, but an increase in the calcium × phosphate product in extracellular fluids above a certain threshold can predispose to extraskeletal calcification. Membrane transport systems for Pi transport are key elements in maintaining homeostasis of Pi in organisms. Members of two families of solute carrier (SLC) proteins (SLC20 and SLC34) act as Na⁺ -dependent, secondary-active cotransporters to transport Pi across cell membranes in mammals. This review summarizes the role of SLC20 and SCL34 proteins on biomineralization.

  5. Routes of Epithelial Water Flow: Aquaporins versus Cotransporters

    PubMed Central

    Mollajew, Rustam; Zocher, Florian; Horner, Andreas; Wiesner, Burkhard; Klussmann, Enno; Pohl, Peter

    2010-01-01

    The routes water takes through membrane barriers is still a matter of debate. Although aquaporins only allow transmembrane water movement along an osmotic gradient, cotransporters are believed to be capable of water transport against the osmotic gradient. Here we show that the renal potassium-chloride-cotransporter (KCC1) does not pump a fixed amount of water molecules per movement of one K+ and one Cl−, as was reported for the analogous transporter in the choroid plexus. We monitored water and potassium fluxes through monolayers of primary cultured renal epithelial cells by detecting tiny solute concentration changes in the immediate vicinity of the monolayer. KCC1 extruded K+ ions in the presence of a transepithelial K+ gradient, but did not transport water. KCC1 inhibition reduced epithelial osmotic water permeability Pf by roughly one-third, i.e., the effect of inhibitors was small in resting cells and substantial in hormonal stimulated cells that contained high concentrations of aquaporin-2 in their apical membranes. The furosemide or DIOA (dihydroindenyl-oxy-alkanoic acid)-sensitive water flux was much larger than expected when water passively followed the KCC1-mediated ion flow. The inhibitory effect of these drugs on water flux was reversed by the K+–H+ exchanger nigericin, indicating that KCC1 affects water transport solely by K+ extrusion. Intracellular K+ retention conceivably leads to cell swelling, followed by an increased rate of endocytic AQP2 retrieval from the apical membrane. PMID:21112289

  6. Zinc transport across an endothelium includes vesicular cotransport with albumin.

    PubMed

    Tibaduiza, E C; Bobilya, D J

    1996-06-01

    Bovine pulmonary arterial endothelial cells (BPAEC) were grown on permeable polycarbonate membrane filters suspended between two compartments representing the blood vessel lumen and the interstitium. This in vitro model of an endothelium was subjected to a battery of tests to unravel the mechanisms of zinc transport from the blood into peripheral tissues. Transport of 65Zn across BPAEC from media containing zinc concentrations up to 50 mumol/L exhibited both saturable and nonsaturable kinetics. Vmax of the saturable component was 246 +/- 43 pmol/(h x cm2) and Km was 2.3 +/- 1.3 mumol/L. Transport was pH and temperature sensitive and substantially influenced by albumin and histidine concentrations, but not influenced by analogous minerals or metabolic inhibitors. Inhibition of coated vesicle formation by depletion of intracellular potassium reduced 65Zn transport. Albumin carrying a zinc ion crossed the endothelium more rapidly than zinc-free albumin. When evaluated together, this body of evidence supports the existence of two major pathways of zinc transport across the pulmonary endothelium, but neither involves entry into the endothelial cells. One pathway involves receptor-mediated cotransport with albumin by transcytotic vesicles. The other is nonsaturable and involves cotransport with albumin and low molecular weight ligands, principally histidine, through intercellular junctions and nonselective, bulk-fluid transcytosis.

  7. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.

    PubMed

    Yang, Chao-Ling; Angell, Jordan; Mitchell, Rose; Ellison, David H

    2003-04-01

    Pseudohypoaldosteronism type II (PHAII) is an autosomal dominant disorder of hyperkalemia and hypertension. Mutations in two members of the WNK kinase family, WNK1 and WNK4, cause the disease. WNK1 mutations are believed to increase WNK1 expression; the effect of WNK4 mutations remains unknown. The clinical phenotype of PHAII is opposite to Gitelman syndrome, a disease caused by dysfunction of the thiazide-sensitive Na-Cl cotransporter. We tested the hypothesis that WNK kinases regulate the mammalian thiazide-sensitive Na-Cl cotransporter (NCC). Mouse WNK4 was cloned and expressed in Xenopus oocytes with or without NCC. Coexpression with WNK4 suppressed NCC activity by more than 85%. This effect did not result from defects in NCC synthesis or processing, but was associated with an 85% reduction in NCC abundance at the plasma membrane. Unlike WNK4, WNK1 did not affect NCC activity directly. WNK1, however, completely prevented WNK4 inhibition of NCC. Some WNK4 mutations that cause PHAII retained NCC-inhibiting activity, but the Q562E WNK4 demonstrated diminished activity, suggesting that some PHAII mutations lead to loss of NCC inhibition. Gain-of-function WNK1 mutations would be expected to inhibit WNK4 activity, thereby activating NCC, contributing to the PHAII phenotype. Together, these results identify WNK kinases as a previously unrecognized sodium regulatory pathway of the distal nephron. This pathway likely contributes to normal and pathological blood pressure homeostasis.

  8. Molecular and functional evidence for Na(+)-K(+)-2Cl(-) cotransporter expression in rat skeletal muscle.

    PubMed

    Wong, J A; Fu, L; Schneider, E G; Thomason, D B

    1999-07-01

    Doubt has been raised about the expression of a functional Na(+)-K(+)-2Cl(-) cotransporter in rat skeletal muscle. In this study we present molecular and functional evidence for expression of a protein having the characteristics of a cotransporter. RT-PCR of RNA isolated from rat soleus muscle with primers to a conserved putative membrane-spanning domain resulted in a single product of predicted size. Sequencing of the product showed that it bears >90% homology with known rodent NKCC1 (BSC2) cotransporters. RNase protection assay of RNA isolated from the rat soleus muscle also identified this sequence. Immunologic detection of the cotransporter with two different antibodies indicated the presence of cotransporter protein, perhaps more than one, in blots of total muscle protein. Immunohistochemical detection by confocal microscopy localized the majority of expression of the protein to the muscle fibers. Functional studies of cotransport activity also indicate the appropriate sensitivity to inhibitors and ion dependence. Taken together, these data support the presence and function of Na(+)-K(+)-2Cl(-) cotransporter activity in the soleus muscle of the rat.

  9. Phosphate transporters: a tale of two solute carrier families.

    PubMed

    Virkki, Leila V; Biber, Jürg; Murer, Heini; Forster, Ian C

    2007-09-01

    Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.

  10. Isoosmotic shrinkage by self-stimulated outward Na-K-Cl cotransport in quail erythrocytes.

    PubMed

    Lou, Josè M; Garay, Ricardo P; Gimenez, Ignacio; Escanero, Jesus F; Alda, Josè O

    2003-10-01

    In mammalian erythrocytes, outward fluxes by the Na-K-Cl cotransporter NKCC have been clearly characterized, but NKCC fluxes are small and their physiological role, if any, is poorly understood. Avian erythrocytes are nucleated cells, in which a physiologically relevant NKCC acts as a cell volume regulator. Therefore, we further investigated outward cotransport and its relation to cell volume by using quail erythrocytes. Unlike human or rat erythrocytes, quail erythrocytes exhibit outward cotransport fluxes: (1) of high magnitude [maximal rate of bumetanide-sensitive Li+ efflux=12.3+/-1.1 mmol (l cells x h)(-1), mean +/-SEM, n=23] and (2) strongly stimulated by hyperosmotic media (by 100-200% in 500 mosmol/l media). Na+- or Li+-loaded quail erythrocytes exhibited rapid cell shrinkage when incubated in K+-free media. Thus, cell volume remained stationary up to 5-10 min and then started to shrink. Shrinkage was first slow, but progressively accelerated, finally reaching a new stationary state where cell volume had decreased by about 20%. Such rapid cell shrinkage was fully inhibited by bumetanide and was associated with outward cotransport stimulation (self-stimulated or an auto-catalytic process, i.e. a reaction stimulated by its product). External K+ reduced all these phenomena, but significant cell shrinkage was still observed at an external K+ concentration of 2.8 mM. K+ removal failed to stimulate outward cotransport in hypotonic media (250 mosmol/l). Finally, reincubation of shrunken erythrocytes in physiological saline revealed that inward cotransport was stimulated more than outward cotransport. In conclusion, isoosmotic hypokalaemia drives a rapid shrinkage of quail erythrocytes, due to auto-catalytic net outward cotransport stimulation. Whether this is an experimental curiosity or indicates that outward cotransport can have some physiological role deserves further investigation.

  11. K-Cl cotransporters, cell volume homeostasis, and neurological disease

    PubMed Central

    Kahle, Kristopher T.; Khanna, Arjun R.; Alper, Seth L.; Adragna, Norma C.; Lauf, Peter K.; Sun, Dandan; Delpire, Eric

    2016-01-01

    K+-Cl− cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773

  12. Robert K. Crane—Na+-glucose cotransporter to cure?

    PubMed Central

    Hamilton, Kirk L.

    2013-01-01

    Dr. Robert K. Crane made major contributions to our understanding of carbohydrate metabolism and transport of the intestine over a very long and productive career. This Perspective examines, briefly, his early life and academic positions, but more importantly, this Perspective highlights his contributions to the understanding of coupled Na+-glucose absorption by the small intestine. I discuss how his early hypothesis of a “cotransport” of sodium and glucose ushered in and provided the physiological explanation for the clinical treatment of acute diarrhea and cholera when using oral rehydration therapy (ORT). ORT saves millions of lives each year. Certainly, humankind is better off because of Crane's hypothesis of the Na+-glucose cotransporter that he put forth over 50 years ago? PMID:23525627

  13. Routes of epithelial water flow: aquaporins versus cotransporters.

    PubMed

    Mollajew, Rustam; Zocher, Florian; Horner, Andreas; Wiesner, Burkhard; Klussmann, Enno; Pohl, Peter

    2010-12-01

    The routes water takes through membrane barriers is still a matter of debate. Although aquaporins only allow transmembrane water movement along an osmotic gradient, cotransporters are believed to be capable of water transport against the osmotic gradient. Here we show that the renal potassium-chloride-cotransporter (KCC1) does not pump a fixed amount of water molecules per movement of one K(+) and one Cl(-), as was reported for the analogous transporter in the choroid plexus. We monitored water and potassium fluxes through monolayers of primary cultured renal epithelial cells by detecting tiny solute concentration changes in the immediate vicinity of the monolayer. KCC1 extruded K(+) ions in the presence of a transepithelial K(+) gradient, but did not transport water. KCC1 inhibition reduced epithelial osmotic water permeability P(f) by roughly one-third, i.e., the effect of inhibitors was small in resting cells and substantial in hormonal stimulated cells that contained high concentrations of aquaporin-2 in their apical membranes. The furosemide or DIOA (dihydroindenyl-oxy-alkanoic acid)-sensitive water flux was much larger than expected when water passively followed the KCC1-mediated ion flow. The inhibitory effect of these drugs on water flux was reversed by the K(+)-H(+) exchanger nigericin, indicating that KCC1 affects water transport solely by K(+) extrusion. Intracellular K(+) retention conceivably leads to cell swelling, followed by an increased rate of endocytic AQP2 retrieval from the apical membrane. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging.

    PubMed

    Ohnishi, Mutsuko; Razzaque, M Shawkat

    2010-09-01

    Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho(-/-)) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho(-/-) mice. Genetically reducing serum phosphate levels in klotho(-/-) mice by generating a NaPi2a and klotho double-knockout (NaPi2a(-/-)/klotho(-/-)) strain resulted in amelioration of premature aging-like features. The NaPi2a(-/-)/klotho(-/-) double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a(-/-)/klotho(-/-) mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho(-/-) mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the aging process and

  15. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.

    PubMed

    Tenenhouse, Harriet S; Sabbagh, Yves

    2002-06-01

    Over the past decade, three classes of Na/Pi cotransporters have been identified in mammalian kidney. The type IIa Na/Pi cotransporter, Npt2, is the most abundant and is expressed in the brush-border membrane of renal proximal tubular cells where the bulk of filtered inorganic phosphate (Pi) is reabsorbed. Disruption of the Npt2 gene in mice underscored the importance of Npt2 in the overall maintenance of Pi homeostasis and demonstrated that Npt2 is the target for regulation of proximal tubular Pi reabsorption by parathyroid hormone and dietary Pi. The regulation is post-transcriptional and largely occurs by brush-border membrane retrieval and insertion of Npt2 protein. Of great interest is the recent identification of novel Pi regulating genes, PHEX and FGF23, that play a role in the pathophysiology of inherited (X-linked hypophosphatemia and autosomal dominant hypophosphatemic rickets) and acquired (oncogenic hypophosphatemic rickets) disorders characterized by renal Pi wasting and associated skeletal abnormalities. Studies are currently underway to elucidate the molecular basis for impaired renal Pi reabsorption in these disorders and to determine the precise physiological role of PHEX and FGF-23 in the regulation of Pi homeostasis.

  16. Establishing a definitive stoichiometry for the Na+/monocarboxylate cotransporter SMCT1.

    PubMed

    Coady, Michael J; Wallendorff, Bernadette; Bourgeois, Francis; Charron, Francois; Lapointe, Jean-Yves

    2007-10-01

    Several different stoichiometries have been proposed for the Na(+)/monocarboxylate cotransporter SMCT1, including variable Na(+)/substrate stoichiometry. In this work, we have definitively established an invariant 2:1 cotransport stoichiometry for SMCT1. By using two independent means of assay, we first showed that SMCT1 exhibits a 2:1 stoichiometry for Na(+)/lactate cotransport. Radiolabel uptake experiments proved that, unlike lactate, propionic acid diffuses passively through oocyte membranes and, consequently, propionate is a poor candidate for stoichiometric determination by these methods. Although we previously determined SMCT1 stoichiometry by measuring reversal potentials, this technique produced erroneous values, because SMCT1 simultaneously mediates both an inwardly rectifying cotransport current and an outwardly rectifying anionic leak current; the leak current predominates in the range where reversal potentials are observed. We therefore employed a method that compared the effect of halving the external Na(+) concentration to the effect of halving the external substrate concentration on zero-current potentials. Both lactate and propionate were cotransported through SMCT1 using 2:1 stoichiometries. The leak current passing through the protein has a 1 osmolyte/charge stoichiometry. Identification of cotransporter stoichiometry is not always a trivial task and it can lead to a much better understanding of the transport activity mediated by the protein in question.

  17. Establishing a Definitive Stoichiometry for the Na+/Monocarboxylate Cotransporter SMCT1

    PubMed Central

    Coady, Michael J.; Wallendorff, Bernadette; Bourgeois, Francis; Charron, Francois; Lapointe, Jean-Yves

    2007-01-01

    Several different stoichiometries have been proposed for the Na+/monocarboxylate cotransporter SMCT1, including variable Na+/substrate stoichiometry. In this work, we have definitively established an invariant 2:1 cotransport stoichiometry for SMCT1. By using two independent means of assay, we first showed that SMCT1 exhibits a 2:1 stoichiometry for Na+/lactate cotransport. Radiolabel uptake experiments proved that, unlike lactate, propionic acid diffuses passively through oocyte membranes and, consequently, propionate is a poor candidate for stoichiometric determination by these methods. Although we previously determined SMCT1 stoichiometry by measuring reversal potentials, this technique produced erroneous values, because SMCT1 simultaneously mediates both an inwardly rectifying cotransport current and an outwardly rectifying anionic leak current; the leak current predominates in the range where reversal potentials are observed. We therefore employed a method that compared the effect of halving the external Na+ concentration to the effect of halving the external substrate concentration on zero-current potentials. Both lactate and propionate were cotransported through SMCT1 using 2:1 stoichiometries. The leak current passing through the protein has a 1 osmolyte/charge stoichiometry. Identification of cotransporter stoichiometry is not always a trivial task and it can lead to a much better understanding of the transport activity mediated by the protein in question. PMID:17526579

  18. Mechanism of phosphate-induced calcification in rat aortic tissue culture: possible involvement of Pit-1 and apoptosis.

    PubMed

    Mune, Sachiko; Shibata, Maki; Hatamura, Ikuji; Saji, Fumie; Okada, Tadashi; Maeda, Yuka; Sakaguchi, Toshifumi; Negi, Shigeo; Shigematsu, Takashi

    2009-12-01

    Hyperphosphataemia is a known contributing factor in the progression of vascular calcification in dialysis patients. The cellular mechanisms underlying phosphate-induced calcification are still unclear despite intense study, so in this study, we investigated the possible involvement of the type III sodium-dependent phosphate cotransporter, Pit-1, in an aortic tissue culture model. Aortic segments from 9-week-old male Sprague-Dawley rats were incubated in serum-supplemented medium for 10 days. The phosphate concentration of the medium was elevated to induce calcification, which was assessed by histology and calcium content. Phosphonoformic acid (PFA) was used to inhibit phosphate uptake. The involvement of apoptosis was examined using the terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labelling (TUNEL) assay, caspase 3 activation, and inhibition of apoptosis using a general caspase inhibitor. Phenotypic changes in vascular smooth muscle cells (VSMC) were assessed using expression of osteochondrogenic differentiation markers. Medial vascular calcification was induced in aortas cultured in a high phosphate medium. PFA decreased the rates of calcification and apoptosis of VSMC in the media, concomitant with calcification. Caspase inhibitor reduced calcification. No phenotypic transition of VSMC was seen in this model. These results indicate that phosphate uptake through the type III sodium-dependent phosphate cotransporter, Pit-1, leads to induction of apoptosis and subsequent calcification of VSMC.

  19. Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit

    PubMed Central

    Zeuthen, T; Meinild, A-K; Loo, D D F; Wright, E M; Klaerke, D A

    2001-01-01

    In order to study its role in steady state water transport, the Na+-glucose cotransporter (SGLT1) was expressed in Xenopus laevis oocytes; both the human and the rabbit clones were tested. The transport activity was monitored as a clamp current and the flux of water followed optically as the change in oocyte volume. SGLT1 has two modes of water transport. First, it acts as a molecular water pump: for each 2 Na+ and 1 sugar molecule 264 water molecules were cotransported in the human SGLT1 (hSGLT1), 424 for the rabbit SGLT1 (rSGLT1). Second, it acts as a water channel. The cotransport of water was tightly coupled to the sugar-induced clamp current. Instantaneous changes in clamp current induced by changes in clamp voltage were accompanied by instantaneous changes in the rate of water transport. The cotransported solution was predicted to be hypertonic, and an osmotic gradient built up across the oocyte membrane with continued transport; this resulted in an additional osmotic influx of water. After 5-10 min a steady state was achieved in which the total influx was predicted to be isotonic with the intracellular solution. With the given expression levels, the steady state water transport was divided about equally between cotransport, osmosis across the SGLT1 and osmosis across the native oocyte membrane. Coexpression of AQP1 with the SGLT1 increased the water permeability more than 10-fold and steady state isotonic transport was achieved after less than 2 s of sugar activation. One-third of the water was cotransported, and the remainder was osmotically driven through the AQP1. The data suggest that SGLT1 has three roles in isotonic water transport: it cotransports water directly, it supplies a passive pathway for osmotic water transport, and it generates an osmotic driving force that can be employed by other pathways, for example aquaporins. PMID:11251046

  20. Regulation of renal Na-(K)-Cl cotransporters by vasopressin.

    PubMed

    Bachmann, Sebastian; Mutig, Kerim

    2017-08-01

    Vasopressin (AVP) induces antidiuresis, thus playing an essential role in body water and electrolyte homeostasis. Its antidiuretic effects are mediated chiefly by V2 vasopressin receptors (V2R) expressed along the distal nephron and collecting duct epithelia. NaCl reabsorption in the distal nephron, which includes the thick ascending limb (TAL) and distal convoluted tubule (DCT), largely depends on the activity of two structurally related Na-(K)-Cl cotransporters, NKCC2 in TAL and NCC in DCT. AVP-induced activation of these transporters contributes to urine concentration and renal electrolyte reabsorption. Previous work has specified molecular pathways mediating the effects of V2R activation in TAL and DCT, and protein networks involved in intracellular trafficking and phosphoregulation of the two transporters have been identified. This review summarizes recent progress in understanding AVP signalling mechanisms that are responsible for the activation of NKCC2 and NCC. Implications in the pathophysiology of diseases such as nephrogenic diabetes insipidus, diabetes mellitus and salt-sensitive hypertension are discussed in this context.

  1. Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures

    PubMed Central

    Puskarjov, Martin; Kahle, Kristopher T; Ruusuvuori, Eva; Kaila, Kai

    2014-01-01

    Seizures are a common manifestation of acute neurologic insults in neonates and are often resistant to the standard antiepileptic drugs that are efficacious in children and adults. The paucity of evidence-based treatment guidelines, coupled with a rudimentary understanding of disease pathogenesis, has made the current treatment of neonatal seizures empiric and often ineffective, highlighting the need for novel therapies. Key developmental differences in γ-aminobutyric acid (GABA)ergic neurotransmission between the immature and mature brain, and trauma-induced alterations in the function of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2, probably contribute to the poor efficacy of standard antiepileptic drugs used in the treatment of neonatal seizures. Although CCCs are attractive drug targets, bumetanide and other existing CCC inhibitors are suboptimal because of pharmacokinetic constraints and lack of target specificity. Newer approaches including isoform-specific NKCC1 inhibitors with increased central nervous system penetration, and direct and indirect strategies to enhance KCC2-mediated neuronal chloride extrusion, might allow therapeutic modulation of the GABAergic system for neonatal seizure treatment. PMID:24802699

  2. SLC5 Sodium-Anion Cotransporters and Renal Urate Transport

    NASA Astrophysics Data System (ADS)

    Mount, David B.; Kwon, Charles Y.; Plata, Consuelo; Romero, Michael F.; Zandi-Nejad, Kambiz

    2007-04-01

    Renal urate transport plays a key role in determining the concentration of circulating uric acid. The reabsorption of filtered urate by the renal proximal tubule appears to require apical sodium-dependent anion transport and the apical URAT1 urate-anion exchanger, in that sodium-dependent transport of lactate, ketoacids, nicotinate, and pyrazinoate (PZA) increases the intracellular concentration of substrates for the subsequent exchange with luminal urate. We have identified SLC5A8 and SLC5A12 as candidates for the sodium-anion cotransporter that collaborates with URAT1. Both transporters function as sodium-dependent nicotinate/monocarboxylate/PZA transporters. Localization studies reveal serial co-expression of these transporters with URAT1, with Slc5a12 in the early proximal tubule and Slc5a8 in S2 and S3 segments. Renal urate excretion is conceivably affected by changes in the activity of SLC5A8, SLC5A12, and/or URAT1, with implications for the pathogenesis of hyperuricemia, nephrolithiasis, and related disorders.

  3. Contributions of different NaPi cotransporter isoforms to dietary regulation of P transport in the pyloric caeca and intestine of rainbow trout.

    PubMed

    Sugiura, Shozo H; Ferraris, Ronaldo P

    2004-05-01

    The anatomical proximity and embryological relationship of the pyloric caeca (PC) and small intestine of rainbow trout has led to the frequent assumption, on little evidence, that they have the same enzymes and transporters. In trout, the PC is an important absorptive organ for dietary nutrients, but its role in dietary P absorption has not been reported. We found that apical inorganic phosphate (Pi) transport in PC comprises carrier-mediated and diffusive components. Carrier-mediated uptake was energy- and temperature-dependent, competitively inhibited and Na(+)-independent, and greater than the Na(+)-dependent intestinal uptake. Pi uptake in PC was pH-sensitive in the presence of Na(+). Despite the active Pi transport system in PC, high postprandial luminal Pi concentrations ( approximately 20 mmol l(-1)) indicate that diffusive uptake represents approximately 92% of total Pi uptake in PC of fed fish. The nucleotide sequence of a sodium-phosphate cotransporter (NaPi-II) isoform isolated from PC was approximately 8% different from the intestinal NaPi cotransporter. PC-NaPi mRNA was abundant in PC but rare in the intestine, whereas intestinal NaPi mRNA was abundant in the intestine but scarce in PC. Dietary P restriction reduced serum and bone P concentrations, increased intestine-type, but not PC-type, NaPi mRNA in PC, and increased Pi uptake in intestine but not in PC. Intestine-type NaPi expression may be useful for predicting dietary P deficiency.

  4. Cell swelling, co-transport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules.

    PubMed Central

    Beck, J S; Potts, D J

    1990-01-01

    1. Isolated, perfused rabbit proximal tubules were used to study the effects of activation of the apical membrane sodium co-transporters, and of the effects of osmotically induced cell swelling, upon cell volume, basolateral membrane potential and apparent partial conductance of potassium. 2. Activation of electrogenic apical sodium co-transport caused a depolarization of the basolateral membrane and a reduction of the basolateral apparent potassium transference number. This was followed by a spontaneous partial recovery of potential and increase in apparent potassium transference number. 3. Stimulation of apical sodium co-transport led to a sustained increase in cell volume. 4. A sustained increase in cell volume (of similar magnitude to that seen after activation of apical membrane sodium co-transporters) was also caused by reduction of bath and perfusate osmolality by removal of 89 mmol l-1 mannitol from both lumen and bath solutions. 5. This reduction in bath and perfusate osmolality also led to a basolateral membrane hyperpolarization and an increase in basolateral apparent potassium transference number. 6. These observations support the possibility that some of the partial recovery of basolateral membrane potential (Vb1) during apical sodium co-transport stimulation is due to a cell volume sensitive change in basolateral potassium conductance. PMID:2213582

  5. Functional characterization of NBC4: a new electrogenic sodium-bicarbonate cotransporter.

    PubMed

    Sassani, Pejvak; Pushkin, Alexander; Gross, Eitan; Gomer, Alla; Abuladze, Natalia; Dukkipati, Ramanath; Carpenito, Gerardo; Kurtz, Ira

    2002-02-01

    Sodium-bicarbonate cotransporters are homologous membrane proteins mediating the electrogenic or electroneutral transport of sodium and bicarbonate. Of the functionally characterized sodium-bicarbonate cotransporters (NBC), NBC1 proteins are known to be electrogenic. Here we report the cloning and functional characterization of NBC4c, a new splice variant of the NBC4 gene. At the amino acid level, NBC4c is 56% identical to NBC1 protein variants and 40% identical to electroneutral NBC3. When expressed in mammalian cells, NBC4c mediates electrogenic sodium-bicarbonate cotransport. The transport of sodium and bicarbonate is chloride independent and is completely inhibited by DIDS. NBC4c transcripts were detected in several tissues including brain, heart, kidney, testis, pancreas, muscle, and peripheral blood leukocytes. The data indicate that NBC4c is an electrogenic sodium-bicarbonate cotransporter. The finding that both NBC1 and NBC4c proteins function as electrogenic sodium-bicarbonate cotransporters will aid in determining the structural motifs responsible for this unique functional property, which distinguishes these transporters from other members of the bicarbonate transporter superfamily.

  6. Water permeation through the sodium-dependent galactose cotransporter vSGLT.

    PubMed

    Choe, Seungho; Rosenberg, John M; Abramson, Jeff; Wright, Ernest M; Grabe, Michael

    2010-10-06

    It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. A novel strategy for the treatment of diabetes mellitus - sodium glucose co-transport inhibitors.

    PubMed

    Niazi, Asfandyar Khan; Niazi, Saad Hameed

    2010-12-01

    Diabetes is one of the most common chronic diseases, affecting almost 3 million in Canada alone and is characterized by increased blood glucose levels. Treatment varies from lifestyle changes to oral anti-diabetics and/or insulin. Sodium glucose co-transport inhibitors may offer promising treatment for patients suffering from diabetes. The inhibitors act by increasing the loss of glucose in urine by decreasing the reabsorption of glucose from the proximal tubules of nephrons. The aim of this review was to assess the efficacy of sodium glucose co-transport inhibitors in the treatment of diabetes as well as any adverse effects. Databases such as MEDLINE, COCHRANE and EMBASE were systematically searched for literature on the efficacy of sodium glucose co-transport inhibitors in improving the glycemic control of patients with diabetes. Research showed that sodium glucose co-transport inhibitors significantly decreased blood glucose levels by increasing glucosuria. Due to the diuretic effects of these inhibitors, diabetic patients who were suffering from hypertension showed a decrease in blood pressure. The caloric loss associated with these inhibitors resulted in weight loss as well. The most common adverse effect seen in patients on these medications was mycotic infection of the urinary or genital tract. Sodium glucose co-transport inhibitors may be an effective line of treatment for diabetes. Although short-term research has shown these drugs to be safe and well-tolerated, studies should be conducted to assess the long-term effects of these drugs.

  8. Intestinal brush border membrane Na+/glucose cotransporter functions in situ as a homotetramer

    SciTech Connect

    Stevens, B.R.; Fernandez, A.; Hirayama, B.; Wright, E.M.; Kempner, E.S. )

    1990-02-01

    The functional unit molecular size of the intestinal brush border membrane-bound Na+/glucose cotransporter was determined by radiation inactivation. Purified brush border membrane vesicles preserved in cryoprotectant buffer were irradiated (-135 degrees C) with high-energy electrons from a 13-MeV (1 eV = 1.602 x 10(-19) J) linear accelerator at doses from 0 to 70 Mrad (1 rad = 0.01 Gy). After each dose, the cotransporter was investigated with respect to (i) Na(+)-dependent transport activity and (ii) immunologic blot analysis with antibodies against the cloned rabbit intestinal cotransporter. Increasing radiation decreased the maximal Na(+)-dependent cotransporter activity Jmax without affecting apparent Km. The size of the transporting functional unit was 290 +/- 5 kDa. Immunologic blot analysis of brush border membranes gave a single band of Mr 70,000, which decreased in intensity with increased radiation dose and gave a target size of 66 +/- 11 kDa. We conclude that activity of the intestinal Na+/glucose cotransporter in situ in the brush border membrane requires the simultaneous presence of four intact, independent, identical subunits arranged as a homotetramer.

  9. [The sodium-potassium-chloride cotransport of the cell membrane].

    PubMed

    Urazaev, A Kh

    1998-01-01

    Discovery and active exploration of the furosemid-sensitive derived-active co-transport of sodium-potassium-chlorine ions took place in the end of 1970-es-1980-es. This transportation mechanism was discovered in various types of cells, both of plant and of animal origin. This review describes properties of the transportation process, which was most comprehensive explored in experiments with erythrocytes, epithelium cells and muscles. The review covers the following properties: anion and cation selectivity of the chlorine transportation, its sensitivity to the specific blocking agents (furocemid, bumetanid, etc.), stoichiometry of the transportation process, etc. For energy source, the chlorine transportation is based on transmembrane electrochemical gradient for sodium ions. The article provides the most recent results of investigation of the chemical nature of the molecule of the chlorine membrane transport. Based on various studies, the molecule of this protein weighs from 120 to 200 kD, includes about 1200 amino acid residua, and forms long cytoplasmatic NH2 and COOH-termini. The gene encoding the amino acid sequence has been cloned. The article discusses the issues of regulation of the chlorine transportation. Humoral control of intensity of the chlorine transportation has been mostly studied in experiments with plain muscles, the issues related to nervous regulation--with only skeleton muscle fibers. The article provides specific data on the mechanisms of the above types of the physiological regulation of active chlorine transportation. In general, the humoral factors, which increase the intracellular concentration of cAMF stimulate chlorine transportation. On the contrary, the hormones, which increase concentration of cGMF in cytoplasm reduce its activity in plain muscles. The discussion of the mechanisms of the nervous controls of the chlorine transportation in the skeleton muscles includes the original results of the author. These results indicate that the

  10. Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: Effects of seawater and smolting

    USGS Publications Warehouse

    Pelis, R.M.; Zydlewski, J.; McCormick, S.D.

    2001-01-01

    Na+-K+-2Cl- cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl- cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl- cotransporter abundance, large and numerous Na+-K+-2Cl- cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl- cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl- cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl- cotransporter in salt secretion by gill chloride cells of teleost fish.

  11. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    PubMed

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Structural and functional significance of water permeation through cotransporters

    PubMed Central

    Zeuthen, Thomas; Gorraitz, Edurne; Her, Ka; Wright, Ernest M.; Loo, Donald D. F.

    2016-01-01

    Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified and mutated residues lining the sugar transport pathway to cysteine. The mutants were expressed in Xenopus oocytes, and the unitary water and urea permeabilities were determined before and after modifying the cysteine side chain with reversible methanethiosulfonate reagents. The results demonstrate that water and urea follow the sugar transport pathway through SGLT1. The changes in permeability, increases or decreases, with side-chain modifications depend on the location of the mutation in the region of external or internal gates, or the sugar binding site. These changes in permeability are hypothesized to be due to alterations in steric hindrance to water and urea, and/or changes in protein folding caused by mismatching of side chains in the water pathway. Water permeation through SGLT1 and other transporters bears directly on the structural mechanism for the transport of polar solutes through these proteins. Finally, in vitro experiments on mouse small intestine show that SGLT1 accounts for two-thirds of the passive water flow across the gut. PMID:27791155

  13. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  14. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum.

    PubMed Central

    Ganguly, T C; Liu, Y; Hyde, J F; Hagenbuch, B; Meier, P J; Vore, M

    1994-01-01

    We have shown that Na+/taurocholate co-transport activity is decreased in pregnancy, but rebounds post partum relative to non-pregnant controls, and that activity can be increased by treatment with ovine prolactin [Ganguly, Hyde and Vore (1993) J. Pharmacol. Exp. Ther. 267, 82-87]. To determine the basis for these effects, Na+/taurocholate co-transport was determined in purified basolateral liver plasma-membrane (bLPM) vesicles and compared with steady-state mRNA levels encoding the Na+/taurocholate-co-transporting polypeptide (Ntcp) in non-pregnant controls, pregnant rats (19-20 days pregnant), rats post partum (48 h post partum) and rats post partum treated with bromocriptine to inhibit prolactin secretion. Na+/taurocholate co-transport activity (nmol/5 s per mg of protein) in bLPM was decreased from 10.4 +/- 1.8 in non-pregnant controls to 7.9 +/- 0.6 in bLPM in pregnant rats, but rebounded to 17.5 +/- 1.3 post partum; treatment of rats post partum with bromocriptine to inhibit prolactin secretion decreased activity to 14.1 +/- 0.9. Northern and slot-blot analyses revealed similar changes in mRNA for Ntcp, so that a positive correlation was observed between Na+/taurocholate co-transport activity and Ntcp mRNA. Furthermore, treatment of ovariectomized rats with ovine prolactin increased Ntcp mRNA 10-fold compared with solvent-treated controls, consistent with the 2-fold increase in Vmax, for Na+/taurocholate co-transport in isolated hepatocytes. These data are the first to demonstrate endogenous physiological regulation by prolactin of Ntcp mRNA in parallel with Na+/taurocholate co-transport activity. Images Figure 2 PMID:7945260

  15. Exploring the intricate regulatory network controlling the thiazide-sensitive NaCl cotransporter (NCC).

    PubMed

    Dimke, Henrik

    2011-12-01

    The thiazide-sensitive NaCl cotransporter (NCC) plays key roles in renal electrolyte transport and blood pressure maintenance. Regulation of this cotransporter has received increased attention recently, prompted by the discovery that mutations in the with-no-lysine (WNK) kinases are the molecular explanation for pseudohypoaldosteronism type II (PHAII). Studies suggest that WNK4 regulates NCC via two distinct pathways, depending on its state of activation. Furthermore, an intact STE20-related proline-alanine-rich kinase (SPAK)/oxidative stress response 1 kinase (OSR1) pathway was found to be necessary for a WNK4 PHAII mutation to increase NCC phosphorylation and blood pressure in mice. The mouse protein 25α is a novel regulator of the SPAK/OSR1 kinase family, which greatly increases their activity. The phosphorylation status of NCC and the WNK is regulated by the serum- and glucocorticoid-inducible kinase 1, suggesting novel mechanisms whereby aldosterone modulates NCC activity. Dephosphorylation of NCC by protein phosphatase 4 strongly influences the activity of the cotransporter, confirming an important role for NCC phosphorylation. Finally, γ-adducin increases NCC activity. This stimulatory effect is dependent on the phosphorylation status of the cotransporter. γ-Adducin only binds the dephosphorylated cotransporter, suggesting that phosphorylation of NCC causes the dissociation of γ-adducin. Since γ-adducin is not a kinase, it is tempting to speculate that the protein exerts its function by acting as a scaffold between the dephosphorylated cotransporter and the regulatory kinase. As more molecular regulators of NCC are identified, the system-controlling NCC activity is becoming increasingly complex. This intricacy confers an ability to integrate a variety of stimuli, thereby regulating NCC transport activity and ultimately blood pressure.

  16. Choroid plexus potassium cotransport: modulation by osmotic stress and external potassium.

    PubMed

    Keep, R F; Xiang, J

    1995-06-01

    The choroid plexuses are involved in CSF secretion and CSF K homeostasis. This study examines the potential role of K cotransport in these two processes using isolated rat lateral ventricle choroid plexuses. Bumetanide-sensitive 86Rb influx and efflux were measured to assess the response of K cotransport to changes in media osmolality and K concentration. Alterations in osmolality had no effect on K uptake (in the presence or absence of bumetanide). However, the efflux rate constant for K was 0.29 +/- 0.02, 0.44 +/- 0.04, and 0.84 +/- 0.06 min-1 in 240, 300, and 424 mOsm/kg solutions, respectively (p < 0.001). This increase in efflux with osmolality, an opposite effect to that found in many cells, was solely due to enhanced K cotransport. The increased cotransport may be involved in limiting brain shrinkage during hyperosmotic stress if the cotransporter is present on the apical membrane. The rate of bumetanide-sensitive efflux was unaffected by changes in external [K]. However, the rate of K uptake (measured on return to normal [K] media) was reduced gradually by exposure to low [K]. It was 21 +/- 1, 19 +/- 3, 13 +/- 2, and 6 +/- 1 nmol/mg/min after 0, 10, 30, and 60-min exposure to 1 mM K. Sixty minutes of exposure to 1 mM [K] abolished the bumetanide-sensitive K uptake present in plexuses exposed continually to normal media. This modulation of K cotransport by external [K] may be important in CSF K homeostasis by limiting K loss from the CSF if CSF [K] is low.

  17. Intracellular Hypertonicity Is Responsible for Water Flux Associated with Na+/Glucose Cotransport

    PubMed Central

    Charron, François M.; Blanchard, Maxime G.; Lapointe, Jean-Yves

    2006-01-01

    Detection of a significant transmembrane water flux immediately after cotransporter stimulation is the experimental basis for the controversial hypothesis of secondary active water transport involving a proposed stoichiometry for the human Na+/glucose cotransporter (SGLT1) of two Na+, one glucose, and 264 water molecules. Volumetric measurements of Xenopus laevis oocytes coexpressing human SGLT1 and aquaporin can be used to detect osmotic gradients with high sensitivity. Adding 2 mM of the substrate α-methyl-glucose (αMG) created mild extracellular hypertonicity and generated a large cotransport current with minimal cell volume changes. After 20, 40, and 60 s of cotransport, the return to sugar-free, isotonic conditions was accompanied by measurable cell swelling averaging 0.051, 0.061, and 0.077 nl/s, respectively. These water fluxes are consistent with internal hypertonicities of 1.5, 1.7, and 2.2 mOsm for these cotransport periods. In the absence of aquaporin, the measured hypertonicites were 4.6, 5.0, and 5.3 mOsm for the same cotransport periods Cotransport-dependent water fluxes, previously assumed to be water cotransport, could be largely explained by hypertonicities of such amplitudes. Using intracellular Na+ injection and Na+-selective electrode, the intracellular diffusion coefficient for Na+ was estimated at 0.29 ± 0.03 × 10−5 cm2 s−1. Using the effect of intracellular αMG injection on the SGLT1-mediated outward current, the intracellular diffusion coefficient of αMG was estimated at 0.15 ± 0.01 × 10−5 cm2 s−1. Although these intracellular diffusion coefficients are much lower than in free aqueous solution, a diffusion model for a single solute in an oocyte would require a diffusion coefficient three times lower than estimated to explain the local osmolyte accumulation that was experimentally detected. This suggests that either the diffusion coefficients were overestimated, possibly due to the presence of convection, or the diffusion in

  18. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    PubMed

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. Copyright © 2016 the American Physiological Society.

  19. Cotransport of water by the Na+ −K+ −2Cl− cotransporter NKCC1 in mammalian epithelial cells

    PubMed Central

    Hamann, Steffen; Herrera-Perez, José J; Zeuthen, Thomas; Alvarez-Leefmans, Francisco J

    2010-01-01

    Water transport by the Na+ −K+ −2Cl− cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl− fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored by intracellular self-quenching of the fluorescent dye calcein. Isosmotic removal of external Cl− or Na+ caused a rapid efflux of water from the cells, which was inhibited by bumetanide (10 μm). When returned to the control solution there was a rapid water influx that required the simultaneous presence of external Na+ and Cl−. The water influx could proceed uphill, against a transmembrane osmotic gradient, suggesting that energy contained in the ion fluxes can be transferred to the water flux. The influx of water induced by changes in external [Cl−] saturated in a sigmoidal fashion with a Km of 60 mm, while that induced by changes in external [Na+] followed first order kinetics with a Km of about 40 mm. These parameters are consistent with ion transport mediated by NKCC1. Our findings support a previous investigation, in which we showed water transport by NKCC1 to be a result of a balance between ionic and osmotic gradients. The coupling between salt and water transport in NKCC1 represents a novel aspect of cellular water homeostasis where cells can change their volume independently of the direction of an osmotic gradient across the membrane. This has relevance for both epithelial and symmetrical cells. PMID:20819947

  20. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling.

    PubMed

    Xu, Jinxing; Yuan, Haoliang; Ran, Ting; Zhang, Yanmin; Liu, Haichun; Lu, Shuai; Xiong, Xiao; Xu, Anyang; Jiang, Yulei; Lu, Tao; Chen, Yadong

    2015-08-01

    Sodium-dependent glucose cotransporters (SGLTs) play an important role in glucose reabsorption in the kidney and have been identified as promising targets to treat diabetes. Because of the side effects like glucose and galactose malabsorption by targeting SGLT1, highly selective SGLT2 inhibitors are more promising in the treatment of diabetes. To understand the mechanism of selectivity, we conducted selectivity-based three-dimensional quantitative structure-activity relationship studies to highlight the structure requirements for highly selective SGLT2 inhibitors. The best comparative molecular field analysis and comparative molecular similarity indices analysis models showed the noncross-validated coefficient (r(2) ) of 0.967 and 0.943, respectively. The predicted correlation coefficients (r(2) pred ) of 0.974 and 0.938 validated the reliability and predictability of these models. Besides, homology models of SGLT2 and SGLT1 were also constructed to investigate the selective mechanism from structure-based perspective. Molecular dynamics simulation and binding free energy calculation were performed on the systems of a potent and selective compound interacting with SGLT2 and SGLT1 to compare the different binding modes. The simulation results showed that the stretch of the methylthio group on Met241 had an essential effect on the different binding modes between SGLT1 and SGLT2, which was consistent with the three-dimensional quantitative structure-activity relationship analysis. Hydrogen bond analysis and binding free energy calculation revealed that SGLT2 binding complex was more stable and favorable than SGLT1 complex, which was highly correlated with the experimental results. Our obtained results give useful information for the investigation of the inhibitors' selectivity between SGLT2 and SGLT1 and will help for further development of highly selective SGLT2 inhibitors.

  1. Regulation of serum phosphate

    PubMed Central

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  2. Phosphate Uptake by Phosphate-Starved Euglena

    PubMed Central

    BLUM, J. J.

    1966-01-01

    Phosphate-deprived Euglena acquire the ability to rapidly in-corporate added phosphate and, also, synthesize an induced acid phosphatase localized in the pellicle. The phosphate uptake system is saturated at low concentrations of phosphate and is inhibited by dinitrophenol, by low temperature, by K+, Li+, and Na+ ions, and competitively by arsenate. The orthophosphate incorporated into the cell is rapidly converted into organic forms but enough remains unesterified to suggest that the uptake is an active transport process. The data do not rule out the possibility that the induced phosphatase is involved in the transport process. PMID:5924104

  3. Phosphate homeostasis and disorders.

    PubMed

    Manghat, P; Sodi, R; Swaminathan, R

    2014-11-01

    Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.

  4. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  5. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  6. Cotransport of clay colloids and viruses in water saturated columns packed with glass beads

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C.; Syngouna, V. I.

    2012-12-01

    This study is focused on the cotransport of clay colloids and viruses in saturated columns packed with glass beads. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model colloids. Virus and clay transport as well as virus-clay cotransport were examined at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The results indicated that the mass recovery of viruses and clay colloids decreased as the pore water velocity decreased; whereas, for the cotransport experiments no clear trend was observed. Temporal moments of the breakthrough concentrations suggested that, in the absence of clay colloids, both MS2 and ΦX174 traveled faster than the conservative tracer only at the highest pore water velocity tested. For the other two velocities both viruses were slightly retarded. The presence of clays significantly influenced the irreversible virus deposition onto glass beads. Both MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b. Also, MS2 exhibited greater affinity than ΦX174 for both clays. The results suggest that Lewis acid-base interactions worked to the advantage of clay colloid attachment but did not significantly affect virus attachment onto glass beads. Schematic illustration of the six concentration components involved in cotransport experiments of this study.

  7. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish

    USGS Publications Warehouse

    Hiroi, J.; Yasumasu, S.; McCormick, S.D.; Hwang, P.-P.; Kaneko, T.

    2008-01-01

    Cation-chloride cotransporters, such as the Na+/K +/2Cl- cotransporter (NKCC) and Na+/Cl - cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify 'freshwater-type' and 'seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na+/K+-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model by MRCs in

  8. WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway.

    PubMed

    de Los Heros, Paola; Kahle, Kristopher T; Rinehart, Jesse; Bobadilla, Norma A; Vázquez, Norma; San Cristobal, Pedro; Mount, David B; Lifton, Richard P; Hebert, Steven C; Gamba, Gerardo

    2006-02-07

    SLC12A cation/Cl- cotransporters are mutated in human disease, are targets of diuretics, and are collectively involved in the regulation of cell volume, neuronal excitability, and blood pressure. This gene family has two major branches with different physiological functions and inverse regulation: K-Cl cotransporters (KCC1-KCC4) mediate cellular Cl- efflux, are inhibited by phosphorylation, and are activated by dephosphorylation; Na-(K)-Cl cotransporters (NCC and NKCC1/2) mediate cellular Cl- influx and are activated by phosphorylation. A single kinase/phosphatase pathway is thought to coordinate the activities of these cotransporters in a given cell; however, the mechanisms involved are as yet unknown. We previously demonstrated that WNK3, a paralog of serine-threonine kinases mutated in hereditary hypertension, is coexpressed with several cation/Cl- cotransporters and regulates their activity. Here, we show that WNK3 completely prevents the cell swelling-induced activation of KCC1-KCC4 in Xenopus oocytes. In contrast, catalytically inactive WNK3 abolishes the cell shrinkage-induced inhibition of KCC1-KCC4, resulting in a >100-fold stimulation of K-Cl cotransport during conditions in which transport is normally inactive. This activation is completely abolished by calyculin A and cyclosporine A, inhibitors of protein phosphatase 1 and 2B, respectively. Wild-type WNK3 activates Na-(K)-Cl cotransporters by increasing their phosphorylation, and catalytically inactive kinase inhibits Na-(K)-Cl cotransporters by decreasing their phosphorylation, such that our data suggest that WNK3 is a crucial component of the kinase/phosphatase signaling pathway that coordinately regulates the Cl- influx and efflux branches of the SLC12A cotransporter family.

  9. Phosphate absorption across multiple epithelia in the Pacific hagfish (Eptatretus stoutii)

    PubMed Central

    Schultz, Aaron G.; Guffey, Samuel C.; Clifford, Alexander M.

    2014-01-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms, but in seawater, Pi is a limiting nutrient. This study investigated the primary mechanisms of Pi uptake in Pacific hagfish (Eptatretus stoutii) using ex vivo physiological and molecular techniques. Hagfish were observed to have the capacity to absorb Pi from the environment into at least three epithelial surfaces: the intestine, skin, and gill. Pi uptake in all tissues was concentration dependent, and saturable Pi transport was observed in the skin and gill at <2.0 mmol/l Pi. Gill and intestinal Pi uptake was sodium dependent, but Pi uptake into the skin increased under low sodium conditions. Gill Pi transport exhibited an apparent affinity constant ∼0.23–0.6 mmol/l Pi. A complete sequence of a type II sodium phosphate cotransporter (Slc34a) was obtained from the hagfish gill. Phylogenetic analysis of the hagfish Slc34a transporter indicates that it is earlier diverging than, and/or ancestral to, the other identified vertebrate Slc34a transporters (Slc34a1, Slc34a2, and Slc34a3). With the use of RT-PCR, the hagfish Slc34a transcript was detected in the intestine, skin, gill, and kidney, suggesting that this may be the transporter involved in Pi uptake into multiple epithelia in the hagfish. This is the first measurement of Pi uptake across the gill or skin of any vertebrate animal and first sodium phosphate cotransporter identified in hagfish. PMID:24944247

  10. The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos.

    PubMed

    Nichane, Massimo; Van Campenhout, Claude; Pendeville, Hélène; Voz, Marianne L; Bellefroid, Eric J

    2006-10-01

    The embryonic pronephric kidneys of Xenopus and zebrafish serve as models to study vertebrate nephrogenesis. Recently, multiple subdomains within the Xenopus pronephros have been defined based on the expression of several transport proteins. In contrast, very few studies on the expression of renal transporters have been conducted in zebrafish. We have recently shown that the anterior and posterior segments of the zebrafish pronephric duct may correspond to the proximal tubule and distal tubule/duct compartments of the Xenopus and higher vertebrate pronephros, respectively. Here, we report the embryonic expression pattern of the Na(+)/PO(4) cotransporter SLC20A1 (PiT1/Glvr-1) gene encoding a type III sodium-dependent phosphate cotransporter in Xenopus and zebrafish. In Xenopus, SLC20A1 mRNA is expressed in the somitic mesoderm and lower level of expression is detected in the neural tube, eye, and neural crest cells. From stage 25, SLC20A1 is also detectable in the developing pronephros where expression is restricted to the late portion of the distal pronephric tubules. In zebrafish, SLC20A1 is transcribed from mid-somitogenesis in the anterior part of the pronephros where its expression corresponds to the rostral portion of the expression of other proximal tubule-specific markers. Outside the pronephros, lower level of SLC20A1 expression is also observed in the posterior cardinal and caudal veins. Based on the SLC20A1 expression domain and that of other transporters, four segments have been defined within the zebrafish pronephros. Together, our data reveal that the zebrafish and Xenopus pronephros have non-identical proximo-distal organizations.

  11. Anionic leak currents through the Na+/monocarboxylate cotransporter SMCT1.

    PubMed

    Coady, Michael J; Wallendorff, Bernadette; Bourgeois, Francis; Lapointe, Jean-Yves

    2010-01-01

    SMCT1 is a Na-coupled cotransporter of short chain monocarboxylates, which is expressed in the apical membrane of diverse epithelia such as colon, renal cortex, and thyroid. We previously reported that SMCT1 cotransport was reduced by extracellular Cl(-) replacement with cyclamate(-) and that the protein exhibited an ostensible anionic leak current. In this paper, we have revisited the interaction between small monovalent anions and SMCT cotransport and leak currents. We found that the apparent Cl(-) dependence of cotransport was due to inhibition of this protein by the replacement anion cyclamate, whereas several other replacement anions function as substrates for SMCT1; a suitable replacement anion (MES(-)) was identified. The observed outward leak currents represented anionic influx and favored larger anions (NO(3)(-)>I(-)>Br(-)>Cl(-)); currents in excess of 1 muA (at +50 mV) could be observed and exhibited a quasilinear relationship with anion concentrations up to 100 mM. Application of 25 mM bicarbonate did not produce measurable leak currents. The leak current displayed outward rectification, which disappeared when external Na(+) was replaced by N-methyl-d-glucamine(+). More precisely, external Na(+) blocked the leak current in both directions, but its K(i) value rose rapidly when membrane potential became positive. Thus SMCT1 possesses a anionic leak current that becomes significant whenever external Na(+) concentration is reduced. The presence of this leak current may represent a second function for SMCT1 in addition to cotransporting short chain fatty acids, and future experiments will determine whether this function serves a physiological role in tissues where SMCT1 is expressed.

  12. A novel strategy for the treatment of diabetes mellitus - sodium glucose co-transport inhibitors

    PubMed Central

    Niazi, Asfandyar Khan; Niazi, Saad Hameed

    2010-01-01

    Background: Diabetes is one of the most common chronic diseases, affecting almost 3 million in Canada alone and is characterized by increased blood glucose levels. Treatment varies from lifestyle changes to oral anti-diabetics and/or insulin. Sodium glucose co-transport inhibitors may offer promising treatment for patients suffering from diabetes. The inhibitors act by increasing the loss of glucose in urine by decreasing the reabsorption of glucose from the proximal tubules of nephrons. Aims: The aim of this review was to assess the efficacy of sodium glucose co-transport inhibitors in the treatment of diabetes as well as any adverse effects. Materials and Methods: Databases such as MEDLINE, COCHRANE and EMBASE were systematically searched for literature on the efficacy of sodium glucose co-transport inhibitors in improving the glycemic control of patients with diabetes. Results: Research showed that sodium glucose co-transport inhibitors significantly decreased blood glucose levels by increasing glucosuria. Due to the diuretic effects of these inhibitors, diabetic patients who were suffering from hypertension showed a decrease in blood pressure. The caloric loss associated with these inhibitors resulted in weight loss as well. The most common adverse effect seen in patients on these medications was mycotic infection of the urinary or genital tract. Conclusion: Sodium glucose co-transport inhibitors may be an effective line of treatment for diabetes. Although short-term research has shown these drugs to be safe and well-tolerated, studies should be conducted to assess the long-term effects of these drugs. PMID:22558567

  13. Liver X receptor-activating ligands modulate renal and intestinal sodium–phosphate transporters

    PubMed Central

    Caldas, Yupanqui A.; Giral, Hector; Cortázar, Michael A.; Sutherland, Eileen; Okamura, Kayo; Blaine, Judith; Sorribas, Victor; Koepsell, Hermann; Levi, Moshe

    2012-01-01

    Cholesterol is pumped out of the cells in different tissues, including the vasculature, intestine, liver, and kidney, by the ATP-binding cassette transporters. Ligands that activate the liver X receptor (LXR) modulate this efflux. Here we determined the effects of LXR agonists on the regulation of phosphate transporters. Phosphate homeostasis is regulated by the coordinated action of the intestinal and renal sodium–phosphate (NaPi) transporters, and the loss of this regulation causes hyperphosphatemia. Mice treated with DMHCA or TO901317, two LXR agonists that prevent atherosclerosis in ApoE or LDLR knockout mice, significantly decreased the activity of intestinal and kidney proximal tubular brush border membrane sodium gradient-dependent phosphate uptake, decreased serum phosphate, and increased urine phosphate excretion. The effects of DMHCA were due to a significant decrease in the abundance of the intestinal and renal NaPi transport proteins. The same effect was also found in opossum kidney cells in culture after treatment with either agonist. There was increased nuclear expression of the endogenous LXR receptor, a reduction in NaPi4 protein abundance (the main type II NaPi transporter in the opossum cells), and a reduction in NaPi co-transport activity. Thus, LXR agonists modulate intestinal and renal NaPi transporters and, in turn, serum phosphate levels. PMID:21677638

  14. Liver X receptor-activating ligands modulate renal and intestinal sodium-phosphate transporters.

    PubMed

    Caldas, Yupanqui A; Giral, Hector; Cortázar, Michael A; Sutherland, Eileen; Okamura, Kayo; Blaine, Judith; Sorribas, Victor; Koepsell, Hermann; Levi, Moshe

    2011-09-01

    Cholesterol is pumped out of the cells in different tissues, including the vasculature, intestine, liver, and kidney, by the ATP-binding cassette transporters. Ligands that activate the liver X receptor (LXR) modulate this efflux. Here we determined the effects of LXR agonists on the regulation of phosphate transporters. Phosphate homeostasis is regulated by the coordinated action of the intestinal and renal sodium-phosphate (NaPi) transporters, and the loss of this regulation causes hyperphosphatemia. Mice treated with DMHCA or TO901317, two LXR agonists that prevent atherosclerosis in ApoE or LDLR knockout mice, significantly decreased the activity of intestinal and kidney proximal tubular brush border membrane sodium gradient-dependent phosphate uptake, decreased serum phosphate, and increased urine phosphate excretion. The effects of DMHCA were due to a significant decrease in the abundance of the intestinal and renal NaPi transport proteins. The same effect was also found in opossum kidney cells in culture after treatment with either agonist. There was increased nuclear expression of the endogenous LXR receptor, a reduction in NaPi4 protein abundance (the main type II NaPi transporter in the opossum cells), and a reduction in NaPi co-transport activity. Thus, LXR agonists modulate intestinal and renal NaPi transporters and, in turn, serum phosphate levels.

  15. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  16. Genistein affects parathyroid gland and NaPi 2a cotransporter in an animal model of the andropause.

    PubMed

    Pantelic, J; Ajdzanovic, V; Medigovic, I; Mojic, M; Trifunovic, S; Milosevic, V; Filipovic, B

    2013-06-01

    This study aimed to examine the effects of genistein on the structural and functional changes in parathyroid glands (PTG) and sodium phosphate cotransporter 2a (NaPi 2a) in orchidectomized rats. Sixteen-month-old Wistar rats were divided into sham-operated (SO), orchidectomized (Orx) and genistein-treated orchidectomized (Orx+G) groups. Genistein (30 mg/kg/day) was administered subcutaneously for 3 weeks, while the controls received vehicle alone. PTG was analyzed histomorphometrically, while the expressions of NaPi 2a mRNA/protein levels from kidneys were determined by real time PCR and Western blots. Serum and urine parameters were determined biochemically. The PTG volume in Orx rats was increased by 30% (p<0.05), compared to the SO group. Orx+G treatment increased the PTG volume by 35% and 75% (p<0.05) respectively, comparing to Orx and SO animals. Orchidectomy led to increment of serum PTH by 27% (p<0.05) compared to the SO group, Orx+G decreased it by 18% (p<0.05) comparing to Orx animals. NaPi 2a expression in Orx animals was reduced in regards to its abundance in SO animals, although it was increased in Orx+G group compared to the Orx. Phosphorus urine content of Orx animals was raised by 12% (p<0.05) compared to that for the SO group, while Orx+G induced a 17% reduction (p<0.05) in regards to Orx animals. Our study shows that Orx increases PTG volume and serum PTH level, while protein expression of NaPi 2a is reduced. Application of genistein attenuates the orchidectomy-induced changes in serum PTH level, stimulates the expression of NaPi 2a and reduces urinary Pi excretion, implying potential beneficial effects on andropausal symptoms.

  17. Why nature chose phosphates.

    PubMed

    Westheimer, F H

    1987-03-06

    Phosphate esters and anhydrides dominate the living world but are seldom used as intermediates by organic chemists. Phosphoric acid is specially adapted for its role in nucleic acids because it can link two nucleotides and still ionize; the resulting negative charge serves both to stabilize the diesters against hydrolysis and to retain the molecules within a lipid membrane. A similar explanation for stability and retention also holds for phosphates that are intermediary metabolites and for phosphates that serve as energy sources. Phosphates with multiple negative charges can react by way of the monomeric metaphosphate ion PO3- as an intermediate. No other residue appears to fulfill the multiple roles of phosphate in biochemistry. Stable, negatively charged phosphates react under catalysis by enzymes; organic chemists, who can only rarely use enzymatic catalysis for their reactions, need more highly reactive intermediates than phosphates.

  18. Transport of inorganic phosphate in Leishmania infantum and compensatory regulation at low inorganic phosphate concentration.

    PubMed

    Russo-Abrahão, T; Alves-Bezerra, M; Majerowicz, D; Freitas-Mesquita, A L; Dick, C F; Gondim, K C; Meyer-Fernandes, J R

    2013-03-01

    Proliferation of Leishmania infantum depends on exogenous inorganic phosphate (P(i)) but little is known about energy metabolism and transport of P(i) across the plasma membrane in Leishmania sp. We investigated the kinetics of 32P(i) transport, the influence of H+ and K+ ionophores and inhibitors, and expression of the genes for the Na+:P(i) and H+:P(i) cotransporters. The proton ionophore FCCP, bafilomycin A1 (vacuolar ATPase inhibitor), nigericin (K+ ionophore) and SCH28080 (an inhibitor of H+, K(+)-ATPase) all inhibited the transport of P(i). This transport showed Michaelis-Menten kinetics with K0.5 and V(max) values of 0.016 +/- 0.002 mM and 564.9 +/- 18.06 pmol x h(-1) x 10(-7) cells, respectively. These values classify the P(i) transporter of L. infantum among the high-affinity transporters, a group that includes Pho84 of Saccharomyces cerevisiae. Two sequences were identified in the L. infantum genome that code for phosphate transporters. However, transcription of the PHO84 transporter was 10-fold higher than the PHO89 transporter in this parasite. Accordingly, P(i) transport and LiPho84 gene expression were modulated by environmental P(i) variations. These findings confirm the presence of a P(i) transporter in L. infantum, similar to PHO84 in S. cerevisiae, that contributes to the acquisition of inorganic phosphate and could be involved in growth and survival of the promastigote forms of L. infantum. This work provides the first description of a PHO84-like P(i) transporter in a Trypanosomatide parasite of the genus Leishmania, responsible for many infections worldwide.

  19. Regulation of the Na+-K+(NH4+)-2Cl- cotransporter of rat submandibular glands.

    PubMed

    Chaïb, N; Kabré, E; Métioui, M; Franco, M C; Dehaye, J P

    1999-09-01

    A cellular suspension from rat submandibular glands was exposed to different concentrations of NH4Cl, and the variations of the intracellular concentration of calcium ([Ca2+]i) and the intracellular pH (pHi) were measured using fura-2 and 2',7'-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein. More than 5 mmol/l NH4Cl significantly increased the [Ca2+]i without affecting the response to 100 micromol/l carbachol. When exposed to 1 and 5 mmol/l NH4Cl, the cells acidified immediately. At 30 mmol/l, NH4Cl first alkalinized the cells and the pHi subsequently dropped. This drop reflects the uptake of NH4+ ions that dissociate to NH3 and H+ in the cytosol. These protons are exchanged for extracellular sodium by the Na+/H+ exchanger because the presence of an inhibitor of the exchanger in the medium increased the acidification induced by 1 mmol/l NH4Cl. Ouabain partly blocked the uptake of NH4+. In the combined presence of ouabain and bumetanide (an inhibitor of the Na+-K+-2Cl- cotransporter), 1 mmol/l NH4Cl alkalinized the cells. The contribution of the Na/K ATPase and the Na+-K+-2Cl- cotransporter in the uptake of NH4+ was independent of the presence of calcium in the medium. Isoproterenol increased the uptake of NH4+ by the cotransporter. Conversely, 1 mmol/l extracellular ATP blocked the basal uptake of NH4+ by the cotransporter. This inhibition was reversed by extracellular magnesium or Coomassie Blue. It was mimicked by benzoyl-ATP but not by CTP, GTP, UTP, ADP, or ADPbetaS. ATP only slightly inhibited the increase of cyclic AMP (-22%) by isoproterenol but fully blocked the stimulation of the cotransporter by the beta-adrenergic agonist. ATP increased the release of 3H-arachidonic acid from prelabeled cells but SK&F 96365, an imidazole-based cytochrome P450 inhibitor, did not affect the inhibition by ATP. It is concluded that the activation of a purinoceptor inhibits the basal and the cyclic AMP-stimulated activity of the Na+-K+-2Cl- cotransporter.

  20. Preclinical studies of VS‐505: a non‐absorbable highly effective phosphate binder

    PubMed Central

    Chen, Yung‐wu; Wong, Jonathan T; Wessale, Jerry L

    2016-01-01

    Abstract Background and Purpose Phosphate imbalance is often present in chronic kidney disease (CKD), and it contributes to a higher cardiovascular mortality rate. A phosphate binder is typically part of a treatment strategy for controlling phosphate imbalance. However, safety concerns and low compliance are two well‐recognized disadvantages of on‐market phosphate binders. This report describes the preclinical studies of VS‐505, a non‐absorbable, calcium‐ and aluminum‐free, plant‐derived polymer currently being evaluated in haemodialysis patients in Australia. Experimental Approach Normal Sprague Dawley (SD) rats or uraemic SD rats induced by 5/6 nephrectomy fed a high‐phosphate diet were treated with VS‐505 or sevelamer (0.05–10% in food) for 5 and 28 days respectively. Key Results Urinary and serum phosphate levels were significantly elevated in untreated rats, and were decreased by VS‐505 and sevelamer. VS‐505 increased faecal phosphate levels in a dose‐dependent manner. High‐phosphate diet also caused an increase in serum FGF‐23 and parathyroid hormone in nephrectomized (NX) rats, effects prevented by VS‐505 or sevelamer. Significant aortic calcification was observed in NX rats treated with 5% sevelamer, whereas VS‐505 at all doses tested did not show effects. VS‐505 had no effects on small intestine histomorphology and intestinal sodium‐dependent phosphate cotransporter gene expression. In vitro characterizations showed that VS‐505 has a relatively high density and low expansion volume when exposed to simulated gastric fluid. Conclusions and Implications VS‐505 is a safe and effective phosphate binder and may offer the advantage of having a reduced pill burden and minimal GI side effects for CKD patients. PMID:27156057

  1. Phosphate, inositol and polyphosphates.

    PubMed

    Livermore, Thomas M; Azevedo, Cristina; Kolozsvari, Bernadett; Wilson, Miranda S C; Saiardi, Adolfo

    2016-02-01

    Eukaryotic cells have ubiquitously utilized the myo-inositol backbone to generate a diverse array of signalling molecules. This is achieved by arranging phosphate groups around the six-carbon inositol ring. There is virtually no biological process that does not take advantage of the uniquely variable architecture of phosphorylated inositol. In inositol biology, phosphates are able to form three distinct covalent bonds: phosphoester, phosphodiester and phosphoanhydride bonds, with each providing different properties. The phosphoester bond links phosphate groups to the inositol ring, the variable arrangement of which forms the basis of the signalling capacity of the inositol phosphates. Phosphate groups can also form the structural bridge between myo-inositol and diacylglycerol through the phosphodiester bond. The resulting lipid-bound inositol phosphates, or phosphoinositides, further expand the signalling potential of this family of molecules. Finally, inositol is also notable for its ability to host more phosphates than it has carbons. These unusual organic molecules are commonly referred to as the inositol pyrophosphates (PP-IPs), due to the presence of high-energy phosphoanhydride bonds (pyro- or diphospho-). PP-IPs themselves constitute a varied family of molecules with one or more pyrophosphate moiety/ies located around the inositol. Considering the relationship between phosphate and inositol, it is no surprise that members of the inositol phosphate family also regulate cellular phosphate homoeostasis. Notably, the PP-IPs play a fundamental role in controlling the metabolism of the ancient polymeric form of phosphate, inorganic polyphosphate (polyP). Here we explore the intimate links between phosphate, inositol phosphates and polyP, speculating on the evolution of these relationships. © 2016 Authors; published by Portland Press Limited.

  2. Cotransport of sodium and chloride by the adult mammalian choroid plexus

    SciTech Connect

    Johanson, C.E.; Sweeney, S.M.; Parmelee, J.T.; Epstein, M.H. )

    1990-02-01

    Cerebrospinal fluid formation stems primarily from the transport of Na and Cl in choroid plexus (CP). To characterize properties and modulation of choroidal transporters, we tested diuretics and other agents for ability to alter ion transport in vitro. Adult Sprague-Dawley rats were the source of CPs preincubated with drug for 20 min and then transferred to cerebrospinal fluid (CSF) medium containing 22Na or 36Cl with (3H)mannitol (extracellular correction). Complete base-line curves were established for cellular uptake of Na and Cl at 37 degrees C. The half-maximal uptake occurred at 12 s, so it was used to assess drug effects on rate of transport (nmol Na or Cl/mg CP). Bumetanide (10(-5) and 10(-4) M) decreased uptake of Na and Cl with maximal inhibition (up to 45%) at 10(-5) M. Another cotransport inhibitor, furosemide (10(-4) M), reduced transport of Na by 25% and Cl by 33%. However, acetazolamide (10(-4) M) and atriopeptin III (10(-7) M) significantly lowered uptake of Na (but not Cl), suggesting effect(s) other than on cotransport. The disulfonic stilbene 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 10(-4) M), known to inhibit Cl-HCO3 exchange, substantially reduced the transport of 36Cl. Bumetanide plus DIDS (both 10(-4) M) caused additive inhibition of 90% of Cl uptake, which provides strong evidence for the existence of both cotransport and antiport Cl carriers. Overall, this in vitro analysis, uncomplicated by variables of blood flow and neural tone, indicates the presence in rat CP of the cotransport of Na and Cl in addition to the established Na-H and Cl-HCO3 exchangers.

  3. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  4. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis.

    PubMed

    Rajasekeran, Harindra; Lytvyn, Yuliya; Cherney, David Z I

    2016-03-01

    Inhibition of sodium-glucose cotransporter 2 causes both glycosuria and natriuresis, leading to reductions in hyperglycemia, body weight, blood pressure, and proteinuria. The recently published EMPA-REG OUTCOME study demonstrated significant cardiovascular and mortality benefits of sodium-glucose cotransporter 2 inhibition with empagliflozin in patients with type 2 diabetes and established cardiovascular disease, and may suggest a broader role for sodium-glucose cotransporter 2 inhibition in patients with heart failure.

  5. The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter.

    PubMed

    Moreno, Erika; Plata, Consuelo; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R; Vázquez, Norma; Leyva-Ríos, Karla; Islas, León; Cutler, Christopher; Pacheco-Alvarez, Diana; Mercado, Adriana; Cariño-Cortés, Raquel; Castañeda-Bueno, María; Gamba, Gerardo

    2016-10-21

    The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule. NCC plays a key role in the regulation of blood pressure. Its inhibition with thiazides constitutes the primary baseline therapy for arterial hypertension. However, the thiazide-binding site in NCC is unknown. Mammals have only one gene encoding for NCC. The eel, however, contains a duplicate gene. NCCα is an ortholog of mammalian NCC and is expressed in the kidney. NCCβ is present in the apical membrane of the rectum. Here we cloned and functionally characterized NCCβ from the European eel. The cRNA encodes a 1043-amino acid membrane protein that, when expressed in Xenopus oocytes, functions as an Na-Cl cotransporter with two major characteristics, making it different from other known NCCs. First, eel NCCβ is resistant to thiazides. Single-point mutagenesis supports that the absence of thiazide inhibition is, at least in part, due to the substitution of a conserved serine for a cysteine at position 379. Second, NCCβ is not activated by low-chloride hypotonic stress, although the unique Ste20-related proline alanine-rich kinase (SPAK) binding site in the amino-terminal domain is conserved. Thus, NCCβ exhibits significant functional differences from NCCs that could be helpful in defining several aspects of the structure-function relationship of this important cotransporter. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Cotransport of clay colloids and viruses in water saturated columns packed with glass beads

    NASA Astrophysics Data System (ADS)

    Syngouna, V. I.; Chrysikopoulos, C. V.

    2012-04-01

    This study is focused on the cotransport of clay colloids and viruses in saturatedcolumns packed with glass beads. Bacteriophages MS2 and ΦΧ174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model colloids.The effect of three pore water velocities (0.38, 0.74, and 1.21 cm/min) on virus transport and virus-clay cotransport was examined. The results indicated that the mass recovery of viruses and clay colloids decreased as the pore water velocity decreased; whereas, for the cotransport experiments no clear trend was observed. Temporal moments of the breakthrough concentrations suggested that, in the absence of clay colloids, both MS2 and ΦX174 traveled faster than the conservative tracer only at the highest pore water velocity tested. For the other two velocities both viruses were slightly retarded. The presence of clays significantly influenced the irreversible virus deposition. Both MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b with MS2 exhibiting greater affinity than ΦX174 for both clays. The results suggest that electrostatic interactions play a vital role on virus adsorption onto both glass beads and clay colloids.

  7. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

    PubMed Central

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2015-01-01

    Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K+-Cl− cotransporter (KCC2), is the principal Cl−-extruder, whereas Na+-K+-Cl− cotransporter (NKCC1), is the major Cl−-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features. PMID:25653592

  8. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  9. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  10. Modeling the co-transport of viruses and colloids in unsaturated porous media.

    PubMed

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S

    2015-10-01

    A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interaction

  11. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.

    PubMed

    Hochman, D W; Schwartzkroin, P A

    2000-01-01

    Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low-chloride (low-[Cl(-)](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. Treatment with low-[Cl(-)](o) medium led to cessation of spontaneous synchronized bursting in CA1 >/=5-10 min before its disappearance from CA3. During the time that CA3 continued to burst spontaneously but CA1 was silent, electrical stimulation of the Schaffer collaterals showed that hyperexcited CA1 synaptic responses were maintained. Paired intracellular recordings from CA1 pyramidal cells showed that during low-[Cl(-)](o) treatment, the timing of action potential discharges became desynchronized; desynchronization was identified with phase lags in firing times of action potentials between pairs of neurons as well as a with a broadening and diminution of the CA1 field amplitude. Continued exposure to low-[Cl(-)](o) medium increased the degree of the firing-time phase shifts between pairs of CA1 pyramidal cells until the epileptiform CA1 field potential was abolished completely. Intracellular recordings during 4-aminopyridine (4-AP) treatment showed that prolonged low-[Cl(-)](o) exposure did not diminish the frequency or amplitude of spontaneous postsynaptic potentials. CA3 antidromic responses to Schaffer collateral stimulation were not significantly affected by prolonged low-[Cl(-)](o) exposure. In contrast to CA1, paired intracellular recordings from CA3 pyramidal cells showed that chloride-cotransport blockade did not cause a significant desynchronization of action potential firing times in the

  12. The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent

    PubMed Central

    Gross, E; Hawkins, K; Abuladze, N; Pushkin, A; Cotton, C U; Hopfer, U; Kurtz, I

    2001-01-01

    The pancreatic variant of the sodium bicarbonate cotransporter, pNBC1, mediates basolateral bicarbonate influx in the exocrine pancreas by coupling the transport of bicarbonate to that of sodium, with a 2 HCO3−:1 Na+ stoichiometry. The kidney variant, kNBC1, mediates basolateral bicarbonate efflux in the proximal tubule by coupling the transport of 3 HCO3− to 1 Na+. The molecular basis underlying the different stoichiometries is not known. pNBC1 and kNBC1 are 93 % identical to each other with 41 N-terminal amino acids of kNBC1 replaced by 85 distinct amino acids in pNBC1. In this study we tested the hypothesis that the differences in stoichiometry are related to the difference between the N-termini of the two proteins. Mouse renal proximal tubule and collecting duct cells, deficient in both pNBC1- and kNBC1-mediated electrogenic sodium bicarbonate cotransport function were transfected with either pNBC1 or kNBC1. Cells were grown on a permeable support to confluence, mounted in an Ussing chamber and permeabilized apically with amphotericin B. Current through the cotransporter was isolated as the difference current due to the reversible inhibitor dinitrostilbene disulfonate. The stoichiometry was calculated from the reversal potential by measuring the current-voltage relationships of the cotransporter at different Na+ concentration gradients. Our data indicate that both kNBC1 and pNBC1 can exhibit either a 2:1 or 3:1 stoichiometry depending on the cell type in which each is expressed. In proximal tubule cells, both pNBC1 and kNBC1 exhibit a 3 HCO3−:1 Na+ stoichiometry, whereas in collecting duct cells, they have a 2:1 stoichiometry. These data argue against the hypothesis that the stoichiometric differences are related to the difference between the N-termini of the two proteins. Moreover, the results suggest that as yet unidentified cellular factor(s) may modify the stoichiometry of these cotransporters. PMID:11251043

  13. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.

    PubMed

    Alvarado, F; Lherminier, M

    1982-08-01

    1. Sodium-dependent phenylalanine transport by guinea pig jejunum exhibits apparently pure K-type activation kinetics where Vmaxs is constant but KT decreases as [Na+] increases. At 0, 3 and 6 mM sodium, however, the results deviate from the expected hyperbolic kinetics and give a plateau. 2. This finding is interpreted in terms of the hypothesis that the outer face of the brush border membrane contains enough Na+ to support amino acid and Na+ cotransport at essentially maximal rates, even after preincubation of the tissues in vitro for several minutes in sodium-free buffers. 3. Sodium could move dynamically into this region from tissue stores and across the paracellular pathway. Passage of NaCl directly across the brush border also seems possible by reversal of the (neutral) Na+ and Cl- cotransport system. 4. To reconcile contradictory observations obtained in different laboratories, either with intact-epithelium preparations or with isolated brush border membrane vesicles, we include a theoretical analysis of the kinetics of organic solute and Na+ cotransport. For simplicity, this analysis is limited to cases of 1/2 stoichiometry and to neutral organic solutes such as sugars and monoamino-monocarboxylic amino acids. 5. Cotransport is explained in terms of a general, allosteric mechanism involving one site for S and another for Na+. There is no preferential order for binding, but only the ternary complex S-carrier-Na+ can translocate at quantitatively significant rates (obligatory activation kinetics). Since Na+ crosses the membrane as the free cation, under physiological conditions (inside-negative membrane potential) it will move towards its position of electrical equilibrium, hence unidirectionally. This explains why, with intact-tissue preparations, solute influx exhibits Michaelis-Menten kinetics. 6. By definition, cotransport kinetics are mixed type and involve effects on both KT and Vmaxs. Macroscopic deviations from this expected behaviour can be explained

  14. The significance of water co-transport for sustaining transpirational water flow in plants: a quantitative approach.

    PubMed

    Fricke, Wieland

    2015-02-01

    In a recent Opinion paper, Wegner (Journal of Experimental Botany 65, 381-392, 2014) adapts a concept developed for water flow in animal tissues to propose a model, which can explain the loading of water into the root xylem against a difference in water potential (Ψ) between the xylem parenchyma cell (more negative Ψ) and the xylem vessel (less negative Ψ). In this model, the transport of water is energized through the co-transport of ions such as K(+) and Cl(-) through plasma membrane-located transporters. The emphasis of the model is on the thermodynamic feasibility of the co-transport mechanism per se. However, what is lacking is a quantitative evaluation of the energy input required at the organismal level to sustain such a co-transport mechanism in the face of considerable net (transpirational) flows of water through the system. Here, we use a ratio of 500 water molecules being co-transported for every pair of K(+) and Cl(-) ions, as proposed for the animal system, to calculate the energy required to sustain daytime and night-time transpirational water flow in barley plants through a water co-transport mechanism. We compare this energy with the total daily net input of energy through photosynthetic carbon assimilation. Water co-transport can facilitate the filling of xylem against a difference in Ψ of 1.0MPa and puts a minor drain on the energy budget of the plant. Based on these findings it cannot be excluded that water co-transport in plants contributes significantly to xylem filling during night-time and possibly also daytime transpiration. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  16. Expression of the sodium potassium chloride cotransporter (NKCC1) and sodium chloride cotransporter (NCC) and their effects on rat lens transparency.

    PubMed

    Chee, K N; Vorontsova, I; Lim, J C; Kistler, J; Donaldson, P J

    2010-05-04

    To characterize the expression patterns of the Na+-K+-Cl(-) cotransporter (NKCC) 1 and NKCC2, and the Na+-Cl(-) cotransporter (NCC) in the rat lens and to determine if they play a role in regulating lens volume and transparency. RT-PCR was performed on RNA extracted from fiber cells to identify sodium dependent cotransporters expressed in the rat lens. Western blotting and immunohistochemistry, using NKCC1, NKCC2, and NCC antibodies, were used to verify expression at the protein level and to localize transporter expression. Organ cultured rat lenses were incubated in Artificial Aqueous Humor (AAH) of varying osmolarities or isotonic AAH that contained either the NKCC specific inhibitor bumetanide, or the NCC specific inhibitor thiazide for up to 18 h. Lens transparency was monitored with dark field microscopy, while tissue morphology and antibody labeling patterns were recorded using a confocal microscope. Molecular experiments showed that NKCC1 and NCC were expressed in the lens at both the transcript and protein levels, but NKCC2 was not. Immunohistochemistry showed that both NKCC1 and NCC were expressed in the lens cortex, but NCC expression was also found in the lens core. In the lens cortex the majority of labeling for both transporters was cytoplasmic in nature, while in the lens core, NCC labeling was associated with the membrane. Exposure of lenses to either hypotonic or hypertonic AAH had no noticeable effects on the predominantly cytoplasmic location of either transporter in the lens cortex. Incubation of lenses in isotonic AAH plus the NKCC inhibitor bumetanide for 18 h induced a cortical opacity that was initiated by a shrinkage of peripheral fiber cells and the dilation of the extracellular space between fiber cells in a deeper zone located some approximately 150 microm in from the capsule. In contrast, lenses incubated in isotonic AAH and the NCC inhibitor thiazide maintained both their transparency and their regular fiber cell morphology. We have

  17. Kinetic properties and Na+ dependence of rheogenic Na(+)-HCO3- co-transport in frog retinal pigment epithelium.

    PubMed Central

    la Cour, M

    1991-01-01

    1. Na(+)-HCO3- co-transport across the retinal membrane of the frog retinal pigment epithelium was studied by means of double-barrelled pH-selective microelectrodes. Transient changes in the intracellular pH were monitored in response to abrupt changes in the Na+ concentration on the retinal side of the epithelium. 2. The experiments were performed as follows. The Na(+)-HCO3- co-transport was inhibited by perfusing the retinal side of the epithelium with a Na(+)-free solution. The co-transport was then stimulated by changing the perfusate from the Na(+)-free solution to a solution which contained from 5 to 110 mM-Na+. The resulting inward Na(+)-HCO3- co-transport produced an intracellular alkalinization, the initial rate of which was used to calculate the initial rate of Na(+)-HCO3- co-transport, JHCO3-. 3. The Na+ dependence of the Na(+)-HCO3- co-transport was studied at two different values of extracellular pH (7.40 and 7.10), at constant extracellular HCO3- concentration (27.5 mM) and at two different extracellular HCO3- concentrations (27.5 mM and 55 mM) at constant extracellular pH (7.40). In these experiments, the calculated values of JHCO3- followed single Michaelis-Menten kinetics with respect to the extracellular Na+ concentration. 4. The data are consistent with a model in which the co-transporter has a single binding site for the Na+ ion with an apparent affinity constant (apparent Km) of 37 mM. The apparent affinity constant for Na+ was independent of the extracellular concentration of CO3(2-) in the range of 16-65 microM, and of the extracellular HCO3- concentration in the range 27.5-55 mM. 5. The NaCO3- ion-pair hypothesis, in which sodium binds to the co-transporter and is translocated across the cell membrane as the NaCO3- ion pair, was analysed. For stoichiometries 1:2 and 1:3 of the Na(+)-HCO3- co-transport, the NaCO3- ion-pair hypothesis was found incompatible with the data. 6. The intracellular buffer capacity as measured by the CO2 method was

  18. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    PubMed

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  19. VS-501: a novel, nonabsorbed, calcium- and aluminum-free, highly effective phosphate binder derived from natural plant polymer

    PubMed Central

    Wu-Wong, J Ruth; Chen, Yung-wu; Gaffin, Robert; Hall, Andy; Wong, Jonathan T; Xiong, Joseph; Wessale, Jerry L

    2014-01-01

    Inadequate control of serum phosphate in chronic kidney disease can lead to pathologies of clinical importance. Effectiveness of on-market phosphate binders is limited by safety concerns and low compliance due to high pill size/burden and gastrointestinal (GI) discomfort. VS-501 is a nonabsorbed, calcium- and aluminum-free, chemically modified, plant-derived polymer. In vitro studies show that VS-501 has a high density and a low swell volume when exposed to simulated gastric fluid (vs. sevelamer). When male Sprague–Dawley (SD) rats on normal diet were treated with VS-501 or sevelamer, serum phosphate was not significantly altered, but urinary phosphate levels decreased by >90%. VS-501 had no effect on serum calcium (Ca) or urinary Ca, while 3% sevelamer significantly increased serum and urine Ca. In 5/6 nephrectomized (NX) uremic SD rats on high-phosphate diet, increasing dietary phosphate led to an increase in serum and urine phosphate, which was prevented in rats treated with VS-501 or sevelamer (0.2–5% in food). High-phosphate diet also increased serum fibroblast growth factor-23 and parathyroid hormone in 5/6 NX rats that was prevented by VS-501 or sevelamer. VS-501 or sevelamer increased fecal phosphate in a dose-dependent manner. More aortic calcification was observed in 5/6 NX rats treated with 5% sevelamer, while VS-501 and sevelamer did not show significant effects on cardiac parameters, fibrosis, intestine histology, and intestinal sodium-dependent phosphate cotransporter gene expression. These results suggest that VS-501 is effective in binding phosphate with no effects on calcium homeostasis, and may have improved pill burden and GI side effects. PMID:25197556

  20. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    SciTech Connect

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  1. Bone effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus.

    PubMed

    Blevins, Thomas C; Farooki, Azeez

    2017-01-01

    Canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor approved for the treatment of type 2 diabetes mellitus (T2DM), lowers blood glucose by inhibiting renal glucose reabsorption and increasing urinary glucose excretion. It has been reported that SGLT2 inhibitors may have potential adverse effects on bone, including increased fracture risk and decreased bone mineral density (BMD). Across clinical studies, canagliflozin was not associated with meaningful changes in serum or urine calcium, vitamin D, or parathyroid hormone. Minimal increases in serum phosphate and magnesium that were within normal limits were seen with canagliflozin versus placebo. Canagliflozin was associated with increases in serum collagen type 1 beta-carboxy telopeptide (beta-CTX), a bone resorption marker, and osteocalcin, a bone formation marker. Decreases in total hip BMD were seen with canagliflozin 100 and 300 mg versus placebo after 2 years (-1.7%, -2.1%, -0.8%; differences of -0.9% and -1.2%), but not at other skeletal sites (normal age-related bone loss, ~0.5-1.0%/year). Changes in beta-CTX and total hip BMD were significantly associated with weight loss, which is known to increase bone resorption markers and decrease BMD. Canagliflozin was associated with a higher fracture incidence in an interim analysis of the CANagliflozin cardioVascular Assessment Study (CANVAS) in patients with a history or high risk of cardiovascular disease (incidence per 100 patient-years of 1.6, 1.6, and 1.1 with canagliflozin 100 and 300 mg and placebo), but not in other clinical studies of patients with T2DM. Fractures tended to occur as early as 12 weeks after initiating treatment and were primarily located in the distal parts of the upper and lower extremities. The reason for increased fracture risk with canagliflozin treatment is unknown, but is likely not related to a direct effect of canagliflozin on bone-related biomarkers. Data from ongoing canagliflozin studies, including CANVAS, will

  2. A quantitative description of the Na-K-2Cl cotransporter and its conformity to experimental data.

    PubMed

    Benjamin, B A; Johnson, E A

    1997-09-01

    In epithelia, the Na-K-2Cl cotransporter cooperates with other transport mechanisms to produce transepithelial NaCl transport. The reaction cycle for the Na-K-2Cl cotransporter has been established experimentally, but whether it accounts, quantitatively, for experimental findings has yet to be established. The differential equations that describe the reaction cycle were formulated, and the steady-state solutions were obtained by digital computation. Conformity between this description and the experimental data obtained from the literature was explored by automatic searches for the sets of rate constants that yielded statistical best-fits to the experimental data. Fits were obtained from renal epithelial cell lines, HeLa cells, and duck erythrocytes. Results show that the reaction cycle for the Na-K-2Cl cotransporter conforms well, quantitatively, with the experimental data.

  3. Oligomeric structure and minimal functional unit of the electrogenic sodium bicarbonate cotransporter NBCe1-A.

    PubMed

    Kao, Liyo; Sassani, Pakan; Azimov, Rustam; Pushkin, Alexander; Abuladze, Natalia; Peti-Peterdi, Janos; Liu, Weixin; Newman, Debra; Kurtz, Ira

    2008-09-26

    The electrogenic sodium bicarbonate cotransporter NBCe1-A mediates the basolateral absorption of sodium and bicarbonate in the proximal tubule. In this study the oligomeric state and minimal functional unit of NBCe1-A were investigated. Wild-type (wt) NBCe1-A isolated from mouse kidney or heterologously expressed in HEK293 cells was predominantly in a dimeric state as was shown using fluorescence energy transfer, pulldown, immunoprecipitation, cross-linking experiments, and nondenaturing perfluorooctanoate-PAGE. NBCe1-A monomers were found to be covalently linked by S-S bonds. When each of the 15 native cysteine residues were individually removed on a wt-NBCe1-A backbone, dimerization of the cotransporter was not affected. In experiments involving multiple native cysteine residue removal, both Cys(630) and Cys(642) in extracellular loop 3 were shown to mediate S-S bond formation between NBCe1-A monomers. When native NBCe1-A cysteine residues were individually reintroduced into a cysteineless NBCe1-A mutant backbone, the finding that a Cys(992) construct that lacked S-S bonds functioned normally indicated that stable covalent linkage of NBCe1-A monomers was not a necessary requirement for functional activity of the cotransporter. Studies using concatameric constructs of wt-NBCe1-A, whose activity is resistant to methanesulfonate reagents, and an NBCe1-A(T442C) mutant, whose activity is completely inhibited by methanesulfonate reagents, confirmed that NBCe1-A monomers are functional. Our results demonstrate that wt-NBCe1-A is predominantly a homodimer, dependent on S-S bond formation that is composed of functionally active monomers.

  4. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione.

    PubMed

    Rius, Maria; Hummel-Eisenbeiss, Johanna; Hofmann, Alan F; Keppler, Dietrich

    2006-04-01

    The multidrug resistance protein ABCC4 (MRP4), a member of the ATP-binding cassette superfamily, mediates ATP-dependent unidirectional efflux of organic anions out of cells. Previous studies showed that human ABCC4 is localized to the sinusoidal membrane of hepatocytes and mediates, among other substrates, the cotransport of reduced glutathione (GSH) with bile acids. In the present study, using inside-out membrane vesicles, we demonstrated that human ABCC4 in the presence of physiological concentrations of GSH has a high affinity for the taurine and glycine conjugates of the common natural bile acids as well as the unconjugated bile acid cholate. Chenodeoxycholyltaurine and chenodeoxycholylglycine were the GSH cosubstrates with the highest affinities for ABCC4, with K(m) values of 3.6 and 5.9 microM, respectively. Ursodeoxycholyltaurine and ursodeoxycholylglycine were cotransported together with GSH by ABCC4 with K(m) values of 7.8 and 12.5 microM, respectively, but no transport of ursodeoxycholate and deoxycholate was observed. The simultaneous transport of labeled GSH and cholyltaurine or cholylglycine was demonstrated in double-labeled cotransport experiments with a bile acid-to-GSH ratio of approximately 1:22. K(m) values of the bile acids for ABCC4 were in a range similar to those reported for the canalicular bile salt export pump ABCB11. Under physiological conditions, the sinusoidal ABCC4 may compete with canalicular ABCB11 for bile acids and thereby play a key role in determining the hepatocyte concentration of bile acids. In cholestatic conditions, ABCC4 may become a key pathway for efflux of bile acids from hepatocytes into blood.

  5. Na+,Cl- cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).

    PubMed

    Hoffmann, E K; Sjøholm, C; Simonsen, L O

    1983-01-01

    Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.

  6. Oligomeric Structure and Minimal Functional Unit of the Electrogenic Sodium Bicarbonate Cotransporter NBCe1-A*

    PubMed Central

    Kao, Liyo; Sassani, Pakan; Azimov, Rustam; Pushkin, Alexander; Abuladze, Natalia; Peti-Peterdi, Janos; Liu, Weixin; Newman, Debra; Kurtz, Ira

    2008-01-01

    The electrogenic sodium bicarbonate cotransporter NBCe1-A mediates the basolateral absorption of sodium and bicarbonate in the proximal tubule. In this study the oligomeric state and minimal functional unit of NBCe1-A were investigated. Wild-type (wt) NBCe1-A isolated from mouse kidney or heterologously expressed in HEK293 cells was predominantly in a dimeric state as was shown using fluorescence energy transfer, pulldown, immunoprecipitation, cross-linking experiments, and nondenaturing perfluorooctanoate-PAGE. NBCe1-A monomers were found to be covalently linked by S-S bonds. When each of the 15 native cysteine residues were individually removed on a wt-NBCe1-A backbone, dimerization of the cotransporter was not affected. In experiments involving multiple native cysteine residue removal, both Cys630 and Cys642 in extracellular loop 3 were shown to mediate S-S bond formation between NBCe1-A monomers. When native NBCe1-A cysteine residues were individually reintroduced into a cysteineless NBCe1-A mutant backbone, the finding that a Cys992 construct that lacked S-S bonds functioned normally indicated that stable covalent linkage of NBCe1-A monomers was not a necessary requirement for functional activity of the cotransporter. Studies using concatameric constructs of wt-NBCe1-A, whose activity is resistant to methanesulfonate reagents, and an NBCe1-AT442C mutant, whose activity is completely inhibited by methanesulfonate reagents, confirmed that NBCe1-A monomers are functional. Our results demonstrate that wt-NBCe1-A is predominantly a homodimer, dependent on S-S bond formation that is composed of functionally active monomers. PMID:18658147

  7. Effect of gravity on Pseudomonas putida and kaolinite cotransport in water saturated porous media

    NASA Astrophysics Data System (ADS)

    Vasiliadou, Ioanna A.; Chrysikopoulos, Constantinos V.

    2013-04-01

    Bacterial transport in porous media can be affected by several factors, such as cell concentration, water velocity, and attachment onto the solid matrix or suspended in the aqueous phase soil particles (e.g. clays). Gravity, also may significantly influence bacterial transport behavior in the subsurface. The present study aims to determine the gravity effect on transport and cotransport of bacteria species Pseudomonas (P.) putida and kaolinite colloid particles in porous media. Transport experiments were conducted under horizontal-, up- and down-flow conditions in water saturated columns packed with glass beads. These different flow modes represent different gravity effects, namely: no-, negative- and positive-gravity effect. Initial experiments were performed with bacteria and kaolinite alone in order to evaluate the effect of gravity on their individual transport characteristics. No significant gravity effect was observed on the transport of individual bacterial cells. In contrary, each different flow mode was found to differently affect kaolinite transport. Compared to the horizontal-flow mode, the kaolinite mass recovery was decreased during the up-flow mode, and increased during the down-flow mode. Finally, P. putida and kaolinite particles were injected simultaneously into the packed column in order to investigate their cotransport behavior under different flow modes. The experimental data indicated that the kaolinite-P. putida cotransport behavior was similar to that observed for the transport of individual kaolinite particles. It was observed that the P. putida mass recovery decreased during down-flow conditions. This phenomenon may be caused by the attachment of bacteria onto kaolinite particles, which were adsorbed onto the solid matrix.

  8. The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus

    PubMed Central

    Viitanen, Tero; Ruusuvuori, Eva; Kaila, Kai; Voipio, Juha

    2010-01-01

    GABAergic excitatory [K+]o transients can be readily evoked in the mature rat hippocampus by intense activation of GABAA receptors (GABAARs). Here we show that these [K+]o responses induced by high-frequency stimulation or GABAA agonist application are generated by the neuronal K+–Cl− cotransporter KCC2 and that the transporter-mediated KCl extrusion is critically dependent on the bicarbonate-driven accumulation of Cl− in pyramidal neurons. The mechanism underlying GABAergic [K+]o transients was studied in CA1 stratum pyramidale using intracellular sharp microelectrodes and extracellular ion-sensitive microelectrodes. The evoked [K+]o transients, as well as the associated afterdischarges, were strongly suppressed by 0.5–1 mm furosemide, a KCl cotransport inhibitor. Importantly, the GABAAR-mediated intrapyramidal accumulation of Cl−, as measured by monitoring the reversal potential of fused IPSPs, was unaffected by the drug. It was further confirmed that the reduction in the [K+]o transients was not due to effects of furosemide on the Na+-dependent K+-Cl− cotransporter NKCC1 or on intraneuronal carbonic anhydrase activity. Blocking potassium channels by Ba2+ enhanced [K+]o transients whereas pyramidal cell depolarizations were attenuated in further agreement with a lack of contribution by channel-mediated K+ efflux. The key role of the GABAAR channel-mediated anion fluxes in the generation of the [K+]o transients was examined in experiments where bicarbonate was replaced with formate. This anion substitution had no significant effect on the rate of Cl− accumulation, [K+]o response or afterdischarges. Our findings reveal a novel excitatory mode of action of KCC2 that can have substantial implications for the role of GABAergic transmission during ictal epileptiform activity. PMID:20211979

  9. Intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic.

    PubMed Central

    Umbach, J A; Coady, M J; Wright, E M

    1990-01-01

    The cloned rabbit intestinal Na+/glucose cotransporter was expressed in Xenopus oocytes, and transmembrane currents associated with this transporter were monitored using a two-electrode voltage clamp. Addition of D-glucose to a Na(+)-containing solution bathing these oocytes generated a current which was blocked by phlorizin. Water-injected control oocytes did not exhibit any currents under these conditions. The magnitude and shape of the currents were dependent on the extracellular glucose and Na+ concentrations and the membrane potential. At Vhold = -50 mV, the Km values for glucose and Na+ were 14 +/- 2 (N = 4) microM and 17 +/- 1 (N = 3) mM, respectively. These Km values and imax exhibited voltage dependence: increasing the membrane potential from -30 to -150 mV increased KGlcm and imax threefold and decreased KNam eightfold. The reversal potential (VR) of the phlorizin-sensitive, glucose-dependent current varied with log Nao+ (slope 46 +/- 6 [N = 9] mV). In the absence of sugar, a Na(+)-dependent, phlorizin-sensitive (Ki = 3 +/- 0.5 microM) current was detected only in RNA-injected oocytes. The amplitude of this current at -50 mV was 6 +/- 1% (N = 13) of the maximum current measured in the presence of D-glucose. The VR of this sugar-independent current varied with log Nao+ (slope 63 +/- 1 [N = 4] mV), indicating that the cotransporter may carry Na+ in the absence of sugar. We conclude that the Na+/glucose cotransporter is electrogenic and that investigations of currents associated with its operation can yield valuable insights into the mechanisms of solute translocation. PMID:1697483

  10. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases

    PubMed Central

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na+, K+ and 2Cl- inside the cell. It acts in concert with K+ Cl- co-transporter (KCC), which extrudes K+ and Cl- ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  11. Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells.

    PubMed Central

    Matosin-Matekalo, M; Mesonero, J E; Delezay, O; Poiree, J C; Ilundain, A A; Brot-Laroche, E

    1998-01-01

    The expression of the Na+/glucose cotransporter (SGLT1) in response to thyroid hormone [3,5,3'-tri-iodo-l-thyronine (T3)] was investigated in the enterocytic model cell line Caco-2/TC7. In differentiated cells, T3 treatment induces an average 10-fold increase in glucose consumption as well as a T3 dose-dependent increase in SGLT1 mRNA abundance. Only cells grown on glucose-containing media, but not on the non-metabolizable glucose analogue alpha-methylglucose (AMG), could respond to T3-treatment. The Vmax parameter of AMG transport was enhanced 6-fold by T3 treatment, whereas the protein abundance of SGLT1 was unchanged. The role of Na+ recycling in the T3-related activation of SGLT1 activity was suggested by both the large increase in Na+/K+ATPase protein abundance and the inhibition, down to control levels, of AMG uptake in ouabain-treated cells. Further investigations aimed at identifying the presence of a second cotransporter that could be expressed erroneously in the colon cancer cell line were unsuccessful: T3-treatment did not modify the sugar-specificity profile of AMG transport and did not induce the expression of SGLT2 as assessed by reverse transcription-PCR. Our results show that T3 can stimulate the SGLT1 cotransport activity in Caco-2 cells. Both transcriptional and translational levels of regulation are involved. Finally, glucose metabolism is required for SGLT1 expression, a result that contrasts with the in vivo situation and may be related to the fetal phenotype of the cells. PMID:9729472

  12. Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport.

    PubMed

    Gagnon, Marilène P; Bissonnette, Pierre; Deslandes, Louis-Martin; Wallendorff, Bernadette; Lapointe, Jean-Yves

    2004-01-01

    Over the last decade, several cotransport studies have led to the proposal of secondary active transport of water, challenging the dogma that all water transport is passive. The major observation leading to this interpretation was that a Na+ influx failed to reproduce the large and rapid cell swelling induced by Na+/solute cotransport. We have investigated this phenomenon by comparing a Na+/glucose (hSGLT1) induced water flux to water fluxes triggered either by a cationic inward current (using ROMK2 K+ channels) or by a glucose influx (using GLUT2, a passive glucose transporter). These proteins were overexpressed in Xenopus oocytes and assayed through volumetric measurements combined with double-electrode electrophysiology or radioactive uptake measurements. The osmotic gradients driving the observed water fluxes were estimated by comparison with the swelling induced by osmotic shocks of known amplitude. We found that, for equivalent cation or glucose uptakes, the combination of substrate accumulations observed with ROMK2 and GLUT2 are sufficient to provide the osmotic gradient necessary to account for a passive water flux through SGLT1. Despite the fact that the Na+/glucose stoichiometry of SGLT1 is 2:1, glucose accumulation accounts for two-thirds of the osmotic gradient responsible for the water flux observed at t = 30 s. It is concluded that the different accumulation processes for neutral versus charged solutes can quantitatively account for the fast water flux associated with Na+/glucose cotransport activation without having to propose the presence of secondary active water transport.

  13. The human tumour suppressor gene SLC5A8 expresses a Na+–monocarboxylate cotransporter

    PubMed Central

    Coady, Michael J; Chang, Min-Hwang; Charron, Francois M; Plata, Consuelo; Wallendorff, Bernadette; Sah, Jerome Frank; Markowitz, Sanford D; Romero, Michael F; Lapointe, Jean-Yves

    2004-01-01

    The orphan cotransport protein expressed by the SLC5A8 gene has been shown to play a role in controlling the growth of colon cancers, and the silencing of this gene is a common and early event in human colon neoplasia. We expressed this protein in Xenopus laevis oocytes and have found that it transports small monocarboxylic acids. The electrogenic activity of the cotransporter, which we have named SMCT (sodium monocarboxylate transporter), was dependent on external Na+ and was compatible with a 3:1 stoichiometry between Na+ and monocarboxylates. A portion of the SMCT-mediated current was also Cl− dependent, but Cl− was not cotransported. SMCT transports a variety of monocarboxylates (similar to unrelated monocarboxylate transport proteins) and most transported monocarboxylates demonstrated Km values near 100 μm, apart from acetate and d-lactate, for which the protein showed less affinity. SMCT was strongly inhibited by 1 mm probenecid or ibuprofen. In the absence of external substrate, a Na+-independent leak current was also observed to pass through SMCT. SMCT activity was strongly inhibited after prolonged exposure to high external concentrations of monocarboxylates. The transport of monocarboxylates in anionic form was confirmed by the observation of a concomitant alkalinization of the cytosol. SMCT, being expressed in colon and kidney, represents a novel means by which Na+, short-chain fatty acids and other monocarboxylates are transported in these tissues. The significance of a Na+–monocarboxylate transporter to colon cancer presumably stems from the transport of butyrate, which is well known for having anti-proliferative and apoptosis-inducing activity in colon epithelial cells. PMID:15090606

  14. Glucose Accumulation Can Account for the Initial Water Flux Triggered by Na+/Glucose Cotransport

    PubMed Central

    Gagnon, Marilène P.; Bissonnette, Pierre; Deslandes, Louis-Martin; Wallendorff, Bernadette; Lapointe, Jean-Yves

    2004-01-01

    Over the last decade, several cotransport studies have led to the proposal of secondary active transport of water, challenging the dogma that all water transport is passive. The major observation leading to this interpretation was that a Na+ influx failed to reproduce the large and rapid cell swelling induced by Na+/solute cotransport. We have investigated this phenomenon by comparing a Na+/glucose (hSGLT1) induced water flux to water fluxes triggered either by a cationic inward current (using ROMK2 K+ channels) or by a glucose influx (using GLUT2, a passive glucose transporter). These proteins were overexpressed in Xenopus oocytes and assayed through volumetric measurements combined with double-electrode electrophysiology or radioactive uptake measurements. The osmotic gradients driving the observed water fluxes were estimated by comparison with the swelling induced by osmotic shocks of known amplitude. We found that, for equivalent cation or glucose uptakes, the combination of substrate accumulations observed with ROMK2 and GLUT2 are sufficient to provide the osmotic gradient necessary to account for a passive water flux through SGLT1. Despite the fact that the Na+/glucose stoichiometry of SGLT1 is 2:1, glucose accumulation accounts for two-thirds of the osmotic gradient responsible for the water flux observed at t = 30 s. It is concluded that the different accumulation processes for neutral versus charged solutes can quantitatively account for the fast water flux associated with Na+/glucose cotransport activation without having to propose the presence of secondary active water transport. PMID:14695256

  15. N-terminal Serine Dephosphorylation Is Required for KCC3 Cotransporter Full Activation by Cell Swelling*

    PubMed Central

    Melo, Zesergio; de los Heros, Paola; Cruz-Rangel, Silvia; Vázquez, Norma; Bobadilla, Norma A.; Pasantes-Morales, Herminia; Alessi, Dario R.; Mercado, Adriana; Gamba, Gerardo

    2013-01-01

    The K+:Cl− cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity. PMID:24043619

  16. Sodium-glucose cotransporter 2 inhibition and health benefits: The Robin Hood effect

    PubMed Central

    Kalra, Sanjay; Jain, Arpit; Ved, Jignesh; Unnikrishnan, A. G.

    2016-01-01

    This review discusses two distinct, yet related, mechanisms of sodium-glucose cotransporter 2 (SGLT2) inhibition: Calorie restriction mimicry (CRM) and pro-ketogenic effect, which may explain their cardiovascular benefits. We term these adaptive CRM and pro-ketogenic effects of SGLT2 inhibition, the Robin Hood hypothesis. In English history, Robin Hood was a “good person,” who stole from the rich and helped the poor. He supported redistribution of resources as he deemed fit for the common good. In a similar fashion, SGLT2 inhibition provides respite to the overloaded glucose metabolism while utilizing lipid stores for energy production. PMID:27730088

  17. Sodium-glucose cotransporter 2 inhibition and health benefits: The Robin Hood effect.

    PubMed

    Kalra, Sanjay; Jain, Arpit; Ved, Jignesh; Unnikrishnan, A G

    2016-01-01

    This review discusses two distinct, yet related, mechanisms of sodium-glucose cotransporter 2 (SGLT2) inhibition: Calorie restriction mimicry (CRM) and pro-ketogenic effect, which may explain their cardiovascular benefits. We term these adaptive CRM and pro-ketogenic effects of SGLT2 inhibition, the Robin Hood hypothesis. In English history, Robin Hood was a "good person," who stole from the rich and helped the poor. He supported redistribution of resources as he deemed fit for the common good. In a similar fashion, SGLT2 inhibition provides respite to the overloaded glucose metabolism while utilizing lipid stores for energy production.

  18. The Role of Sodium-Glucose Cotransporter 2 Inhibitors in the Management of Type 2 Diabetes.

    PubMed

    Steen, Oren; Goldenberg, Ronald M

    2017-10-01

    Sodium-glucose cotransporter 2 (SGTL2) inhibitors are a novel class of antihyperglycemic agents that work in an insulin-independent manner by promoting urinary glucose excretion. In addition to efficacious glucose lowering, they exert beneficial effects on blood pressure and weight while avoiding hypoglycemia unless combined with insulin or insulin secretagogues. This review explores the mechanism of action of SGLT2 inhibitors, their effects on glycated hemoglobin, weight, blood pressure and hypoglycemia, potential adverse effects, renal considerations and cardiovascular outcomes. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  19. Sodium-glucose cotransporter-2 inhibition and the insulin: Glucagon ratio: Unexplored dimensions

    PubMed Central

    Kalra, Sanjay; Gupta, Yashdeep; Patil, Shiva

    2015-01-01

    The sodium-glucose cotransporter 2 (SGLT-2) inhibitors are a novel class of glucose-lowering drugs which act by inhibiting the reabsorption of filtered glucose from the kidneys. Their effect on insulin and glucagon levels has recently been studied but is not fully explained. This communication proposes various hypotheses: A direct effect of SGLT-2 inhibition on the alpha cell receptors, a paracrine or intra-islet mediated effect on alpha cell sensitivity to glucose, and a calorie restriction mimetic action, to explain the impact of these drugs on the insulin glucagon ratio. PMID:25932403

  20. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Cardiovascular Disease: A Systematic Review.

    PubMed

    Kalra, Sanjay

    2016-12-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of drugs that have been extensively investigated for the treatment of hyperglycemia in type 2 diabetes mellitus (T2DM). These drugs reduce hyperglycemia by blocking renal glucose reabsorption, thereby promoting increased renal glucose excretion. Beyond glycemic control, these drugs have other beneficial effects on cardiovascular (CV) risk factors. The present review discusses the potential role of SGLT2 inhibitors in treating CV complications (acute and chronic) associated with T2DM.

  1. Tracers for monitoring the activity of sodium/glucose cotransporters in health and disease

    DOEpatents

    Wright, Ernest M; Barrio, Jorge R; Hirayama, Bruce A; Kepe, Vladimir

    2014-09-30

    Radiolabeled tracers for sodium/glucose cotransporters (SGLTs), their synthesis, and their use are provided. The tracers are methyl or ethyl pyranosides having an equatorial hydroxyl group at carbon-2 and a C 1 preferred conformation, radiolabeled with .sup.18F, .sup.123I, or .sup.124I, or free hexoses radiolabeled with .sup.18F, .sup.123I, or .sup.124. Also provided are in vivo and in vitro techniques for using these and other tracers as analytical and diagnostic tools to study glucose transport, in health and disease, and to evaluate therapeutic interventions.

  2. Cloning and functional characterization of a cation-chloride cotransporter gene OsCCC1.

    PubMed

    Kong, Xiang-Qiang; Gao, Xiu-Hua; Sun, Wei; An, Jing; Zhao, Yan-Xiu; Zhang, Hui

    2011-04-01

    Potassium (K+) and chloride (Cl-) are two essential elements for plant growth and development. While it is known that plants possess specific membrane transporters for transporting K+ and Cl-, it remains unclear if they actively use K+-coupled Cl- cotransporters (KCC), as used in animals, to transport K+ and Cl-. We have cloned an Oryza sativa cDNA encoding for a member of the cation-Cl- cotransporter (CCC) family. Phylogenetic analysis revealed that plant CCC proteins are highly conserved and that they have greater sequence similarity to the sub-family of animal K--Cl- cotransporters than to other cation-Cl- cotransporters. Real-time PCR revealed that the O. sativa cDNA, which was named OsCCC1, can be induced by KCl in the shoot and root and that the expression level was higher in the leaf and root tips than in any other part of the rice plant. The OsCCC1 protein was located not only in onion plasma membrane but also in O. sativa plasma membrane. The OsCCC1 gene-silenced plants grow more slowly than wild-type (WT) plants, especially under the KCl treatment regime. After 1 month of KCl treatment, the leaf tips of the gene-silenced lines were necrosed. In addition, seed germination, root length, and fresh and dry weight were distinctly lower in the gene-silenced lines than in WT plants, especially after KCl treatment. Analysis of Na+, K+, and Cl- contents of the gene-silenced lines and WT plants grown under the NaCl and KCl treatment regimes revealed that the former accumulated relatively less K+ and Cl- than the latter but that they did not differ in terms of Na+ contents, suggesting OsCCC1 may be involved in K+ and Cl- transport. Results from different tests indicated that the OsCCC1 plays a significant role in K+ and Cl- homeostasis and rice plant development.

  3. Reduced Efficacy of the KCC2 Cotransporter Promotes Epileptic Oscillations in a Subiculum Network Model.

    PubMed

    Buchin, Anatoly; Chizhov, Anton; Huberfeld, Gilles; Miles, Richard; Gutkin, Boris S

    2016-11-16

    Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl(-) regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges. Ion regulation in the brain is a major determinant of neural excitability. Intracellular chloride in neurons, a partial determinant of the resting potential and the inhibitory

  4. Angiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT(1) receptors.

    PubMed

    Kovács, Gergely; Peti-Peterdi, János; Rosivall, László; Bell, P Darwin

    2002-02-01

    ANG II is a modulator of tubuloglomerular feedback (TGF); however, the site of its action remains unknown. Macula densa (MD) cells sense changes in luminal NaCl concentration ([NaCl](L)) via a Na-2Cl-K cotransporter, and these cells do possess ANG II receptors. We tested whether ANG II regulates Na-2Cl-K cotransport in MD cells. MD cell Na(+) concentration ([Na(+)](i)) was measured using sodium-binding benzofuran isophthalate with fluorescence microscopy. Resting [Na(+)](i) in MD cells was 27.7 +/- 1.05 mM (n = 138) and increased (Delta[Na(+)](i)) by 18.5 +/- 1.14 mM (n = 17) at an initial rate (Delta[Na(+)](i)/Deltat) of 5.54 +/- 0.53 x 10(-4) U/s with an increase in [NaCl](L) from 25 to 150 mM. Both Delta[Na(+)](i) and Delta[Na(+)](i)/Deltat were inhibited by 80% with 100 microM luminal furosemide. ANG II (10(-9) or 10(-12) M) added to the lumen increased MD resting [Na(+)](i) and [NaCl](L)-dependent Delta[Na(+)](i) and caused a twofold increase in Delta[Na(+)](i)/Deltat. Bath (10(-9) M) ANG II also stimulated cotransport activity, and there was no additive effect of simultaneous addition of ANG II to bath and lumen. The effects of luminal ANG II were furosemide sensitive and abolished by the AT(1) receptor blocker candesartan. ANG II at 10(-6) M failed to stimulate the cotransporter, whereas increased cotransport activity could be restored by blocking AT(2) receptors with PD-123, 319. Thus ANG II may modulate TGF responses via alterations in MD Na-2Cl-K cotransport activity.

  5. Splice Cassette II of Na+,HCO3− Cotransporter NBCn1 (slc4a7) Interacts with Calcineurin A

    PubMed Central

    Danielsen, Andreas A.; Parker, Mark D.; Lee, Soojung; Boron, Walter F.; Aalkjaer, Christian; Boedtkjer, Ebbe

    2013-01-01

    Activation of Na+,HCO3− cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pHi) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na+,HCO3− cotransporter NBCn1 (slc4a7) and the Ca2+/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aβ. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aβ co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na+,HCO3− cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4+ prepulse. During depolarization with 50 mm extracellular K+ to raise intracellular [Ca2+], Na+,HCO3− cotransport activity was inhibited 20–30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na+,HCO3− cotransport activity in VSMCs when cytosolic [Ca2+] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aβ. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aβ and the Na+/H+ exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aβ and cassette II of NBCn1. Intracellular Ca2+ activates Na+,HCO3− cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification. PMID:23382378

  6. Activation of the Na+-K+(NH4+)-2Cl(-)- cotransporter from rat submandibular glands in response to VIP.

    PubMed

    Chaïb, N; Kabré, E; Métioui, M; Alzola, E; Amsallem, H; Marino, A; Moran, A; Dehaye, J P

    1998-01-01

    A cellular suspension from rat submandibular glands was prepared with collagenase. The intracellular pH (pHi) was estimated with 2',7'-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein (BCECF). After exposure to NH4Cl, the pHi transiently increased (diffusion of NH3) and then dropped (influx of NH4+). Isoproterenol increased 2.5-fold the rate of NH4+ influx; bumetanide, an inhibitor of the Na+-K+-2Cl(-)-cotransporter blocked the response to isoproterenol, confirming that the beta-adrenergic agonist stimulated the cotransporter. Forskolin (1 micromol/L) mimicked the response to isoproterenol. VIP (1 nmol/L(-1) micromol/L) also increased the activity of the cotransporter. Cyclic AMP rather than calcium was the mediator of this activation since 1) carbachol which increased the [Ca2+]i fivefold increased the uptake of NH4+ by only 50%; 2) only high concentrations of VIP significantly increased the [Ca2+]i; 3) incubation in the presence of EGTA had no effect on the response to VIP; 4) low concentrations (nmol/L) of the neuropeptide increased the intracellular level of cAMP; and 5) the stimulation of the cotransporter by VIP, forskolin, and isoproterenol was inhibited by H8, an inhibitor of cAMP-dependent protein kinase. It is concluded that the Na+-K+-2Cl(-)-cotransporter of rat submandibular glands is activated by isoproterenol, forskolin, and neuropeptides of the VIP family by a mechanism involving cAMP-dependent processes. The activation of the cotransporter by VIP could partly explain the potentiating effect of VIP on the response to sialagogues like substance P or muscarinic agonists.

  7. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform.

    PubMed

    Payne, J A; Stevenson, T J; Donaldson, L F

    1996-07-05

    Using a combination of data base searching, polymerase chain reaction, and library screening, we have identified a putative K-Cl cotransporter isoform (KCC2) in rat brain that is specifically localized in neurons. A cDNA of 5566 bases was obtained from overlapping clones and encoded a protein of 1116 amino acids with a deduced molecular mass of 123.6 kDa. Over its full length, the amino acid sequence of KCC2 is 67% identical to the widely distributed K-Cl cotransporter isoform (KCC1) identified in rat brain and rabbit kidney (Gillen, C., Brill, S., Payne, J.A., and Forbush, B., III(1996) J. Biol. Chem. 271, 16237-16244) but only approximately25% identical to other members of the cation-chloride cotransporter gene family, including "loop" diuretic-sensitive Na-K-Cl cotransport and thiazide-sensitive Na-Cl cotransport. Based on analysis of the primary structure as well as homology with other cation-chloride cotransporters, we predict 12 transmembrane segments bounded by N- and C-terminal cytoplasmic regions. Four sites for N-linked glycosylation are predicted on an extracellular intermembrane loop between putative transmembrane segments 5 and 6. Northern blot analysis using a KCC2-specific cDNA probe revealed a very highly expressed approximately5.6-kilobase transcript only in brain. Reverse transcriptase-polymerase chain reaction revealed that KCC1 was present in rat primary astrocytes and rat C6 glioma cells but that KCC2 was completely absent from these cells, suggesting KCC2 was not of glial cell origin. In situ hybridization studies demonstrated that the KCC2 transcript was expressed at high levels in neurons throughout the central nervous system, including CA1-CA4 pyramidal neurons of the hippocampus, granular cells and Purkinje neurons of the cerebellum, and many groups of neurons throughout the brainstem.

  8. Acute phosphate nephropathy.

    PubMed

    Monfared, Ali; Habibzadeh, Seyed Mahmoud; Mesbah, Seyed Alireza

    2014-05-01

    We present acute phosphate nephropathy in a 28-year-old man, which was developed after a car accident due to rhabdomyolysis. Treatment of acute kidney injury was done with administration of sodium bicarbonate.

  9. Phosphate Mines, Jordan

    NASA Image and Video Library

    2008-04-21

    Jordan leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. This image was acquired by NASA Terra satellite on September 17, 2005.

  10. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  11. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution

    PubMed Central

    Zeuthen*, Thomas; Belhage, Bo; Zeuthen, Emil

    2006-01-01

    The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378 ± 20 (n = 18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue α-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86 ± 0.03 (15). For the human SGLT1 the respective numbers were 234 ± 12 (18) and 0.85 ± 0.8 (7). For NIS, 253 ± 16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN−, MW 58), with I− as anion (MW 127) only 162 ± 11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute. PMID:16322051

  12. Phosphate control in dialysis

    PubMed Central

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-01-01

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients. PMID:24133374

  13. Phosphate control in dialysis.

    PubMed

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-10-04

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease-mineral and bone disorder (CKD-MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive-convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200-300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients.

  14. Ezrin, a membrane cytoskeletal cross-linker, is essential for the regulation of phosphate and calcium homeostasis.

    PubMed

    Hatano, Ryo; Fujii, Eiko; Segawa, Hiroko; Mukaisho, Kenichi; Matsubara, Mitsunobu; Miyamoto, Ken-Ichi; Hattori, Takanori; Sugihara, Hiroyuki; Asano, Shinji

    2013-01-01

    Ezrin cross-links plasma membrane proteins with the actin cytoskeleton. In the kidney, ezrin mainly localizes at the brush border membrane of proximal tubules with the scaffolding protein, Na(+)/H(+) exchanger regulatory factor (NHERF) 1. NHERF1 interacts with the sodium/phosphate cotransporter, Npt2a. Defects in NHERF1 or Npt2a in mice cause hypophosphatemia. Here we studied the physiological role of ezrin in renal phosphate reabsorption using ezrin knockdown mice (Vil2). These mice exhibit hypophosphatemia, hypocalcemia, and osteomalacia. The reduced plasma phosphate concentrations were ascribed to defects in urinary phosphate reabsorption. Immunofluorescence and immunoblotting indicated a marked reduction in renal Npt2a and NHERF1 expression at the apical membrane of proximal tubules in the knockdown mice. On the other hand, urinary loss of calcium was not found in Vil2 mice. Plasma concentrations of 1,25-dihydroxyvitamin D were elevated following reduced plasma phosphate levels, and mRNA of the vitamin D-dependent TRPV6 calcium channel were significantly increased in the duodenum of knockdown mice. Expression of TRPV6 at the apical membrane, however, was significantly decreased. Furthermore, tibial bone mineral density was significantly lower in both the adult and young Vil2 mice. These results suggest that ezrin is required for the regulation of systemic phosphate and calcium homeostasis in vivo.

  15. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome

    SciTech Connect

    Mastroianni, N.; De Fusco, M.; Casari, G.

    1996-11-01

    A hereditary defect of the distal tubule accounts for the clinical features of Gitelman syndrome (GS), an autosomal recessive disease characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. Recently, we cloned the cDNA coding for the human Na-Cl thiazide-sensitive cotransporter (TSC; also known as {open_quotes}NCCT{close_quotes} or {open_quotes}SLC12A3{close_quotes}) as a possible candidate for GS, and Simon et al., independently, described rotation in patients with GS. Now, we show 12 additional mutations consistent with a loss of function of the Na-Cl cotransporter in GS. Two missense replacements, R09W and P349L, are common to both studies and could represent ancient mutations. The other mutations include three deletions, two insertions, and six missense mutations. When all mutations from both studies are considered, missense mutations seem to be more frequently localized within the intracellular domains of the molecule, rather than in transmembrane or extracellular domains. One family, previously reported as a GS form with dominant inheritance, has proved to be recessive, with the affected child being a compound heterozygote. A highly informative intragenic tetranucleotide marker, useful for molecular diagnostic studies, has been identified at the acceptor splice site of exon 9. 12 refs., 3 figs., 2 tabs.

  16. Mathematical modeling of colloid and virus cotransport in porous media: Application to experimental data

    NASA Astrophysics Data System (ADS)

    Katzourakis, Vasileios E.; Chrysikopoulos, Constantinos V.

    2014-06-01

    A conceptual mathematical model was developed to describe the simultaneous transport (cotransport) of viruses and colloids in three-dimensional, water saturated, homogeneous porous media with uniform flow. The model accounts for the migration of individual virus and colloid particles as well as viruses attached onto colloids. Viruses can be suspended in the aqueous phase, attached onto suspended colloids and the solid matrix, and attached onto colloids previously attached on the solid matrix. Colloids can be suspended in the aqueous phase or attached on the solid matrix. Viruses in all four phases (suspended in the aqueous phase, attached onto suspended colloid particles, attached on the solid matrix, and attached onto colloids previously attached on the solid matrix) may undergo inactivation with different inactivation coefficients. The governing coupled partial differential equations were solved numerically using finite difference methods, which were implemented explicitly or implicitly so that both stability and speed factors were satisfied. Furthermore, the experimental data collected by Syngouna and Chrysikopoulos [1] were satisfactorily fitted by the newly developed cotransport model.

  17. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.

  18. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome.

    PubMed Central

    Mastroianni, N.; Bettinelli, A.; Bianchetti, M.; Colussi, G.; De Fusco, M.; Sereni, F.; Ballabio, A.; Casari, G.

    1996-01-01

    A hereditary defect of the distal tubule accounts for the clinical features of Gitelman syndrome (GS), an autosomal recessive disease characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. Recently, we cloned the cDNA coding for the human Na-Cl thiazide-sensitive cotransporter (TSC; also known as ¿NCCT¿ or ¿SLC12A3¿) as a possible candidate for GS, and Simon et al., independently, described mutations in patients with GS. Now, we show 12 additional mutations consistent with a loss of function of the Na-Cl cotransporter in GS. Two missense replacements, R209W and P349L, are common to both studies and could represent ancient mutations. The other mutations include three deletions, two insertions, and six missense mutations. When all mutations from both studies are considered, missense mutations seem to be more frequently localized within the intracellular domains of the molecule, rather than in transmembrane or extracellular domains. One family, previously reported as a GS form with dominant inheritance, has proved to be recessive, with the affected child being a compound heterozygote. A highly informative intragenic tetranucleotide marker, useful for molecular diagnostic studies, has been identified at the acceptor splice site of exon 9. Images Figure 3 PMID:8900229

  19. Phosphate absorption across multiple epithelia in the Pacific hagfish (Eptatretus stoutii).

    PubMed

    Schultz, Aaron G; Guffey, Samuel C; Clifford, Alexander M; Goss, Greg G

    2014-09-15

    Inorganic phosphate (Pi) is an essential nutrient for all organisms, but in seawater, Pi is a limiting nutrient. This study investigated the primary mechanisms of Pi uptake in Pacific hagfish (Eptatretus stoutii) using ex vivo physiological and molecular techniques. Hagfish were observed to have the capacity to absorb Pi from the environment into at least three epithelial surfaces: the intestine, skin, and gill. Pi uptake in all tissues was concentration dependent, and saturable Pi transport was observed in the skin and gill at <2.0 mmol/l Pi. Gill and intestinal Pi uptake was sodium dependent, but Pi uptake into the skin increased under low sodium conditions. Gill Pi transport exhibited an apparent affinity constant ~0.23-0.6 mmol/l Pi. A complete sequence of a type II sodium phosphate cotransporter (Slc34a) was obtained from the hagfish gill. Phylogenetic analysis of the hagfish Slc34a transporter indicates that it is earlier diverging than, and/or ancestral to, the other identified vertebrate Slc34a transporters (Slc34a1, Slc34a2, and Slc34a3). With the use of RT-PCR, the hagfish Slc34a transcript was detected in the intestine, skin, gill, and kidney, suggesting that this may be the transporter involved in Pi uptake into multiple epithelia in the hagfish. This is the first measurement of Pi uptake across the gill or skin of any vertebrate animal and first sodium phosphate cotransporter identified in hagfish. Copyright © 2014 the American Physiological Society.

  20. The regulation and function of phosphate in the human body.

    PubMed

    Takeda, Eiji; Taketani, Yutaka; Sawada, Naoki; Sato, Tadatoshi; Yamamoto, Hironori

    2004-01-01

    Inorganic phosphate (Pi) is required for cellular function and skeletal mineralization. Serum Pi level is maintained within a narrow range through a complex interplay between intestinal absorption, exchange with intracellular and bone storage pools, and renal tubular reabsorption. Pi is abundant in the diet, and intestinal absorption of Pi is efficient and minimally regulated. The kidney is a major regulator of Pi homeostasis and can increase or decrease its Pi reabsorptive capacity to accommodate Pi need. The crucial regulated step in Pi homeostasis is the transport of Pi across the renal proximal tubule. Type II sodium-dependent phosphate (Na/Pi) cotransporter (NPT2) is the major molecule in the renal proximal tubule and is regulated by hormones and nonhormonal factors. Recent studies of inherited and acquired hypophosphatemia which exhibit similar biochemical and clinical features, have led to the identification of novel genes, phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and fibroblast growth factor-23 (FGF-23), that play a role in the regulation of Pi homeostasis. The PHEX gene encodes an endopeptidase, predominantly expressed in bone and teeth but not in kidney. FGF-23 may be a substrate of this endopeptidase and inhibit renal Pi reabsorption. In a survey in the United States and in Japan, the amount of phosphorus from food is gradually increasing. It is thought that excess amounts of phosphorus intake for long periods are a strong factor in bone impairment and ageing. The restriction of phosphorus intake seems to be important under low calcium intake to keep QOL on high level.

  1. Sodium phosphate-derived calcium phosphate cements

    SciTech Connect

    Sugama, T.; Carciello, N.R. )

    1995-01-01

    Calcium phosphate cements (CPC) were synthesized by the acid-base reaction between sodium phosphate, NaH[sub 2]PO[sub 4] or -(-NaPO[sub 3]-)-[sub n], as the acid solution, and calcium aluminate cements (CAC) as the base reactant at 25 C. The extent of reactivity of -(-NaPO[sub 3]-)-[sub n] with CAC was much higher than that of NaH[sub 2]PO[sub 4], thereby resulting in a compressive strength of > 20 MPa. Sodium calcium orthophosphate (SCOP) salts as amorphous reaction products were responsible for the development of this strength. When this CPC specimen as exposed in an autoclave, in-situ amorphous [r arrow] crystal conversions, such as SCOP [r arrow] hydroxyapatite (HOAp), and Al[sub 2]O[sub 3] [center dot] xH[sub 2]O [r arrow] [gamma]-AlOOH, occurred at [approx] 100 C, while the rate of reaction of the residual CAC with the phosphate reactant was increasingly accelerated by hydrothermal catalysis. Based upon this information, the authors prepared lightweight CPC specimens by hydrothermally treating a low-density cement slurry (1.28 g/cc) consisting of CAC powder, -(-NaPO[sub 3]-)-[sub n] solution, and mullite-hollow microspheres. The characteristics of the autoclaved lightweight specimens were a compressive strength of > 9.0 MPa, water permeability of [approx] 5.0 [times] 10[sup [minus]3] milli darcy, and a low rate of alkali carbonation. The reasons for such a low carbonation rate reflected the presence of a minimum amount of residual CAC, in conjunction with the presence of HOAp and [gamma]-AlOOH phases that are unsusceptible to wet carbonation.

  2. FGF23 and Klotho: the new cornerstones of phosphate/calcium metabolism

    PubMed Central

    Bacchetta, Justine; Cochat, Pierre; Salusky, Isidro B

    2014-01-01

    Since its first description as a phosphaturic agent in the early 2000’s, the Fibroblast Growth Factor 23 (FGF23) has rapidly become the third key player of phosphate/calcium metabolism with the two ‘old’ PTH and vitamin D. FGF23 is a protein synthesized by osteocytes that acts mainly as a phosphaturic factor and a suppressor of 1α hydroxylase activity in the kidney. It inhibits the expression of type IIa and IIc sodium-phosphate cotransporters on the apical membrane of proximal tubular cells, thus leading to an inhibition of phosphate reabsorption. Moreover, it also inhibits the 1α hydroxylase activity. These two renal pathways account together for the hypophosphatemic effect of FGF23, but FGF23 has also been recently described as an inhibiting factor for PTH synthesis. Its exact role in bone remains to be defined. A transmembrane protein, Klotho, is an essential cofactor for FGF23 biological activity, but it can also act by itself for calcium and PTH regulation. This paper gives an overview of these recent data of phosphate/calcium physiology, as well as a description of clinical conditions associated with FGF23 deregulation (genetic diseases and chronic kidney disease). As a conclusion, future therapeutic consequences of the FGF23/Klotho axis are discussed. PMID:21497493

  3. Determination of the Na(+)/glucose cotransporter (SGLT1) turnover rate using the ion-trap technique.

    PubMed

    Longpré, Jean-Philippe; Lapointe, Jean-Yves

    2011-01-05

    The Na(+)/glucose cotransporter (SGLT1) is a membrane protein that couples the transport of two Na(+) ions and one glucose molecule using the so-called alternating access mechanism. According to this principle, each cotransporter molecule can adopt either of two main conformations: one with the binding sites accessible to the extracellular solution and one with the binding sites facing the intracellular solution. The turnover rate (TOR) is the number of complete cycles that each protein performs per second. Determination of the TOR has important consequences for investigation of the cotransport mechanism, as none of the rate constants involved in mediating transport in a given direction (conformational changes and binding and unbinding reactions) can be slower than the TOR measured under the same conditions. In addition, the TOR can be used to estimate the number of cotransporter molecules involved in generating a given ensemble activity. In this study, we obtain an independent estimation of the TOR for human SGLT1 expressed in Xenopus laevis oocytes applying the ion-trap technique. This approach detects the quantity of ions released in or taken up from the restricted space existing between the oocyte plasma membrane and the tip of a large ion-selective electrode. Taking advantage of the fact that hSGLT1 in the absence of Na(+) can cotransport glucose with protons, we used a pH electrode to determine a TOR of 8.00 ± 1.3 s⁻¹ in the presence of 35 mM α-methyl-glucose at -150 mV (pH 5.5). For the same group of oocytes, a TOR of 13.3 ± 2.4 s⁻¹ was estimated under near-V(max) conditions, i.e., in the presence of 90 mM Na(+) and 5 mM α-methyl-glucose. Under these circumstances, the average cotransport current was -1.08 ± 0.61 μA (n = 14), and this activity was generated by an average of 3.6 ± 0.7 × 10¹¹ cotransporter molecules/oocyte. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Determination of the Na+/Glucose Cotransporter (SGLT1) Turnover Rate Using the Ion-Trap Technique

    PubMed Central

    Longpré, Jean-Philippe; Lapointe, Jean-Yves

    2011-01-01

    The Na+/glucose cotransporter (SGLT1) is a membrane protein that couples the transport of two Na+ ions and one glucose molecule using the so-called alternating access mechanism. According to this principle, each cotransporter molecule can adopt either of two main conformations: one with the binding sites accessible to the extracellular solution and one with the binding sites facing the intracellular solution. The turnover rate (TOR) is the number of complete cycles that each protein performs per second. Determination of the TOR has important consequences for investigation of the cotransport mechanism, as none of the rate constants involved in mediating transport in a given direction (conformational changes and binding and unbinding reactions) can be slower than the TOR measured under the same conditions. In addition, the TOR can be used to estimate the number of cotransporter molecules involved in generating a given ensemble activity. In this study, we obtain an independent estimation of the TOR for human SGLT1 expressed in Xenopus laevis oocytes applying the ion-trap technique. This approach detects the quantity of ions released in or taken up from the restricted space existing between the oocyte plasma membrane and the tip of a large ion-selective electrode. Taking advantage of the fact that hSGLT1 in the absence of Na+ can cotransport glucose with protons, we used a pH electrode to determine a TOR of 8.00 ± 1.3 s−1 in the presence of 35 mM α-methyl-glucose at −150 mV (pH 5.5). For the same group of oocytes, a TOR of 13.3 ± 2.4 s−1 was estimated under near-Vmax conditions, i.e., in the presence of 90 mM Na+ and 5 mM α-methyl-glucose. Under these circumstances, the average cotransport current was −1.08 ± 0.61 μA (n = 14), and this activity was generated by an average of 3.6 ± 0.7 × 1011 cotransporter molecules/oocyte. PMID:21190656

  5. Improved Manganese Phosphate Coatings

    DTIC Science & Technology

    1975-04-01

    Conversion coatings 3 . Phosphating bath 20 AGrjC onln odd*. ta It .. c..soMV midP 1J.,alft. by block noc.mb) Work was conducted to determine the mechanism by...34 TABULAR DATA Table I Analyses of Solution and Coating for Phosphating Baths 4 of Di-ferlng Compositions 11 Atomic Absorption...manganese and iron phosphate coating: k * a. Mn(H 2PO4) 2 Nn-P0 4 + H3PO0 k2 k) b. 3MnHPO4 - Mn3 (P04) 2 + H3i’O4 k4 k5 c. Fe(H 2PO4) 2 -01 FeHPO4

  6. Codeine dihydrogen phosphate hemihydrate.

    PubMed

    Langes, Christoph; Gelbrich, Thomas; Griesser, Ulrich J; Kahlenberg, Volker

    2009-08-01

    The cation of the title structure [systematic name: (5alpha,6alpha)-6-hydroxy-7,8-didehydro-4,5-epoxy-3-methoxy-17-methylmorphinanium dihydrogen phosphate hemihydrate], C18H22NO3+.H2PO4-.0.5H2O, has a T-shaped conformation. The dihydrogen phosphate anions are linked by O-H...O hydrogen bonds to give an extended ribbon chain. The codeine cations are linked together by O-H...O hydrogen bonds into a zigzag chain. There are also N-H...O bonds between the two types of hydrogen-bonded units. Additionally, they are connected to one another via O...H-O-H...O bridging water molecules. The asymmetric unit contains two codeine hydrogen cations, two dihydrogen phosphate anions and one water molecule. This study shows that the water molecules are firmly bound within a complex three-dimensional hydrogen-bonded framework.

  7. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Fundamentals of phosphate transfer.

    PubMed

    Kirby, Anthony J; Nome, Faruk

    2015-07-21

    Historically, the chemistry of phosphate transfer-a class of reactions fundamental to the chemistry of Life-has been discussed almost exclusively in terms of the nucleophile and the leaving group. Reactivity always depends significantly on both factors; but recent results for reactions of phosphate triesters have shown that it can also depend strongly on the nature of the nonleaving or "spectator" groups. The extreme stabilities of fully ionised mono- and dialkyl phosphate esters can be seen as extensions of the same effect, with one or two triester OR groups replaced by O(-). Our chosen lead reaction is hydrolysis-phosphate transfer to water: because water is the medium in which biological chemistry takes place; because the half-life of a system in water is an accepted basic index of stability; and because the typical mechanisms of hydrolysis, with solvent H2O providing specific molecules to act as nucleophiles and as general acids or bases, are models for reactions involving better nucleophiles and stronger general species catalysts. Not least those available in enzyme active sites. Alkyl monoester dianions compete with alkyl diester monoanions for the slowest estimated rates of spontaneous hydrolysis. High stability at physiological pH is a vital factor in the biological roles of organic phosphates, but a significant limitation for experimental investigations. Almost all kinetic measurements of phosphate transfer reactions involving mono- and diesters have been followed by UV-visible spectroscopy using activated systems, conveniently compounds with good leaving groups. (A "good leaving group" OR* is electron-withdrawing, and can be displaced to generate an anion R*O(-) in water near pH 7.) Reactivities at normal temperatures of P-O-alkyl derivatives-better models for typical biological substrates-have typically had to be estimated: by extended extrapolation from linear free energy relationships, or from rate measurements at high temperatures. Calculation is free

  9. Adaptation of Opossum Kidney Cells to Luminal Phosphate: Effects of Phosphonoformic Acid and Kinase Inhibitors.

    PubMed

    Thomas, Linto; Wagner, Carsten A; Biber, Jürg; Hernando, Nati

    2016-01-01

    Renal reabsorption of inorganic phosphate (Pi) is mediated by SLC34 and SLC20 Na+/Pi-cotransporters the abundance of which is under hormonal control. Extracellular Pi itself also regulates the expression of cotransporters and the concentration of Pi-regulating hormones, though the signaling pathways are largely unknown. Here, we explored the mechanisms that allow renal proximal cells to adapt to changes in the concentration of Pi. opossum kidney (OK) cells, a model of proximal epithelia, were incubated with different concentrations of Pi in the absence/presence of phosphonoformic acid (PFA), a Pi-analogue and SLC34-inhibitor, and of inhibitors of kinases involved in hormonal control of Pi-homeostasis; cells cultured in normal media were treated with uncouplers of oxidative phosphorylation. Then, the intracellular concentration of ATP and/or the Pi-transport capacity of the cultures were analyzed. luminal Pi regulates the Pi-transport and the intracellular ATP levels. Changes in ATP seem secondary to alterations in Pi-transport, rather than ATP acting as a signal. Adaptation of Pi-transport to high Pi was not mimicked by PFA. Transport adaptation was blocked by PFA but not by kinase inhibitors. in OK cells, adaptation of Pi-transport to luminal Pi does not depend on the same signaling pathways involved in hormonal regulation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. Identification of Functionally Distinct Na-HCO3 Co-Transporters in Colon

    PubMed Central

    Barmeyer, Christian; Ye, Jeff Huaqing; Soroka, Carol; Geibel, Peter; Hingsammer, Lukas M.; Weitgasser, Laurence; Atway, Danny; Geibel, John P.; Binder, Henry J.; Rajendran, Vazhaikkurichi M.

    2013-01-01

    Na-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5′-diisothiocyanato-2-2′-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH. Molecular studies have identified several characteristically distinct NBC isoforms [i.e. electrogenic (NBCe) and electroneutral (NBCn)] that exhibit tissue specific expression. This study was initiated to establish the molecular identity and specific function of NBC isoforms in rat colon. Northern blot and reverse transcriptase PCR (RT-PCR) analyses revealed that electrogenic NBCe1B or NBCe1C (NBCe1B/C) isoform is predominantly expressed in proximal colon, while electroneutral NBCn1C or NBCn1D (NBCn1C/D) is expressed in both proximal and distal colon. Functional analyses revealed that amiloride-insensitive, electrogenic, pH gradient-dependent NBC activity is present only in basolateral membranes of proximal colon. In contrast, amiloride-sensitive, electroneutral, [H+]-dependent NBC activity is present in both proximal and distal colon. Both electrogenic and electroneutral NBC activities are saturable processes with an apparent Km for Na of 7.3 and 4.3 mM, respectively; and are DIDS-sensitive with apparent Ki of 8.9 and 263.8 µM, respectively. In addition to Na-H exchanger isoform-1 (NHE1), pHi acidification is regulated by a HCO3-dependent mechanism that is HOE694-insensitive in colonic crypt glands. We conclude from these data that electroneutral, amiloride-sensitive NBC is encoded by NBCn1C/D and is present in both proximal and distal colon, while NBCe1B/C encodes electrogenic, amiloride-insensitive Na-HCO3 cotransport in proximal colon. We also conclude that NBCn1C/D regulates HCO3-dependent HOE694-insensitive Na-HCO3 cotransport and plays a critical role in p

  11. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  12. Effect of vanadate on proton-sucrose cotransport in Ricinus cotyledons

    SciTech Connect

    Vreugdenhil, D.; Spanswick, R.M.

    1987-07-01

    The effects of orthovanadate on the uptake of sucrose by Ricinus cotyledons and on sucrose-coupled proton influx were measured in order to gain insight into the relationship to the plasma membrane proton pump. Vanadate had no effect on short-term sucrose uptake. In long-term experiments (> 30 min) sucrose uptake was progressively inhibited, but only at high external sucrose concentrations. Vanadate did not affect proton efflux pumping in the absence of sucrose and neither did it change the initial rate of sucrose-coupled proton influx. However, it enhanced the maximal level of sucrose-induced alkalization of the medium at all sucrose concentrations tested. This is interpreted as an inhibiting effect of vanadate on the proton pump that recycles protons during sucrose-proton cotransport. The sensitivity towards vanadate indicates that this proton pump is an ATPase. A second proton-translocating system, that is insensitive to vanadate, is postulated to function in the absence of sucrose.

  13. Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3.

    PubMed

    Bok, Dean; Galbraith, Gary; Lopez, Ivan; Woodruff, Michael; Nusinowitz, Steven; BeltrandelRio, Hector; Huang, Wenhu; Zhao, Shulei; Geske, Robert; Montgomery, Charles; Van Sligtenhorst, Isaac; Friddle, Carl; Platt, Kenneth; Sparks, Mary Jean; Pushkin, Alexander; Abuladze, Natalia; Ishiyama, Akira; Dukkipati, Ramanath; Liu, Weixin; Kurtz, Ira

    2003-07-01

    Normal sensory transduction requires the efficient disposal of acid (H+) generated by neuronal and sensory receptor activity. Multiple highly sensitive transport mechanisms have evolved in prokaryotic and eukaryotic organisms to maintain acidity within strict limits. It is currently assumed that the multiplicity of these processes provides a biological robustness. Here we report that the visual and auditory systems have a specific requirement for H+ disposal mediated by the sodium bicarbonate cotransporter NBC3 (refs. 7,8). Mice lacking NBC3 develop blindness and auditory impairment because of degeneration of sensory receptors in the eye and inner ear as in Usher syndrome. Our results indicate that in certain sensory organs, in which the requirement to transduce specific environmental signals with speed, sensitivity and reliability is paramount, the choice of the H+ disposal mechanism used is limited.

  14. Extended life-span conferred by cotransporter gene mutations in Drosophila.

    PubMed

    Rogina, B; Reenan, R A; Nilsen, S P; Helfand, S L

    2000-12-15

    Aging is genetically determined and environmentally modulated. In a study of longevity in the adult fruit fly, Drosophila melanogaster, we found that five independent P-element insertional mutations in a single gene resulted in a near doubling of the average adult life-span without a decline in fertility or physical activity. Sequence analysis revealed that the product of this gene, named Indy (for I'm not dead yet), is most closely related to a mammalian sodium dicarboxylate cotransporter-a membrane protein that transports Krebs cycle intermediates. Indy was most abundantly expressed in the fat body, midgut, and oenocytes: the principal sites of intermediary metabolism in the fly. Excision of the P element resulted in a reversion to normal life-span. These mutations may create a metabolic state that mimics caloric restriction, which has been shown to extend life-span.

  15. Regulation of the renal Na+-Cl− cotransporter by phosphorylation and ubiquitylation

    PubMed Central

    2012-01-01

    The activity of the renal thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule plays a key role in defining arterial blood pressure levels. Increased or decreased activity of the NCC is associated with arterial hypertension or hypotension, respectively. Thus it is of major interest to understand the activity of NCC using in vivo models. Phosphorylation of certain residues of the amino-terminal domain of NCC has been shown to be associated with its activation. The development of phospho-specific antibodies against these sites provides a powerful tool that is helping to increase our understanding of the molecular physiology of NCC. Additionally, NCC expression in the plasma membrane is modulated by ubiquitylation, which represents another major mechanism for regulating protein activity. This work presents a review of our current knowledge of the regulation of NCC activity by phosphorylation and ubiquitylation. PMID:23034942

  16. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    PubMed

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  17. NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension

    PubMed Central

    Orlov, Sergei N.; Koltsova, Svetlana V.; Kapilevich, Leonid V.; Gusakova, Svetlana V.; Dulin, Nickolai O.

    2015-01-01

    This review summarizes the data on the functional significance of ubiquitous (NKCC1) and renal-specific (NKCC2) isoforms of electroneutral sodium, potassium and chloride cotransporters. These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid, respectively. Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume. However, the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds. PMID:26114157

  18. Woodchuck sodium taurocholate cotransporting polypeptide supports low-level hepatitis B and D virus entry.

    PubMed

    Fu, Liran; Hu, Hongjie; Liu, Yang; Jing, Zhiyi; Li, Wenhui

    2017-05-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is the functional receptor for human hepatitis B virus (HBV) and its satellite hepatitis D virus (HDV). Species barriers to HBV/HDV infection are mainly determined at entry level by variations in the sequences of particular NTCP orthologs. In this study, we sought to determine whether the NTCP ortholog in woodchuck (Marmota monax), woodchuck NTCP (wNTCP) supports viral infection. We found that wNTCP is capable of supporting HBV/HDV infection in HepG2 cells, but to much lower extent than human NTCP (hNTCP), which is about 90% reduction of hNTCP. Comprehensive site-directed mutagenesis mapping of hNTCP and wNTCP revealed that the residue at position 263 is a novel site crucial for viral entry. The important role of site 263 in infection is conserved among NTCP orthologs and may therefore be a potential target for blocking the viral entry.

  19. Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport.

    PubMed

    Wang, Cecilia C Low; Sorribas, Victor; Sharma, Girish; Levi, Moshe; Draznin, Boris

    2007-11-01

    Medial artery vascular smooth muscle cell (VSMC) calcification increases the risk of cardiovascular mortality in type 2 diabetes. However, the influence of insulin on VSMC calcification is unclear. We explored the effects of insulin on rat VSMC calcification in vitro and found that in a dose-dependent fashion, insulin attenuates VSMC calcification induced by high phosphate conditions as quantified by the o-cresolphthalein calcium (OCPC) method. In an in vitro model of insulin resistance in which cells are exposed to elevated insulin concentrations and the PI 3-kinase pathway is selectively inhibited, increased VSMC calcification was observed, suggesting that the PI 3-kinase pathway is involved in this attenuating effect of insulin. We postulated that insulin may also have an effect on phosphate or calcium transport in VSMC. We found that insulin increases phosphate transport at 3 and 24 h. This effect was mediated by increased Vmax for phosphate transport but not Km. Because type III sodium-phosphate co-transporters Pit-1 and Pit-2 are found in VSMC, we examined their expression by Western blot and real-time RT-PCR. Insulin stimulates Pit-1 mRNA modestly (*p<0.01 versus control), an effect inhibited by PD98059 but not by wortmannin. Pit-1 protein expression is induced by insulin, an effect also inhibited by PD98059 (*p<0.001 versus insulin alone). Our results suggest a role for insulin in attenuating VSMC calcification which may be disrupted in selective insulin signaling impairment seen in insulin resistance. This effect of insulin contrasts with its effect to induce phosphate transport in VSMC.

  20. Cotransport of viruses and clay particles in water saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2014-12-01

    This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦΧ174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles hindered the transport of the two viruses considered in this work. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦΧ174, and the capillary potential energy ofKGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water filmis the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO energy potential. Figure 1Schematic illustration of the various concentrations involved in the cotransport experiments for: (a) saturated and (b) unsaturated porous media.

  1. Troglitazone stimulates basolateral rheogenic Na+/HCO3- cotransport activity in rabbit proximal straight tubules.

    PubMed

    Muto, S; Miyata, Y; Imai, M; Asano, Y

    2001-01-01

    Thiazolidinedione derivatives, new insulin-sensitizing antidiabetic agents, are expected to have potential clinical use. Since these drugs cause edema in a variable proportion of patients, we examined whether troglitazone (Tro) has direct action on Na+ transport of rabbit proximal straight tubule perfused in vitro. For this purpose, we measured basolateral membrane voltage (V(B)) by conventional microelectrode techniques and intracellular pH (pH(i)) by microscopic fluorescence spectrophotometry with a pH-sensitive fluorescent dye, 2', 7'-bis-2-carboxyethyl-5-carboxyfluorescein. Tro at 50 microM in the bath significantly depolarized both transepithelial voltage and V(B). To examine whether the basolateral rheogenic Na+/HCO3- cotransport activity is affected by Tro, we observed V(B) deflection upon abrupt 10-fold decrease in bath HCO3- in the absence and presence of Tro. The apparent transference number of HCO3- (tHCO3), as calculated from the V(B) deflection, was significantly greater in the presence of Tro (50 microM) than that seen in its absence. Tro caused cell acidification and increased the intracellular acidification rates (dpH(i)/dt) upon abrupt 10-fold decreases in bath HCO3- and Na+ concentrations. The stimulatory effects of Tro on tHCO3 and dpH(i)/dt were dose dependent between 5 and 50 miccroM, but they were unaffected at 0.5 microM. From these results, we conclude that Tro acts on the proximal straight tubule and stimulates the basolateral rheogenic Na+/HCO3- cotransport activity. The stimulatory action of Tro may partly account for edema formation. Copyright 2001 S. Karger AG, Basel

  2. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity.

    PubMed

    Lochner, J E; Spangler, E; Chavarha, M; Jacobs, C; McAllister, K; Schuttner, L C; Scalettar, B A

    2008-09-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy.

  3. WNK2 Kinase Is a Novel Regulator of Essential Neuronal Cation-Chloride Cotransporters*

    PubMed Central

    Rinehart, Jesse; Vázquez, Norma; Kahle, Kristopher T.; Hodson, Caleb A.; Ring, Aaron M.; Gulcicek, Erol E.; Louvi, Angeliki; Bobadilla, Norma A.; Gamba, Gerardo; Lifton, Richard P.

    2011-01-01

    NKCC1 and KCC2, related cation-chloride cotransporters (CCC), regulate cell volume and γ-aminobutyric acid (GABA)-ergic neurotranmission by modulating the intracellular concentration of chloride [Cl−]. These CCCs are oppositely regulated by serine-threonine phosphorylation, which activates NKCC1 but inhibits KCC2. The kinase(s) that performs this function in the nervous system are not known with certainty. WNK1 and WNK4, members of the WNK (with no lysine [K]) kinase family, either directly or via the downstream SPAK/OSR1 Ste20-type kinases, regulate the furosemide-sensitive NKCC2 and the thiazide-sensitive NCC, kidney-specific CCCs. What role the novel WNK2 kinase plays in this regulatory cascade, if any, is unknown. Here, we show that WNK2, unlike other WNKs, is not expressed in kidney; rather, it is a neuron-enriched kinase primarily expressed in neocortical pyramidal cells, thalamic relay cells, and cerebellar granule and Purkinje cells in both the developing and adult brain. Bumetanide-sensitive and Cl−-dependent 86Rb+ uptake assays in Xenopus laevis oocytes revealed that WNK2 promotes Cl− accumulation by reciprocally activating NKCC1 and inhibiting KCC2 in a kinase-dependent manner, effectively bypassing normal tonicity requirements for cotransporter regulation. TiO2 enrichment and tandem mass spectrometry studies demonstrate WNK2 forms a protein complex in the mammalian brain with SPAK, a known phosphoregulator of NKCC1. In this complex, SPAK is phosphorylated at Ser-383, a consensus WNK recognition site. These findings suggest a role for WNK2 in the regulation of CCCs in the mammalian brain, with implications for both cell volume regulation and/or GABAergic signaling. PMID:21733846

  4. K-Cl cotransport in red blood cells from patients with KCC3 isoform mutants.

    PubMed

    Lauf, P K; Adragna, N C; Dupre, N; Bouchard, J P; Rouleau, G A

    2006-12-01

    Red blood cells (RBCs) possess the K-Cl cotransport (KCC) isoforms 1, 3, and 4. Mutations within a given isoform may affect overall KCC activity. In a double-blind study, we analyzed, with Rb as a K congener, K fluxes (total flux, ouabain-sensitive Na+/K+ pump, and bumetanide-sensitive Na-K-2Cl cotransport, Cl-dependent, and ouabain- and bumetanide-insensitive KCC with or without stimulation by N-ethylmaleimide (NEM) and staurosporine or Mg removal, and basal channel-mediated fluxes, osmotic fragility, and ions and water in the RBCs of 8 controls, and of 8 patients with hereditary motor and sensory neuropathy with agenesis of corpus callosum (HMSN-ACC) with defined KCC3 mutations (813FsX813 and Phe529FsX532) involving the truncations of 338 and 619 C-terminal amino acids, respectively. Water and ion content and, with one exception, mean osmotic fragility, as well as K fluxes without stimulating agents, were similar in controls and HMSN-ACC RBCs. However, the NEM-stimulated KCC was reduced 5-fold (p < 0.0005) in HMSN-ACC vs control RBCs, as a result of a lower Vmax (p < 0.05) rather than a lower Km (p = 0.109), accompanied by corresponding differences in Cl activation. Low intracellular Mg activated KCC in 6 out of 7 controls vs 1 out of 6 HMSN-ACC RBCs, suggesting that regulation is compromised. The lack of differences in staurosporine-activated KCC indicates different action mechanisms. Thus, in HMSN-ACC patients with KCC3 mutants, RBC KCC activity, although indistinguishable from that of the control group, responded differently to biochemical stressors, such as thiol alkylation or Mg removal, thereby indirectly indicating an important contribution of KCC3 to overall KCC function and regulation.

  5. Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2

    PubMed Central

    Medina, Igor; Friedel, Perrine; Rivera, Claudio; Kahle, Kristopher T.; Kourdougli, Nazim; Uvarov, Pavel; Pellegrino, Christophe

    2014-01-01

    In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl−)-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl− concentration ([Cl−]i). Lowering [Cl−]i enhances inhibition, whereas raising [Cl−]i facilitates neuronal activity. A neuron's basal level of [Cl−]i, as well as its Cl− extrusion capacity, is critically dependent on the activity of the electroneutral K+-Cl− cotransporter KCC2, a member of the SLC12 cation-Cl− cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl− extrusion capacity of KCC2 that result in increases of [Cl−]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl− homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions. PMID:24567703

  6. Characterization of Na+-K+-2Cl− Cotransporter Activity in Rabbit Lacrimal Gland Duct Cells

    PubMed Central

    Vizvári, Eszter; Katona, Máté; Orvos, Péter; Berczeli, Orsolya; Facskó, Andrea; Rárosi, Ferenc; Venglovecz, Viktória; Rakonczay, Zoltán; Hegyi, Péter; Ding, Chuanqing; Tóth-Molnár, Edit

    2016-01-01

    Purpose We recently reported that isolated duct segments from rabbit lacrimal gland (LG) were able to secrete fluid in response to secretagogues, which were blocked completely by bumetanide. This suggests the functional involvement of Na+-K+-2Cl− cotransporter (NKCC1) in ductal fluid secretion. Therefore, the aim of this study was to investigate the activity profile of NKCC1 in isolated rabbit LG duct segments. Methods Interlobular ducts were isolated from fresh rabbit LG tissue. Microfluorometry with the ammonium (NH4+)–pulse technique was used to elicit pH changes in duct cells, and the rate of bumetanide-sensitive cytosolic acidification after addition of NH4+ was used to quantify the activity of NKCC1. Results While basal activity of NKCC1 was undetectable, low cytosolic chloride (Cl−) level and hyperosmotic challenge (390 mOsm) were able to increase the activity of NKCC1. Carbachol (100 μM) had no significant effect on NKCC1 activity. Elevation of cytosolic calcium (Ca2+) level with Ca2+-ionophore (A 23187, 1 μM) did not cause any alteration in the activity of the cotransporter while direct activation of protein kinase C (phorbol myristate acetate, 100 nM) increased its activity slightly but in a significant manner. Addition of either forskolin (10 μM), cell-permeable cAMP analogue (8-bromo cAMP, 100 μM) or vasoactive intestinal peptide (200 nM) resulted in a significant increase in the activity of NKCC1. Conclusions These results highlight the functional involvement of NKCC1 in LG duct secretion. These findings may facilitate our understanding of LG function and may contribute to the development of targeted pharmacologic interventions in case of dry eye disease. PMID:27438543

  7. Cotransport of human adenovirus, clay colloids and TiO2 nanoparticles in porous media

    NASA Astrophysics Data System (ADS)

    James, S. C.; Chrysikopoulos, C. V.; Syngouna, V. I.; Kokkinos, P.; Tselepi, M. Α; Kartoudis, A.; Vantarakis, A.

    2016-12-01

    Particles such as clay colloids (e.g. kaolinite and montmorillonite) and metal oxides (e.g. TiO2) have great potential for controlling the fate and transport of viruses in the subsurface. Although human adenoviruses (hAdVs) are used worldwide to indicate human fecal pollution in groundwater, their transport behavior in the subsurface environment is not fully understood. This study focuses on the effects of both clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b), and TiO2 nanoparticles (NPs), on hAdV transport and retention in porous media. Laboratory-scale cotransport experiments were conducted in columns packed with glass beads, at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The experimental results suggested that the presence of KGa-1b, STx-1b, and TiO2 NPs increased the attachment and inactivation of hAdVs, mainly due to the contribution of additional attachment sites. Retention of hAdVs by the packed column was shown to be highest in the presence of TiO2 NPs and lowest in the presence of KGa-1b. Moreover, the mass recovery values of both clay colloids and TiO2 NPs were affected by the presence of hAdVs, under all of the experimental conditions examined in this study. However, no distinct relationship between mass recovery and water velocity could be established from the present experimental cotransport results.

  8. Calcineurin inhibitor cyclosporine A activates renal Na-K-Cl cotransporters via local and systemic mechanisms.

    PubMed

    Blankenstein, K I; Borschewski, A; Labes, R; Paliege, A; Boldt, C; McCormick, J A; Ellison, D H; Bader, M; Bachmann, S; Mutig, K

    2017-03-01

    Calcineurin dephosphorylates nuclear factor of activated T cells transcription factors, thereby facilitating T cell-mediated immune responses. Calcineurin inhibitors are instrumental for immunosuppression after organ transplantation but may cause side effects, including hypertension and electrolyte disorders. Kidneys were recently shown to display activation of the furosemide-sensitive Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb and the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule upon calcineurin inhibition using cyclosporin A (CsA). An involvement of major hormones like angiotensin II or arginine vasopressin (AVP) has been proposed. To resolve this issue, the effects of CsA treatment in normal Wistar rats, AVP-deficient Brattleboro rats, and cultured renal epithelial cells endogenously expressing either NKCC2 or NCC were studied. Acute administration of CsA to Wistar rats rapidly augmented phosphorylation levels of NKCC2, NCC, and their activating kinases suggesting intraepithelial activating effects. Chronic CsA administration caused salt retention and hypertension, along with stimulation of renin and suppression of renal cyclooxygenase 2, pointing to a contribution of endocrine and paracrine mechanisms at long term. In Brattleboro rats, CsA induced activation of NCC, but not NKCC2, and parallel effects were obtained in cultured cells in the absence of AVP. Stimulation of cultured thick ascending limb cells with AVP agonist restored their responsiveness to CsA. Our results suggest that the direct epithelial action of calcineurin inhibition is sufficient for the activation of NCC, whereas its effect on NKCC2 is more complex and requires concomitant stimulation by AVP. Copyright © 2017 the American Physiological Society.

  9. Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus.

    PubMed

    Ding, Yao; Wang, Shan; Jiang, Yan; Yang, Yi; Zhang, Manman; Guo, Yi; Wang, Shuang; Ding, Mei-ping

    2013-11-20

    Fructose-1,6-diphosphate (FDP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway and has anticonvulsant activity in several acute seizure animal models. In the present study, we investigated the anti-epileptogenic effects of FDP in an amygdaloid-kindling seizure model, which is an animal model of the most common form of human temporal lobe epilepsy. We found that 1.0 g/kg FDP slowed seizure progression and shortened the corresponding after-discharge duration (ADD). FDP increased the number of stimulations needed to reach seizure stages 2-5 and prolonged the cumulative ADD prior to reaching stages 3-5. It also shortened staying days and cumulative ADD in stages 4-5. However, it demonstrated no significant protective effect when administered after the animals were fully kindled. In hippocampal neurons, cation-chloride co-transporters (CCCs) are suggested to play interesting roles in epilepsy by modulating γ-aminobutyric acid (GABA)ergic activity through controlling GABAA receptor-mediated reversal potential. We examined the potential link between FDP and the hippocampal expression of two main members of the CCCs: the neuron-specific K(+)-Cl(-)co-transporter 2 (KCC2) and Na(+)-K(+)-Cl(-)co-transporter 1 (NKCC1). FDP inhibited the kindling-induced downregulation of KCC2 expression and decreased NKCC1 expression during the kindling session. Taken together, our data reveal that FDP may have protective activity against epileptogenesis, from partial to generalized tonic-clonic seizures. Furthermore, our findings suggest that the FDP-induced imbalance between KCC2 and NKCC1 expression may be involved in the neuroprotective effect.

  10. Evaluation of Manganese Phosphate Coatings.

    DTIC Science & Technology

    1984-02-01

    84003 _____________ 4 . TTLE and -bitle)5. TYPE OF REPORT & PERIOD COVERED EVALUATION OF MANGANESE PHOSPHATE COATINGS Final 6. PERFORMING ORG. REPORT...rosion resistance of the Endurion phosphate was significantly superior to the 4 . basic manganese phosphate . Endurion phosphate with a Supplementary...OF CONTENTS Page STATEMENT OF THE PROBLEM 1 BACKGROUND 1 APPROACH TO THE PROBLEM 3 RESULTS 4 CONCLUSIONS 7 TABLES I. Falex Wear Life Test Procedure 8

  11. Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion.

    PubMed

    O'Donnell, Martha E; Lam, Tina I; Tran, Lien Q; Foroutan, Shahin; Anderson, Steven E

    2006-10-01

    Estrogen has been shown to protect against stroke-induced brain damage, yet the mechanism is unknown. During the early hours of stroke, cerebral edema forms as increased transport of Na and Cl from blood into brain occurs across an intact blood-brain barrier (BBB). We showed previously that a luminal BBB Na-K-Cl cotransporter is stimulated by hypoxia and arginine vasopressin (AVP), factors present during cerebral ischemia, and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema in rats subjected to permanent middle cerebral artery occlusion (MCAO). The present study was conducted to determine whether estrogen protects in stroke at least in part by reducing activity of the BBB cotransporter, thereby decreasing edema formation. Ovariectomized rats were subjected to 210 mins of permanent MCAO after 7-day or 30-min pretreatment with 17beta-estradiol and then brain swelling and 2,3,5-triphenyltetrazolium chloride staining were assessed as measures of brain edema and lesion volume, respectively. Diffusion-weighed imaging was used to monitor permanent MCAO-induced decreases in apparent diffusion coefficient (ADC) values, an index of changes in brain water distribution and mobility. Na-K-Cl cotransporter activity of cerebral microvascular endothelial cells (CMECs) was assessed as bumetanide-sensitive K influx and cotransporter abundance by Western blot analysis after estradiol treatment. Estradiol significantly decreased brain swelling and lesion volume and attenuated the decrease in ADC values during permanent MCAO. Estradiol also abolished CMEC cotransporter stimulation by chemical hypoxia or AVP and decreased cotransporter abundance. These findings support the hypothesis that estrogen attenuates stimulation of BBB Na-K-Cl cotransporter activity, reducing edema formation during stroke.

  12. Calcium Phosphates and Human Beings

    NASA Astrophysics Data System (ADS)

    Dorozhkin, Sergey V.

    2006-05-01

    This article describes the general importance of calcium phosphates for human beings. The basic information on the structure and chemical properties of the biologically relevant calcium phosphates is summarized. Basic facts on the natural occurrence and the industrial use of natural calcium phosphates are discussed. Fundamental details on the presence of calcium phosphates in major calcified tissues (bones and teeth) of humans and mammals, as well as on biomaterials made of calcium phosphates are discussed. The article will be of value for chemistry teachers for expansion of their general background and point the students' attention to the rapidly growing topic of bone-substituting biomaterials.

  13. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  14. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No. 7782-0975...

  15. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  16. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  17. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  18. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  19. Biomediated continuous release phosphate fertilizer

    SciTech Connect

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  20. Renal phosphate handling: Physiology

    PubMed Central

    Prasad, Narayan; Bhadauria, Dharmendra

    2013-01-01

    Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23) and klotho coreceptor are the key regulators of phosphorus balance in body. PMID:23961477

  1. Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family.

    PubMed

    Pushkin, A; Abuladze, N; Lee, I; Newman, D; Hwang, J; Kurtz, I

    1999-06-04

    Previous functional studies have demonstrated that muscle intracellular pH regulation is mediated by sodium-coupled bicarbonate transport, Na+/H+ exchange, and Cl-/bicarbonate exchange. We report the cloning, sequence analysis, tissue distribution, genomic organization, and functional analysis of a new member of the sodium bicarbonate cotransporter (NBC) family, NBC3, from human skeletal muscle. mNBC3 encodes a 1214-residue polypeptide with 12 putative membrane-spanning domains. The approximately 7.8-kilobase transcript is expressed uniquely in skeletal muscle and heart. The NBC3 gene (SLC4A7) spans approximately 80 kb and is composed of 25 coding exons and 24 introns that are flanked by typical splice donor and acceptor sequences. Expression of mNBC3 cRNA in Xenopus laevis oocytes demonstrated that the protein encodes a novel stilbene-insensitive 5-(N-ethyl-N-isopropyl)-amiloride-inhibitable sodium bicarbonate cotransporter.

  2. Expressions of ion co-transporter genes in salicylate-induced tinnitus and treatment effects of spirulina.

    PubMed

    Hwang, Juen-Haur; Chan, Yin-Ching

    2016-09-02

    Although the activity of tinnitus-related ion co-transporter are known, their mRNA expressions has seldom been reported. We aimed to investigate the mRNA expressions of tinnitus-related ion co-transporter genes, and treatment effects of Spirulina. The mRNA expressions of K(+)-Cl(-) co-transporter (KCC2) and Na-K-2Cl co-transporter 1 (NKCC1) genes in the cochlea and brain of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The effects of spirulina water extract on these gene expressions were investigated. Compared to the control group, the tinnitus scores increased significantly, however, the salicylate-induced tinnitus could be reduced significantly by spirulina water extract. The tinnitus group had higher of borderline significance mRNA expression of KCC2 gene in the cochlear, significantly higher in the temporal lobes and in the frontal lobes. Meanwhile, compared to the tinnitus group, the spirulina group had significantly lower mRNA expression of KCC2 gene in the cochlear, temporal lobes, frontal lobes and parahippocampus/hippocampus. However, the NKCC1 mRNA expression was not significantly different between three groups in the cochlea and these brain areas. Salicylate-induced tinnitus might be associated with increased mRNA expression of KCC2 gene, but not with mRNA expressions of NKCC1 gene in the cochlear and some tinnitus-related brain areas. Spirulina reduced the expression of KCC2 genes in salicylate-induced tinnitus.

  3. Hsp70 and Hsp90 Multichaperone Complexes Sequentially Regulate Thiazide-sensitive Cotransporter Endoplasmic Reticulum-associated Degradation and Biogenesis*

    PubMed Central

    Donnelly, Bridget F.; Needham, Patrick G.; Snyder, Avin C.; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L.; Subramanya, Arohan R.

    2013-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560

  4. Regulation of Na+-K+-2Cl− cotransport in turkey red cells: the role of oxygen tension and protein phosphorylation

    PubMed Central

    Muzyamba, M C; Cossins, A R; Gibson, J S

    1999-01-01

    Na+-K+-2Cl− cotransport (NKCC) was studied in turkey red cells using Na+ dependence or bumetanide sensitivity of 86Rb+ influx to monitor activity of the transporter. Deoxygenation was the major physiological stimulus for NKCC activity: oxygen tensions (PO2) over the physiological range modulated the transporter, with a PO2 for half-maximal activation of about 41 mmHg (n = 3). In air, activity of NKCC was also stimulated by shrinkage and isoproteronol (isoprenaline, 5 μm). By contrast, in deoxygenated cells, although the transporter activity was markedly elevated, it was no longer sensitive to volume or β-adrenergic stimulation. Calyculin A, a protein phosphatase inhibitor, stimulated cotransport with a lag of about 5 min. N-Ethylmaleimide (NEM) inhibited cotransport and also blocked the stimulatory effect of calyculin A if administered before calyculin A. Stimulation by calyculin A and deoxygenation were not additive. Staurosporine (2 μm) inhibited deoxygenated-stimulated K+ influxes, but not those stimulated by calyculin A. NEM added during calyculin A stimulation, i.e. during the 5 min lag, caused transport activity to be clamped at levels intermediate between maximal (calyculin A alone) and control. Cells treated with calyculin A alone or with calyculin A followed by NEM were no longer sensitive to volume, isoproteronol or PO2. The results have characterized the interaction between deoxygenation and other stimuli of NKCC activity. They have also shown that it is possible to manipulate the transporter in a reciprocal way to that shown previously for K+-Cl− cotransport. PMID:10332092

  5. Vanadate and fluoride effects on Na sup + -K sup + -Cl sup minus cotransport in squid giant axon

    SciTech Connect

    Altamirano, A.A.; Breitwieser, G.E.; Russel, J.M. )

    1988-04-01

    The effects of vanadate and fluoride on the Na{sup +}-K{sup +}-Cl{sup {minus}} cotransporter of the squid giant axon were assessed. In axons not treated with these agents, intracellular dialysis with ATP-depleting fluids caused bumetanide-inhibitable {sup 36}Cl influx to fall with a half time of {approximately}16 min. In the presence of either 40 {mu}M vanadate or 5 mM fluoride, the decay of bumetanide-inhibitable {sup 36}Cl influx was significantly slowed; half time for vanadate-treated axons is 45 min and four fluoride-treated axons is 37 min. These agents are not exerting their effects on Na{sup +}-K{sup +}Cl{sup {minus}} cotransport by influencing the rate of ATP depletion of the axon, since they had no effect on the ATP hydrolysis rate of an optic ganglia homogenate. We therefore suggest that these data support the hypothesis that Na{sup +}-K{sup +}-Cl{sup {minus}} cotransport in squid axons is regulated by a phosphorylation-dephosphorylation mechanism and that vanadate and fluoride reduce the rate of dephosphorylation by inhibiting a protein phosphatase.

  6. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter.

    PubMed

    Li, Haibo; Schmitz, Olivia; Alper, Hal S

    2016-12-01

    The capacity to co-transport glucose and xylose into yeast has remained a technical challenge in the field. While significant efforts have been made in transporter engineering to increase xylose transport rates, glucose-based inhibition still limit most of these transporters. To address this issue, we further engineer sugar transporter proteins to remove glucose inhibition and enable glucose/xylose co-transport. Specifically, we start with our previously derived CiGXS1 FIM mutant strain and subjugate it to several rounds of mutagenesis and selection in a hexose metabolism null strain. Through this effort, we identify several mutations including N326H, a truncation in the C-terminal tail, I171F, and M40V as additionally dominant for reducing glucose inhibition. The resulting transporter shows substantially improved xylose transport rates in the presence of high quantities of glucose including up to 70 g/L glucose. Moreover, the resulting transporter enables co-utilization of glucose and xylose with glucose rates on par with a wild-type transporter and xylose rates exceeding that of glucose. These results demonstrate that major facilitator superfamily hexose transporters can be rewired into glucose-xylose co-transporters without functional inhibition by either substrate. These results enhance the potential of using lignocellulosic biomass as a feedstock for yeast.

  7. Activation of the erythroid K-Cl cotransporter Kcc1 enhances sickle cell disease pathology in a humanized mouse model.

    PubMed

    Brown, Fiona C; Conway, Ashlee J; Cerruti, Loretta; Collinge, Janelle E; McLean, Catriona; Wiley, James S; Kile, Ben T; Jane, Stephen M; Curtis, David J

    2015-12-24

    We used an N-ethyl-N-nitrosurea-based forward genetic screen in mice to identify new genes and alleles that regulate erythropoiesis. Here, we describe a mouse line expressing an activated form of the K-Cl cotransporter Slc12a4 (Kcc1), which results in a semi-dominant microcytosis of red cells. A missense mutation from methionine to lysine in the cytoplasmic tail of Kcc1 impairs phosphorylation of adjacent threonines required for inhibiting cotransporter activity. We bred Kcc1(M935K) mutant mice with a humanized mouse model of sickle cell disease to directly explore the relevance of the reported increase in KCC activity in disease pathogenesis. We show that a single mutant allele of Kcc1 induces widespread sickling and tissue damage, leading to premature death. This mouse model reveals important new insights into the regulation of K-Cl cotransporters and provides in vivo evidence that increased KCC activity worsened end-organ damage and diminished survival in sickle cell disease.

  8. The antihypertensive effect of calorie restriction in obese adolescents: dissociation of effects on erythrocyte countertransport and cotransport.

    PubMed

    Weder, A B; Torretti, B A; Katch, V L; Rocchini, A P

    1984-10-01

    Measures of maximal rates of lithium-sodium countertransport and frusemide-sensitive sodium and potassium cotransport have been proposed as biochemical markers for human essential hypertension. The stability of these functions over time within the same individuals has led to the suggestion that maximal transport capacities are genetically determined. The present study confirms the reproducibility of functional assays of countertransport and cotransport in human erythrocytes after overnight storage and over a six-month period in normal volunteers and provides estimates of the magnitude of technical error for each assay. A long-term dietary intervention study in a group of obese adolescents demonstrated marked increases in erythrocyte sodium levels and maximal frusemide-sensitive sodium and potassium fluxes but no changes in cell potassium or water and no effect on lithium-sodium countertransport. A correlation between the decrease in percentage of body fat and the increase in cell sodium content suggests a link between the metabolic effects of dieting and control of erythrocyte cation handling. Although the mechanism linking dietary calorie restriction and changes in erythrocyte cation metabolism is unknown, evaluation of body weight, and especially recent weight loss, is important in studies of erythrocyte transport. Conclusions regarding genetic contributions to the activities of lithium-sodium countertransport and sodium-potassium cotransport systems will be strengthened by clarification of environmental regulators.

  9. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl− cotransporters

    PubMed Central

    Mercado, Adriana; de los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R.; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette

    2016-01-01

    The K+-Cl− cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na+-K+-2Cl− cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms. PMID:27170636

  10. Photoinactivation of sodium-potassium-chloride cotransport in LLC-PK1/Cl 4 cells by bumetanide

    SciTech Connect

    Amsler, K.; Kinne, R.

    1986-05-01

    Rb+ uptake into LLC-PK1/Cl 4 cells can be subdivided into three components: 1) ouabain-sensitive uptake, 2) bumetanide-sensitive uptake, and 3) ouabain- and bumetanide-insensitive uptake. Exposure of cells to near-UV light in the presence of low concentrations of bumetanide produces a specific, irreversible inhibition of the bumetanide-sensitive uptake component, while not affecting the other two uptake components. Irreversible inhibition of bumetanide-sensitive transport is observed when measuring either cellular uptake or efflux and also when measuring /sup 86/Rb+ uptake into membrane vesicles. The irreversible inhibition is both concentration and time dependent and is blocked under conditions where the interaction of bumetanide with the Na+-K+-Cl- cotransporter is disturbed. We conclude that bumetanide, at low concentrations, can specifically and irreversibly inhibit the Na+-K+-Cl- cotransporter of LLC-PK1/Cl 4 cells. We suggest that this irreversible inhibition is the result of the photoactivation of an ether linkage in the bumetanide molecule, leading to a covalent binding of bumetanide to the Na+-K+-Cl- cotransporter.

  11. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles.

    PubMed Central

    Van Leeuwen, C C; Weusthuis, R A; Postma, E; Van den Broek, P J; Van Dijken, J P

    1992-01-01

    Maltose/proton co-transport was studied in intact cells and in plasma membrane vesicles of the yeast Saccharomyces cerevisiae. In order to determine uphill transport in vesicles, plasma membranes were fused with proteoliposomes containing cytochrome c oxidase as a proton-motive force-generating system. Maltose accumulation, dependent on the electrical and pH gradients, was observed. The initial uptake velocity and accumulation ratio in vesicles proved to be dependent on the external pH. Moreover, kinetic analysis of maltose transport showed that Vmax. values greatly decreased with increasing pH, whereas the Km remained virtually constant. These observations were in good agreement with results obtained with intact cells, and suggest that proton binding to the carrier proceeds with an apparent pK of 5.7. The observation with intact cells that maltose is co-transported with protons in a one-to-one stoichiometry was ascertained in the vesicle system by measuring the balance between proton-motive force and the chemical maltose gradient. These results show that maltose transport in vesicles prepared by fusion of plasma membranes with cytochrome c oxidase proteoliposomes behaves in a similar way as in intact cells. It is therefore concluded that this vesicle model system offers a wide range of new possibilities for the study of maltose/proton co-transport in more detail. PMID:1318030

  12. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters.

    PubMed

    Mercado, Adriana; de Los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette; Gamba, Gerardo

    2016-07-01

    The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms. Copyright © 2016 the American Physiological Society.

  13. Kinetics of K-Cl cotransport in frog erythrocyte membrane: effect of external sodium.

    PubMed

    Gusev, G P; Agalakova, N I; Lapin, A V

    1999-12-01

    In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO(3)) has been shown to mediate a large fraction of the total K(+) transport. In the present study, Cl(-)-dependent and Cl(-)-independent K(+) fluxes via frog erythrocyte membranes were investigated as a function of external and internal K(+) ([K(+)](e) and [K(+)](i)) concentration. The dependence of ouabain-resistant Cl(-)-dependent K(+) ((86)Rb) influx on [K(+)](e) over the range 0-20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K(m)) of 8.2 +/- 1.3 mm and maximal velocity (V(max)) of 10.4 +/- 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl(-)-dependent K(+) influx increased both K(m) (12.8 +/- 1.7 mm, P < 0.05) and V(max) (20.2 +/- 2.9 mmol/l/hr, P < 0.001). Raising [K(+)](e) above 20 mm in isotonic media significantly reduced the Cl(-)-dependent K(+) influx due to a reciprocal decrease of the external Na(+) ([Na(+)](e)) concentration below 50 mm. Replacing [Na(+)](e) by NMDG(+) markedly decreased V(max) (3.2 +/- 0.7 mmol/l/hr, P < 0.001) and increased K(m) (15.7 +/- 2.1 mm, P < 0.03) of Cl(-)-dependent K(+) influx. Moreover, NMDG(+) Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb(+) uptake and K(+) loss from red cells. Cell swelling did not affect the Na(+)-dependent changes in Rb(+) uptake and K(+) loss. In a nominally K(+)(Rb(+))-free medium, net K(+) loss was reduced after lowering [Na(+)](e) below 50 mm. These results indicate that over 50 mm [Na(+)](e) is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K(+), Cl(-)-dependent K(+) loss in K(+)-free media was a linear function of [K(+)](i), with a rate constant of 0.11 +/- 0.01 and 0.18 +/- 0.008 hr(-1) (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong

  14. Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading

    PubMed Central

    Steffensen, Annette B.; Sword, Jeremy; Croom, Deborah

    2015-01-01

    Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl−, and, accordingly, combined blockade of Cl−-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. SIGNIFICANCE STATEMENT Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular

  15. Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading.

    PubMed

    Steffensen, Annette B; Sword, Jeremy; Croom, Deborah; Kirov, Sergei A; MacAulay, Nanna

    2015-09-02

    Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(-), and, accordingly, combined blockade of Cl(-)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with

  16. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling.

    PubMed

    Ide, Noriko; Olauson, Hannes; Sato, Tadatoshi; Densmore, Michael Joseph; Wang, Hao; Hanai, Jun-Ichi; Larsson, Tobias E; Lanske, Beate

    2016-08-01

    Klotho is a transmembrane protein expressed in the renal tubules where it acts as a permissive coreceptor for fibroblast growth factor 23 (FGF23). FGF23 signaling reduces the abundance of CYP27b1 and phosphate cotransporters NPT2a and NPT2c, leading to a decrease in 1,25(OH)2D3 synthesis and a rise in urinary phosphate excretion, respectively. Systemic or whole-nephron deletion of Klotho in mice results in renal FGF23 resistance characterized by high 1,25(OH)2D3 and phosphate levels and premature aging. Expression of Klotho is highest in the distal tubules, whereas 25OH vitamin D 1α hydroxylation and phosphate reabsorption predominantly occur in the proximal tubules. Currently, the segment-specific roles of Klotho in renal tubules are not fully understood. Here we have generated mice with Klotho specifically ablated from the proximal tubules using 3 different Cre mouse strains. All 3 models displayed impaired urinary phosphate excretion and increased abundance of NPT2a in the brush border membrane. Notably, hyperphosphatemia in knockout mice was mild or nonexistent under basal conditions but occurred upon high phosphate loading, indicating the presence of compensatory mechanisms. Effects on 1,25(OH)2D3 varied between mouse strains but were modest overall. Thus, Klotho expressed in the proximal tubules has a defined but limited role in renal phosphate handling in vivo. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. DIFFERENTIAL REGULATION OF THE BUMETANIDE-SENSITIVE COTRANSPORTER (NKCC2) BY OVARIAN HORMONES

    PubMed Central

    Musselman, Teddy M; Zhang, Zheng; Masilamani, Shyama ME

    2010-01-01

    The Na-K-2Cl cotransporter (NKCC2) regulates sodium transport along the thick ascending limb of Henle’s loop and is important in control of sodium balance, renal concentrating ability and renin release. To determine if there are sex differences in NKCC2 abundance and/or distribution, and to evaluate the contribution of ovarian hormones to any such differences, we performed semiquantitative immunoblotting and immunoperoxidase immunohistochemistry for NKCC2 in the kidney of Sprague Dawley male, female and ovariectomized (OVX) rats with and without 17-β estradiol or progesterone supplementation. Intact females demonstrated greater NKCC2 protein in homogenates of whole kidney (334%±29), cortex (219%±20) and outer medulla (133%±9) compared to males. Ovarian hormone supplementation to OVX rats regulated NKCC2 in the outer medulla only, with NKCC2 protein abundance decreasing slightly in response to progesterone but increasing in response to 17-β estradiol. Immunohistochemistry demonstrated prominent NKCC2 labeling in the apical membrane of thick ascending limb cells. Kidney section NKCC2 labeling confirmed regionalized regulation of NKCC2 by ovarian hormones. Localized regulation of NKCC2 by ovarian hormones may have importance in controlling sodium and water balance over the lifetime of women as the milieu of sex hormones varies. PMID:20580730

  18. Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns.

    PubMed

    Ma, Jie; Guo, Huaming; Lei, Mei; Wan, Xiaoming; Zhang, Hanzhi; Feng, Xiaojuan; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Transport of environmental pollutants through porous media is influenced by colloids. Co-transport of As(V) and soil colloids at different pH were systematically investigated by monitoring breakthrough curves (BTCs) in saturated sand columns. A solute transport model was applied to characterize transport and retention sites of As(V) in saturated sand in the presence of soil colloids. A colloid transport model and the DLVO theory were used to reveal the mechanism and hypothesis of soil colloid-promoted As(V) transport in the columns. Results showed that rapid transport of soil colloids, regulated by pH and ionic strength, promoted As(V) transport by blocking As(V) adsorption onto sand, although soil colloids had low adsorption for As(V). The promoted transport was more significant at higher concentrations of soil colloids (between 25 mg L(-1) and 150 mg L(-1)) due to greater blocking effect on As(V) adsorption onto the sand surfaces. The blocking effect of colloids was explained by the decreases in both instantaneous (equilibrium) As adsorption and first-order kinetic As adsorption on the sand surface sites. The discovery of this blocking effect improves our understanding of colloid-promoted As transport in saturated porous media, which provides new insights into role of colloids, especially colloids with low As adsorption capacity, in As transport and mobilization in soil-groundwater systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modeling dense-colloid and virus cotransport in three-dimensional porous media.

    PubMed

    Katzourakis, Vasileios E; Chrysikopoulos, Constantinos V

    2015-10-01

    A three-dimensional numerical model was developed to investigate the simultaneous transport (cotransport) of dense colloids and viruses in homogeneous, water saturated, porous media with horizontal uniform flow. The dense colloids are assumed to exist in two different phases: suspended in the aqueous phase, and attached reversibly and/or irreversibly onto the solid matrix. The viruses are assumed to exist in four different phases: suspended in aqueous phase, attached onto the solid matrix, attached onto suspended colloids, and attached onto colloids already attached onto the solid matrix. The viruses in each of the four phases are assumed to undergo inactivation with different rates. Moreover, the suspended dense colloids as well as viruses attached onto suspended dense colloids are assumed to exhibit a "restricted" settling velocity as a consequence of the gravitational force; whereas, viruses due to their small sizes and densities are assumed to have negligible "restricted" settling velocity. The governing differential equations were solved numerically with the finite difference schemes, implicitly or explicitly implemented. Model simulations have shown that the presence of dense colloid particles can either enhance or hinder the horizontal transport of viruses, but also can increase the vertical migration of viruses.

  20. LLC-PK sub 1 cells express Na sup + -lactate cotransport in apical membranes after confluency

    SciTech Connect

    Poustis-Delpont, C.; Mengual, R.; Sudaka, P. )

    1988-12-01

    L-({sup 3}H)lactate uptake was characterized in LLC-PK{sub 1} cell apical membrane vesicles obtained by intensive culture on microcarrier beads. The apical membrane preparation technique involved MgCl{sub 2} precipitation. Na{sup +}-dependent L-({sup 3}H)lactate uptake was present only after confluency; its appearance paralleled the subcellular localization of aminopeptidase in apical membranes. L-({sup 3}H)lactate uptake was Na{sup +}-dependent and electrogenic. Only the Na{sup +}-dependent component of L({sup 3}H)lactate uptake was saturable with one family of independent carriers. The apparent affinity constant was 1.1 {plus minus} 0.25 mM and the apparent maximal velocity was 29 {plus minus} 3 nmol{center dot}mg{sup {minus}1}{center dot}min{sup {minus}1}. The Na{sup +}-lactate cotransport stoichiometry was 2 Na{sup +} for 1 lactate. The specificity of the L-lactate transport system was compatible with that of the monocarboxylic acid pathway described previously brush-border membranes of kidney cortex and discrete from the tricarboxylic acid carrier, the D-glucose transporter, and the general pathway for anions. The LLC-PK{sub 1} cell line appears to be a useful tool for study of the regulation of L-lactate uptake and biosynthesis of the renal monocarboxylic acid transporter.

  1. Sodium tungstate decreases sucrase and Na+/D-glucose cotransporter in the jejunum of diabetic rats.

    PubMed

    Miró-Queralt, Montserrat; Guinovart, Joan J; Planas, Joana M

    2008-09-01

    Sodium tungstate reduces glycemia and reverts the diabetic phenotype in several induced and genetic animal models of diabetes. Oral administration of this compound has recently emerged as an effective treatment for diabetes. Here we examined the effects of 30 days of oral administration of tungstate on disaccharidase and Na+/D-glucose cotransporter (SGLT1) activity in the jejunum of control and streptozotocin-induced diabetic rats. Diabetes increased sucrase-specific activity in the jejunal mucosa but did not affect the activity of lactase, maltase, or trehalase. The abundance and the maximal rate of transport of SGLT1 in isolated brush-border membrane vesicles also increased. Tungstate decreased sucrase activity and normalized SGLT1 expression and activity in the jejunum of diabetic rats. Furthermore, tungstate did not change the affinity of SGLT1 for d-glucose and had no effect on the diffusional component. In control animals, tungstate had no effect on disaccharidases or SGLT1 expression. Northern blot analysis showed that the amount of specific SGLT1 mRNA was the same in the jejunum from all experimental groups, thereby indicating that changes in SGLT1 abundance are due to posttranscriptional mechanisms. We conclude that the antidiabetic effect of tungstate is partly due to normalization of the activity of sucrase and SGLT1 in the brush-border membrane of enterocytes.

  2. Experimental investigation of viruses and clay particles cotransport in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2014-05-01

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid ?ltration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of both suspended and attached onto suspended clay-particles viruses was retarded, compared to the conservative tracer.

  3. Effect of gravity on virus and clay colloid cotransport through vertical water-saturated columns

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2015-04-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columnspacked with glass beadswas investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in bothvertical upward (VU) and vertically downward (VD) flowdirections. For most of the cases examined in this study, estimated mass recovery values were higher for VD than VU flows, suggesting that the flow direction significantly influenced particle deposition.KGa-1b hindered the transport of ΦX174 under VD flow conditions,while STx-1b facilitated the transport of ΦX174 under both VU and VD flow conditions. Moreover, KGa-1b hindered,while STx-1b facilitated the transport of MS2 in all of thecases examined. Also, the experimental data were used for the estimation of virus surface-coverages, and virus surface concentrations for virus diffusion-limited adsorption, and virus adsorption by sedimentation. The sedimentation limited virus adsorption was higher for VD than VU flows, and the diffusion-limited adsorption was higher for MS2 than ΦX174.

  4. Functional and molecular evidence for Na(+)-HCO cotransporter in porcine vas deferens epithelia.

    PubMed

    Carlin, Ryan W; Quesnell, Rebecca R; Zheng, Ling; Mitchell, Kathy E; Schultz, Bruce D

    2002-10-01

    This study focused on the role of sodium-bicarbonate cotransporter (NBC1) in cAMP-stimulated ion transport in porcine vas deferens epithelium. Ion substitution experiments in modified Ussing chambers revealed that cAMP-mediated stimulation was dependent on the presence of Na(+), HCO, and Cl(-) for a full response. HCO-dependent current was unaffected by acetazolamide, bumetanide, or amiloride but was inhibited by basolateral 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na(+)-driven, HCO-dependent, stilbene-inhibitable anion flux was observed across the basolateral membrane of selectively permeabilized monolayers. Results of radiotracer flux studies suggest a 4,4'-dinitrostilbene-2,2'-disulfonate-sensitive stoichiometry of 2 base equivalents per Na(+). Antibodies raised against rat kidney NBC epitopes (rkNBC; amino acids 338-391 and 928-1035) identified a single band of ~145 kDa. RT-PCR detected NBC1 message in porcine vas deferens epithelia. These results demonstrate that vas deferens epithelial cells possess the proteins necessary for the vectoral transport of HCO and that these mechanisms are maintained in primary culture. Taken together, the results indicate that vas deferens epithelia play an active role in male fertility and have implications for our understanding of the relationship between cystic fibrosis and congenital bilateral absence of the vas deferens.

  5. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill

    USGS Publications Warehouse

    Breves, Jason P.; Serizier, Sandy B.; Goffin, Vincent; McCormick, Stephen D.; Karlstrom, Rolf O.

    2013-01-01

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na+/Cl− cotransporter (ncc; slc12a10.2), Na+/H+ exchanger (nhe3b; slc9a3.2), and epithelial Ca2+ channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl− uptake in zebrafish for the first time.

  6. Transmembrane IV of the high-affinity sodium-glucose cotransporter participates in sugar binding

    PubMed Central

    Liu, Tiemin; Lo, Bryan; Speight, Pam; Silverman, Mel

    2008-01-01

    Investigation of the structure/function relationships of the sodium-glucose transporter (SGLT1) is crucial to understanding the cotransporter mechanism. In the present study, we used cysteine-scanning mutagenesis and chemical modification by methanethiosulfonate (MTS) derivatives to test whether predicted transmembrane IV participates in sugar binding. Five charged and polar residues (K139, Q142, T156, K157, and D161) and two glucose/galactose malabsorption missense mutations (I147 and S159) were replaced with cysteine. Mutants I147C, T156C, and K157C exhibited sufficient expression to be studied in detail using the two-electrode voltage-clamp method in Xenopus laevis oocytes and COS-7 cells. I147C was similar in function to wild-type and was not studied further. Mutation of lysine-157 to cysteine (K157C) causes loss of phloridzin and α-methyl-d-glucopyranoside (αMG) binding. These functions are restored by chemical modification with positively charged (2-aminoethyl) methanethiosulfonate hydrobromide (MTSEA). Mutation of threonine-156 to cysteine (T156C) reduces the affinity of αMG and phloridzin for T156C by ∼5-fold and ∼20-fold, respectively. In addition, phloridzin protects cysteine-156 in T156C from alkylation by MTSEA. Therefore, the presence of a positive charge or a polar residue at 157 and 156, respectively, affects sugar binding and sugar-induced Na+ currents. PMID:18448629

  7. Transmembrane IV of the high-affinity sodium-glucose cotransporter participates in sugar binding.

    PubMed

    Liu, Tiemin; Lo, Bryan; Speight, Pam; Silverman, Mel

    2008-07-01

    Investigation of the structure/function relationships of the sodium-glucose transporter (SGLT1) is crucial to understanding the cotransporter mechanism. In the present study, we used cysteine-scanning mutagenesis and chemical modification by methanethiosulfonate (MTS) derivatives to test whether predicted transmembrane IV participates in sugar binding. Five charged and polar residues (K139, Q142, T156, K157, and D161) and two glucose/galactose malabsorption missense mutations (I147 and S159) were replaced with cysteine. Mutants I147C, T156C, and K157C exhibited sufficient expression to be studied in detail using the two-electrode voltage-clamp method in Xenopus laevis oocytes and COS-7 cells. I147C was similar in function to wild-type and was not studied further. Mutation of lysine-157 to cysteine (K157C) causes loss of phloridzin and alpha-methyl-D-glucopyranoside (alphaMG) binding. These functions are restored by chemical modification with positively charged (2-aminoethyl) methanethiosulfonate hydrobromide (MTSEA). Mutation of threonine-156 to cysteine (T156C) reduces the affinity of alphaMG and phloridzin for T156C by approximately 5-fold and approximately 20-fold, respectively. In addition, phloridzin protects cysteine-156 in T156C from alkylation by MTSEA. Therefore, the presence of a positive charge or a polar residue at 157 and 156, respectively, affects sugar binding and sugar-induced Na(+) currents.

  8. Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2

    PubMed Central

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T.; Greenwood, Michael P.; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; de Souza Mecawi, Andre; Vechiato, Fernanda M.V.; de Lima, Juliana B.M.; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep

    2015-01-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution—rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats. PMID:25834041

  9. Co-transport of metal complexes by the green mussel Perna viridis.

    PubMed

    Chuang, Chia-Ying; Wang, Wen-Xiong

    2006-07-15

    We examined the uptake of ligand-bound metals (Cd and Zn) by the green mussel Perna viridis using defined artificial seawater. Different free ion concentrations (1 pM to 10 microM) in uptake solutions were created by adding different amounts of total metals (Cd 0.1 nM to 0.1 mM; Zn 0.5 nM to 0.05 mM) and ligands (EDTA, NTA, citric acid). Our results showed that Cd and Zn uptake could not be fully explained by the free Cd and Zn concentrations in the presence of different ligands, indicating that metal-ligand complexes were at least partially available for uptake by the mussels. Total Zn concentrations appeared to be a better predictor of metal uptake than the free Zn ion concentrations in the presence of different ligands. Uptake of lipophilic organic metal complexes was substantially greater than the hydrophilic metal complexes, even though the free ion concentration was comparable or lower. Moreover, the radiolabeled ligand compounds were directly accumulated by the mussels. The accumulation of metal complexes may explain the increased metal uptake with increasing ligand and total metal concentration, even though the free ion metal concentration was constant. Overall, our experimental results indicated that free metal ion cannot fully explain metal uptake since metal complex species were also available to the mussels to some extent, apparently through a co-transport process.

  10. The Na+-Taurocholate Cotransporting Polypeptide Traffics with the Epidermal Growth Factor Receptor

    PubMed Central

    Wang, Xintao; Wang, Pijun; Wang, Wenjun; Murray, John W.; Wolkoff, Allan W.

    2015-01-01

    Na+-taurocholate cotransporting polypeptide (ntcp) mediates uptake of bile acids as well as serving as the receptor for hepatitis B virus in human liver. Previous studies showed that ntcp traffics on microtubules between the cell surface and endocytic vesicles. Specific inhibition of protein kinase C (PKC)ζ resulted in loss of microtubule-based motility of these vesicles in vitro and in living cells. The aim of the present study was to characterize the PKCζ target. Incubation of ntcp-containing endocytic vesicles with γ-32P-ATP revealed a 180 kDa phosphoglycoprotein that was identified as the EGF receptor (EGFR). Surface biotinylation of HuH7 cells expressing GFP-ntcp revealed substantially reduced trafficking of ntcp to the cell surface with EGFR knockdown. Microtubule-based motility of ntcp-containing endocytic vesicles was also significantly reduced when they were not associated with EGFR. Ntcp was also found to undergo cellular redistribution upon stimulation of cells with EGF, consistent with a model in which ntcp and EGF-EGFR internalize into common endocytic vesicles from which they segregate, trafficking EGF-EGFR to lysosomes and recycling ntcp to the plasma membrane. EGF regulation of ntcp trafficking may play a heretofore unanticipated role in subcellular targeting of ntcp ligands such as hepatitis B. PMID:26650232

  11. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors.

  12. A High-Throughput Screening Assay for NKCC1 Cotransporter Using Nonradioactive Rubidium Flux Technology.

    PubMed

    Gill, Sikander; Gill, Rajwant; Wen, Yang; Enderle, Thilo; Roth, Doris; Liang, Dong

    A high-throughput screening (HTS) assay was developed for cotransporter, NKCC1, which is a potential target for the treatment of diverse disorders. This nonradioactive rubidium flux assay coupled with ion channel reader series provides a working screen for this target expressed in human embryonic kidney (HEK) cell line. An eightfold window of detection was achieved with the optimized assay. This new functional assay offered a robust working model for NKCC1 in determining reliable and concordant rank orders of the test compounds supporting its sensitivity and specificity. The robustness of manual assay indicated by Z' of 0.9 qualified its amenability to automation. The Z' of 0.7 was displayed by automated assay employed in high-throughput screening of compound libraries against this target. Being electrically neutral, the NKCC1 screening is difficult to achieve by both manual and automated electrophysiological techniques. These techniques, although considered gold standard, suffer from their inherent problems of being too slow to be in high-throughput format and with high running costs. In addition to being a functional assay for NKCC1, it is nontoxic as compared with thallium flux assay, which is prone to generate high number of false-positive/false-negative rates because of its innate fluorescence issues.

  13. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation.

    PubMed

    Ivy, Michael T; Newkirk, Robert F; Wang, Yilun; Townsel, James G

    2010-03-01

    The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.

  14. Renal Expression and Urinary Excretion of Na-K-2Cl Cotransporter in Obstructive Nephropathy

    PubMed Central

    2017-01-01

    Renal damage due to urinary tract obstruction accounts for up to 30% of acute kidney injury in paediatrics and adults. Bilateral ureteral obstruction (BUO) is associated with polyuria and reduced urinary concentrating capacity. We investigated the renal handling of water and electrolytes together with the renal expression and the urinary excretion of the Na-K-Cl cotransporter (NKCC2) after 1 (BUO-1), 2 (BUO-2), and 7 (BUO-7) days of release of BUO. Immunoblotting and immunohistochemical studies showed that NKCC2 expression was upregulated in apical membranes both from BUO-2 and from BUO-7 rats. The apical membrane expression, where NKCC2 is functional, may be sufficient to normalize water, potassium, sodium, and osmolytes tubular handling. NKCC2 abundance in homogenates and mRNA levels of NKCC2 was significantly decreased in almost all groups suggesting a decrease in the synthesis of the transporter. Urinary excretion of NKCC2 was increased in BUO-7 groups. These data suggest that the upregulation in the expression of NKCC2 in apical membranes during the postobstructive phase of BUO could contribute to improving the excretion of sodium and consequently also the excretion of potassium, osmolytes, and water. Moreover, the increase in urinary excretion of NKCC2 in BUO-7 group could be a potential additional biomarker of renal function recovery. PMID:28164127

  15. NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron

    PubMed Central

    Delpy, Alain; Allain, Anne-Emilie; Meyrand, Pierre; Branchereau, Pascal

    2008-01-01

    Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential (ECl) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5–E13.5) when GABAA receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes ECl. In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life. PMID:18096599

  16. Clinical and molecular study of a pediatric patient with sodium taurocholate cotransporting polypeptide deficiency

    PubMed Central

    Deng, Mei; Mao, Man; Guo, Li; Chen, Feng-Ping; Wen, Wang-Rong; Song, Yuan-Zong

    2016-01-01

    The human solute carrier family 10 member 1 (SLC10A1) gene encodes sodium taurocholate cotransporting polypeptide (NTCP), the principal transporter of conjugated bile salts from the plasma into hepatocytes. Although the function of NTCP has been studied extensively and a number of SLC10A1 variations have been identified in humans, information regarding NTCP deficiency is limited. To date, only one patient with NTCP deficiency has been described; however, in the present study a pediatric patient who experienced intractable and striking hypercholanemia is presented. Analysis of the SLC10A1 gene in the patient revealed a homozygous p.Ser267Phe (c.800C>T) variation, which proved to be a single-nucleotide polymorphism (SNP) in the allele frequency of 4.7% of healthy controls. This variation involved a conserved amino acid residue on the orthologous alignment that was predicted to be ‘disease-causing’ by functional analysis using a number of bioinformatic tools. Next generation sequencing was performed; however, no other genetic causes were identified that would affect the bile acid homeostasis in the patient. Moreover, an adult, with the same genotype as the pediatric patient, was identified for the first time as experiencing mild hypercholanemia. The molecular and clinical findings in the present study suggest, for the first time, that there is an association between p.Ser267Phe SNP and hypercholanemia, and this information may be used to clinically identify NTCP deficiency worldwide. PMID:27882152

  17. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases

    PubMed Central

    Bazúa-Valenti, Silvana

    2015-01-01

    The renal thiazide-sensitive Na+-Cl− cotransporter (NCC) is the salt transporter in the distal convoluted tubule. Its activity is fundamental for defining blood pressure levels. Decreased NCC activity is associated with salt-remediable arterial hypotension with hypokalemia (Gitelman disease), while increased activity results in salt-sensitive arterial hypertension with hyperkalemia (pseudohypoaldosteronism type II; PHAII). The discovery of four different genes causing PHAII revealed a complex multiprotein system that regulates the activity of NCC. Two genes encode for with-no-lysine (K) kinases WNK1 and WNK4, while two encode for kelch-like 3 (KLHL3) and cullin 3 (CUL3) proteins that form a RING type E3 ubiquitin ligase complex. Extensive research has shown that WNK1 and WNK4 are the targets for the KLHL3-CUL3 complex and that WNKs modulate the activity of NCC by means of intermediary Ste20-type kinases known as SPAK or OSR1. The understanding of the effect of WNKs on NCC is a complex issue, but recent evidence discussed in this review suggests that we could be reaching the end of the dark ages regarding this matter. PMID:25788573

  18. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill.

    PubMed

    Breves, Jason P; Serizier, Sandy B; Goffin, Vincent; McCormick, Stephen D; Karlstrom, Rolf O

    2013-04-30

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na(+)/Cl(-) cotransporter (ncc; slc12a10.2), Na(+)/H(+) exchanger (nhe3b; slc9a3.2), and epithelial Ca(2+) channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl(-) uptake in zebrafish for the first time. Copyright © 2013. Published by Elsevier Ireland Ltd.

  19. γ-Adducin Stimulates the Thiazide-sensitive NaCl Cotransporter

    PubMed Central

    Dimke, Henrik; San-Cristobal, Pedro; de Graaf, Mark; Lenders, Jacques W.; Deinum, Jaap; Hoenderop, Joost G.J.

    2011-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) plays a key role in renal salt reabsorption and the determination of systemic BP, but the molecular mechanisms governing the regulation of NCC are not completely understood. Here, through pull-down experiments coupled to mass spectrometry, we found that γ-adducin interacts with the NCC transporter. γ-Adducin colocalized with NCC to the distal convoluted tubule. 22Na+ uptake experiments in the Xenopus laevis oocyte showed that γ-adducin stimulated NCC activity in a dose-dependent manner, an effect that occurred upstream from With No Lysine (WNK) 4 kinase. The binding site of γ-adducin mapped to the N terminus of NCC and encompassed three previously reported phosphorylation sites. Supporting this site of interaction, competition with the N-terminal domain of NCC abolished the stimulatory effect of γ-adducin on the transporter. γ-Adducin failed to increase NCC activity when these phosphorylation sites were constitutively inactive or active. In addition, γ-adducin bound only to the dephosphorylated N terminus of NCC. Taken together, our observations suggest that γ-adducin dynamically regulates NCC, likely by amending the phosphorylation state, and consequently the activity, of the transporter. These data suggest that γ-adducin may influence BP homeostasis by modulating renal NaCl transport. PMID:21164023

  20. Interleukin 18 function requires both interleukin 18 receptor and Na-Cl co-transporter

    PubMed Central

    Wang, Jing; Sun, Chongxiu; Gerdes, Norbert; Liu, Conglin; Liao, Mengyang; Liu, Jian; Shi, Michael A.; He, Aina; Zhou, Yi; Sukhova, Galina K.; Chen, Huimei; Cheng, Xianwu; Kuzuya, Masafumi; Murohara, Toyoaki; Zhang, Jie; Cheng, Xiang; Jiang, Mengmeng; Shull, Gary E.; Rogers, Shaunessy; Yang, Chao-Ling; Ke, Qiang; Jelen, Sabina; Bindels, René; Ellison, David H.; Jarolim, Petr; Libby, Peter; Shi, Guo-Ping

    2015-01-01

    Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms1,2. Interruption of IL18 action reduces atherosclerosis in mice3,4. This study shows that the absence of IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E-deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding or signaling. IL18 antibody-mediated immunoprecipitation identified an interaction between IL18 and Na-Cl co-transporter (NCC), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney5. Yet, we find NCC expression and colocalization with IL18r in atherosclerotic lesions and both molecules form a complex. IL18 also binds to the cell surface and induces cell signaling and down-stream cytokine expression in NCC-transfected COS-7 cells that do not express IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or those lacking IL18r or NCC respond to IL18 binding or IL18 induction of cell signaling and cytokine and chemokine production, but those with combined deficiency of IL18r and NCC do not. This study identifies NCC as an IL18-binding protein that coordinates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis. PMID:26099046

  1. The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate.

    PubMed

    Mistry, Abinash C; Wynne, Brandi M; Yu, Ling; Tomilin, Viktor; Yue, Qiang; Zhou, Yiqun; Al-Khalili, Otor; Mallick, Rickta; Cai, Hui; Alli, Abdel A; Ko, Benjamin; Mattheyses, Alexa; Bao, Hui-Fang; Pochynyuk, Oleh; Theilig, Franziska; Eaton, Douglas C; Hoover, Robert S

    2016-10-01

    The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. Canagliflozin: a new class of antidiabetic agent targeting the sodium-glucose cotransporter.

    PubMed

    Toderika, Yuliana; Ferguson, Nadia

    2014-01-01

    Diabetes is a chronic disease that leads to multiple microvascular and macrovascular complications. It is the seventh leading cause of death in the United States with increased prevalence worldwide. There are multiple antihyperglycemic medication classes available on the market with advantages and disadvantages. Canagliflozin, a novel agent that lowers plasma glucose by decreasing glucose reabsorption at the proximal tubules of nephrons, inhibits the sodium-glucose cotransporter 2. Data suggest a decrease in hemoglobin A1C by about 1% in both fasting and postprandial plasma glucose levels, when canagliflozin was studied as monotherapy or with various combinations of metformin, pioglitazone, sulfonylurea, and insulin. Interestingly, canagliflozin use in geriatric patients and in those with renal impairment showed decreased efficacy and an increased risk of adverse reactions. These include, but are not limited to, hypotension, renal impairment, hyperkalemia, hypoglycemia, genital mycotic infections, hypersensitivity reactions, and increases in low-density lipoproteins. Hypoglycemia is a rare occurrence when canagliflozin is used alone but can occur more frequently when used in combination with sulfonylurea or insulin. This article reviews the pharmacology of canagliflozin, examines available clinical trials for efficacy and safety, and describes its role in diabetes management.

  3. [Canagliflozin (Invokana): kidney SGLT2 cotransporter inhibitor for treating type 2 diabetes].

    PubMed

    Scheen, A J

    2014-12-01

    Canagliflozin is an inhibitor of sodium-glucose cotransporters type 2 (SGLT2) that are present in renal tubules. This specific insulin-independent mechanism promotes glucosuria, which results in a reduction in fasting and postprandial glycaemia and a decrease of glycated haemoglobin (HbA(1c)). Furthermore, canagliflozin promotes weight loss and lowers arterial (mainly systolic) blood pressure. Its efficacy is decreased in patients with renal insufficiency and the treatment should be stopped if estimated glomerular filtration rate is below 45 ml/min/1.73 m2. Both the efficacy and safety of canagliflozin have been investigated in 24 to 104-week controlled trials versus placebo or versus an active comparator (glimepiride or sitagliptin). The mean reduction in HbA(1c) averages 0.75% when added to other treatments, as compared to placebo. The 100 mg dose is as active as sitagliptin 100 mg while the 300 mg canagliflozin dose is even more efficacious. Adverse events are mostly mycotic genital infections and more rarely mild urinary tract infections. Caution is required in elderly patients and the risk of volume depletion should be checked (hypotension). Hypoglycaemia may occur only in patients already treated with an insulin-secreting agent or insulin. Canagliflozin is commercialized under the trade name Invokana, at the doses of 100 mg and 300 mg once daily, for the treatment of type 2 diabetes.

  4. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium–Glucose Cotransporter 2 Inhibition

    PubMed Central

    Buschur, Elizabeth O.; Buse, John B.; Cohan, Pejman; Diner, Jamie C.; Hirsch, Irl B.

    2015-01-01

    OBJECTIVE Sodium–glucose cotransporter 2 (SGLT-2) inhibitors are the most recently approved antihyperglycemic medications. We sought to describe their association with euglycemic diabetic ketoacidosis (euDKA) in hopes that it will enhance recognition of this potentially life-threatening complication. RESEARCH DESIGN AND METHODS Cases identified incidentally are described. RESULTS We identified 13 episodes of SGLT-2 inhibitor–associated euDKA or ketosis in nine individuals, seven with type 1 diabetes and two with type 2 diabetes, from various practices across the U.S. The absence of significant hyperglycemia in these patients delayed recognition of the emergent nature of the problem by patients and providers. CONCLUSIONS SGLT-2 inhibitors seem to be associated with euglycemic DKA and ketosis, perhaps as a consequence of their noninsulin-dependent glucose clearance, hyperglucagonemia, and volume depletion. Patients with type 1 or type 2 diabetes who experience nausea, vomiting, or malaise or develop a metabolic acidosis in the setting of SGLT-2 inhibitor therapy should be promptly evaluated for the presence of urine and/or serum ketones. SGLT-2 inhibitors should only be used with great caution, extensive counseling, and close monitoring in the setting of type 1 diabetes. PMID:26078479

  5. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    PubMed Central

    Singh, Awadhesh Kumar

    2015-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism. PMID:26693421

  6. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Cardiomyopathy in a Diabetic Lipodystrophic Mouse Model.

    PubMed

    Joubert, Michael; Jagu, Benoît; Montaigne, David; Marechal, Xavier; Tesse, Angela; Ayer, Audrey; Dollet, Lucile; Le May, Cédric; Toumaniantz, Gilles; Manrique, Alain; Charpentier, Flavien; Staels, Bart; Magré, Jocelyne; Cariou, Bertrand; Prieur, Xavier

    2017-04-01

    Type 2 diabetes mellitus (T2DM) is a well-recognized independent risk factor for heart failure. T2DM is associated with altered cardiac energy metabolism, leading to ectopic lipid accumulation and glucose overload, the exact contribution of these two parameters remaining unclear. To provide new insight into the mechanism driving the development of diabetic cardiomyopathy, we studied a unique model of T2DM: lipodystrophic Bscl2(-/-) (seipin knockout [SKO]) mice. Echocardiography and cardiac magnetic resonance imaging revealed hypertrophic cardiomyopathy with left ventricular dysfunction in SKO mice, and these two abnormalities were strongly correlated with hyperglycemia. Surprisingly, neither intramyocardial lipid accumulation nor lipotoxic hallmarks were detected in SKO mice. [(18)F]Fludeoxyglucose positron emission tomography showed increased myocardial glucose uptake. Consistently, the O-GlcNAcylated protein levels were markedly increased in an SKO heart, suggesting a glucose overload. To test this hypothesis, we treated SKO mice with the hypoglycemic sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin and the insulin sensitizer pioglitazone. Both treatments reduced the O-GlcNAcylated protein levels in SKO mice, and dapagliflozin successfully prevented the development of hypertrophic cardiomyopathy. Our data demonstrate that glucotoxicity by itself can trigger cardiac dysfunction and that a glucose-lowering agent can correct it. This result will contribute to better understanding of the potential cardiovascular benefits of SGLT2 inhibitors. © 2017 by the American Diabetes Association.

  7. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    PubMed

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  8. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents.

    PubMed

    Vivian, Eva M

    2014-01-01

    Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM) achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM). The renal sodium-glucose co-transporter 2 (SGLT2) is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM.

  9. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.

    PubMed

    Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam

    2016-10-10

    Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders.

  10. A Na-K-Cl cotransporter in isolated rat papillary collecting duct cells

    SciTech Connect

    Grupp, C.; Pavenstaedt-Grupp, I.G.; Grunewald, R.W.; Bevan, C.; Stokes, J.B. 3d.; Kinne, R.K. )

    1989-08-01

    Lactate production and ion fluxes were measured in isolated rat papillary collecting duct cells (PCD) to gain further insight into the transport properties of the papillary collecting duct. Lactate production was found to be inhibited by bumetanide in a dose-dependent manner, a maximum inhibition of 22% was obtained at 10(-4) M bumetanide and an apparent Ki of 10(-8) M was determined. Bumetanide inhibition of lactate production was dependent on the presence of sodium and chloride. Chloride removal inhibited lactate production also by 20%. Bumetanide (10(-4) M) inhibited by 35% sodium uptake into PCD cells exposed to 10 mM ouabain and chloride uptake into ion depleted PCD cells by 40%. In addition, this bumetanide-sensitive chloride uptake was dependent on the presence of sodium and potassium in the incubation medium. Furthermore, 86Rb uptake into these cells was significantly reduced in the presence of 10(-4) M bumetanide. These data provide evidence for the operation of a Na-K-Cl cotransport system in rat papillary collecting duct cells. This transport system might be involved in active chloride transport in the papillary collecting duct and/or volume regulation of the PCD cells.

  11. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension

    PubMed Central

    Hoorn, Ewout J.; Walsh, Stephen B.; McCormick, James A.; Fürstenberg, Antje; Yang, Chao-Ling; Roeschel, Tom; Paliege, Alexander; Howie, Alexander J.; Conley, James; Bachmann, Sebastian; Unwin, Robert J.; Ellison, David H.

    2011-01-01

    Calcineurin inhibitors (CNIs) are immunosuppressive drugs, which are used widely to prevent rejection of transplanted organs and treat autoimmune disease. Hypertension and renal tubule dysfunction, including hyperkalemia, hypercalciuria, and acidosis often complicate their use1,2. These side effects resemble familial hyperkalemic hypertension (FHHt), a genetic disease characterized by overactivity of the renal sodium chloride co-transporter (NCC), and caused by mutations in WNK kinases. We hypothesized that CNIs induce hypertension by stimulating NCC. In wild-type mice, the CNI tacrolimus caused salt-sensitive hypertension and increased the abundance of phosphorylated NCC, and the NCC regulatory kinases WNK3, WNK4, and SPAK. The functional importance of NCC in this response was demonstrated by showing that tacrolimus did not affect blood pressure in NCC knockout mice, whereas the hypertensive response to tacrolimus was exaggerated in mice over-expressing NCC. Moreover, hydrochlorothiazide reversed tacrolimus-induced hypertension. In kidney transplant recipients treated with tacrolimus, fractional chloride excretion in response to bendroflumethiazide was greater than in controls, and renal NCC abundance was also greater, extending these observations to humans. Together, these findings indicate that tacrolimus-induced hypertension is mediated largely by NCC activation, and suggest that inexpensive and well-tolerated thiazide diuretics may be especially effective in preventing the complications of CNI treatment. PMID:21963515

  12. Sodium-glucose cotransporter-2 inhibitors and genital and urinary tract infections in type 2 diabetes.

    PubMed

    Arakaki, Richard F

    2016-05-01

    Coincident with the high and increasing worldwide prevalence of type 2 diabetes (T2D), a growing armamentarium of antidiabetes medications has been introduced to target different organ systems that play a role in the pathophysiology of T2D. Among these, the sodium-glucose cotransporter-2 (SGLT-2) inhibitors were introduced in the United States in 2013 as a new treatment option to address the hyperglycemia associated with T2D. SGLT-2 inhibitors decrease renal glucose reabsorption, resulting in glucosuria, alleviation of hyperglycemia, and modest weight loss and are associated with a low risk of hypoglycemia. The SGLT-2 inhibitors have been linked to an increased incidence of genital mycotic infections and, to a lesser extent, urinary tract infections, which may limit their utility in some patients. This review examines the prevalence, recurrence rates, treatment options, and responses to treatment of genital and urinary tract infections in patients with T2D receiving SGLT-2 inhibitors, with the aim of guiding clinicians in the most effective use of these agents for the treatment of hyperglycemia.

  13. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition.

    PubMed

    Rajeev, S P; Cuthbertson, D J; Wilding, J P H

    2016-02-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are the latest addition to the class of oral glucose-lowering drugs. They have been rapidly adopted into clinical practice because of therapeutic advantages, including weight loss and reduction in blood pressure, in addition to glycaemic benefits and a low intrinsic risk of hypoglycaemia. Although there are extensive data on the clinical effects of SGLT2 inhibition, the metabolic effects of inhibiting renal glucose reabsorption have not been fully described. Recent studies have identified compensatory metabolic effects, such as an increase in endogenous glucose production, and have also shown an increase in glucagon secretion during SGLT2 inhibition. In addition, there is a discrepancy between the expected and observed weight loss found in clinical studies on SGLT2 inhibitors, probably as a result of changes in energy balance with this treatment approach. SGLT2 inhibition is likely to have intriguing effects on whole body metabolism which have not been fully elucidated, and which, if explained, might help optimize the use of this new class of medicines. © 2015 John Wiley & Sons Ltd.

  14. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus

    PubMed Central

    Song, Panai; Onishi, Akira; Koepsell, Hermann; Vallon, Volker

    2016-01-01

    Introduction Glycemic control is important in diabetes mellitus to minimize the progression of the disease and the risk of potentially devastating complications. Inhibition of the sodium–glucose cotransporter SGLT2 induces glucosuria and has been established as a new anti-hyperglycemic strategy. SGLT1 plays a distinct and complementing role to SGLT2 in glucose homeostasis and, therefore, SGLT1 inhibition may also have therapeutic potential. Areas covered This review focuses on the physiology of SGLT1 in the small intestine and kidney and its pathophysiological role in diabetes. The therapeutic potential of SGLT1 inhibition, alone as well as in combination with SGLT2 inhibition, for anti-hyperglycemic therapy are discussed. Additionally, this review considers the effects on other SGLT1-expressing organs like the heart. Expert opinion SGLT1 inhibition improves glucose homeostasis by reducing dietary glucose absorption in the intestine and by increasing the release of gastrointestinal incretins like glucagon-like peptide-1. SGLT1 inhibition has a small glucosuric effect in the normal kidney and this effect is increased in diabetes and during inhibition of SGLT2, which deliver more glucose to SGLT1 in late proximal tubule. In short-term studies, inhibition of SGLT1 and combined SGLT1/SGLT2 inhibition appeared to be safe. More data is needed on long-term safety and cardiovascular consequences of SGLT1 inhibition. PMID:26998950

  15. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus

    PubMed Central

    Abdul-Ghani, Muhammad A.; Norton, Luke

    2015-01-01

    Hyperglycemia is the primary factor responsible for the microvascular, and to a lesser extent macrovascular, complications of diabetes. Despite this well-established relationship, approximately half of all type 2 diabetic patients in the US have a hemoglobin A1c (HbA1c) ≥7.0%. This is associated in part with the side effects, i.e., weight gain and hypoglycemia, of currently available antidiabetic agents and in part with the failure to utilize medications that reverse the basic pathophysiological defects present in patients with type 2 diabetes. The kidney has been shown to play a central role in the development of hyperglycemia by excessive production of glucose throughout the sleeping hours and enhanced reabsorption of filtered glucose by the renal tubules secondary to an increase in the threshold at which glucose spills into the urine. Recently, a new class of antidiabetic agents, the sodium-glucose cotransporter 2 (SGLT2) inhibitors, has been developed and approved for the treatment of patients with type 2 diabetes. In this review, we examine their mechanism of action, efficacy, safety, and place in the therapeutic armamentarium. Since the SGLT2 inhibitors have a unique mode of action that differs from all other oral and injectable antidiabetic agents, they can be used at all stages of the disease and in combination with all other antidiabetic medications. PMID:26354881

  16. Sodium-glucose cotransporter inhibition: therapeutic potential for the treatment of type 2 diabetes mellitus.

    PubMed

    Raskin, Philip

    2013-07-01

    Results from randomized controlled trials have demonstrated that the risk of microvascular complications can be reduced by intensive glycaemic control in patients with type 2 diabetes mellitus (T2DM). However, only about half of patients with diagnosed diabetes achieve recommended glycaemic goals. New therapies with complementary mechanisms of action that are independent of insulin secretion or action may provide additional therapeutic options to enable patients to achieve glycaemic control. The kidney plays an important role in glucose homeostasis, primarily by the reabsorption of filtered glucose. The sodium-glucose cotransporter 2 (SGLT2), located in the proximal convoluted tubule, is responsible for the majority of glucose reabsorption by the kidney. SGLT2 inhibitors offer a novel approach to treat T2DM and reduce hyperglycaemia by increasing urinary excretion of glucose. Dapagliflozin, an SGLT2 inhibitor recently approved in Europe for the treatment of T2DM, improves glycaemic control in patients with T2DM when used as monotherapy or when added to other diabetes medications, such as metformin, sulfonylureas, pioglitazone, and insulin. As a class, SGLT2 inhibitors are well tolerated and have a low propensity to cause hypoglycaemia. An increase in signs, symptoms, and other events suggestive of genital and, in some studies, urinary tract infections has been reported with SGLT2 inhibitors. Results from ongoing and future clinical trials will help define the role for this new class of investigational compounds, with its unique mechanism of action, as a treatment option for reducing hyperglycaemia in patients with T2DM.

  17. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents

    PubMed Central

    Vivian, Eva M

    2014-01-01

    Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM) achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM). The renal sodium-glucose co-transporter 2 (SGLT2) is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM. PMID:25598831

  18. Expression and functionality of the Na+/myo-inositol cotransporter SMIT2 in rabbit kidney.

    PubMed

    Lahjouji, Karim; Aouameur, Rym; Bissonnette, Pierre; Coady, Michael J; Bichet, Daniel G; Lapointe, Jean-Yves

    2007-05-01

    Myo-inositol (MI) is involved in several important aspects of cell physiology including cell signaling and the control of intracellular osmolarity i.e. by serving as a "compatible osmolyte". Currently, three MI cotransporters have been identified: two are Na(+)-dependent (SMIT1 and SMIT2) and one is H(+)-dependent (HMIT) and predominantly expressed in the brain. The goal of this study was to characterize the expression of SMIT2 in rabbit kidney and to compare it to SMIT1. First, we quantified mRNA levels for both transporters using quantitative real-time PCR and found that SMIT1 was predominantly expressed in the medulla while SMIT2 was mainly in the cortex. This distribution of SMIT2 was confirmed on Western blots where an antibody raised against a SMIT2 epitope specifically detected a 75 kDa protein in both tissues. Characterization of MI transport in brush-border membrane vesicles (BBMV), in the presence of d-chiro-inositol and l-fucose to separately identify SMIT1 and SMIT2 activities, showed that only SMIT2 is expressed at the luminal side of proximal convoluted tubules. We thus conclude that, in the rabbit kidney, SMIT2 is predominantly expressed in the cortex where it is probably responsible for the apical transport of MI into the proximal tubule.

  19. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives

    PubMed Central

    John, Mathew; Gopinath, Deepa; Jagesh, Rejitha

    2016-01-01

    The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV) outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis. PMID:26904465

  20. Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3- cotransporter.

    PubMed

    Becker, Holger M; Deitmer, Joachim W

    2007-05-04

    Several acid/base-coupled membrane transporters, such as the electrogenic sodium-bicarbonate cotransporter (NBCe1), have been shown to bind to different carbonic anhydrase isoforms to create a "transport metabolon." We have expressed NBCe1 derived from human kidney in oocytes of Xenopus leavis and determined its transport activity by recording the membrane current in voltage clamp, and the cytosolic H(+) and Na(+) concentrations using ion-selective microelectrodes. When carbonic anhydrase isoform II (CAII) had been injected into oocytes, the membrane current and the rate of cytosolic Na(+) rise, indicative for NBCe1 activity, increased significantly with the amount of injected CAII (2-200 ng). The CAII inhibitor ethoxyzolamide reversed the effects of CAII on the NBCe1 activity. Co-expressing wild-type CAII or NH(2)-terminal mutant CAII together with NBCe1 provided similar results, whereas co-expressing the catalytically inactive CAII mutant V143Y had no effect on NBCe1 activity. Mass spectrometric analysis and the rate of cytosolic H(+) change following addition of CO(2)/HCO(3)(-) confirmed the catalytic activity of injected and expressed CAII in oocytes. Our results show that the transport capacity of NBCe1 is enhanced by the catalytic activity of CAII, in line with the notion that CAII forms a transport metabolon with NBCe1.

  1. OVER-EXPRESSION OF THE SODIUM CHLORIDE COTRANSPORTER IS NOT SUFFICIENT TO CAUSE FAMILIAL HYPERKALEMIC HYPERTENSION

    PubMed Central

    McCormick, James A.; Nelson, Joshua H.; Yang, Chao-Ling; Curry, Joshua N.; Ellison, David H.

    2011-01-01

    The sodium chloride co-transporter (NCC) is the primary target of thiazides diuretics, drugs used commonly for long-term hypertension therapy. Thiazides also completely reverse the signs of Familial Hyperkalemic Hypertension (FHHt), suggesting that the primary defect in FHHt is increased NCC activity. To test whether increased NCC abundance alone is sufficient to generate the FHHt phenotype, we generated NCC transgenic mice; surprisingly, these mice did not display an FHHt-like phenotype. Systolic blood pressures of NCC transgenic mice did not differ from those of wild type mice, even after dietary salt-loading. NCC transgenic mice also did not display hyperkalemia or hypercalciuria, even when challenged with dietary electrolyte manipulation. Administration of fludrocortisone to NCC transgenic mice, to stimulate NCC, resulted in an increase in systolic blood pressure equivalent to that of wild type mice (approximately 20 mmHg). Although total NCC abundance was increased in the transgenic animals, phosphorylated (activated) NCC was not, suggesting that the defect in FHHt involves either activation of ion transport pathways other than NCC, or else direct activation of NCC, in addition to an increase in NCC abundance. PMID:21896937

  2. Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles.

    PubMed Central

    Akiba, T; Alpern, R J; Eveloff, J; Calamina, J; Warnock, D G

    1986-01-01

    The present studies examined the mechanism of bicarbonate transport across basolateral membrane vesicles prepared from rabbit renal cortex. Isotopic sodium uptake was stimulated by bicarbonate when compared with gluconate (2.5 nmol/mg protein per 5 s versus 1.4 nmol/mg protein per 5 s), and this process was inhibited by disulfonic stilbenes. Imposition of an interior-positive potassium diffusion potential further stimulated isotopic sodium uptake to 3.4 nmol/mg protein per 5 s, an effect that occurred only in the presence of bicarbonate and was blocked by disulfonic stilbenes. Kinetic analysis of the rate of bicarbonate-dependent sodium uptake as a function of sodium concentration revealed saturable stimulation with a Vmax of 2.7 nmol/mg protein per 2 s and a Km of 10.4 mM. The effect of bicarbonate concentration on bicarbonate-dependent sodium uptake was more complex. The present results demonstrate an electrogenic (negatively charged) sodium/bicarbonate cotransporter in basolateral membrane vesicles from the rabbit renal cortex. The electrogenicity implies a stoichiometry of at least two bicarbonate ions for each sodium ion. PMID:3782468

  3. The Sodium Bicarbonate Cotransporter (NBCe1) Is Essential for Normal Development of Mouse Dentition*

    PubMed Central

    Lacruz, Rodrigo S.; Nanci, Antonio; White, Shane N.; Wen, Xin; Wang, HongJun; Zalzal, Sylvia F.; Luong, Vivian Q.; Schuetter, Verna L.; Conti, Peter S.; Kurtz, Ira; Paine, Michael L.

    2010-01-01

    Proximal renal tubular acidosis (pRTA) is a syndrome caused by abnormal proximal tubule reabsorption of bicarbonate resulting in metabolic acidosis. Patients with mutations to the SLC4A4 gene (coding for the sodium bicarbonate cotransporter NBCe1), have pRTA, growth delay, ocular defects, and enamel abnormalities. In an earlier report, we provided the first evidence that enamel cells, the ameloblasts, express NBCe1 in a polarized fashion, thereby contributing to trans-cellular bicarbonate transport. To determine whether NBCe1 plays a critical role in enamel development, we studied the expression of NBCe1 at various stages of enamel formation in wild-type mice and characterized the biophysical properties of enamel in NBCe1−/− animals. The enamel of NBCe1−/− animals was extremely hypomineralized and weak with an abnormal prismatic architecture. The expression profile of amelogenin, a known enamel-specific gene, was not altered in NBCe1−/− animals. Our results show for the first time that NBCe1 expression is required for the development of normal enamel. This study provides a mechanistic model to account for enamel abnormalities in certain patients with pRTA. PMID:20529845

  4. Ipragliflozin: A novel sodium-glucose cotransporter 2 inhibitor developed in Japan

    PubMed Central

    Ohkura, Tsuyoshi

    2015-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibition causes abdominal symptoms such as diarrhea and reduces incretin secretion. Therefore, SGLT2 selectivity is important. Ipragliflozin is highly selective for SGLT2. In type 2 diabetes mellitus (T2DM), urinary glucose excretion increased to 90 g/24 h after 28 d of treatment with ipragliflozin 300 mg/d. Twelve weeks of ipragliflozin 50 mg/d vs placebo reduced glycated hemoglobin and body weight by 0.65% and 0.66 kg, respectively, in Western T2DM patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. Ipragliflozin (highly selective SGLT2 inhibitor) improves glycemic control and reduces body weight and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin can be a novel anti-diabetic and anti-obesity agent. PMID:25685284

  5. Osmoregulation requires brain expression of the renal Na-K-2Cl cotransporter NKCC2.

    PubMed

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T; Greenwood, Michael P; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; Mecawi, Andre de Souza; Vechiato, Fernanda M V; de Lima, Juliana B M; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep; Murphy, David

    2015-04-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats.

  6. Evidence for a specific glutamate/H/sup +/ cotransport in isolated mesophyll cells. [Asparagus sprengeri

    SciTech Connect

    McCutcheon, S.L.; Bown, A.W.

    1987-03-01

    Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO/sub 4/. Immediate alkalinization of the medium occurred on the addition of 1 millimolar concentrations of L-glutamate (Glu) and its analog L-methionine-D,L-sulfoximine (L-MSO). D-Glu and the L isomers of the protein amino acids did not elicit alkalinization. L-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar L-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H/sup +//10/sup 6/ cells minute. L-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of L-(U-/sup 14/C)glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by L-MSO. L-Glu had no influence on K/sup +/ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific L-Glu/proton uptake process is present in Asparagus mesophyll cells.

  7. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  8. Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide.

    PubMed

    Stross, Claudia; Helmer, Angelika; Weissenberger, Katrin; Görg, Boris; Keitel, Verena; Häussinger, Dieter; Kubitz, Ralf

    2010-08-01

    Bile salts influence signaling and metabolic pathways. In hepatocytes, the sodium taurocholate cotransporting polypeptide (Ntcp) is a major determinant of intracellular bile salt levels. Short-term downregulation of Ntcp is not well characterized to date. FLAG and enhanced green fluorescent protein (EGFP) tags were cloned to the extra- and intracellular termini of Ntcp. Endocytosis of Ntcp in transfected HepG2 cells was visualized by fluorescence of EGFP, and membrane surface expression of Ntcp was quantified by flow cytometry with fluorochrome-labeled FLAG antibodies. Activation of protein kinase C (PKC) by phorbolester or thymeleatoxin an activator of Ca(2+)-dependent conventional PKCs (cPKCs), induced endocytosis of Ntcp, whereas the Na(+)-K(+)-ATPase remained in the plasma membrane. The PKC inhibitor BIM I and the cPKC-selective inhibitor Gö6976 abolished PMA-induced endocytosis. Because of this internalization, cell surface expression of Ntcp was reduced by 36 +/- 7%, bile salt uptake was decreased by 25%, and taurolithocholate sulfate-induced cell toxicity was prevented. In conclusion, Ca(2+)-dependent PKCs induce vesicular retrieval of Ntcp, thereby reducing bile salt uptake. This mechanism may protect hepatocytes from toxic intracellular bile salt concentrations.

  9. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  10. Templated, layered manganese phosphate

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  11. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  12. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, Fe... ferric chloride or ferric citrate. (b) The ingredient meets the specifications of the Food Chemicals...

  13. Phosphate nutrition: improving low-phosphate tolerance in crops.

    PubMed

    López-Arredondo, Damar Lizbeth; Leyva-González, Marco Antonio; González-Morales, Sandra Isabel; López-Bucio, José; Herrera-Estrella, Luis

    2014-01-01

    Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.

  14. Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Kikuta, Koichi; Ohtsuki, Chikara

    2010-08-01

    Calcium phosphate crystals were formed in polyacrylamide (PAAm) hydrogels containing phosphate ions by diffusion of calcium ions from calcium nitrate (Ca(NO 3) 2) solutions covering the gels. Changes in crystalline phases and crystal morphology of calcium phosphate, and in ion concentrations of the Ca(NO 3) 2 solutions were investigated as a function of reaction time. Single or two coexisting crystalline phases of calcium phosphate, hydroxyapatite (HAp), HAp/dicalcium phosphate dihydrate (DCPD) or octacalcium phosphate (OCP)/DCPD were formed in the gels. HAp crystals are formed near the surface of the gels. The dense HAp layer and HAp/DCPD layer prevented diffusion of calcium ions from the Ca(NO 3) 2 solution, thus formation of calcium phosphate in the gel phase was inhibited. Formation of DCPD was observed to follow the formation of OCP or HAp. The size of the OCP crystals gradually increased with reaction time, while changes in size of HAp crystals were not observed. The reaction time required for DCPD formation depended on the degree of supersaturation with respect to DCPD in the systems. DCPD formed within 1 day under high supersaturation conditions, whereas it formed at 10 days in low supersaturation conditions.

  15. Unusual Features of Sodium Taurocholate Cotransporting Polypeptide as a Hepatitis B Virus Receptor

    PubMed Central

    Zong, Li; Sureau, Camille; Barker, Luke; Wands, Jack R.; Tong, Shuping

    2016-01-01

    ABSTRACT Cell culture (cc)-derived hepatitis B virus (HBV) can infect differentiated HepaRG cells, but efficient infection requires addition of polyethylene glycol (PEG) during inoculation. Identification of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor enabled ccHBV infection of NTCP reconstituted HepG2 cells, although very little hepatitis B surface antigen (HBsAg) is produced. We found infection by patient serum-derived HBV (sHBV), which required purification of viral particles through ultracentrifugation or PEG precipitation, was PEG independent and much more efficient in HepaRG cells than in HepG2/NTCP cells. In contrast to hepatitis B e antigen (HBeAg), HBsAg was not a reliable marker of productive sHBV infection at early time points. A low HBsAg/HBeAg ratio by ccHBV-infected HepG2/NTCP cells was attributable to dimethyl sulfoxide (DMSO) in culture medium, NTCP overexpression, and HBV genotype D. HepG2/NTCP cells released more viral antigens than HepG2 cells after HBV genome delivery by adeno-associated virus, and stable expression of NTCP in a ccHBV producing cell line increased viral mRNAs, proteins, replicative DNA, and covalently closed circular DNA. NTCP protein expression in HepG2/NTCP cells, despite being driven by the cytomegalovirus promoter, was markedly increased by DMSO treatment. This at least partly explains ability of DMSO to promote ccHBV infection in such cell lines. In conclusion, NTCP appeared inefficient to mediate infection by serum-derived HBV. It could promote HBV RNA transcription while inhibiting HBsAg secretion. Efficient PEG-independent sHBV infection of HepaRG cells permits comparative studies of diverse clinical HBV isolates and will help identify additional factors on virion surface promoting attachment to hepatocytes. IMPORTANCE Currently in vitro infection with hepatitis B virus (HBV) depends on cell culture-derived HBV inoculated in the presence of polyethylene glycol. We found patient serum

  16. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. © 2016 American Heart Association, Inc.

  17. Protective Role of Sodium-Glucose Co-Transporter 2 Inhibition Against Vascular Complications in Diabetes.

    PubMed

    Yamagishi, Sho-ichi; Matsui, Takanori

    2016-04-01

    Diabetic micro- and macroangiopathy are devastating vascular complications that could account for disabilities and high mortality rate in patients with diabetes. Indeed, diabetic nephropathy and retinopathy are the leading causes of end-stage renal failure and acquired blindness, respectively, and atherosclerotic cardiovascular diseases (CVD) accounts for about 60% of death in diabetic subjects. As a result, the average life span of diabetic patients is about 10-15 years shorter than that of non-diabetic subjects. Furthermore, tight blood glucose control might have no more than a marginal impact on CVD in general and on all-cause mortality in particular in diabetes. Therefore, therapeutic strategies that target vascular complications in diabetes need to be developed. Recently, selective inhibition of sodium-glucose co-transporter 2 (SGLT2) has been proposed as a potential therapeutic target for the treatment of patients with diabetes because of low risk of hypoglycemia and no weight gain. Because 90% of glucose filtered by the glomerulus is reabsorbed by a low-affinity/high-capacity SGLT2 expressed in the S1 and S2 segments of the proximal tubule, blockade of SGLT2 promotes urinary glucose excretion and as a result improves hyperglycemia in an insulin-independent manner. Moreover, we have shown that SGLT2-mediated glucose overload to tubular cells could elicit inflammatory and pro-apoptotic reactions in this cell, being directly involved in diabetic nephropathy. In addition, several clinical studies have also shown that SGLT2 inhibitors could reduce blood pressure, body weight, and serum uric acid levels and ameliorate cardiovascular risk in patients with diabetes. This review summarizes the pathophysiological role of SGLT2 in vascular complications in diabetes and its potential therapeutic interventions.

  18. Emerging roles of sodium-glucose cotransporter 2 inhibitors in cardiology.

    PubMed

    Tanaka, Atsushi; Node, Koichi

    2017-03-01

    The ultimate goal of treatment in people with diabetes mellitus is to prevent development of cardiovascular (CV) disease, resulting in prolongation of healthy life expectancy. Although impaired glycemic metabolism has a central role in its pathology, a number of studies have demonstrated that remedy for its imbalance cannot necessarily be accomplished as a therapeutic goal. A comprehensive medical approach against multi-factorial pathologies in diabetes, such as insulin resistance, obesity, hypertension, and dyslipidemia, in addition to diet and exercise therapy should be rather performed in the routine clinical setting. Along with such conceptual transition, what is required in anti-diabetes agents has also changed, and several anti-diabetes agents have been newly placed on the market in this decade. Such agents are required to undergo global pre- or post-marketing clinical trials assessing CV safety. A growing body of clinical evidence from those trials is now accumulating, and empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has first demonstrated significant risk reduction, relative to placebo, in CV death, overall mortality, and hospitalization for worsened heart failure in high-risk patients with diabetes mellitus. An SGLT2 inhibitor is a unique glucose-lowering agent and at the same time has multifaceted effects on hemodynamic and metabolic parameters beyond glycemic control. A major mode of action of SGLT2 inhibitors appears to be 'glycosuria' and 'natriuresis,' leading to amelioration of systemic glycemic homeostasis and potential cardio-renal protection. However, the precise mechanisms by which SGLT2 inhibitors affect benefits on the CV systems are yet to be fully elucidated. Thus, although we are now facing several unanswered concerns lurking behind the successful trial, SGLT2 inhibitors surely play several important roles in high-quality management of not only diabetes, but also CV medicine. This review summarizes our current

  19. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter.

    PubMed

    Sinke, Anne P; Kortenoeven, Marleen L A; de Groot, Theun; Baumgarten, Ruben; Devuyst, Olivier; Wetzels, Jack F M; Loffing, Johannes; Deen, Peter M T

    2014-03-01

    Lithium is the most common cause of nephrogenic diabetes insipidus (Li-NDI). Hydrochlorothiazide (HCTZ) combined with amiloride is the mainstay treatment in Li-NDI. The paradoxical antidiuretic action of HCTZ in Li-NDI is generally attributed to increased sodium and water uptake in proximal tubules as a compensation for increased volume loss due to HCTZ inhibition of the Na-Cl cotransporter (NCC), but alternative actions for HCTZ have been suggested. Here, we investigated whether HCTZ exerted an NCC-independent effect in Li-NDI. In polarized mouse cortical collecting duct (mpkCCD) cells, HCTZ treatment attenuated the Li-induced downregulation of aquaporin-2 (AQP2) water channel abundance. In these cells, amiloride reduces cellular Li influx through the epithelial sodium channel (ENaC). HCTZ also reduced Li influx, but to a lower extent. HCTZ increased AQP2 abundance on top of that of amiloride and did not affect the ENaC-mediated transcellular voltage. MpkCCD cells did not express NCC mRNA or protein. These data indicated that in mpkCCD cells, HCTZ attenuated lithium-induced downregulation of AQP2 independently of NCC and ENaC. Treatment of Li-NDI NCC knockout mice with HCTZ revealed a significantly reduced urine volume, unchanged urine osmolality, and increased cortical AQP2 abundance compared with Li-treated NCC knockout mice. HCTZ treatment further resulted in reduced blood Li levels, creatinine clearance, and alkalinized urinary pH. Our in vitro and in vivo data indicate that part of the antidiuretic effect of HCTZ in Li-NDI is NCC independent and may involve a tubuloglomerular feedback response-mediated reduction in glomerular filtration rate due to proximal tubular carbonic anhydrase inhibition.

  20. Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain

    PubMed Central

    Majumdar, Debeshi; Maunsbach, Arvid B.; Shacka, John J.; Williams, Jennifer B.; Berger, Urs V.; Schultz, Kevin P.; Harkins, Lualhati E.; Boron, Walter F.; Roth, Kevin A.; Bevensee, Mark O.

    2008-01-01

    The activity of HCO3 − transporters contributes to the acid-base environment of the nervous system. In the present study, we used in situ hybridization, immunoblotting, immunohistochemistry, and immunogold electron microscopy to localize electrogenic Na/bicarbonate cotransporter NBCe1 splice variants (-A, -B, and -C) in rat brain. The in situ hybridization data are consistent with NBCe1-B and -C, but not -A, being the predominant NBCe1 variants in brain, particularly in the cerebellum, hippocampus, piriform cortex, and olfactory bulb. An antisense probe to the B and C variants strongly labeled granule neurons in the dentate gyrus of the hippocampus, and cells in the granule layer and Purkinje layer (e.g., Bergmann glia) of the cerebellum. Weaker labeling was observed in the pyramidal layer of the hippocampus and in astrocytes throughout the brain. Similar, but weaker labeling was obtained with an antisense probe to the A and B variants. In immunoblot studies, antibodies to the A and B variants (αA/B) and C variant (αC) labeled ~130-kDa proteins in various brain regions. From immunohistochemistry data, both αA/B and αC exhibited diffuse labeling throughout brain, but αA/B labeling was more intracellular and punctate. Based on co-localization studies with antibodies to neuronal or astrocytic markers, αA/B labeled neurons in the pyramidal layer and dentate gyrus of the hippocampus, as well as cortex. αC labeled glia surrounding neurons (and possibly neurons) in the neuropil of the Purkinje cell layer of the cerebellum, the pyramidal cell layer and dentate gyrus of the hippocampus, and the cortex. According to electron microscopy data from the cerebellum, αA/B primarily labeled neurons intracellularly and αC labeled astrocytes at the plasma membrane. In summary, the B and C variants are the predominant NBCe1 variants in rat brain and exhibit different localization profiles. PMID:18582537

  1. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter.

    PubMed

    Carey, Robert M; Schoeffel, Cynthia D; Gildea, John J; Jones, John E; McGrath, Helen E; Gordon, Lindsay N; Park, Min Jeong; Sobota, Rafal S; Underwood, Patricia C; Williams, Jonathan; Sun, Bei; Raby, Benjamin; Lasky-Su, Jessica; Hopkins, Paul N; Adler, Gail K; Williams, Scott M; Jose, Pedro A; Felder, Robin A

    2012-11-01

    Previous studies have demonstrated that single nucleotide polymorphisms (SNPs) of the sodium-bicarbonate co-transporter gene (SLC4A5) are associated with hypertension. We tested the hypothesis that SNPs in SLC4A5 are associated with salt sensitivity of blood pressure in 185 whites consuming an isocaloric constant diet with a randomized order of 7 days of low Na(+) (10 mmol/d) and 7 days of high Na(+) (300 mmol/d) intake. Salt sensitivity was defined as a ≥ 7-mm Hg increase in mean arterial pressure during a randomized transition between high and low Na(+) diet. A total of 35 polymorphisms in 17 candidate genes were assayed, 25 of which were tested for association. Association analyses with salt sensitivity revealed 3 variants that associated with salt sensitivity, 2 in SLC4A5 (P<0.001) and 1 in GRK4 (P=0.020). Of these, 2 SNPs in SLC4A5 (rs7571842 and rs10177833) demonstrated highly significant results and large effects sizes, using logistic regression. These 2 SNPs had P values of 1.0 × 10(-4) and 3.1 × 10(-4) with odds ratios of 0.221 and 0.221 in unadjusted regression models, respectively, with the G allele at both sites conferring protection. These SNPs remained significant after adjusting for body mass index and age (P=8.9 × 10(-5) and 2.6 × 10(-4) and odds ratios 0.210 and 0.286, respectively). Furthermore, the association of these SNPs with salt sensitivity was replicated in a second hypertensive population. Meta-analysis demonstrated significant associations of both SNPs with salt sensitivity (rs7571842 [P=1.2 × 10(-5)]; rs1017783 [P=1.1 × 10(-4)]). In conclusion, SLC4A5 variants are strongly associated with salt sensitivity of blood pressure in 2 separate white populations.

  2. Sodium-glucose co-transporter 2 inhibitors: from apple tree to 'Sweet Pee'.

    PubMed

    Hardman, Timothy C; Rutherford, Peter; Dubrey, Simon W; Wierzbicki, Anthony S

    2010-01-01

    The sodium-glucose co-transporter 2 (SGLT2), located in the plasma membrane of cells lining the proximal tubule, facilitates the reabsorbtion of glucose in the kidney. Inhibition of SGLT2 has the potential to reduce blood glucose and represents an opportune target for managing blood glucose. By promoting the excretion of glucose, SGLT2 inhibitors are the first anti-diabetic treatment to target the removal rather than the metabolic redirection of glucose. Their mechanism of action is independent of that of endogenous insulin status and thus provides a means of managing plasma glucose irrespective of a patient's glycaemic status or treatments being used in combination. Several candidate SGLT2 inhibitors based on the core glucoside structure of phlorizin are currently being developed, of which, the metabolically more stable aromatic and heteroaromatic C-glucosides have demonstrated the most promising preclinical and clinical data. The inhibition of SGLT2 by messenger antisense technology is also being investigated. Current indications suggest that short-term benefits, in terms of HbA1(c) reductions, are modest and it remains to be seen whether encouraging exogenous glucose disposal will result in long term patient benefits in terms of returning metabolic balance or even weight loss. Indications are that clinical efficacy will be greater with molecules based on an O-glucoside structure. Concerns have been raised over the safety of these agents, particularly a possible predisposition to urinary tract infections, but these concerns have yet to be confirmed in clinical studies. Clinical development programs will need to establish those patients most likely to benefit from inhibition of SGLT2.

  3. Na+ binding to the Na(+)-glucose cotransporter is potential dependent.

    PubMed

    Bennett, E; Kimmich, G A

    1992-02-01

    Activity of the Na(+)-glucose cotransporter in LLC-PK1 epithelial cells was assayed by measuring sugar-induced currents (IAMG) using whole cell recording techniques. IAMG was compared among cells by standardizing the measured currents to cell size using cell capacitance measurements. IAMG at a given membrane potential was measured as a function of alpha-methylglucoside (AMG) concentration and can be fit to Michaelis-Menten kinetics. IAMG at varying Na+ concentrations can be described by the Hill equation with a Hill coefficient of 1.6 at all tested potentials. At high external Na+ levels (155 mM), Na+ is at least 90% saturating at all tested potentials. Maximal currents at a given membrane potential (Im) are calculated from the Michaelis-Menten equation fit to data measuring IAMG vs. AMG concentration at a constant Na+ concentration. Im showed potential dependence under all conditions. Potential-dependent Na+ binding rate(s) cannot alone explain the observed potential dependence of Im under saturating Na+ conditions. Therefore, because Im is potential dependent, at least one step of the transport cycle other than external Na+ binding must be potential dependent. Im was also calculated from data taken at 40 mM external Na+. At all potentials studied, Im at 155 mM Na+ is greater than Im calculated at 40 mM Na+. This implies that the rate of external Na+ binding to the transporter at 40 mM also affects the maximal transport rate. Furthermore, Im at 40 mM external Na+ increases with hyperpolarization faster than Im at 155 mM Na+. Together, these facts indicate that the rate at which Na+ binds to the transporter is also potential dependent.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Na+/HCO3- cotransporter is expressed on β and α cells during rat pancreatic development

    PubMed Central

    Cao, Li-Hua; Xia, Cheng-Cai; Shi, Zhao-Chun; Wang, Ning; Gu, Zheng-Hua; Yu, Li-Zhi; Wan, Qi; De, Wei

    2016-01-01

    AIM To determine the expression and localization of the electrogenic Na+/HCO3- cotransporter (NBC1) in rat pancreas during development. METHODS The rat pancreas from postnatal and embryos removed from the uterus of pregnant rats that had been sacrificed by CO2 asphyxiation were used. Rat pancreas from embryonic day (E) 15.5 and E18.5 rat embryos was isolated under a stereomicroscope. Rat pancreas from postnatal (P) days 0, 7, 14, 21 and adult was directly isolated by the unaided eye. The RT-PCR analysis of the NBC1 specific region on rat pancreas tissues from different developmental stages. The two antibodies which target the NBC1 common COOH-terminal region and NH2-terminal region detected a clear band of about 145 kDa in the Western blot analysis. The localization of NBC1 was examined by immuno-fluorescence detection. RESULTS The results revealed the first peak of NBC1 expression at E18.5 and the second peak at P14. Meanwhile, the low NBC1 expression occurred at P7 and adult stages. Our results demonstrated, for the first time, the presence of NBC1 in the plasma membrane of β and α cells, as well as in the basolateral membrane of acinar cells of the rat pancreas at different stages of development. CONCLUSION The data strongly suggests that NBC1 is diversely expressed in the pancreas at different developmental stages, where it may exert its functions in pancreatic development especially islet cell growth through HCO3- transport and pH regulation. PMID:27920473

  5. Role of the NKCC1 co-transporter in sensitization of spinal nociceptive neurons.

    PubMed

    Pitcher, Mark H; Cervero, Fernando

    2010-12-01

    The Na(+), K(+), 2Cl(-) co-transporter type 1 (NKCC1) plays a pivotal role in hyperalgesia associated with inflammatory stimuli. NKCC1 contributes to maintain high [Cl(-)](i) in dorsal root ganglia (DRG) neurons which cause primary afferent depolarization (PAD) when GABA(A) receptors are activated. Enhanced GABA-induced depolarization, through increased NKCC1 activity, has been hypothesized to produce orthodromic spike activity of sufficient intensity to account for touch-induced pain. In the present study, we investigate this hypothesis using in vivo electrophysiology on rat dorsal horn neurons; the effects of spinal blockade of NKCC1 on intraplantar capsaicin-induced sensitization of dorsal horn neurons were examined. Single wide dynamic range (WDR) and nociceptive specific (NS) neuron activity in the dorsal horn was recorded using glass microelectrodes in anesthetized rats. Dorsal horn neurons with a receptive field on the plantar surface of the hindpaw were studied. Neuronal responses to mechanical stimuli (brush, von Frey filaments) were recorded ten minutes before intraplantar injection of 0.3 ml 0.1% capsaicin (CAP), 40 min after CAP and 15 min after local application of the NKCC1 blocker bumetanide (BTD; 500 μM) on the spinal cord. After CAP, low and high threshold stimulation of the cutaneous receptive field produced a significant enhancement in spike frequency over pre-CAP values in both WDR and NS neurons. Spinal BTD application reduced the spike frequency to baseline levels as well as attenuated the CAP-induced increases in background activity. Our data support the hypothesis that NKCC1 plays an important role in the sensitization of dorsal horn neurons following a peripheral inflammatory insult.

  6. The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus

    PubMed Central

    Sipilä, Sampsa T; Schuchmann, Sebastian; Voipio, Juha; Yamada, Junko; Kaila, Kai

    2006-01-01

    Earlier studies indicate a crucial role for the interconnected network of intrinsically bursting CA3 pyramidal neurons in the generation of in vivo hippocampal sharp waves (SPWs) and their proposed neonatal in vitro counterparts, the giant depolarizing potentials (GDPs). While mechanisms involving ligand- and voltage-gated channels have received lots of attention in the generation of CA3 network events in the immature hippocampus, the contribution of ion-transport mechanisms has not been extensively studied. Here, we show that bumetanide, a selective inhibitor of neuronal Cl− uptake mediated by the Na+–K+–2Cl− cotransporter isoform 1 (NKCC1), completely and reversibly blocks SPWs in the neonate (postnatal days 7–9) rat hippocampus in vivo, an action also seen on GDPs in slices (postnatal days 1–8). These findings strengthen the view that GDPs and early SPWs are homologous events. Gramicidin-perforated patch recordings indicated that NKCC1 accounts for a large (∼10 mV) depolarizing driving force for the GABAA current in the immature CA3 pyramids. Consistent with a reduction in the depolarization mediated by endogenous GABAA-receptor activation, bumetanide inhibited the spontaneous bursts of individual neonatal CA3 pyramids, but it slightly increased the interneuronal activity as seen in the frequency of spontaneous GABAergic currents. An inhibitory effect of bumetanide was seen on the in vitro population events in the absence of synaptic GABAA receptor-mediated transmission, provided that a tonic GABAA receptor-mediated current was present. Our work indicates that NKCC1 expressed in CA3 pyramidal neurons promotes network activity in the developing hippocampus. PMID:16644806

  7. Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei

    PubMed Central

    Barthó, P.; Payne, J. A.; Freund, T. F.; Acsády, L.

    2009-01-01

    In the thalamus of the rat the reversal potential of GABA-induced anion currents is more negative in relay cells than in neurones of the reticular nucleus (nRt) due to different chloride extrusion mechanisms operating in these cells. The distribution of KCl cotransporter type 2 (KCC2), the major neuronal chloride transporter that may underlie this effect, is unknown in the thalamus. In this study the precise regional and ultrastructural localization of KCC2 was examined in the thalamus using immunocytochemical methods. The neuropil of all relay nuclei was found to display intense KCC2 immunostaining to varying degrees. In sharp contrast, the majority of the nRt was negative for KCC2. In the anterior and dorsal part of the nRt, however, KCC2 immunostaining was similar to relay nuclei and parvalbumin and calretinin were found to colocalize with KCC2. At the ultrastructural level, KCC2 immunoreactivity was mainly located in the extrasynaptic membranes of thick and thin dendrites and the somata of relay cells but was also found in close association with asymmetrical synapses formed by cortical afferents. Quantitative evaluation of KCC2 distribution at the electron microscopic level demonstrated that the density of KCC2 did not correlate with dendritic diameter or synaptic coverage but is 1.7 times higher on perisynaptic membrane surfaces than on extrasynaptic membranes. Our data demonstrate that the regional distribution of KCC2 is compatible with the difference in GABA-A reversal potential between relay and reticular nuclei. At the ultrastructural level, abundant extrasynaptic KCC2 expression will probably play a role in the regulation of extrasynaptic GABA-A receptor-mediated inhibition. PMID:15305865

  8. Insulin Increases the Functional Activity of the Renal NaCl cotransporter

    PubMed Central

    Chávez-Canales, María; Arroyo, Juan Pablo; Ko, Benajmin; Vázquez, Norma; Bautista, Rocio; Castañeda-Bueno, María; Bobadilla, Norma A.; Hoover, Robert S.; Gamba, Gerardo

    2013-01-01

    Objectives Insulin is recognized to increase renal salt reabsorption in the distal nephron and hyperinsulinemic states have been shown to be associated with increased expression of the renal NaCl cotransporter, NCC. However, the effect of insulin on NCC functional activity has not been reported. Methods Using a heterologous expression system of Xenopus laevis oocytes, a mouse distal convoluted cell line, mDCT15 cells, endogenously expressing NCC, and an ex vivo kidney perfusion technique, we assessed the effect of insulin on the activity and phosphorylation of NCC. The signaling pathway involved was analyzed. Results In Xenopus oocytes insulin increases the activity of NCC together with its phosphorylation at threonine residue 58. Activation of NCC by insulin was also observed in mDCT15 cells. Additionally, insulin increased the NCC phosphorylation in kidney under the ex vivo perfusion technique. In oocytes and mDCT15 cells, insulin effect on NCC was prevented with inhibitors of PI3K, mTORC2, and AKT1 kinases, but not by inhibitors of MAP or mTORC1 kinases, suggesting that PI3K-mTORC2-AKT1 is the intracellular pathway required. Additionally, activation of NCC by insulin was not affected by wild type or mutant versions of WNK1, WNK4, or SGK1, but it was no longer observed in the presence of wild type or the dominant negative, catalytically inactive WNK3, implicating this kinase in the process. Conclusion Insulin induces activation and phosphorylation of NCC. This effect could play an important role in arterial hypertension associated with hyperinsulinemic states, such as obesity, metabolic syndrome, or type 2 diabetes mellitus. PMID:23303355

  9. Phosphorylation Decreases Ubiquitylation of the Thiazide-sensitive Cotransporter NCC and Subsequent Clathrin-mediated Endocytosis*

    PubMed Central

    Rosenbaek, Lena L.; Kortenoeven, Marleen L. A.; Aroankins, Takwa S.; Fenton, Robert A.

    2014-01-01

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20–30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT. PMID:24668812

  10. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    PubMed

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na(+)) and, indirectly, serum potassium (K(+)) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ((22)Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive (22)Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K(+), the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. (22)Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  11. Enhanced phosphorylation of Na-Cl cotransporter in experimental metabolic syndrome – role of insulin

    PubMed Central

    KOMERS, Radko; ROGERS, Shaunessy; OYAMA, Terry T.; XU, Bei; YANG, Chao-Ling; McCORMICK, James; ELLISON, David H.

    2014-01-01

    We investigated the activity of thiazide-sensitive sodium-chloride cotransporter (NCC) in experimental metabolic syndrome (MS) and the role of insulin in NCC activation. Renal responses to NCC inhibitor hydrochlorothiazide (HCTZ), as a measure of NCC activity in vivo were studied in 12-week old Zucker obese rats (ZO), a model of MS, and in lean control animals (ZL), together with renal NCC expression, and molecular markers of NCC activity, such as localization and phosphorylation. Effects of insulin were further studied in mammalian cell lines with inducible and endogenous expression of this molecule. ZO rats displayed marked hyperinsulinemia, but no differences in plasma aldosterone as compared to ZL. In ZO, natriuretic and diuretic responses to NCC inhibition with HCTZ were enhanced compared with ZL, and associated with a decrease in blood pressure (BP). ZO rats displayed enhanced Thr53 NCC phosphorylation and predominant membrane localization of both total and phosphorylated NCC, together with a different profile in expression of SPAK isoforms, and lower expression of WNK4. In vitro, insulin induced NCC phosphorylation, which was blocked by PI3 kinase inhibitor. Insulin-induced reduction in WNK4 expression was also observed, but delayed compared with the time course of NCC phosphorylation. In summary, we report increased NCC activity in hyperinsulinemic rodents in conjunction with SPAK expression profile consistent with NCC activation and reduced WNK4 as well as an ability of insulin to induce NCC stimulatory phosphorylation in vitro. Together, these findings indicate that hyperinsulinemia is an important driving force of NCC activity in MS with possible consequences for BP regulation. PMID:22651238

  12. RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter

    PubMed Central

    Ko, Benjamin; Kamsteeg, Erik-Jan; Cooke, Leslie L.; Moddes, Lauren N.; Deen, Peter M. T.

    2010-01-01

    The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the distal convoluted tubule. Recently, we described a novel pathway of NCC regulation in which phorbol esters (PE) stimulate Ras guanyl-releasing protein 1 (RasGRP1), triggering a cascade ultimately activating ERK1/2 MAPK and decreasing NCC cell surface expression (Ko B, Joshi LM, Cooke LL, Vazquez N, Musch MW, Hebert SC, Gamba G, Hoover RS. Proc Natl Acad Sci USA 104: 20120–20125, 2007). Little is known about the mechanisms which underlie these effects on NCC activity. Regulation of NCC via changes in NCC surface expression has been reported, but endocytosis of NCC has not been demonstrated. In this study, utilizing biotinylation, internalization assays, and a dynamin dominant-negative construct, we demonstrate that the regulation of NCC by PE occurs via an enhancement in internalization of NCC and is dynamin dependent. In addition, immunoprecipitation of NCC and subsequent immunoblotting for ubiquitin showed increased ubiquitination of NCC with phorbol ester treatment. MEK1/2 inhibitors and gene silencing of RasGRP1 indicated that this effect was dependent on RasGRP1 and ERK1/2 activation. Inhibition of ubiquitination prevents any PE-mediated decrease in NCC surface expression as measured by biotinylation or NCC activity as measured by radiotracer uptake. These findings confirmed that the PE effect on NCC is mediated by endocytosis of NCC. Furthermore, ubiquitination of NCC is essential for this process and this ubiquitination is dependent upon RasGRP1-mediated ERK1/2 activation. PMID:20392800

  13. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter

    PubMed Central

    Ivy, Jessica R.; Oosthuyzen, Wilna; Peltz, Theresa S.; Howarth, Amelia R.; Hunter, Robert W.; Dhaun, Neeraj; Al-Dujaili, Emad A.S.; Webb, David J.; Dear, James W.; Flatman, Peter W.

    2016-01-01

    Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic–pituitary–adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine53 (pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess. PMID:26953322

  14. Molecular interaction of anti-diabetic drugs with Acetylcholinesterase and Sodium Glucose Co-Transporter 2.

    PubMed

    Shakil, Shazi

    2017-04-07

    Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD) are the two disorders which are known to share pertinent pathological and therapeutic links. Sodium glucose co-transporter- (SGLT2) and Acetylcholinesterase (AChE) are established inhibition targets for T2DM and AD treatments, respectively. Reports suggest that anti-diabetic drugs could be used for AD treatment also. The present study used molecular docking by Autodock4.2 using our "Click-By-Click"-protocol, Ligplot1.4.3 and 'change in accessible surface area (ΔASA)-calculations' to investigate the binding of two investigational anti-diabetic drugs, Ertugliflozin and Sotagliflozin to an established target (SGLT2) and a research target (human brain AChE). Sotagliflozin appeared more promising for SGLT2 as well as AChE-inhibition with reference to ΔG and Ki values in comparison to Ertugliflozin. The ΔG and Ki values for 'Sotagliflozin:AChE-binding' were -7.16 kcal/mol and 5.6 μM, respectively while the same were found to be -8.47 kcal/mol and 0.62 μM, respectively for its interaction with SGLT2. Furthermore, 'Sotagliflozin:SGLT2-interaction' was subjected to (un)binding simulation analyses by 'Molecular-Motion-Algorithms'. This information is significant as the exact binding mode, interacting amino acid residues and simulation results for the said interaction have not been described yet. Also no X-ray crystal is available for the same. Finally, the results described herein indicate that Sotagliflozin could have an edge over Ertugliflozin for treatment of Type 2 diabetes. Future design of drugs based on Sotagliflozin scaffolds for treatment of Type 2 and/or Type 3 diabetes are highly recommended. As these drugs are still in late phases of clinical trials, the results described herein appear timely. This article is protected by copyright. All rights reserved.

  15. Restricted feeding phase shifts clock gene and sodium glucose cotransporter 1 (SGLT1) expression in rats.

    PubMed

    Balakrishnan, Anita; Stearns, Adam T; Ashley, Stanley W; Tavakkolizadeh, Ali; Rhoads, David B

    2010-05-01

    The intestine exhibits striking diurnal rhythmicity in glucose uptake, mediated by the sodium glucose cotransporter (SGLT1); however, regulatory pathways for these rhythms remain incompletely characterized. We hypothesized that SGLT1 rhythmicity is linked to the circadian clock. To investigate this, we examined rhythmicity of Sglt1 and individual clock genes in rats that consumed food ad libitum (AL). We further compared phase shifts of Sglt1 and clock genes in a second group of rats following restricted feeding to either the dark (DF) or light (LF) phase. Rats fed during the DF were pair-fed to rats fed during the LF. Jejunal mucosa was harvested across the diurnal period to generate expression profiles of Sglt1 and clock genes Clock, Bmal1 (brain-muscle Arnt-like 1), ReverbA/B, Per(Period) 1/2, and Cry (Cryptochrome) 1/2. All clock genes were rhythmic in AL rats (P < 0.05). Sglt1 also exhibited diurnal rhythmicity, with peak expression preceding nutrient arrival (P < 0.05). Light-restricted feeding shifted the expression rhythms of Sglt1 and most clock genes (Bmal1, ReverbA and B, Per1, Per2, and Cry1) compared with dark-restricted feeding (P < 0.05). The Sglt1 rhythm shifted in parallel with rhythms of Per1 and ReverbB. These effects of restricted feeding highlight luminal nutrients as a key Zeitgeber in the intestine, capable of simultaneously shifting the phases of transporter and clock gene expression, and suggest a role for clock genes in regulating Sglt1 and therefore glucose uptake. Understanding the regulatory cues governing rhythms in intestinal function may allow new therapeutic options for conditions of dysregulated absorption such as diabetes and obesity.

  16. Molecular evidence for a role for K+-Cl− cotransporters in the kidney

    PubMed Central

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B.; Pasantes-Morales, Herminia; Mercado, Adriana

    2013-01-01

    K+-Cl− cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K+ diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K+ diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct. PMID:24089410

  17. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus.

    PubMed

    Fioretto, Paola; Giaccari, Andrea; Sesti, Giorgio

    2015-10-17

    Although antidiabetic agents have been developed to target one or more of the core defects of type 2 diabetes mellitus (T2DM), many patients do not achieve glycemic goals. Inhibition of the sodium-glucose cotransporter 2 (SGLT2) induces glycosuria, reduces glucose toxicity and improves insulin sensitivity and β-cell function. As the mechanism of action of SGLT2 inhibitors is different from other agents and completely insulin-independent, the use of these drugs might potentially be efficacious alone or in combination with any other antidiabetic drug, including insulin. Dapagliflozin is a highly selective and reversible SGLT2 inhibitor approved for use in adult patients with T2DM as monotherapy in patients intolerant of metformin or as adjunctive therapy in patients inadequately controlled on existing antidiabetic medications, including insulin. A literature search conducted using PubMed identified key publications related to the use of dapagliflozin in the treatment of patients with diabetes mellitus. No date limits were applied. This review focuses on the safety and efficacy of this SGLT2 inhibitor. Dapagliflozin produces dose-related reductions in glycosylated hemoglobin (HbA1c) as monotherapy and as add-on to other antidiabetic agents, with significant reductions in body weight. Hypoglycemia is uncommon. Preliminary data from a phase 2 pharmacokinetic/pharmacodynamic study suggest that dapagliflozin may also improve glycemic control in patients with type 1 diabetes mellitus. Clinical trials published to date show that dapagliflozin is safe and effective as monotherapy or as an add-on to insulin or oral antidiabetic agents in patients with T2DM.

  18. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Na+-K+-2Cl- cotransporters and Cl- channels regulate citric acid cough in guinea pigs.

    PubMed

    Mazzone, Stuart B; McGovern, Alice E

    2006-08-01

    Loop diuretics have been shown to inhibit cough and other airway defensive reflexes via poorly defined mechanisms. We test the hypothesis that the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC1) is expressed by sensory nerve fibers innervating the airways where it plays an important role in regulating sensory neural activity. NKCC1 immunoreactivity was present on the cell membranes of most nodose and jugular ganglia neurons projecting to the trachea, and it was present on the peripheral terminals of putative mechanosensory nerve fibers in the airways. In urethane-anesthetized, spontaneously breathing guinea pigs, bolus application of citric acid (1 mM to 2 M) to an isolated and perfused segment of the tracheal mucosa evoked coughing and respiratory slowing. Removal of Cl- from the tracheal perfusate evoked spontaneous coughing and significantly potentiated cough and respiratory slowing reflexes evoked by citric acid. The NKCC1 inhibitor furosemide (10-100 microM) significantly reduced both the number of coughs evoked by citric acid and the degree of acid-evoked respiratory slowing (P < 0.05). Localized tracheal pretreatment with the Cl- channel inhibitors DIDS or niflumic acid (100 microM) also significantly reduced cough, whereas the GABAA receptor agonist muscimol potentiated acid-evoked responses. These data suggest that vagal sensory neurons may accumulate Cl- due to the expression of the furosemide-sensitive Cl- transporter, NKCC1. Efflux of intracellular Cl-, in part through calcium-activated Cl- channels, may play an important role in regulating airway afferent neuron activity.

  20. Dapagliflozin Binds Specifically to Sodium-Glucose Cotransporter 2 in the Proximal Renal Tubule.

    PubMed

    Ghezzi, Chiara; Yu, Amy S; Hirayama, Bruce A; Kepe, Vladimir; Liu, Jie; Scafoglio, Claudio; Powell, David R; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Barrio, Jorge R; Wright, Ernest M

    2017-03-01

    Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules via sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[(18)F]fluoro-dapagliflozin (F-Dapa). We detected prominent binding of intravenously injected F-Dapa in the kidney cortexes of rats and wild-type and Sglt1-knockout mice but not Sglt2-knockout mice, and injection of SGLT2 inhibitors prevented this binding. Furthermore, imaging revealed only low levels of F-Dapa in the urinary bladder, even after displacement of kidney binding with dapagliflozin. Microscopic ex vitro autoradiography of kidney showed F-Dapa binding to the apical surface of early proximal tubules. Notably, in vivo imaging did not show measureable specific binding of F-Dapa in heart, muscle, salivary glands, liver, or brain. We propose that F-Dapa is freely filtered by the kidney, binds to SGLT2 in the apical membranes of the early proximal tubule, and is subsequently reabsorbed into blood. The high density of functional SGLT2 transporters detected in the apical membrane of the proximal tubule but not detected in other organs likely accounts for the high kidney specificity of SGLT2 inhibitors. Overall, these data are consistent with data from clinical studies on SGLT2 inhibitors and provide a rationale for the mode of action of these drugs. Copyright © 2017 by the American Society of Nephrology.

  1. An Intelligent and Tumor-Responsive Fe(2+) Donor and Fe(2+)-Dependent Drugs Cotransport System.

    PubMed

    Zhang, Huijuan; Chen, Qianqian; Zhang, Xiaoge; Zhu, Xing; Chen, Jianjiao; Zhang, Hongling; Hou, Lin; Zhang, Zhenzhong

    2016-12-14

    Fe(2+) plays an essential role for artemisinin (ART)-based drugs in anticancer therapy. As a result, it is important to realize these two agents' cotransport for improving antitumor efficacy. We utilized a kind of alternating magnetic field (AMF) and tumor-responsive material-mesoporous Fe3O4 (mFe3O4)-to encapsulate ART. After that, the outer surface of mFe3O4 was capped with multifunctional hyaluronic acid (HA), which was used not only as a smart gatekeeper but also as a tumor targeting moiety. In vitro and in vivo studies proved that ART can be encapsulated in HA-mFe3O4 and protected by HA coating which could effectively avoid premature release during in vivo circulation. HA-mFe3O4/ART could be taken up by MCF-7 tumor cells via CD44 receptor-mediated endocytosis and locate at acidic lysosome. Subsequently, "HA gate" could be degraded by acidity and hyaluronidase. Then this system synchronously released Fe(2+) and ART at the same site. Fe(2+) can nonenzymatically convert ART to ROS for killing cancer cells. Under AMF irradiation, HA-mFe3O4 could not only effectively convert electromagnetic wave into heat for tumor thermal therapy but also generate high levels of reactive oxygen species (ROS) for tumor dynamic therapy. These results demonstrated that the antitumor efficacy of HA-mFe3O4/ART in vivo significantly enhanced 3.7 times compared with free ART. Combining with AMF, it further improved 3.9 times (V/V0 of 0.11), suggesting the successful combined application of HA-mFe3O4/ART and AMF for tumor treatment. It is believed that HA-mFe3O4/ART is a promising system for Fe(2+)-dependent drugs to improve their therapeutic effect.

  2. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of

  3. The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus.

    PubMed

    Sipilä, Sampsa T; Schuchmann, Sebastian; Voipio, Juha; Yamada, Junko; Kaila, Kai

    2006-06-15

    Earlier studies indicate a crucial role for the interconnected network of intrinsically bursting CA3 pyramidal neurons in the generation of in vivo hippocampal sharp waves (SPWs) and their proposed neonatal in vitro counterparts, the giant depolarizing potentials (GDPs). While mechanisms involving ligand- and voltage-gated channels have received lots of attention in the generation of CA3 network events in the immature hippocampus, the contribution of ion-transport mechanisms has not been extensively studied. Here, we show that bumetanide, a selective inhibitor of neuronal Cl- uptake mediated by the Na+-K+-2Cl- cotransporter isoform 1 (NKCC1), completely and reversibly blocks SPWs in the neonate (postnatal days 7-9) rat hippocampus in vivo, an action also seen on GDPs in slices (postnatal days 1-8). These findings strengthen the view that GDPs and early SPWs are homologous events. Gramicidin-perforated patch recordings indicated that NKCC1 accounts for a large ( approximately 10 mV) depolarizing driving force for the GABAA current in the immature CA3 pyramids. Consistent with a reduction in the depolarization mediated by endogenous GABAA-receptor activation, bumetanide inhibited the spontaneous bursts of individual neonatal CA3 pyramids, but it slightly increased the interneuronal activity as seen in the frequency of spontaneous GABAergic currents. An inhibitory effect of bumetanide was seen on the in vitro population events in the absence of synaptic GABAA receptor-mediated transmission, provided that a tonic GABAA receptor-mediated current was present. Our work indicates that NKCC1 expressed in CA3 pyramidal neurons promotes network activity in the developing hippocampus.

  4. Clinical relevance of the selectivity of sodium-glucose cotransporter-2 inhibitors.

    PubMed

    Morales-Olivas, Francisco J

    2016-11-01

    Selectivity is the property of a drug to preferentially bind to a biological structure. Most drugs can bind and stimulate or inhibit more than one system. Therefore, it is important that they are selective for the intended site and that the doses used do not have effects on other sites, which could provoke adverse reactions. Selectivity is assessed through in vitro experiments on organs or isolated cells. If the aim is to compare drugs, the experiment should be conducted in the same tissue and with the same design. Even so, the results cannot be directly extrapolated to clinical practice due to the influence of pharmacokinetic properties, which allow an adequate dose of the drug to reach the target site. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are able to inhibit renal SGLT2 without modifying intestinal SGLT1, whose inhibition could produce gastrointestinal adverse reactions. The concentration needed to inhibit each of the transporters is calculated, as well as the ratio between the concentration that inhibits SGLT1 and the concentration needed to inhibit SGLT2. The higher the ratio, the greater the selectivity and the lower the risk of gastrointestinal adverse reactions. The three SGLT2i recently introduced in the therapeutic arsenal are sufficiently selective for SGLT2 to make effects on intestinal SGLT1 unlikely. To differentiate the components of this therapeutic class, its pharmacokinetic properties should be analysed rather than its pharmacodynamic characteristics, such as selectivity. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  5. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter.

    PubMed

    Ivy, Jessica R; Oosthuyzen, Wilna; Peltz, Theresa S; Howarth, Amelia R; Hunter, Robert W; Dhaun, Neeraj; Al-Dujaili, Emad A S; Webb, David J; Dear, James W; Flatman, Peter W; Bailey, Matthew A

    2016-05-01

    Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic-pituitary-adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine(53) (pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess. © 2016 The Authors.

  6. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.

    PubMed Central

    Tiruppathi, C; Kulanthaivel, P; Ganapathy, V; Leibach, F H

    1990-01-01

    L-Phe-L-Pro-L-Ala is a tripeptide which is hydrolysable almost exclusively by dipeptidyl peptidase IV in rabbit renal brush-border membrane vesicles. In order to delineate the mechanism of the transport of an intact tripeptide across the brush-border membrane, we studied the characteristics of the uptake of [3H]Phe-Pro-Ala in membrane vesicles in which the activity of dipeptidylpeptidase IV was completely inhibited by treatment with di-isopropyl fluorophosphate. In these vesicles, uptake of radiolabel from the tripeptide was found to be Na(+)-independent, but was greatly stimulated by an inwardly directed H+ gradient. The H(+)-gradient-dependent radiolabel uptake appeared to be an active process, because the time course of uptake exhibited an overshoot phenomenon. The process was also electrogenic, being stimulated by an inside-negative membrane potential. Under the uptake-measurement conditions there was no detectable hydrolysis of [3H]Phe-Pro-Ala in the incubation medium when di-isopropyl fluorophosphate-treated membrane vesicles were used. Analysis of intravesicular contents revealed that the radiolabel inside the vesicles was predominantly (greater than 90%) in the form of intact tripeptide. These data indicate that the uptake of radiolabel from [3H]Phe-Pro-Ala in the presence of an inwardly directed H+ gradient represents almost exclusively uptake of intact tripeptide. Uphill transport of the tripeptide was also demonstrable in the presence of an inwardly directed Na+ or K+ gradient, but only if nigericin was added to the medium. Under these conditions, nigericin, an ionophore for Na+, K+ and H+, was expected to generate a transmembrane H+ gradient. Uptake of Phe-Pro-Ala in the presence of a H+ gradient was inhibited by di- and tri-peptides, but not by free amino acids. It is concluded that tripeptide/H+ co-transport is the mechanism of Phe-Pro-Ala uptake in rabbit renal brush-border membrane vesicles. PMID:2160811

  7. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.

    PubMed

    Tiruppathi, C; Kulanthaivel, P; Ganapathy, V; Leibach, F H

    1990-05-15

    L-Phe-L-Pro-L-Ala is a tripeptide which is hydrolysable almost exclusively by dipeptidyl peptidase IV in rabbit renal brush-border membrane vesicles. In order to delineate the mechanism of the transport of an intact tripeptide across the brush-border membrane, we studied the characteristics of the uptake of [3H]Phe-Pro-Ala in membrane vesicles in which the activity of dipeptidylpeptidase IV was completely inhibited by treatment with di-isopropyl fluorophosphate. In these vesicles, uptake of radiolabel from the tripeptide was found to be Na(+)-independent, but was greatly stimulated by an inwardly directed H+ gradient. The H(+)-gradient-dependent radiolabel uptake appeared to be an active process, because the time course of uptake exhibited an overshoot phenomenon. The process was also electrogenic, being stimulated by an inside-negative membrane potential. Under the uptake-measurement conditions there was no detectable hydrolysis of [3H]Phe-Pro-Ala in the incubation medium when di-isopropyl fluorophosphate-treated membrane vesicles were used. Analysis of intravesicular contents revealed that the radiolabel inside the vesicles was predominantly (greater than 90%) in the form of intact tripeptide. These data indicate that the uptake of radiolabel from [3H]Phe-Pro-Ala in the presence of an inwardly directed H+ gradient represents almost exclusively uptake of intact tripeptide. Uphill transport of the tripeptide was also demonstrable in the presence of an inwardly directed Na+ or K+ gradient, but only if nigericin was added to the medium. Under these conditions, nigericin, an ionophore for Na+, K+ and H+, was expected to generate a transmembrane H+ gradient. Uptake of Phe-Pro-Ala in the presence of a H+ gradient was inhibited by di- and tri-peptides, but not by free amino acids. It is concluded that tripeptide/H+ co-transport is the mechanism of Phe-Pro-Ala uptake in rabbit renal brush-border membrane vesicles.

  8. Molecular variants of the thiazide-sensitive Na+-Cl- cotransporter in hypertensive families.

    PubMed

    Keszei, András P; Tislér, András; Backx, Peter H; Andrulis, Irene L; Bull, Shelley B; Logan, Alexander G

    2007-10-01

    The thiazide-sensitive Na-Cl cotransporter (TSC) is involved in the fine regulation of sodium excretion by the kidney, and an increase in its activity causes salt-sensitive hypertension and hypercalciuria. To explore the possibility that activating mutations in the TSC gene may be involved in the pathogenesis of primary hypertension, we screened genomic DNA of 68 individuals from hypertensive families of patients with hypercalciuria for variations using single-strand conformation polymorphism and investigated the functional properties using the Xenopus laevis oocyte expression system. We identified 18 variants in the TSC and, of those, four were nonsynonymous. The A728T, R904Q and R919C variants were introduced into the human TSC cDNA and expressed in Xenopus oocytes to study their effect on Na transport. Although T728 and Q904 did not show any difference in Na uptake, the R919C mutant showed a 60% increase compared to wild-type human TSC and an exaggerated inhibitory action of hydrochlorothiazide. Immunocytochemical analysis revealed no difference in cell surface expression of R919C mutants compared to wild-type hTSC. There was no significant difference in the inhibitory effect of the carboxyl terminus of the serine-threonine kinase WNK4 on the R919C mutant and wild-type hTSC. Our results show that the substitution of arginine for cysteine at position 919 of TSC increases Na transport function, and provide support for the hypothesis that mutations in renal tubular sodium transporters may contribute to the development of primary hypertension, a polygenic disorder, by increasing renal sodium reabsorption.

  9. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide

    PubMed Central

    Okuyama-Dobashi, Kaori; Kasai, Hirotake; Tanaka, Tomohisa; Yamashita, Atsuya; Yasumoto, Jun; Chen, Wenjia; Okamoto, Toru; Maekawa, Shinya; Watashi, Koichi; Wakita, Takaji; Ryo, Akihide; Suzuki, Tetsuro; Matsuura, Yoshiharu; Enomoto, Nobuyuki; Moriishi, Kohji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection. PMID:26592202

  10. Insulin increases the functional activity of the renal NaCl cotransporter.

    PubMed

    Chávez-Canales, María; Arroyo, Juan Pablo; Ko, Benajmin; Vázquez, Norma; Bautista, Rocio; Castañeda-Bueno, María; Bobadilla, Norma A; Hoover, Robert S; Gamba, Gerardo

    2013-02-01

    Insulin is recognized to increase renal salt reabsorption in the distal nephron and hyperinsulinemic states have been shown to be associated with increased expression of the renal NaCl cotransporter (NCC). However, the effect of insulin on NCC functional activity has not been reported. Using a heterologous expression system of Xenopus laevis oocytes, a mouse distal convoluted cell line, mDCT15 cells, endogenously expressing NCC, and an ex-vivo kidney perfusion technique, we assessed the effect of insulin on the activity and phosphorylation of NCC. The signaling pathway involved was analyzed. In Xenopus oocytes insulin increases the activity of NCC together with its phosphorylation at threonine residue 58. Activation of NCC by insulin was also observed in mDCT15 cells. Additionally, insulin increased the NCC phosphorylation in kidney under the ex-vivo perfusion technique. In oocytes and mDCT15 cells, insulin effect on NCC was prevented with inhibitors of phosphatidylinositol 3-kinase (PI3K), mTORC2, and AKT1 kinases, but not by inhibitors of MAP or mTORC1 kinases, suggesting that PI3K-mTORC2-AKT1 is the intracellular pathway required. Additionally, activation of NCC by insulin was not affected by wild-type or mutant versions of with no lysine kinase 1, with no lysine kinase 4, or serum glucocorticoid kinase 1, but it was no longer observed in the presence of wild-type or the dominant negative, catalytically inactive with no lysine kinase 3, implicating this kinase in the process. Insulin induces activation and phosphorylation of NCC. This effect could play an important role in arterial hypertension associated with hyperinsulinemic states, such as obesity, metabolic syndrome, or type 2 diabetes mellitus.

  11. Interaction of fluvastatin with the liver-specific Na+ -dependent taurocholate cotransporting polypeptide (NTCP).

    PubMed

    Greupink, Rick; Dillen, Lieve; Monshouwer, Mario; Huisman, Maarten T; Russel, Frans G M

    2011-11-20

    It has been reported that polymorphisms in the organic anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1) result in decreased hepatic uptake of simvastatin carboxy acid, the active metabolite of simvastatin. This is not the case for fluvastatin and it has been hypothesized that for this drug other hepatic uptake pathways exist. Here, we studied whether Na(+)-dependent taurocholate co-transporting polypeptide (NTCP, SLC10A1) can be an alternative hepatic uptake route for fluvastatin. Chinese Hamster Ovary cells transfected with human NTCP (CHO-NTCP) were used to investigate the inhibitory effect of fluvastatin and other statins on [(3)H]-taurocholic acid uptake ([(3)H]-TCA). Statin uptake by CHO-NTCP and cryopreserved human hepatocytes was assessed via LC-MS/MS. Fluvastatin appeared to be a potent and competitive inhibitor of [(3)H]-TCA uptake (IC(50) of 40μM), pointing to an interaction at the level of the bile acid binding pocket of NTCP. The inhibitory action of other statins was also studied, which revealed that statin inhibitory potency increased with molecular descriptors of lipophilicity: calculated logP (r(2)=0.82, p=0.034), logD(7.4) (r(2)=0.77, p=0.0001). Studies in CHO-NTCP cells showed that fluvastatin was indeed an NTCP substrate (K(m) 250±30μM, V(max) 1340±50ng/mg total cell protein/min). However, subsequent studies revealed that at clinically relevant plasma concentrations, NTCP contributed minimally to overall accumulation in human hepatocytes. In conclusion, fluvastatin interacts with NTCP at the level of the bile acid binding pocket and is an NTCP substrate. However, under normal conditions, NTCP-mediated uptake of this drug seems not to be a significant hepatocellular uptake pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Mutations in the Na-Cl cotransporter reduce blood pressure in humans.

    PubMed

    Cruz, D N; Simon, D B; Nelson-Williams, C; Farhi, A; Finberg, K; Burleson, L; Gill, J R; Lifton, R P

    2001-06-01

    The relationship between salt homeostasis and blood pressure has remained difficult to establish from epidemiological studies of the general population. Recently, mendelian forms of hypertension have demonstrated that mutations that increase renal salt balance lead to higher blood pressure, suggesting that mutations that decrease the net salt balance might have the converse effect. Gitelman's syndrome, caused by loss of function mutations in the Na-Cl cotransporter of the distal convoluted tubule (NCCT), features inherited hypokalemic alkalosis with so-called "normal" blood pressure. We hypothesized that the mild salt wasting of Gitelman's syndrome results in reduced blood pressure and protection from hypertension. We have formally addressed this question through the study of 199 members of a large Amish kindred with Gitelman's syndrome. Through genetic testing, family members were identified as inheriting 0 (n=60), 1 (n=113), or 2 (n=26) mutations in NCCT, permitting an unbiased assessment of the clinical consequences of inheriting these mutations by comparison of the phenotypes of relatives with contrasting genotypes. The results demonstrate high penetrance of hypokalemic alkalosis, hypomagnesemia, and hypocalciuria in patients inheriting 2 mutant NCCT alleles. In addition, the NCCT genotype was a significant predictor of blood pressure, with homozygous mutant family members having significantly lower age- and gender-adjusted systolic and diastolic blood pressures than those of their wild-type relatives. Moreover, both homozygote and heterozygote subjects had significantly higher 24-hour urinary Na(+) than did wild-type subjects, reflecting a self-selected higher salt intake. Finally, heterozygous children, but not adults, had significantly lower blood pressures than those of the wild-type relatives. These findings provide formal demonstration that inherited mutations that impair renal salt handling lower blood pressure in humans.

  13. Heterozygous mutations of the sodium chloride cotransporter in Chinese children: prevalence and association with blood pressure.

    PubMed

    Hsu, Yu-Juei; Yang, Sung-Sen; Chu, Nain-Feng; Sytwu, Huey-Kang; Cheng, Chih-Jen; Lin, Shih-Hua

    2009-04-01

    Gitelman's syndrome (GS), which is caused by homozygous or compound heterozygous mutations of the thiazide-sensitive sodium chloride cotransporter (NCC), usually manifests in children and is associated with low blood pressure. However, the prevalence of heterozygous NCC mutations and their association with blood pressure in children have not yet been studied. Five hundred unrelated children from the Taipei Children Heart Study were enrolled. Genomic DNA was isolated from peripheral blood and the SLC12A3 gene was amplified by polymerase chain reaction (PCR). The 15 NCC mutations previously identified in Chinese patients with GS were evaluated using restriction fragment length polymorphism (RFLP) analysis. Blood pressure, biochemistry and urine pH were measured. The allelic frequency of heterozygous NCC mutations and their association with low blood pressure were also investigated. RFLP analysis for the 15 NCC mutations revealed heterozygous T60M in 1 child, T163M in 1, S283Y in 4, R642C in 2, W844X in 2, R928C in 9 and R959frameshift in 10 children. The overall incidence of positive heterozygous NCC mutations was approximately 2.9%. There were no significant differences in systolic or diastolic blood pressure, biochemical profiles or urine pH between children with heterozygous NCC mutations (n = 29) and non-affected controls (n = 471), except for slightly higher fasting plasma glucose concentrations in NCC-heterozygous children (91 +/- 2.3 versus 88 +/- 0.4 mg/dL, P < 0.05). Examination among the different NCC mutations showed that these children also had comparable blood pressures. We found a relatively high prevalence of heterozygous NCC mutations in Chinese children, suggesting that GS may not be rare in this population. Heterozygous NCC mutations were not associated with lower blood pressure in these Chinese children.

  14. Relevance of sodium/glucose cotransporter-1 (SGLT1) to diabetes mellitus and obesity in dogs.

    PubMed

    Batchelor, D J; German, A J; Shirazi-Beechey, S P

    2013-04-01

    Glucose transport across the enterocyte brush border membrane by sodium/glucose cotransporter-1 (SGLT1, coded by Slc5a1) is the rate-limiting step for intestinal glucose transport. The relevance of SGLT1 expression in predisposition to diabetes mellitus and to obesity was investigated in dogs. Cultured Caco-2/TC7 cells were shown to express SGLT1 in vitro. A 2-kbp fragment of the Slc5a1 5' flanking region was cloned from canine genomic DNA, ligated into reporter gene plasmids, and shown to drive reporter gene expression in these cells above control (P < 0.001). To determine the effect of the 3 known SNPs in this region on promoter function, new promoter/reporter constructs (all permutations of these 3 SNPs) were created by site-directed mutagenesis. No significant differences in promoter function were seen, suggesting that these SNPs do not have a significant effect on the constitutive transcription of SGLT1 mRNA in dogs. A search for novel SNPs in this region in dogs was made in 2 breeds predisposed to diabetes mellitus (Samoyed and cairn terrier), 2 breeds that rarely develop diabetes (boxer and German shepherd), and 2 breeds predisposed to obesity (Labrador retriever and cocker spaniel). The Slc5a1 5' flanking region was amplified from 10 healthy individuals of each of these breeds by high-fidelity PCR with the use of breed-labeled primers and sequenced by pyrosequencing. The sequence of the Slc5a1 5' flanking region in all individuals of all breeds tested was identical. On this evidence, variations in Slc5a1 promoter sequence between dogs do not influence the pathogenesis of diabetes mellitus or obesity in these breeds.

  15. Human SLC4A11 Is a Novel NH3/H+ Co-transporter*

    PubMed Central

    Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G.

    2015-01-01

    SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na+, H+ (OH−), bicarbonate, borate, and NH4+. Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4+, Na+, and H+ contributions to electrogenic ion transport through SLC4A11 stably expressed in Na+/H+ exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4+]o, and current amplitudes varied with the [H+] gradient. These currents were relatively unaffected by removal of Na+, K+, or Cl− from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H+-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H+). NH3-dependent currents were insensitive to 10 μm ethyl-isopropyl amiloride or 100 μm 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid. We propose that SLC4A11 is an NH3/2H+ co-transporter exhibiting unique characteristics. PMID:26018076

  16. Na(+) dependence of K(+) -induced natriuresis, kaliuresis and Na(+) /Cl(-) cotransporter dephosphorylation.

    PubMed

    Jensen, I S; Larsen, C K; Leipziger, J; Sørensen, M V

    2016-09-01

    High dietary K(+) intake is associated with protection against hypertension. In mammals, acute K(+) intake induces natriuresis and kaliuresis, associated with a marked dephosphorylation of the renal Na(+) /Cl(-) cotransporter (NCC). It has been suggested that reduced activity of NCC increases the driving force for more distal tubular epithelial Na(+) channel (ENaC)-dependent K(+) secretion. This study investigated the ENaC dependence of urinary K(+) and Na(+) excretion following acute K(+) loading. Mice were fed low (0.03%), control (0.2%) or high (2%) Na(+) diets for 25 days to preserve or promote Na(+) loss and thus ENaC activity. Once a week, the mice received either K(+) -containing gavage or a control gavage. Following the gavage treatment, the mice were placed in metabolic cages and urine was collected in real time. ENaC dependence of kaliuresis was assessed by benzamil injections prior to gavage. We confirmed that dietary Na(+) content is inversely related to plasma aldosterone, NCC phosphorylation and ENaC cleavage products. The novel findings were as follows: (i) acute K(+) feeding caused NCC dephosphorylation in all dietary groups; (ii) under all dietary conditions, K(+) loading induced natriuresis; (iii) high Na(+) diet markedly reduced the K(+) excretion following K(+) gavage; (iv) benzamil injection prior to K(+) loading increased natriuresis, decreased kaliuresis and eliminated the differences between the dietary groups. These data indicate that acute K(+) -induced kaliuresis is ENaC dependent. Maximal K(+) excretion rates are attenuated when ENaC is physiologically down-regulated or pharmacologically blocked. NCC is dephosphorylated following acute K(+) loading under all dietary Na(+) regimens. This leads to natriuresis, even in severely Na(+) -restricted animals. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide

    PubMed Central

    Mao, Fengfeng; Jing, Zhiyi; Li, Yunfei; Liu, Yang; Peng, Bo; Yan, Huan; Qi, Yonghe; Sun, Yinyan; Guo, Ju-Tao; Sui, Jianhua; Wang, Fengchao; Li, Wenhui

    2015-01-01

    Hepatitis D virus (HDV) is the smallest virus known to infect human. About 15 million people worldwide are infected by HDV among those 240 million infected by its helper hepatitis B virus (HBV). Viral hepatitis D is considered as one of the most severe forms of human viral hepatitis. No specific antivirals are currently available to treat HDV infection and antivirals against HBV do not ameliorate hepatitis D. Liver sodium taurocholate co-transporting polypeptide (NTCP) was recently identified as a common entry receptor for HDV and HBV in cell cultures. Here we show HDV can infect mice expressing human NTCP (hNTCP-Tg). Antibodies against critical regions of HBV envelope proteins blocked HDV infection in the hNTCP-Tg mice. The infection was acute yet HDV genome replication occurred efficiently, evident by the presence of antigenome RNA and edited RNA species specifying large delta antigen in the livers of infected mice. The resolution of HDV infection appears not dependent on adaptive immune response, but might be facilitated by innate immunity. Liver RNA-seq analyses of HDV infected hNTCP-Tg and type I interferon receptor 1 (IFNα/βR1) null hNTCP-Tg mice indicated that in addition to induction of type I IFN response, HDV infection was also associated with up-regulation of novel cellular genes that may modulate HDV infection. Our work has thus proved the concept that NTCP is a functional receptor for HDV infection in vivo and established a convenient small animal model for investigation of HDV pathogenesis and evaluation of antiviral therapeutics against the early steps of infection for this important human pathogen. PMID:25902143

  18. Association of Genetic Variation of Sodium Taurocholate Cotransporting Polypeptide with Chronic Hepatitis B Virus Infection

    PubMed Central

    Li, Na; Zhang, Pingping; Yang, Cuiling; Zhu, Qianqian; Li, Zhu; Li, Fang; Han, Qunying; Wang, Yawen; Lv, Yi; Wei, Ping

    2014-01-01

    Background: Sodium taurocholate cotransporting polypeptide (NTCP) plays an important role in the enterohepatic circulation of bile acids and hepatocyte function and was recently proposed to be a functional receptor for hepatitis B virus (HBV). Objective: This study investigated the association of the functional polymorphism c.800C>T (p.S267F) (rs2296651) of the NTCP gene with HBV infection. Methods: The study included 244 patients with chronic HBV infection, 76 HBV infection resolvers, and 113 healthy controls. The polymorphism was genotyped using the polymerase chain reaction–restriction fragment length polymorphism method. Results: The distribution of the genotype and allele frequency of rs2296651 polymorphism was significantly different among the HBV patients, HBV infection resolvers, and healthy controls (p=0.034 and p=0.039, respectively). The frequency of genotype CT in HBV patients was significantly higher than that in healthy controls (11.9% vs. 4.4%, p=0.026, odds ratios [OR]=2.913, 95% confidence intervals [95% CI]=1.097–7.738). The frequency of allele T in HBV patients was also significantly higher than that in healthy controls (5.9% vs. 2.2%, p=0.029, OR=2.793, 95% CI=1.067–7.312). The frequency of genotype CT and allele T in HBV patients was higher than that in HBV infection resolvers although the difference was not significant. The genotype and allele frequency between infection resolvers and healthy controls and between HBV patients with different clinical diseases had no significant difference. Conclusion: These findings suggest that the rs2296651 polymorphism may predispose the susceptibility to and chronicity of HBV infection. PMID:24735529

  19. Antibodies against the cardiac sodium/bicarbonate co-transporter (NBCe1) as pharmacological tools

    PubMed Central

    De Giusti, Verónica C; Orlowski, Alejandro; Villa-Abrille, María C; de Cingolani, Gladys E Chiappe; Casey, Joseph R; Alvarez, Bernardo V; Aiello, Ernesto A

    2011-01-01

    BACKGROUND AND PURPOSE Na+/HCO3- co-transport (NBC) regulates intracellular pH (pHi) in the heart. We have studied the electrogenic NBC isoform NBCe1 by examining the effect of functional antibodies to this protein. EXPERIMENTAL APPROACH We generated two antibodies against putative extracellular loop domains 3 (a-L3) and 4 (a-L4) of NBCe1 which recognized NBCe1 on immunoblots and immunostaining experiments. pHi was monitored using epi-fluorescence measurements in cat ventricular myocytes. Transport activity of total NBC and of NBCe1 in isolation were evaluated after an ammonium ion-induced acidosis (expressed as H+ flux, JH, in mmol·L−1 min−1 at pHi 6.8) and during membrane depolarization with high extracellular potassium (potassium pulse, expressed as ΔpHi) respectively. KEY RESULTS The potassium pulse produced a pHi increase of 0.18 ± 0.006 (n = 5), which was reduced by the a-L3 antibody (0.016 ± 0.019). The a-L-3 also decreased JH by 50%. Surprisingly, during the potassium pulse, a-L4 induced a higher pHi increase than control,(0.25 ± 0.018) whereas the recovery of pHi from acidosis was faster (JH was almost double the control value). In perforated-patch experiments, a-L3 prolonged and a-L4 shortened action potential duration, consistent with blockade and stimulation of NBCe1-carried anionic current respectively. CONCLUSIONS AND IMPLICATIONS Both antibodies recognized NBCe1, but they had opposing effects on the function of this transporter, as the a-L3 was inhibitory and the a-L4 was excitatory. These antibodies could be valuable in studies on the pathophysiology of NBCe1 in cardiac tissue, opening a path for their potential clinical use. PMID:21595652

  20. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    PubMed

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-09

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.

  1. Critical amino acid residues involved in the electrogenic sodium-bicarbonate cotransporter kNBC1-mediated transport.

    PubMed

    Abuladze, Natalia; Azimov, Rustam; Newman, Debra; Sassani, Pakan; Liu, Weixin; Tatishchev, Sergei; Pushkin, Alexander; Kurtz, Ira

    2005-06-15

    We have previously reported a topological model of the electrogenic Na(+)-HCO(3)(-) cotransporter (NBC1) in which the cotransporter spans the plasma membrane 10 times with N- and C-termini localized intracellularly. An analysis of conserved amino acid residues among members of the SLC4 superfamily in both the transmembrane segments (TMs) and intracellular/extracellular loops (ILs/ELs) provided the basis for the mutagenesis approach taken in the present study to determine amino acids involved in NBC1-mediated ion transport. Using large-scale mutagenesis, acidic and basic amino acids putatively involved in ion transport mediated by the predominant variant of NBC1 expressed in the kidney (kNBC1) were mutated to neutral and/or oppositely charged amino acids. All mutant kNBC1 cotransporters were expressed in HEK-293T cells and the Na(+)-dependent base flux of the mutants was determined using intracellular pH measurements with 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Critical glutamate, aspartate, lysine, arginine and histidine residues in ILs/ELs and TMs were detected that were essential for kNBC1-mediated Na(+)-dependent base transport. In addition, critical phenylalanine, serine, tyrosine, threonine and alanine residues in TMs and ILs/ELs were detected. Furthermore, several amino acid residues in ILs/ELs and TMs were shown to be essential for membrane targeting. The data demonstrate asymmetry of distribution of kNBC1 charged amino acids involved in ion recognition in putative outward-facing and inward-facing conformations. A model summarizing key amino acid residues involved in kNBC1-mediated ion transport is presented.

  2. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner.

    PubMed

    Grimm, P Richard; Taneja, Tarvinder K; Liu, Jie; Coleman, Richard; Chen, Yang-Yi; Delpire, Eric; Wade, James B; Welling, Paul A

    2012-11-02

    STE20/SPS-1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress-related kinase (OSR1) activate the potassium-dependent sodium-chloride co-transporter, NKCC2, and thiazide-sensitive sodium-chloride cotransporter, NCC, in vitro, and both co-localize with a kinase regulatory molecule, Cab39/MO25α, at the apical membrane of the thick ascending limb (TAL) and distal convoluted tubule (DCT). Yet genetic ablation of SPAK in mice causes a selective loss of NCC function, whereas NKCC2 becomes hyperphosphorylated. Here, we explore the underlying mechanisms in wild-type and SPAK-null mice. Unlike in the DCT, OSR1 remains at the TAL apical membrane of KO mice where it is accompanied by an increase in the active, phosphorylated form of AMP-activated kinase. We found an alterative SPAK isoform (putative SPAK2 form), which modestly inhibits co-transporter activity in vitro, is more abundant in the medulla than the cortex. Thus, enhanced NKCC2 phosphorylation in the SPAK knock-out may be explained by removal of inhibitory SPAK2, sustained activity of OSR1, and activation of other kinases. By contrast, the OSR1/SPAK/M025α signaling apparatus is disrupted in the DCT. OSR1 becomes largely inactive and displaced from M025α and NCC at the apical membrane, and redistributes to dense punctate structures, containing WNK1, within the cytoplasm. These changes are paralleled by a decrease in NCC phosphorylation and a decrease in the mass of the distal convoluted tubule, exclusive to DCT1. As a result of the dependent nature of OSR1 on SPAK in the DCT, NCC is unable to be activated. Consequently, SPAK(-/-) mice are highly sensitive to dietary salt restriction, displaying prolonged negative sodium balance and hypotension.

  3. SPAK Isoforms and OSR1 Regulate Sodium-Chloride Co-transporters in a Nephron-specific Manner*

    PubMed Central

    Grimm, P. Richard; Taneja, Tarvinder K.; Liu, Jie; Coleman, Richard; Chen, Yang-Yi; Delpire, Eric; Wade, James B.; Welling, Paul A.

    2012-01-01

    STE20/SPS-1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress-related kinase (OSR1) activate the potassium-dependent sodium-chloride co-transporter, NKCC2, and thiazide-sensitive sodium-chloride cotransporter, NCC, in vitro, and both co-localize with a kinase regulatory molecule, Cab39/MO25α, at the apical membrane of the thick ascending limb (TAL) and distal convoluted tubule (DCT). Yet genetic ablation of SPAK in mice causes a selective loss of NCC function, whereas NKCC2 becomes hyperphosphorylated. Here, we explore the underlying mechanisms in wild-type and SPAK-null mice. Unlike in the DCT, OSR1 remains at the TAL apical membrane of KO mice where it is accompanied by an increase in the active, phosphorylated form of AMP-activated kinase. We found an alterative SPAK isoform (putative SPAK2 form), which modestly inhibits co-transporter activity in vitro, is more abundant in the medulla than the cortex. Thus, enhanced NKCC2 phosphorylation in the SPAK knock-out may be explained by removal of inhibitory SPAK2, sustained activity of OSR1, and activation of other kinases. By contrast, the OSR1/SPAK/M025α signaling apparatus is disrupted in the DCT. OSR1 becomes largely inactive and displaced from M025α and NCC at the apical membrane, and redistributes to dense punctate structures, containing WNK1, within the cytoplasm. These changes are paralleled by a decrease in NCC phosphorylation and a decrease in the mass of the distal convoluted tubule, exclusive to DCT1. As a result of the dependent nature of OSR1 on SPAK in the DCT, NCC is unable to be activated. Consequently, SPAK−/− mice are highly sensitive to dietary salt restriction, displaying prolonged negative sodium balance and hypotension. PMID:22977235

  4. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene.

    PubMed

    Woo, Nam-Sik; Lu, Jianming; England, Roger; McClellan, Robert; Dufour, Samuel; Mount, David B; Deutch, Ariel Y; Lovinger, David M; Delpire, Eric

    2002-01-01

    Four genes encode electroneutral, Na+-independent, K-Cl cotransporters. KCC2, is exclusively expressed in neurons where it is thought to drive intracellular Cl- to low concentrations and shift the reversal potential for Cl- conductances such as GABA(A) or glycine receptor channels, thus participating in the postnatal development of inhibitory mechanisms in the brain. Indeed, expression of the cotransporter is low at birth and increases postnatally, at a time when the intracellular Cl- concentration in neurons decreases and gamma-aminobutyric acid switches its effect from excitatory to inhibitory. To assert the significance of KCC2 in neuronal function, we disrupted the mouse gene encoding this neuronal-specific K-Cl cotransporter. We demonstrate that animals deficient in KCC2 exhibit frequent generalized seizures and die shortly after birth. We also show upregulation of Fos, the product of the immediate early gene c-fos, and the significant loss of parvalbumin-positive interneurons, both indicative of brain injury. The regions most affected are the hippocampus and temporal and entorhinal cortices. Extracellular field potential measurements in the CA1 hippocampus exhibited hyperexcitability. Application of picrotoxin, a blocker of the GABA(A) receptor, further increased hyperexcitability in homozygous hippocampal sections. Pharmacological treatment of pups showed that diazepam relieved the seizures while phenytoin prevented them between postnatal ages P4-P12. Finally, we demonstrate that adult heterozygote animals show increased susceptibility for epileptic seizure and increased resistance to the anticonvulsant effect of propofol. Taken together, these results indicate that KCC2 plays an important role in controlling CNS excitability during both postnatal development and adult life.

  5. Critical amino acid residues involved in the electrogenic sodium–bicarbonate cotransporter kNBC1-mediated transport

    PubMed Central

    Abuladze, Natalia; Azimov, Rustam; Newman, Debra; Sassani, Pakan; Liu, Weixin; Tatishchev, Sergei; Pushkin, Alexander; Kurtz, Ira

    2005-01-01

    We have previously reported a topological model of the electrogenic Na+–HCO3− cotransporter (NBC1) in which the cotransporter spans the plasma membrane 10 times with N- and C-termini localized intracellularly. An analysis of conserved amino acid residues among members of the SLC4 superfamily in both the transmembrane segments (TMs) and intracellular/extracellular loops (ILs/ELs) provided the basis for the mutagenesis approach taken in the present study to determine amino acids involved in NBC1-mediated ion transport. Using large-scale mutagenesis, acidic and basic amino acids putatively involved in ion transport mediated by the predominant variant of NBC1 expressed in the kidney (kNBC1) were mutated to neutral and/or oppositely charged amino acids. All mutant kNBC1 cotransporters were expressed in HEK-293T cells and the Na+-dependent base flux of the mutants was determined using intracellular pH measurements with 2′,7′-bis-(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Critical glutamate, aspartate, lysine, arginine and histidine residues in ILs/ELs and TMs were detected that were essential for kNBC1-mediated Na+-dependent base transport. In addition, critical phenylalanine, serine, tyrosine, threonine and alanine residues in TMs and ILs/ELs were detected. Furthermore, several amino acid residues in ILs/ELs and TMs were shown to be essential for membrane targeting. The data demonstrate asymmetry of distribution of kNBC1 charged amino acids involved in ion recognition in putative outward-facing and inward-facing conformations. A model summarizing key amino acid residues involved in kNBC1-mediated ion transport is presented. PMID:15817634

  6. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    SciTech Connect

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  7. The Thiazide-sensitive NaCl Cotransporter Is Targeted for Chaperone-dependent Endoplasmic Reticulum-associated Degradation*

    PubMed Central

    Needham, Patrick G.; Mikoluk, Kasia; Dhakarwal, Pradeep; Khadem, Shaheen; Snyder, Avin C.; Subramanya, Arohan R.; Brodsky, Jeffrey L.

    2011-01-01

    The thiazide-sensitive NaCl cotransporter (NCC, SLC12A3) mediates salt reabsorption in the distal nephron of the kidney and is the target of thiazide diuretics, which are commonly prescribed to treat hypertension. Mutations in NCC also give rise to Gitelman syndrome, a hereditary salt-wasting disorder thought in most cases to arise from impaired NCC biogenesis through enhanced endoplasmic reticulum-associated degradation (ERAD). Because the machinery that mediates NCC quality control is completely undefined, we employed yeast as a model heterologous expression system to identify factors involved in NCC degradation. We confirmed that NCC was a bona fide ERAD substrate in yeast, as the majority of NCC polypeptide was integrated into ER membranes, and its turnover rate was sensitive to proteasome inhibition. NCC degradation was primarily dependent on the ER membrane-associated E3 ubiquitin ligase Hrd1. Whereas several ER luminal chaperones were dispensable for NCC ERAD, NCC ubiquitination and degradation required the activity of Ssa1, a cytoplasmic Hsp70 chaperone. Compatible findings were observed when NCC was expressed in mammalian kidney cells, as the cotransporter was polyubiquitinated and degraded by the proteasome, and mammalian cytoplasmic Hsp70 (Hsp72) coexpression stimulated the degradation of newly synthesized NCC. Hsp70 also preferentially associated with the ER-localized NCC glycosylated species, indicating that cytoplasmic Hsp70 plays a critical role in selecting immature forms of NCC for ERAD. Together, these results provide the first survey of components involved in the ERAD of a mammalian SLC12 cation chloride cotransporter and provide a framework for future studies on NCC ER quality control. PMID:22027832

  8. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter

    PubMed Central

    Dantzler, William H.; Pannabecker, Thomas L.

    2012-01-01

    We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na+ or urea-Cl− cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na+ or urea- Cl− cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data. PMID:22088433

  9. Renal phosphate transport: inhomogeneity of local proximal transport rates and sodium dependence.

    PubMed

    Baumann, K; de Rouffignac, C; Roinel, N; Rumrich, G; Ullrich, K J

    1975-01-01

    The standing droplet method has been used in combination with the peritibular perfusion of blood capillaries to determine the build up of transtubular concentration differences of phosphate (Piota) in the renal proximal convoluted tubule of parathyroidectomized rats. Electron probe analysis was used to estimate Piota. At zero time both the intraluminal and the contraluminal Piota concentration was 2 mM. The time dependent decrease of the intraluminal Piota concentration was approximately 4 times faster in the early than in the late proximal convoluted tubule. After 45 sec an intraluminal steady state concentration of 0.20 mM Piota was achieved in the early part. In the late part the intraluminal Piota concentration approached a steady statevalue of 0.54 mM at 123 sec. When sodium free solutions were used the intaluminal Piota concentration increased to 2.22 mM in the earlier and to 2.76 mM in the late part. The data indicate that in the proximal convoluted tubule 1. the rate of phosphate reabsorption is greater in the early part than in the later part, and 2. phospate reabsorption might occur as co-transport with Na+ ions.

  10. The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO3−:1 Na+

    PubMed Central

    Gross, E; Abuladze, N; Pushkin, A; Kurtz, I; Cotton, C U

    2001-01-01

    The electrogenic sodium bicarbonate cotransporter pNBC1 is believed to play a major role in the secretion of bicarbonate by pancreatic duct cells, by transporting bicarbonate into the cell across the basolateral membrane. Thermodynamics predict that this function can be achieved only if the reversal potential of the cotransporter is negative to the cell’s membrane potential, or equivalently that the HCO3−:Na+ stoichiometry is not larger then 2:1. However, there are no data available on either the reversal potential or the HCO3−:Na+ stoichiometry of pNBC1 in pancreatic cells. We studied pNBC1 function in mouse pancreatic duct cells. RT-PCR analysis of total RNA revealed that these cells contain the message for pNBC1, but not for kNBC1, NBC2 or NBC3. To measure cotransporter activity, mouse pancreatic duct cells were grown to confluence on a porous substrate, mounted in an Ussing chamber, and the apical plasma membrane permeabilized with amphotericin B. Ion flux through pNBC1 was achieved by applying Na+ concentration gradients across the basolateral plasma membrane. The current through the cotransporter was isolated as the difference current due to the reversible inhibitor dinitrostilbene disulfonate (DNDS). Current-voltage relationships for the cotransporter, measured at three different Na+ concentration gradients, were linear over a range of about 100 mV. The reversal potential data, obtained from these current-voltage relationships, all corresponded to a 2 HCO3−:1 Na+ stoichiometry. The data indicate that pNBC1 is functionally expressed in mouse pancreatic duct cells. The cotransporter operates with a 2 HCO3−:1 Na+ stoichiometry in these cells, and mediates the transport of bicarbonate into the cell across the basolateral membrane. PMID:11230510

  11. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement.

    PubMed

    Burguera, E F; Guitián, F; Chow, L C

    2004-11-01

    The development of a calcium phosphate cement, comprising tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD), that hardens in 14 min with water as the liquid or 6 min with a 0.25 mol/L sodium phosphate solution as the liquid, without using hydroxyapatite (HA) seeds as setting accelerator, is reported. It was postulated that reduction in porosity would increase cement strength. Thus, the effects of applied pressure during the initial stages of the cement setting reaction on cement strength and porosity were studied. The cement powder comprised an equimolar mixture of TTCP and DCPD (median particle sizes 17 and 1.7 microm, respectively). Compressive strengths (CS) of samples prepared with distilled water were 47.6 +/- 2.4 MPa, 50.7 +/- 4.2 MPa, and 52.9 +/- 4.7 MPa at applied pressures of 5 MPa, 15 MPa, and 25 MPa, respectively. When phosphate solution was used, the CS values obtained were 41.5 +/- 2.3 MPa, 37.9 +/- 1.7 MPa, and 38.1 +/- 2.3 MPa at the same pressure levels. Statistical analysis of the results showed that pressure produced an improvement in CS when water was used as liquid but not when the phosphate solution was used. Compared to previously reported TTCP-DCPD cements, the greater CS values and shorter setting times together with a simplified formulation should make the present TTCP-DCPD cement a useful material as a bone substitute for clinical applications.

  12. Calcium Phosphate Nanoparticle Adjuvant

    PubMed Central

    He, Qing; Mitchell, Alaina R.; Johnson, Stacy L.; Wagner-Bartak, Claus; Morcol, Tulin; Bell, Steve J. D.

    2000-01-01

    Vaccination to protect against human infectious diseases may be enhanced by using adjuvants that can selectively stimulate immunoregulatory responses. In a murine model, a novel nanoparticulate adjuvant composed of calcium phosphate (CAP) was compared with the commonly used aluminum (alum) adjuvants for its ability to induce immunity to herpes simplex virus type 2 (HSV-2) and Epstein-Barr virus (EBV) infections. Results indicated that CAP was more potent as an adjuvant than alum, elicited little or no inflammation at the site of administration, induced high titers of immunoglobulin G2a (IgG2a) antibody and neutralizing antibody, and facilitated a high percentage of protection against HSV-2 infection. Additional benefits of CAP include (i) an insignificant IgE response, which is an important advantage over injection of alum compounds, and (ii) the fact that CAP is a natural constituent of the human body. Thus, CAP is very well tolerated and absorbed. These studies were performed with animal models. By virtue of the potency of this CAP adjuvant and the relative absence of side effects, we believe that this new CAP formulation has great potential for use as an adjuvant in humans. PMID:11063495

  13. Piperaquine phosphate: reproduction studies.

    PubMed

    Longo, Monica; Pace, Silvia; Messina, Monica; Ferraris, Laura; Brughera, Marco; Ubben, David; Mazuè, Guy

    2012-12-01

    In embryofetal studies in rat and rabbit Piperaquine phosphate (PQP) was not teratogenic at the maximal tolerated dose, even in presence of fetal exposure. In peri- post-natal study in rat, PQP did not interfere with the course of delivery at the dose of 5 mg/kg/day (treatment Gestation Day(GD)6-Lactation Day(LD)21) as well as up to the dose of 20 mg/kg/day (treatment GD6-17 and LD1-21). PQP at the dose of 80 mg/kg, induced prolonged gestation, dystocic delivery and increase perinatal mortality both with interruption of treatment (GD6 to GD17 and LD1-21) and with continuous dosing (GD19-LD21). PQP did not interfere with lactation and pup growth and development, in presence of clear exposure during suckling period, irrespective of the dose and treatment schedules. It was not possible to identify the mechanism leading to the delivery delay. In a comparative study using other antimalarials, only Mefloquine gave similar findings to PQP. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Recent advances in phosphate biosensors.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-07-01

    A number of biosensors have been developed for phosphate analysis particularly, concerning its negative impact within the environmental and biological systems. Enzymatic biosensors comprising either a single or multiple enzymatic system have been extensively used for the direct and indirect analysis of phosphate ions. Furthermore, some non-enzymatic biosensors, such as affinity-based biosensors, provide an alternative analytical approach with a higher selectivity. This article reviews the recent advances in the field of biosensor developed for phosphate estimation in clinical and environmental samples, concerning the techniques involved, and the sensitivity toward phosphate ions. The biosensors have been classified and discussed on the basis of the number of enzymes used to develop the analytical system, and a comparative analysis has been performed.

  15. Toxicological review of inorganic phosphates.

    PubMed

    Weiner, M L; Salminen, W F; Larson, P R; Barter, R A; Kranetz, J L; Simon, G S

    2001-08-01

    Inorganic phosphate salts are widely used as food ingredients and in a variety of commercial applications. The United States Food and Drug Administration (FDA) considers inorganic phosphates "Generally Recognized As Safe" (GRAS) (FDA, 1973a, 1979) [FDA: Food and Drug Administration 1973a. GRAS (Generally Recognized as Safe) food ingredients-phosphates. NTIS PB-221-224, FDA, Food and Drug Administration, 1979. Phosphates; Proposed Affirmation of and Deletion From GRAS Status as Direct and Human Food Ingredients. Federal Register 44 (244). 74845-74857, 18 December (1979)] and the European Union (EU) allows inorganic phosphates to be added directly to food (EU Directive 95/2/EC as amended by 98/72/EC). In this review, data on the acute, subchronic and chronic toxicity, genotoxicity, teratogenicity and reproductive toxicity from the published literature and from unpublished studies by the manufacturers are reviewed. Based on the toxicity data and similar chemistry, the inorganic phosphates can be separated into four major classes, consisting of monovalent salts, divalent salts, ammonium salts and aluminum salts. The proposed classification scheme supports the use of toxicity data from one compound to assess the toxicity of another compound in the same class. However, in the case of eye and skin irritation, the proposed classification scheme cannot be used because a wide range of responses exists within each class. Therefore, the eye and skin hazards associated with an individual inorganic phosphate should be assessed on a chemical-by-chemical basis. A large amount of toxicity data exists for all four classes of inorganic phosphates. The large and comprehensive database allows an accurate assessment of the toxicity of each class of inorganic phosphate. Overall, all four classes of inorganic phosphates exhibit low oral, inhalation and dermal toxicities. Based on these data, humans are unlikely to experience adverse effects when the daily phosphorus consumption remains

  16. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport

    PubMed Central

    1990-01-01

    Changes in retinal pigment epithelial (RPE) cell volume were measured by monitoring changes in intracellular tetramethylammonium (TMA) using double-barreled K-resin microelectrodes. Hyperosmotic addition of 25 or 50 mM mannitol to the Ringer of the apical bath resulted in a rapid (approximately 30 s) osmometric cell shrinkage. The initial cell shrinkage was followed by a much slower (minutes) secondary shrinkage that is probably due to loss of cell solute. When apical [K+] was elevated from 2 to 5 mM during or before a hyperosmotic pulse, the RPE cell regulated its volume by reswelling towards control within 3-10 min. This change in apical [K+] is very similar to the increase in subretinal [K+]o that occurs after a transition from light to dark in the intact vertebrate eye. The K-dependent regulatory volume increase (RVI) was inhibited by apical Na removal, Cl reduction, or the presence of bumetanide. These results strongly suggest that a Na(K),Cl cotransport mechanism at the apical membrane mediates RVI in the bullfrog RPE. A unique aspect of this cotransporter is that it also functions at a lower rate under steady-state conditions. The transport requirements for Na, K, and Cl, the inhibition of RVI by bumetanide, and thermodynamic calculations indicate that this mechanism transports Na, K, and Cl in the ratio of 1:1:2. PMID:2286831

  17. Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear.

    PubMed

    Crouch, J J; Sakaguchi, N; Lytle, C; Schulte, B A

    1997-06-01

    We mapped the cellular and subcellular distribution of the Na-K-Cl co-transporter (NKCC) in the adult gerbil inner ear by immunostaining with a monoclonal antibody (MAb T4) generated against human colon NKCC. Heavy immunolabeling was seen in the basolateral plasma membrane of marginal cells in the stria vascularis and dark cells in the vestibular system. Subpopulations of fibrocytes in the cochlear spiral ligament and limbus and underlying the vestibular neurosensory epithelium also stained with moderate to strong intensity, apparently along their entire plasmalemma. Because MAb T4 recognizes both the basolateral secretory (NKCC1) and the apical absorptive (NKCC2) isoforms of the co-transporter, we employed reverse transcription and the polymerase chain reaction (RT-PCR) to explore isoform diversity in inner ear tissues. Using NKCC1 and NKCC2 isoform-specific PCR primers based on mouse and human sequences, only transcripts for NKCC1 were detected in the gerbil inner ear. The presence of abundant NKCC1 in the basolateral plasmalemma of strial marginal and vestibular dark cells confirms conclusions drawn from pharmacological and physiological data. The co-expression of NKCC1 and Na,K-ATPase in highly specialized subpopulations of cochlear and vestibular fibrocytes provides further evidence for their role in recycling K+ leaked or effluxed through hair cells into perilymph back to endolymph, as postulated in current models of inner ear ion homeostasis.

  18. The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis?

    PubMed

    Felder, Robin A; Jose, Pedro A; Xu, Peng; Gildea, John J

    2016-09-01

    The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the human testis and heart (Pushkin et al. IUBMB Life 50:13-19, 2000). Subsequently, NBCe2 was found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, influencing intracellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp Biol. 212:1697-1706, 2009; Parker and Boron, Physiol Rev. 93:803-959, 2013; Romero et al. Mol Asp Med. 34:159-182, 2013). NBCe2 is located in human and rodent renal-collecting duct and proximal tubule. While much is known about the two electrogenic sodium bicarbonate cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but particularly into the apical membrane microvilli, during various maneuvers that increase intracellular sodium. This review will summarize our current understanding of the distribution and function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute to salt sensitivity of blood pressure.

  19. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils.

    PubMed

    Zhang, Miaoyue; Engelhardt, Irina; Šimůnek, Jirka; Bradford, Scott A; Kasel, Daniela; Berns, Anne E; Vereecken, Harry; Klumpp, Erwin

    2017-02-01

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two (14)C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1-10 mg L(-1)) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil.

  20. Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart

    PubMed Central

    Van Steenbergen, Anne; Balteau, Magali; Ginion, Audrey; Ferté, Laura; Battault, Sylvain; Ravenstein, Christophe de Meester de; Balligand, Jean-Luc; Daskalopoulos, Evangelos-Panagiotis; Gilon, Patrick; Despa, Florin; Despa, Sanda; Vanoverschelde, Jean-Louis; Horman, Sandrine; Koepsell, Hermann; Berry, Gerard; Hue, Louis; Bertrand, Luc; Beauloye, Christophe

    2017-01-01

    Hyperglycemia (HG) stimulates the production of reactive oxygen species in the heart through activation of NADPH oxidase 2 (NOX2). This production is independent of glucose metabolism but requires sodium/glucose cotransporters (SGLT). Seven SGLT isoforms (SGLT1 to 6 and sodium-myoinositol cotransporter-1, SMIT1) are known, although their expression and function in the heart remain elusive. We investigated these 7 isoforms and found that only SGLT1 and SMIT1 were expressed in mouse, rat and human hearts. In cardiomyocytes, galactose (transported through SGLT1) did not activate NOX2. Accordingly, SGLT1 deficiency did not prevent HG-induced NOX2 activation, ruling it out in the cellular response to HG. In contrast, myo-inositol (transported through SMIT1) reproduced the toxic effects of HG. SMIT1 overexpression exacerbated glucotoxicity and sensitized cardiomyocytes to HG, whereas its deletion prevented HG-induced NOX2 activation. In conclusion, our results show that heart SMIT1 senses HG and triggers NOX2 activation. This could participate in the redox signaling in hyperglycemic heart and contribute to the pathophysiology of diabetic cardiomyopathy. PMID:28128227

  1. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.

    PubMed

    De Nicola, Luca; Gabbai, Francis B; Liberti, Maria Elena; Sagliocca, Adelia; Conte, Giuseppe; Minutolo, Roberto

    2014-07-01

    Optimal prevention and treatment of chronic kidney disease in diabetes requires implementing therapies that specifically interfere with the pathogenesis of diabetic nephropathy. In this regard, significant attention has been given to alterations of the proximal tubule and resulting changes in glomerular filtration rate. At the onset of diabetes mellitus, hyperglycemia causes increases in proximal tubular reabsorption secondary to induction of tubular growth with associated increases in sodium/glucose cotransport. The increase in proximal reabsorption leads to a decrease in solute load to the macula densa, deactivation of the tubuloglomerular feedback, and increases in glomerular filtration rate. Because glomerular hyperfiltration currently is recognized as a risk factor for progression of kidney disease in diabetic patients, limiting proximal tubular reabsorption constitutes a potential target to reduce hyperfiltration. The recent introduction of sodium/glucose cotransporter 2 (SGLT2) inhibitors opens new therapeutic perspectives for this high-risk patient population. Experimental studies have shown that these new agents attenuate the progressive nature of diabetic nephropathy by blood glucose-dependent and -independent mechanisms. SGLT2 inhibition may prevent glomerular hyperfiltration independent of the effect of lowering blood glucose levels while limiting kidney growth, inflammation, and albuminuria through reductions in blood glucose levels. Clinical data for the potential role of the proximal tubule in the pathophysiology of diabetic nephropathy and the nephroprotective effects of SGLT2 inhibitors currently are limited compared to the more extensive experimental literature. We review the evidence supporting this working hypothesis by integrating the experimental findings with the available clinical data.

  2. Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program.

    PubMed Central

    Falk, S; Guay, A; Chenu, C; Patil, S D; Berteloot, A

    1998-01-01

    A computer program was developed to allow easy derivation of steady-state velocity and binding equations for multireactant mechanisms including or without rapid equilibrium segments. Its usefulness is illustrated by deriving the rate equation of the most general sequential iso ordered ter ter mechanism of cotransport in which two Na+ ions bind first to the carrier and mirror symmetry is assumed. It is demonstrated that this mechanism cannot be easily reduced to a previously proposed six-state model of Na+-D-glucose cotransport, which also includes a number of implicit assumptions. In fact, the latter model may only be valid over a restricted range of Na+ concentrations or when assuming very strong positive cooperativity for Na+ binding to the glucose symporter within a rapid equilibrium segment. We thus propose an equivalent eight-state model in which the concept of positive cooperativity is best explained within the framework of a polymeric structure of the transport protein involving a minimum number of two transport-competent and identical subunits. This model also includes an obligatory slow isomerization step between the Na+ and glucose-binding sequences, the nature of which might reflect the presence of functionally asymmetrical subunits. PMID:9533694

  3. Hormone-induced co-transport with specific pharmacological properties in erythrocytes of rainbow trout, Salmo gairdneri.

    PubMed

    Baroin, A; Garcia-Romeu, F; Lamarre, T; Motais, R

    1984-05-01

    On the addition of isoprenaline to an isotonic suspension of red blood cells of rainbow trout (Salmo gairdneri), the cell volume increases. This increase in volume is the result of net uptake of Na+ and osmotically obligated water. Two different pathways are involved in the salt uptake. The minor component of Na+ entry (about 20%) corresponds to a Na+ uptake independent of Cl- and is inhibited by amiloride, yet is insensitive to DIDS, furosemide and niflumic acid. It could result from Na+/H+ countertransport. The major component of salt uptake is due to Na+ entry which requires Cl- as anion, and is electroneutral, independent of extracellular K+, sensitive to amiloride, DIDS, niflumic acid and furosemide, but insensitive to other loop diuretics such as piretanide or bumetanide. These characteristics, as well as the response of valinomycin-treated cells to isoprenaline and some other properties (ionic selectivity, drug sensitivity) of the anion exchange system of volume-static trout red cells, permit the definition of the nature of this Cl--dependent pathway. The findings are inconsistent with the electrically silent double antiporter model (proposed in amphibian red cells by Cala, 1980) and with the co-migration of Cl- with Na+ through parallel conductive pathways, but strongly suggest a symport mechanism. Striking differences, mainly pharmacological, exist between this NaCl co-transport and the duck red blood cell Na+/K+/2Cl- co-transport (Kregenow, 1977, 1978; McManus & Schmidt, 1978).

  4. The Thiazide-Sensitive Co-Transporter Promotes the Development of Sodium Retention in Mice with Diet-Induced Obesity.

    PubMed

    Davies, Matthew R P; Gleich, Kurt; Katerelos, Marina; Lee, Mardiana; Mount, Peter F; Power, David A

    2015-01-01

    Intravascular volume expansion due to sodium retention is involved in the pathogenesis of obesity-related hypertension. Institution of high fat diet (HFD) feeding leads to an initial state of positive sodium balance due to enhanced tubular reabsorption of sodium, but which tubular sodium transporters are responsible for this remains undefined. C57/Bl6 mice were fed control or HFD for 3 weeks. Blood pressures were recorded by tail cuff method. Sodium transporter expression and phosphorylation were determined by Western blotting. In vivo activity of NCC was determined using natriuretic responses to hydrochlorothiazide. Expression of NCC mRNA was determined using qPCR. At 3 weeks HFD mice had significant weight gains compared to control mice, but blood pressures were not yet elevated. There were no changes in expression or phosphorylation of the bumetanide-sensitive cotransporter, NKCC2, or in expression of subunits of the amiloride-sensitive ion channel, ENaC. However, there were significant increases in mRNA and protein expression of the thiazide-sensitive co-transporter, NCC, in kidneys from HFD mice. Consistent with this, HFD mice had increased in vivo activity of NCC. Increased expression of NCC promotes the sodium loading response to institution of HFD feeding before onset of hypertension. © 2015 S. Karger AG, Basel.

  5. Expression of thiazide-sensitive Na{sup +}-Cl{sup -} cotransporter in the rat endolymphatic sac

    SciTech Connect

    Akiyama, Kosuke Miyashita, Takenori; Mori, Terushige; Inamoto, Ryuhei; Mori, Nozomu

    2008-07-11

    The endolymphatic sac (ES) is a part of the membranous labyrinth and is believed to absorb endolymph. It has been well-established that the endolymph absorption is dependent on several ion transporters in a manner similar to that in the kidney, and the ES is regulated by hormones such as aldosterone and vasopressin that also affect on the kidney. The thiazide-sensitive Na{sup +}, Cl{sup -} cotransporter (TSC) is an electroneutral cotransporter specific to the kidney that plays an important role in absorption of NaCl in renal tubules. In the inner ear, TSC expression has never been examined. The expression of TSC in the rat ES was examined by RT-PCR, in situ hybridization and immunohistochemistry. These analyses indicated that TSC genes and proteins were expressed in the rat ES. In contrast, it was not observed in the rat cochlea by RT-PCR. This is the first report confirming the expression of TSC in the ES.

  6. The renal thiazide-sensitive Na-Cl cotransporter as mediator of the aldosterone-escape phenomenon

    PubMed Central

    Wang, Xiao-Yan; Masilamani, Shyama; Nielsen, Jakob; Kwon, Tae-Hwan; Brooks, Heddwen L.; Nielsen, Søren; Knepper, Mark A.

    2001-01-01

    The kidneys “escape” from the Na-retaining effects of aldosterone when circulating levels of aldosterone are inappropriately elevated in the setting of normal or expanded extracellular fluid volume, e.g., in primary aldosteronism. Using a targeted proteomics approach, we screened renal protein extracts with rabbit polyclonal antibodies directed to each of the major Na transporters expressed along the nephron to determine whether escape from aldosterone-mediated Na retention is associated with decreased abundance of one or more of renal Na transporters. The analysis revealed that the renal abundance of the thiazide-sensitive Na-Cl cotransporter (NCC) was profoundly and selectively decreased. None of the other apical solute-coupled Na transporters displayed decreases in abundance, nor were the total abundances of the three ENaC subunits significantly altered. Immunocytochemistry showed a strong decrease in NCC labeling in distal convoluted tubules of aldosterone-escape rats with no change in the cellular distribution of NCC. Ribonuclease protection assays (RPAs) revealed that the decrease in NCC protein abundance was not associated with altered NCC mRNA abundance. Thus, the thiazide-sensitive Na-Cl cotransporter of the distal convoluted tubule appears to be the chief molecular target for regulatory processes responsible for mineralocorticoid escape, decreasing in abundance via a posttranscriptional mechanism. J. Clin. Invest. 108:215–222 (2001). DOI:10.1172/JCI200110366. PMID:11457874

  7. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  8. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  9. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  10. S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart

    PubMed Central

    Ch'En, F F-T; Villafuerte, F C; Swietach, P; Cobden, P M; Vaughan-Jones, R D

    2008-01-01

    Background and purpose: Intracellular pH (pHi) in heart is regulated by sarcolemmal H+-equivalent transporters such as Na+-H+ exchange (NHE) and Na+-HCO3 − cotransport (NBC). Inhibition of NBC influences pHi and can be cardioprotective in animal models of post-ischaemic reperfusion. Apart from a rabbit polyclonal NBC-antibody, a selective NBC inhibitor compound has not been studied. Compound S0859 (C29H24ClN3O3S) is a putative NBC inhibitor. Here, we provide the drug's chemical structure, test its potency and selectivity in ventricular cells and assess its suitability for experiments on cardiac contraction. Experimental approach: pHi recovery from intracellular acidosis was monitored using pH-epifluorescence (SNARF-fluorophore) in guinea pig, rat and rabbit isolated ventricular myocytes. Electrically evoked cell shortening (contraction) was measured optically. With CO2/HCO3 −-buffered superfusates containing 30 μM cariporide (to inhibit NHE), pHi recovery is mediated by NBC. Key results: S0859, an N-cyanosulphonamide compound, reversibly inhibited NBC-mediated pHi recovery (K i=1.7 μM, full inhibition at ∼30 μM). In HEPES-buffered superfusates, NHE-mediated pHi recovery was unaffected by 30 μM S0859. With CO2/HCO3 − buffer, pHi recovery from intracellular alkalosis (mediated by Cl−/HCO3 − and Cl−/OH− exchange) was also unaffected. Selective NBC-inhibition was not due to action on carbonic anhydrase (CA) enzymes, as 100 μM acetazolamide (a membrane-permeant CA-inhibitor) had no significant effect on NBC activity. pHi recovery from acidosis was associated with increased contractile-amplitude. The time course of recovery of pHi and contraction was slowed by S0859, confirming that NBC is a significant controller of contractility during acidosis. Conclusions and implications: Compound S0859 is a selective, high-affinity generic NBC inhibitor, potentially important for probing the transporter's functional role in heart and other tissues

  11. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1).

    PubMed Central

    Poole, R C; Sansom, C E; Halestrap, A P

    1996-01-01

    1. Hydrophobicity analysis of the monocarboxylate/proton cotransporter MCT1 (lactate transporter) suggests a structure with 12 transmembrane (TM) segments, presumed to be alpha-helical. 2. A series of anti-peptide antibodies have been raised against regions of the MCT1 sequence, which each recognize a polypeptide of approx. 40 kDa in rat erythrocytes. The topology of rat MCT1 was investigated by studying the immunoreactive fragments derived from proteolytic digestion of the protein in intact rat erythrocytes and leaky membranes. 3. Reactivity with an anti-(C-terminus) antibody was prevented on treatment of leaky membranes, but not intact cells, with carboxypeptidase Y, indicating that the C-terminus of the protein is cytoplasmically disposed. 4. Treatment of intact cells in saline buffer with trypsin, chymotrypsin, bromelain and protease K (up to 1 mg/ml) resulted in no degradation of MCT1, indicating the absence of any large exposed extracellular loop. In a buffer of low ionic strength (containing sucrose), cleavage was observed with bromelain at an extracellular site, probably TM9/10.5. Treatment of leaky membranes with low (less than 100 micrograms/ml) concentrations of several proteases resulted in fragmentation of MCT1, reflecting cleavage at the cytoplasmic face of the membrane. These treatments generated N-terminal fragments of apparent molecular mass approx. 17-19 kDa that were resistant to further degradation. The epitopes for the TM6/7 and C-terminal antibodies were either lost from the membrane or destroyed under most of these conditions, indicating that these regions of the protein are located in the cytoplasm. 6. More detailed structural prediction analysis of MCT-related sequences was made assuming the constraints placed upon the possible arrangements by the experimental data outlined above. This analysis provided additional strong evidence for the 12-TM-segment model, with cytoplasmic N- and C-terminal ends and a large internal loop between TM6 and

  12. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC.

    PubMed

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-12-01

    The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC.

  13. Characterization of a novel phosphorylation site in the sodium–chloride cotransporter, NCC

    PubMed Central

    Rosenbaek, L L; Assentoft, M; Pedersen, N B; MacAulay, N; Fenton, R A

    2012-01-01

    The sodium–chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich–Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin–angiotensin–aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline–alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, 36Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC. PMID:22966159

  14. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport.

    PubMed

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis.

  15. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport

    PubMed Central

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L. Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis. PMID:26839958

  16. Cotransport of human adenoviruses with clay colloids and TiO2 nanoparticles in saturated porous media: Effect of flow velocity.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V; Kokkinos, Petros; Tselepi, Maria A; Vantarakis, Apostolos

    2017-11-15

    This study focuses on the effects of two clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b) and titanium dioxide (TiO2) nanoparticles (NPs) on human adenovirus transport and retention in water saturated porous media at three different pore water velocities (0.38, 0.74, and 1.21cm/min). Transport and cotransport experiments were performed in 30-cm long laboratory columns packed with clean glass beads with 2mm diameter. The experimental results suggested that the presence of KGa-1b, STx-1b and TiO2 NPs increased human adenovirus inactivation and attachment onto the solid matrix, due to the additional attachment sites available. Retention by the packed column was found to be highest (up to 99%) in the presence of TiO2 NPs at the highest pore water velocity, and lowest in the presence of KGa-1b. The experimental results suggested that adenoviruses would undergo substantial aggregation or heteroaggregation during cotransport. However, no distinct relationships between mass recoveries and water velocity could be established from the experimental cotransport data. Note that for the cotransport experiments, collision efficiency values were shown to be higher for the higher flow rate examined in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Red blood cell cation transports in uraemic anaemia: evidence for an increased K/Cl co-transport activity. Effects of dialysis and erythropoietin treatment.

    PubMed

    De Franceschi, L; Olivieri, O; Girelli, D; Lupo, A; Bernich, P; Corrocher, R

    1995-10-01

    This study examines the role of uraemia and the effect of different dialysis treatments on red cell cation transport. We evaluated the main cation transport systems in erythrocytes of non-dialysed end-stage renal disease (ESRD) subjects, of patients undergoing haemodialysis (HD) and continuous ambulatory peritoneal dialysis (CAPD), as well as the changes induced by human recombinant erythropoietin (r-HuEPO) administration. In uraemic undialysed and dialysed patients, we observed an increase in K/Cl co-transport activity and in shrinkage-induced amiloride-sensitive (HMA-sensitive) Na efflux (Na/H exchange) and a decrease in Na/K pump and Na/K/Cl co-transport activity, while Na/Li exchange was increased only in dialysed patients. In uraemic erythrocytes, we showed for the first time an increased K/Cl co-transport activity, which was cell age independent. Generally, the different method of dialysis (CAPD or HD) did not modify the cation transport abnormalities observed. During the treatment with r-HuEPO, all the systems, with the exception of the Na/K pump and Na/K/Cl co-transport, increased their activities following the increase of circulating young red cells. The changes produced under r-HuEPO administration were transient and cation transports returned to the baseline values within 100 days of treatment, indicating a primary and prominent pathogenetic role of uraemia in modulating the red cell membrane cation transport activities.

  18. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4.

    PubMed

    Gattineni, Jyothsna; Alphonse, Priyatharshini; Zhang, Qiuyu; Mathews, Nisha; Bates, Carlton M; Baum, Michel

    2014-02-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that acts on the proximal tubule to decrease phosphate reabsorption and serum levels of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂ Vitamin D₃]. Abnormal FGF23 metabolism has been implicated in several debilitating hypophosphatemic and hyperphosphatemic disorders. The renal receptors responsible for the phosphaturic actions of FGF23 have not been elucidated. There are four fibroblast growth factor receptors (FGFR); 1-4 with "b" and "c" isoforms for receptors 1, 2, and 3. FGFR1, 3, and 4 are expressed in the mouse proximal tubule, and deletion of any one receptor did not affect serum phosphate levels, suggesting that more than one receptor is involved in mediating the phosphaturic actions of FGF23. To determine the receptors responsible for the phosphaturic actions of FGF23, we studied Fgfr1 (kidney conditional) and Fgfr4 (global) double mutant mice (Fgfr1⁻/⁻/Fgfr4⁻/⁻). Fgfr1⁻/⁻/Fgfr4⁻/⁻ mice have higher FGF23 levels than their wild-type counterparts (108.1 ± 7.3 vs. 4,953.6 ± 675.0 pg/ml; P < 0.001). Despite the elevated FGF23 levels, Fgfr1⁻/⁻/Fgfr4⁻/⁻ mice have elevated serum phosphorus levels, increased brush-border membrane vesicle (BBMV) phosphate transport, and increased Na-P(i) cotransporter 2c (NaPi-2c) protein expression compared with wild-type mice. These data are consistent with FGFR1 and FGFR4 being the critical receptors for the phosphaturic actions of FGF23.

  19. Thiosulfate Reduces Calcium Phosphate Nephrolithiasis

    PubMed Central

    Asplin, John R.; Donahue, Susan E.; Lindeman, Christina; Michalenka, Anne; Strutz, Kelly Laplante; Bushinsky, David A.

    2009-01-01

    An uncontrolled trial reported that sodium thiosulfate reduces formation of calcium kidney stones in humans, but this has not been established in a controlled human study or animal model. Using the genetic hypercalciuric rat, an animal model of calcium phosphate stone formation, we studied the effect of sodium thiosulfate on urine chemistries and stone formation. We fed genetic hypercalciuric rats normal food with or without sodium thiosulfate for 18 wk and measured urine chemistries, supersaturation, and the upper limit of metastability of urine. Eleven of 12 untreated rats formed stones compared with only three of 12 thiosulfate-treated rats (P < 0.002). Urine calcium and phosphorus were higher and urine citrate and volume were lower in the thiosulfate-treated rats, changes that would increase calcium phosphate supersaturation. Thiosulfate treatment lowered urine pH, which would lower calcium phosphate supersaturation. Overall, there were no statistically significant differences in calcium phosphate supersaturation or upper limit of metastability between thiosulfate-treated and control rats. In vitro, thiosulfate only minimally affected ionized calcium, suggesting a mechanism of action other than calcium chelation. In summary, sodium thiosulfate reduces calcium phosphate stone formation in the genetic hypercalciuric rat. Controlled trials testing the efficacy and safety of sodium thiosulfate for recurrent kidney stones in humans are needed. PMID:19369406

  20. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT

    PubMed Central

    Bourgeois, Francis; Coady, Michael J; Lapointe, Jean-Yves

    2005-01-01

    Three different mammalian myo-inositol cotransporters are currently known; two are Na+-coupled (SMIT1 and SMIT2) and one is proton-coupled (HMIT). Although their transport stoichiometries have not been directly determined, significant cooperativities in the Na+ activation of SMIT1 and SMIT2 suggest that more than one Na+ ion drives the transport of each myo-inositol. The two techniques used here to determine transport stoichiometry take advantage of the electrogenicity of both SMIT2 and HMIT expressed in Xenopus oocytes. The first method compares the measurement of charge transferred into voltage-clamped oocytes with the simultaneous uptake of radiolabelled substrate. The second approach uses high accuracy volume measurements to determine the transport-dependent osmolyte uptake and compares it to the amount of charge transported. This method was calibrated using a potassium channel (ROMK2) and was validated with the Na+/glucose cotransporter SGLT1, which has a known stoichiometry of 2 : 1. Volume measurements indicated a stoichiometric ratio of 1.78 ± 0.27 ion per α-methyl-glucose (αMG) for SGLT1 whereas the radiotracer uptake method indicated 2.14 ± 0.05. The two methods yielded a SMIT2 stoichiometry measurement of 1.75 ± 0.30 and 1.82 ± 0.10, both in agreement with a 2 Na+:1 myo-inositol stoichiometry. For HMIT, the flux ratio was 1.02 ± 0.04 charge per myo-inositol, but the volumetric method suggested 0.67 ± 0.05 charge per myo-inositol molecule. This last value is presumed to be an underestimate of the true stoichiometry of one proton for one myo-inositol molecule due to some proton exchange for osmotically active species. This hypothesis was confirmed by using SGLT1 as a proton-driven glucose cotransporter. In conclusion, despite the inherent difficulty in estimating the osmotic effect of a proton influx, the volumetric method was found valuable as it has the unique capacity of detecting unidentified transported substrates. PMID:15613375

  2. Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT.

    PubMed

    Bourgeois, Francis; Coady, Michael J; Lapointe, Jean-Yves

    2005-03-01

    Three different mammalian myo-inositol cotransporters are currently known; two are Na+-coupled (SMIT1 and SMIT2) and one is proton-coupled (HMIT). Although their transport stoichiometries have not been directly determined, significant cooperativities in the Na+ activation of SMIT1 and SMIT2 suggest that more than one Na+ ion drives the transport of each myo-inositol. The two techniques used here to determine transport stoichiometry take advantage of the electrogenicity of both SMIT2 and HMIT expressed in Xenopus oocytes. The first method compares the measurement of charge transferred into voltage-clamped oocytes with the simultaneous uptake of radiolabelled substrate. The second approach uses high accuracy volume measurements to determine the transport-dependent osmolyte uptake and compares it to the amount of charge transported. This method was calibrated using a potassium channel (ROMK2) and was validated with the Na+/glucose cotransporter SGLT1, which has a known stoichiometry of 2 : 1. Volume measurements indicated a stoichiometric ratio of 1.78 +/- 0.27 ion per alpha-methyl-glucose (alphaMG) for SGLT1 whereas the radiotracer uptake method indicated 2.14 +/- 0.05. The two methods yielded a SMIT2 stoichiometry measurement of 1.75 +/- 0.30 and 1.82 +/- 0.10, both in agreement with a 2 Na+:1 myo-inositol stoichiometry. For HMIT, the flux ratio was 1.02 +/- 0.04 charge per myo-inositol, but the volumetric method suggested 0.67 +/- 0.05 charge per myo-inositol molecule. This last value is presumed to be an underestimate of the true stoichiometry of one proton for one myo-inositol molecule due to some proton exchange for osmotically active species. This hypothesis was confirmed by using SGLT1 as a proton-driven glucose cotransporter. In conclusion, despite the inherent difficulty in estimating the osmotic effect of a proton influx, the volumetric method was found valuable as it has the unique capacity of detecting unidentified transported substrates.

  3. Detergent phosphate bans and eutrophication

    SciTech Connect

    Lee, G.F.; Jones, R.A.

    1986-04-01

    The Vollenweider-OECD eutrophication model has been expanded to approximately 400 lakes. It is possible to make a quantitative prediction of the effects of a detergent phosphate ban and thereby to ascertain the potential benefits of such a ban. In order to assess the effect of a detergent phosphate ban on water quality it is necessary to know the percentage of phosphorus in the domestic waste water that enters the water body, either directly or indirectly, and the percentage of the total phosphorus load that is derived from domestic wastewater. Although detergent phosphate bans generally will not result in an overall improvement to water quality, there may be some situations in which eutrophication-related water quality would be improved by a ban. 8 references, 1 figure, 1 table.

  4. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  5. Mutation of the Na-K-Cl co-transporter gene Slc12a2 results in deafness in mice.

    PubMed

    Dixon, M J; Gazzard, J; Chaudhry, S S; Sampson, N; Schulte, B A; Steel, K P

    1999-08-01

    Hearing impairment is a common human condition, but we know little about the molecular basis of cochlear function. Shaker-with-syndactylism (sy) is a classic deaf mouse mutant and we show here that a second allele, sy(ns), is associated with abnormal production of endolymph, the fluid bathing sensory hair cells. Using a positional candidate approach, we demonstrate that mutations in the gene encoding the basolateral Na-K-Cl co-transporter Slc12a2 (Nkcc1, mBSC2) cause the deafness observed in sy and sy(ns) mice. This finding provides the molecular basis of another link in the chain of K+recycling in the cochlea, a process essential for normal cochlear function.

  6. Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family.

    PubMed

    Pushkin, A; Abuladze, N; Newman, D; Lee, I; Xu, G; Kurtz, I

    2000-09-07

    We report the cloning, characterization and chromosomal assignment of a new member of the sodium bicarbonate cotransporter (NBC) family, NBC4, from human heart. NBC4 maps to chromosome 2p13 and is a new candidate gene for Alstrom syndrome. NBC4 encodes a 1074-residue polypeptide with 12 putative membrane-spanning domains. Unlike other members of the NBC family, NBC4 has a unique glycine-rich region (amino acids 438-485). In addition, NBC4 lacks the lysine-rich C-terminus of NBC1 with which it is most homologous. The first of two putative stilbene binding motifs (K(M/L)(X)K) is lacking in NBC4 (amino acids 655-658). The approximately 6 kb NBC4 transcript is moderately expressed in heart, with the highest expression in liver, testes and spleen.

  7. Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors.

    PubMed

    Meredith, L W; Hu, K; Cheng, X; Howard, C R; Baumert, T F; Balfe, P; van de Graaf, K F; Protzer, U; McKeating, J A

    2016-01-01

    Hepatitis B virus (HBV) is one of the world's major unconquered infections, resulting in progressive liver disease, and current treatments rarely cure infection. A limitation to discovering new therapies is our limited knowledge of HBV entry and dissemination pathways that hinders the development of in vitro culture systems. To address this gap in our understanding we optimized the genesis of infectious lentiviral pseudoparticles (HBVpps). The recent discovery that the bile salt transporter sodium taurocholate co-transporting polypeptide (NTCP) acts as a receptor for HBV enabled us to assess the receptor dependency of HBVpp infection. HBVpps preferentially infect hepatoma cells expressing NTCP, whereas other non-liver cells engineered to express NTCP do not support infection, suggesting that additional hepatocyte-specific factors are required for HBVpp internalization. These results highlight the value of the HBVpp system to dissect the pathways of HBV entry and dissemination.

  8. WNK1 and OSR1 regulate the Na+, K+, 2Cl- cotransporter in HeLa cells.

    PubMed

    Anselmo, Anthony N; Earnest, Svetlana; Chen, Wei; Juang, Yu-Chi; Kim, Sung Chan; Zhao, Yingming; Cobb, Melanie H

    2006-07-18

    Oxidative stress-responsive kinase (OSR) 1 and sterile20-related, proline-, alanine-rich kinase (SPAK) are Ste20p-related protein kinases that bind to the sodium, potassium, two chloride cotransporter, NKCC. Here we present evidence that the protein kinase with no lysine [K] (WNK) 1 regulates OSR1, SPAK, and NKCC activities. OSR1 exists in a complex with WNK1 in cells, is activated by recombinant WNK1 in vitro, and is phosphorylated in a WNK1-dependent manner in cells. Depletion of WNK1 from HeLa cells by using small interfering RNA reduces OSR1 kinase activity. In addition, depletion of either WNK1 or OSR1 reduces NKCC activity, indicating that WNK1 and OSR1 are both required for NKCC function. OSR1 and SPAK are likely links between WNK1 and NKCC in a pathway that contributes to volume regulation and blood pressure homeostasis in mammals.

  9. [Myogenic tone of blood vessels in health and disease: role of purinergic signaling system and Na+, K+ 2Cl+ cotransport].

    PubMed

    Kol'tsova, S V; Baskakov, M B; Orlov, S N

    2010-01-01

    The narrowing of blood vessels evoked by increasing intraluminal pressure and termed as myogenic response plays a key role in the maintenance of the blood flow rate independently of the variation of systemic arterial pressure. Myogenic response MR is accompanied by decreased electrical membrane potential in the vascular smooth muscle cells (VSMC) that, in turn, leads to activation of voltage-gated Ca2+ channels and elevation of [Ca2+]i. Upstream mechanisms underlying VSMC depolarization remain poorly understood. In this review, we summarized data obtained in our laboratories and by other researchers showing tissue-specific impact of purinergic signaling system and Na+, K+, 2Cl- cotransport in the development of myogenic responses along microcirculation.

  10. Photorelease of phosphates: Mild methods for protecting phosphate derivatives

    PubMed Central

    Senadheera, Sanjeewa N; Yousef, Abraham L

    2014-01-01

    Summary We have developed a new photoremovable protecting group for caging phosphates in the near UV. Diethyl 2-(4-hydroxy-1-naphthyl)-2-oxoethyl phosphate (14a) quantitatively releases diethyl phosphate upon irradiation in aq MeOH or aq MeCN at 350 nm, with quantum efficiencies ranging from 0.021 to 0.067 depending on the solvent composition. The deprotection reactions originate from the triplet excited state, are robust under ambient conditions and can be carried on to 100% conversion. Similar results were found with diethyl 2-(4-methoxy-1-naphthyl)-2-oxoethyl phosphate (14b), although it was significantly less efficient compared with 14a. A key step in the deprotection reaction in aq MeOH is considered to be a Favorskii rearrangement of the naphthyl ketone motif of 14a,b to naphthylacetate esters 25 and 26. Disruption of the ketone-naphthyl ring conjugation significantly shifts the photoproduct absorption away from the effective incident wavelength for decaging of 14, driving the reaction to completion. The Favorskii rearrangement does not occur in aqueous acetonitrile although diethyl phosphate is released. Other substitution patterns on the naphthyl or quinolin-5-yl core, such as the 2,6-naphthyl 10 or 8-benzyloxyquinolin-5-yl 24 platforms, also do not rearrange by aryl migration upon photolysis and, therefore, do not proceed to completion. The 2,6-naphthyl ketone platform instead remains intact whereas the quinolin-5-yl ketone fragments to a much more complex, highly absorbing reaction mixture that competes for the incident light. PMID:25246963

  11. Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system.

    PubMed Central

    Javaheri, S; Wagner, K R

    1993-01-01

    Na/K/2Cl cotransport carrier plays an important role in fluid absorption and secretion in many epithelial tissues. The role of the carrier, however, in mammalian choroidal cerebrospinal fluid (CSF) production has been controversial. We used ventriculo-cisternal perfusion (VCP) labeled with blue dextran with or without bumetanide and measured choroidal CSF production in anesthetized, and paralyzed, mechanically ventilated dogs. During 3 h of VCP, mean intracerebroventricular and arterial pressures, PaCO2, pH, [HCO3-], and serum osmolality remained normal in both groups (n = 9 in each group). Beginning 90 min after the start of VCP, choroidal CSF production was measured every 15 min. In group I (control group), values for CSF production (means +/- SD) were 49 +/- 20, 49 +/- 21, 51 +/- 21, 51 +/- 23, 48 +/- 20, 56 +/- 24, and 48 +/- 20 microliters/min, at 90, 105, 120, 135, 150, 165, and 180 min, respectively. These values did not differ significantly from each other. In group II (bumetanide group), after baseline control CSF production had been determined at 90 and 105 min, bumetanide (10(-4) mol/liter) was added to VCP. Mean values for CSF production were 54 +/- 15 and 52 +/- 17 microliters/min before, and 39 +/- 25, 34 +/- 19, 28 +/- 10, 30 +/- 17, and 30 +/- 18 microliters/min after addition of bumetanide at 90, 105, 120, 135, 150, 165, and 180 min, respectively. Comparing the two groups, baseline values for CSF production measured at 90 and 105 min did not differ significantly. After addition of bumetanide (group II), however, decrements in CSF production varied from 30 +/- 27% at 120 min to 47 +/- 14% at 150 min, which were significantly different from changes in group I. The results of this study indicate that NaCl cotransport carrier is involved in secretion of CSF in dogs, and inhibition of the transporter results in approximately 50% reduction in CSF production. PMID:8227341

  12. Identification of membrane topography of the electrogenic sodium bicarbonate cotransporter pNBC1 by in vitro transcription/translation.

    PubMed

    Tatishchev, Sergei; Abuladze, Natalia; Pushkin, Alexander; Newman, Debra; Liu, Weixin; Weeks, David; Sachs, George; Kurtz, Ira

    2003-01-28

    The transmembrane topography of the human pancreatic electrogenic sodium bicarbonate cotransporter pNBC1 was investigated using in vitro transcription/translation of HK-M0 and HK-M1 fusion vectors designed to test membrane insertion properties of pNBC1 hydrophobic sequences (H). These vectors encode N-terminal 101 (HK-M0) or 139 (HK-M1) amino acids of the H,K-ATPase alpha-subunit, a linker region and the C-terminal 177 amino acids of the H,K-ATPase beta-subunit that contain five N-linked glycosylation consensus sites (Bamberg, K., and Sachs, G. (1994) J. Biol. Chem. 269, 16909-16919). The glycosylation status of the beta-region was used as a reporter to determine whether a given hydrophobic sequence possesses signal anchor and/or stop transfer properties in the HK-M0 and HK-M1 vectors. The linker region of each vector was replaced either with individual hydrophobic sequences or combinations thereof. The transcription/translation products of these fusion vectors in reticulocyte lysate system +/- microsomal membranes were identified by [(35)S]-autoradiography following separation using SDS-PAGE. The results of the in vitro transcription/translation analysis indicated that 10 (H1, H2N, H3, H5, H6, H7, H8, H9, H11, and H12) out of 12 hydrophobic sequences were able to insert into the plasma membrane. Two hydrophobic sequences, H4 and H10, had no membrane insertion activity even when upstream and downstream sequences were present. These data and immunocytochemical studies indicate that pNBC1 contains 10 transmembrane domains with N- and C-termini oriented intracellularly. This is the first characterization of the membrane topography of a sodium bicarbonate cotransporter.

  13. Differences in the Large Extracellular Loop between the K+-Cl− Cotransporters KCC2 and KCC4*

    PubMed Central

    Hartmann, Anna-Maria; Wenz, Meike; Mercado, Adriana; Störger, Christof; Mount, David B.; Friauf, Eckhard; Nothwang, Hans Gerd

    2010-01-01

    K+Cl− cotransporters (KCCs) play fundamental physiological roles in processes such as inhibitory neurotransmission and cell volume regulation. Mammalian genomes encode four distinct KCC paralogs, which share basic transport characteristics but differ significantly in ion affinity, pharmacology, and relative sensitivity to cell volume. Studies to identify divergence in functional characteristics have thus far focused on the cytoplasmic termini. Here, we investigated sequence requirements of the large extracellular loop (LEL) for function in KCC2 and KCC4. Mutation of all four evolutionarily conserved cysteines abolished KCC2 transport activity. This behavior differs from that of its closest relative, KCC4, which is insensitive to this mutation. Chimeras supported the differences in the LEL of the two cotransporters, because swapping wild-type LEL resulted in functional KCC2 but rendered KCC4 inactive. Insertion of the quadruple cysteine substitution mutant of the KCC4 loop, which was functional in the parental isoform, abolished transport activity in KCC2. Dose-response curves of wild-type and chimeric KCCs revealed that the LEL contributes to the different sensitivity to loop diuretics; a KCC2 chimera containing the KCC4 LEL displayed an IC50 of 396.5 μm for furosemide, which was closer to KCC4 (548.8 μm) than to KCC2 (184.4 μm). Cell surface labeling and immunocytochemistry indicated that mutations do not affect trafficking to the plasma membrane. Taken together, our results show a dramatic and unexpected difference in the sequence requirements of the LEL between the closely related KCC2 and KCC4. Furthermore, they demonstrate that evolutionarily highly conserved amino acids can have different functions within KCC members. PMID:20516068

  14. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats.

    PubMed

    Javdani, Fariba; Holló, Krisztina; Hegedűs, Krisztina; Kis, Gréta; Hegyi, Zoltán; Dócs, Klaudia; Kasugai, Yu; Fukazawa, Yugo; Shigemoto, Ryuichi; Antal, Miklós

    2015-09-01

    γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons.

  16. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus.

    PubMed

    Cherney, David Z I; Perkins, Bruce A; Soleymanlou, Nima; Maione, Maria; Lai, Vesta; Lee, Alana; Fagan, Nora M; Woerle, Hans J; Johansen, Odd Erik; Broedl, Uli C; von Eynatten, Maximilian

    2014-02-04

    The primary objective of this mechanistic open-label, stratified clinical trial was to determine the effect of 8 weeks' sodium glucose cotransporter 2 inhibition with empagliflozin 25 mg QD on renal hyperfiltration in subjects with type 1 diabetes mellitus (T1D). Inulin (glomerular filtration rate; GFR) and paraaminohippurate (effective renal plasma flow) clearances were measured in individuals stratified based on having hyperfiltration (T1D-H, GFR ≥ 135 mL/min/1.73m(2), n=27) or normal GFR (T1D-N, GFR 90-134 mL/min/1.73m(2), n=13) at baseline. Renal function and circulating levels of renin-angiotensin-aldosterone system mediators and NO were measured under clamped euglycemic (4-6 mmol/L) and hyperglycemic (9-11 mmol/L) conditions at baseline and end of treatment. During clamped euglycemia, hyperfiltration was attenuated by -33 mL/min/1.73m(2) with empagliflozin in T1D-H, (GFR 172±23-139±25 mL/min/1.73 m(2), P<0.01). This effect was accompanied by declines in plasma NO and effective renal plasma flow and an increase in renal vascular resistance (all P<0.01). Similar significant effects on GFR and renal function parameters were observed during clamped hyperglycemia. In T1D-N, GFR, other renal function parameters, and plasma NO were not altered by empagliflozin. Empagliflozin reduced hemoglobin A1c significantly in both groups, despite lower insulin doses in each group (P≤0.04). In conclusion, short-term treatment with the sodium glucose cotransporter 2 inhibitor empagliflozin attenuated renal hyperfiltration in subjects with T1D, likely by affecting tubular-glomerular feedback mechanisms. http://www.clinicaltrials.gov. Unique identifier: NCT01392560.

  17. Experimental investigation of human adenovirus cotransport with clay colloids and TiO2 nanoparticles in water saturated porous media

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Kokkinos, Petros; Tselepi, Maria A.; Kartoudis, Alexis; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V.

    2016-04-01

    Particles such as clay colloids (e.g. kaolinite and montmorillonite) and metal oxides (e.g. TiO2) have great potential for controlling the fate and transport of viruses in the subsurface. Although human adenoviruses (hAdVs) are used worldwide to indicate human fecal pollution in groundwater, their transport behavior in the subsurface environment is not fully understood. This study focuses on the effects of both clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b), and TiO2 nanoparticles (NPs), on hAdV transport and retention in porous media. Laboratory-scale cotransport experiments were conducted in columns packed with glass beads, at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The experimental results suggested that the presence of KGa-1b, STx-1b, and TiO2 NPs increased the attachment and inactivation of hAdVs, mainly due to the contribution of additional attachment sites. Retention of hAdVs by the packed column was shown to be highest in the presence of TiO2 NPs and lowest in the presence of KGa-1b. Moreover, the mass recovery values of both clay colloids and TiO2 NPs were affected by the presence of hAdVs, under all of the experimental conditions examined in this study. However, no distinct relationship between mass recovery and water velocity could be established from the present experimental cotransport results.

  18. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1).

    PubMed

    Monette, Michelle Y; Forbush, Biff

    2012-01-13

    The Na-K-Cl cotransporter (NKCC1) is expressed in most vertebrate cells and is crucial in the regulation of cell volume and intracellular chloride concentration. To study the structure and function of NKCC1, we tagged the transporter with cyan (CFP) and yellow (YFP) fluorescent proteins at two sites within the C terminus and measured fluorescence resonance energy transfer (FRET) in stably expressing human embryonic kidney cell lines. Both singly and doubly tagged NKCC1s were appropriately produced, trafficked to the plasma membrane, and exhibited (86)Rb transport activity. When both fluorescent probes were placed within the same C terminus of an NKCC1 transporter, we recorded an 11% FRET decrease upon activation of the transporter. This result clearly demonstrates movement of the C terminus during the regulatory response to phosphorylation of the N terminus. When we introduced CFP and YFP separately in different NKCC1 constructs and cotransfected these in HEK cells, we observed FRET between dimer pairs, and the fractional FRET decrease upon transporter activation was 46%. Quantitatively, this indicates that the largest FRET-signaled movement is between dimer pairs, an observation supported by further experiments in which the doubly tagged construct was cotransfectionally diluted with untagged NKCC1. Our results demonstrate that regulation of NKCC1 is accompanied by a large movement between two positions in the C termini of a dimeric cotransporter. We suggest that the NKCC1 C terminus is involved in transport regulation and that dimerization may play a key structural role in the regulatory process. It is anticipated that when combined with structural information, our findings will provide a model for understanding the conformational changes that bring about NKCC1 regulation.

  19. Photolabeling of a 150-kDa (Na + K + Cl) cotransport protein from dog kidney with a bumetanide analogue

    SciTech Connect

    Haas, M.; Forbush, B. III

    1987-08-01

    (Na + K + Cl) cotransport is the major mechanism of salt transport across the apical membrane of the epithelial cells of the thick ascending limb of Henle's loop of mammalian kidney and the site of action of loop diuretics such as furosemide and bumetanide. We have identified a 150-kDa protein in membranes from dog kidney cortex that is photolabeled by a radiolabeled, benzophenone analogue of bumetanide, (/sup 3/H)4-benzoyl-5-sulfamoyl-3-(3-thenyloxy)benzoic acid ((/sup 3/H)BSTBA). Several pieces of evidence strongly suggest that this 150-kDa protein is at least part of the (Na + K + Cl) cotransport system. 1) Photoincorporation of (/sup 3/H)BSTBA into this protein is completely blocked by inclusion of 10 microM unlabeled bumetanide in the photolysis medium. 2) Photoincorporation of (/sup 3/H)BSTBA into this protein shows a saturable dependence on (/sup 3/H)BSTBA concentration, with a K 1/2 (approximately 0.1 microM) very similar to that for reversible (/sup 3/H)BSTBA binding to kidney membranes. 3) Photolabeling of this protein by (/sup 3/H)BSTBA requires the simultaneous presence of Na, K, and Cl in the photolysis medium. 4) When crude membranes from dog kidney cortex are centrifuged on sucrose density gradients, saturable (/sup 3/H)bumetanide binding and photoincorporation of (/sup 3/H)BSTBA in the 150-kDa region show a very similar distribution among the 15 gradient fractions collected. (/sup 3/H)BSTBA is also photoincorporated into at least two lower molecular mass proteins, the largest of which is approximately 50 kDa.

  20. Role of the potassium chloride cotransporter isoform 2-mediated spinal chloride homeostasis in a rat model of visceral hypersensitivity.

    PubMed

    Tang, Dong; Qian, Ai-Hua; Song, Dan-Dan; Ben, Qi-Wen; Yao, Wei-Yan; Sun, Jing; Li, Wei-Guang; Xu, Tian-Le; Yuan, Yao-Zong

    2015-05-01

    Visceral hypersensitivity represents an important hallmark in the pathophysiology of irritable bowel syndrome (IBS), of which the mechanisms remain elusive. The present study was designed to examine whether cation-chloride cotransporter (CCC)-mediated chloride (Cl(-)) homeostasis of the spinal cord is involved in chronic stress-induced visceral hypersensitivity. Chronic visceral hypersensitivity was induced by exposing male Wistar rats to water avoidance stress (WAS). RT-PCR, Western blotting, and immunohistochemistry were used to assess the expression of CCCs in the spinal cord. Patch-clamp recordings were performed on adult spinal cord slices to evaluate Cl(-) homeostasis and Cl(-) extrusion capacity of lamina I neurons. Visceral sensitivity was estimated by measuring the abdominal withdrawal reflex in response to colorectal distension (CRD). After 10 days of WAS exposure, levels of both total protein and the oligomeric form of the K(+)-Cl(-) cotransporter isoform 2 (KCC2), but not Na(+)-K(+)-2Cl(-) transporter isoform 1 (NKCC1), were significantly decreased in the dorsal horn of the lumbosacral spinal cord. The downregulation of KCC2 resulted in a depolarizing shifted equilibrium potential of GABAergic inhibitory postsynaptic current and impaired Cl(-) extrusion capacity in lamina I neurons of the lumbosacral spinal cord from WAS rats. Acute noxious CRD disrupted spinal KCC2 expression and function 2 h after the final distention in sham rats, but not in WAS rats. Pharmacological blockade of KCC2 activity by intrathecal injection of a KCC2 inhibitor [(dihydroindenyl)oxy] alkanoic acid enhanced visceral nociceptive sensitivity in sham rats, but not in WAS rats. These results suggest that KCC2 downregulation-mediated impairment of spinal cord Cl(-) homeostasis may play an important role in chronic stress-induced visceral hypersensitivity. Copyright © 2015 the American Physiological Society.

  1. PSD-95 interacts with NBCn1 and enhances channel-like activity without affecting Na/HCO(3) cotransport.

    PubMed

    Lee, Soojung; Yang, Han Soo; Kim, Eunjin; Ju, Eun Ji; Kwon, Min Hyung; Dudley, R Kyle; Smith, Yoland; Yun, C Chris; Choi, Inyeong

    2012-01-01

    The sodium/bicarbonate transporter NBCn1 plays an essential role in intracellular pH regulation and transepithelial HCO(3)(-) movement in the body. NBCn1 also has sodium channel-like activity uncoupled to Na/HCO(3) cotransport. We previously reported that NBCn1 interacts with the postsynaptic density protein PSD-95 in the brain. Here, we elucidated the structural determinant and functional consequence of NBCn1/PSD-95 interaction. In rat hippocampal CA3 neurons, NBCn1 was localized to the postsynaptic membranes of both dendritic shafts and spines and occasionally to the presynaptic membranes. A GST/NBCn1 fusion protein containing the C-terminal 131 amino acids of NBCn1 pulled down PSD-95 from rat brain lysates, whereas GST/NBCn1-ΔETSL (deletion of the last four amino acids) and GST/NBCn2 (NCBE) lacking the same ETSL did not. NBCn1 and PSD-95 were coimmunoprecipitated in HEK 293 cells, and their interaction did not affect the efficacy of PSD-95 to bind to the NMDA receptor NR2A. PSD-95 has negligible effects on intracellular pH changes mediated by NBCn1 in HEK 293 cells and Xenopus oocytes. However, PSD-95 increased an ionic conductance produced by NBCn1 channel-like activity. This increase was abolished by NBCn1-ΔETSL or by the peptide containing the last 15 amino acids of NBCn1. Our data suggest that PSD-95 interacts with NBCn1 and increases its channel-like activity while negligibly affecting Na/HCO(3) cotransport. The possibility that the channel-like activity occurs via an intermolecular cavity of multimeric NBCn1 proteins is discussed. Copyright © 2012 S. Karger AG, Basel.

  2. PSD-95 Interacts with NBCn1 and Enhances Channel-like Activity without Affecting Na/HCO3 Cotransport

    PubMed Central

    Lee, Soojung; Yang, Han Soo; Kim, Eunjin; Ju, Eun Ji; Kwon, Min Hyung; Dudley, R. Kyle; Smith, Yoland; Yun, C. Chris; Choi, Inyeong

    2013-01-01

    Background/Aims The sodium/bicarbonate transporter NBCn1 plays an essential role in intracellular pH regulation and transepithelial HCO3− movement in the body. NBCn1 also has sodium channel-like activity uncoupled to Na/HCO3 cotransport. We previously reported that NBCn1 interacts with the postsynaptic density protein PSD-95 in the brain. Here, we elucidated the structural determinant and functional consequence of NBCn1/PSD-95 interaction. Methods: Results In rat hippocampal CA3 neurons, NBCn1 was localized to the postsynaptic membranes of both dendritic shafts and spines and occasionally to the presynaptic membranes. A GST/NBCn1 fusion protein containing the C-terminal 131 amino acids of NBCn1 pulled down PSD-95 from rat brain lysates, whereas GST/NBCn1-ΔETSL (deletion of the last four amino acids) and GST/NBCn2 (NCBE) lacking the same ETSL did not. NBCn1 and PSD-95 were coimmunoprecipitated in HEK 293 cells, and their interaction did not affect the efficacy of PSD-95 to bind to the NMDA receptor NR2A. PSD-95 has negligible effects on intracellular pH changes mediated by NBCn1 in HEK 293 cells and Xenopus oocytes. However, PSD-95 increased an ionic conductance produced by NBCn1 channel-like activity. This increase was abolished by NBCn1-ΔETSL or by the peptide containing the last 15 amino acids of NBCn1. Conclusion Our data suggest that PSD-95 interacts with NBCn1 and increases its channel-like activity while negligibly affecting Na/HCO3 cotransport. The possibility that the channel-like activity occurs via an intermolecular cavity of multimeric NBCn1 proteins is discussed. PMID:23183381

  3. Immunolocalization of cation-chloride cotransporters in the developing and mature spinal cord of opossums, Monodelphis domestica.

    PubMed

    Phan, Ha-Loan; Pflieger, Jean-François

    2013-01-01

    Spinal inhibition is required to generate coordinated outputs between antagonistic muscles during locomotion. It relies on low neuronal chloride concentration set by two cation-chloride cotransporters, NKCC1 and KCC2 which, respectively, pumps Cl(-) in or out of neurons. It is generally accepted that NKCC1 is gradually inactivated during development, while KCC2 is upregulated and activated, resulting in low intracellular [Cl(-)]. Newborn opossums are very immature but perform rhythmic and alternate movements of the forelimbs to crawl on the mother's belly and attach to a teat. Their hindlimbs are immobile. The alternation of the forelimbs suggests that mechanisms allowing spinal inhibition are present at birth. We studied the anatomical basis of inhibition in the spinal enlargements of postnatal opossums by immunolocalizing NKCC1 and KCC2. In some specimens, motoneurons and sensory afferents were labeled with TRDA prior to immunolabeling. At birth, both NKCC1 and KCC2 are detected in the presumptive gray and white matter of the ventral and the intermediolateral cord of both enlargements, but are sparse in the dorsal horn, where KCC2 is mostly seen on a small bundle of dendrites along primary afferents. KCC2 labeling is bright and has a mesh-like appearance in the gray matter and a radial appearance in the white matter, whereas NKCC1 is pale and diffuse. The subsequent expression of the cotransporters follows general ventrodorsal and mediolateral gradients, with the lumbar segments slightly lagging the cervical segments, until the mature pattern is observed around the 5th week. At all ages studied, KCC2 labeling is strong in the periphery of neurons. NKCC1 labeling decreases and becomes more uniformly distributed in the cells with age. Despite the significant anatomical and motor differences between the forelimbs and the hindlimbs of neonatal opossums, the maturation of KCC2 and NKCC1 is quite similar in both enlargements.

  4. Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na(+)-glucose cotransporter.

    PubMed

    Coady, Michael J; Wallendorff, Bernadette; Lapointe, Jean-Yves

    2017-08-01

    The cotransporter SGLT2 is responsible for 90% of renal glucose reabsorption, and we recently showed that MAP17 appears to work as a required β-subunit. We report in the present study a detailed functional characterization of human SGLT2 in coexpression with human MAP17 in Xenopus laevis oocytes. Addition of external glucose generates a large inward current in the presence of Na, confirming an electrogenic transport mechanism. At a membrane potential of -50 mV, SGLT2 affinity constants for glucose and Na are 3.4 ± 0.4 and 18 ± 6 mM, respectively. The change in the reversal potential of the cotransport current as a function of external glucose concentration clearly confirms a 1:1 Na-to-glucose transport stoichiometry. SGLT2 is selective for glucose and α-methylglucose but also transports, to a lesser extent, galactose and 3-O-methylglucose. SGLT2 can be inhibited in a competitive manner by phlorizin (Ki = 31 ± 4 nM) and by dapagliflozin (Ki = 0.75 ± 0.3 nM). Similarly to SGLT1, SGLT2 can be activated by Na, Li, and protons. Pre-steady-state currents for SGLT2 do exist but are small in amplitude and relatively fast (a time constant of ~2 ms). The leak current defined as the phlorizin-sensitive current in the absence of substrate was extremely small in the case of SGLT2. In summary, in comparison with SGLT1, SGLT2 has a lower affinity for glucose, a transport stoichiometry of 1:1, very small pre-steady-state and leak currents, a 10-fold higher affinity for phlorizin, and an affinity for dapagliflozin in the subnanomolar range. Copyright © 2017 the American Physiological Society.

  5. Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture.

    PubMed

    Coloso, R M; King, K; Fletcher, J W; Weis, P; Werner, A; Ferraris, R P

    2003-08-01

    Phosphate utilization by fish is an important issue because of its critical roles in fish growth and aquatic environmental pollution. High dietary phosphorus (P) levels typically decrease the efficiency of P utilization, thereby increasing the amount of P excreted as metabolic waste in effluents emanating from rainbow trout aquaculture. In mammals, vitamin D3 is a known regulator of P utilization but in fish, its regulatory role is unclear. Moreover, the effects of dietary P and vitamin D3 on expression of enzymatic and transport systems potentially involved in phosphate utilization are little known. We therefore monitored production of effluent P, levels of plasma vitamin D3 metabolites, as well as expression of phosphatases and the sodium phosphate cotransporter (NaPi2) in trout fed semipu diets that varied in dietary P and vitamin D3 levels. Mean soluble P concentrations varied markedly with dietary P but not with vitamin D3, and constituted 40-70% of total effluent P production by trout. Particulate P concentrations accounted for 25-50% of effluent P production, but did not vary with dietary P or vitamin D3. P in settleable wastes accounted for <10% of effluent P. The stronger effect of dietary P on effluent P levels is paralleled by its striking effects on phosphatases and NaPi2. The mRNA abundance of the intestinal and renal sodium phosphate transporters increased in fish fed low dietary P; vitamin D3 had no effect. Low-P diets reduced plasma phosphate concentrations. Intracellular phytase activity increased but brushborder alkaline phosphatase activity decreased in the intestine, pyloric caeca, and gills of trout fed diets containing low dietary P. Vitamin D3 had no effect on enzyme activities. Moreover, plasma concentrations of 25-hydroxyvitamin D3 and of 1,25-dihydroxyvitamin D3 were unaffected by dietary P and vitamin D3 levels. The major regulator of P metabolism, and ultimately of levels of P in the effluent from trout culture, is dietary P.

  6. Glucose-6-Phosphate Dehydrogenase Revisited

    PubMed Central

    O'Connell, Jerome T.; Henderson, Alfred R.

    1984-01-01

    Hemolytic diseases associated with drugs have been recognized since antiquity. Many of these anemias have been associated with oxidizing agents and deficiencies in the intraerythrocytic enzyme glucose-6-phosphate dehydrogenase. This paper outlines the discovery, prevalence, and variants of this enzyme. Methods of diagnosis of associated anemias are offered. PMID:6502728

  7. Why nature really chose phosphate.

    PubMed

    Kamerlin, Shina C L; Sharma, Pankaz K; Prasad, Ram B; Warshel, Arieh

    2013-02-01

    Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning

  8. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  9. Magnetite seeded precipitation of phosphate.

    PubMed

    Karapinar, Nuray; Hoffmann, Erhard; Hahn, Hermann H

    2004-07-01

    Seeded precipitation of Ca phosphate on magnetite mineral (Fe3O4) surfaces was investigated using a Jar Test system in supersaturated solutions at 20 degrees C and ionic strength 0.01 mol l(-1) with relative super saturation, 12.0-20.0 for HAP. pH of the solution, initial phosphorus concentration and molar Ca/P ratio were investigated as the main parameters, which effect the seeded precipitation of Ca phosphate. Results showed that there is no pronounced effect of magnetite seed, neither positive nor negative on the amount of calcium phosphate precipitation. pH was found to be the main parameter that determines the phosphate precipitated onto the seed surface. Increasing of the pH of precipitation reaction was resulted in the decrease in percentage amount of phosphate precipitated onto seed surfaces to total precipitation (magnetite seeded precipitation efficiency). It was concluded that the pH dependence of magnetite-seeded precipitation should be considered in the light of its effect on the supersaturated conditions of solution. Saturation index (SI) of solution with respect to the precipitate phase was considered the driving force for the precipitation. A simulation programme PHREEQC (Version 2) was employed to calculate the Saturation-index with respect to hydroxyapatite (HAP) of the chemically defined precipitation system. It was found a good relationship between SI of solution with respect to HAP and the magnetite seeded precipitation efficiency, a second order polynomial function. Results showed that more favorable solution conditions for precipitation (higher SI values of solution) causes homogenous nucleation whereas heterogeneous nucleation led to a higher magnetite seeded precipitation efficiency.

  10. Sintering of calcium phosphate bioceramics.

    PubMed

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful.

  11. Phosphate based oil well cements

    NASA Astrophysics Data System (ADS)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  12. Inhibition by mercuric chloride of Na-K-2Cl cotransport activity in rectal gland plasma membrane vesicles isolated from Squalus acanthias.

    PubMed

    Kinne-Saffran, E; Kinne, R K

    2001-02-09

    The rectal gland of the dogfish shark is a model system for active transepithelial transport of chloride. It has been shown previously that mercuric chloride, one of the toxic environmental pollutants, inhibits chloride secretion in this organ. In order to investigate the mechanism of action of HgCl(2) at a membrane-molecular level, plasma membrane vesicles were isolated from the rectal gland and the effect of mercury on the activity of the Na-K-2Cl cotransporter was investigated in isotope flux studies. During a 30 s exposure HgCl(2) inhibited cotransport activity in a dose-dependent manner with an apparent K(i) of approx. 50 microM. The inhibition was complete after 15 s, partly reversible by dilution of the incubation medium and completely attenuated upon addition of reduced glutathione. The extent of inhibition by mercury depended on the ionic composition of the medium. The sensitivity of the cotransporter was highest when only the high affinity binding sites for sodium and chloride were saturated. Organic mercurials such as p-chloromercuribenzoic acid and p-chloromercuriphenylsulfonic acid at 100 microM did not inhibit the cotransporter, similarly exposure of the vesicles to 10 mM H(2)O(2) or 1 mM dithiothreitol for 30 min at 15 degrees C did not change cotransport activity. Transport activity was, however, reduced by 45.9+/-2.5% after an incubation with 3 mM N-ethylmaleimide for 20 min. Blocking free amino groups by N-hydroxysuccinimide or biotinamidocapronate-N-hydroxysulfosuccinimide had no effect. Investigations on the sidedness of the plasma membrane vesicles, employing the asymmetry of the (Na+K)-ATPase, demonstrated a right-side-out orientation in which the former extracellular face of the membrane is exposed to the incubation medium. In addition, extracellular mercury (5x10(-5) M) inhibited bumetanide-sensitive rubidium uptake into T84 cells by 48.5+/-7.1% after a 2 min incubation period. This inhibition was reversible in a manner similar to that

  13. Urea phosphate as granular or fluid fertilizers

    SciTech Connect

    Blouin, G.M.

    1984-01-01

    Studies are being conducted of the production and agronomic characteristics of the phosphoric acid-urea adduct, urea phosphate, and of the various granular and fluid fertilizers that can be produced from it. Flowsheets are given for the production of urea phosphate. Characteristics of unpurified and purified urea phosphate are also given. (DLC)

  14. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  15. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  16. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  17. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  18. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  19. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  20. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  1. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  2. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  3. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  4. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  5. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  6. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  7. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6285 Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  8. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  10. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  11. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  12. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  14. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  15. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  17. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  18. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  19. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  20. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  2. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di...

  3. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  4. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  5. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  6. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  7. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  8. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  10. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  11. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  13. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  14. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  15. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono...

  16. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  20. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  1. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  2. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  3. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  4. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  5. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  6. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  7. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  9. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  10. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  11. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  12. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  13. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  14. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  15. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  16. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  18. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  20. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono...

  2. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  3. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  4. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6290 Disodium phosphate. (a) Product. Disodium phosphate...

  5. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  6. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  8. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  10. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  11. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  12. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  14. 40 CFR 721.5995 - Polyalkyl phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772) is...

  15. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  16. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  17. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  18. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  19. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  20. Mineral resource of the month: Phosphate rock

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2013-01-01

    As a mineral resource, “phosphate rock” is defined as unprocessed ore and processed concentrates that contain some form of apatite, a group of calcium phosphate minerals that is the primary source for phosphorus in phosphate fertilizers, which are vital to agriculture.

  1. Cellular resistance to Evans blue toxicity involves an up-regulation of a phosphate transporter implicated in vesicular glutamate storage.

    PubMed

    Israël, M; Tomasi, M; Bostel, S; Meunier, F M

    2001-08-01

    It has recently been suggested that the brain-specific Na+-dependent phosphate inorganic co-transporter (BNPI) is able to support glutamate transport and storage in synaptic vesicles. A procedure for measuring the vesicular pool of glutamate is described and was used to select cell lines according to their glutamate storage capacity. Two cell lines were selected: C6BU-1, with a large intracellular glutamate storage capacity, and NG108-15, devoid of it. Their contents in BNPI mRNA were compared by RT-PCR. We found that both cell lines had BNPI, but in addition C6BU-1 alone expresses the other isoform, DNPI. We also carried out a clonal selection of NG108-15 cells in the presence of the dye Evans blue, a competitive inhibitor of vesicular glutamate transport, very toxic for cells in culture. It was assumed that only those that sequester and eliminate the drug by overexpressing a vesicular glutamate transporter would survive. We found that the NG108-15 clones resistant to Evans blue had an increased storage capacity for glutamate. These cells also up-regulated the BNPI isoform of the phosphate transporter as shown by RT-PCR and northern blot.

  2. WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters.

    PubMed

    Kahle, Kristopher T; Rinehart, Jesse; Ring, Aaron; Gimenez, Ignacio; Gamba, Gerardo; Hebert, Steven C; Lifton, Richard P

    2006-10-01

    Precise control of cellular Cl(-) transport is necessary for many fundamental physiological processes. For example, the intracellular concentration of Cl(-), fine-tuned through the coordinated action of cellular Cl(-) influx and efflux mechanisms, determines whether a neuron's response to GABA is excitatory or inhibitory. In epithelia, synchrony between apical and basolateral Cl(-) flux, and transcellular and paracellular Cl(-) transport, is necessary for efficient transepithelial Cl(-) reabsorption or secretion. In cells throughout the body, coordination of Cl(-) entry and exit mechanisms help defend against changes in cell volume. The Na-K-Cl and K-Cl cotransporters of the SLC12 gene family are important molecular determinants of Cl(-) entry and exit, respectively, in these systems. The WNK serine-threonine kinase family, members of which are mutated in an inherited form of human hypertension, are components of a signaling pathway that coordinates Cl(-) influx and efflux through SLC12 cotransporters to dynamically regulate intracellular Cl(-) activity.

  3. [Phosphate sensing and parathyroid gland].

    PubMed

    Mizobuchi, Masahide; Suzuki, Taihei

    2012-10-01

    In the latter 1990s, phosphate, as well as calcium, has been shown to have a direct action on parathyroid function. Since then although many researchers have tried to detect the phosphate sensor in parathyroid gland, none has found it yet. In 2000s, the importance of FGF23 was revealed in patients with autosomal dominant hypophosphatemic rickets and then investigating the role of FGF23 in mineral metabolism has spread. FGF23 target organs comprise those that express coreceptor Klotho, such as kidney and parathyroid glands. While associations of calcium sensing receptor or vitamin D receptor with parathyroid function have been mainly investigated for parathyroid dysfunction, many efforts recently have made to study the effects of FGF23 on parathyroid glands.

  4. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.

  5. Nucleoside phosphorylation by phosphate minerals.

    PubMed

    Costanzo, Giovanna; Saladino, Raffaele; Crestini, Claudia; Ciciriello, Fabiana; Di Mauro, Ernesto

    2007-06-08

    In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.

  6. Resorbable calcium phosphate bone substitute.

    PubMed

    Knaack, D; Goad, M E; Aiolova, M; Rey, C; Tofighi, A; Chakravarthy, P; Lee, D D

    1998-01-01

    The in vitro and in vivo properties of a novel, fully resorbable, apatitic calcium phosphate bone substitute (ABS) are described. The ABS was prepared from calcium phosphate precursors that were hydrated to form an injectable paste that hardens endothermically at 37 degrees C to form a poorly crystalline apatitic calcium phosphate (PCA). The PCA reaction product is stable in vivo as determined by FTIR and XRD analysis of rabbit intramuscular implants of ABS retrieved 4, 7, and 14 days postimplantation. Bone formation and resorption characteristics of the ABS material were characterized in a canine femoral slot defect model. Femoral slot defects in dogs were filled with either autologous bone implants or the ABS material. Sections of femoral bone defect site from animals sacrificed at 3, 4, 12, 26, and 52 weeks demonstrated that new bone formation proceeded similarly in both autograft and ABS filled slots. Defects receiving either material were filled with trabecular bone in the first 3 to 4 weeks after implantation; lamellar or cortical bone formation was well established by week 12. New bone formation in ABS filled defects followed a time course comparable to autologous bone graft filled defects. Histomorphometric evaluation of ABS resorption and new bone formation indicated that the ABS material was greater than 99% resorbed within 26 weeks; residual ABS occupied 0.36+/-0.36% (SEM, n = 4) of the original defect area at 26 weeks. Quantitatively and qualitatively, the autograft and ABS were associated with similar new bone growth and defect filling characteristics.

  7. Volume-sensitive K-Cl cotransport in inside-out vesicles made from erythrocyte membranes from sheep of low-K phenotype.

    PubMed Central

    Kracke, G R; Dunham, P B

    1990-01-01

    Unidirectional K ion effluxes were measured from inside-out vesicles prepared from erythrocyte membranes from sheep of the low-K phenotype. Total K efflux was 150 nmol per mg of protein per hr in a Cl medium of 295 mosmol/kg (with the Na/K pump inhibited). Cl-dependent K efflux (determined with methanesulfonate replacing Cl) was 54 nmol/(mg.hr). Cl-dependent K efflux (K-Cl cotransport) increased to 77 nmol/(mg.hr) with osmotic swelling of approximately 30% in 230-mosmol/kg medium and decreased to 13 nmol/(mg.hr) after shrinkage of approximately 60% in 430-mosmol/kg medium. Osmotically induced changes in transport and vesicle volume were reversible. K-Cl cotransport was enhanced by ATP. Nonhydrolyzable ATP analogues failed to substitute for ATP, indicating that phosphorylation is involved. However, in the absence of added ATP there was significant K-Cl cotransport, suggesting that phosphorylation is not essential for function. The results provide clues about the nature of the signals detected by the sensor of cell volume changes and demonstrate that inside-out vesicles from sheep erythrocyte membranes provide an advantageous experimental system for investigation of the volume sensor. PMID:2236068

  8. Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study.

    PubMed

    Gagnon, Dominique G; Holt, Andrea; Bourgeois, Francis; Wallendorff, Bernadette; Coady, Michael J; Lapointe, Jean-Yves

    2005-06-30

    The accessibility of the hydrophilic loop between putative transmembrane segments XIII and XIV of the Na+/glucose cotransporter (SGLT1) was studied in Xenopus oocytes, using the substituted cysteine accessibility method (SCAM) and fluorescent labelling. Fifteen cysteine mutants between positions 565 and 664 yielded cotransport currents of similar amplitude than the wild-type SGLT1 (wtSGLT1). Extracellular, membrane-impermeant MTSES(-) and MTSET(+) had no effect on either cotransport or Na+ leak currents of wtSGLT1 but 9 mutants were affected by MTSES and/or MTSET. We also performed fluorescent labelling on SGLT1 mutants, using tetramethylrhodamine-5-maleimide and showed that positions 586, 588 and 624 were accessible. As amino acids 604 to 610 in SGLT1 have been proposed to form part of a phlorizin (Pz) binding site, we measured the K(i)(Pz) and K(m)(alphaMG) for wtSGLT1 and for cysteine mutants at positions 588, 605-608 and 625. Although mutants A605C, Y606C and D607C had slightly higher K(i)(Pz) values than wtSGLT1 with minimal changes in K(m)((alpha)MG), the effects were modest and do not support the original hypothesis. We conclude that the large, hydrophilic loop near the carboxyl terminus of SGLT1 is thus accessible to the external solution but does not appear to play a major part in the binding of phlorizin.

  9. Expression of the bumetanide-sensitive Na-K-Cl cotransporter BSC2 is differentially regulated by fluid mechanical and inflammatory cytokine stimuli in vascular endothelium.

    PubMed Central

    Topper, J N; Wasserman, S M; Anderson, K R; Cai, J; Falb, D; Gimbrone, M A

    1997-01-01

    In vascular endothelium, the electroneutral Na-K-Cl cotransport system is thought to function in the maintenance of a selective permeability barrier in certain vascular beds (e.g., brain), as well as in the preservation of endothelial homeostasis in the face of fluctuating osmotic conditions that may accompany certain pathophysiological conditions (e.g., diabetes mellitus). Here we demonstrate that the gene encoding the bumetanide-sensitive cotransporter BSC2, one of the two major isoforms of Na-K-Cl cotransporters present in mammalian cells, can be differentially regulated by inflammatory cytokines and fluid mechanical forces in cultured endothelium. Interleukin-1beta and tumor necrosis factor-alpha significantly upregulate expression of BSC2 mRNA and protein in human umbilical vein endothelial cells, a response that is inhibited by pretreatment with interferon-gamma. Steady laminar fluid shear stress, at a physiologic magnitude (10 dyn/cm2), is also able to induce and maintain elevated expression of BSC2 in cultured human umbilical vein endothelial cells, while a comparable time-averaged magnitude of turbulent fluid shear stress is not. In vivo, BSC2 mRNA is upregulated after intraperitoneal administration of bacterial endotoxin (LPS) in murine lung and kidney, but not in cardiac tissue. These results provide the first experimental evidence that the BSC2 gene can be selectively regulated by different inflammatory cytokine and fluid mechanical stimuli in endothelium, and support a role for BSC2 in vascular homeostasis and inflammation. PMID:9185518

  10. Contribution of the basolateral isoform of the Na-K-2Cl- cotransporter (NKCC1/BSC2) to renin secretion.

    PubMed

    Castrop, Hayo; Lorenz, John N; Hansen, Pernille B; Friis, Ulla; Mizel, Diane; Oppermann, Mona; Jensen, Boye L; Briggs, Josie; Skøtt, Ole; Schnermann, Jurgen

    2005-12-01

    Acute administration of loop diuretics like furosemide leads to a stimulation of renin secretion, an effect thought to result from inhibition of Na-K-2Cl cotransporter (NKCC2)-mediated salt transport at the luminal surface of the macula densa (MD). However, loop diuretics also inhibit NKCC1, the second isoform of the Na-K-2Cl cotransporter, with similar potency. In the present study, we examined the influence of furosemide on renin secretion in NKCC1-deficient mice to distinguish between effects of the loop diuretic involving NKCC2 and, by implication, the MD pathway, and effects that might occur via inhibition of NKCC1. Baseline plasma renin concentration (PRC) was 1,212 +/- 211 in NKCC1+/+ (n = 13) and 3,851 +/- 579 ng ANG I.ml(-1).h(-1) in NKCC1-/- mice (n = 14; P = 0.00024). Acute administration of furosemide (50 mg/kg i.p.) increased PRC significantly to 9,324 +/- 1,018 ng ANG I.ml(-1).h(-1) in NKCC1+/+ (n = 13; P < 0.0001 compared with basal) and to 14,188 +/- 2,274 ng ANG I.ml(-1).h(-1) in NKCC1-/- mice [n = 14; P = 0.0002 compared with basal; P = 0.034 compared with wild-type (WT) plus furosemide]. Renin mRNA expression was about threefold higher in NKCC1-/- compared with WT mice. There was considerable recruitment of granular cells to upstream regions of afferent arterioles in NKCC1-/- mice. Patch-clamp studies in single juxtaglomerular granular (JG) cells from WT mice showed an approximately 10% increase in membrane capacitance during incubation with furosemide (10(-4) M), indicating a direct effect of the loop diuretic on renin secretion. No effect of furosemide on membrane capacitance was observed in JG cells from NKCC1-deficient mice. Furosemide (10(-3) M) significantly stimulated renin release from primary cultures of JG cells from WT mice, whereas no response was observed in NKCC1-/- mice. Our data suggest that a functional NKCC1 suppresses basal renin release, at least in part, through a direct effect on JG cells.

  11. Compensatory role of the NBCn1 sodium/bicarbonate cotransporter on Ca(2+)-induced mitochondrial swelling in hypertrophic hearts.

    PubMed

    Vargas, Lorena A; Velasquez, Fernanda Carrizo; Alvarez, Bernardo V

    2017-03-01

    NBC Na(+)/HCO3(-) cotransporter (NBCn1) and NHE1 Na(+)/H(+) exchanger have been associated with cardiac disorders and recently located in coronary endothelial cells (CEC) and cardiomyocytes mitochondria, respectively. Mitochondrial NHE1 blockade delays permeability transition pore (MPTP) opening and reduces superoxide levels, two critical events exacerbated in cells of diseased hearts. Conversely, activation of NBCn1 prevented apoptosis in CEC subjected to ischemic stress. We characterized the role of the NHE1 and NBCn1 transporters in heart mitochondria from hypertrophic (SHR) and control (Wistar) rats. Expression of NHE1 was analyzed in left ventricular mitochondrial lysates (LVML), by immunoblots. NHE1 expression increased by ~40% in SHR compared to control (P < 0.05, n = 4). To examine NHE1-mediated Na(+)/H(+) exchange activity in cardiac hypertrophy, mitochondria were loaded with BCECF-AM dye and the maximal rate of pHm change measured after the addition of 50 mM NaCl. SHR mitochondria had greater changes in pHm compared to Wistar, 0.10 ± 0.01 vs. 0.06 ± 0.01, respectively (P < 0.05, n = 5). In addition, mitochondrial suspensions from SHR and control myocardium were exposed to 200 μM CaCl2 to induce MPTP opening (light-scattering decrease, LSD) and swelling. Surprisingly, SHR rats showed smaller LSD and a reduction in mitochondrial swelling, 67 ± 10% (n = 15), compared to control, 100 ± 8% (n = 13). NBC inhibition with S0859 (1 μM) significantly increased swelling in both control 139 ± 10% (n = 8) and SHR 115 ± 10% (n = 4). Finally, NBCn1 Na(+)/HCO3(-) cotransporter increased by twofold its expression in SHR LVML, compared to normal (P < 0.05, n = 5). We conclude that increased NBCn1 activity may play a compensatory role in hypertrophic hearts, protecting mitochondria from Ca(2+)-induced MPTP opening and swelling.

  12. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters.

    PubMed

    de Los Heros, Paola; Alessi, Dario R; Gourlay, Robert; Campbell, David G; Deak, Maria; Macartney, Thomas J; Kahle, Kristopher T; Zhang, Jinwei

    2014-03-15

    Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl- influx, we propose that the targeting of WNK-SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl- extrusion, with potential

  13. Apyrase Functions in Plant Phosphate Nutrition and Mobilizes Phosphate from Extracellular ATP1

    PubMed Central

    Thomas, Collin; Sun, Yu; Naus, Katie; Lloyd, Alan; Roux, Stanley

    1999-01-01

    ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the γ- and β-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the γ-phosphate without promoting the transport of the purine or the ribose. PMID:9952450

  14. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis.

    PubMed

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-11-24

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO4(2-), NO3(-), Cl(-), and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis.

  15. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis

    PubMed Central

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-01-01

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO42−, NO3−, Cl−, and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis. PMID:26554016

  16. Properties of Calcium Phosphate Cements With Different Tetracalcium Phosphate and Dicalcium Phosphate Anhydrous Molar Ratios.

    PubMed

    Hirayama, Satoshi; Takagi, Shozo; Markovic, Milenko; Chow, Laurence C

    2008-01-01

    Calcium phosphate cements (CPCs) were prepared using mixtures of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA), with TTCP/DCPA molar ratios of 1/1, 1/2, or 1/3, with the powder and water as the liquid. Diametral tensile strength (DTS), porosity, and phase composition (powder x-ray diffraction) were determined after the set specimens have been immersed in a physiological-like solution (PLS) for 1 d, 5 d, and 10 d. Cement dissolution rates in an acidified PLS were measured using a dual constant composition method. Setting times ((30 ± 1) min) were the same for all cements. DTS decreased with decreasing TTCP/DCPA ratio and, in some cases, also decreased with PLS immersion time. Porosity and hydroxyapatite (HA) formation increased with PLS immersion time. Cements with TTCP/DCPA ratios of 1/2 and 1/3, which formed calcium-deficient HA, dissolved more rapidly than the cement with a ratio of 1/1. In conclusion, cements may be prepared with a range of TTCP/DCPA ratios, and those with lower ratio had lower strengths but dissolved more rapidly in acidified PLS.

  17. Phosphate: are we squandering a scarce commodity?

    PubMed

    Ferro, Charles J; Ritz, Eberhard; Townend, Jonathan N

    2015-02-01

    Phosphorus is an essential element for life but is a rare element in the universe. On Earth, it occurs mostly in the form of phosphates that are widespread but predominantly at very low concentration. This relative rarity has resulted in a survival advantage, in evolutionary terms, to organisms that conserve phosphate. When phosphate is made available in excess it becomes a cause for disease, perhaps best recognized as a potential cardiovascular and renal risk factor. As a reaction to the emerging public health issue caused by phosphate additives to food items, there have been calls for a public education programme and regulation to bring about a reduction of phosphate additives to food. During the Paleoproterzoic era, an increase in the bioavailability of phosphate is thought to have contributed significantly to the oxygenation of our atmosphere and a dramatic increase in the evolution of new species. Currently, phosphate is used poorly and often wasted with phosphate fertilizers washing this scarce commodity into water bodies causing eutrophication and algal blooms. Ironically, this is leading to the extinction of hundreds of species. The unchecked exploitation of phosphate rock, which is an increasingly rare natural resource, and our dependence on it for agriculture may lead to a strange situation in which phosphate might become a commodity to be fought over whilst at the same time, health and environmental experts are likely to recommend reductions in its use.

  18. The role of phosphate in kidney disease.

    PubMed

    Vervloet, Marc G; Sezer, Siren; Massy, Ziad A; Johansson, Lina; Cozzolino, Mario; Fouque, Denis

    2017-01-01

    The importance of phosphate homeostasis in chronic kidney disease (CKD) has been recognized for decades, but novel insights - which are frequently relevant to everyday clinical practice - continue to emerge. Epidemiological data consistently indicate an association between hyperphosphataemia and poor clinical outcomes. Moreover, compelling evidence suggests direct toxicity of increased phosphate concentrations. Importantly, serum phosphate concentration has a circadian rhythm that must be considered when interpreting patient phosphate levels. Detailed understanding of dietary sources of phosphate, including food additives, can enable phosphate restriction without risking protein malnutrition. Dietary counselling provides an often underestimated opportunity to target the increasing exposure to dietary phosphate of both the general population and patients with CKD. In patients with secondary hyperparathyroidism, bone can be an important source of serum phosphate, and adequate appreciation of this fact should impact treatment. Dietary and pharmotherapeutic interventions are efficacious strategies to lower phosphate intake and serum concentration. However, strong evidence that targeting serum phosphate improves patient outcomes is currently lacking. Future studies are, therefore, required to investigate the effects of modern dietary and pharmacological interventions on clinically meaningful end points.

  19. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    PubMed

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  20. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects.

    PubMed

    Norton, Luke; Shannon, Christopher E; Fourcaudot, Marcel; Hu, Cheng; Wang, Niansong; Ren, Wei; Song, Jun; Abdul-Ghani, Muhammad; DeFronzo, Ralph A; Ren, Jimmy; Jia, We