Science.gov

Sample records for phosphate cotransporter napi-iib

  1. A salmon DNA scaffold promotes osteogenesis through activation of sodium-dependent phosphate cotransporters.

    PubMed

    Katsumata, Yuri; Kajiya, Hiroshi; Okabe, Koji; Fukushima, Tadao; Ikebe, Tetsuro

    2015-12-25

    We previously reported the promotion of bone regeneration in calvarial defects of both normal and ovariectomy-induced osteoporotic rats, with the use of biodegradable DNA/protamine scaffold. However, the method by which this DNA-containing scaffold promotes bone formation is still not understood. We hypothesize that the salmon DNA, from which this scaffold is derived, has an osteoinductive effect on pre-osteoblasts and osteoblasts. We examined the effects of salmon DNA on osteoblastic differentiation and calcification in MC3T3-E1 cells, mouse osteoblasts, in vitro and bone regeneration in a calvarial defect model of aged mouse in vivo. The salmon DNA fragments (300 bps) upregulated the expression of the osteogenic markers, such as alkaline phosphatase, Runx2, and osterix (Osx) in MC3T3E1 cells compared with incubation with osteogenic induction medium alone. Measurement of phosphate ion concentrations in cultures showed that the DNA scaffold degraded phosphate ions were released to the cell cultures. Interestingly, we found that the inclusion of DNA in osteoblastic cell cultures upregulated the expression of sodium-dependent phosphate (NaPi) cotransporters, SLC20A1 and SLC34A2, in MC3T3-E1 cells in a time dependent manner. Furthermore, the inclusion of DNA in cell cultures increased the transcellular permeability of phosphate. Conversely, the incubation of phosphonoformic acid, an inhibitor of NaPi cotransporters, attenuated the DNA-induced expression and activation of SLC20A1 and SLC34A2 in MC3T3-E1 cells, resulting in suppression of the osteogenic markers. The implantation of a salmon DNA scaffold disk promoted bone regeneration using calvarial defect models in 30-week-old mice. Our results indicate that the phosphate released from salmon DNA upregulated the expression and activation of NaPi cotransporters, resulting in the promotion of bone regeneration. PMID:26551467

  2. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake24

    PubMed Central

    Kirchner, Séverine; Muduli, Anjali; Casirola, Donatella; Prum, Kannitha; Douard, Véronique; Ferraris, Ronaldo P

    2008-01-01

    Background While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. Objective We tested the hypothesis that luminal fructose regulates NaPi-2b. Design We perfused into the intestine fructose, glucose, and non-metabolizable or poorly transported glucose analogs as well as phlorizin. Results NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were ≈30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)–activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) enhanced and the fatty acid synthase–AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylene-butyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. Conclusions Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies ≈10% of caloric intake by Americans clearly affects absorption of

  3. Regulation of the sodium-phosphate cotransporter Pit-1 and its role in vascular calcification.

    PubMed

    Gonzalez, Magdalena; Martínez, Rafael; Amador, Cristián; Michea, Luis

    2009-10-01

    Vascular calcification is caused by the deposition of basic calcium phosphate crystals in blood vessels, myocardium, and/or cardiac valves. Calcification decreases artery wall compliance, and arterial calcification is associated to mortality in hyperphosphatemic renal failure and diabetes mellitus. The calcification of the tunica media characterizes the arteriosclerosis observed with age, diabetes and end stage-renal disease, and it can develop independently from intima calcification. As part of the vascular calcification mechanism, vascular smooth muscle cells (VSMC) experience a transition from a contractile to an osteochondrogenic phenotype and a sequence of molecular events that are typical of endochondral ossification. The current evidence indicates a key role of increased phosphate uptake by VSMC for calcification, which supplies the substrate for hydroxyapatite formation and could trigger or potentiate VSMC transdiferentiation. The present review analyzes the sodium-phosphate cotransporter Pit-1, which is implicated in calcification. On the basis of the available data obtained in the study of vascular and osteoblastic experimental models, we discuss potential regulatory mechanisms that could lead to increased sodium-dependent phosphate uptake in vascular calcification. PMID:19485893

  4. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation.

    PubMed

    Ikeda, Shoko; Yamamoto, Hironori; Masuda, Masashi; Takei, Yuichiro; Nakahashi, Otoki; Kozai, Mina; Tanaka, Sarasa; Nakao, Mari; Taketani, Yutaka; Segawa, Hiroko; Iwano, Masayuki; Miyamoto, Ken-ichi; Takeda, Eiji

    2014-04-01

    The type IIa sodium-dependent phosphate cotransporter (Npt2a) plays a critical role in reabsorption of inorganic phosphate (Pi) by renal proximal tubular cells. Pi abnormalities during early stages of sepsis have been reported, but the mechanisms regulating Pi homeostasis during acute inflammation are poorly understood. We examined the regulation of Pi metabolism and renal Npt2a expression during lipopolysaccharide (LPS)-induced inflammation in mice. Dose-response and time-course studies with LPS showed significant increases of plasma Pi and intact parathyroid hormone (iPTH) levels and renal Pi excretion, while renal calcium excretion was significantly decreased. There was no difference in plasma 1,25-dihydroxyvitamin D levels, but the induction of plasma intact fibroblast growth factor 23 levels peaked 3 h after LPS treatment. Western blotting, immunostaining, and quantitative real-time PCR showed that LPS administration significantly decreased Npt2a protein expression in the brush border membrane (BBM) 3 h after injection, but there was no change in renal Npt2a mRNA levels. Moreover, tumor necrosis factor-α injection also increased plasma iPTH and decreased renal BBM Npt2a expression. Importantly, we revealed that parathyroidectomized rats had impaired renal Pi excretion and BBM Npt2a expression in response to LPS. These results suggest that the downregulation of Npt2a expression in renal BBM through induction of plasma iPTH levels alter Pi homeostasis during LPS-induced acute inflammation. PMID:24500689

  5. Expression of Pit2 sodium-phosphate cotransporter during murine odontogenesis is developmentally regulated.

    PubMed

    Zhao, Dawei; Vaziri Sani, Forugh; Nilsson, Jeanette; Rodenburg, Michaela; Stocking, Carol; Linde, Anders; Gritli-Linde, Amel

    2006-12-01

    Different sodium-dependent inorganic phosphate (P(i)) uptake mechanisms play a major role in cellular P(i) homeostasis. The function and detailed distribution patterns of the type III Na(+)-phosphate cotransporter, PiT-2, in different organs during development are still largely unknown. We therefore examined the temporospatial expression patterns of Pit2 during murine odontogenesis. Odontoblasts were always devoid of Pit2 expression, whereas a transient, but strong, expression was detected in young secretory ameloblasts. However, the stratum intermedium and, later on, the papillary layer and cells of the subodontoblastic layer, exhibited high levels of Pit2 mRNA, which increased gradually as the tooth matured. Hormonal treatment or P(i) starvation of tooth germs in vitro did not alter Pit2 levels or patterns of expression, indicating mechanisms of regulation different from those of PiT-1 or other cell types. PiT-2 also functions as a retroviral receptor, and functional membrane-localized protein was confirmed throughout the dental papilla/pulp by demonstrating cellular permissiveness to infection by a gammaretrovirus that uses PiT-2 as a receptor. The distinct pattern of Pit2 expression during odontogenesis suggests that its P(i)-transporter function may be important for homeostasis of dental cells and not specifically for mineralization of the dental extracellular matrices. The expression of viral receptors in enamel-forming cells and the dental pulp may be of pathological significance.

  6. Examination of the molecular mechanism of SH reagent-induced inhibition of the intestinal brush-border membrane Na+/phosphate cotransporter.

    PubMed

    Peerce, B E; Cedilote, M; Clarke, R D

    1995-10-01

    SH residues on the rabbit intestinal brush-border membrane Na+/phosphate cotransporter were examined using a variety of SH specific reagents, proteolytic digestion and HPLC separation of SH-labeled cotransporter, and partial reaction assays. Of the seven SH-containing peptide fragments on the non-denatured non-reduced cotransporter six peptides were labeled: five SH-containing peptides were labeled with acrylodan or IAF (iodoacetamidofluorescein) and three peptides were labeled with IAEDANS. One SH-containing peptide was labeled with IAEDANS or fluorescein maleimide only. Selective SH labeling conditions employing acrylodan and IAEDANS were used to identify the environments of these SH-containing peptides in the native cotransporter. The nature of SH reagent-induced inhibition of Na(+)-dependent phosphate uptake was examined using substrate-induced conformational changes, and substrate-induced changes in IAEDANS and acrylodan fluorescence of the SH-labeled Na+/phosphate cotransporter. The results indicate that five of the SH-labeled peptides sense the Na(+)-induced conformational change, three peptides sense the Na++ difluorophosphate-induced conformational change, and one peptide senses only the Na++ monofluorophosphate-induced conformational change. Five of the SH-labeled peptides are passive participants in the substrate-induced conformational changes with only SH 51 involved in cotransporter function. Alkylation of SH 51 resulted in a cotransporter conformation which differed from the substrate-mediated conformations and was characterized by increased monofluorophosphate sensitivity.

  7. Membrane potential and proton cotransport of alanine and phosphate as affected by permeant weak acids in Lemna gibba

    SciTech Connect

    Basso, B.; Ullrich-Eberius, C.I.

    1987-11-01

    The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with high potential and low potential plants and the maximum values of acid induced hyperpolarization were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for (/sup 14/C)alanine and 68% for /sup 32/P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O/sub 2/ uptake rates did not change significantly. These results constitute good evidence that H/sup +//solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value.

  8. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.

    PubMed

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤1.8‰) occurred

  9. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P.

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8

  10. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.

    PubMed

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤1.8‰) occurred

  11. Knockdown of the sodium-dependent phosphate co-transporter 2b (NPT2b) suppresses lung tumorigenesis.

    PubMed

    Hong, Seong-Ho; Minai-Tehrani, Arash; Chang, Seung-Hee; Jiang, Hu-Lin; Lee, Somin; Lee, Ah-Young; Seo, Hwi Won; Chae, Chanhee; Beck, George R; Cho, Myung-Haing

    2013-01-01

    The sodium-dependent phosphate co-transporter 2b (NPT2b) plays an important role in maintaining phosphate homeostasis. In previous studies, we have shown that high dietary inorganic phosphate (Pi) consumption in mice stimulated lung tumorigenesis and increased NPT2b expression. NPT2b has also been found to be highly expressed in human lung cancer tissues. The association of high expression of NPT2b in the lung with poor prognosis in oncogenic lung diseases prompted us to test whether knockdown of NPT2b may regulate lung cancer growth. To address this issue, aerosols that contained small interfering RNA (siRNA) directed against NPT2b (siNPT2b) were delivered into the lungs of K-ras (LA1) mice, which constitute a murine model reflecting human lung cancer. Our results clearly showed that repeated aerosol delivery of siNPT2b successfully suppressed lung cancer growth and decreased cancer cell proliferation and angiogenesis, while facilitating apoptosis. These results strongly suggest that NPT2b plays a role lung tumorigenesis and represents a novel target for lung cancer therapy. PMID:24194864

  12. Oral peptide specific egg antibody to intestinal sodium-dependent phosphate co-transporter-2b is effective at altering phosphate transport in vitro and in vivo.

    PubMed

    Bobeck, Elizabeth A; Hellestad, Erica M; Sand, Jordan M; Piccione, Michelle L; Bishop, Jeff W; Helvig, Christian; Petkovich, Martin; Cook, Mark E

    2015-06-01

    Hyperimmunized hens are an effective means of generating large quantities of antigen specific egg antibodies that have use as oral supplements. In this study, we attempted to create a peptide specific antibody that produced outcomes similar to those of the human pharmaceutical, sevelamer HCl, used in the treatment of hyperphosphatemia (a sequela of chronic renal disease). Egg antibodies were generated against 8 different human intestinal sodium-dependent phosphate cotransporter 2b (NaPi2b) peptides, and hNaPi2b peptide egg antibodies were screened for their ability to inhibit phosphate transport in human intestinal Caco-2 cell line. Antibody produced against human peptide sequence TSPSLCWT (anti-h16) was specific for its peptide sequence, and significantly reduced phosphate transport in human Caco-2 cells to 25.3±11.5% of control nonspecific antibody, when compared to nicotinamide, a known inhibitor of phosphate transport (P≤0.05). Antibody was then produced against the mouse-specific peptide h16 counterpart (mouse sequence TSPSYCWT, anti-m16) for further analysis in a murine model. When anti-m16 was fed to mice (1% of diet as dried egg yolk powder), egg yolk immunoglobulin (IgY) was detected using immunohistochemical staining in mouse ileum, and egg anti-m16 IgY colocalized with a commercial goat anti-NaPi2b antibody. The effectiveness of anti-m16 egg antibody in reducing serum phosphate, when compared to sevelamer HCl, was determined in a mouse feeding study. Serum phosphate was reduced 18% (P<0.02) in mice fed anti-m16 (1% as dried egg yolk powder) and 30% (P<0.0001) in mice fed sevelamer HCl (1% of diet) when compared to mice fed nonspecific egg immunoglobulin. The methods described and the findings reported show that oral egg antibodies are useful and easy to prepare reagents for the study and possible treatment of select diseases.

  13. Thyroid hormones regulate phosphate homoeostasis through transcriptional control of the renal type IIa sodium-dependent phosphate co-transporter (Npt2a) gene.

    PubMed

    Ishiguro, Mariko; Yamamoto, Hironori; Masuda, Masashi; Kozai, Mina; Takei, Yuichiro; Tanaka, Sarasa; Sato, Tadatoshi; Segawa, Hiroko; Taketani, Yutaka; Arai, Hidekazu; Miyamoto, Ken-Ichi; Takeda, Eiji

    2010-03-15

    The type IIa renal sodium-dependent phosphate (Na/Pi) co-transporter Npt2a is implicated in the control of serum phosphate levels. It has been demonstrated previously that renal Npt2a protein and its mRNA expression are both up-regulated by the thyroid hormone T3 (3,3',5-tri-iodothyronine) in rats. However, it has never been established whether the induction was mediated by a direct effect of thyroid hormones on the Npt2a promoter. To address the role of Npt2a in T3-dependent regulation of phosphate homoeostasis and to identify the molecular mechanisms by which thyroid hormones modulate Npt2a gene expression, mice were rendered pharmacologically hypo- and hyper-thyroid. Hypothyroid mice showed low levels of serum phosphate and a marked decrease in renal Npt2a protein abundance. Importantly, we also showed that Npt2a-deficient mice had impaired serum phosphate responsiveness to T3 compared with wild-type mice. Promoter analysis with a luciferase assay revealed that the transcriptional activity of a reporter gene containing the Npt2a promoter and intron 1 was dependent upon TRs (thyroid hormone receptors) and specifically increased by T3 in renal cells. Deletion analysis and EMSAs (electrophoretic mobility-shift assays) determined that there were unique TREs (thyroid-hormone-responsive elements) within intron 1 of the Npt2a gene. These results suggest that Npt2a plays a critical role as a T3-target gene, to control phosphate homoeostasis, and that T3 transcriptionally activates the Npt2a gene via TRs in a renal cell-specific manner.

  14. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter.

    PubMed

    Khan, Saeed R; Glenton, Patricia A

    2008-05-01

    The most common theories about the pathogenesis of idiopathic kidney stones consider precipitation of calcium phosphate (CaP) within the kidneys critical for the development of the disease. We decided to test the hypothesis that a CaP substrate can promote the deposition of calcium oxalate (CaOx) in the kidneys. Experimental hyperoxaluria was induced by feeding glyoxylate to male mice with knockout (KO) of NaP(i) IIa (Npt2a), a sodium-phosphate cotransporter. Npt2a KO mice are hypercalciuric and produce CaP deposits in their renal tubules. Experimental hyperoxaluria led to CaOx crystalluria in both the hypercalciuric KO mice and the normocalciuric control B6 mice. Only the KO mice produced CaOx crystal deposits in their kidneys, but the CaOx crystals deposited separately from the CaP deposits. Perhaps CaP deposits were not available for a CaOx overgrowth. These results also validate earlier animal model observations that showed that CaP substrate is not required for renal deposition of CaOx and that other factors, such as local supersaturation, may be involved. The absence of CaOx deposition in the B6 mice despite extreme hyperoxaluria also signifies the importance of both calcium and oxalate in the development of CaOx nephrolithiasis.

  15. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers.

    PubMed

    Huber, Korinna; Zeller, Ellen; Rodehutscord, Markus

    2015-05-01

    Dietary phosphorus (P) is known as a main modulator of phosphate (Pi) transporter expression. The effect of supplemented mineral P with or without phytase on protein expression of two sodium-dependent Pi (NaPi) transporters and a calcium channel was studied in the small intestine of broilers. Thirty-six broilers were randomly assigned to six different diets at 15 days of age. Two levels of total P (tP, adjusted by monocalcium phosphate (MCP) supplementation), 0.39% (BD-) and 0.47% (BD+) were fed until day 25; and at each tP level, three levels of phytase were used with 0, 500, and 12,500 FTU/kg of an E. coli phytase. Mucosa samples from jejunum and ileum were taken and apical membranes were isolated by MgCl2 precipitation. Protein expression of NaPi IIb, NaPi type III (PiT1) and the calcium channel TRPV6 were semiquantitatively measured by Western blotting and jejunal mucosal phytase activity by measurement of Pi release. The jejunal NaPi IIb transporter was expressed with two distinct bands, which were modulated differently by diet. NaPi IIb Band1 increased (P < 0.05) and Band2 decreased (P < 0.05) with phytase supplementation but was not affected by MCP supplementation. This inverse modulation of Band1 and Band2 was significantly related to the amount of net absorbed P with higher expression of Band1 at higher amounts of net absorbed P. In addition, a second Pi transporter, PiT1, was detected in which ileal expression decreased (P < 0.05) in response to higher phytase supplementation. The expression of the calcium channel TRPV6 was increased in BD+ groups. A trend for an interaction between MCP and phytase supplementation on mucosal phytase activity was observed (P = 0.079) with a decrease in activity when BD+ with 12,500 FTU/kg phytase was fed. Chicken intestinal epithelial cells responded to dietary supplemented phytase and MCP by changing the Pi transporter expression in apical membranes. In conclusion, availability of Pi is most likely the key modulator of

  16. The sodium-phosphate co-transporter SLC34A2, and pulmonary alveolar microlithiasis: Presentation of an inbred family and a novel truncating mutation in exon 3

    PubMed Central

    Vismara, Marco Favio Michele; Colao, Emma; Fabiani, Fernanda; Bombardiere, Francesco; Tamburrini, Oscar; Alessio, Caterina; Manti, Francesco; Pelaia, Gerolamo; Romeo, Pasquale; Iuliano, Rodolfo; Perrotti, Nicola

    2015-01-01

    Pulmonary alveolar microlithiasis is a disorder in which many tiny fragments (microliths) of calcium phosphate gradually accumulate in alveoli. Loss of function mutations in the gene SLC34A2 coding for the sodium phosphate co-transporter (NaPi-IIb) are responsible for genetic forms of alveolar microlithiasis. We now report a consanguineous Italian family from Calabria with two affected members segregating alveolar microlithiasis in a recessive fashion. We describe, for the first time, a novel loss of function mutation in the gene coding for NaPi-IIb. A careful description of the clinical phenotype is provided together with technical details for direct sequencing of the gene. PMID:26744662

  17. Role of the sodium-dependent phosphate co-transporters and of the phosphate complexes of uranyl in the cytotoxicity of uranium in LLC-PK{sub 1} cells

    SciTech Connect

    Muller, D. . E-mail: dany.muller@kcl.ac.uk; Houpert, P. . E-mail: pascale.houpert@irsn.fr; Cambar, J. . E-mail: marie-helene.napoli@cea.fr

    2006-07-15

    Although uranium is a well-characterized nephrotoxic agent, very little is known at the cellular and molecular level about the mechanisms underlying the uptake and toxicity of this element in proximal tubule cells. The aim of this study was thus to characterize the species of uranium that are responsible for its cytotoxicity and define the mechanism which is involved in the uptake of the cytotoxic fraction of uranium using two cell lines derived from kidney proximal (LLC-PK{sub 1}) and distal (MDCK) tubule as in vitro models. Treatment of LLC-PK{sub 1} cells with colchicine, cytochalasin D, concanavalin A and PMA increased the sodium-dependent phosphate co-transport and the cytotoxicity of uranium. On the contrary, replacement of the extra-cellular sodium with N-methyl-D-glucamine highly reduced the transport of phosphate and the cytotoxic effect of uranium. Uranium cytotoxicity was also dependent upon the extra-cellular concentration of phosphate and decreased in a concentration-dependent manner by 0.1-10 mM phosphonoformic acid, a competitive inhibitor of phosphate uptake. Consistent with these observations, over-expression of the rat proximal tubule sodium-dependent phosphate co-transporter NaPi-IIa in stably transfected MDCK cells significantly increased the cytotoxicity of uranium, and computer modeling of uranium speciation showed that uranium cytotoxicity was directly dependent on the presence of the phosphate complexes of uranyl UO{sub 2}(PO{sub 4}){sup -} and UO{sub 2}(HPO{sub 4}){sub aq}. Taken together, these data suggest that the cytotoxic fraction of uranium is a phosphate complex of uranyl whose uptake is mediated by a sodium-dependent phosphate co-transporter system.

  18. Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step.

    PubMed

    Patti, Monica; Ghezzi, Chiara; Forster, Ian C

    2013-09-01

    The SLC34 family of Na(+)-dependent inorganic phosphate cotransporters comprises two electrogenic isoforms (NaPi-IIa, NaPi-IIb) and an electroneutral isoform (NaPi-IIc). Both fulfill essential physiological roles in mammalian phosphate homeostasis. By substitution of three conserved amino acids, found in all electrogenic isoforms, at corresponding sites in NaPi-IIc, electrogenicity was re-established and the Na(+)/P i stoichiometry increased from 2:1 to 3:1. However, this engineered electrogenic construct (AAD-IIc) had a reduced apparent P i affinity and different presteady-state kinetics from the wild-type NaPi-IIa/b. We investigated AAD-IIc using electrophysiology and voltage clamp fluorometry to elucidate the compromised behavior. The activation energy for cotransport was threefold higher than for NaPi-IIc and 1.5-fold higher than for NaPi-IIa and the temperature dependence of presteady-state charge displacements suggested that the large activation energy was associated with the empty carrier reorientation. AAD-IIc shows a weak interaction of external Na(+) ions with the electric field, and thus retains the electroneutral cooperative interaction of two Na(+) ions preceding external P i binding of NaPi-IIc. Most of the presteady-state charge movement was accounted for by the empty carrier (in the absence of external P i ), and the cytosolic release of one Na(+) ion (in the presence of P i ). Simulations using a kinetic model recapitulated the presteady-state and steady-state behavior and allowed identification of two critical partial reactions: the final release of Na(+) to the cytosol and external P i binding. Fluorometric recordings from AAD-IIc mutants with Cys substituted at functionally important sites established that AAD-IIc undergoes substrate- and voltage-dependent conformational changes that correlated qualitatively with its presteady-state kinetics. PMID:23515872

  19. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency.

    PubMed

    Breusegem, Sophia Y; Takahashi, Hideaki; Giral-Arnal, Hector; Wang, Xiaoxin; Jiang, Tao; Verlander, Jill W; Wilson, Paul; Miyazaki-Anzai, Shinobu; Sutherland, Eileen; Caldas, Yupanqui; Blaine, Judith T; Segawa, Hiroko; Miyamoto, Ken-ichi; Barry, Nicholas P; Levi, Moshe

    2009-08-01

    Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694-704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160-49171, 2004). Here we investigated the role of the renal Na-P(i) cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P(i) transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations.

  20. [Pathophysiological aspects of K+: Cl- cotransporters].

    PubMed

    Mercado, Adriana; Melo, Zesergio

    2014-01-01

    The K+:Cl- cotransporters or KCCs are membrane proteins that move K+ and Cl- ions across the membrane without changing the transmembrane potential. KCCs belong to the SLC12 (Solute Carrier Family 12) family of electroneutral cation-chloride cotransporters (CCC), and they are secondary active ion transporters because use the established gradients from the primary active transporter through the Na+/K+- ATPase. Although there are nine members identify in this family, up today only seven genes had been characterized. Among them are two loop diuretics-sensitive Na+:K+:2Clcotransporters (NKCC1/NKCC2), the thiazide-sensitive Na+:Cl- cotransporter (NCC), and finally the K+:Cl- cotransporters (KCC), encoded for at least four homologous genes (KCC1-KCC4), and from which there are many isoforms due to alternative splicing. KCC1 is a ubiquitous isoform, KCC3 and KCC4 isoforms are widely expressed, particularly in epithelial cells, while KCC2 is restricted to the central nervous system (CNS). All these cotransporters play an essential role in many physiological processes such as cell volume regulation, transepithelial salt transport and regulation of the intraneuronal chloride concentration. This review has the purpose to show briefly the molecular characteristics as well as the physiological importance and roles of the KCCs in several pathologies.

  1. Inhibition of Na-K-Cl cotransport in Ehrlich ascites cells by antiserum against purified proteins of the cotransporter

    SciTech Connect

    Dunham, P.B. ); Jessen, F.; Hoffmann, E.K. )

    1990-09-01

    Two proteins were purified earlier from solubilized membranes of Ehrlich ascites cells by using a bumetanide-Sepharose affinity column. These proteins were proposed to be constituents of the Na-K-Cl cotransporter. However, the specificity of binding of bumetanide to the cotransporter was insufficient evidence for this proposal. The authors now have direct evidence that the purified protein contains components of the cotransporter. Antiserum raised against the bumetanide-binding proteins strongly inhibits Na-K-Cl cotransport measured by two independent methods. Cotransport was induced by hypertonic challenge and was measured as the bumetanide-sensitive portion of unidirectional Cl influx and as regulatory cell volume increase. In both assays, contransport was strongly inhibited by antiserum. Fab fragments of the antibodies inhibited cotransport to a similar extent.

  2. The sodium bile salt cotransport family SLC10.

    PubMed

    Hagenbuch, Bruno; Dawson, Paul

    2004-02-01

    The SLC10 family of sodium/bile salt cotransporters contains over 50 members in animal, plant and bacterial species. In man, two well-characterized members and three orphan transporters are known. The Na(+)/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile salt transporter (ASBT; SLC10A2) are critical components of the enterohepatic circulation of bile salts. NTCP and ASBT are cotransporters that mediate sodium-dependent, electrogenic uptake of mainly bile salts into hepatocytes (NTCP), biliary epithelial cells, ileal enterocytes and renal proximal tubular cells (ASBT).

  3. Asymmetry of Na-K-Cl cotransport in human erythrocytes.

    PubMed

    Kracke, G R; Anatra, M A; Dunham, P B

    1988-02-01

    The Na-K-Cl cotransport system in human erythrocytes was studied by measuring net influxes and effluxes of Na and K. The influx of K was shown to be stimulated by Na and the influx of Na was stimulated by K, satisfying the fundamental criterion of cotransport. In addition, these mutually stimulating cation influxes had a stoichiometry of 1:1 and were entirely inhibited by furosemide; these results are also consistent with cotransport. Furthermore, the mutually stimulating influxes were entirely dependent on Cl, since they were abolished when nitrate was substituted for Cl. In contrast, cotransport, defined by mutual dependence of fluxes, was not detected in the outward direction over a range of cellular Na and K concentrations from 0 to 50 mmol/l cells. The cotransport pathway did, however, appear to mediate a Na-stimulated K efflux (but no K-stimulated Na efflux), and furosemide-inhibitable effluxes of both Na and K. Nitrate (but not sulfate) appeared to substitute for chloride in promoting Na-stimulated K efflux. Thus the Na-K-Cl cotransport system in human red cells is intrinsically asymmetric, and mediates coupled cation fluxes readily only in the inward direction. PMID:3348364

  4. Cation-chloride cotransporters in neuronal development, plasticity and disease

    PubMed Central

    Kaila, Kai; Price, Theodore J.; Payne, John A.; Puskarjov, Martin; Voipio, Juha

    2015-01-01

    Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K+–Cl− cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease. PMID:25234263

  5. Odontoblast phosphate and calcium transport in dentinogenesis.

    PubMed

    Lundquist, Patrik

    2002-01-01

    It has been suggested that odontoblasts are instrumental in translocating Ca2+ and inorganic phosphate (Pi) ions during the mineralization of dentin. The aim of this thesis was, therefore, to study the expression of components of the transcellular ion transport system, Na+/Ca2+ exchangers and Na(+)-Pi contransporters, in odontoblastic and osteoblastic cells. Their activity was assayed in osteoblast-like cells and in the recently developed MRPC-1 odontoblast-like cell line. To assess the relationship between ion transport and mineralization, Ca2+ and Pi uptake activities were determined in mineralizing cultures of MRPC-1 cells. Osteoblastic and odontoblastic cells showed an identical expression pattern of Na+/Ca2+ exchanger splice-variants, NCX1.3, NCX1.7 and NCX1.10, derived from the NCX1 gene, while NCX2 was not expressed. The cells showed a high sodium-dependent calcium extrusion activity. Regarding Na(+)-Pi cotransporter expression, Glvr-1, Ram-1 and the two high capacity cotransporters Npt-2a and Npt-2b were found to be expressed in odontoblasts and MRPC-1 cells. Osteoblast-like cells differed from this in expressing the Npt-1 but not the Ram-1 gene but were otherwise identical to the odontoblastic cells. Odontoblast-like cells exhibited almost twice the sodium-dependent Pi uptake activity of osteoblast-like cells. The presence of NaPi-2a and NaPi-2b, gene products of Npt-2a and Npt-2b, was verified in vivo by immunohistochemistry on mouse teeth. Both cotransporters could be detected in fully differentiated, polarized odontoblasts but not in preodontoblasts prior to dentin formation. Both cotransporters were detected in adjacent bone and in ameloblasts. Studying ion uptake in mineralizing MRPC-1 cultures, large changes were detected concomitant with the onset of mineral formation, when phosphate uptake increased by 400% while calcium uptake started to decline. The increase in Pi uptake was found to be due to activation of the NaPi-2a cotransporter. MRPC-1 cells

  6. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  7. Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes.

    PubMed Central

    Busch, A; Waldegger, S; Herzer, T; Biber, J; Markovich, D; Hayes, G; Murer, H; Lang, F

    1994-01-01

    Phosphate (Pi) reabsorption in renal proximal tubules involves Na+/Pi cotransport across the brush border membrane; its transport rate is influenced by the Na(+)-coupled transport of other solutes as well as by pH. In the present study, we have expressed a cloned rat renal brush border membrane Na+/Pi cotransporter (NaPi-2) in Xenopus laevis oocytes and have analyzed its electrophysiologic properties in voltage- and current-clamp studies. Addition of Pi to Na(+)-containing superfusates resulted in a depolarization of the membrane potential and, in voltage-clamped oocytes, in an inward current (IP). An analysis of the Na+ and/or Pi concentration dependence of IP suggested a Na+/Pi stoichiometry of 3:1. IP was increased by increasing the pH of the superfusate; this phenomenon seems to be mainly related to a lowering of the affinity for Na+ interaction by increasing H+ concentration. The present data suggest that known properties of Pi handling at the tubular/membrane level are "directly" related to specific characteristics of the transport molecule (NaPi-2) involved. Images PMID:8058781

  8. [Novel phosphate regulating genes and osteoporosis].

    PubMed

    Miyamoto, Kenichi; Ito, Mikiko; Segawa, Hiroko

    2005-05-01

    The hormones currently believe to influence inorganic phosphate (Pi) metabolism are parathyroid hormone (PTH) and the active metabolite to vitamin D. A new class of phosphate-regulating factors, collectively known as the phosphatonins have been shown to be associated with the hypophosphatemic diseases. The reabsorption of Pi in the kidney is a major determinant of the plasma Pi level. Reabsorption is largely regulated by the type II a sodium-dependent Pi cotransporter (NPT2a) that is expressed in renal proximal tubular cells. Phosphatonins cause Pi wasting by controlling the amount of NPT2a on the apical surface of the proximal tubular cell. A recent finding indicates that mutations in NPT2a can contribute to nephrolithiasis and osteoporosis in humans and suggests that changes in NPT2a levels may also cause other human disease. We discuss the roles of phosphatonins and NPT2a in bone formation. PMID:15876740

  9. Effect of co-transporter blockers on non-synaptic epileptiform activity—computational simulation

    NASA Astrophysics Data System (ADS)

    Rodrigues Lopes, Mariana; Canton Santos, Luiz Eduardo; Márcio Rodrigues, Antônio; Antônio Duarte, Mario; Catelli Infantosi, Antonio Fernando; Alexandre Scorza, Fulvio; Arida, Ricardo Mario; Madureira, Ana Paula; Amaral da Silveira, Gilcélio; dos Santos, Ivans Carlos; Abrão Cavalheiro, Esper; Guimarães de Almeida, Antônio-Carlos

    2013-10-01

    The important role of cation-chloride co-transporters in epilepsy is being supported by an increasing number of investigations. However, enormous complexity is involved since the action of these co-transporters has effects on the ionic homeostasis influencing directly the neuronal excitability and the tissue propensity to sustain seizure. To unravel the complex mechanisms involving the co-transporters action during seizure, this paper shows simulations of non-synaptic epileptiform activity and the effect of the blockage of the two different types of cation-chloride co-transporters present in the brain: Na, K and 2Cl co-transporter (NKCC) and K and Cl co-transporter (KCC). The simulations were performed with an electrochemical model representing the non-synaptic structure of the granule cell layer of the dentate gyrus (DG) of the rat hippocampus. The simulations suggest: (i) the potassium clearance is based on the systemic interplay between the Na/K pump and the NKCC co-transporters; (ii) the simultaneous blockage of the NKCC of the neurons and KCC of glial cells acts efficiently suppressing the epileptiform activities; and (iii) the simulations show that depending on the combined blockage of the co-transporters, the epileptiform activities may be suppressed or enhanced.

  10. [Phosphate binders].

    PubMed

    Heeb, Rita M

    2016-06-01

    Phosphate binders to treat hyperphosphataemia are part of the medication regime of every dialysis patient. Phosphate binders are taken with every meal (three times a day). Generally, the medication adherence rates of phosphate binders are very low. This is due to inconveniences like their bad taste or their size which makes them hard to swallow. Also nephrologists have differing opinions on phosphate binders as they are aware of the dialysis patients' difficulties to deal with the amount of drugs they are prescribed. Still, phosphate binders are important drugs which have shown potential in reducing mortality by regulating the level of serum phosphate. In order to improve adherence rates, pharmacists have to advise the patients on these drugs' side effects versus the risks associated with omitting their intake. PMID:27439258

  11. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition.

    PubMed Central

    Levi, M; Shayman, J A; Abe, A; Gross, S K; McCluer, R H; Biber, J; Murer, H; Lötscher, M; Cronin, R E

    1995-01-01

    Glucocorticoids are important regulators of renal phosphate transport. This study investigates the role of alterations in renal brush border membrane (BBM) sodium gradient-dependent phosphate transport (Na-Pi cotransporter) mRNA and protein abundance in the dexamethasone induced inhibition of Na-Pi cotransport in the rat. Dexamethasone administration for 4 d caused a 1.5-fold increase in the Vmax of Na-Pi cotransport (1785 +/- 119 vs. 2759 +/- 375 pmol/5 s per mg BBM protein in control, P < 0.01), which was paralleled by a 2.5-fold decrease in the abundance of Na-Pi mRNA and Na-Pi protein. There was also a 1.7-fold increase in BBM glucosylceramide content (528 +/- 63 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02). To determine whether the alteration in glucosylceramide content per se played a functional role in the decrease in Na-Pi cotransport, control rats were treated with the glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol (PDMP). The resultant 1.5-fold decrease in BBM glucosylceramide content (199 +/- 19 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02) was associated with a 1.4-fold increase in Na-Pi cotransport activity (1422 +/- 73 vs. 1048 +/- 85 pmol/5 s per mg BBM protein in control, P < 0.01), and a 1.5-fold increase in BBM Na-Pi protein abundance. Thus, dexamethasone-induced inhibition of Na-Pi cotransport is associated with a decrease in BBM Na-Pi cotransporter abundance, and an increase in glucosylceramide. Since primary alteration in BBM glucosylceramide content per se directly and selectively modulates BBM Na-Pi cotransport activity and Na-Pi protein abundance, we propose that the increase in BBM glucosylceramide content plays an important role in mediating the inhibitory effect of dexamethasone on Na-Pi cotransport activity. Images PMID:7615789

  12. K-Cl cotransporters, cell volume homeostasis, and neurological disease.

    PubMed

    Kahle, Kristopher T; Khanna, Arjun R; Alper, Seth L; Adragna, Norma C; Lauf, Peter K; Sun, Dandan; Delpire, Eric

    2015-08-01

    K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773

  13. [Electrophysiology principles of Na(+)/HCO3(-) cotransporters].

    PubMed

    Chen, Li-Ming; Liu, Mei; Liu, Ying

    2016-06-25

    Ion channels and transporters represent two major types of pathways of transmembrane transport for ions. Distinct from ion channels which conduct passive ionic diffusion, ion transporters mediate active transport of ions. In the perspective of biochemistry, ion transporters are enzymes that catalyze the movement of ions across the plasma membrane. In the present review, we selected the Na(+)/HCO3(-) cotransporter (NBC) as an example to analyze the key biochemical and biophysical properties of ion transporters, including stoichiometry, turnover number and transport capacity. Moreover, we provided an analysis of the electrophysiological principles of NBC based on the laws of thermodynamics. Based on the thermodynamical analysis, we showed how the stoichiometry of an NBC determines the direction of its ion transport. Finally, we reviewed the methodology for experimental determination of the stoichiometry of NBC, as well as the physiological significance of the stoichiometry of NBCs in specific tissues. PMID:27350205

  14. [Electrophysiology principles of Na(+)/HCO3(-) cotransporters].

    PubMed

    Chen, Li-Ming; Liu, Mei; Liu, Ying

    2016-06-25

    Ion channels and transporters represent two major types of pathways of transmembrane transport for ions. Distinct from ion channels which conduct passive ionic diffusion, ion transporters mediate active transport of ions. In the perspective of biochemistry, ion transporters are enzymes that catalyze the movement of ions across the plasma membrane. In the present review, we selected the Na(+)/HCO3(-) cotransporter (NBC) as an example to analyze the key biochemical and biophysical properties of ion transporters, including stoichiometry, turnover number and transport capacity. Moreover, we provided an analysis of the electrophysiological principles of NBC based on the laws of thermodynamics. Based on the thermodynamical analysis, we showed how the stoichiometry of an NBC determines the direction of its ion transport. Finally, we reviewed the methodology for experimental determination of the stoichiometry of NBC, as well as the physiological significance of the stoichiometry of NBCs in specific tissues.

  15. Energy Coupling in H+-Amino Acid Cotransport 1

    PubMed Central

    Kinraide, Thomas B.; Etherton, Bud

    1982-01-01

    Experiments were undertaken in order to test the mechanism of energy coupling for amino acid uptake proposed in the cotransport hypothesis. According to the hypothesis an electrochemical potential difference in H+ is established by active H+ extrusion. That potential difference then drives the cotransport of H+ and amino acids into the cells. Application of amino acids to oat (Avena sativa var. Victory) coleoptiles induced transient depolarizations of the cell membrane electrical potentials considered to reflect the joint uptake of H+ and amino acids followed by an enhanced H+ extrusion. In the presence of KCN, cysteine induced strong depolarizations, but the rate of repolarization depended linearly upon the cyanide-adjusted ATP level of the tissue. At an ATP level 44% of normal, the membrane potential was 74% of normal, but the repolarization after cysteine-induced depolarization was practically nil. Sudden transitions from room temperature to temperatures below 15° C induced sharp depolarizations of the membrane which then repolarized within 3 min; the ATP content of the tissues was unaffected. Cysteine and alanine induced strong depolarizations at temperatures between 5 and 25°C, and the Q10 for the rate of depolarization was 1.5 for cysteine and 1.6 for alanine. The Q10 for the rate of repolarization was 3.0 for cysteine and 2.0 for alanine. These experiments support the prevailing view that the depolarizations are caused by the passive joint influx of H+ and amino acids and that the repolarizations depend upon the ATP-dependent extrusion of H+. PMID:16662266

  16. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells.

    PubMed

    Li, Xianwu; Yang, Hsueh-Ying; Giachelli, Cecilia M

    2008-08-01

    Vascular calcification is associated with increased risk of cardiovascular events that are the most common cause of death in patients with end-stage renal disease. Clinical and experimental studies indicate that hyperphosphatemia is a risk factor for vascular calcification and cardiovascular mortality in these patients. Our previous studies demonstrated that phosphate transport through the type III sodium-dependent phosphate cotransporter, Pit-1, was necessary for phosphate-induced calcification and osteochondrogenic phenotypic change in cultured human smooth muscle cells (SMC). BMP-2 is a potent osteogenic protein required for osteoblast differentiation and bone formation that has been implicated in vascular calcification. In the present study, we have examined the effects of BMP-2 on human SMC calcification in vitro. We found that treatment of SMC with BMP-2 enhanced elevated phosphate-induced calcification, but did not induce calcification under normal phosphate conditions. mRNAs for BMP receptors, including ALK2, ALK3, ALK6, BMPR-II, ActR-IIA and ActR-IIB were all detected in human SMCs. Mechanistically, BMP-2 dose-dependently stimulated phosphate uptake in SMC (200 ng/ml BMP-2 vs. vehicle: 13.94 vs. 7.09 nmol/30 min/mg protein, respectively). Real-time PCR and Western blot revealed the upregulation of Pit-1 mRNA and protein levels, respectively, by BMP-2. More importantly, inhibition of phosphate uptake by a competitive inhibitor of sodium-dependent phosphate cotransport, phosphonoformic acid, abrogated BMP-2-induced calcification. These results indicate that phosphate transport via Pit-1 is crucial in BMP-2-regulated SMC calcification. In addition, BMP-2-induced Runx2 and inhibited SM22 expression, indicating that it promotes osteogenic phenotype transition in these cells. Thus, BMP-2 may promote vascular calcification via increased phosphate uptake and induction of osteogenic phenotype modulation in SMC. PMID:18179800

  17. Ezrin regulates NHE3 translocation and activation after Na+-glucose cotransport

    PubMed Central

    Zhao, Huiren; Shiue, Harn; Palkon, Sara; Wang, Yingmin; Cullinan, Patrick; Burkhardt, Janis K.; Musch, Mark W.; Chang, Eugene B.; Turner, Jerrold R.

    2004-01-01

    Initiation of Na+-glucose cotransport in intestinal epithelial cells leads to activation of the apical Na+-H+ exchanger NHE3 and subsequent increases in cytoplasmic pH (pHi). This process requires activation of p38 mitogen-activated protein (MAP) kinase, but additional signaling intermediates have not been identified. One candidate is the cytoskeletal linker protein ezrin, which interacts with NHE3 via specific regulatory proteins. The data show that initiation of Na+-glucose cotransport resulted in rapid increases in both apical membrane-associated NHE3 and cytoskeletal-associated ezrin and occurred in parallel with ezrin phosphorylation at threonine 567. Phosphorylation at this site is known to activate ezrin and increase its association with actin. Consistent with a central role for ezrin activation in this NHE3 regulation, an N-terminal dominant negative ezrin construct inhibited both NHE3 recruitment and pHi increases after Na+-glucose cotransport. Ezrin phosphorylation occurred in parallel with p38 MAP kinase activation, and the latter proceeded normally in cells expressing dominant negative ezrin. In contrast, inhibition of p38 MAP kinase prevented increases in ezrin phosphorylation after initiation of Na+-glucose cotransport. Thus, ezrin phosphorylation after Na+-glucose cotransport requires p38 MAP kinase activity, but p38 MAP kinase activation does not require ezrin function. These data describe a specific role for ezrin in the coordinate regulation of Na+-glucose cotransport and Na+-H+ exchange. Intact ezrin function is necessary for NHE3 recruitment to the apical membrane and NHE3-dependent pHi increases triggered by Na+-glucose cotransport. The data also define a pathway of p38 MAP kinase-dependent ezrin activation. PMID:15197272

  18. Proteinuria Increases Plasma Phosphate by Altering Its Tubular Handling

    PubMed Central

    Courbebaisse, Marie; Rutkowski, Joseph M.; Wilhelm-Bals, Alexandra; Metzger, Marie; Khodo, Stellor Nlandu; Hasler, Udo; Chehade, Hassib; Dizin, Eva; Daryadel, Arezoo; Stengel, Bénedicte; Girardin, E.; Prié, Dominique; Wagner, Carsten A.; Scherer, Philipp E.; Martin, Pierre-Yves; Houillier, Pascal; Feraille, Eric

    2015-01-01

    Proteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD. Plasma fibroblast growth factor 23 (FGF-23) concentration, plasma phosphate concentration, and tubular reabsorption of phosphate increased during the proteinuric phase compared with the remission phase in nephrotic children. Cross-sectional analysis of a cohort of 1738 patients with CKD showed that albuminuria≥300 mg/24 hours is predictive of higher phosphate levels, independent of GFR and other confounding factors. Albuminuric patients also displayed higher plasma FGF-23 and parathyroid hormone levels. To understand the molecular mechanisms underlying these observations, we induced glomerular proteinuria in two animal models. Rats with puromycin-aminonucleoside–induced nephrotic proteinuria displayed higher renal protein expression of the sodium-phosphate co-transporter NaPi-IIa, lower renal Klotho protein expression, and decreased phosphorylation of FGF receptor substrate 2α, a major FGF-23 receptor substrate. These findings were confirmed in transgenic mice that develop nephrotic-range proteinuria resulting from podocyte depletion. In vitro, albumin did not directly alter phosphate uptake in cultured proximal tubule OK cells. In conclusion, we show that proteinuria increases plasma phosphate concentration independent of GFR. This effect relies on increased proximal tubule NaPi-IIa expression secondary to decreased FGF-23 biologic activity. Proteinuria induces elevation of both plasma phosphate and FGF-23 concentrations, potentially contributing to cardiovascular disease. PMID:25349200

  19. SLC5 Sodium-Anion Cotransporters and Renal Urate Transport

    NASA Astrophysics Data System (ADS)

    Mount, David B.; Kwon, Charles Y.; Plata, Consuelo; Romero, Michael F.; Zandi-Nejad, Kambiz

    2007-04-01

    Renal urate transport plays a key role in determining the concentration of circulating uric acid. The reabsorption of filtered urate by the renal proximal tubule appears to require apical sodium-dependent anion transport and the apical URAT1 urate-anion exchanger, in that sodium-dependent transport of lactate, ketoacids, nicotinate, and pyrazinoate (PZA) increases the intracellular concentration of substrates for the subsequent exchange with luminal urate. We have identified SLC5A8 and SLC5A12 as candidates for the sodium-anion cotransporter that collaborates with URAT1. Both transporters function as sodium-dependent nicotinate/monocarboxylate/PZA transporters. Localization studies reveal serial co-expression of these transporters with URAT1, with Slc5a12 in the early proximal tubule and Slc5a8 in S2 and S3 segments. Renal urate excretion is conceivably affected by changes in the activity of SLC5A8, SLC5A12, and/or URAT1, with implications for the pathogenesis of hyperuricemia, nephrolithiasis, and related disorders.

  20. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules

    SciTech Connect

    Crawford, J.M.; Gollan, J.L. )

    1988-07-01

    Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer ({sup 14}C)bilirubin-({sup 3}H)bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous ({sup 14}C)bilirubin monoglucuronide-({sup 3}H)bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism.

  1. Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells.

    PubMed

    Wu, Q; Delpire, E; Hebert, S C; Strange, K

    1998-12-01

    The function of the apical Na+-K+-2Cl- cotransporter in mammalian choroid plexus (CP) is uncertain and controversial. To investigate cotransporter function, we developed a novel dissociated rat CP cell preparation in which single, isolated cells maintain normal polarized morphology. Immunofluorescence demonstrated that in isolated cells the Na+-K+-ATPase, Na+-K+-2Cl- cotransporter, and aquaporin 1 water channel remained localized to the brush border, whereas the Cl-/HCO-3 (anion) exchanger type 2 was confined to the basolateral membrane. We utilized video-enhanced microscopy and cell volume measurement techniques to investigate cotransporter function. Application of 100 microM bumetanide caused CP cells to shrink rapidly. Elevation of extracellular K+ from 3 to 6 or 25 mM caused CP cells to swell 18 and 33%, respectively. Swelling was blocked completely by Na+ removal or by addition of 100 microM bumetanide. Exposure of CP cells to 5 mM BaCl2 induced rapid swelling that was inhibited by 100 microM bumetanide. We conclude that the CP cotransporter is constitutively active and propose that it functions in series with Ba2+-sensitive K+ channels to reabsorb K+ from cerebrospinal fluid to blood. PMID:9843718

  2. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1.

    PubMed

    Riihonen, Riikka; Nielsen, Søren; Väänänen, H Kalervo; Laitala-Leinonen, Tiina; Kwon, Tae-Hwan

    2010-05-01

    Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.

  3. Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: Effects of seawater and smolting

    USGS Publications Warehouse

    Pelis, R.M.; Zydlewski, J.; McCormick, S.D.

    2001-01-01

    Na+-K+-2Cl- cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na+-K+-2Cl- cotransporter was colocalized with Na+-K+-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na+-K+-2Cl- cotransporter abundance, large and numerous Na+-K+-2Cl- cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na+-K+-2Cl- cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na+-K+-ATPase activity and Na+-K+-2Cl- cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na+-K+-2Cl- cotransporter in salt secretion by gill chloride cells of teleost fish.

  4. [The sodium-potassium-chloride cotransport of the cell membrane].

    PubMed

    Urazaev, A Kh

    1998-01-01

    Discovery and active exploration of the furosemid-sensitive derived-active co-transport of sodium-potassium-chlorine ions took place in the end of 1970-es-1980-es. This transportation mechanism was discovered in various types of cells, both of plant and of animal origin. This review describes properties of the transportation process, which was most comprehensive explored in experiments with erythrocytes, epithelium cells and muscles. The review covers the following properties: anion and cation selectivity of the chlorine transportation, its sensitivity to the specific blocking agents (furocemid, bumetanid, etc.), stoichiometry of the transportation process, etc. For energy source, the chlorine transportation is based on transmembrane electrochemical gradient for sodium ions. The article provides the most recent results of investigation of the chemical nature of the molecule of the chlorine membrane transport. Based on various studies, the molecule of this protein weighs from 120 to 200 kD, includes about 1200 amino acid residua, and forms long cytoplasmatic NH2 and COOH-termini. The gene encoding the amino acid sequence has been cloned. The article discusses the issues of regulation of the chlorine transportation. Humoral control of intensity of the chlorine transportation has been mostly studied in experiments with plain muscles, the issues related to nervous regulation--with only skeleton muscle fibers. The article provides specific data on the mechanisms of the above types of the physiological regulation of active chlorine transportation. In general, the humoral factors, which increase the intracellular concentration of cAMF stimulate chlorine transportation. On the contrary, the hormones, which increase concentration of cGMF in cytoplasm reduce its activity in plain muscles. The discussion of the mechanisms of the nervous controls of the chlorine transportation in the skeleton muscles includes the original results of the author. These results indicate that the

  5. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    PubMed

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  6. Rat hepatocytes exhibit basolateral Na+/HCO/sub 3/- cotransport

    SciTech Connect

    Renner, E.L.; Lake, J.R.; Scharschmidt, B.F.; Zimmerli, B.; Meier, P.J.

    1989-04-01

    Primary cultures and plasma membrane vesicles were used to characterize Na+ and HCO3- transport by rat hepatocytes. Na+ uptake into hepatocytes was stimulated approximately 10-fold by 25 mM extracellular HCO3-.HCO3--stimulated Na+ uptake was saturable, abolished by 4-acetamido-4'-isothiocyano-2,2'-disulfonic acid stilbene (SITS), and unaffected by amiloride or Cl- removal. Neither propionate nor acetate reproduced this effect of HCO3-. 22Na efflux from preloaded hepatocytes was similarly increased approximately 10-fold by an in greater than out HCO3- concentration gradient. 22Na efflux was also increased by valinomycin and an in greater than out K+ concentration gradient in the presence but not absence of HCO3-. Intracellular pH (pHi) measured with the pH-sensitive fluorochrome 2',7'-bis-(2-carboxyethyl)-5-(and 6-)carboxyfluorescein (BCECF) decreased at a rate of 0.227 (+/- 0.074 SEM) pH units/min when extracellular HCO3- concentration was lowered from 25 to 5 mM at constant PCO2. This intracellular acidification rate was decreased 50-60% in the absence of Na+ or presence of SITS, and was unaffected by amiloride or Cl- removal. Membrane hyperpolarization produced by valinomycin and an in greater than out K+ concentration gradient caused pHi to fall; the rate of fall was decreased 50-70% by Na+ removal or SITS, but not amiloride. An inside positive K+ diffusion potential and a simultaneous out greater than in HCO3- gradient produced a transient 4,4'-diisothiocyano-2,2' disulfonic acid stilbene (DIDS) sensitive, amiloride-insensitive 22Na accumulation in basolateral but not canalicular membrane vesicles. Rat hepatocytes thus exhibit electrogenic basolateral Na+/HCO3- cotransport.

  7. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  8. Na sup + -glycine cotransport in canalicular liver plasma membrane vesicles

    SciTech Connect

    Moseley, R.H.; Ballatori, N.; Murphy, S.M. Yale Univ. School of Medicine, New Haven, CT Univ. of Rochester School of Medicine and Dentistry, NY )

    1988-08-01

    By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of ({sup 3}H)glycine uptake in cLPM vesicles were stimulated by an inwardly directed Na{sup +} gradient but not by a K{sup +} gradient. Na{sup +} gradient-dependent uptake of glycine demonstrated cation specificity for Na{sup +}, dependence on extravesicular Cl{sup {minus}}, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na{sup +} gradient with gramicidin D. Na{sup +} gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of ({sup 3}H)glycine was demonstrated in the presence of Na{sup +} when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na{sup +}-dependent ({sup 3}H)glycine uptake over the range of amino acid concentrations from 5 {mu}M to 5 mM demonstrated two saturable transport systems, one of high capacity and low affinity and one of low capacity and comparatively high affinity. These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na{sup +} gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione.

  9. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    PubMed

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters.

  10. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum.

    PubMed Central

    Ganguly, T C; Liu, Y; Hyde, J F; Hagenbuch, B; Meier, P J; Vore, M

    1994-01-01

    We have shown that Na+/taurocholate co-transport activity is decreased in pregnancy, but rebounds post partum relative to non-pregnant controls, and that activity can be increased by treatment with ovine prolactin [Ganguly, Hyde and Vore (1993) J. Pharmacol. Exp. Ther. 267, 82-87]. To determine the basis for these effects, Na+/taurocholate co-transport was determined in purified basolateral liver plasma-membrane (bLPM) vesicles and compared with steady-state mRNA levels encoding the Na+/taurocholate-co-transporting polypeptide (Ntcp) in non-pregnant controls, pregnant rats (19-20 days pregnant), rats post partum (48 h post partum) and rats post partum treated with bromocriptine to inhibit prolactin secretion. Na+/taurocholate co-transport activity (nmol/5 s per mg of protein) in bLPM was decreased from 10.4 +/- 1.8 in non-pregnant controls to 7.9 +/- 0.6 in bLPM in pregnant rats, but rebounded to 17.5 +/- 1.3 post partum; treatment of rats post partum with bromocriptine to inhibit prolactin secretion decreased activity to 14.1 +/- 0.9. Northern and slot-blot analyses revealed similar changes in mRNA for Ntcp, so that a positive correlation was observed between Na+/taurocholate co-transport activity and Ntcp mRNA. Furthermore, treatment of ovariectomized rats with ovine prolactin increased Ntcp mRNA 10-fold compared with solvent-treated controls, consistent with the 2-fold increase in Vmax, for Na+/taurocholate co-transport in isolated hepatocytes. These data are the first to demonstrate endogenous physiological regulation by prolactin of Ntcp mRNA in parallel with Na+/taurocholate co-transport activity. Images Figure 2 PMID:7945260

  11. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    PubMed

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone.

  12. Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells.

    PubMed

    Hamann, Steffen; Herrera-Perez, José J; Zeuthen, Thomas; Alvarez-Leefmans, Francisco J

    2010-11-01

    Water transport by the Na+-K+-2Cl(-) cotransporter (NKCC1) was studied in confluent cultures of pigmented epithelial (PE) cells from the ciliary body of the fetal human eye. Interdependence among water, Na+ and Cl(-) fluxes mediated by NKCC1 was inferred from changes in cell water volume, monitored by intracellular self-quenching of the fluorescent dye calcein. Isosmotic removal of external Cl(-) or Na+ caused a rapid efflux of water from the cells, which was inhibited by bumetanide (10 μm). When returned to the control solution there was a rapid water influx that required the simultaneous presence of external Na+ and Cl(-). The water influx could proceed uphill, against a transmembrane osmotic gradient, suggesting that energy contained in the ion fluxes can be transferred to the water flux. The influx of water induced by changes in external [Cl(-)] saturated in a sigmoidal fashion with a Km of 60 mm, while that induced by changes in external [Na+] followed first order kinetics with a Km of about 40 mm. These parameters are consistent with ion transport mediated by NKCC1. Our findings support a previous investigation, in which we showed water transport by NKCC1 to be a result of a balance between ionic and osmotic gradients. The coupling between salt and water transport in NKCC1 represents a novel aspect of cellular water homeostasis where cells can change their volume independently of the direction of an osmotic gradient across the membrane. This has relevance for both epithelial and symmetrical cells. PMID:20819947

  13. Cotransport of clay colloids and viruses in water saturated columns packed with glass beads

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C.; Syngouna, V. I.

    2012-12-01

    This study is focused on the cotransport of clay colloids and viruses in saturated columns packed with glass beads. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model colloids. Virus and clay transport as well as virus-clay cotransport were examined at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The results indicated that the mass recovery of viruses and clay colloids decreased as the pore water velocity decreased; whereas, for the cotransport experiments no clear trend was observed. Temporal moments of the breakthrough concentrations suggested that, in the absence of clay colloids, both MS2 and ΦX174 traveled faster than the conservative tracer only at the highest pore water velocity tested. For the other two velocities both viruses were slightly retarded. The presence of clays significantly influenced the irreversible virus deposition onto glass beads. Both MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b. Also, MS2 exhibited greater affinity than ΦX174 for both clays. The results suggest that Lewis acid-base interactions worked to the advantage of clay colloid attachment but did not significantly affect virus attachment onto glass beads. Schematic illustration of the six concentration components involved in cotransport experiments of this study.

  14. Na+/D-glucose cotransporter based bilayer lipid membrane sensor for D-glucose.

    PubMed

    Sugao, N; Sugawara, M; Minami, H; Uto, M; Umezawa, Y

    1993-02-15

    A new type of amperometric blosensor for glucose was fabricated using a Na+/D-glucose cotransporter as the signal-transducing sensory element that exploits the D-glucose-triggered Na+ ion current through bilayer lipid membranes (BLMs). The planar BLM was formed by the folding method across a small aperture of a thin Teflon film. The Na+/D-glucose cotransporter, isolated and purified from small intestinal brush border membrane of guinea pigs, was embedded into BLMs through proteoliposomes. The number of the protein molecules thus incorporated in the present sensing membrane was estimated to be ca. 10(7). The sensor response was measured as an ionic current through the BLM arising from cotransported Na+ ion flux under a constant applied potential and was only induced by D-glucose above 10(-9) M, but not by the other monosaccharides except for D-galactose. The effect of applied potentials, Na+ and K+ ion concentrations, and the addition of a competitive inhibitor, phlorizin, were scrutinized to characterize the sensor output. The results were briefly discussed in terms of the potential use of the Na+/D-glucose cotransporter as a sensory element for D-glucose.

  15. WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway

    PubMed Central

    de los Heros, Paola; Kahle, Kristopher T.; Rinehart, Jesse; Bobadilla, Norma A.; Vázquez, Norma; San Cristobal, Pedro; Mount, David B.; Lifton, Richard P.; Hebert, Steven C.; Gamba, Gerardo

    2006-01-01

    SLC12A cation/Cl− cotransporters are mutated in human disease, are targets of diuretics, and are collectively involved in the regulation of cell volume, neuronal excitability, and blood pressure. This gene family has two major branches with different physiological functions and inverse regulation: K-Cl cotransporters (KCC1–KCC4) mediate cellular Cl− efflux, are inhibited by phosphorylation, and are activated by dephosphorylation; Na-(K)-Cl cotransporters (NCC and NKCC1/2) mediate cellular Cl− influx and are activated by phosphorylation. A single kinase/phosphatase pathway is thought to coordinate the activities of these cotransporters in a given cell; however, the mechanisms involved are as yet unknown. We previously demonstrated that WNK3, a paralog of serine-threonine kinases mutated in hereditary hypertension, is coexpressed with several cation/Cl− cotransporters and regulates their activity. Here, we show that WNK3 completely prevents the cell swelling-induced activation of KCC1–KCC4 in Xenopus oocytes. In contrast, catalytically inactive WNK3 abolishes the cell shrinkage-induced inhibition of KCC1–KCC4, resulting in a >100-fold stimulation of K-Cl cotransport during conditions in which transport is normally inactive. This activation is completely abolished by calyculin A and cyclosporine A, inhibitors of protein phosphatase 1 and 2B, respectively. Wild-type WNK3 activates Na-(K)-Cl cotransporters by increasing their phosphorylation, and catalytically inactive kinase inhibits Na-(K)-Cl cotransporters by decreasing their phosphorylation, such that our data suggest that WNK3 is a crucial component of the kinase/phosphatase signaling pathway that coordinately regulates the Cl− influx and efflux branches of the SLC12A cotransporter family. PMID:16446421

  16. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish

    USGS Publications Warehouse

    Hiroi, J.; Yasumasu, S.; McCormick, S.D.; Hwang, P.-P.; Kaneko, T.

    2008-01-01

    Cation-chloride cotransporters, such as the Na+/K +/2Cl- cotransporter (NKCC) and Na+/Cl - cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify 'freshwater-type' and 'seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na+/K+-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model by MRCs in

  17. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway.

    PubMed

    Seaayfan, Elie; Defontaine, Nadia; Demaretz, Sylvie; Zaarour, Nancy; Laghmani, Kamel

    2016-02-26

    Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.

  18. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway.

    PubMed

    Seaayfan, Elie; Defontaine, Nadia; Demaretz, Sylvie; Zaarour, Nancy; Laghmani, Kamel

    2016-02-26

    Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome. PMID:26721884

  19. Functional comparison of the K+-Cl- cotransporters KCC1 and KCC4.

    PubMed

    Mercado, A; Song, L; Vazquez, N; Mount, D B; Gamba, G

    2000-09-29

    The K(+)-Cl(-) cotransporters (KCCs) are members of the cation-chloride cotransporter gene family and fall into two phylogenetic subgroups: KCC2 paired with KCC4 and KCC1 paired with KCC3. We report a functional comparison in Xenopus oocytes of KCC1 and KCC4, widely expressed representatives of these two subgroups. KCC1 and KCC4 exhibit differential sensitivity to transport inhibitors, such that KCC4 is much less sensitive to bumetanide and furosemide. The efficacy of these anion inhibitors is critically dependent on the concentration of extracellular K(+), with much higher inhibition in 50 mm K(+) versus 2 mm K(+). KCC4 is also uniquely sensitive to 10 mm barium and to 2 mm trichlormethiazide. Kinetic characterization reveals divergent affinities for K(+) (K(m) values of approximately 25.5 and 17.5 mm for KCC1 and KCC4, respectively), probably due to variation within the second transmembrane segment. Although the two isoforms have equivalent affinities for Cl(-), they differ in the anion selectivity of K(+) transport (Cl(-) > SCN(-) = Br(-) > PO(4)(-3) > I(-) for KCC1 and Cl(-) > Br(-) > PO(4)(-3) = I(-) > SCN(-) for KCC4). Both KCCs express minimal K(+)-Cl(-) cotransport under isotonic conditions, with significant activation by cell swelling under hypotonic conditions. The cysteine-alkylating agent N-ethylmaleimide activates K(+)-Cl(-) cotransport in isotonic conditions but abrogates hypotonic activation, an unexpected dissociation of N-ethylmaleimide sensitivity and volume sensitivity. Although KCC4 is consistently more volume-sensitive, the hypotonic activation of both isoforms is critically dependent on protein phosphatase 1. Overall, the functional comparison of these cloned K(+)-Cl(-) cotransporters reveals important functional, pharmacological, and kinetic differences with both physiological and mechanistic implications.

  20. Genistein affects parathyroid gland and NaPi 2a cotransporter in an animal model of the andropause.

    PubMed

    Pantelic, J; Ajdzanovic, V; Medigovic, I; Mojic, M; Trifunovic, S; Milosevic, V; Filipovic, B

    2013-06-01

    This study aimed to examine the effects of genistein on the structural and functional changes in parathyroid glands (PTG) and sodium phosphate cotransporter 2a (NaPi 2a) in orchidectomized rats. Sixteen-month-old Wistar rats were divided into sham-operated (SO), orchidectomized (Orx) and genistein-treated orchidectomized (Orx+G) groups. Genistein (30 mg/kg/day) was administered subcutaneously for 3 weeks, while the controls received vehicle alone. PTG was analyzed histomorphometrically, while the expressions of NaPi 2a mRNA/protein levels from kidneys were determined by real time PCR and Western blots. Serum and urine parameters were determined biochemically. The PTG volume in Orx rats was increased by 30% (p<0.05), compared to the SO group. Orx+G treatment increased the PTG volume by 35% and 75% (p<0.05) respectively, comparing to Orx and SO animals. Orchidectomy led to increment of serum PTH by 27% (p<0.05) compared to the SO group, Orx+G decreased it by 18% (p<0.05) comparing to Orx animals. NaPi 2a expression in Orx animals was reduced in regards to its abundance in SO animals, although it was increased in Orx+G group compared to the Orx. Phosphorus urine content of Orx animals was raised by 12% (p<0.05) compared to that for the SO group, while Orx+G induced a 17% reduction (p<0.05) in regards to Orx animals. Our study shows that Orx increases PTG volume and serum PTH level, while protein expression of NaPi 2a is reduced. Application of genistein attenuates the orchidectomy-induced changes in serum PTH level, stimulates the expression of NaPi 2a and reduces urinary Pi excretion, implying potential beneficial effects on andropausal symptoms. PMID:23959733

  1. Regulation of serum phosphate

    PubMed Central

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  2. Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation.

    PubMed

    Su, W; Shmukler, B E; Chernova, M N; Stuart-Tilley, A K; de Franceschi, L; Brugnara, C; Alper, S L

    1999-11-01

    Although K-Cl cotransporter (KCC1) mRNA is expressed in many tissues, K-Cl cotransport activity has been measured in few cell types, and detection of endogenous KCC1 polypeptide has not yet been reported. We have cloned the mouse erythroid KCC1 (mKCC1) cDNA and its flanking genomic regions and mapped the mKCC1 gene to chromosome 8. Three anti-peptide antibodies raised against recombinant mKCC1 function as immunoblot and immunoprecipitation reagents. The tissue distributions of mKCC1 mRNA and protein are widespread, and mKCC1 RNA is constitutively expressed during erythroid differentiation of ES cells. KCC1 polypeptide or related antigen is present in erythrocytes of multiple species in which K-Cl cotransport activity has been documented. Erythroid KCC1 polypeptide abundance is elevated in proportion to reticulocyte counts in density-fractionated cells, in bleeding-induced reticulocytosis, in mouse models of sickle cell disease and thalassemia, and in the corresponding human disorders. mKCC1-mediated uptake of (86)Rb into Xenopus oocytes requires extracellular Cl(-), is blocked by the diuretic R(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2, 3-dihydro-1-oxo-1H-indenyl-5-yl-)oxy]acetic acid, and exhibits an erythroid pattern of acute regulation, with activation by hypotonic swelling, N-ethylmaleimide, and staurosporine and inhibition by calyculin and okadaic acid. These reagents and findings will expedite studies of KCC1 structure-function relationships and of the pathobiology of KCC1-mediated K-Cl cotransport.

  3. Cotransport of sodium and chloride by the adult mammalian choroid plexus

    SciTech Connect

    Johanson, C.E.; Sweeney, S.M.; Parmelee, J.T.; Epstein, M.H. )

    1990-02-01

    Cerebrospinal fluid formation stems primarily from the transport of Na and Cl in choroid plexus (CP). To characterize properties and modulation of choroidal transporters, we tested diuretics and other agents for ability to alter ion transport in vitro. Adult Sprague-Dawley rats were the source of CPs preincubated with drug for 20 min and then transferred to cerebrospinal fluid (CSF) medium containing 22Na or 36Cl with (3H)mannitol (extracellular correction). Complete base-line curves were established for cellular uptake of Na and Cl at 37 degrees C. The half-maximal uptake occurred at 12 s, so it was used to assess drug effects on rate of transport (nmol Na or Cl/mg CP). Bumetanide (10(-5) and 10(-4) M) decreased uptake of Na and Cl with maximal inhibition (up to 45%) at 10(-5) M. Another cotransport inhibitor, furosemide (10(-4) M), reduced transport of Na by 25% and Cl by 33%. However, acetazolamide (10(-4) M) and atriopeptin III (10(-7) M) significantly lowered uptake of Na (but not Cl), suggesting effect(s) other than on cotransport. The disulfonic stilbene 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 10(-4) M), known to inhibit Cl-HCO3 exchange, substantially reduced the transport of 36Cl. Bumetanide plus DIDS (both 10(-4) M) caused additive inhibition of 90% of Cl uptake, which provides strong evidence for the existence of both cotransport and antiport Cl carriers. Overall, this in vitro analysis, uncomplicated by variables of blood flow and neural tone, indicates the presence in rat CP of the cotransport of Na and Cl in addition to the established Na-H and Cl-HCO3 exchangers.

  4. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  5. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  6. Cotransport of clay colloids and viruses in water saturated columns packed with glass beads

    NASA Astrophysics Data System (ADS)

    Syngouna, V. I.; Chrysikopoulos, C. V.

    2012-04-01

    This study is focused on the cotransport of clay colloids and viruses in saturatedcolumns packed with glass beads. Bacteriophages MS2 and ΦΧ174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model colloids.The effect of three pore water velocities (0.38, 0.74, and 1.21 cm/min) on virus transport and virus-clay cotransport was examined. The results indicated that the mass recovery of viruses and clay colloids decreased as the pore water velocity decreased; whereas, for the cotransport experiments no clear trend was observed. Temporal moments of the breakthrough concentrations suggested that, in the absence of clay colloids, both MS2 and ΦX174 traveled faster than the conservative tracer only at the highest pore water velocity tested. For the other two velocities both viruses were slightly retarded. The presence of clays significantly influenced the irreversible virus deposition. Both MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b with MS2 exhibiting greater affinity than ΦX174 for both clays. The results suggest that electrostatic interactions play a vital role on virus adsorption onto both glass beads and clay colloids.

  7. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

    PubMed Central

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2015-01-01

    Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K+-Cl− cotransporter (KCC2), is the principal Cl−-extruder, whereas Na+-K+-Cl− cotransporter (NKCC1), is the major Cl−-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features. PMID:25653592

  8. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  9. Uranium from phosphate ores

    SciTech Connect

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

  10. Modeling the co-transport of viruses and colloids in unsaturated porous media.

    PubMed

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S

    2015-10-01

    A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interaction

  11. Modeling the co-transport of viruses and colloids in unsaturated porous media.

    PubMed

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S

    2015-10-01

    A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interaction

  12. The significance of water co-transport for sustaining transpirational water flow in plants: a quantitative approach.

    PubMed

    Fricke, Wieland

    2015-02-01

    In a recent Opinion paper, Wegner (Journal of Experimental Botany 65, 381-392, 2014) adapts a concept developed for water flow in animal tissues to propose a model, which can explain the loading of water into the root xylem against a difference in water potential (Ψ) between the xylem parenchyma cell (more negative Ψ) and the xylem vessel (less negative Ψ). In this model, the transport of water is energized through the co-transport of ions such as K(+) and Cl(-) through plasma membrane-located transporters. The emphasis of the model is on the thermodynamic feasibility of the co-transport mechanism per se. However, what is lacking is a quantitative evaluation of the energy input required at the organismal level to sustain such a co-transport mechanism in the face of considerable net (transpirational) flows of water through the system. Here, we use a ratio of 500 water molecules being co-transported for every pair of K(+) and Cl(-) ions, as proposed for the animal system, to calculate the energy required to sustain daytime and night-time transpirational water flow in barley plants through a water co-transport mechanism. We compare this energy with the total daily net input of energy through photosynthetic carbon assimilation. Water co-transport can facilitate the filling of xylem against a difference in Ψ of 1.0MPa and puts a minor drain on the energy budget of the plant. Based on these findings it cannot be excluded that water co-transport in plants contributes significantly to xylem filling during night-time and possibly also daytime transpiration.

  13. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants.

    PubMed Central

    Leggewie, G; Willmitzer, L; Riesmeier, J W

    1997-01-01

    Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K(m) for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 microM, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking. PMID:9090882

  14. Transport behavior of hairless mouse skin during constant current DC iontophoresis, part 2: iontophoresis of nonionic molecules with cotransport of polystyrene sulfonate oligomers.

    PubMed

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-07-01

    The purpose of this study was to characterize changes that occur in the iontophoretic transport of nonionic probe permeants in hairless mouse skin epidermal membrane from the anode to cathode when polystyrene sulfonate (PSS) oligomers are cotransported from the cathode to anode. The experiments were conducted with trace levels of the nonionic probe permeants: urea, mannitol, and raffinose. In order to systematically assess changes that occur as a result of having PSS in the cathodal chamber, the steady-state transport parameters of the membrane and the experimental permeability coefficients of the probe permeants were determined and compared with results obtained from earlier baseline experiments where both the cathodal and anodal chamber media were phosphate buffered saline. In addition, the physicochemical properties of the PSS solutions were determined including the solution viscosity and conductance as well as the mobilities of individual PSS oligomers. The effective pore radii of the transport pathways were calculated using a theoretical expression based on simultaneous diffusion and electroosmosis. Compared with the baseline results, the calculated radii were found to have increased up to around twofold and the iontophoretic fluxes of the probe permeants increased by as much sixfold.

  15. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases.

    PubMed

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  16. Na+,Cl- cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).

    PubMed

    Hoffmann, E K; Sjøholm, C; Simonsen, L O

    1983-01-01

    Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system. PMID:6100866

  17. Cotransport of TiO2 nanoparticles and Pseudomonas putida in porous media

    NASA Astrophysics Data System (ADS)

    Zaharis, Ioannis; Manariotis, Ioannis D.; Chrysikopoulos, Constantinos V.

    2015-04-01

    The scope of this study was to investigate the cotransport of Pseudomonas putida and TiO2 nanoparticles (NPs) in porous media. Flowthrough experiments were conducted in glass columns with diameter of 2.5 cm and length of 30 cm, packed with 2-mm diameter spherical glass beads. Anatase TiO2 NPs solutions were prepared in distilled water of at two different concentrations: 5 and 50 mg/L. The concentration of P. putida solutions varied from 105 to 109 cfu/mL. Initially, transport experiments were conducted separately for P. putida and TiO2 NPs. Subsequently, TiO2 and P. putida cotransport experiments were conducted. The concentration of TiO2 NPs was measured by a fluorescence spectrophotometer and P. putida concentration was determined by plate counts on agar plates and optical density measurements. All experiments were conducted with two different flow rates: 1 and 2 mL/min. The transport experiments with P. putida exhibited similar transport behavior with the tracer (NaBr) indicating that there was not considerable retention. The mass recovery of P. putida was close to 100% in all of the transport experiments conducted. However, the transport experiments with TiO2 NPs suggested that a significant portion of the NPs was retained in the column. Based on the cotransport experimental data, it is evident that the transport of P. putida was not significantly affected by the presence of TiO2. It should be noted that the mass recovery of NPs in the transport and costransport experiments was between 40 and 60%.

  18. N-terminal serine dephosphorylation is required for KCC3 cotransporter full activation by cell swelling.

    PubMed

    Melo, Zesergio; de los Heros, Paola; Cruz-Rangel, Silvia; Vázquez, Norma; Bobadilla, Norma A; Pasantes-Morales, Herminia; Alessi, Dario R; Mercado, Adriana; Gamba, Gerardo

    2013-11-01

    The K(+):Cl(-) cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity.

  19. N-terminal Serine Dephosphorylation Is Required for KCC3 Cotransporter Full Activation by Cell Swelling*

    PubMed Central

    Melo, Zesergio; de los Heros, Paola; Cruz-Rangel, Silvia; Vázquez, Norma; Bobadilla, Norma A.; Pasantes-Morales, Herminia; Alessi, Dario R.; Mercado, Adriana; Gamba, Gerardo

    2013-01-01

    The K+:Cl− cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity. PMID:24043619

  20. Elevated carbon dioxide upregulates NBCn1 Na+/HCO3(-) cotransporter in human embryonic kidney cells.

    PubMed

    Orlowski, Alejandro; Vargas, Lorena A; Aiello, Ernesto A; Álvarez, Bernardo V

    2013-12-15

    The NBCn1 Na(+)/HCO3(-) cotransporter catalyzes the electroneutral movement of 1 Na(+):1 HCO3(-) into kidney cells. We characterized the intracellular pH (pHi) regulation in human embryonic kidney cells (HEK) subjected to NH4Cl prepulse acid loading, and we examined the NBCn1 expression and function in HEK cells subjected to 24-h elevated Pco2 (10-15%). After acid loading, in the presence of HCO3(-), ∼50% of the pHi recovery phase was blocked by the Na(+)/H(+) exchanger inhibitors EIPA (10-50 μM) and amiloride (1 mM) and was fully cancelled by 30 μM EIPA under nominally HCO3(-)-free conditions. In addition, in the presence of HCO3(-), pHi recovery after acid loading was completely blocked when Na(+) was omitted in the buffer. pHi recovery after acidification in HEK cells was repeated in the presence of the NBC inhibitor S0859, and the pHi recovery was inhibited by S0859 in a dose-dependent manner (Ki = 30 μM, full inhibition at 60 μM), which confirmed NBC Na(+)/HCO3(-) cotransporter activation. NBCn1 expression increased threefold after 24-h exposure of cultured HEK cells to 10% CO2 and sevenfold after exposure to 15% CO2, examined by immunoblots. Finally, exposure of HEK cells to high CO2 significantly increased the HCO3(-)-dependent recovery of pHi after acid loading. We conclude that HEK cells expressed the NBCn1 Na(+)/HCO3(-) cotransporter as the only HCO3(-)-dependent mechanism responsible for cellular alkaline loading. NBCn1, which expresses in different kidney cell types, was upregulated by 24-h high-Pco2 exposure of HEK cells, and this upregulation was accompanied by increased NBCn1-mediated HCO3(-) transport.

  1. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases

    PubMed Central

    Jaggi, Amteshwar Singh; Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal

    2015-01-01

    Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na+, K+ and 2Cl- inside the cell. It acts in concert with K+ Cl- co-transporter (KCC), which extrudes K+ and Cl- ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases. PMID:26411965

  2. Modeling of phosphate ion transfer to the surface of osteoblasts under normal gravity and simulated microgravity conditions.

    PubMed

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S; Risbud, Makarand; Hu, Howard H; Shapiro, Irving M

    2004-11-01

    We have modeled the transport and accumulation of phosphate ions at the remodeling site of a trabecular bone consisting of osteoclasts and osteoblasts situated adjacent to each other in straining flows. Two such flows are considered; one corresponds to shear levels representative of trabecular bone conditions at normal gravity, the other corresponds to shear level that is representative of microgravity conditions. The latter is evaluated indirectly using a simulated microgravity environment prevailing in a rotating wall vessel bioreactor (RWV) designed by NASA. By solving the hydrodynamic equations governing the particle motion in a RWV using a direct numerical simulation (DNS) technique, the shear stress values on the surface of the microcarriers are found. In our present species transfer model, osteoclasts release phosphate ions (Pi) among other ions at bone resorption sites. Some of the ions so released are absorbed by the osteoblast, some accumulate at the osteoblast surface, and the remainder are advected away. The consumption of Pi by osteoblasts is assumed to follow Michaelis-Menten (MM) kinetics aided by a NaPi cotransporter system. MM kinetics views the NaPi cotransporter as a system for transporting extracellular Pi into the osteoblast. Our results show, for the conditions investigated here, the net accumulation of phosphate ions at the osteoblast surface under simulated microgravity conditions is higher by as much as a factor of three. Such increased accumulation may lead to enhanced apoptosis and may help explain the increased bone loss observed under microgravity conditions. PMID:15644348

  3. Role of Na+/H+ exchanger regulatory factor 1 in forward trafficking of the type IIa Na+-Pi cotransporter.

    PubMed

    Ketchem, Corey J; Khundmiri, Syed J; Gaweda, Adam E; Murray, Rebecca; Clark, Barbara J; Weinman, Edward J; Lederer, Eleanor D

    2015-07-15

    Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi.

  4. Tracers for monitoring the activity of sodium/glucose cotransporters in health and disease

    DOEpatents

    Wright, Ernest M; Barrio, Jorge R; Hirayama, Bruce A; Kepe, Vladimir

    2014-09-30

    Radiolabeled tracers for sodium/glucose cotransporters (SGLTs), their synthesis, and their use are provided. The tracers are methyl or ethyl pyranosides having an equatorial hydroxyl group at carbon-2 and a C 1 preferred conformation, radiolabeled with .sup.18F, .sup.123I, or .sup.124I, or free hexoses radiolabeled with .sup.18F, .sup.123I, or .sup.124. Also provided are in vivo and in vitro techniques for using these and other tracers as analytical and diagnostic tools to study glucose transport, in health and disease, and to evaluate therapeutic interventions.

  5. N-Glucosides as human sodium-dependent glucose cotransporter 2 (hSGLT2) inhibitors.

    PubMed

    Yamamoto, Yasuo; Kawanishi, Eiji; Koga, Yuichi; Sakamaki, Shigeki; Sakamoto, Toshiaki; Ueta, Kiichiro; Matsushita, Yasuaki; Kuriyama, Chiaki; Tsuda-Tsukimoto, Minoru; Nomura, Sumihiro

    2013-10-15

    Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50=7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles. PMID:23999047

  6. Sodium-glucose cotransporter 2 inhibition and health benefits: The Robin Hood effect

    PubMed Central

    Kalra, Sanjay; Jain, Arpit; Ved, Jignesh; Unnikrishnan, A. G.

    2016-01-01

    This review discusses two distinct, yet related, mechanisms of sodium-glucose cotransporter 2 (SGLT2) inhibition: Calorie restriction mimicry (CRM) and pro-ketogenic effect, which may explain their cardiovascular benefits. We term these adaptive CRM and pro-ketogenic effects of SGLT2 inhibition, the Robin Hood hypothesis. In English history, Robin Hood was a “good person,” who stole from the rich and helped the poor. He supported redistribution of resources as he deemed fit for the common good. In a similar fashion, SGLT2 inhibition provides respite to the overloaded glucose metabolism while utilizing lipid stores for energy production. PMID:27730088

  7. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  8. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  9. Phosphorus, phosphorous, and phosphate.

    PubMed

    Iheagwara, O Susan; Ing, Todd S; Kjellstrand, Carl M; Lew, Susie Q

    2013-10-01

    This article distinguishes the terms "phosphorus, phosphorous, and phosphate" which are frequently used interchangeably. We point out the difference between phosphorus and phosphate, with an emphasis on the unit of measure. Expressing a value without the proper name or unit of measure may lead to misunderstanding and erroneous conclusions. We indicate why phosphate must be expressed as milligrams per deciliter or millimoles per liter and not as milliequivalents per liter. Therefore, we elucidate the distinction among the terms "phosphorus, phosphorous, and phosphate" and the importance of saying precisely what one really means.

  10. Niacin and analogs for phosphate control in dialysis--perspective from a developing country.

    PubMed

    Sampathkumar, Krishnaswamy

    2009-12-01

    Hyperphosphatemia is an important modifiable risk factor in the dialysis population because it is linked to increased mortality. Existing phosphate-reducing agents either increase the risk of vascular calcification or are costly with high pill burden. Niacin shows promise as a cheap drug with low pill burden and a novel mode of action. Niacin and its metabolite nicotinamide inhibit the small intestinal sodium-phosphate cotransporter. Approximately 50% of intestinal phosphate absorption occurs through this route under physiological conditions. Studies performed on the dialysis population with niacin and nicotinamide have shown significant phosphate reduction with lowering of the calcium-phosphorus product. The well documented increase in serum HDL levels may also offer survival benefits. Side-effects include flushing, which is controlled with aspirin, diarrhea, and thrombocytopenia, which may be treatment-limiting. Niacin is cheap and phosphate reduction can be achieved by administration of one or two tablets per day. These factors will boost compliance in developing countries. Further basic research and large-scale clinical trials are needed in this field. PMID:19037739

  11. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome

    SciTech Connect

    Mastroianni, N.; De Fusco, M.; Casari, G.

    1996-11-01

    A hereditary defect of the distal tubule accounts for the clinical features of Gitelman syndrome (GS), an autosomal recessive disease characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. Recently, we cloned the cDNA coding for the human Na-Cl thiazide-sensitive cotransporter (TSC; also known as {open_quotes}NCCT{close_quotes} or {open_quotes}SLC12A3{close_quotes}) as a possible candidate for GS, and Simon et al., independently, described rotation in patients with GS. Now, we show 12 additional mutations consistent with a loss of function of the Na-Cl cotransporter in GS. Two missense replacements, R09W and P349L, are common to both studies and could represent ancient mutations. The other mutations include three deletions, two insertions, and six missense mutations. When all mutations from both studies are considered, missense mutations seem to be more frequently localized within the intracellular domains of the molecule, rather than in transmembrane or extracellular domains. One family, previously reported as a GS form with dominant inheritance, has proved to be recessive, with the affected child being a compound heterozygote. A highly informative intragenic tetranucleotide marker, useful for molecular diagnostic studies, has been identified at the acceptor splice site of exon 9. 12 refs., 3 figs., 2 tabs.

  12. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter.

    PubMed Central

    Hagenbuch, B; Meier, P J

    1994-01-01

    We have used a cDNA probe from a cloned rat liver Na+/taurocholate cotransporting polypeptide (Ntcp) to screen a human liver cDNA library. A 1,599-bp cDNA clone that encodes a human Na+/taurocholate cotransporting polypeptide (NTCP) was isolated. The human NTCP consists of 349 amino acids (calculated molecular mass of 38 kD) and exhibits 77% amino acid homology with the rat Ntcp. In vitro translation experiments indicate that the protein is glycosylated and has a molecular weight similar to the rat Ntcp. Injection of in vitro transcribed cRNA into Xenopus laevis oocytes resulted in the expression of Na(+)-dependent taurocholate uptake. Saturation kinetics indicated that the human NTCP has a higher affinity for taurocholate (apparent Km = 6 microM) than the previously cloned rat protein (apparent Km = 25 microM). NTCP-mediated taurocholate uptake into oocytes was inhibited by all major bile acid derivatives (100 microM), bumetanide (500 microM), and bromosulphophthalein (100 microM). Southern blot analysis of genomic DNA from a panel of human/hamster somatic cell hybrids mapped the human NTCP gene to chromosome 14. PMID:8132774

  13. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation.

    PubMed

    Rojas-Vega, Lorena; Reyes-Castro, Luis A; Ramírez, Victoria; Bautista-Pérez, Rocío; Rafael, Chloe; Castañeda-Bueno, María; Meade, Patricia; de Los Heros, Paola; Arroyo-Garza, Isidora; Bernard, Valérie; Binart, Nadine; Bobadilla, Norma A; Hadchouel, Juliette; Zambrano, Elena; Gamba, Gerardo

    2015-04-15

    Unique situations in female physiology require volume retention. Accordingly, a dimorphic regulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) has been reported, with a higher activity in females than in males. However, little is known about the hormones and mechanisms involved. Here, we present evidence that estrogens, progesterone, and prolactin stimulate NCC expression and phosphorylation. The sex difference in NCC abundance, however, is species dependent. In rats, NCC phosphorylation is higher in females than in males, while in mice both NCC expression and phosphorylation is higher in females, and this is associated with increased expression and phosphorylation of full-length STE-20 proline-alanine-rich kinase (SPAK). Higher expression/phosphorylation of NCC was corroborated in humans by urinary exosome analysis. Ovariectomy in rats resulted in decreased expression and phosphorylation of the cotransporter and promoted the shift of SPAK isoforms toward the short inhibitory variant SPAK2. Conversely, estradiol or progesterone administration to ovariectomized rats restored NCC phosphorylation levels and shifted SPAK expression and phosphorylation towards the full-length isoform. Estradiol administration to male rats induced a significant increase in NCC phosphorylation. NCC is also modulated by prolactin. Administration of this peptide hormone to male rats induced increased phosphorylation of NCC, an effect that was observed even using the ex vivo kidney perfusion strategy. Our results indicate that estradiol, progesterone, and prolactin, the hormones that are involved in sexual cycle, pregnancy and lactation, upregulate the activity of NCC.

  14. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  15. Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells

    PubMed Central

    1992-01-01

    Chloride-dependent K transport ([K-Cl] cotransport) in dog red cells is activated by cell swelling. Whether the volume signal is generated by a change in cell configuration or by the dilution of some cytosolic constituent is not known. To differentiate between these two alternatives we prepared resealed ghosts that, compared with intact red cells, had the same surface area and similar hemoglobin concentration, but a greatly diminished volume. Swelling-induced [K-Cl] cotransport was activated in the ghosts at a volume (20 fl) well below the activation volume for intact cells (70 fl), but at a similar hemoglobin concentration (30-35 g dry solids per 100 g wet weight). Ghosts made to contain 40% albumin and 60% hemoglobin showed activation of [K-Cl] cotransport at a concentration of cell solids similar to intact cells or ghosts containing only hemoglobin. [K-Cl] cotransport in the resealed ghosts became quiescent at a dry solid concentration close to that at which shrinkage-induced Na/H exchange became activated. These results support the notion that the primary volume sensor in dog red cells is cytosolic protein concentration. We speculate that macromolecular crowding is the mechanism by which cells initiate responses to volume perturbation. PMID:1512553

  16. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    SciTech Connect

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  17. Elevated [Cl-]i, and [Na+]i inhibit Na+, K+, Cl- cotransport by different mechanisms in squid giant axons

    PubMed Central

    1996-01-01

    Bumetanide-sensitive (BS) unidirectional fluxes of (36)Cl- or (22)Na+ were measured in internally dialyzed squid giant axons while varying the intra- or extracellular concentrations of Na+ and/or Cl-. Raising either [Cl-]i or [Na+]i resulted in a concentration-dependent reduction of the BS influx of both (36)Cl- and (22)Na+. Raising [Cl-]i above 200 mM completely blocked BS influxes. However, raising [Na+]i to 290 mM resulted in saturable but incomplete inhibition of both BS Na+ influx and BS Cl- influx. The consequences of varying intracellular Cl- on cotransporter effluxes were complex. At lower [Cl-]i values (below 100 mM) intracellular Cl- activated cotransporter effluxes. Surprisingly, however, raising [Cl-]i levels > 125 mM resulted in a [Cl-]i-dependent inhibition of BS effluxes of both Na+ and Cl-. On the other hand, raising [Na+]i resulted only in the activation of the BS Na+ efflux; intracellular Na+ did not inhibit BS efflux even at 290 mM. The inhibitory effects of intracellular Na+ on cotransporter-mediated influxes, and lack of inhibitory effects on BS effluxes, are consistent with the trans-side inhibition expected for an ordered binding/release model of cotransporter operation. However, the inhibitory effects of intracellular Cl- on both influxes and effluxes are not explained by such a model. These data suggest that Cl may interact with an intracellular site (or sites), which does not mediate Cl transport, but does modulate the transport activity of the Na+, K+, Cl- cotransporter. PMID:8833345

  18. Elevated [Cl-]i, and [Na+]i inhibit Na+, K+, Cl- cotransport by different mechanisms in squid giant axons.

    PubMed

    Breitwieser, G E; Altamirano, A A; Russell, J M

    1996-02-01

    Bumetanide-sensitive (BS) unidirectional fluxes of (36)Cl- or (22)Na+ were measured in internally dialyzed squid giant axons while varying the intra- or extracellular concentrations of Na+ and/or Cl-. Raising either [Cl-]i or [Na+]i resulted in a concentration-dependent reduction of the BS influx of both (36)Cl- and (22)Na+. Raising [Cl-]i above 200 mM completely blocked BS influxes. However, raising [Na+]i to 290 mM resulted in saturable but incomplete inhibition of both BS Na+ influx and BS Cl- influx. The consequences of varying intracellular Cl- on cotransporter effluxes were complex. At lower [Cl-]i values (below 100 mM) intracellular Cl- activated cotransporter effluxes. Surprisingly, however, raising [Cl-]i levels > 125 mM resulted in a [Cl-]i-dependent inhibition of BS effluxes of both Na+ and Cl-. On the other hand, raising [Na+]i resulted only in the activation of the BS Na+ efflux; intracellular Na+ did not inhibit BS efflux even at 290 mM. The inhibitory effects of intracellular Na+ on cotransporter-mediated influxes, and lack of inhibitory effects on BS effluxes, are consistent with the trans-side inhibition expected for an ordered binding/release model of cotransporter operation. However, the inhibitory effects of intracellular Cl- on both influxes and effluxes are not explained by such a model. These data suggest that Cl may interact with an intracellular site (or sites), which does not mediate Cl transport, but does modulate the transport activity of the Na+, K+, Cl- cotransporter.

  19. Increased Epithelial Sodium Channel Activity Contributes to Hypertension Caused by Na+-HCO3- Cotransporter Electrogenic 2 Deficiency.

    PubMed

    Wen, Donghai; Yuan, Yang; Warner, Paige C; Wang, Bangchen; Cornelius, Ryan J; Wang-France, Jun; Li, Huaqing; Boettger, Thomas; Sansom, Steven C

    2015-07-01

    The gene SLC4A5 encodes the Na(+)-HCO3 (-) cotransporter electrogenic 2, which is located in the distal nephron. Genetically deleting Na(+)-HCO3 (-) cotransporter electrogenic 2 (knockout) causes Na(+)-retention and hypertension, a phenotype that is diminished with alkali loading. We performed experiments with acid-loaded mice and determined whether overactive epithelial Na(+) channels (ENaC) or the Na(+)-Cl(-) cotransporter causes the Na(+) retention and hypertension in knockout. In untreated mice, the mean arterial pressure was higher in knockout, compared with wild-type (WT); however, treatment with amiloride, a blocker of ENaC, abolished this difference. In contrast, hydrochlorothiazide, an inhibitor of Na(+)-Cl(-) cotransporter, decreased mean arterial pressure in WT, but not knockout. Western blots showed that quantity of plasmalemmal full-length ENaC-α was significantly higher in knockout than in WT. Amiloride treatment caused a 2-fold greater increase in Na(+) excretion in knockout, compared with WT. In knockout, but not WT, amiloride treatment decreased plasma [Na(+)] and urinary K(+) excretion, but increased hematocrit and plasma [K(+)] significantly. Micropuncture with microelectrodes showed that the [K(+)] was significantly higher and the transepithelial potential (Vte) was significantly lower in the late distal tubule of the knockout compared with WT. The reduced Vte in knockout was amiloride sensitive and therefore revealed an upregulation of electrogenic ENaC-mediated Na(+) reabsorption in this segment. These results show that, in the absence of Na(+)-HCO3 (-) cotransporter electrogenic 2 in the late distal tubule, acid-loaded mice exhibit disinhibition of ENaC-mediated Na(+) reabsorption, which results in Na(+) retention, K(+) wasting, and hypertension.

  20. Identification of functionally distinct Na-HCO3 co-transporters in colon.

    PubMed

    Barmeyer, Christian; Ye, Jeff Huaqing; Soroka, Carol; Geibel, Peter; Hingsammer, Lukas M; Weitgasser, Laurence; Atway, Danny; Geibel, John P; Binder, Henry J; Rajendran, Vazhaikkurichi M

    2013-01-01

    Na-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5'-diisothiocyanato-2-2'-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH. Molecular studies have identified several characteristically distinct NBC isoforms [i.e. electrogenic (NBCe) and electroneutral (NBCn)] that exhibit tissue specific expression. This study was initiated to establish the molecular identity and specific function of NBC isoforms in rat colon. Northern blot and reverse transcriptase PCR (RT-PCR) analyses revealed that electrogenic NBCe1B or NBCe1C (NBCe1B/C) isoform is predominantly expressed in proximal colon, while electroneutral NBCn1C or NBCn1D (NBCn1C/D) is expressed in both proximal and distal colon. Functional analyses revealed that amiloride-insensitive, electrogenic, pH gradient-dependent NBC activity is present only in basolateral membranes of proximal colon. In contrast, amiloride-sensitive, electroneutral, [H(+)]-dependent NBC activity is present in both proximal and distal colon. Both electrogenic and electroneutral NBC activities are saturable processes with an apparent Km for Na of 7.3 and 4.3 mM, respectively; and are DIDS-sensitive with apparent Ki of 8.9 and 263.8 µM, respectively. In addition to Na-H exchanger isoform-1 (NHE1), pHi acidification is regulated by a HCO3-dependent mechanism that is HOE694-insensitive in colonic crypt glands. We conclude from these data that electroneutral, amiloride-sensitive NBC is encoded by NBCn1C/D and is present in both proximal and distal colon, while NBCe1B/C encodes electrogenic, amiloride-insensitive Na-HCO3 cotransport in proximal colon. We also conclude that NBCn1C/D regulates HCO3-dependent HOE694-insensitive Na-HCO3 cotransport and plays a critical role in p

  1. [Sodium-glucose cotransporter 2 (SGLT-2) inhibitors for patients with Type 2 diabetes].

    PubMed

    Røder, Michael Einar; Storgaard, Heidi; Rungby, Jørgen; Knop, Filip Krag; Vilsbøll, Tina

    2016-09-19

    The sodium-glucose cotransporter 2 inhibitor (SGLT-2i)-class is efficacious as monotherapy and as add-on therapy with an expected lowering of the glycated haemoglobin (HbA1c) concentration of approximately 7 mmol/mol. Side effects relate to the mode of action, genital infections are the main problem. Extremely rare cases of ketoacidosis are reported, mostly in patients with Type 1 diabetes. One SGLT-2i, empagliflozin, has been shown to reduce cardiovascular mortality and progression of kidney disease in patients with Type 2 diabetes and cardiovascular disease. Outcome trials for other SGLT-2i are pending. SGLT-2i are now in guidelines as a possible second-line therapy or in case of metformin intolerance. PMID:27649712

  2. Effect of vanadate on proton-sucrose cotransport in Ricinus cotyledons

    SciTech Connect

    Vreugdenhil, D.; Spanswick, R.M.

    1987-07-01

    The effects of orthovanadate on the uptake of sucrose by Ricinus cotyledons and on sucrose-coupled proton influx were measured in order to gain insight into the relationship to the plasma membrane proton pump. Vanadate had no effect on short-term sucrose uptake. In long-term experiments (> 30 min) sucrose uptake was progressively inhibited, but only at high external sucrose concentrations. Vanadate did not affect proton efflux pumping in the absence of sucrose and neither did it change the initial rate of sucrose-coupled proton influx. However, it enhanced the maximal level of sucrose-induced alkalization of the medium at all sucrose concentrations tested. This is interpreted as an inhibiting effect of vanadate on the proton pump that recycles protons during sucrose-proton cotransport. The sensitivity towards vanadate indicates that this proton pump is an ATPase. A second proton-translocating system, that is insensitive to vanadate, is postulated to function in the absence of sucrose.

  3. NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension

    PubMed Central

    Orlov, Sergei N.; Koltsova, Svetlana V.; Kapilevich, Leonid V.; Gusakova, Svetlana V.; Dulin, Nickolai O.

    2015-01-01

    This review summarizes the data on the functional significance of ubiquitous (NKCC1) and renal-specific (NKCC2) isoforms of electroneutral sodium, potassium and chloride cotransporters. These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid, respectively. Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume. However, the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds. PMID:26114157

  4. Cotransport of viruses and clay particles in water saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2014-12-01

    This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦΧ174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles hindered the transport of the two viruses considered in this work. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦΧ174, and the capillary potential energy ofKGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water filmis the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO energy potential. Figure 1Schematic illustration of the various concentrations involved in the cotransport experiments for: (a) saturated and (b) unsaturated porous media.

  5. Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2

    PubMed Central

    Medina, Igor; Friedel, Perrine; Rivera, Claudio; Kahle, Kristopher T.; Kourdougli, Nazim; Uvarov, Pavel; Pellegrino, Christophe

    2014-01-01

    In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl−)-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl− concentration ([Cl−]i). Lowering [Cl−]i enhances inhibition, whereas raising [Cl−]i facilitates neuronal activity. A neuron's basal level of [Cl−]i, as well as its Cl− extrusion capacity, is critically dependent on the activity of the electroneutral K+-Cl− cotransporter KCC2, a member of the SLC12 cation-Cl− cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl− extrusion capacity of KCC2 that result in increases of [Cl−]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl− homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions. PMID:24567703

  6. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity.

    PubMed

    Lochner, J E; Spangler, E; Chavarha, M; Jacobs, C; McAllister, K; Schuttner, L C; Scalettar, B A

    2008-09-01

    Recent data suggest that tissue plasminogen activator (tPA) influences long-term plasticity at hippocampal synapses by converting plasminogen into plasmin, which then generates mature brain-derived neurotrophic factor (mBDNF) from its precursor, proBDNF. Motivated by this hypothesis, we used fluorescent chimeras, expressed in hippocampal neurons, to elucidate (1) mechanisms underlying plasminogen secretion from hippocampal neurons, (2) if tPA, plasminogen, and proBDNF are copackaged and cotransported in hippocampal neurons, especially within dendritic spines, and (3) mechanisms mediating the transport of these neuromodulators to sites of release. We find that plasminogen chimeras traffic through the regulated secretory pathway of hippocampal neurons in dense-core granules (DCGs) and that tPA, plasminogen, and proBDNF chimeras are extensively copackaged in DCGs throughout hippocampal neurons. We also find that 80% of spines that contain DCGs contain chimeras of these neuromodulators in the same DCG. Finally, we demonstrate, for the first time, that neuromodulators undergo cotransport along dendrites in rapidly mobile DCGs, indicating that neuromodulators can be efficiently recruited into active spines. These results support the hypothesis that tPA mediates synaptic activation of BDNF by demonstrating that tPA, plasminogen, and proBDNF colocalize in DCGs in spines, where these neuromodulators can undergo activity-dependent release and then interact and/or mediate changes that influence synaptic efficacy. The results also raise the possibility that frequency-dependent changes in extents of neuromodulator release from DCGs influence the direction of plasticity at hippocampal synapses by altering the relative proportions of two proteins, mBDNF and proBDNF, that exert opposing effects on synaptic efficacy.

  7. Two independent evolutionary routes to Na+/H+ cotransport function in membrane pyrophosphatases.

    PubMed

    Nordbo, Erika; Luoto, Heidi H; Baykov, Alexander A; Lahti, Reijo; Malinen, Anssi M

    2016-10-01

    Membrane-bound pyrophosphatases (mPPases) hydrolyze pyrophosphate (PPi) to transport H(+), Na(+) or both and help organisms to cope with stress conditions, such as high salinity or limiting nutrients. Recent elucidation of mPPase structure and identification of subfamilies that have fully or partially switched from Na(+) to H(+) pumping have established mPPases as versatile models for studying the principles governing the mechanism, specificity and evolution of cation transporters. In the present study, we constructed an accurate phylogenetic map of the interface of Na(+)-transporting PPases (Na(+)-PPases) and Na(+)- and H(+)-transporting PPases (Na(+),H(+)-PPases), which guided our experimental exploration of the variations in PPi hydrolysis and ion transport activities during evolution. Surprisingly, we identified two mPPase lineages that independently acquired physiologically significant Na(+) and H(+) cotransport function. Na(+),H(+)-PPases of the first lineage transport H(+) over an extended [Na(+)] range, but progressively lose H(+) transport efficiency at high [Na(+)]. In contrast, H(+)-transport by Na(+),H(+)-PPases of the second lineage is not inhibited by up to 100 mM Na(+) With the identification of Na(+),H(+)-PPase subtypes, the mPPases protein superfamily appears as a continuum, ranging from monospecific Na(+) transporters to transporters with tunable levels of Na(+) and H(+) cotransport and further to monospecific H(+) transporters. Our results lend credence to the concept that Na(+) and H(+) are transported by similar mechanisms, allowing the relative efficiencies of Na(+) and H(+) transport to be modulated by minor changes in protein structure during the course of adaptation to a changing environment.

  8. Metal-phosphate binders

    SciTech Connect

    Howe, Beth Ann; Chaps-Cabrera, Jesus Guadalupe

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  9. Phosphate control in dialysis

    PubMed Central

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-01-01

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients. PMID:24133374

  10. Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus.

    PubMed

    Ding, Yao; Wang, Shan; Jiang, Yan; Yang, Yi; Zhang, Manman; Guo, Yi; Wang, Shuang; Ding, Mei-ping

    2013-11-20

    Fructose-1,6-diphosphate (FDP) shifts the metabolism of glucose from glycolysis to the pentose phosphate pathway and has anticonvulsant activity in several acute seizure animal models. In the present study, we investigated the anti-epileptogenic effects of FDP in an amygdaloid-kindling seizure model, which is an animal model of the most common form of human temporal lobe epilepsy. We found that 1.0 g/kg FDP slowed seizure progression and shortened the corresponding after-discharge duration (ADD). FDP increased the number of stimulations needed to reach seizure stages 2-5 and prolonged the cumulative ADD prior to reaching stages 3-5. It also shortened staying days and cumulative ADD in stages 4-5. However, it demonstrated no significant protective effect when administered after the animals were fully kindled. In hippocampal neurons, cation-chloride co-transporters (CCCs) are suggested to play interesting roles in epilepsy by modulating γ-aminobutyric acid (GABA)ergic activity through controlling GABAA receptor-mediated reversal potential. We examined the potential link between FDP and the hippocampal expression of two main members of the CCCs: the neuron-specific K(+)-Cl(-)co-transporter 2 (KCC2) and Na(+)-K(+)-Cl(-)co-transporter 1 (NKCC1). FDP inhibited the kindling-induced downregulation of KCC2 expression and decreased NKCC1 expression during the kindling session. Taken together, our data reveal that FDP may have protective activity against epileptogenesis, from partial to generalized tonic-clonic seizures. Furthermore, our findings suggest that the FDP-induced imbalance between KCC2 and NKCC1 expression may be involved in the neuroprotective effect.

  11. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation.

    PubMed

    Motomura, Kei; Hirota, Ryuichi; Ohnaka, Nobuteru; Okada, Mai; Ikeda, Takeshi; Morohoshi, Tomohiro; Ohtake, Hisao; Kuroda, Akio

    2011-07-01

    Intracellular phosphate (P(i) ) is normally maintained at a fairly constant concentration in Escherichia coli, mainly by P(i) transport systems and by the 'phosphate balance' between P(i) and polyphosphate (polyP). We have reported previously that excess uptake of P(i) in a phoU mutant results in elevated levels of polyP. Here, we found that the elevated levels of polyP in the mutant could be reduced by the overproduction of YjbB, whose N-terminal half contains Na(+) /P(i) cotransporter domains. The rate of P(i) export increased when the YjbB overproducer grew on a medium containing glycerol-3-phosphate. These results strongly suggested that YjbB reduced the elevated levels of polyP in the phoU mutant by exporting intracellular excess P(i) .

  12. Inhibition of phosphatidylinositide 3-kinase in OK-cells reduces Na/Pi-cotransport but does not interfere with its regulation by parathyroid hormone.

    PubMed

    Pfister, M F; Brunskill, N J; Forgo, J; Stange, G; Biber, J; Murer, H

    1999-08-01

    The importance of phosphatidylinositide 3- kinase(s) [PI 3-kinase(s)] in membrane trafficking processes led us to examine its/their possible role in parathyroid-hormone- (PTH-) induced endocytosis and lysosomal degradation of the type IIa Na/Pi-cotransporter in opossum kidney cells (OK-cells). We used wortmannin, a potent inhibitor of several mammalian PI 3-kinase isoforms, and measured Na/Pi-cotransporter activity and type IIa Na/Pi-cotransporter protein expression; also the induction of a negative dominant subunit (Deltap85) was used to reduce PI 3-kinase activity. Wortmannin and Deltap85 led to a reduction of Na/Pi-cotransport activity but were unable to prevent its inhibition by PTH. Wortmannin led in a dose- and time-dependent manner to a reduction of Na/Pi-cotransport activity and transporter protein expression, and retarded their recovery from PTH-induced inhibition/degradation. The data suggest that a PI 3-kinase "controlled" mechanism is involved in the synthesis (and/or routing) of the apical type IIa Na/Pi-cotransporter in OK-cells. PMID:10398872

  13. Activation of Na+,K+,Cl- cotransport in squid giant axon by extracellular ions: evidence for ordered binding.

    PubMed

    Altamirano, A A; Breitwieser, G E; Russell, J M

    1999-01-12

    Activation of the influx mode of the Na+,K+,Cl- cotransporter (NKCC) by extracellular Na+, K+ and Cl- was studied using the internally dialyzed squid giant axon. Cooperative interactions among the three transported ions were assessed using ion activation of NKCC-mediated 36Cl influx under two sets of experimental conditions. The first, or control condition, used high, non-limiting concentrations of two of the cotransported ions (the co-ions) while activating cotransport with the third ion. Under this non-limiting co-ion condition the calculated Vmax of the cotransporter was between 57 and 60 pmol/cm2/s. The apparent activation (KApp, or half-saturation) constants were: K+, 9 mM; Na+, 52 mM; and Cl-, 146 mM. The second condition used limiting co-ion concentration conditions. In this case, activation by each ion was determined when one of the other two co-ions was present at or near its apparent half-saturation concentration as determined above. Under these limiting conditions, the KApp values for all three co-ions were significantly increased regardless of which co-ion was present at a limiting concentration. The effects on the apparent Vmax were more complicated. When K+ was the limiting co-ion, there was little effect on the Vmax for Na+ or Cl- activation. In contrast, limiting concentrations of Na+ or Cl- both resulted in a large reduction of the apparent Vmax when activating with the other two co-ions. These results are consistent with an ordered binding mechanism for the NKCC in which K+ binds before Na+ or Cl-. Physiological implications for these results are discussed.

  14. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology.

    PubMed

    Kalra, Sanjay

    2014-12-01

    Sodium-glucose co-transporter-2 (SGLT2) inhibitors are a newly developed class of oral anti-diabetic drugs (OADs) with a unique mechanism of action. This review describes the biochemistry and physiology underlying the use of SGLT2 inhibitors, and their clinical pharmacology, including mechanism of action and posology. The pragmatic placement of these molecules in the existing OAD arena is also discussed.

  15. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters.

    PubMed

    Mercado, Adriana; de Los Heros, Paola; Melo, Zesergio; Chávez-Canales, María; Murillo-de-Ozores, Adrián R; Moreno, Erika; Bazúa-Valenti, Silvana; Vázquez, Norma; Hadchouel, Juliette; Gamba, Gerardo

    2016-07-01

    The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms.

  16. Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media.

    PubMed

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P

    2015-07-21

    Attributable to their nanoscale size and slow phosphorus (P) release kinetics, hydroxyapatite nanoparticles (HANPs) are increasingly advocated as a promising P nanofertilizer. Additionally, HANPs have been extensively used to remediate soils, groundwater, and nuclear wastewaters contaminated with metals and radionuclides. Increasing application of HANPs for agronomic and environmental advantages will expedite their dissemination in subsurface environments. Because the biogeochemical cycling of P is intimately coupled with iron, it is anticipated that HANPs and released P from HANPs interact with iron oxides, particularly naturally occurring goethite nanoparticles (GNPs) because of their nanoscale size and high reactivity toward P. Here, we investigated the cotransport and retention of HANPs and GNPs in water-saturated sand columns under environmentally relevant transport conditions (pH and natural organic matter type and concentration). Our results indicated that the "size-selective retention", i.e., preferential retention of larger particles near the column inlet and elution of smaller particles occurred during cotransport of HANPs and GNPs, and the cotransport of both NPs is highly sensitive to solution chemistry that determines NPs dissolution, homo- and heteroaggregation, and co- and competitive-retention. These findings have important insights into application of HANPs as a promising P nanofertilizer and an in situ amendment for contaminated site remediation. PMID:26084013

  17. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles.

    PubMed Central

    Van Leeuwen, C C; Weusthuis, R A; Postma, E; Van den Broek, P J; Van Dijken, J P

    1992-01-01

    Maltose/proton co-transport was studied in intact cells and in plasma membrane vesicles of the yeast Saccharomyces cerevisiae. In order to determine uphill transport in vesicles, plasma membranes were fused with proteoliposomes containing cytochrome c oxidase as a proton-motive force-generating system. Maltose accumulation, dependent on the electrical and pH gradients, was observed. The initial uptake velocity and accumulation ratio in vesicles proved to be dependent on the external pH. Moreover, kinetic analysis of maltose transport showed that Vmax. values greatly decreased with increasing pH, whereas the Km remained virtually constant. These observations were in good agreement with results obtained with intact cells, and suggest that proton binding to the carrier proceeds with an apparent pK of 5.7. The observation with intact cells that maltose is co-transported with protons in a one-to-one stoichiometry was ascertained in the vesicle system by measuring the balance between proton-motive force and the chemical maltose gradient. These results show that maltose transport in vesicles prepared by fusion of plasma membranes with cytochrome c oxidase proteoliposomes behaves in a similar way as in intact cells. It is therefore concluded that this vesicle model system offers a wide range of new possibilities for the study of maltose/proton co-transport in more detail. PMID:1318030

  18. Vanadate and fluoride effects on Na sup + -K sup + -Cl sup minus cotransport in squid giant axon

    SciTech Connect

    Altamirano, A.A.; Breitwieser, G.E.; Russel, J.M. )

    1988-04-01

    The effects of vanadate and fluoride on the Na{sup +}-K{sup +}-Cl{sup {minus}} cotransporter of the squid giant axon were assessed. In axons not treated with these agents, intracellular dialysis with ATP-depleting fluids caused bumetanide-inhibitable {sup 36}Cl influx to fall with a half time of {approximately}16 min. In the presence of either 40 {mu}M vanadate or 5 mM fluoride, the decay of bumetanide-inhibitable {sup 36}Cl influx was significantly slowed; half time for vanadate-treated axons is 45 min and four fluoride-treated axons is 37 min. These agents are not exerting their effects on Na{sup +}-K{sup +}Cl{sup {minus}} cotransport by influencing the rate of ATP depletion of the axon, since they had no effect on the ATP hydrolysis rate of an optic ganglia homogenate. We therefore suggest that these data support the hypothesis that Na{sup +}-K{sup +}-Cl{sup {minus}} cotransport in squid axons is regulated by a phosphorylation-dephosphorylation mechanism and that vanadate and fluoride reduce the rate of dephosphorylation by inhibiting a protein phosphatase.

  19. Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media.

    PubMed

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P

    2015-07-21

    Attributable to their nanoscale size and slow phosphorus (P) release kinetics, hydroxyapatite nanoparticles (HANPs) are increasingly advocated as a promising P nanofertilizer. Additionally, HANPs have been extensively used to remediate soils, groundwater, and nuclear wastewaters contaminated with metals and radionuclides. Increasing application of HANPs for agronomic and environmental advantages will expedite their dissemination in subsurface environments. Because the biogeochemical cycling of P is intimately coupled with iron, it is anticipated that HANPs and released P from HANPs interact with iron oxides, particularly naturally occurring goethite nanoparticles (GNPs) because of their nanoscale size and high reactivity toward P. Here, we investigated the cotransport and retention of HANPs and GNPs in water-saturated sand columns under environmentally relevant transport conditions (pH and natural organic matter type and concentration). Our results indicated that the "size-selective retention", i.e., preferential retention of larger particles near the column inlet and elution of smaller particles occurred during cotransport of HANPs and GNPs, and the cotransport of both NPs is highly sensitive to solution chemistry that determines NPs dissolution, homo- and heteroaggregation, and co- and competitive-retention. These findings have important insights into application of HANPs as a promising P nanofertilizer and an in situ amendment for contaminated site remediation.

  20. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  1. Fundamentals of phosphate transfer.

    PubMed

    Kirby, Anthony J; Nome, Faruk

    2015-07-21

    Historically, the chemistry of phosphate transfer-a class of reactions fundamental to the chemistry of Life-has been discussed almost exclusively in terms of the nucleophile and the leaving group. Reactivity always depends significantly on both factors; but recent results for reactions of phosphate triesters have shown that it can also depend strongly on the nature of the nonleaving or "spectator" groups. The extreme stabilities of fully ionised mono- and dialkyl phosphate esters can be seen as extensions of the same effect, with one or two triester OR groups replaced by O(-). Our chosen lead reaction is hydrolysis-phosphate transfer to water: because water is the medium in which biological chemistry takes place; because the half-life of a system in water is an accepted basic index of stability; and because the typical mechanisms of hydrolysis, with solvent H2O providing specific molecules to act as nucleophiles and as general acids or bases, are models for reactions involving better nucleophiles and stronger general species catalysts. Not least those available in enzyme active sites. Alkyl monoester dianions compete with alkyl diester monoanions for the slowest estimated rates of spontaneous hydrolysis. High stability at physiological pH is a vital factor in the biological roles of organic phosphates, but a significant limitation for experimental investigations. Almost all kinetic measurements of phosphate transfer reactions involving mono- and diesters have been followed by UV-visible spectroscopy using activated systems, conveniently compounds with good leaving groups. (A "good leaving group" OR* is electron-withdrawing, and can be displaced to generate an anion R*O(-) in water near pH 7.) Reactivities at normal temperatures of P-O-alkyl derivatives-better models for typical biological substrates-have typically had to be estimated: by extended extrapolation from linear free energy relationships, or from rate measurements at high temperatures. Calculation is free

  2. Annexin A2 Mediates Apical Trafficking of Renal Na+-K+-2Cl− Cotransporter*

    PubMed Central

    Dathe, Christin; Daigeler, Anna-Lena; Seifert, Wenke; Jankowski, Vera; Mrowka, Ralf; Kalis, Ronny; Wanker, Erich; Mutig, Kerim; Bachmann, Sebastian; Paliege, Alexander

    2014-01-01

    The furosemide-sensitive Na+-K+-2Cl− cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca2+-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter. PMID:24526686

  3. Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading

    PubMed Central

    Steffensen, Annette B.; Sword, Jeremy; Croom, Deborah

    2015-01-01

    Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl−, and, accordingly, combined blockade of Cl−-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. SIGNIFICANCE STATEMENT Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular

  4. Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase show apparent specificity for a specific ribulose 5-phosphate species.

    PubMed

    Anderson, L E

    1987-02-01

    Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase appear to show specificity for a particular ribulose 5-phosphate species. The effect of this specificity will be channeling of ribulose 5-phosphate from the isomerase to the kinase during photosynthesis.

  5. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  6. Modeling dense-colloid and virus cotransport in three-dimensional porous media.

    PubMed

    Katzourakis, Vasileios E; Chrysikopoulos, Constantinos V

    2015-10-01

    A three-dimensional numerical model was developed to investigate the simultaneous transport (cotransport) of dense colloids and viruses in homogeneous, water saturated, porous media with horizontal uniform flow. The dense colloids are assumed to exist in two different phases: suspended in the aqueous phase, and attached reversibly and/or irreversibly onto the solid matrix. The viruses are assumed to exist in four different phases: suspended in aqueous phase, attached onto the solid matrix, attached onto suspended colloids, and attached onto colloids already attached onto the solid matrix. The viruses in each of the four phases are assumed to undergo inactivation with different rates. Moreover, the suspended dense colloids as well as viruses attached onto suspended dense colloids are assumed to exhibit a "restricted" settling velocity as a consequence of the gravitational force; whereas, viruses due to their small sizes and densities are assumed to have negligible "restricted" settling velocity. The governing differential equations were solved numerically with the finite difference schemes, implicitly or explicitly implemented. Model simulations have shown that the presence of dense colloid particles can either enhance or hinder the horizontal transport of viruses, but also can increase the vertical migration of viruses.

  7. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents

    PubMed Central

    Vivian, Eva M

    2014-01-01

    Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM) achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM). The renal sodium-glucose co-transporter 2 (SGLT2) is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM. PMID:25598831

  8. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases

    PubMed Central

    Bazúa-Valenti, Silvana

    2015-01-01

    The renal thiazide-sensitive Na+-Cl− cotransporter (NCC) is the salt transporter in the distal convoluted tubule. Its activity is fundamental for defining blood pressure levels. Decreased NCC activity is associated with salt-remediable arterial hypotension with hypokalemia (Gitelman disease), while increased activity results in salt-sensitive arterial hypertension with hyperkalemia (pseudohypoaldosteronism type II; PHAII). The discovery of four different genes causing PHAII revealed a complex multiprotein system that regulates the activity of NCC. Two genes encode for with-no-lysine (K) kinases WNK1 and WNK4, while two encode for kelch-like 3 (KLHL3) and cullin 3 (CUL3) proteins that form a RING type E3 ubiquitin ligase complex. Extensive research has shown that WNK1 and WNK4 are the targets for the KLHL3-CUL3 complex and that WNKs modulate the activity of NCC by means of intermediary Ste20-type kinases known as SPAK or OSR1. The understanding of the effect of WNKs on NCC is a complex issue, but recent evidence discussed in this review suggests that we could be reaching the end of the dark ages regarding this matter. PMID:25788573

  9. Experimental investigation of viruses and clay particles cotransport in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2014-05-01

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid ?ltration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of both suspended and attached onto suspended clay-particles viruses was retarded, compared to the conservative tracer.

  10. LLC-PK sub 1 cells express Na sup + -lactate cotransport in apical membranes after confluency

    SciTech Connect

    Poustis-Delpont, C.; Mengual, R.; Sudaka, P. )

    1988-12-01

    L-({sup 3}H)lactate uptake was characterized in LLC-PK{sub 1} cell apical membrane vesicles obtained by intensive culture on microcarrier beads. The apical membrane preparation technique involved MgCl{sub 2} precipitation. Na{sup +}-dependent L-({sup 3}H)lactate uptake was present only after confluency; its appearance paralleled the subcellular localization of aminopeptidase in apical membranes. L-({sup 3}H)lactate uptake was Na{sup +}-dependent and electrogenic. Only the Na{sup +}-dependent component of L({sup 3}H)lactate uptake was saturable with one family of independent carriers. The apparent affinity constant was 1.1 {plus minus} 0.25 mM and the apparent maximal velocity was 29 {plus minus} 3 nmol{center dot}mg{sup {minus}1}{center dot}min{sup {minus}1}. The Na{sup +}-lactate cotransport stoichiometry was 2 Na{sup +} for 1 lactate. The specificity of the L-lactate transport system was compatible with that of the monocarboxylic acid pathway described previously brush-border membranes of kidney cortex and discrete from the tricarboxylic acid carrier, the D-glucose transporter, and the general pathway for anions. The LLC-PK{sub 1} cell line appears to be a useful tool for study of the regulation of L-lactate uptake and biosynthesis of the renal monocarboxylic acid transporter.

  11. Metabolic regulation of Na(+)/P(i)-cotransporter-1 gene expression in H4IIE cells.

    PubMed

    Xie, Z; Li, H; Liu, L; Kahn, B B; Najjar, S M; Shah, W

    2000-04-01

    We showed that the rat Na(+)/P(i) cotransporter-1 (RNaPi-1) gene was regulated by insulin and glucose in rat hepatocytes. The aim of this work was to elucidate signaling pathways of insulin-mediated metabolic regulation of the RNaPi-1 gene in H4IIE cells. Insulin increased RNaPi-1 mRNA abundance in the presence of glucose and decreased RNaPi-1 mRNA in the absence of glucose, clearly establishing an involvement of metabolic signals for insulin-induced upregulation of the RNaPi-1 gene. Pyruvate and insulin increased RNaPi-1 expression but downregulated L-pyruvate kinase, indicating the existence of gene-specific metabolic signals. Although fructose, glycerol, and lactate could support insulin-induced upregulation of the RNaPi-1 gene, compounds entering metabolism beyond pyruvate oxidation, such as acetate and citrate, could not, suggesting that RNaPi-1-specific metabolic signals are generated at or above pyruvate oxidation. Wortmannin, LY-294002, and rapamycin abolished the insulin effect on the RNaPi-1 gene, whereas expression of dominant negative Asn(17) Ras and mitogen-activating protein kinase (MAPK) kinase (MEK) inhibitor PD-98059 exhibited no effect. Thus we herein propose that metabolic regulation of RNaPi-1 expression by insulin is mediated through the phosphatidylinositol 3-kinase/p70 ribosomal S6 kinase pathways, but not the Ras/MAPK pathway. PMID:10751198

  12. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. PMID:26945065

  13. Sodium coupled glucose co-transporters contribute to hypothalamic glucose-sensing

    PubMed Central

    O'Malley, Dervla; Reimann, Frank; Simpson, Anna K; Gribble, Fiona M

    2007-01-01

    Specialised neurons within the hypothalamus have the ability to sense and respond to changes in ambient glucose concentrations. We investigated the mechanisms underlying glucose-triggered activity in glucose-excited (GE) neurons, using primary cultures of rat hypothalamic neurons monitored by fluorescence calcium imaging. 35% (738/2139) of neurons were excited by increasing glucose from 3 to 15mM, but only 9% (6/64) of these GE neurons were activated by tolbutamide, suggesting the involvement of a KATP channel-independent mechanism. α-Methylglucopyranoside (αMDG, 12mM), a non-metabolisable substrate of sodium glucose co-transporters (SGLTs), mimicked the effect of high glucose in 67% of GE neurons, and both glucose and αMDG-triggered excitation were blocked by Na+ removal or by the SGLT inhibitor, phloridzin (100nM). In the presence of 0.5mM glucose and tolbutamide, responses could also be triggered by 3.5mM αMDG, supporting a role for an SGLT-associated mechanism at low as well as high substrate concentrations. By RT-PCR, we detected SGLT1, SGLT3a, SGLT3b in both cultured neurons and adult rat hypothalamus. Our findings suggest a novel role for SGLTs in glucose-sensing by hypothalamic GE neurons. PMID:17130483

  14. Evidence for a specific glutamate/H/sup +/ cotransport in isolated mesophyll cells. [Asparagus sprengeri

    SciTech Connect

    McCutcheon, S.L.; Bown, A.W.

    1987-03-01

    Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO/sub 4/. Immediate alkalinization of the medium occurred on the addition of 1 millimolar concentrations of L-glutamate (Glu) and its analog L-methionine-D,L-sulfoximine (L-MSO). D-Glu and the L isomers of the protein amino acids did not elicit alkalinization. L-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar L-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H/sup +//10/sup 6/ cells minute. L-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of L-(U-/sup 14/C)glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by L-MSO. L-Glu had no influence on K/sup +/ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific L-Glu/proton uptake process is present in Asparagus mesophyll cells.

  15. Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns.

    PubMed

    Ma, Jie; Guo, Huaming; Lei, Mei; Wan, Xiaoming; Zhang, Hanzhi; Feng, Xiaojuan; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Transport of environmental pollutants through porous media is influenced by colloids. Co-transport of As(V) and soil colloids at different pH were systematically investigated by monitoring breakthrough curves (BTCs) in saturated sand columns. A solute transport model was applied to characterize transport and retention sites of As(V) in saturated sand in the presence of soil colloids. A colloid transport model and the DLVO theory were used to reveal the mechanism and hypothesis of soil colloid-promoted As(V) transport in the columns. Results showed that rapid transport of soil colloids, regulated by pH and ionic strength, promoted As(V) transport by blocking As(V) adsorption onto sand, although soil colloids had low adsorption for As(V). The promoted transport was more significant at higher concentrations of soil colloids (between 25 mg L(-1) and 150 mg L(-1)) due to greater blocking effect on As(V) adsorption onto the sand surfaces. The blocking effect of colloids was explained by the decreases in both instantaneous (equilibrium) As adsorption and first-order kinetic As adsorption on the sand surface sites. The discovery of this blocking effect improves our understanding of colloid-promoted As transport in saturated porous media, which provides new insights into role of colloids, especially colloids with low As adsorption capacity, in As transport and mobilization in soil-groundwater systems.

  16. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    PubMed

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger.

  17. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill

    USGS Publications Warehouse

    Breves, Jason P.; Serizier, Sandy B.; Goffin, Vincent; McCormick, Stephen D.; Karlstrom, Rolf O.

    2013-01-01

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na+/Cl− cotransporter (ncc; slc12a10.2), Na+/H+ exchanger (nhe3b; slc9a3.2), and epithelial Ca2+ channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl− uptake in zebrafish for the first time.

  18. Sodium glucose co-transporter inhibitors – A new class of old drugs

    PubMed Central

    Malhotra, Aneeta; Kudyar, Surbhi; Gupta, Anil K.; Kudyar, Rattan P.; Malhotra, Pavan

    2015-01-01

    Sodium glucose co-transporter (SGLT) inhibitors are a new class of drugs which are used in the pharmacotherapy of Type-II diabetes, which happens to be a major risk factor for developing both micro as well as macro-vascular complications. These drugs inhibit the glucose reabsorption by inhibiting SGLT, which exhibits a novel and promising mechanism of action by promoting the urinary glucose excretion hence providing a basis of therapeutic intervention. Results of SGLT-II inhibitors are very encouraging as there is a significant elevation of GLP-1 level, which forms the basis of relevance in treatment of diabetes. It targets the HbA1C and keeps a check on its levels. It also exerts other positive benefits such as weight loss, reduction in blood glucose levels, reduction in blood pressure and improvement in insulin resistance and β-cell dysfunction: All contributing to effective glycemic control. SGLT inhibition will develop as effective modality as it has the capability of inhibiting reabsorption of greater percentage of filtered glucose load. PMID:26539362

  19. A unifying mechanism for WNK kinase regulation of sodium-chloride cotransporter.

    PubMed

    Huang, Chou-Long; Cheng, Chih-Jen

    2015-11-01

    Mammalian with-no-lysine [K] (WNK) kinases are a family of four serine-threonine protein kinases, WNK1-4. Mutations of WNK1 and WNK4 in humans cause pseudohypoaldosteronism type II (PHA2), an autosomal-dominant disease characterized by hypertension and hyperkalemia. Increased Na(+) reabsorption through Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule plays an important role in the pathogenesis of hypertension in patients with PHA2. However, how WNK1 and WNK4 regulate NCC and how mutations of WNKs cause activation of NCC have been controversial. Here, we review current state of literature supporting a compelling model that WNK1 and WNK4 both contribute to stimulation of NCC. The precise combined effects of WNK1 and WNK4 on NCC remain unclear but likely are positive rather than antagonistic. The recent discovery that WNK kinases may function as an intracellular chloride sensor adds a new dimension to the physiological role of WNK kinases. Intracellular chloride-dependent regulation of WNK's may underlie the mechanism of regulation of NCC by extracellular K(+). Definite answer yet will require future investigation by tubular perfusion in mice with altered WNK kinase expression.

  20. The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate.

    PubMed

    Mistry, Abinash C; Wynne, Brandi M; Yu, Ling; Tomilin, Viktor; Yue, Qiang; Zhou, Yiqun; Al-Khalili, Otor; Mallick, Rickta; Cai, Hui; Alli, Abdel A; Ko, Benjamin; Mattheyses, Alexa; Bao, Hui-Fang; Pochynyuk, Oleh; Theilig, Franziska; Eaton, Douglas C; Hoover, Robert S

    2016-10-01

    The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.

  1. Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns.

    PubMed

    Ma, Jie; Guo, Huaming; Lei, Mei; Wan, Xiaoming; Zhang, Hanzhi; Feng, Xiaojuan; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Transport of environmental pollutants through porous media is influenced by colloids. Co-transport of As(V) and soil colloids at different pH were systematically investigated by monitoring breakthrough curves (BTCs) in saturated sand columns. A solute transport model was applied to characterize transport and retention sites of As(V) in saturated sand in the presence of soil colloids. A colloid transport model and the DLVO theory were used to reveal the mechanism and hypothesis of soil colloid-promoted As(V) transport in the columns. Results showed that rapid transport of soil colloids, regulated by pH and ionic strength, promoted As(V) transport by blocking As(V) adsorption onto sand, although soil colloids had low adsorption for As(V). The promoted transport was more significant at higher concentrations of soil colloids (between 25 mg L(-1) and 150 mg L(-1)) due to greater blocking effect on As(V) adsorption onto the sand surfaces. The blocking effect of colloids was explained by the decreases in both instantaneous (equilibrium) As adsorption and first-order kinetic As adsorption on the sand surface sites. The discovery of this blocking effect improves our understanding of colloid-promoted As transport in saturated porous media, which provides new insights into role of colloids, especially colloids with low As adsorption capacity, in As transport and mobilization in soil-groundwater systems. PMID:27017140

  2. A Substrate Pharmacophore for the Human Sodium Taurocholate Co-transporting Polypeptide

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2014-01-01

    Human Sodium Taurocholate Co-transporting Polypeptide (NTCP) is the main bile acid uptake transporter in the liver with the capability to translocate xenobiotics. While its inhibitor requirements have been recently characterized, its substrate requirements have not. The objectives of this study were a) to elucidate NTCP substrate requirements using native bile acids and bile acid analogs, b) to develop the first pharmacophore for NTCP substrates and compare it with the inhibitor pharmacophores, and c) to identify additional NTCP novel substrates. Thus, 18 native bile acids and two bile acid conjugates were initially assessed for NTCP inhibition and/or uptake, which suggested a role of hydroxyl pattern and steric interaction in NTCP binding and translocation. A common feature pharmacophore for NTCP substrate uptake was developed, using 14 native bile acids and bile acid conjugates, yielding a model which featured three hydrophobes, one hydrogen bond donor, one negative ionizable feature and three excluded volumes. This model was used to search a database of FDA approved drugs and retrieved the majority of the known NTCP substrates. Among the retrieved drugs, irbesartan and losartan were identified as novel NTCP substrates, suggesting a potential role of NTCP in drug disposition. PMID:25448570

  3. [Canagliflozin (Invokana): kidney SGLT2 cotransporter inhibitor for treating type 2 diabetes].

    PubMed

    Scheen, A J

    2014-12-01

    Canagliflozin is an inhibitor of sodium-glucose cotransporters type 2 (SGLT2) that are present in renal tubules. This specific insulin-independent mechanism promotes glucosuria, which results in a reduction in fasting and postprandial glycaemia and a decrease of glycated haemoglobin (HbA(1c)). Furthermore, canagliflozin promotes weight loss and lowers arterial (mainly systolic) blood pressure. Its efficacy is decreased in patients with renal insufficiency and the treatment should be stopped if estimated glomerular filtration rate is below 45 ml/min/1.73 m2. Both the efficacy and safety of canagliflozin have been investigated in 24 to 104-week controlled trials versus placebo or versus an active comparator (glimepiride or sitagliptin). The mean reduction in HbA(1c) averages 0.75% when added to other treatments, as compared to placebo. The 100 mg dose is as active as sitagliptin 100 mg while the 300 mg canagliflozin dose is even more efficacious. Adverse events are mostly mycotic genital infections and more rarely mild urinary tract infections. Caution is required in elderly patients and the risk of volume depletion should be checked (hypotension). Hypoglycaemia may occur only in patients already treated with an insulin-secreting agent or insulin. Canagliflozin is commercialized under the trade name Invokana, at the doses of 100 mg and 300 mg once daily, for the treatment of type 2 diabetes. PMID:25796788

  4. Prolactin regulates transcription of the ion uptake Na+/Cl− cotransporter (ncc) gene in zebrafish gill

    PubMed Central

    Breves, Jason P.; Serizier, Sandy B.; Goffin, Vincent; McCormick, Stephen D.; Karlstrom, Rolf O.

    2013-01-01

    Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na+/Cl− cotransporter (ncc; slc12a10.2), Na+/H+ exchanger (nhe3b; slc9a3.2), and epithelial Ca2+ channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl− uptake in zebrafish for the first time. PMID:23395804

  5. [Canagliflozin (Invokana): kidney SGLT2 cotransporter inhibitor for treating type 2 diabetes].

    PubMed

    Scheen, A J

    2014-12-01

    Canagliflozin is an inhibitor of sodium-glucose cotransporters type 2 (SGLT2) that are present in renal tubules. This specific insulin-independent mechanism promotes glucosuria, which results in a reduction in fasting and postprandial glycaemia and a decrease of glycated haemoglobin (HbA(1c)). Furthermore, canagliflozin promotes weight loss and lowers arterial (mainly systolic) blood pressure. Its efficacy is decreased in patients with renal insufficiency and the treatment should be stopped if estimated glomerular filtration rate is below 45 ml/min/1.73 m2. Both the efficacy and safety of canagliflozin have been investigated in 24 to 104-week controlled trials versus placebo or versus an active comparator (glimepiride or sitagliptin). The mean reduction in HbA(1c) averages 0.75% when added to other treatments, as compared to placebo. The 100 mg dose is as active as sitagliptin 100 mg while the 300 mg canagliflozin dose is even more efficacious. Adverse events are mostly mycotic genital infections and more rarely mild urinary tract infections. Caution is required in elderly patients and the risk of volume depletion should be checked (hypotension). Hypoglycaemia may occur only in patients already treated with an insulin-secreting agent or insulin. Canagliflozin is commercialized under the trade name Invokana, at the doses of 100 mg and 300 mg once daily, for the treatment of type 2 diabetes.

  6. Vesicular Inhibitory Amino Acid Transporter Is a Cl−/γ-Aminobutyrate Co-transporter*

    PubMed Central

    Juge, Narinobu; Muroyama, Akiko; Hiasa, Miki; Omote, Hiroshi; Moriyama, Yoshinori

    2009-01-01

    The vesicular inhibitory amino acid transporter (VIAAT) is a synaptic vesicle protein responsible for the vesicular storage of γ-aminobutyrate (GABA) and glycine which plays an essential role in GABAergic and glycinergic neurotransmission. The transport mechanism of VIAAT remains largely unknown. Here, we show that proteoliposomes containing purified VIAAT actively took up GABA upon formation of membrane potential (Δψ) (positive inside) but not ΔpH. VIAAT-mediated GABA uptake had an absolute requirement for Cl− and actually accompanied Cl− movement. Kinetic analysis indicated that one GABA molecule and two Cl− equivalents were transported during one transport cycle. VIAAT in which Glu213 was specifically mutated to alanine completely lost the ability to take up both GABA and Cl−. Essentially the same results were obtained with glycine, another substrate of VIAAT. These results demonstrated that VIAAT is a vesicular Cl− transporter that co-transports Cl− with GABA or glycine in a Δψ dependent manner. It is concluded that Cl− plays an essential role in vesicular storage of GABA and glycine. PMID:19843525

  7. Effect of gravity on virus and clay colloid cotransport through vertical water-saturated columns

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2015-04-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columnspacked with glass beadswas investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (kGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in bothvertical upward (VU) and vertically downward (VD) flowdirections. For most of the cases examined in this study, estimated mass recovery values were higher for VD than VU flows, suggesting that the flow direction significantly influenced particle deposition.KGa-1b hindered the transport of ΦX174 under VD flow conditions,while STx-1b facilitated the transport of ΦX174 under both VU and VD flow conditions. Moreover, KGa-1b hindered,while STx-1b facilitated the transport of MS2 in all of thecases examined. Also, the experimental data were used for the estimation of virus surface-coverages, and virus surface concentrations for virus diffusion-limited adsorption, and virus adsorption by sedimentation. The sedimentation limited virus adsorption was higher for VD than VU flows, and the diffusion-limited adsorption was higher for MS2 than ΦX174.

  8. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system.

    PubMed Central

    Hagenbuch, B; Stieger, B; Foguet, M; Lübbert, H; Meier, P J

    1991-01-01

    Liver parenchymal cells continuously extract high amounts of bile acids from portal blood plasma. This uptake process is mediated by a Na+/bile acid cotransport system. A cDNA encoding the rat liver bile acid uptake system has been isolated by expression cloning in Xenopus laevis oocytes. The cloned transporter is strictly sodium-dependent and can be inhibited by various non-bile-acid organic compounds. Sequence analysis of the cDNA revealed an open reading frame of 1086 nucleotides coding for a protein of 362 amino acids (calculated molecular mass 39 kDa) with five possible N-linked glycosylation sites and seven putative transmembrane domains. Translation experiments in vitro and in oocytes indicate that the transporter is indeed glycosylated and that its polypeptide backbone has an apparent molecular mass of 33-35 kDa. Northern blot analysis with the cloned probe revealed crossreactivity with mRNA species from rat kidney and intestine as well as from liver tissues of mouse, guinea pig, rabbit, and man. Images PMID:1961729

  9. Preserved Na/HCO3 cotransporter sensitivity to insulin may promote hypertension in metabolic syndrome.

    PubMed

    Nakamura, Motonobu; Yamazaki, Osamu; Shirai, Ayumi; Horita, Shoko; Satoh, Nobuhiko; Suzuki, Masashi; Hamasaki, Yoshifumi; Noiri, Eisei; Kume, Haruki; Enomoto, Yutaka; Homma, Yukio; Seki, George

    2015-03-01

    Hyperinsulinemia can contribute to hypertension through effects on sodium transport. To test whether the stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in insulin resistance, we compared the effects of insulin on abdominal adipocytes and proximal tubules in rats and humans. Insulin markedly stimulated the sodium-bicarbonate cotransporter (NBCe1) activity in isolated proximal tubules through the phosphoinositide 3-kinase (PI3-K) pathway. Gene silencing in rats showed that while insulin receptor substrate (IRS)1 mediates the insulin effect on glucose uptake into adipocytes, IRS2 mediates the insulin effect on proximal tubule transport. The stimulatory effect of insulin on glucose uptake into adipocytes was severely reduced, but its stimulatory effect on NBCe1 activity was completely preserved in insulin-resistant Otsuka Long-Evans Tokushima Fatty (OLETF) rats and patients with insulin resistance. Despite widespread reduction of IRS1 and IRS2 expression in insulin-sensitive tissues, IRS2 expression in the kidney cortex was exceptionally preserved in both OLETF rats and patients with insulin resistance. Unlike liver, acute insulin injection failed to change the expression levels of IRS2 and sterol regulatory element-binding protein 1 in rat kidney cortex, indicating that regulatory mechanisms of IRS2 expression are distinct in liver and kidney. Thus, preserved stimulation of proximal tubule transport through the insulin/IRS2/PI3-K pathway may play an important role in the pathogenesis of hypertension associated with metabolic syndrome.

  10. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives.

    PubMed

    John, Mathew; Gopinath, Deepa; Jagesh, Rejitha

    2016-01-01

    The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV) outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis. PMID:26904465

  11. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus.

    PubMed

    Yan, Huan; Zhong, Guocai; Xu, Guangwei; He, Wenhui; Jing, Zhiyi; Gao, Zhenchao; Huang, Yi; Qi, Yonghe; Peng, Bo; Wang, Haimin; Fu, Liran; Song, Mei; Chen, Pan; Gao, Wenqing; Ren, Bijie; Sun, Yinyan; Cai, Tao; Feng, Xiaofeng; Sui, Jianhua; Li, Wenhui

    2014-01-01

    Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157-165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV. PMID:25409679

  12. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus.

    PubMed

    Yan, Huan; Zhong, Guocai; Xu, Guangwei; He, Wenhui; Jing, Zhiyi; Gao, Zhenchao; Huang, Yi; Qi, Yonghe; Peng, Bo; Wang, Haimin; Fu, Liran; Song, Mei; Chen, Pan; Gao, Wenqing; Ren, Bijie; Sun, Yinyan; Cai, Tao; Feng, Xiaofeng; Sui, Jianhua; Li, Wenhui

    2012-01-01

    Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157-165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV.DOI:http://dx.doi.org/10.7554/eLife.00049.001. PMID:23150796

  13. Osmoregulation requires brain expression of the renal Na-K-2Cl cotransporter NKCC2.

    PubMed

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T; Greenwood, Michael P; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; Mecawi, Andre de Souza; Vechiato, Fernanda M V; de Lima, Juliana B M; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep; Murphy, David

    2015-04-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats. PMID:25834041

  14. Identification and membrane localization of electrogenic sodium bicarbonate cotransporters in Calu-3 cells.

    PubMed

    Kreindler, James L; Peters, Kathryn W; Frizzell, Raymond A; Bridges, Robert J

    2006-07-01

    Cystic fibrosis (CF) is a severely life-shortening genetic disease resulting from mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR). Impaired bicarbonate secretion is a key component of CF-related pancreatic disease, but the role of impaired bicarbonate secretion in CF lung disease is less well understood. The submucosal glands of the conducting airways produce and secrete a complex airway surface liquid that lines the airway epithelium and plays a significant role in mucociliary clearance. The serous cell is the predominant cell type of the submucosal gland and a predominant site of CFTR expression. Calu-3 cells are a model of airway submucosal gland serous cells that demonstrates vectorial bicarbonate secretion in response to elevations in cAMP. Based on previously published measurements of unidirectional ion flux, pharmacological inhibition of short-circuit current and ion substitution studies, one can hypothesize the existence of an electrogenic sodium bicarbonate cotransporter (NBC) in the basolateral membrane of Calu-3 cells that mediates bicarbonate entry from the interstitium. To test this hypothesis, we performed reverse-transcriptase PCR, western blotting, and surface biotinylation to identify and localize electrogenic NBCs in Calu-3 cells. Our data demonstrate that both pNBC1 and NBC4 mRNAs can be identified and that their protein products are expressed at the basolateral membrane of polarized Calu-3 cells. These data suggest that these transporters contribute to regulated bicarbonate secretion across Calu-3 cells and perhaps human airway submucosal glands.

  15. Interleukin 18 function requires both interleukin 18 receptor and Na-Cl co-transporter

    PubMed Central

    Wang, Jing; Sun, Chongxiu; Gerdes, Norbert; Liu, Conglin; Liao, Mengyang; Liu, Jian; Shi, Michael A.; He, Aina; Zhou, Yi; Sukhova, Galina K.; Chen, Huimei; Cheng, Xianwu; Kuzuya, Masafumi; Murohara, Toyoaki; Zhang, Jie; Cheng, Xiang; Jiang, Mengmeng; Shull, Gary E.; Rogers, Shaunessy; Yang, Chao-Ling; Ke, Qiang; Jelen, Sabina; Bindels, René; Ellison, David H.; Jarolim, Petr; Libby, Peter; Shi, Guo-Ping

    2015-01-01

    Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms1,2. Interruption of IL18 action reduces atherosclerosis in mice3,4. This study shows that the absence of IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E-deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding or signaling. IL18 antibody-mediated immunoprecipitation identified an interaction between IL18 and Na-Cl co-transporter (NCC), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney5. Yet, we find NCC expression and colocalization with IL18r in atherosclerotic lesions and both molecules form a complex. IL18 also binds to the cell surface and induces cell signaling and down-stream cytokine expression in NCC-transfected COS-7 cells that do not express IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or those lacking IL18r or NCC respond to IL18 binding or IL18 induction of cell signaling and cytokine and chemokine production, but those with combined deficiency of IL18r and NCC do not. This study identifies NCC as an IL18-binding protein that coordinates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis. PMID:26099046

  16. Inhibition of the Sodium-Potassium-Chloride Cotransporter Isoform-1 Reduces Glioma Invasion

    PubMed Central

    Haas, Brian R.; Sontheimer, Harald

    2010-01-01

    Malignant gliomas metastasize throughout the brain by infiltrative cell migration into peritumoral areas. Invading cells undergo profound changes in cell shape and volume as they navigate extracellular spaces along blood vessels and white matter tracts. Volume changes are aided by the concerted release of osmotically active ions, most notably K+ and Cl−. Their efflux through ion channels along with obligated water causes rapid cell shrinkage. Suitable ionic gradients must be established and maintained through the activity of ion transport systems. Here, we show that the Sodium-Potassium-Chloride Cotransporter Isoform-1 (NKCC1) provides the major pathway for Cl− accumulation in glioma cells. NKCC1 localizes to the leading edge of invading processes and pharmacological inhibition using the loop diuretic bumetanide inhibits in vitro Transwell migration by 25–50%. shRNA-knockdowns of NKCC1 yielded a similar inhibition and a loss of bumetanide-sensitive cell volume regulation. A loss of NKCC1 function did not affect cell motility in two dimensional assays lacking spatial constraints but manifested only when cells had to undergo volume changes during migration. Intracranial implantation of human gliomas into SCID mice showed a marked reduction in cell invasion when NKCC1 function was disrupted genetically or by twice daily injection of the FDA approved NKCC1 inhibitor Bumex. This data supports consideration of Bumex as adjuvant therapy for patients with high grade gliomas. PMID:20570904

  17. Molecular cloning and functional expression of a sodium bicarbonate cotransporter from guinea-pig parotid glands.

    PubMed

    Koo, Na-Youn; Li, Jingchao; Hwang, Sung Min; Choi, Se-Young; Lee, Sung Joong; Oh, Seog-Bae; Kim, Joong-Soo; Lee, Jong Heun; Park, Kyungpyo

    2006-04-21

    We recently found that the concentration of HCO3- in guinea-pig saliva is very similar to that of human saliva; however, the entity that regulates HCO3- transport has not yet been fully characterized. In order to investigate the mechanism of HCO3- transport, we identified, cloned, and characterized a sodium bicarbonate (Na(+)/HCO3- cotransporter found in guinea-pig parotid glands (gpNBC1). The gpNBC1 gene encodes a 1079-amino acid protein that has 95% and 96% homology with human and mouse parotid NBC1, respectively. Oocytes expressing gpNBC1 were exposed to HCO3- or Na(+)-free solutions, which resulted in a marked change in membrane potentials (V(m)), suggesting that gpNBC1 is electrogenic. Likewise, a gpNBC1-mediated pH recovery was observed in gpNBC1 transfected human hepatoma cells; however, in the presence of 4, 4-diisothiocyanostilbene-2,2-disulfonic acid, a specific NBC1 inhibitor, such changes in V(m) and pH(i) were not observed. Together, the data show that the cloned guinea-pig gene is a functional, as well as sequence homologue of human NBC1. PMID:16513089

  18. Ipragliflozin: A novel sodium-glucose cotransporter 2 inhibitor developed in Japan

    PubMed Central

    Ohkura, Tsuyoshi

    2015-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibition induces glucosuria and decreases blood glucose levels in diabetic patients and lowers hypoglycemic risk. SGLT1 is expressed in the kidney and intestine; SGLT1 inhibition causes abdominal symptoms such as diarrhea and reduces incretin secretion. Therefore, SGLT2 selectivity is important. Ipragliflozin is highly selective for SGLT2. In type 2 diabetes mellitus (T2DM), urinary glucose excretion increased to 90 g/24 h after 28 d of treatment with ipragliflozin 300 mg/d. Twelve weeks of ipragliflozin 50 mg/d vs placebo reduced glycated hemoglobin and body weight by 0.65% and 0.66 kg, respectively, in Western T2DM patients, and by 1.3% and 1.89 kg, respectively, in Japanese patients. Ipragliflozin (highly selective SGLT2 inhibitor) improves glycemic control and reduces body weight and lowers hypoglycemic risk and abdominal symptoms. Ipragliflozin can be a novel anti-diabetic and anti-obesity agent. PMID:25685284

  19. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium–Glucose Cotransporter 2 Inhibition

    PubMed Central

    Buschur, Elizabeth O.; Buse, John B.; Cohan, Pejman; Diner, Jamie C.; Hirsch, Irl B.

    2015-01-01

    OBJECTIVE Sodium–glucose cotransporter 2 (SGLT-2) inhibitors are the most recently approved antihyperglycemic medications. We sought to describe their association with euglycemic diabetic ketoacidosis (euDKA) in hopes that it will enhance recognition of this potentially life-threatening complication. RESEARCH DESIGN AND METHODS Cases identified incidentally are described. RESULTS We identified 13 episodes of SGLT-2 inhibitor–associated euDKA or ketosis in nine individuals, seven with type 1 diabetes and two with type 2 diabetes, from various practices across the U.S. The absence of significant hyperglycemia in these patients delayed recognition of the emergent nature of the problem by patients and providers. CONCLUSIONS SGLT-2 inhibitors seem to be associated with euglycemic DKA and ketosis, perhaps as a consequence of their noninsulin-dependent glucose clearance, hyperglucagonemia, and volume depletion. Patients with type 1 or type 2 diabetes who experience nausea, vomiting, or malaise or develop a metabolic acidosis in the setting of SGLT-2 inhibitor therapy should be promptly evaluated for the presence of urine and/or serum ketones. SGLT-2 inhibitors should only be used with great caution, extensive counseling, and close monitoring in the setting of type 1 diabetes. PMID:26078479

  20. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives

    PubMed Central

    John, Mathew; Gopinath, Deepa; Jagesh, Rejitha

    2016-01-01

    The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV) outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis. PMID:26904465

  1. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    PubMed Central

    Singh, Awadhesh Kumar

    2015-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism. PMID:26693421

  2. Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2

    PubMed Central

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T.; Greenwood, Michael P.; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; de Souza Mecawi, Andre; Vechiato, Fernanda M.V.; de Lima, Juliana B.M.; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep

    2015-01-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution—rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats. PMID:25834041

  3. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors. PMID:26604280

  4. Direct control of Na(+)-K(+)-2Cl(-)-cotransport protein (NKCC1) expression with aldosterone.

    PubMed

    Ding, Bo; Frisina, Robert D; Zhu, Xiaoxia; Sakai, Yoshihisa; Sokolowski, Bernd; Walton, Joseph P

    2014-01-01

    Sodium/potassium/chloride cotransporter (NKCC1) proteins play important roles in Na(+) and K(+) concentrations in key physiological systems, including cardiac, vascular, renal, nervous, and sensory systems. NKCC1 levels and functionality are altered in certain disease states, and tend to decline with age. A sensitive, effective way of regulating NKCC1 protein expression has significant biotherapeutic possibilities. The purpose of the present investigation was to determine if the naturally occurring hormone aldosterone (ALD) could regulate NKCC1 protein expression. Application of ALD to a human cell line (HT-29) revealed that ALD can regulate NKCC1 protein expression, quite sensitively and rapidly, independent of mRNA expression changes. Utilization of a specific inhibitor of mineralocorticoid receptors, eplerenone, implicated these receptors as part of the ALD mechanism of action. Further experiments with cycloheximide (protein synthesis inhibitor) and MG132 (proteasome inhibitor) revealed that ALD can upregulate NKCC1 by increasing protein stability, i.e., reducing ubiquitination of NKCC1. Having a procedure for controlling NKCC1 protein expression opens the doors for therapeutic interventions for diseases involving the mis-regulation or depletion of NKCC1 proteins, for example during aging.

  5. Direct control of Na+-K+-2Cl−-cotransport protein (NKCC1) expression with aldosterone

    PubMed Central

    Ding, Bo; Zhu, Xiaoxia; Sakai, Yoshihisa; Sokolowski, Bernd; Walton, Joseph P.

    2013-01-01

    Sodium/potassium/chloride cotransporter (NKCC1) proteins play important roles in Na+ and K+ concentrations in key physiological systems, including cardiac, vascular, renal, nervous, and sensory systems. NKCC1 levels and functionality are altered in certain disease states, and tend to decline with age. A sensitive, effective way of regulating NKCC1 protein expression has significant biotherapeutic possibilities. The purpose of the present investigation was to determine if the naturally occurring hormone aldosterone (ALD) could regulate NKCC1 protein expression. Application of ALD to a human cell line (HT-29) revealed that ALD can regulate NKCC1 protein expression, quite sensitively and rapidly, independent of mRNA expression changes. Utilization of a specific inhibitor of mineralocorticoid receptors, eplerenone, implicated these receptors as part of the ALD mechanism of action. Further experiments with cycloheximide (protein synthesis inhibitor) and MG132 (proteasome inhibitor) revealed that ALD can upregulate NKCC1 by increasing protein stability, i.e., reducing ubiquitination of NKCC1. Having a procedure for controlling NKCC1 protein expression opens the doors for therapeutic interventions for diseases involving the mis-regulation or depletion of NKCC1 proteins, for example during aging. PMID:24173102

  6. Vasopressin alters the mechanism of apical Cl- entry from Na+:Cl- to Na+:K+:2Cl- cotransport in mouse medullary thick ascending limb

    SciTech Connect

    Sun, A.; Grossman, E.B.; Lombardi, M.; Hebert, S.C. )

    1991-02-01

    Experiments were performed using in vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na{sup +}:Cl{sup {minus}} cotransporter and on transport-related oxygen consumption (QO{sub 2}). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding one mM ouabain to, the basolateral solution (ouabain(zero-K+)) provided an index to apical cotransporter activity and was used to evaluate the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na{sup +} and Cl{sup {minus}}, but not K{sup +}, while the presence of AVP the apical cotransporter required all three ions. {sup 86}Rb{sup +} uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover, {sup 22}Na{sup +} uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure {sup 22}Na{sup +} uptake was strictly K{sup +}-dependent. The AVP-induced coupling of K{sup +} to the Na{sup +}:Cl{sup {minus}} cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular {sup 22}Na{sup +} uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na{sup +}:Cl{sup {minus}} cotransport to Na{sup +}:K{sup +}:2Cl{sup {minus}} cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K{sup +} to the apical Na{sup +}:Cl{sup {minus}} cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.

  7. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  8. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  9. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  10. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No....

  11. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  12. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  13. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  14. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  15. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity.

    PubMed

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone-kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  16. Adenosine triphosphoric acid as a factor of nervous regulation of Na+/K+/2Cl- cotransport in rat skeletal muscle fibers.

    PubMed

    Naumenko, N V; Uzinskaya, K V; Shakirzyanova, A V; Urazaev, A Kh; Zefirov, A L

    2009-05-01

    Exogenous adenosine triphosphoric acid produces a biphasic effect on the resting membrane potential of muscle fibers in rat diaphragm. Depolarization of the sarcolemma observed 10 min after application of adenosine triphosphoric acid results from activation of Na(+)/K(+)/2Cl(-) cotransport. The increase in chloride cotransport is related to activation of postsynaptic P2Y receptors and protein kinase C. Repolarization of the membrane develops 40 min after treatment with adenosine triphosphoric acid and after 50 min the resting membrane potential almost returns the control level. This increase in the resting membrane potential of the sarcolemma is probably associated with activation of the Na(+)/K(+) pump and increase in membrane permeability for chlorine ions in response to long-term activity of Cl(-) cotransport. Thus, adenosine triphosphoric acid co-secreted with acetylcholine in the neuromuscular synapse probably plays a role in the regulation resting membrane potential and cell volume of muscle fibers. PMID:19907744

  17. Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation

    PubMed Central

    Mao, Shihong; Garzon-Muvdi, Tomás; Di Fulvio, Mauricio; Chen, Yanfang; Delpire, Eric; Alvarez, Francisco J.

    2012-01-01

    GABA depolarizes and excites central neurons during early development, becoming inhibitory and hyperpolarizing with maturation. This “developmental shift” occurs abruptly, reflecting a decrease in intracellular Cl− concentration ([Cl−]i) and a hyperpolarizing shift in Cl− equilibrium potential due to upregulation of the K+-Cl− cotransporter KCC2b, a neuron-specific Cl− extruder. In contrast, primary afferent neurons (PANs) are depolarized by GABA throughout adulthood because of expression of NKCC1, a Na+-K+-2Cl− cotransporter that accumulates Cl− above equilibrium. The GABAA-mediated depolarization of PANs determines presynaptic inhibition in the spinal cord, a key mechanism gating somatosensory information. Little is known about developmental changes in Cl− transporter expression and Cl− homeostasis in PANs. Whether NKCC1 is expressed in PANs of all phenotypes or is restricted to subpopulations (e.g., nociceptors) is debatable. Likewise, whether PANs express KCC2s is controversial. We investigated NKCC1 and K+-Cl− cotransporter expression in rat and mouse dorsal root ganglion (DRG) neurons with molecular methods. Using fluorescence imaging microscopy, we measured [Cl−]i in acutely dissociated rat DRG neurons (P0–P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and classified with phenotypic markers. DRG neurons of all sizes express two NKCC1 mRNAs, one full-length and a shorter splice variant lacking exon 21. Immunolabeling with validated antibodies revealed ubiquitous expression of NKCC1 in DRG neurons irrespective of postnatal age and phenotype. As maturation progresses [Cl−]i decreases gradually, persisting above equilibrium in >95% mature neurons. DRG neurons express mRNAs for KCC1, KCC3s, and KCC4, but not for KCC2s. Mechanisms underlying PANs' developmental changes in Cl− homeostasis are discussed and compared with those of central neurons. PMID:22457464

  18. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner.

    PubMed

    Grimm, P Richard; Taneja, Tarvinder K; Liu, Jie; Coleman, Richard; Chen, Yang-Yi; Delpire, Eric; Wade, James B; Welling, Paul A

    2012-11-01

    STE20/SPS-1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress-related kinase (OSR1) activate the potassium-dependent sodium-chloride co-transporter, NKCC2, and thiazide-sensitive sodium-chloride cotransporter, NCC, in vitro, and both co-localize with a kinase regulatory molecule, Cab39/MO25α, at the apical membrane of the thick ascending limb (TAL) and distal convoluted tubule (DCT). Yet genetic ablation of SPAK in mice causes a selective loss of NCC function, whereas NKCC2 becomes hyperphosphorylated. Here, we explore the underlying mechanisms in wild-type and SPAK-null mice. Unlike in the DCT, OSR1 remains at the TAL apical membrane of KO mice where it is accompanied by an increase in the active, phosphorylated form of AMP-activated kinase. We found an alterative SPAK isoform (putative SPAK2 form), which modestly inhibits co-transporter activity in vitro, is more abundant in the medulla than the cortex. Thus, enhanced NKCC2 phosphorylation in the SPAK knock-out may be explained by removal of inhibitory SPAK2, sustained activity of OSR1, and activation of other kinases. By contrast, the OSR1/SPAK/M025α signaling apparatus is disrupted in the DCT. OSR1 becomes largely inactive and displaced from M025α and NCC at the apical membrane, and redistributes to dense punctate structures, containing WNK1, within the cytoplasm. These changes are paralleled by a decrease in NCC phosphorylation and a decrease in the mass of the distal convoluted tubule, exclusive to DCT1. As a result of the dependent nature of OSR1 on SPAK in the DCT, NCC is unable to be activated. Consequently, SPAK(-/-) mice are highly sensitive to dietary salt restriction, displaying prolonged negative sodium balance and hypotension.

  19. Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney.

    PubMed Central

    Payne, J A; Forbush, B

    1994-01-01

    We have used cDNA probes derived from the secretory form of the Na-K-Cl cotransporter to screen both cortical and medullary rabbit kidney cDNA libraries. A sequence of 4750 bases was identified from multiple clones. The DNA encodes a protein containing 1099 amino acids, which is 61% identical over its length to the secretory Na-K-Cl cotransporter from shark rectal gland. From analysis of amino acid hydropathy, we predict that this putative renal Na-K-Cl cotransporter has 12 transmembrane helices and large N- and C-terminal cytoplasmic regions. Two sites for N-linked glycosylation are predicted on an extracellular loop. Three potential sites for modulation by protein kinase A are in the C-terminal cytoplasmic domain. Most of the isolated renal cDNA clones were identical over all regions of overlap; however, there was a 96-bp region for which there were three different but homologous variants (A, B, and F). This region of divergence was identified as an alternatively spliced cassette exon since clones were identified that contained intronic DNA as well as consensus splice acceptor sites that bounded the region. Tissue Northern blot analysis revealed a broad band at approximately 5.1 kb that was unique to the kidney. High-stringency Northern blot analysis of cortical and medullary mRNA using antisense oligonucleotides synthesized over each of the three cassette exons revealed that the isoforms were differentially distributed within the kidney--B almost exclusively in cortex, F almost exclusively in medulla, and A about equally distributed. Images PMID:7514306

  20. The electrogenic Na+/HCO3− cotransport modulates resting membrane potential and action potential duration in cat ventricular myocytes

    PubMed Central

    Villa-Abrille, María C; Petroff, Martín G Vila; Aiello, Ernesto A

    2007-01-01

    Perforated whole-cell configuration of patch clamp was used to determine the contribution of the electrogenic Na+/HCO3− cotransport (NBC) on the shape of the action potential in cat ventricular myocytes. Switching from Hepes to HCO3− buffer at constant extracellular pH (pHo) hyperpolarized resting membrane potential (RMP) by 2.67 ± 0.42 mV (n = 9, P < 0.05). The duration of action potential measured at 50% of repolarization time (APD50) was 35.8 ± 6.8% shorter in the presence of HCO3− than in its absence (n = 9, P < 0.05). The anion blocker SITS prevented and reversed the HCO3−-induced hyperpolarization and shortening of APD. In addition, no HCO3−-induced hyperpolarization and APD shortening was observed in the absence of extracellular Na+. Quasi-steady-state currents were evoked by 8 s duration voltage-clamped ramps ranging from −130 to +30 mV. A novel component of SITS-sensitive current was observed in the presence of HCO3−. The HCO3−-sensitive current reversed at −87 ± 5 mV (n = 7), a value close to the expected reversal potential of an electrogenic Na+/HCO3− cotransport with a HCO3−:Na+ stoichiometry ratio of 2: 1. The above results allow us to conclude that the cardiac electrogenic Na+/HCO3− cotransport has a relevant influence on RMP and APD of cat ventricular cells. PMID:17138608

  1. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    SciTech Connect

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  2. Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl- and thiazide binding.

    PubMed

    Moreno, Erika; Cristóbal, Pedro San; Rivera, Manuel; Vázquez, Norma; Bobadilla, Norma A; Gamba, Gerardo

    2006-06-23

    The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. Little is known regarding the structure-function relationship in this cotransporter. Previous studies from our group reveal that mammalian NCC exhibits higher affinity for ions and thiazides than teleost NCC and suggest a role for glycosylation upon thiazide affinity. Here we have constructed a series of chimeric and mutant cDNAs between rat and flounder NCC to define the role of glycosylation status, the amino-terminal domain, the carboxyl-terminal domain, the extracellular glycosylated loop, and the transmembrane segments upon affinity for Na+, Cl-, and metolazone. Xenopus laevis oocytes were used as the heterologous expression system. We observed that elimination of glycosylation sites in flounder NCC did not affect the affinity of the cotransporter for metolazone. Also, swapping the amino-terminal domain, the carboxyl-terminal domain, the glycosylation sites, or the entire extracellular glycosylation loop between rat and flounder NCC had no effect upon ions or metolazone affinity. In contrast, interchanging transmembrane regions between rat and flounder NCC revealed that affinity-modifying residues for chloride are located within the transmembrane 1-7 region and for thiazides are located within the transmembrane 8-12 region, whereas both segments seem to be implicated in defining sodium affinity. These observations strongly suggest that binding sites for chloride and thiazide in NCC are different. PMID:16624820

  3. Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy.

    PubMed

    Karlócai, Mária R; Wittner, Lucia; Tóth, Kinga; Maglóczky, Zsófia; Katarova, Zoja; Rásonyi, György; Erőss, Loránd; Czirják, Sándor; Halász, Péter; Szabó, Gábor; Payne, John A; Kaila, Kai; Freund, Tamás F

    2016-09-01

    Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established.

  4. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of

  5. Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy.

    PubMed

    Karlócai, Mária R; Wittner, Lucia; Tóth, Kinga; Maglóczky, Zsófia; Katarova, Zoja; Rásonyi, György; Erőss, Loránd; Czirják, Sándor; Halász, Péter; Szabó, Gábor; Payne, John A; Kaila, Kai; Freund, Tamás F

    2016-09-01

    Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established. PMID:26427846

  6. Nonclinical safety of the sodium-glucose cotransporter 2 inhibitor empagliflozin.

    PubMed

    Bogdanffy, Matthew S; Stachlewitz, Robert F; van Tongeren, Susan; Knight, Brian; Sharp, Dale E; Ku, Warren; Hart, Susan Emeigh; Blanchard, Kerry

    2014-01-01

    Empagliflozin, a selective inhibitor of the renal tubular sodium-glucose cotransporter 2, was developed for treatment of type 2 diabetes mellitus. Nonclinical safety of empagliflozin was studied in a battery of tests to support global market authorization. Safety pharmacology studies indicated no effect of empagliflozin on measures of respiratory or central nervous system function in rats or cardiovascular safety in telemeterized dogs. In CD-1 mouse, Wistar Han rat, or beagle dogs up to 13, 26, or 52 weeks of treatment, respectively, empagliflozin exhibited a toxicity profile consistent with secondary supratherapeutic pharmacology related to glucose loss and included decreased body weight and body fat, increased food consumption, diarrhea, dehydration, decreased serum glucose and increases in other serum parameters reflective of increased protein catabolism, gluconeogenesis, and electrolyte imbalances, and urinary changes such as polyuria and glucosuria. Microscopic changes were consistently observed in kidney and included tubular nephropathy and interstitial nephritis (dog), renal mineralization (rat) and tubular epithelial cell karyomegaly, single cell necrosis, cystic hyperplasia, and hypertrophy (mouse). Empagliflozin was not genotoxic. Empagliflozin was not carcinogenic in female mice or female rats. Renal adenoma and carcinoma were induced in male mice only at exposures 45 times the maximum clinical dose. These tumors were associated with a spectrum of nonneoplastic changes suggestive of a nongenotoxic, cytotoxic, and cellular proliferation-driven mechanism. In male rats, testicular interstitial cell tumors and hemangiomas of the mesenteric lymph node were observed; both tumors are common in rats and are unlikely to be relevant to humans. These studies demonstrate the nonclinical safety of empagliflozin.

  7. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation.

  8. Molecular evidence for a role for K+-Cl− cotransporters in the kidney

    PubMed Central

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B.; Pasantes-Morales, Herminia; Mercado, Adriana

    2013-01-01

    K+-Cl− cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K+ diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K+ diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct. PMID:24089410

  9. PGE2 MEDIATES OENOCYTOID CELL LYSIS VIA A SODIUM-POTASSIUM-CHLORIDE COTRANSPORTER.

    PubMed

    Shrestha, Sony; Park, Jiyeong; Ahn, Seung-Joon; Kim, Yonggyun

    2015-08-01

    Prostaglandin E2 (PGE2 ) mediates immune responses of the beet armyworm, Spodoptera exigua, including oenocytoid cell lysis (a class of lepidopteran hemocytes: OCL) via its specific membrane receptor to release inactive prophenoloxidase (PPO) into hemolymph. PPO is activated into phenoloxidase in the plasma to play crucial roles in the immune responses of S. exigua. The mechanism of OCL has not been elucidated, however we posed the hypothesis that a rapid accumulation of sodium ions within the oenocytoids allows a massive influx of water by the ion gradient, which leads to the cell lysis. It remains unclear which sodium channel is responsible for the OCL in response to PGE2 . This study identified a specific sodium channel called sodium-potassium-chloride cotransporter 1 (Se-NKCC1) expressed in hemocytes of S. exigua and analyzed its function in the OCL in response to PGE2 . Se-NKCC1 encodes a basic membrane protein (pI value = 8.445) of 1,066 amino acid residues, which contains 12 putative transmembrane domains. Se-NKCC1 was expressed in all developmental stages and tissues. qPCR showed that bacterial challenge significantly induced its expression. A specific inhibitor of NKCC, bumetanide, prevented the OCL in a dose-dependent manner. When RNA interference (RNAi) using double-stranded RNA specific to Se-NKCC1 suppressed its expression, the OCL and PPO activation were significantly inhibited in response to PGE2 . The RNAi treatment also reduced nodule formation to bacterial challenge. These results suggest that Se-NKCC1 is associated with OCL by facilitating inward transport of ions in response to PGE2 .

  10. Molecular evidence for a role for K(+)-Cl(-) cotransporters in the kidney.

    PubMed

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B; Pasantes-Morales, Herminia; Mercado, Adriana; Gamba, Gerardo

    2013-11-15

    K(+)-Cl(-) cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K(+) diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K(+) diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct.

  11. [EMPAGLIFLOZIN (JARDIANCE) :Nw SGLT2 COTRANSPORTER INHIBITOR FOR TREATING TYPE 2 DIABETES].

    PubMed

    Scheen, A J

    2015-09-01

    Empagliflozin is a new inhibitor of sodiumglucose cotransporters type 2 (SGLT2) for the treatment of type 2 diabetes mellitus (T2DM). Its specific action inhibits glucose reabsorption in renal tubules and thus promotes glucosuria. This effect results in a reduction in fasting and postprandial glycaemia and a decrease of glycated haemoglobin (HbA(Ic)), independently of insulin. Furthermore, calorie urinary loss promotes weight reduction and osmotic diuresis lowers arterial blood pressure. The efficacy of empagliflozin increases according to the level of hyperglycaemia but decreases in patients with renal insufficiency. In 24 to 104-week controlled trials versus placebo, empagliflozin reduces HbA(1c) (approximately 0.8%), without hypoglycaemia (except in patients already treated with insulin or sulphonylureas). This improvement in glucose control is rather similar to that observed with active comparators (metformin, glimepiride or sitagliptin), with the advantage for empagliflozin of reducing body weight (approximately 2 kg) and blood pressure (systolic approximately 4 mm Hg and diastolic approximately 2 mm Hg). Empagliflozin has shown a cardiovascular protection in the EMPA-REG OUTCOME trial. Mycotic genital infections occur more frequently, especially in women, while a negligible increase in mild urinary tract infections may be observed. The risk of hypotension and volume depletion is low, although it should be carefully checked in more fragile and at risk patients. Empagliflozin (Jardiance), which is commercialized at the doses of 10 mg and 25 mg once daily, is indicated for the treatment of T2DM and reimbursed in Belgium with conditions as add-on to a background glucose-lowering therapy. PMID:26638450

  12. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor.

    PubMed

    Scheen, André J

    2014-03-01

    Empagliflozin is an orally active, potent and selective inhibitor of sodium glucose co-transporter 2 (SGLT2), currently in clinical development to improve glycaemic control in adults with type 2 diabetes mellitus (T2DM). SGLT2 inhibitors, including empagliflozin, are the first pharmacological class of antidiabetes agents to target the kidney in order to remove excess glucose from the body and, thus, offer new options for T2DM management. SGLT2 inhibitors exert their effects independently of insulin. Following single and multiple oral doses (0.5-800 mg), empagliflozin was rapidly absorbed and reached peak plasma concentrations after approximately 1.33-3.0 h, before showing a biphasic decline. The mean terminal half-life ranged from 5.6 to 13.1 h in single rising-dose studies, and from 10.3 to 18.8 h in multiple-dose studies. Following multiple oral doses, increases in exposure were dose-proportional and trough concentrations remained constant after day 6, indicating a steady state had been reached. Oral clearance at steady state was similar to corresponding single-dose values, suggesting linear pharmacokinetics with respect to time. No clinically relevant alterations in pharmacokinetics were observed in mild to severe hepatic impairment, or in mild to severe renal impairment and end-stage renal disease. Clinical studies did not reveal any relevant drug-drug interactions with several other drugs commonly prescribed to patients with T2DM, including warfarin. Urinary glucose excretion (UGE) rates were higher with empagliflozin versus placebo and increased with dose, but no relevant impact on 24-h urine volume was observed. Increased UGE resulted in proportional reductions in fasting plasma glucose and mean daily glucose concentrations.

  13. [EMPAGLIFLOZIN (JARDIANCE) :Nw SGLT2 COTRANSPORTER INHIBITOR FOR TREATING TYPE 2 DIABETES].

    PubMed

    Scheen, A J

    2015-09-01

    Empagliflozin is a new inhibitor of sodiumglucose cotransporters type 2 (SGLT2) for the treatment of type 2 diabetes mellitus (T2DM). Its specific action inhibits glucose reabsorption in renal tubules and thus promotes glucosuria. This effect results in a reduction in fasting and postprandial glycaemia and a decrease of glycated haemoglobin (HbA(Ic)), independently of insulin. Furthermore, calorie urinary loss promotes weight reduction and osmotic diuresis lowers arterial blood pressure. The efficacy of empagliflozin increases according to the level of hyperglycaemia but decreases in patients with renal insufficiency. In 24 to 104-week controlled trials versus placebo, empagliflozin reduces HbA(1c) (approximately 0.8%), without hypoglycaemia (except in patients already treated with insulin or sulphonylureas). This improvement in glucose control is rather similar to that observed with active comparators (metformin, glimepiride or sitagliptin), with the advantage for empagliflozin of reducing body weight (approximately 2 kg) and blood pressure (systolic approximately 4 mm Hg and diastolic approximately 2 mm Hg). Empagliflozin has shown a cardiovascular protection in the EMPA-REG OUTCOME trial. Mycotic genital infections occur more frequently, especially in women, while a negligible increase in mild urinary tract infections may be observed. The risk of hypotension and volume depletion is low, although it should be carefully checked in more fragile and at risk patients. Empagliflozin (Jardiance), which is commercialized at the doses of 10 mg and 25 mg once daily, is indicated for the treatment of T2DM and reimbursed in Belgium with conditions as add-on to a background glucose-lowering therapy.

  14. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    PubMed

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-01

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.

  15. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats

    PubMed Central

    Kapoor, Sarika; Rodriguez, Daniel; Riwanto, Meliana; Edenhofer, Ilka; Segerer, Stephan; Mitchell, Katharyn; Wüthrich, Rudolf P.

    2015-01-01

    The sodium-glucose-cotransporter-2 (SGLT2) inhibitor dapagliflozin (DAPA) induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD), we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d) or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group). Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d) and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d). DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min) and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min) after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated. PMID:25927597

  16. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide

    PubMed Central

    Okuyama-Dobashi, Kaori; Kasai, Hirotake; Tanaka, Tomohisa; Yamashita, Atsuya; Yasumoto, Jun; Chen, Wenjia; Okamoto, Toru; Maekawa, Shinya; Watashi, Koichi; Wakita, Takaji; Ryo, Akihide; Suzuki, Tetsuro; Matsuura, Yoshiharu; Enomoto, Nobuyuki; Moriishi, Kohji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection. PMID:26592202

  17. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide.

    PubMed

    Okuyama-Dobashi, Kaori; Kasai, Hirotake; Tanaka, Tomohisa; Yamashita, Atsuya; Yasumoto, Jun; Chen, Wenjia; Okamoto, Toru; Maekawa, Shinya; Watashi, Koichi; Wakita, Takaji; Ryo, Akihide; Suzuki, Tetsuro; Matsuura, Yoshiharu; Enomoto, Nobuyuki; Moriishi, Kohji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection. PMID:26592202

  18. Functional and molecular characterization of multiple K-Cl cotransporter isoforms in corneal epithelial cells

    PubMed Central

    Capó-Aponte, José E.; Wang, Zheng; Bildin, Victor N.; Iserovich, Pavel; Pan, Zan; Zhang, Fan; Pokorny, Kathryn S.; Reinach, Peter S.

    2009-01-01

    The dependence of regulatory volume decrease (RVD) activity on potassium–chloride cotransporter (KCC) isoform expression was characterized in corneal epithelial cells (CEC). During exposure to a 50% hypotonic challenge, the RVD response was larger in SV40-immortalized human CEC (HCEC) than in SV40-immortalized rabbit CEC (RCEC). A KCC inhibitor—[(dihydroindenyl)oxy] alkanoic acid (DIOA)—blocked RVD more in HCEC than RCEC. Under isotonic conditions, N-ethylmaleimide (NEM) produced KCC activation and transient cell shrinkage. Both of these changes were greater in HCEC than in RCEC. Immunoblot analysis of HCEC, RCEC, primary human CEC (pHCEC), and primary bovine CEC (BCEC) plasma membrane enriched fractions revealed KCC1, KCC3, and KCC4 isoform expression, whereas KCC2 was undetectable. During a hypotonic challenge, KCC1 membrane content increased more rapidly in HCEC than in RCEC. Such a challenge induced a larger increase and more transient p44/42MAPK activation in HCEC than RCEC. On the other hand, HCEC and RCEC p38MAPK phosphorylation reached peak activations at 2.5 and 15 min, respectively. Only in HCEC, pharmacological manipulation of KCC activity modified the hypotonicity-induced activation of p44/42MAPK, whereas p38MAPK phosphorylation was insensitive to such procedures in both cell lines. Larger increases in HCEC KCC1 membrane protein content correlate with their ability to undergo faster and more complete RVD. Furthermore, pharmacological activation of KCC increased p44/42MAPK phosphorylation in HCEC but not in RCEC, presumably a reflection of low KCC membrane expression in RCEC. These findings suggest that KCC1 plays a role in (i) maintaining isotonic steady-state cell volume homeostasis, (ii) recovery of isotonic cell volume after a hypotonic challenge through RVD, and (iii) regulating hypotonicity-induced activation of the p44/42MAPK signaling pathway required for cell proliferation. PMID:17418819

  19. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish

    PubMed Central

    Sussman, Caroline R.; Zhao, Jinhua; Plata, Consuelo; Lu, Jing; Daly, Christopher; Angle, Nathan; DiPiero, Jennifer; Drummond, Iain A.; Liang, Jennifer O.; Boron, Walter F.; Romero, Michael F.

    2009-01-01

    Mutations in the electrogenic Na+/nHCO3− cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pHi), or intracellular Na+ activity (aNai), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3− transport as well as similar drug sensitivity, including inhibition by 4,4′-diiso-thiocyano-2,2′-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3−. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology. PMID:19625604

  20. Glucocorticoids Induce Nondipping Blood Pressure by Activating the Thiazide-Sensitive Cotransporter

    PubMed Central

    Ivy, Jessica R.; Oosthuyzen, Wilna; Peltz, Theresa S.; Howarth, Amelia R.; Hunter, Robert W.; Dhaun, Neeraj; Al-Dujaili, Emad A.S.; Webb, David J.; Dear, James W.; Flatman, Peter W.

    2016-01-01

    Blood pressure (BP) normally dips during sleep, and nondipping increases cardiovascular risk. Hydrochlorothiazide restores the dipping BP profile in nondipping patients, suggesting that the NaCl cotransporter, NCC, is an important determinant of daily BP variation. NCC activity in cells is regulated by the circadian transcription factor per1. In vivo, circadian genes are entrained via the hypothalamic–pituitary–adrenal axis. Here, we test whether abnormalities in the day:night variation of circulating glucocorticoid influence NCC activity and BP control. C57BL6/J mice were culled at the peak (1:00 AM) and trough (1:00 PM) of BP. We found no day:night variation in NCC mRNA or protein but NCC phosphorylation on threonine53 (pNCC), required for NCC activation, was higher when mice were awake, as was excretion of NCC in urinary exosomes. Peak NCC activity correlated with peak expression of per2 and bmal1 (clock genes) and sgk1 and tsc22d3 (glucocorticoid-responsive kinases). Adrenalectomy reduced NCC abundance and blunted the daily variation in pNCC levels without affecting variation in clock gene transcription. Chronic corticosterone infusion increased bmal1, per1, sgk1, and tsc22d3 expression during the inactive phase. Inactive phase pNCC was also elevated by corticosterone, and a nondipping BP profile was induced. Hydrochlorothiazide restored rhythmicity of BP in corticosterone-treated mice without affecting BP in controls. Glucocorticoids influence the day:night variation in NCC activity via kinases that control phosphorylation. Abnormal glucocorticoid rhythms impair NCC and induce nondipping. Night-time dosing of thiazides may be particularly beneficial in patients with modest glucocorticoid excess. PMID:26953322

  1. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter.

    PubMed

    Carey, Robert M; Schoeffel, Cynthia D; Gildea, John J; Jones, John E; McGrath, Helen E; Gordon, Lindsay N; Park, Min Jeong; Sobota, Rafal S; Underwood, Patricia C; Williams, Jonathan; Sun, Bei; Raby, Benjamin; Lasky-Su, Jessica; Hopkins, Paul N; Adler, Gail K; Williams, Scott M; Jose, Pedro A; Felder, Robin A

    2012-11-01

    Previous studies have demonstrated that single nucleotide polymorphisms (SNPs) of the sodium-bicarbonate co-transporter gene (SLC4A5) are associated with hypertension. We tested the hypothesis that SNPs in SLC4A5 are associated with salt sensitivity of blood pressure in 185 whites consuming an isocaloric constant diet with a randomized order of 7 days of low Na(+) (10 mmol/d) and 7 days of high Na(+) (300 mmol/d) intake. Salt sensitivity was defined as a ≥ 7-mm Hg increase in mean arterial pressure during a randomized transition between high and low Na(+) diet. A total of 35 polymorphisms in 17 candidate genes were assayed, 25 of which were tested for association. Association analyses with salt sensitivity revealed 3 variants that associated with salt sensitivity, 2 in SLC4A5 (P<0.001) and 1 in GRK4 (P=0.020). Of these, 2 SNPs in SLC4A5 (rs7571842 and rs10177833) demonstrated highly significant results and large effects sizes, using logistic regression. These 2 SNPs had P values of 1.0 × 10(-4) and 3.1 × 10(-4) with odds ratios of 0.221 and 0.221 in unadjusted regression models, respectively, with the G allele at both sites conferring protection. These SNPs remained significant after adjusting for body mass index and age (P=8.9 × 10(-5) and 2.6 × 10(-4) and odds ratios 0.210 and 0.286, respectively). Furthermore, the association of these SNPs with salt sensitivity was replicated in a second hypertensive population. Meta-analysis demonstrated significant associations of both SNPs with salt sensitivity (rs7571842 [P=1.2 × 10(-5)]; rs1017783 [P=1.1 × 10(-4)]). In conclusion, SLC4A5 variants are strongly associated with salt sensitivity of blood pressure in 2 separate white populations.

  2. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats.

    PubMed

    Kapoor, Sarika; Rodriguez, Daniel; Riwanto, Meliana; Edenhofer, Ilka; Segerer, Stephan; Mitchell, Katharyn; Wüthrich, Rudolf P

    2015-01-01

    The sodium-glucose-cotransporter-2 (SGLT2) inhibitor dapagliflozin (DAPA) induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD), we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d) or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group). Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d) and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d). DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min) and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min) after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated.

  3. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. PMID:27600183

  4. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter.

    PubMed

    Sinke, Anne P; Kortenoeven, Marleen L A; de Groot, Theun; Baumgarten, Ruben; Devuyst, Olivier; Wetzels, Jack F M; Loffing, Johannes; Deen, Peter M T

    2014-03-01

    Lithium is the most common cause of nephrogenic diabetes insipidus (Li-NDI). Hydrochlorothiazide (HCTZ) combined with amiloride is the mainstay treatment in Li-NDI. The paradoxical antidiuretic action of HCTZ in Li-NDI is generally attributed to increased sodium and water uptake in proximal tubules as a compensation for increased volume loss due to HCTZ inhibition of the Na-Cl cotransporter (NCC), but alternative actions for HCTZ have been suggested. Here, we investigated whether HCTZ exerted an NCC-independent effect in Li-NDI. In polarized mouse cortical collecting duct (mpkCCD) cells, HCTZ treatment attenuated the Li-induced downregulation of aquaporin-2 (AQP2) water channel abundance. In these cells, amiloride reduces cellular Li influx through the epithelial sodium channel (ENaC). HCTZ also reduced Li influx, but to a lower extent. HCTZ increased AQP2 abundance on top of that of amiloride and did not affect the ENaC-mediated transcellular voltage. MpkCCD cells did not express NCC mRNA or protein. These data indicated that in mpkCCD cells, HCTZ attenuated lithium-induced downregulation of AQP2 independently of NCC and ENaC. Treatment of Li-NDI NCC knockout mice with HCTZ revealed a significantly reduced urine volume, unchanged urine osmolality, and increased cortical AQP2 abundance compared with Li-treated NCC knockout mice. HCTZ treatment further resulted in reduced blood Li levels, creatinine clearance, and alkalinized urinary pH. Our in vitro and in vivo data indicate that part of the antidiuretic effect of HCTZ in Li-NDI is NCC independent and may involve a tubuloglomerular feedback response-mediated reduction in glomerular filtration rate due to proximal tubular carbonic anhydrase inhibition.

  5. Hepatitis B Virus Infection of a Mouse Hepatic Cell Line Reconstituted with Human Sodium Taurocholate Cotransporting Polypeptide.

    PubMed

    Lempp, Florian A; Qu, Bingqian; Wang, Yong-Xiang; Urban, Stephan

    2016-05-01

    Hepatitis B virus (HBV) enters hepatocytes via its receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). So far, HBV infection has been achieved only in human hepatic cells reconstituted with hNTCP and not in cells of mouse origin. Here, the first mouse liver cell line (AML12) which gains susceptibility to HBV upon hNTCP expression is described. Thus, HBV infection of receptor-expressing mouse hepatocytes does not principally require a human cofactor but can be triggered by endogenous murine determinants.

  6. Solubilization of insoluble phosphates by thermophilic fungi.

    PubMed

    Singh, C P; Mishra, M M; Yadav, K S

    1980-01-01

    The solubilization of tricalcium phosphate and rock phosphate and assimilation of solubilized P by thermophilic fungi isolated from compost were studied. The solubilization of tricalcium phosphate was greater than that of rock phosphate on inoculation with fungi in liquid medium, but growth of most of the fungi was greater in rock phosphate. Torula thermophila solubilized tricalcium phosphate maximally. There was solubilization of rock phosphate in semi-solid lignocellulose medium by Aspergillus fumigatus.

  7. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport

    PubMed Central

    1990-01-01

    Changes in retinal pigment epithelial (RPE) cell volume were measured by monitoring changes in intracellular tetramethylammonium (TMA) using double-barreled K-resin microelectrodes. Hyperosmotic addition of 25 or 50 mM mannitol to the Ringer of the apical bath resulted in a rapid (approximately 30 s) osmometric cell shrinkage. The initial cell shrinkage was followed by a much slower (minutes) secondary shrinkage that is probably due to loss of cell solute. When apical [K+] was elevated from 2 to 5 mM during or before a hyperosmotic pulse, the RPE cell regulated its volume by reswelling towards control within 3-10 min. This change in apical [K+] is very similar to the increase in subretinal [K+]o that occurs after a transition from light to dark in the intact vertebrate eye. The K-dependent regulatory volume increase (RVI) was inhibited by apical Na removal, Cl reduction, or the presence of bumetanide. These results strongly suggest that a Na(K),Cl cotransport mechanism at the apical membrane mediates RVI in the bullfrog RPE. A unique aspect of this cotransporter is that it also functions at a lower rate under steady-state conditions. The transport requirements for Na, K, and Cl, the inhibition of RVI by bumetanide, and thermodynamic calculations indicate that this mechanism transports Na, K, and Cl in the ratio of 1:1:2. PMID:2286831

  8. Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program.

    PubMed Central

    Falk, S; Guay, A; Chenu, C; Patil, S D; Berteloot, A

    1998-01-01

    A computer program was developed to allow easy derivation of steady-state velocity and binding equations for multireactant mechanisms including or without rapid equilibrium segments. Its usefulness is illustrated by deriving the rate equation of the most general sequential iso ordered ter ter mechanism of cotransport in which two Na+ ions bind first to the carrier and mirror symmetry is assumed. It is demonstrated that this mechanism cannot be easily reduced to a previously proposed six-state model of Na+-D-glucose cotransport, which also includes a number of implicit assumptions. In fact, the latter model may only be valid over a restricted range of Na+ concentrations or when assuming very strong positive cooperativity for Na+ binding to the glucose symporter within a rapid equilibrium segment. We thus propose an equivalent eight-state model in which the concept of positive cooperativity is best explained within the framework of a polymeric structure of the transport protein involving a minimum number of two transport-competent and identical subunits. This model also includes an obligatory slow isomerization step between the Na+ and glucose-binding sequences, the nature of which might reflect the presence of functionally asymmetrical subunits. PMID:9533694

  9. The K(+)-Cl(-) Cotransporter KCC2 and Chloride Homeostasis: Potential Therapeutic Target in Acute Central Nervous System Injury.

    PubMed

    Wu, Haijian; Che, Xiaoru; Tang, Junjia; Ma, Feiqiang; Pan, Kun; Zhao, Mingfei; Shao, Anwen; Wu, Qun; Zhang, Jianmin; Hong, Yuan

    2016-05-01

    The K(+)-Cl(-) cotransporter-2 (KCC2) is a well-known member of the electroneutral cation-chloride cotransporters with a restricted expression pattern to neurons. This transmembrane protein mediates the efflux of Cl(-) out of neurons and exerts a critical role in inhibitory γ-aminobutyric acidergic (GABAergic) and glycinergic neurotransmission. Moreover, KCC2 participates in the regulation of various physiological processes of neurons, including cell migration, dendritic outgrowth, spine morphology, and dendritic synaptogenesis. It is important to note that down-regulation of KCC2 is associated with the pathogenesis of multiple neurological diseases, which is of particular relevance to acute central nervous system (CNS) injury. In this review, we aim to survey the pathogenic significance of KCC2 down-regulation under the condition of acute CNS injuries. We propose that further elucidation of the molecular mechanisms regarding KCC2 down-regulation after acute CNS injuries is necessary because of potential promising avenues for prevention and treatment of acute CNS injury. PMID:25941074

  10. The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis?

    PubMed

    Felder, Robin A; Jose, Pedro A; Xu, Peng; Gildea, John J

    2016-09-01

    The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the human testis and heart (Pushkin et al. IUBMB Life 50:13-19, 2000). Subsequently, NBCe2 was found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, influencing intracellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp Biol. 212:1697-1706, 2009; Parker and Boron, Physiol Rev. 93:803-959, 2013; Romero et al. Mol Asp Med. 34:159-182, 2013). NBCe2 is located in human and rodent renal-collecting duct and proximal tubule. While much is known about the two electrogenic sodium bicarbonate cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but particularly into the apical membrane microvilli, during various maneuvers that increase intracellular sodium. This review will summarize our current understanding of the distribution and function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute to salt sensitivity of blood pressure.

  11. Expression of thiazide-sensitive Na{sup +}-Cl{sup -} cotransporter in the rat endolymphatic sac

    SciTech Connect

    Akiyama, Kosuke Miyashita, Takenori; Mori, Terushige; Inamoto, Ryuhei; Mori, Nozomu

    2008-07-11

    The endolymphatic sac (ES) is a part of the membranous labyrinth and is believed to absorb endolymph. It has been well-established that the endolymph absorption is dependent on several ion transporters in a manner similar to that in the kidney, and the ES is regulated by hormones such as aldosterone and vasopressin that also affect on the kidney. The thiazide-sensitive Na{sup +}, Cl{sup -} cotransporter (TSC) is an electroneutral cotransporter specific to the kidney that plays an important role in absorption of NaCl in renal tubules. In the inner ear, TSC expression has never been examined. The expression of TSC in the rat ES was examined by RT-PCR, in situ hybridization and immunohistochemistry. These analyses indicated that TSC genes and proteins were expressed in the rat ES. In contrast, it was not observed in the rat cochlea by RT-PCR. This is the first report confirming the expression of TSC in the ES.

  12. The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis?

    PubMed

    Felder, Robin A; Jose, Pedro A; Xu, Peng; Gildea, John J

    2016-09-01

    The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the human testis and heart (Pushkin et al. IUBMB Life 50:13-19, 2000). Subsequently, NBCe2 was found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, influencing intracellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp Biol. 212:1697-1706, 2009; Parker and Boron, Physiol Rev. 93:803-959, 2013; Romero et al. Mol Asp Med. 34:159-182, 2013). NBCe2 is located in human and rodent renal-collecting duct and proximal tubule. While much is known about the two electrogenic sodium bicarbonate cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but particularly into the apical membrane microvilli, during various maneuvers that increase intracellular sodium. This review will summarize our current understanding of the distribution and function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute to salt sensitivity of blood pressure. PMID:27628629

  13. Stoichiometry of the rat kidney Na+-HCO3- cotransporter expressed in Xenopus laevis oocytes.

    PubMed

    Heyer, M; Müller-Berger, S; Romero, M F; Boron, W F; Frömter, E

    1999-08-01

    The rat kidney Na+-HCO3- cotransporter (rkNBC) was expressed in Xenopus laevis oocytes and transport via rkNBC was studied with the patch-clamp technique in giant inside/out (i/o) or outside/out (o/o) membrane patches. The current/voltage (I/V) relation(s) of individual patches was(were) determined in solutions containing only Na+ and HCO3- as permeable ions. The current carried by rkNBC (INBC) was identified by its response to changing bath Na+ concentration(s) and quantified as the current blocked by 4, 4'-diisothiocyanatostilbene disulfonate (DIDS). The stoichiometric ratio (q) of HCO3- to Na+ transport was determined from zero-current (reversal) potentials. The results and conclusions are as follows. First, DIDS (250 micromol/l) blocks INBC irreversibly from both the extracellular and the intracellular surface. Second, in the presence of Na+ and HCO3- concentration gradients similar to those which rkNBC usually encounters in tubular cells, q was close to 2. The same value was also observed when the HCO3- concentration was 25 mmol/l throughout, but the Na+ concentration was either high (100 mmol/l) or low (10 mmol/l) on the extracellular or intracellular surface of the patch. These data demonstrate that in the oocyte cell membrane rkNBC works with q=2 as previously observed in a study of isolated microperfused tubules (Seki et al., Pflügers Arch 425:409, 1993), however, they do not exclude the possibility that in a different membrane and cytoplasmic environment rkNBC may operate with a different stoichiometry. Third, in most experiments bath application of up to 2 mmol/l ATP increased the DIDS-inhibitable conductance of i/o patches by up to twofold with a half saturation constant near 0.5 mmol/l. This increase was not associated with a change in q, nor with a shift in the I/V relationship which would suggest induction of active transport (pump current). Since the effect persisted after ATP removal and was not observed with the non-hydrolysable ATP analogue AMP

  14. S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart

    PubMed Central

    Ch'En, F F-T; Villafuerte, F C; Swietach, P; Cobden, P M; Vaughan-Jones, R D

    2008-01-01

    Background and purpose: Intracellular pH (pHi) in heart is regulated by sarcolemmal H+-equivalent transporters such as Na+-H+ exchange (NHE) and Na+-HCO3 − cotransport (NBC). Inhibition of NBC influences pHi and can be cardioprotective in animal models of post-ischaemic reperfusion. Apart from a rabbit polyclonal NBC-antibody, a selective NBC inhibitor compound has not been studied. Compound S0859 (C29H24ClN3O3S) is a putative NBC inhibitor. Here, we provide the drug's chemical structure, test its potency and selectivity in ventricular cells and assess its suitability for experiments on cardiac contraction. Experimental approach: pHi recovery from intracellular acidosis was monitored using pH-epifluorescence (SNARF-fluorophore) in guinea pig, rat and rabbit isolated ventricular myocytes. Electrically evoked cell shortening (contraction) was measured optically. With CO2/HCO3 −-buffered superfusates containing 30 μM cariporide (to inhibit NHE), pHi recovery is mediated by NBC. Key results: S0859, an N-cyanosulphonamide compound, reversibly inhibited NBC-mediated pHi recovery (K i=1.7 μM, full inhibition at ∼30 μM). In HEPES-buffered superfusates, NHE-mediated pHi recovery was unaffected by 30 μM S0859. With CO2/HCO3 − buffer, pHi recovery from intracellular alkalosis (mediated by Cl−/HCO3 − and Cl−/OH− exchange) was also unaffected. Selective NBC-inhibition was not due to action on carbonic anhydrase (CA) enzymes, as 100 μM acetazolamide (a membrane-permeant CA-inhibitor) had no significant effect on NBC activity. pHi recovery from acidosis was associated with increased contractile-amplitude. The time course of recovery of pHi and contraction was slowed by S0859, confirming that NBC is a significant controller of contractility during acidosis. Conclusions and implications: Compound S0859 is a selective, high-affinity generic NBC inhibitor, potentially important for probing the transporter's functional role in heart and other tissues

  15. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate.

    PubMed

    David, Valentin; Martin, Aline; Hedge, Anne-Marie; Drezner, Marc K; Rowe, Peter S N

    2011-03-01

    Increased acidic serine aspartate-rich MEPE-associated motif (ASARM) peptides cause mineralization defects in X-linked hypophosphatemic rickets mice (HYP) and "directly" inhibit renal phosphate uptake in vitro. However, ASARM peptides also bind to phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and are a physiological substrate for this bone-expressed, phosphate-regulating enzyme. We therefore tested the hypothesis that circulating ASARM peptides also "indirectly" contribute to a bone-renal PHEX-dependent hypophosphatemia in normal mice. Male mice (n = 5; 12 wk) were fed for 8 wk with a normal phosphorus and vitamin D(3) diet (1% P(i) diet) or a reduced phosphorus and vitamin D(3) diet (0.1% P(i) diet). For the final 4 wk, transplantation of mini-osmotic pumps supplied a continuous infusion of either ASARM peptide (5 mg·day(-1)·kg(-1)) or vehicle. HYP, autosomal recessive hypophosphatemic rickets (ARHR), and normal mice (no pumps or ASARM infusion; 0.4% P(i) diet) were used in a separate experiment designed to measure and compare circulating ASARM peptides in disease and health. ASARM treatment decreased serum phosphate concentration and renal phosphate cotransporter (NPT2A) mRNA with the 1% P(i) diet. This was accompanied by a twofold increase in serum ASARM and 1,25-dihydroxy vitamin D(3) [1,25 (OH)(2)D(3)] levels without changes in parathyroid hormone. For both diets, ASARM-treated mice showed significant increases in serum fibroblast growth factor 23 (FGF23; +50%) and reduced serum osteocalcin (-30%) and osteopontin (-25%). Circulating ASARM peptides showed a significant inverse correlation with serum P(i) and a significant positive correlation with fractional excretion of phosphate. We conclude that constitutive overexpression of ASARM peptides plays a "component" PHEX-independent part in the HYP and ARHR hypophosphatemia. In contrast, with wild-type mice, ASARM peptides likely play a bone PHEX-dependent role in renal

  16. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  17. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  18. Templated, layered manganese phosphate

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  19. Phosphate nutrition: improving low-phosphate tolerance in crops.

    PubMed

    López-Arredondo, Damar Lizbeth; Leyva-González, Marco Antonio; González-Morales, Sandra Isabel; López-Bucio, José; Herrera-Estrella, Luis

    2014-01-01

    Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.

  20. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  1. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  2. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  3. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  4. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  5. Quality control in production of suspensions from solid ammonium phosphates (monoammonium phosphate and diammonium phosphate). [Monoammonium phosphate; diammonium phosphate

    SciTech Connect

    Achorn, F.P.; Balay, H.L.

    1982-01-01

    Suspensions of good quality can be produced from MAP and DAP. Suspension quality depends on the amount of impurities in the ammonium phosphate solids used. Tests have shown that adding ammonium fluoride helps lower viscosity of suspensions containing a considerable amount of impurities. Also, adding polyphosphates (such as 10-34-0, 9-32-0, and 11-37-0) as a source of part of the P/sub 2/O/sub 5/ (6 to 15% polyphosphate in the product) helps to produce a suspension that has excellent storage characteristics. When the polyphosphate content of the product (11-33-0 suspension) is between 10 and 15% it usually will not solidify during cold weather storage. Freight and production costs of granular ammonium phosphates are relatively low compared to other sources of P/sub 2/O/sub 5/ for the fluid fertilizer market; therefore, using MAP and DAP to produce suspensions is expected to continue to grow in popularity. 2 refs., 7 figs., 1 tab.

  6. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport

    PubMed Central

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L. Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis. PMID:26839958

  7. AHCYL2 (long-IRBIT) as a potential regulator of the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-B.

    PubMed

    Yamaguchi, Soichiro; Ishikawa, Toru

    2014-03-01

    Although AHCYL2 (long-IRBIT) is highly homologous to IRBIT, which regulates ion-transporting proteins including the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-B, its functions are poorly understood. Here, we found that AHCYL2 interacts with NBCe1-B in bovine parotid acinar cells using yeast two-hybrid, immunofluorescence confocal microscopy and co-immunoprecipitation analyses. Whole-cell patch-clamp experiments revealed that co-expression of AHCYL2 reduces the apparent affinity for intracellular Mg(2+) in inhibition of NBCe1-B currents specifically in a HCO3(-)-deficient cellular condition. Our data unveil AHCYL2 as a potential regulator of NBCe1-B in mammalian cells. We propose that cytosolic ionic condition appropriate for AHCYL2 to function might be different from IRBIT.

  8. Novel Indole-N-glucoside, TA-1887 As a Sodium Glucose Cotransporter 2 Inhibitor for Treatment of Type 2 Diabetes

    PubMed Central

    2013-01-01

    Inhibition of the renal sodium glucose cotransporter (SGLT) increases urinary glucose excretion (UGE) and thus reduces blood glucose levels during hyperglycemia. To explore the potential of new antihyperglycemic agents, we synthesized and determined the human SGLT2 (hSGLT2) inhibitory potential of novel substituted 3-benzylindole-N-glucosides 6. Optimization of 6 resulted in the discovery of 3-(4-cyclopropylbenzyl)-4-fluoroindole-N-glucoside 6a-4 (TA-1887), a highly potent and selective hSGLT2 inhibitor, with pronounced antihyperglycemic effects in high-fat diet-fed KK (HF-KK) mice. Our results suggest the potential of indole-N-glucosides as novel antihyperglycemic agents through inhibition of renal SGLT2. PMID:24900773

  9. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined.

  10. Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system.

    PubMed Central

    Javaheri, S; Wagner, K R

    1993-01-01

    Na/K/2Cl cotransport carrier plays an important role in fluid absorption and secretion in many epithelial tissues. The role of the carrier, however, in mammalian choroidal cerebrospinal fluid (CSF) production has been controversial. We used ventriculo-cisternal perfusion (VCP) labeled with blue dextran with or without bumetanide and measured choroidal CSF production in anesthetized, and paralyzed, mechanically ventilated dogs. During 3 h of VCP, mean intracerebroventricular and arterial pressures, PaCO2, pH, [HCO3-], and serum osmolality remained normal in both groups (n = 9 in each group). Beginning 90 min after the start of VCP, choroidal CSF production was measured every 15 min. In group I (control group), values for CSF production (means +/- SD) were 49 +/- 20, 49 +/- 21, 51 +/- 21, 51 +/- 23, 48 +/- 20, 56 +/- 24, and 48 +/- 20 microliters/min, at 90, 105, 120, 135, 150, 165, and 180 min, respectively. These values did not differ significantly from each other. In group II (bumetanide group), after baseline control CSF production had been determined at 90 and 105 min, bumetanide (10(-4) mol/liter) was added to VCP. Mean values for CSF production were 54 +/- 15 and 52 +/- 17 microliters/min before, and 39 +/- 25, 34 +/- 19, 28 +/- 10, 30 +/- 17, and 30 +/- 18 microliters/min after addition of bumetanide at 90, 105, 120, 135, 150, 165, and 180 min, respectively. Comparing the two groups, baseline values for CSF production measured at 90 and 105 min did not differ significantly. After addition of bumetanide (group II), however, decrements in CSF production varied from 30 +/- 27% at 120 min to 47 +/- 14% at 150 min, which were significantly different from changes in group I. The results of this study indicate that NaCl cotransport carrier is involved in secretion of CSF in dogs, and inhibition of the transporter results in approximately 50% reduction in CSF production. PMID:8227341

  11. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats.

    PubMed

    Javdani, Fariba; Holló, Krisztina; Hegedűs, Krisztina; Kis, Gréta; Hegyi, Zoltán; Dócs, Klaudia; Kasugai, Yu; Fukazawa, Yugo; Shigemoto, Ryuichi; Antal, Miklós

    2015-09-01

    γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons. PMID:25764511

  12. Role of the potassium chloride cotransporter isoform 2-mediated spinal chloride homeostasis in a rat model of visceral hypersensitivity.

    PubMed

    Tang, Dong; Qian, Ai-Hua; Song, Dan-Dan; Ben, Qi-Wen; Yao, Wei-Yan; Sun, Jing; Li, Wei-Guang; Xu, Tian-Le; Yuan, Yao-Zong

    2015-05-01

    Visceral hypersensitivity represents an important hallmark in the pathophysiology of irritable bowel syndrome (IBS), of which the mechanisms remain elusive. The present study was designed to examine whether cation-chloride cotransporter (CCC)-mediated chloride (Cl(-)) homeostasis of the spinal cord is involved in chronic stress-induced visceral hypersensitivity. Chronic visceral hypersensitivity was induced by exposing male Wistar rats to water avoidance stress (WAS). RT-PCR, Western blotting, and immunohistochemistry were used to assess the expression of CCCs in the spinal cord. Patch-clamp recordings were performed on adult spinal cord slices to evaluate Cl(-) homeostasis and Cl(-) extrusion capacity of lamina I neurons. Visceral sensitivity was estimated by measuring the abdominal withdrawal reflex in response to colorectal distension (CRD). After 10 days of WAS exposure, levels of both total protein and the oligomeric form of the K(+)-Cl(-) cotransporter isoform 2 (KCC2), but not Na(+)-K(+)-2Cl(-) transporter isoform 1 (NKCC1), were significantly decreased in the dorsal horn of the lumbosacral spinal cord. The downregulation of KCC2 resulted in a depolarizing shifted equilibrium potential of GABAergic inhibitory postsynaptic current and impaired Cl(-) extrusion capacity in lamina I neurons of the lumbosacral spinal cord from WAS rats. Acute noxious CRD disrupted spinal KCC2 expression and function 2 h after the final distention in sham rats, but not in WAS rats. Pharmacological blockade of KCC2 activity by intrathecal injection of a KCC2 inhibitor [(dihydroindenyl)oxy] alkanoic acid enhanced visceral nociceptive sensitivity in sham rats, but not in WAS rats. These results suggest that KCC2 downregulation-mediated impairment of spinal cord Cl(-) homeostasis may play an important role in chronic stress-induced visceral hypersensitivity. PMID:25792562

  13. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1).

    PubMed

    Monette, Michelle Y; Forbush, Biff

    2012-01-13

    The Na-K-Cl cotransporter (NKCC1) is expressed in most vertebrate cells and is crucial in the regulation of cell volume and intracellular chloride concentration. To study the structure and function of NKCC1, we tagged the transporter with cyan (CFP) and yellow (YFP) fluorescent proteins at two sites within the C terminus and measured fluorescence resonance energy transfer (FRET) in stably expressing human embryonic kidney cell lines. Both singly and doubly tagged NKCC1s were appropriately produced, trafficked to the plasma membrane, and exhibited (86)Rb transport activity. When both fluorescent probes were placed within the same C terminus of an NKCC1 transporter, we recorded an 11% FRET decrease upon activation of the transporter. This result clearly demonstrates movement of the C terminus during the regulatory response to phosphorylation of the N terminus. When we introduced CFP and YFP separately in different NKCC1 constructs and cotransfected these in HEK cells, we observed FRET between dimer pairs, and the fractional FRET decrease upon transporter activation was 46%. Quantitatively, this indicates that the largest FRET-signaled movement is between dimer pairs, an observation supported by further experiments in which the doubly tagged construct was cotransfectionally diluted with untagged NKCC1. Our results demonstrate that regulation of NKCC1 is accompanied by a large movement between two positions in the C termini of a dimeric cotransporter. We suggest that the NKCC1 C terminus is involved in transport regulation and that dimerization may play a key structural role in the regulatory process. It is anticipated that when combined with structural information, our findings will provide a model for understanding the conformational changes that bring about NKCC1 regulation.

  14. Iron content of ferritin modulates its uptake by intestinal epithelium: implications for co-transport of prions.

    PubMed

    Bhupanapadu Sunkesula, Solomon Raju; Luo, Xiu; Das, Dola; Singh, Ajay; Singh, Neena

    2010-01-01

    The spread of Chronic Wasting Disease (CWD) in the deer and elk population has caused serious public health concerns due to its potential to infect farm animals and humans. Like other prion disorders such a sporadic Creutzfeldt-Jakob-disease of humans and Mad Cow Disease of cattle, CWD is caused by PrP-scrapie (PrPSc), a beta-sheet rich isoform of a normal cell surface glycoprotein, the prion protein (PrPC). Since PrPSc is sufficient to cause infection and neurotoxicity if ingested by a susceptible host, it is important to understand the mechanism by which it crosses the stringent epithelial cell barrier of the small intestine. Possible mechanisms include co-transport with ferritin in ingested food and uptake by dendritic cells. Since ferritin is ubiquitously expressed and shares considerable homology among species, co-transport of PrPSc with ferritin can result in cross-species spread with deleterious consequences. We have used a combination of in vitro and in vivo models of intestinal epithelial cell barrier to understand the role of ferritin in mediating PrPSc uptake and transport. In this report, we demonstrate that PrPSc and ferritin from CWD affected deer and elk brains and scrapie from sheep resist degradation by digestive enzymes, and are transcytosed across a tight monolayer of human epithelial cells with significant efficiency. Likewise, ferritin from hamster brains is taken up by mouse intestinal epithelial cells in vivo, indicating that uptake of ferritin is not limited by species differences as described for prions. More importantly, the iron content of ferritin determines its efficiency of uptake and transport by Caco-2 cells and mouse models, providing insight into the mechanism(s) of ferritin and PrPSc uptake by intestinal epithelial cells. PMID:20429907

  15. Experimental investigation of human adenovirus cotransport with clay colloids and TiO2 nanoparticles in water saturated porous media

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Kokkinos, Petros; Tselepi, Maria A.; Kartoudis, Alexis; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V.

    2016-04-01

    Particles such as clay colloids (e.g. kaolinite and montmorillonite) and metal oxides (e.g. TiO2) have great potential for controlling the fate and transport of viruses in the subsurface. Although human adenoviruses (hAdVs) are used worldwide to indicate human fecal pollution in groundwater, their transport behavior in the subsurface environment is not fully understood. This study focuses on the effects of both clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b), and TiO2 nanoparticles (NPs), on hAdV transport and retention in porous media. Laboratory-scale cotransport experiments were conducted in columns packed with glass beads, at three pore water velocities (0.38, 0.74, and 1.21 cm/min). The experimental results suggested that the presence of KGa-1b, STx-1b, and TiO2 NPs increased the attachment and inactivation of hAdVs, mainly due to the contribution of additional attachment sites. Retention of hAdVs by the packed column was shown to be highest in the presence of TiO2 NPs and lowest in the presence of KGa-1b. Moreover, the mass recovery values of both clay colloids and TiO2 NPs were affected by the presence of hAdVs, under all of the experimental conditions examined in this study. However, no distinct relationship between mass recovery and water velocity could be established from the present experimental cotransport results.

  16. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. PMID:26747984

  17. Distribution of the sodium/phosphate transporter during postnatal ontogeny of the rat kidney.

    PubMed

    Traebert, M; Lötscher, M; Aschwanden, R; Ritthaler, T; Biber, J; Murer, H; Kaissling, B

    1999-07-01

    Renal phosphate reabsorption via the type II sodium/ phosphate cotransporter (NaPi-2) in the brush border membrane (BBM) of proximal tubules underlies alterations during aging. The ontogeny of NaPi-2 in kidneys from newborn to 6-wk-old rats was investigated. NaPi-2 protein distribution in the kidneys of neonatal, 13-d-old, 22-d-old, and 6-wk-old rats was immunohistochemically analyzed, and NaPi-2 mRNA distribution in neonatal and 6-wk-old rats was analyzed by in situ hybridization. In kidneys of newborn rats, the appearance of NaPi-2 protein and mRNA coincided with the development of the brush border (assessed by actin staining) on proximal tubular cells. NaPi-2 was not detectable in the nephrogenic zone or in the outgrowing straight sections of proximal tubules, which lack a brush border. In 13-d-old suckling rats, strong NaPi-2 staining was seen in the BBM of convoluted proximal tubules of all nephron generations. In contrast, in 22-d-old weaned rats, NaPi-2 staining in the BBM of superficial nephrons was weaker than that in the BBM of juxtamedullary nephrons. Western blotting demonstrated that the overall abundance of NaPi-2 protein in the BBM of 22-d-old rats was decreased to approximately 70% of that in 13-d-old rats. In kidneys of 6-wk-old rats, the internephron gradient for NaPi-2 abundance in the BBM corresponded to that in adult rats. The data suggest that the NaPi-2 system in the kidney is fully functional and possesses the capacity for regulation as soon as nephrogenesis is completed. The manifestation of NaPi-2 internephron heterogeneity immediately after weaning might be related to the change in dietary inorganic phosphate content.

  18. Toxicological review of inorganic phosphates.

    PubMed

    Weiner, M L; Salminen, W F; Larson, P R; Barter, R A; Kranetz, J L; Simon, G S

    2001-08-01

    Inorganic phosphate salts are widely used as food ingredients and in a variety of commercial applications. The United States Food and Drug Administration (FDA) considers inorganic phosphates "Generally Recognized As Safe" (GRAS) (FDA, 1973a, 1979) [FDA: Food and Drug Administration 1973a. GRAS (Generally Recognized as Safe) food ingredients-phosphates. NTIS PB-221-224, FDA, Food and Drug Administration, 1979. Phosphates; Proposed Affirmation of and Deletion From GRAS Status as Direct and Human Food Ingredients. Federal Register 44 (244). 74845-74857, 18 December (1979)] and the European Union (EU) allows inorganic phosphates to be added directly to food (EU Directive 95/2/EC as amended by 98/72/EC). In this review, data on the acute, subchronic and chronic toxicity, genotoxicity, teratogenicity and reproductive toxicity from the published literature and from unpublished studies by the manufacturers are reviewed. Based on the toxicity data and similar chemistry, the inorganic phosphates can be separated into four major classes, consisting of monovalent salts, divalent salts, ammonium salts and aluminum salts. The proposed classification scheme supports the use of toxicity data from one compound to assess the toxicity of another compound in the same class. However, in the case of eye and skin irritation, the proposed classification scheme cannot be used because a wide range of responses exists within each class. Therefore, the eye and skin hazards associated with an individual inorganic phosphate should be assessed on a chemical-by-chemical basis. A large amount of toxicity data exists for all four classes of inorganic phosphates. The large and comprehensive database allows an accurate assessment of the toxicity of each class of inorganic phosphate. Overall, all four classes of inorganic phosphates exhibit low oral, inhalation and dermal toxicities. Based on these data, humans are unlikely to experience adverse effects when the daily phosphorus consumption remains

  19. Novel highly biodegradable biphasic tricalcium phosphates composed of alpha-tricalcium phosphate and beta-tricalcium phosphate.

    PubMed

    Li, Yanbao; Weng, Wenjian; Tam, Kim Chiu

    2007-03-01

    Novel biodegradable biphasic tricalcium phosphates (BTCP) composed of alpha-tricalcium phosphate (alpha-TCP) and beta-tricalcium phosphate (beta-TCP) were successfully synthesized by heating amorphous calcium phosphate precursors with different structures at 800 degrees C for 3 h. The ratio of alpha-TCP and beta-TCP in the calcium phosphate particle can be controlled by aging time and pH value during synthesis of the amorphous precursor.

  20. Isolation and Localization of Type IIb Na/Pi Cotransporter in the Developing Rat Lung

    PubMed Central

    Hashimoto, Mitsuyoshi; Wang, Dong-Yu; Kamo, Takaharu; Zhu, Yue; Tsujiuchi, Toshifumi; Konishi, Yoichi; Tanaka, Masamitsu; Sugimura, Haruhiko

    2000-01-01

    Differential display analysis of rat lung at different developmental stages identified a fragment, HG80, which appeared on embryonic day 16.5 and thereafter. A full-length cDNA derived from a cDNA library of newborn rat lung probed with HG80 was the rat counterpart of sodium-dependent phosphate transporter type IIb and was designated rNaPi IIb. In situ hybridization showed that rNaPi IIb was expressed in type II alveolar cells, suggesting a role in the synthesis of surfactant in the alveoli. The time-dependent changes in localization of this gene in the developing lung and its possible use as a type II pneumocyte marker are discussed. PMID:10880371

  1. Phosphate transport and sensing in Saccharomyces cerevisiae.

    PubMed Central

    Wykoff, D D; O'Shea, E K

    2001-01-01

    Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Delta cells; however, the pho84Delta strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Delta cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Delta strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters. PMID:11779791

  2. WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters.

    PubMed

    Kahle, Kristopher T; Rinehart, Jesse; Ring, Aaron; Gimenez, Ignacio; Gamba, Gerardo; Hebert, Steven C; Lifton, Richard P

    2006-10-01

    Precise control of cellular Cl(-) transport is necessary for many fundamental physiological processes. For example, the intracellular concentration of Cl(-), fine-tuned through the coordinated action of cellular Cl(-) influx and efflux mechanisms, determines whether a neuron's response to GABA is excitatory or inhibitory. In epithelia, synchrony between apical and basolateral Cl(-) flux, and transcellular and paracellular Cl(-) transport, is necessary for efficient transepithelial Cl(-) reabsorption or secretion. In cells throughout the body, coordination of Cl(-) entry and exit mechanisms help defend against changes in cell volume. The Na-K-Cl and K-Cl cotransporters of the SLC12 gene family are important molecular determinants of Cl(-) entry and exit, respectively, in these systems. The WNK serine-threonine kinase family, members of which are mutated in an inherited form of human hypertension, are components of a signaling pathway that coordinates Cl(-) influx and efflux through SLC12 cotransporters to dynamically regulate intracellular Cl(-) activity. PMID:16990453

  3. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. PMID:24556272

  4. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers.

  5. Dissolution of phosphate matrices based on the thorium phosphate diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    2000-07-01

    Several authors have reported the use of phosphate matrices like apatites, monazites or NZP for the immobilization of actinides coming from an advanced reprocessing or for the final disposal of the excess plutonium from dismantled nuclear weapons. The thorium phosphate diphosphate Th4(PO4)4P2O7 (namely TPD) was also proposed for this purpose. Indeed, its structure allows the replacement of large amounts of tetravalent actinides like uranium, neptunium or plutonium leading to the obtention of solid solutions. The maximum weight loading was estimated to be equal to about 48% for uranium, 33% for neptunium and 26% for plutonium.

  6. Human potassium chloride cotransporter 1 (SLC12A4) promoter is regulated by AP-2 and contains a functional downstream promoter element.

    PubMed

    Zhou, Guo-Ping; Wong, Clara; Su, Robert; Crable, Scott C; Anderson, Kathleen P; Gallagher, Patrick G

    2004-06-01

    Most K-Cl cotransport in the erythrocyte is attributed to potassium chloride cotransporter 1 (KCC1). K-Cl cotransport is elevated in sickle erythrocytes, and the KCC1 gene has been proposed as a modifier gene in sickle cell disease. To provide insight into our understanding of the regulation of the human KCC1 gene, we mapped the 5' end of the KCC1 cDNA, cloned the corresponding genomic DNA, and identified the KCC1 gene promoter. The core promoter lacks a TATA box and is composed of an initiator element (InR) and a downstream promoter element (DPE), a combination found primarily in Drosophila gene promoters and rarely observed in mammalian gene promoters. Mutational analyses demonstrated that both the InR and DPE sites were critical for full promoter activity. In vitro DNase I footprinting, electrophoretic mobility shift assays, and reporter gene assays identified functional AP-2 and Sp1 sites in this region. The KCC1 promoter was transactivated by forced expression of AP-2 in heterologous cells. Sequences encoding the InR, DPE, AP-2, and Sp1 sites were 100% conserved between human and murine KCC1 genes. In vivo studies using chromatin immunoprecipitation assays with antihistone H3 and antihistone H4 antibodies demonstrated hyperacetylation of this core promoter region.

  7. Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study.

    PubMed

    Gagnon, Dominique G; Holt, Andrea; Bourgeois, Francis; Wallendorff, Bernadette; Coady, Michael J; Lapointe, Jean-Yves

    2005-06-30

    The accessibility of the hydrophilic loop between putative transmembrane segments XIII and XIV of the Na+/glucose cotransporter (SGLT1) was studied in Xenopus oocytes, using the substituted cysteine accessibility method (SCAM) and fluorescent labelling. Fifteen cysteine mutants between positions 565 and 664 yielded cotransport currents of similar amplitude than the wild-type SGLT1 (wtSGLT1). Extracellular, membrane-impermeant MTSES(-) and MTSET(+) had no effect on either cotransport or Na+ leak currents of wtSGLT1 but 9 mutants were affected by MTSES and/or MTSET. We also performed fluorescent labelling on SGLT1 mutants, using tetramethylrhodamine-5-maleimide and showed that positions 586, 588 and 624 were accessible. As amino acids 604 to 610 in SGLT1 have been proposed to form part of a phlorizin (Pz) binding site, we measured the K(i)(Pz) and K(m)(alphaMG) for wtSGLT1 and for cysteine mutants at positions 588, 605-608 and 625. Although mutants A605C, Y606C and D607C had slightly higher K(i)(Pz) values than wtSGLT1 with minimal changes in K(m)((alpha)MG), the effects were modest and do not support the original hypothesis. We conclude that the large, hydrophilic loop near the carboxyl terminus of SGLT1 is thus accessible to the external solution but does not appear to play a major part in the binding of phlorizin.

  8. Phosphate-a poison for humans?

    PubMed

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. PMID:27282935

  9. Process for producing granular diammonium phosphate

    SciTech Connect

    Fairchild, W.D.

    1988-05-17

    A process for the production of solid granular diammonium phosphate is described comprising: reacting anhydrous ammonia with phosphoric acid in a reactor to form a partially reacted slurry of monoammonium phosphate and diammonium phosphate; pumping the slurry to a granulator-reactor and further reacting the slurry with anhydrous ammonia to form a solid granular diammonium phosphate mixture having a particle range size consisting of undersize, oversize and product; drying the solid granular diammonium phosphate mixture in a dryer; dividing the dried solid granular diammonium phosphate mixture being discharged from the dryer into a first portion and a second portion; diverting and feeding the first portion of the dried granular diammonium phosphate mixture back to the granulator-reactor; feeding the second portion of dried granular diammonium phosphate mixture to a classifying means consisting of a set of screens including an oversize screen and a product screen set to a narrow size separation to separate the mixture of the solid granular diammonium phosphate into undersize, oversize and product solid granular diammonium phosphate; milling the oversize granular diammonium phosphate; recycling to the granular-reactor the milled oversized granular diammonium phosphate and the undersized granular particles obtained during the classifying of the solid granular diammonium phosphate mixture; and collecting the desired product granular particle thereby enhancing the production of a narrow range of granular diammonium phosphate particle size distribution within a broad range of particle size distribution.

  10. Detergent phosphate bans and eutrophication

    SciTech Connect

    Lee, G.F.; Jones, R.A.

    1986-04-01

    The Vollenweider-OECD eutrophication model has been expanded to approximately 400 lakes. It is possible to make a quantitative prediction of the effects of a detergent phosphate ban and thereby to ascertain the potential benefits of such a ban. In order to assess the effect of a detergent phosphate ban on water quality it is necessary to know the percentage of phosphorus in the domestic waste water that enters the water body, either directly or indirectly, and the percentage of the total phosphorus load that is derived from domestic wastewater. Although detergent phosphate bans generally will not result in an overall improvement to water quality, there may be some situations in which eutrophication-related water quality would be improved by a ban. 8 references, 1 figure, 1 table.

  11. The electrogenicity of the rat sodium-bicarbonate cotransporter NBCe1 requires interactions among transmembrane segments of the transporter

    PubMed Central

    Choi, Inyeong; Soo Yang, Han; Boron, Walter F

    2007-01-01

    The electrogenic Na+–HCO3− cotransporter (NBCe1) plays a central role in intracellular pH (pHi) regulation as well as HCO3− secretion by pancreatic ducts and HCO3− reabsorption by renal proximal tubules. To understand the structural requirements for the electrogenicity of NBCe1, we constructed chimeras of NBCe1-A and the electroneutral NBCn1-B, and used two-electrode voltage clamp to measure electrogenic transporter current in Xenopus oocytes exposed to 5% CO2–26 mm HCO3−(pH 7.40). The chimera consisting of NBCe1-A (i.e. NBCe1-A ‘background’) with the cytoplasmic N-terminal domain (Nt) of NBCn1-B had a reversal potential of −156.3 mV (compared with a membrane potential Vm of −43.1 mV in a HCO3−-free solution) and a slope conductance of 3.0 μS (compared with 12.5 μS for NBCe1-A). Also electrogenic were chimeras with an NBCe1-A background but with NBCn1-B contributing the extracellular loop (L) between transmembrane segment (TM) 5 and 6 (−140.9 mV/11.1 μS), the cytoplasmic C-terminal domain (Ct; −123.8 mV/9.7 μS) or Nt + L + Ct (−120.9 mV/3.7 μS). Reciprocal chimeras (with an NBCn1 background but with NBCe1 contributing Nt, L, Ct or Nt + L + Ct) produced no measurable electrogenic transporter currents in the presence of CO2–HCO3−. pHi recovered from an acid load, but without the negative shift of Vm that is characteristic of electrogenic Na+–HCO3− cotransporters. Thus, these chimeras were electroneutral, as were two others consisting of NBCe1(Nt–L)/NBCn1(TM6–Ct) and NBCn1(Nt–L)/NBCe1(TM6–Ct). We propose that the electrogenicity of NBCe1 requires interactions between TM1–5 and TM6–13. PMID:17038436

  12. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation.

    PubMed

    Lorin-Nebel, Catherine; Boulo, Viviane; Bodinier, Charlotte; Charmantier, Guy

    2006-12-01

    This study combines a cellular and molecular analysis of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC) to determine the osmoregulatory role of this protein in different tissues during the ontogeny of the sea bass. We have characterized the complete sequence of the NKCC1 isoform isolated from the sea bass gills and have identified, by immunofluorescence, NKCC1, and other isoforms, within the epithelium of the major osmoregulatory organs. Different (absorptive and secretory) functions have been attributed to this protein according to the tissue and salinity. The effects of short- (1-4 days), medium- (7-21 days) and long (6 months)-term freshwater (FW) adaptations were investigated, in comparison with seawater (SW)-maintained sea bass. In adult sea bass after long-term adaptation to FW and SW, the gills had the highest expression of NKCC mRNA compared with the median/posterior kidney and to the posterior intestine. Expression of NKCC mRNA in the kidney was 95% (SW) and 63% (FW) lower, and in the intestine 98% (SW) and 77% (FW) lower. Compared to SW-maintained sea bass, long-term FW adaptation induced a significant 5.6-fold decrease in the branchial NKCC gene expression whereas the intestinal and renal expressions did not vary significantly. The cells of the intestine and collecting ducts as well as a part of the epithelium lining the urinary bladder expressed NKCC apically. Within the gill chloride cells, NKCC was found basolaterally in SW-acclimated fish; some apically stained cells were detected after 7 days of FW exposure and their relative number increased progressively following FW acclimation. The appearance of FW-type chloride cells induces a functional shift of the gills from a secretory to an absorptive epithelium, which was only completed after long-term exposure to FW. Short- and medium-term exposure to FW induced a progressive decrease in total NKCC content and an increase in functionally different branchial chloride cells. During development, the

  13. [Phosphate metabolism and iron deficiency].

    PubMed

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  14. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues

    PubMed Central

    Ando, Hideaki; Hirose, Matsumi; Gainche, Laura; Kawaai, Katsuhiro; Bonneau, Benjamin; Ijuin, Takeshi; Itoh, Toshiki; Takenawa, Tadaomi; Mikoshiba, Katsuhiko

    2015-01-01

    Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2. PMID:26509711

  15. Photorelease of phosphates: Mild methods for protecting phosphate derivatives

    PubMed Central

    Senadheera, Sanjeewa N; Yousef, Abraham L

    2014-01-01

    Summary We have developed a new photoremovable protecting group for caging phosphates in the near UV. Diethyl 2-(4-hydroxy-1-naphthyl)-2-oxoethyl phosphate (14a) quantitatively releases diethyl phosphate upon irradiation in aq MeOH or aq MeCN at 350 nm, with quantum efficiencies ranging from 0.021 to 0.067 depending on the solvent composition. The deprotection reactions originate from the triplet excited state, are robust under ambient conditions and can be carried on to 100% conversion. Similar results were found with diethyl 2-(4-methoxy-1-naphthyl)-2-oxoethyl phosphate (14b), although it was significantly less efficient compared with 14a. A key step in the deprotection reaction in aq MeOH is considered to be a Favorskii rearrangement of the naphthyl ketone motif of 14a,b to naphthylacetate esters 25 and 26. Disruption of the ketone-naphthyl ring conjugation significantly shifts the photoproduct absorption away from the effective incident wavelength for decaging of 14, driving the reaction to completion. The Favorskii rearrangement does not occur in aqueous acetonitrile although diethyl phosphate is released. Other substitution patterns on the naphthyl or quinolin-5-yl core, such as the 2,6-naphthyl 10 or 8-benzyloxyquinolin-5-yl 24 platforms, also do not rearrange by aryl migration upon photolysis and, therefore, do not proceed to completion. The 2,6-naphthyl ketone platform instead remains intact whereas the quinolin-5-yl ketone fragments to a much more complex, highly absorbing reaction mixture that competes for the incident light. PMID:25246963

  16. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission

    PubMed Central

    Chamma, Ingrid; Chevy, Quentin; Poncer, Jean Christophe; Lévi, Sabine

    2012-01-01

    The K-Cl co-transporter KCC2 plays multiple roles in the physiology of central neurons and alterations of its function and/or expression are associated with several neurological conditions. By regulating intraneuronal chloride homeostasis, KCC2 strongly influences the efficacy and polarity of the chloride-permeable γ-aminobutyric acid (GABA) type A and glycine receptor (GlyR) mediated synaptic transmission. This appears particularly critical for the development of neuronal circuits as well as for the dynamic control of GABA and glycine signaling in mature networks. The activity of the transporter is also associated with transmembrane water fluxes which compensate solute fluxes associated with synaptic activity. Finally, KCC2 interaction with the actin cytoskeleton appears critical both for dendritic spine morphogenesis and the maintenance of glutamatergic synapses. In light of the pivotal role of KCC2 in the maturation and function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. These include development and activity-dependent modifications both at the transcriptional and post-translational levels. We emphasize the importance of post-translational mechanisms such as phosphorylation and dephosphorylation, oligomerization, cell surface stability, clustering and membrane diffusion for the rapid and dynamic regulation of KCC2 function. PMID:22363264

  17. Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules

    PubMed Central

    Pereira, Lara E.; Clark, Jasmine; Grznarova, Petra; Wen, Xiaoyun; LaCasse, Rachel; Ruml, Tomas; Spearman, Paul

    2014-01-01

    The intracellular transport of Mason-Pfizer monkey virus (M-PMV) assembled capsids from the pericentriolar region to the plasma membrane (PM) requires trafficking of envelope glycoprotein (Env) to the assembly site via the recycling endosome. However, it is unclear if Env-containing vesicles play a direct role in trafficking capsids to the PM. Using live cell microscopy, we demonstrate, for the first time, anterograde co-transport of Gag and Env. Nocodazole disruption of microtubules had differential effects on Gag and Env trafficking, with pulse-chase assays showing a delayed release of Env-deficient virions. Particle tracking demonstrated an initial loss of linear movement of GFP-tagged capsids and mCherry-tagged Env, followed by renewed movement of Gag but not Env at 4 h post-treatment. Thus, while delayed capsid trafficking can occur in the absence of microtubules, efficient anterograde transport of capsids appears to be mediated by microtubule-associated Env-containing vesicles. PMID:24418544

  18. Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions.

    PubMed

    Gilbert, Dorothea; Jakobsen, Hans H; Winding, Anne; Mayer, Philipp

    2014-04-15

    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of T. pyriformis, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs. PMID:24625194

  19. Sodium taurocholate cotransporting polypeptide inhibition efficiently blocks hepatitis B virus spread in mice with a humanized liver.

    PubMed

    Nakabori, Tasuku; Hikita, Hayato; Murai, Kazuhiro; Nozaki, Yasutoshi; Kai, Yugo; Makino, Yuki; Saito, Yoshinobu; Tanaka, Satoshi; Wada, Hiroshi; Eguchi, Hidetoshi; Takahashi, Takeshi; Suemizu, Hiroshi; Sakamori, Ryotaro; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) is a recently discovered hepatitis B virus (HBV) receptor. In the present study, we used TK-NOG mice with a humanized liver to examine the impact of endogenous NTCP expression on HBV infection. Upon inoculation with HBV, these mice exhibited clear viremia in 2 weeks, and serum HBV DNA levels gradually increased. The frequency of HBsAg-positive hepatocytes in the liver was 5.1 ± 0.6% at 2 weeks and increased with increasing HBV DNA levels, reaching 92.9 ± 2.8% at 10 to 12 weeks. In vivo siRNA-mediated NTCP knockdown before and after HBV inoculation significantly suppressed the levels of HBV replication and the frequency of HBsAg-positive hepatocytes at 2 weeks, whereas NTCP knockdown 13 weeks after infection did not affect these parameters. Similar to the humanized mouse livers in the early phase of HBV infection, human liver samples from chronic hepatitis B patients, especially those treated with nucleos(t)ide analogues, contained a considerable number of hepatocytes that were negative for the anti-HBs antibody. In conclusion, NTCP inhibition prevents the spread of HBV-infected hepatocytes in mice with a humanized liver. NTCP-targeted therapy has potential for regulating HBV infection in patients with chronic hepatitis B.

  20. Review. The mammalian proton-coupled peptide cotransporter PepT1: sitting on the transporter-channel fence?

    PubMed

    Meredith, David

    2009-01-27

    The proton-coupled di- and tripeptide transporter PepT1 (SLC15a1) is the major route by which dietary nitrogen is taken up from the small intestine, as well as being the route of entry for important therapeutic (pro)drugs such as the beta-lactam antibiotics, angiotensin-converting enzyme inhibitors and antiviral and anti-cancer agents. PepT1 is a member of the major facilitator superfamily of 12 transmembrane domain transporter proteins. Expression studies in Xenopus laevis on rabbit PepT1 that had undergone site-directed mutagenesis of a conserved arginine residue (arginine282 in transmembrane domain 7) to a glutamate revealed that this residue played a role in the coupling of proton and peptide transport and prevented the movement of non-coupled ions during the transporter cycle. Mutations of arginine282 to other non-positive residues did not uncouple proton-peptide cotransport, but did allow additional ion movements when substrate was added. By contrast, mutations to positive residues appeared to function the same as wild-type. These findings are discussed in relation to the functional role that arginine282 may play in the way PepT1 operates, together with structural information from the homology model of PepT1 based on the Escherichia coli lactose permease crystal structure.

  1. Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes.

    PubMed

    Alahmari, Khalid A; Prabhakaran, Harini; Prabhakaran, Krishnan; Chandramoorthy, Harish C; Ramugounder, Ramakrishnan

    2015-06-12

    Manganese has shown to be involved in astrocyte swelling. Several factors such as transporters, exchangers and ion channels are attributed to astrocyte swelling as a result in the deregulation of cell volume. Products of oxidation and nitration have been implied to be involved in the pathophysiology of swelling; however, the direct link and mechanism of manganese induced astrocyte swelling has not been fully elucidated. In the current study, we used rat primary astrocyte cultures to investigate the activation of Na-K-Cl cotransporter-1 (NKCC1) a downstream mechanism for free radical induced astrocyte swelling as a result of manganese toxicity. Our results showed manganese, oxidants and NO donors as potent inducer of oxidation and nitration of NKCC1. Our results further confirmed that manganese (50 μM) increased the total protein, phosphorylation and activity of NKCC1 as well as cell volume (p < 0.05 vs. control). NKCC1 inhibitor (bumetanide), NKCC1-siRNA, antioxidants; DMTU, MnTBAP, tempol, catalase and Vit-E, NOS inhibitor; L-NAME, peroxinitrite scavenger; uric acid all significantly reversed the effects of NKCC1 activation (p < 0.05). From the current investigation we infer that manganese or oxidants and NO induced activation, oxidation/nitration of NKCC1 play an important role in the astrocyte swelling.

  2. Place of sodium-glucose co-transporter type 2 inhibitors for treatment of type 2 diabetes

    PubMed Central

    Mikhail, Nasser

    2014-01-01

    Inhibitors of sodium-glucose co-transporter type 2 (SGLT2), such as canagliflozin and dapagliflozin, are recently approved for treatment of type 2 diabetes. These agents lower blood glucose mainly by increasing urinary glucose excretion. Compared with placebo, SGLT2 inhibitors reduce hemoglobin A1c (HbA1c) levels by an average of 0.5%-0.8% when used as monotherapy or add-on therapy. Advantages of this drug class include modest weight loss of approximately 2 kg, low risk of hypoglycemia, and decrease blood pressure of approximately 4 mmHg systolic and 2 mmHg diastolic. These characteristics make these agents potential add-on therapy in patients with HbA1c levels close to 7%-8.0%, particularly if these patients are obese, hypertensive, and/or prone for hypoglycemia. Meanwhile, these drugs are limited by high frequency of genital mycotic infections. Less common adverse effects include urinary tract infections, hypotension, dizziness, and worsening renal function. SGLT2 inhibitors should be used with caution in the elderly because of increased adverse effects, and should not be used in chronic kidney disease due to decreased or lack of efficacy and nephrotoxicity. Overall, SGLT2 inhibitors are useful addition for treatment of select groups of patients with type 2 diabetes, but their efficacy and safety need to be established in long-term clinical trials. PMID:25512787

  3. Sodium-glucose co-transporter-2 inhibitors as add-on therapy to insulin: rationale and evidences.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are recently approved class of anti-hyperglycaemic agents for the treatment of type 2 diabetes mellitus (T2DM). SGLT-2I inhibits renal glucose reabsorption, thereby ensuing urinary glucose excretion in a dose-dependent manner. This caloric loss and osmotic diuresis, secondary to increased urinary glucose excretion, has a unique potential to counter insulin induced weight gain and fluid retention, with little potential of hypoglycemic exacerbation. Also, as these agents act independently of insulin secretion or action, they are effective even in long-standing diabetes with depleted β-cell reserve. Improvement in insulin sensitivity, as observed with SGLT-2I can also facilitate insulin action. Furthermore, significant reduction in total daily insulin dosage and reduction of body weight as observed during combination therapy renders SGLT-2I, a near-ideal partner to insulin. This review aims to evaluate the safety and efficacy of currently used SGLT-2I as an add-on to insulin therapy in the treatment of T2DM.

  4. Thermodynamic and kinetic controls on cotransport of Pantoea agglomerans cells and Zn through clean and iron oxide coated sand columns.

    PubMed

    Kapetas, Leon; Ngwenya, Bryne T; Macdonald, Alan M; Elphick, Stephen C

    2012-12-18

    Recent observations that subsurface bacteria quickly adsorb metal contaminants raise concerns that they may enhance metal transport, given the high mobility of bacteria themselves. However, metal adsorption to bacteria is also reversible, suggesting that mobility within porous medium will depend on the interplay between adsorption-desorption kinetics and thermodynamic driving forces for adsorption. Till now there has been no systematic investigation of these important interactions. This study investigates the thermodynamic and kinetic controls of cotransport of Pantoea agglomerans cells and Zn in quartz and iron-oxide coated sand (IOCS) packed columns. Batch kinetic studies show that significant Zn sorption on IOCS takes place within two hours. Adsorption onto P. agglomerans surfaces reaches equilibrium within 30 min. Experiments in flow through quartz sand systems demonstrate that bacteria have negligible effect on zinc mobility, regardless of ionic strength and pH conditions. Zinc transport exhibits significant retardation in IOCS columns at high pH in the absence of cells. Yet, when mobile bacteria (non attached) are passed through simultaneously with zinc, no facilitated transport is observed. Adsorption onto cells becomes significant and plays a role in mobile metal speciation only once the IOCS is saturated with zinc. This suggests that IOCS exhibits stronger affinity for Zn than cell surfaces. However, when bacteria and Zn are preassociated on entering the column, zinc transport is initially facilitated. Subsequently, zinc partly desorbs from the cells and redistributes onto the IOCS as a result of the higher thermodynamic affinity for IOCS.

  5. Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog.

    PubMed Central

    Zeuthen, T; Hamann, S; la Cour, M

    1996-01-01

    1. The interaction between H+, lactate and H2O fluxes in the retinal membrane of the pigment epithelium from bullfrog Rana catesbiana was studied by means of ion-selective micro-electrodes. 2. Changes in intracellular pH and cell volume were recorded in response to abrupt changes in retinal solution concentration and/or osmolarity. 3. Two parallel pathways for water transport were identified across the retinal membrane, an osmotic one with a hydraulic water permeability of 3.2 x 10(-4) cm s-1 (osmol l-1)-1 and one which depended on the presence of lactate. 4. Addition of sodium lactate to the retinal solution caused cell shrinkages that were small compared with those produced by mannitol. The reflection coefficient for sodium lactate was 0.25. 5. Isosmotic replacement of Cl- with lactate caused an influx of water. Simultaneous acidification of the retinal solution from pH 7.4 to 6.4 enhanced the effect. The influx of water could proceed against osmotic gradients elicited by mannitol. 6. The interdependence of the fluxes of H+, lactate and H2O can be described as cotransport: the fluxes had a fixed ratio of about 109 mmol of lactic acid per litre of water, the flux of one species was able to energize the flux of the other two, and the fluxes exhibited saturation for increasing driving forces. 7. The Gibbs equation gives an accurate quantitative description of these coupled fluxes. PMID:8951707

  6. Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog.

    PubMed

    Zeuthen, T; Hamann, S; la Cour, M

    1996-11-15

    1. The interaction between H+, lactate and H2O fluxes in the retinal membrane of the pigment epithelium from bullfrog Rana catesbiana was studied by means of ion-selective micro-electrodes. 2. Changes in intracellular pH and cell volume were recorded in response to abrupt changes in retinal solution concentration and/or osmolarity. 3. Two parallel pathways for water transport were identified across the retinal membrane, an osmotic one with a hydraulic water permeability of 3.2 x 10(-4) cm s-1 (osmol l-1)-1 and one which depended on the presence of lactate. 4. Addition of sodium lactate to the retinal solution caused cell shrinkages that were small compared with those produced by mannitol. The reflection coefficient for sodium lactate was 0.25. 5. Isosmotic replacement of Cl- with lactate caused an influx of water. Simultaneous acidification of the retinal solution from pH 7.4 to 6.4 enhanced the effect. The influx of water could proceed against osmotic gradients elicited by mannitol. 6. The interdependence of the fluxes of H+, lactate and H2O can be described as cotransport: the fluxes had a fixed ratio of about 109 mmol of lactic acid per litre of water, the flux of one species was able to energize the flux of the other two, and the fluxes exhibited saturation for increasing driving forces. 7. The Gibbs equation gives an accurate quantitative description of these coupled fluxes. PMID:8951707

  7. WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons.

    PubMed

    Friedel, Perrine; Kahle, Kristopher T; Zhang, Jinwei; Hertz, Nicholas; Pisella, Lucie I; Buhler, Emmanuelle; Schaller, Fabienne; Duan, JingJing; Khanna, Arjun R; Bishop, Paul N; Shokat, Kevan M; Medina, Igor

    2015-06-30

    Activation of Cl(-)-permeable γ-aminobutyric acid type A (GABAA) receptors elicits synaptic inhibition in mature neurons but excitation in immature neurons. This developmental "switch" in the GABA function depends on a postnatal decrease in intraneuronal Cl(-) concentration mediated by KCC2, a Cl(-)-extruding K(+)-Cl(-) cotransporter. We showed that the serine-threonine kinase WNK1 [with no lysine (K)] forms a physical complex with KCC2 in the developing mouse brain. Dominant-negative mutation, genetic depletion, or chemical inhibition of WNK1 in immature neurons triggered a hyperpolarizing shift in GABA activity by enhancing KCC2-mediated Cl(-) extrusion. This increase in KCC2 activity resulted from reduced inhibitory phosphorylation of KCC2 at two C-terminal threonines, Thr(906) and Thr(1007). Phosphorylation of both Thr(906) and Thr(1007) was increased in immature versus mature neurons. Together, these data provide insight into the mechanism regulating Cl(-) homeostasis in immature neurons, and suggest that WNK1-regulated changes in KCC2 phosphorylation contribute to the developmental excitatory-to-inhibitory GABA sequence. PMID:26126716

  8. Gitelman syndrome and glomerular proteinuria: a link between loss of sodium-chloride cotransporter and podocyte dysfunction?

    PubMed

    Demoulin, Nathalie; Aydin, Selda; Cosyns, Jean-Pierre; Dahan, Karin; Cornet, Georges; Auberger, Ines; Loffing, Johannes; Devuyst, Olivier

    2014-09-01

    We report on a 27-year-old patient presenting with chronic hypokalaemia, inappropriate kaliuresis, hypomagnesaemia and alkalosis, associated with moderate proteinuria. Genetic analysis evidenced a homozygous mutation (p.Arg399Cys) in the SLC12A3 gene coding for the sodium-chloride cotransporter (NCC), confirming the diagnosis of Gitelman syndrome. Further genetic testing did not show any mutation in NPHS2. A renal biopsy was performed in view of the unusual association with proteinuria. Light microscopy showed hypertrophy of the juxtaglomerular apparatus and discrete mesangial thickening. In addition to possible focal segmental glomerular sclerosis lesions, electron microscopy showed extensive segments of variably thickened glomerular basement membrane (GBM), contrasting with segments of regular GBM of low range thickness, and effacement of podocyte foot processes. Of interest, alterations of the GBM were also observed in a Slc12a3 knock-out mouse model for Gitelman syndrome. These data suggest that the association between Gitelman syndrome and secondary changes of the GBM is probably not coincidental. Possible mechanisms include angiotensin II- or renin-induced podocyte lesions, as well as chronic hypokalaemia.

  9. Neurogenic mechanisms contribute to hypertension in mice with disruption of the K-Cl cotransporter KCC3.

    PubMed

    Rust, Marco B; Faulhaber, Jörg; Budack, Mareike K; Pfeffer, Carsten; Maritzen, Tanja; Didié, Michael; Beck, Franz-Xaver; Boettger, Thomas; Schubert, Rudolf; Ehmke, Heimo; Jentsch, Thomas J; Hübner, Christian A

    2006-03-01

    The neurodegenerative disorder Andermann syndrome is caused by mutations of the K-Cl cotransporter KCC3. Mice with a targeted disruption of the corresponding gene, Slc12a6, reproduce neurodegeneration of the peripheral and central nervous system (CNS) and display arterial hypertension. Kcc3 is expressed in numerous tissues, including the CNS and vascular smooth muscle cells. As the intracellular chloride concentration may influence myogenic tone and hence blood pressure, we measured the chloride concentration in vascular smooth muscle cells. It was indeed increased in superficial brain arteries and saphenous arteries of Kcc3(-/-) mice. Isolated saphenous arteries and their third-order branches, however, reacted indistinguishably to changes in intravascular pressure, stimulation of alpha1-adrenoreceptors, exogenous nitric oxide, or blockade of calcium-activated chloride channels. Likewise, the responses to alpha1-adrenergic stimulation or exogenous nitric oxide in vivo were identical in both genotypes. These results argue against a major vascular-intrinsic component of arterial hypertension in Kcc3(-/-) mice. In contrast, either alpha1-adrenergic blockade or inhibition of ganglionic transmission abolished the difference in arterial blood pressure between both genotypes. This demonstrates a neurogenic component in the maintenance of this phenotype, which is further supported by an increase of urinary norepinephrine and epinephrine excretion in Kcc3(-/-) mice. Our data indicate that local control of myogenic tone does not require KCC3 and that hypertension in Kcc3(-/-) mice depends on an elevated sympathetic tone.

  10. SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2.

    PubMed

    Reiche, Juliane; Theilig, Franziska; Rafiqi, Fatema H; Carlo, Anne-Sophie; Militz, Daniel; Mutig, Kerim; Todiras, Mihail; Christensen, Erik Ilsø; Ellison, David H; Bader, Michael; Nykjaer, Anders; Bachmann, Sebastian; Alessi, Dario; Willnow, Thomas E

    2010-06-01

    Proper control of NaCl excretion in the kidney is central to bodily functions, yet many mechanisms that regulate reabsorption of sodium and chloride in the kidney remain incompletely understood. Here, we identify an important role played by the intracellular sorting receptor SORLA (sorting protein-related receptor with A-type repeats) in functional activation of renal ion transporters. We demonstrate that SORLA is expressed in epithelial cells of the thick ascending limb (TAL) of Henle's loop and that lack of receptor expression in this cell type in SORLA-deficient mice results in an inability to properly reabsorb sodium and chloride during osmotic stress. The underlying cellular defect was correlated with an inability of the TAL to phosphorylate Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2), the major sodium transporter in the distal nephron. SORLA functionally interacts with Ste-20-related proline-alanine-rich kinase (SPAK), an activator of NKCC2, and receptor deficiency is associated with missorting of SPAK. Our data suggest a novel regulatory pathway whereby intracellular trafficking of SPAK by the sorting receptor SORLA is crucial for proper NKCC2 activation and for maintenance of renal ion balance. PMID:20385770

  11. Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions.

    PubMed

    Gilbert, Dorothea; Jakobsen, Hans H; Winding, Anne; Mayer, Philipp

    2014-04-15

    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of T. pyriformis, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs.

  12. Transport Activity of the Sodium Bicarbonate Cotransporter NBCe1 Is Enhanced by Different Isoforms of Carbonic Anhydrase

    PubMed Central

    Schueler, Christina; Becker, Holger M.; McKenna, Robert; Deitmer, Joachim W.

    2011-01-01

    Transport metabolons have been discussed between carbonic anhydrase II (CAII) and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1), to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes indicated similar activity of CAI, CAII and CAIII, while in vitro CAIII had no measurable activity and CAI only 30% of the activity of CAII. All three CA isoforms increased transport activity of NBCe1, as measured by the transport current and the rate of intracellular sodium rise in oocytes. Two CAII mutants, altered in their intramolecular proton pathway, CAII-H64A and CAII-Y7F, showed significant catalytic activity and also enhanced NBCe1 transport activity. The effect of CAI, CAII, and CAII mutants on NBCe1 activity could be reversed by blocking CA activity with ethoxyzolamide (EZA, 10 µM), while the effect of the less EZA-sensitive CAIII was not reversed. Our results indicate that different CA isoforms and mutants, even if they show little enzymatic activity in vitro, may display significant catalytic activity in intact cells, and that the ability of CA to enhance NBCe1 transport appears to depend primarily on its catalytic activity. PMID:22076132

  13. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents.

    PubMed

    Choi, Chang-Ik

    2016-01-01

    Diabetes mellitus is a chronic condition associated with the metabolic impairment of insulin actions, leading to the development of life-threatening complications. Although many kinds of oral antihyperglycemic agents with different therapeutic mechanisms have been marketed, their undesirable adverse effects, such as hypoglycemia, weight gain, and hepato-renal toxicity, have increased demand for the discovery of novel, safer antidiabetic drugs. Since the important roles of the sodium-glucose cotransporter 2 (SGLT2) for glucose homeostasis in the kidney were recently elucidated, pharmacological inhibition of SGLT2 has been considered a promising therapeutic target for the treatment of type 2 diabetes. Since the discovery of the first natural SGLT2 inhibitor, phlorizin, several synthetic glucoside analogs have been developed and introduced into the market. Furthermore, many efforts to find new active constituents with SGLT2 inhibition from natural products are still ongoing. This review introduces the history of research on the development of early-generation SGLT2 inhibitors, and recent progress on the discovery of novel candidates for SGLT2 inhibitor from several natural products that are widely used in traditional herbal medicine. PMID:27618891

  14. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    PubMed

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  15. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation.

    PubMed

    Moes, Arthur D; van der Lubbe, Nils; Zietse, Robert; Loffing, Johannes; Hoorn, Ewout J

    2014-01-01

    SLC12A3 encodes the thiazide-sensitive sodium chloride cotransporter (NCC), which is primarily expressed in the kidney, but also in intestine and bone. In the kidney, NCC is located in the apical plasma membrane of epithelial cells in the distal convoluted tubule. Although NCC reabsorbs only 5 to 10% of filtered sodium, it is important for the fine-tuning of renal sodium excretion in response to various hormonal and non-hormonal stimuli. Several new roles for NCC in the regulation of sodium, potassium, and blood pressure have been unraveled recently. For example, the recent discoveries that NCC is activated by angiotensin II but inhibited by dietary potassium shed light on how the kidney handles sodium during hypovolemia (high angiotensin II) and hyperkalemia. The additive effect of angiotensin II and aldosterone maximizes sodium reabsorption during hypovolemia, whereas the inhibitory effect of potassium on NCC increases delivery of sodium to the potassium-secreting portion of the nephron. In addition, great steps have been made in unraveling the molecular machinery that controls NCC. This complex network consists of kinases and ubiquitinases, including WNKs, SGK1, SPAK, Nedd4-2, Cullin-3, and Kelch-like 3. The pathophysiological significance of this network is illustrated by the fact that modification of each individual protein in the network changes NCC activity and results in salt-dependent hypotension or hypertension. This review aims to summarize these new insights in an integrated manner while identifying unanswered questions.

  16. Absolute measurement of species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) and its modulation in cultured hepatocytes.

    PubMed

    Qiu, Xi; Bi, Yi-An; Balogh, Larissa M; Lai, Yurong

    2013-09-01

    Species differences among membrane transporters can be remarkable and difficult to properly assess by conventional methods. Herein, we employed the first use of stable isotope labeling in mammals or stable isotope-labeled peptides combined with mass spectrometry to identify species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) protein expression in liver tissue and to characterize the modulation of protein expression in sandwich-cultured human (SCHH) and rat hepatocytes (SCRH). The lower limit of quantification was established to be 5 fmol on column with a standard curve that was linear up to 2000 fmol. The accuracy and precision were evaluated with three quality control samples and known amounts of synthetic proteotypic peptides that were spiked into the membrane protein extracts. The overall relative error and coefficient of variation were less than 10%. The expression of Ntcp in mouse and rat was significant higher than that in human (five-fold) and monkey (two-fold) and ranked as mouse > rat > monkey > human. In the cultured hepatocytes, although significant downregulation of Ntcp expression in SCRH at day 5 after the culture was detected, NTCP expression in SCHH was comparable to the suspension hepatocytes. The results suggested that NTCP/Ntcp modulation in cultured hepatocytes is species specific.

  17. Molecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na(+)-HCO3 (-) cotransporter NBCe1.

    PubMed

    Seki, George; Horita, Shoko; Suzuki, Masashi; Yamazaki, Osamu; Usui, Tomohiko; Nakamura, Motonobu; Yamada, Hideomi

    2013-10-01

    The electrogenic Na(+)-HCO3 (-) cotransporter NBCe1 plays an essential role in bicarbonate absorption from renal proximal tubules, but also mediates the other biological processes in extrarenal tissues such as bicarbonate secretion from pancreatic ducts, maintenance of tissue homeostasis in eye, enamel maturation in teeth, or local pH regulation in synapses. Homozygous mutation in NBCe1 cause proximal renal tubular acidosis (pRTA) associated with extrarenal manifestations such as short stature, ocular abnormalities, enamel abnormalities, and migraine. Functional analyses of NBCe1 mutants using different expression systems suggest that at least a 50% reduction of the transport activity may be required to induce severe pRTA. In addition to functional impairments, some NBCe1 mutants show trafficking defects. Some of the pRTA-related NBCe1 mutants showing the cytoplasmic retention have been shown to exert a dominant negative effect through hetero-oligomer complexes with wild-type NBCe1 that may explain the occurrence of extrarenal manifestations in the heterozygous carries of NBCe1 mutations. Both NBCe1 knockout (KO) and W516X knockin (KI) mice showed very severe pRTA and reproduced most of the clinical manifestations observed in human pRTA patients. Functional analysis on isolated renal proximal tubules from W516X KI mice directly confirmed the indispensable role of NBCe1 in bicarbonate absorption from this nephron segment. In this review, we will focus on the molecular mechanisms underling the renal and extrarenal manifestations caused by NBCe1 inactivation.

  18. Direct evidence for calcineurin binding to the exon-7 loop of the sodium-bicarbonate cotransporter NBCn1.

    PubMed

    Gill, Harindarpal S; Roush, Eric D; Dutcher, Lauren; Patel, Samir

    2014-01-01

    The NaHCO3 cotransporter NBCn1 plays a role in neutralizing intracellular acid loads at the basolateral membrane in cells of the medullary thick ascending limb (mTAL). Calcineurin inhibitors (Cn-Is) are known to both downregulate NBCn1 expression in the distal nephron and cause renal tubular acidosis (RTA), a risk factor for nephrocalcinosis and nephrolithiasis. In this report, we provide a new perspective on concurrent studies of NBCn1 in various tissues by using cell-free binding assays to investigate the interaction of NBCn1 with the calcineurin (Cn) isoform PPP3CA. Surface plasmon resonance (SPR) analyses show that the protein domain Exon 7 (translated from cassette II of NBCn1) binds Cn with an equilibrium dissociation constant (KD) of 30 +/- 15 nm. Linked-reaction tests suggest that the binding involves a conformational change. Nested PCR reactions were used to show that NBCn1-Exon 7 splice variants with alternative N-termini regions are expressed in the kidney, as well as other tissues. Additionally, we discuss NBCn1-Exon 7 implication in acid-base balance and calcium crystallization in the kidney. PMID:25076853

  19. Diabetic Ketoacidosis in a Patient with Type 2 Diabetes After Initiation of Sodium-Glucose Cotransporter 2 Inhibitor Treatment.

    PubMed

    Storgaard, Heidi; Bagger, Jonatan I; Knop, Filip K; Vilsbøll, Tina; Rungby, Jørgen

    2016-02-01

    Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were recently introduced for the treatment of type 2 diabetes (T2D). SGLT2i lower plasma glucose by inhibiting the renal reuptake of glucose leading to glucosuria. Generally, these drugs are considered safe to use. However, recently, SGLT2i have been suggested to predispose to ketoacidosis. Here, we present a case of diabetic ketoacidosis (DKA) developed in an obese, poorly controlled male patient with T2D treated with the SGLT2i dapagliflozin. He was admitted with DKA 5 days after the initiation of treatment with the SGLT2i dapagliflozin. On admission, the primary symptoms were nausea and dizziness, and he was hypertensive (170/103) and tachycardic (119 bpm) and had mild hyperglycaemia (15.3 mmol/l), severe ketonuria and severe metabolic acidosis (pH 7.08). He responded well to infusions of insulin, glucose and saline and was discharged after 72 hr with insulin as the only glucose-lowering therapy. After 1 month, dapagliflozin was reintroduced as add-on to insulin with no recurrent signs of ketoacidosis. During acute illness or other conditions with increased insulin demands in diabetes, SGLT2i may predispose to the formation of ketone bodies and ensuing acidosis.

  20. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone.

    PubMed

    Chiga, Motoko; Rai, Tatemitsu; Yang, Sung-Sen; Ohta, Akihito; Takizawa, Toichiro; Sasaki, Sei; Uchida, Shinichi

    2008-12-01

    Pseudohypoaldosteronism type II (PHAII) is caused by mutations in the WNK1 and WNK4 genes (WNK with-no-lysine kinase). In a mouse model of this disease where a mutant of Wnk4 D561A was knocked in, increased phosphorylation of the sodium chloride cotransporter (NCC) was found and the transporter was concentrated on the apical membrane of the distal tubules. In addition, we recently found that other kinases, such as the oxidative stress response kinase-1/STE20/SPS1-related proline alanine-rich kinase (OSR1/SPAK), also showed increased phosphorylation in these mice. Here we determined whether this kinase cascade is regulated by dietary salt intake. We found that the phosphorylation states of NCC and OSR1/SPAK were increased by low-salt diets and decreased by high-salt diets; a regulation completely lost in the knock-in mice. Increased phosphorylation was reversed by spironolactone and this decreased phosphorylation was reversed by administration of exogenous aldosterone. These studies suggest that that the WNK-OSR1/SPAK-NCC cascade may be a novel effector system of aldosterone action in the kidney.

  1. Transcriptional repression of Na-K-2Cl cotransporter NKCC1 by hypoxia-inducible factor-1.

    PubMed

    Ibla, Juan C; Khoury, Joseph; Kong, Tianqing; Robinson, Andreas; Colgan, Sean P

    2006-08-01

    Tissue edema is commonly associated with hypoxia. Generally, such episodes of fluid accumulation are self-limiting. At present, little is known about mechanisms to compensate excessive fluid transport. Here we describe an adaptive mechanism to dampen fluid loss during hypoxia. Initial studies confirmed previous observations of attenuated electrogenic Cl- secretion after epithelial hypoxia. A screen of known ion transporters in Cl- -secreting epithelia revealed selective downregulation of Na-K-2Cl cotransporter NKCC1 mRNA, protein, and function. Subsequent studies identified transcriptional repression of NKCC1 mediated by hypoxia-inducible factor (HIF). Chromatin immunoprecipitation analysis identified a functional HIF binding site oriented on the antisense strand of genomic DNA downstream of the transcription start site corresponding to the NKCC1 5'-untranslated region. Additional in vivo studies using conditional Hif1a-null mice revealed that the loss of HIF-1alpha in Cl- -secreting epithelia results in a loss of NKCC1 repression. These studies describe a novel regulatory pathway for NKCC1 transcriptional repression by hypoxia. These results suggest that HIF-dependent repression of epithelial NKCC1 may provide a compensatory mechanism to prevent excessive fluid loss during hypoxia. PMID:16571862

  2. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  3. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  4. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  6. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  7. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  8. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  9. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  10. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  11. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  12. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  13. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  14. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  15. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  16. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  17. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  19. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  20. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  1. Phosphate bonding to goethite and pyrolusite surfaces

    USGS Publications Warehouse

    Weiner, Eugene R.; Goldberg, M.C.; Boymel, P.M.

    1984-01-01

    Fourier transform infrared (FTIR) spectra were obtained from pure and phosphated goethite (??-FeOOH), and pyrolusite (MnO2). The nature of the phosphate-surface bond was determined to be binuclear for goethite and bidentate for pyrolusite.

  2. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white to... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301...

  3. Sintering of calcium phosphate bioceramics.

    PubMed

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  4. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  6. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-,...

  7. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  8. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  9. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate...

  10. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  11. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  12. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  13. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  14. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  16. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  17. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  19. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  20. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  1. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  2. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  3. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  5. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  6. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  7. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  8. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  9. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  10. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  11. Urea phosphate as granular or fluid fertilizers

    SciTech Connect

    Blouin, G.M.

    1984-01-01

    Studies are being conducted of the production and agronomic characteristics of the phosphoric acid-urea adduct, urea phosphate, and of the various granular and fluid fertilizers that can be produced from it. Flowsheets are given for the production of urea phosphate. Characteristics of unpurified and purified urea phosphate are also given. (DLC)

  12. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  13. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  14. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  15. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  16. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  17. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  20. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate...

  1. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  2. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  3. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  6. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  7. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  8. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  9. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  11. 40 CFR 721.5995 - Polyalkyl phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772)...

  12. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  13. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  14. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  15. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  16. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  18. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system.

    PubMed

    Mirtchi, A A; Lemaitre, J; Terao, N

    1989-09-01

    The possibility of making cements based on beta-tricalcium phosphate (beta-TCP), a promising bone graft material, was investigated. Upon admixture with water, beta-TCP/monocalcium phosphate monohydrate (MCPM) mixtures were found to set and harden like conventional hydraulic cements. Beta-TCP powders with larger particle size, obtained by sintering at higher temperatures, increased the ultimate strength of the cement. Results show that setting occurs after dissolution of MCPM, as a result of the precipitation of dicalcium phosphate dihydrate (DCPD) in the paste. The ultimate tensile strength of the hardened cement is proportional to the amount of DCPD formed. Upon ageing above 40 degrees C, DCPD transforms progressively into anhydrous dicalcium phosphate (DCP), thereby decreasing the strength. Ageing of the pastes in 100% r.h. results in a decay of the mechanical properties. This can be ascribed to an intergranular dissolution of the beta-TCP aggregates as a result of the pH lowering brought about by the MCPM to DCPD conversion.

  19. Nucleoside phosphorylation by phosphate minerals.

    PubMed

    Costanzo, Giovanna; Saladino, Raffaele; Crestini, Claudia; Ciciriello, Fabiana; Di Mauro, Ernesto

    2007-06-01

    In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.

  20. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone.

  1. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions.

    PubMed

    Gildea, John J; Xu, Peng; Carlson, Julia M; Gaglione, Robert T; Bigler Wang, Dora; Kemp, Brandon A; Reyes, Camellia M; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2015-12-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake. PMID:26447209

  2. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty.

    PubMed

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2016-06-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium-Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  3. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty

    PubMed Central

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2015-01-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium–Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  4. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions.

    PubMed

    Gildea, John J; Xu, Peng; Carlson, Julia M; Gaglione, Robert T; Bigler Wang, Dora; Kemp, Brandon A; Reyes, Camellia M; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2015-12-01

    The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake.

  5. Kinetic comparison of ouabain-resistant K:Cl fluxes (K:Cl [Co]-transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation.

    PubMed

    Lauf, P K

    1988-01-01

    The stimulatory effects of two thiol (SH) group oxidants, methylmethane thiosulfonate (MMTS) and diazene dicarboxylic acid bis [N,N-dimethylamide] (diamide), on the kinetics of ouabain-resistant (OR) K:Cl [co]-transport in low K (LK) sheep red blood cells were compared with the effects of alkylating agents, notably N-ethylmaleimide (NEM). At low concentrations, both MMTS and diamide stimulated K:Cl [co]-transport, and with a latency period, as measured by OR zero-trans K efflux and OR uptake of external Rb, Rbo, as K congener in Cl and NO3 media. At high concentrations the effect of diamide saturated, and that of MMTS disappeared. The stimulatory effect of MMTS was partially reversed by the reducing agent dithiothreitol (DTT) known to fully restore the diamide-activated K flux (Lauf, J. Memb. Biol. 101:179-188, 1988). In diamide preequilibrated LK sheep red cells, the Km of K:Cl [co]-transport for external Cl, Clo, was 84.3 mM, and 18.7 mM for Rbo, with nearly identical Vmax values around 4 mmol Rb/L cells x h for K (Rb) fluxes in Cl and after correction for the small Cl-independent component. Zero net K (Rb) flux existed at Kc (cell K)/Rbo concentration ratios, [K]c/[Rb]c, of 0.8 i.e. when the electrochemical driving forces across the membrane were about equal. The measured K efflux/Rb influx ratios were almost twice those predicted from [K]c/[Rb]o and the Cl equilibrium potential suggesting that the diamide-stimulated K (Rb) flux may occur through non-diffusional, carrier-mediated transport.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3185522

  6. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters

    PubMed Central

    Kang, Seok Kyu; Markowitz, Geoffrey J.; Kim, Shin Tae; Johnston, Michael V.; Kadam, Shilpa D.

    2015-01-01

    Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy. PMID:26029047

  7. Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes.

    PubMed

    Kouzuki, H; Suzuki, H; Ito, K; Ohashi, R; Sugiyama, Y

    1998-08-01

    As one of the Na+-dependent transporters responsible for the hepatic uptake of ligands, sodium taurocholate (TC) co-transporting polypeptide (NTCP) has been cloned from rat liver and its substrate specificity has been clarified by examining the inhibition of TC uptake mediated by NTCP. The contribution of NTCP to the Na+-dependent uptake of ligands into rat hepatocytes, however, still needs to be clarified. To determine the contribution of NTCP, we examined the uptake of ligands into primary cultured hepatocytes (cultured for 4 h) and into COS-7 cells, transiently expressing NTCP, and normalized the uptake of ligands with TC as a reference compound. Western Blot analysis indicated that NTCP was glycosylated much less extensively in the transfected COS-7 cells, although the expression level was comparable for the cultured hepatocytes and transfectant. Kinetic parameters for the Na+-dependent uptake of TC were similar for the cultured hepatocytes and NTCP-transfected COS-7 cells (Km = 17.7 vs. 17.4 microM; Vmax = 1.63 vs. 1.45 nmol/min/mg protein). Glycocholic acid and cholic acid were taken up by NTCP-transfected COS-7 cells. The contribution of NTCP to the Na+-dependent uptake of glycocholic acid into rat hepatocytes was approximately 80%, whereas that of cholic acid was 40%. In addition, the analysis indicated that the contribution of NTCP to the Na+-dependent uptake of several ligands (ouabain, ibuprofen, glutathione-conjugate of bromosulfophthalein, glucuronide- and sulfate-conjugates of 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole) was negligible. Thus, this is a convenient method to determine the contribution of NTCP to the uptake of ligands into hepatocytes. It is also suggested that multiple transport mechanisms are responsible for the Na+-dependent uptake of organic anions into hepatocytes. PMID:9694967

  8. Sodium-glucose cotransporter 2 inhibition: cardioprotection by treating diabetes-a translational viewpoint explaining its potential salutary effects.

    PubMed

    de Leeuw, Anne E; de Boer, Rudolf A

    2016-10-01

    Diabetes is a growing epidemic worldwide characterized by an elevated concentration of blood glucose, associated with a high incidence of cardiovascular disease and mortality. Although in general reduction of hyperglycaemia is considered a therapeutic goal, hypoglycaemic therapies do not necessarily reduce cardiovascular mortality and may even aggravate cardiovascular risk factors, such as body weight. A new class of antidiabetic drugs acts by inhibition of the sodium-glucose cotransporter 2 (SGLT2), which (partially) prevents reabsorption of glucose from the renal filtrate. The induction of glucose excretion via the urine (glycosuria) was turned into an effective strategy to reduce blood glucose. Ancillary advantages are the caloric and volumetric loss and thereby the reduction of body weight and blood pressure. Additionally, SGLT2 inhibition has been suggested to exert direct cardioprotective effects by the reduction of cardiac fibrosis, inflammation, and oxidative stress. This article summarizes the functional consequences of SGLT2 inhibition on the diabetic and hyperglycaemic organism. We especially focused on the effects on the kidney and the cardiovascular system as described in experimental studies. The interesting observations in experimental studies may extend to clinical medicine, as a recent trial reported a decrease in heart failure outcomes in patients at high cardiovascular risk. In conclusion, SGLT2 inhibition represents a novel treatment, which might be a promising target not only to (further) reduce blood glucose but also to target other cardiovascular risk factors. More research and long-term follow-ups will reveal the specific influence of SGLT2 inhibition on the circulatory system and cardiovascular outcomes. PMID:27533948

  9. Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio)

    PubMed Central

    2013-01-01

    Introduction In mammals, internal Na+ homeostasis is maintained through Na+ reabsorption via a variety of Na+ transport proteins with mutually compensating functions, which are expressed in different segments of the nephrons. In zebrafish, Na+ homeostasis is achieved mainly through the skin/gill ionocytes, namely Na+/H+ exchanger (NHE3b)-expressing H+-ATPase rich (HR) cells and Na+-Cl- cotransporter (NCC)-expressing NCC cells, which are functionally homologous to mammalian proximal and distal convoluted tubular cells, respectively. The present study aimed to investigate whether or not the functions of HR and NCC ionocytes are differentially regulated to compensate for disruptions of internal Na+ homeostasis and if the cell differentiation of the ionocytes is involved in this regulation pathway. Results Translational knockdown of ncc caused an increase in HR cell number and a resulting augmentation of Na+ uptake in zebrafish larvae, while NHE3b loss-of-function caused an increase in NCC cell number with a concomitant recovery of Na+ absorption. Environmental acid stress suppressed nhe3b expression in HR cells and decreased Na+ content, which was followed by up-regulation of NCC cells accompanied by recovery of Na+ content. Moreover, knockdown of ncc resulted in a significant decrease of Na+ content in acid-acclimated zebrafish. Conclusions These results provide evidence that HR and NCC cells exhibit functional redundancy in Na+ absorption, similar to the regulatory mechanisms in mammalian kidney, and suggest this functional redundancy is a critical strategy used by zebrafish to survive in a harsh environment that disturbs body fluid Na+ homeostasis. PMID:23924428

  10. Structural and functional characterization of the human NBC3 sodium/bicarbonate co-transporter carboxyl-terminal cytoplasmic domain.

    PubMed

    Loiselle, Frederick B; Jaschke, Paul; Casey, Joseph R

    2003-01-01

    The sodium bicarbonate co-transporter, NBC3, is expressed in a range of tissues including heart, skeletal muscle and kidney, where it modulates intracellular pH and bicarbonate levels. NBC3 has a three-domain structure: 67 kDa N-terminal cytoplasmic domain, 57 kDa membrane domain and an 11 kDa C-terminal cytoplasmic domain (NBC3Ct). The role of C-terminal domains as important regulatory regions is an emerging theme in bicarbonate transporter physiology. This study determined the functional role of human NBC3Ct and characterized its structure using biochemical techniques. The NBC3 C-terminal domain deletion mutant (NBC3DeltaCt) had only 12 +/- 5% of wild-type transport activity. This low activity is attributable to low steady-state levels of NBC3DeltaCt and almost complete retention inside the cell, as assessed by immunoblots and confocal microscopy, suggesting a role of NBC3Ct in cell surface processing. To characterize the structure of NBC3Ct, amino acids 1127-1214 of NBC3 were expressed as a GST fusion protein (GST.NBC3Ct). GST.NBC3Ct was cleaved with PreScission Protease and native NBC3Ct could be purified to 94% homogeneity. Gel permeation chromatography and sedimentation velocity ultracentrifugation of NBC3Ct indicated a Stokes radius of 26 and 30 angstroms, respectively. Shape modelling revealed NBC3Ct as a prolate shape with long and short axes of 19 and 2 nm, respectively. The circular dichroism spectra of NBC3Ct did not change over the pH 6.2-7.8 range, which rules out a large change of secondary structure as a component of pH sensor function. Proteolysis with trypsin and chymotrypsin identified two proteolytically sensitive regions, R1129 and K1183-K1186, which could form protein interaction sites. PMID:14578046

  11. Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes

    PubMed Central

    Theparambil, Shefeeq M; Naoshin, Zinnia; Thyssen, Anne; Deitmer, Joachim W

    2015-01-01

    Recovery of intracellular pH from cytosolic alkalosis has been attributed primarily to Cl– coupled acid loaders/base extruders such as Cl–/HCO3– or Cl–/OH– exchangers. We have studied this process in cortical astrocytes from wild-type and transgenic mouse models with gene deletion for the electrogenic sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2/HCO3– or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H+ or Na+ using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na+ and HCO3–. After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2/HCO3–. Increasing the extracellular K+ concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3–] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis. PMID:25990710

  12. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters.

    PubMed

    Kang, Seok Kyu; Markowitz, Geoffrey J; Kim, Shin Tae; Johnston, Michael V; Kadam, Shilpa D

    2015-01-01

    Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy. PMID:26029047

  13. Sodium Glucose Cotransporter 2 (SGLT2) Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells

    PubMed Central

    Wakisaka, Masanori; Nagao, Tetsuhiko; Yoshinari, Mototaka

    2016-01-01

    Purpose Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT) in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2. Methods The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX) inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor. Results Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction. Conclusions These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells. PMID:26999015

  14. Cloning and characterization of an electrogenic Na/HCO3- cotransporter from the squid giant fiber lobe.

    PubMed

    Piermarini, Peter M; Choi, Inyeong; Boron, Walter F

    2007-06-01

    The squid giant axon is a classic model system for understanding both excitable membranes and ion transport. To date, a Na(+)-driven Cl-HCO(3)(-) exchanger, sqNDCBE--related to the SLC4 superfamily and cloned from giant fiber lobe cDNA--is the only HCO(3)(-)-transporting protein cloned and characterized from a squid. The goal of our study was to clone and characterize another SLC4-like cDNA. We used degenerate PCR to obtain a partial cDNA clone (squid fiber clone 3, SF3), which we extended in both the 5' and 3' directions to obtain the full-length open-reading frame. The predicted amino-acid sequence of SF3 is similar to sqNDCBE, and a phylogenetic analysis of the membrane domains indicates that SF3 clusters with electroneutral Na(+)-coupled SLC4 transporters. However, when we measure pH(i) and membrane potential--or use two-electrode voltage clamping to measure currents--on Xenopus oocytes expressing SF3, the oocytes exhibit the characteristics of an electrogenic Na/HCO(3)(-) cotransporter, NBCe. That is, exposure to extracellular CO(2)/HCO(3)(-) not only causes a fall in pH(i), followed by a robust recovery, but also causes a rapid hyperpolarization. The current-voltage relationship is also characteristic of an electrogenic NBC. The pH(i) recovery and current require HCO(3)(-) and Na(+), and are blocked by DIDS. Furthermore, neither K(+) nor Li(+) can fully replace Na(+) in supporting the pH(i) recovery. Extracellular Cl(-) is not necessary for the transporter to operate. Therefore, SF3 is an NBCe, representing the first NBCe characterized from an invertebrate.

  15. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.

    PubMed

    Schlessinger, Avner; Sun, Nina N; Colas, Claire; Pajor, Ana M

    2014-06-13

    Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na(+)-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na(+)/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In addition to citric acid cycle intermediates such as α-ketoglutarate and succinate, NaDC3 transports other compounds into cells, including N-acetyl aspartate, mercaptosuccinate, and glutathione, in keeping with its dual roles in cell nutrition and detoxification. In this study, we construct a homology structural model of NaDC3 on the basis of the structure of the Vibrio cholerae homolog vcINDY. Our computations are followed by experimental testing of the predicted NaDC3 structure and mode of interaction with various substrates. The results of this study show that the substrate and cation binding domains of NaDC3 are composed of residues in the opposing hairpin loops and unwound portions of adjacent helices. Furthermore, these results provide a possible explanation for the differential substrate specificity among dicarboxylate transporters that underpin their diverse biological roles in metabolism and detoxification. The structural model of NaDC3 provides a framework for understanding substrate selectivity and the Na(+)-coupled anion transport mechanism by the human SLC13 family and other key solute carrier transporters.

  16. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells.

    PubMed

    Algharabil, Jehad; Kintner, Douglas B; Wang, Qiwei; Begum, Gulnaz; Clark, Paul A; Yang, Sung-Sen; Lin, Shih-Hua; Kahle, Kristopher T; Kuo, John S; Sun, Dandan

    2012-01-01

    The hallmark of apoptosis is a significant reduction in cell volume (AVD) resulting from loss of K(+)(i) and Cl(-)(i). Loss of cell volume and lowering of ionic strength of intracellular K(+) and Cl(-) occur before any other detectable characteristics of apoptosis. In the present study, temozolomide (TMZ) triggered loss of K(+)(i) and Cl(-)(i) and AVD in primary glioblastoma multiforme (GBM) cancer cells (GC) and GC cancer stem cells (GSC). We hypothesize that Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1) counteracts AVD during apoptosis in GBM cancer cells by regulating cell volume and Cl(-) homeostasis. NKCC1 protein was expressed in both GC and GSC and played an essential role in regulatory volume increase (RVI) in response to hypertonic cell shrinkage and isotonic cell shrinkage. Blocking NKCC1 activity with its potent inhibitor bumetanide abolished RVI. These cells maintained a basal [Cl(-)](i) (~ 68 mM) above the electrochemical equilibrium for Cl(-)(i). NKCC1 also functioned to replenish Cl(-)(i) levels following the loss of Cl(-)(i). TMZ-treated cells exhibited increased phosphorylation of NKCC1 and its up-stream novel Cl(-)/volume-sensitive regulatory kinase WNK1. Inhibition of NKCC1 activity with bumetanide accelerated AVD, early apoptosis, as well as activation of caspase-3 and caspase-8. Taken together, this study strongly suggests that NKCC1 is an essential mechanism in GBM cells to maintain K(+), Cl(-), and volume homeostasis to counteract TMZ-induced loss of K(+), Cl(-) and AVD. Therefore, blocking NKCC1 function augments TMZ-induced apoptosis in glioma cells.

  17. A Cation-Chloride Cotransporter Gene Is Required for Cell Elongation and Osmoregulation in Rice1[OPEN

    PubMed Central

    Chen, Zhi Chang; Yamaji, Naoki; Fujii-Kashino, Miho

    2016-01-01

    Rice (Oryza sativa) is characterized by having fibrous root systems; however, the molecular mechanisms underlying the root development are not fully understood. Here, we isolated a rice mutant with short roots and found that the mutant had a decreased cell size of the roots and shoots compared with wild-type rice. Map-based cloning combined with whole-genome sequencing revealed that a single nucleotide mutation occurred in a gene, which encodes a putative cation-chloride cotransporter (OsCCC1). Introduction of OsCCC1 cDNA into the mutant rescued the mutant growth, indicating that growth defects of both the roots and shoots are caused by loss of function of OsCCC1. Physiological analysis showed that the mutant had a lower concentration of Cl− and K+ and lower osmolality in the root cell sap than the wild type at all KCl supply conditions tested; however, the mutant only showed a lower Na+ concentration at high external Na+. Expression of OsCCC1 in yeast increased accumulation of K+, Na+, and Cl−. The expression of OsCCC1 was found in both the roots and shoots, although higher expression was found in the root tips. Furthermore, the expression in the roots did not respond to different Na+, K+, and Cl− supply. OsCCC1 was expressed in all cells of the roots, leaf, and basal node. Immunoblot analysis revealed that OsCCC1 was mainly localized to the plasma membrane. These results suggest that OsCCC1 is involved in the cell elongation by regulating ion (Cl−, K+, and Na+) homeostasis to maintain cellular osmotic potential. PMID:26983995

  18. Secretagogue stimulation enhances NBCe1 (electrogenic Na+/HCO3− cotransporter) surface expression in murine colonic crypts

    PubMed Central

    Yu, Haoyang; Riederer, Brigitte; Stieger, Nicole; Boron, Walter F.; Shull, Gary E.; Manns, Michael P.; Seidler, Ursula E.

    2009-01-01

    A Na+/HCO3− cotransporter (NBC) is located in the basolateral membrane of the gastrointestinal epithelium, where it imports HCO3− during stimulated anion secretion. Having previously demonstrated secretagogue activation of NBC in murine colonic crypts, we now asked whether vesicle traffic and exocytosis are involved in this process. Electrogenic NBCe1-B was expressed at significantly higher levels than electroneutral NBCn1 in colonic crypts as determined by QRT-PCR. In cell surface biotinylation experiments, a time-dependent increase in biotinylated NBCe1 was observed, which occurred with a peak of +54.8% after 20 min with forskolin (P < 0.05) and more rapidly with a peak of +59.8% after 10 min with carbachol (P < 0.05) and which corresponded well with the time course of secretagogue-stimulated colonic bicarbonate secretion in Ussing chamber experiments. Accordingly, in isolated colonic crypts pretreated with forskolin and carbachol for 10 min, respectively, and subjected to immunohistochemistry, the NBCe1 signal showed a markedly stronger colocalization with the E-cadherin signal, which was used as a membrane marker, compared with the untreated control. Cytochalasin D did not change the observed increase in membrane abundance, whereas colchicine alone enhanced NBCe1 membrane expression without an additional increase after carbachol or forskolin, and LY294002 had a marked inhibitory effect. Taken together, our results demonstrate a secretagogue-induced increase of NBCe1 membrane expression. Vesicle traffic and exocytosis might thus represent a novel mechanism of intestinal NBC activation by secretagogues. PMID:19779011

  19. Prenatal Hypoxia-Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone.

    PubMed

    Jantzie, Lauren L; Getsy, Paulina M; Denson, Jesse L; Firl, Daniel J; Maxwell, Jessie R; Rogers, Danny A; Wilson, Christopher G; Robinson, Shenandoah

    2015-01-01

    Infants who suffer perinatal brain injury, including those with encephalopathy of prematurity, are prone to chronic neurological deficits, including epilepsy, cognitive impairment, and behavioral problems, such as anxiety, inattention, and poor social interaction. These deficits, especially in combination, pose the greatest hindrance to these children becoming independent adults. Cerebral function depends on adequate development of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric acid (GABA) are initially excitatory. During the early postnatal period, GABAAR responses switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2. With extrusion of chloride by KCC2, the Cl(-) reversal potential shifts and GABA and glycine responses become inhibitory. We hypothesized that prenatal hypoxic-ischemic brain injury chronically impairs the developmental upregulation of KCC2 that is essential for cerebral circuit formation. Following late gestation hypoxia-ischemia (HI), diffusion tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression in the CA3 subfield. Together with decreased inhibitory post-synaptic currents during a critical window of development, we document for the first time that prenatal transient systemic HI in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive function in children who suffer perinatal brain injury. PMID:26388734

  20. Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution, phosphorylation, and membrane complex properties

    PubMed Central

    Lee, Donna H.; Maunsbach, Arvid B.; Riquier-Brison, Anne D.; Nguyen, Mien T. X.; Fenton, Robert A.; Bachmann, Sebastian; Yu, Alan S.

    2013-01-01

    The renal distal tubule Na-Cl cotransporter (NCC) reabsorbs <10% of the filtered Na+ but is a key control point for blood pressure regulation by angiotensin II (ANG II), angiotensin-converting enzyme inhibitors (ACEI), and thiazide diuretics. This study aimed to determine whether NCC phosphorylation (NCCp) was regulated by acute (20–30 min) treatment with the ACEI captopril (12 μg/min × 20 min) or by a sub-pressor dose of ANG II (20 ng·kg−1·min−1) in Inactin-anesthetized rats. By immuno-EM, NCCp was detected exclusively in or adjacent to apical plama membranes (APM) in controls and after ACEI or ANG II treatment, while NCC total was detected in both APM and subapical cytoplasmic vesicles (SCV) in all conditions. In renal homogenates, neither ACEI nor ANG II treatment altered NCCp abundance, assayed by immunoblot. However, by density gradient fractionation we identified a pool of low-density APM in which NCCp decreased 50% in response to captopril and was restored during ANG II infusion, and another pool of higher-density APM that responded reciprocally, indicative of regulated redistribution between two APM pools. In both pools, NCCp was preferentially localized to Triton-soluble membranes. Blue Native gel electrophoresis established that APM NCCp localized to ∼700 kDa complexes (containing γ-adducin) while unphosphorylated NCC in intracellular membranes primarily localized to ∼400 kDa complexes: there was no evidence for native monomeric or dimeric NCC or NCCp. In summary, this study demonstrates that phosphorylated NCC, localized to multimeric complexes in the APM, redistributes in a regulated manner within the APM in response to ACEI and ANG II. PMID:23114965

  1. Neuronal expression of sodium/bicarbonate cotransporter NBCn1 (SLC4A7) and its response to chronic metabolic acidosis

    PubMed Central

    Park, Hae Jeong; Rajbhandari, Ira; Yang, Han Soo; Lee, Soojung; Cucoranu, Delia; Cooper, Deborah S.; Klein, Janet D.; Sands, Jeff M.

    2010-01-01

    The sodium-bicarbonate cotransporter NBCn1 (SLC4A7) is an acid-base transporter that normally moves Na+ and HCO3− into the cell. This membrane protein is sensitive to cellular and systemic pH changes. We examined NBCn1 expression and localization in the brain and its response to chronic metabolic acidosis. Two new NBCn1 antibodies were generated by immunizing a rabbit and a guinea pig. The antibodies stained neurons in a variety of rat brain regions, including hippocampal pyramidal neurons, dentate gyrus granular neurons, posterior cortical neurons, and cerebellar Purkinje neurons. Choroid plexus epithelia were also stained. Double immunofluorescence labeling showed that NBCn1 and the postsynaptic density protein PSD-95 were found in the same hippocampal CA3 neurons and partially colocalized in dendrites. PSD-95 was pulled down from rat brain lysates with the GST/NBCn1 fusion protein and was also coimmunoprecipitated with NBCn1. Chronic metabolic acidosis was induced by feeding rats with normal chow or 0.4 M HCl-containing chow for 7 days. Real-time PCR and immunoblot showed upregulation of NBCn1 mRNA and protein in the hippocampus of acidotic rats. NBCn1 immunostaining was enhanced in CA3 neurons, posterior cortical neurons, and cerebellar granular cells. Intraperitoneal administration of N-methyl-d-aspartate caused neuronal death determined by caspase-3 activity, and this effect was more severe in acidotic rats. Administering N-methyl-d-aspartate also inhibited NBCn1 upregulation in acidotic rats. We conclude that NBCn1 in neurons is upregulated by chronic acid loads, and this upregulation is associated with glutamate excitotoxicity. PMID:20147654

  2. Inhibition of Na+-Taurocholate Co-transporting Polypeptide-mediated Bile Acid Transport by Cholestatic Sulfated Progesterone Metabolites*

    PubMed Central

    Abu-Hayyeh, Shadi; Martinez-Becerra, Pablo; Sheikh Abdul Kadir, Siti H.; Selden, Clare; Romero, Marta R.; Rees, Myrddin; Marschall, Hanns-Ulrich; Marin, Jose J. G.; Williamson, Catherine

    2010-01-01

    Sulfated progesterone metabolite (P4-S) levels are raised in normal pregnancy and elevated further in intrahepatic cholestasis of pregnancy (ICP), a bile acid-liver disorder of pregnancy. ICP can be complicated by preterm labor and intrauterine death. The impact of P4-S on bile acid uptake was studied using two experimental models of hepatic uptake of bile acids, namely cultured primary human hepatocytes (PHH) and Na+-taurocholate co-transporting polypeptide (NTCP)-expressing Xenopus laevis oocytes. Two P4-S compounds, allopregnanolone-sulfate (PM4-S) and epiallopregnanolone-sulfate (PM5-S), reduced [3H]taurocholate (TC) uptake in a dose-dependent manner in PHH, with both Na+-dependent and -independent bile acid uptake systems significantly inhibited. PM5-S-mediated inhibition of TC uptake could be reversed by increasing the TC concentration against a fixed PM5-S dose indicating competitive inhibition. Experiments using NTCP-expressing Xenopus oocytes confirmed that PM4-S/PM5-S are capable of competitively inhibiting NTCP-mediated uptake of [3H]TC. Total serum PM4-S + PM5-S levels were measured in non-pregnant and third trimester pregnant women using liquid chromatography-electrospray tandem mass spectrometry and were increased in pregnant women, at levels capable of inhibiting TC uptake. In conclusion, pregnancy levels of P4-S can inhibit Na+-dependent and -independent influx of taurocholate in PHH and cause competitive inhibition of NTCP-mediated uptake of taurocholate in Xenopus oocytes. PMID:20177056

  3. Prenatal Hypoxia–Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone

    PubMed Central

    Jantzie, Lauren L.; Getsy, Paulina M.; Denson, Jesse L.; Firl, Daniel J.; Maxwell, Jessie R.; Rogers, Danny A.; Wilson, Christopher G.; Robinson, Shenandoah

    2015-01-01

    Infants who suffer perinatal brain injury, including those with encephalopathy of prematurity, are prone to chronic neurological deficits, including epilepsy, cognitive impairment, and behavioral problems, such as anxiety, inattention, and poor social interaction. These deficits, especially in combination, pose the greatest hindrance to these children becoming independent adults. Cerebral function depends on adequate development of essential inhibitory neural circuits and the appropriate amount of excitation and inhibition at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric acid (GABA) are initially excitatory. During the early postnatal period, GABAAR responses switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2. With extrusion of chloride by KCC2, the Cl− reversal potential shifts and GABA and glycine responses become inhibitory. We hypothesized that prenatal hypoxic–ischemic brain injury chronically impairs the developmental upregulation of KCC2 that is essential for cerebral circuit formation. Following late gestation hypoxia–ischemia (HI), diffusion tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression in the CA3 subfield. Together with decreased inhibitory post-synaptic currents during a critical window of development, we document for the first time that prenatal transient systemic HI in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive function in children who suffer perinatal brain injury. PMID:26388734

  4. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  5. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by targeting a NaCl cotransporter in bone

    PubMed Central

    Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela

    2008-01-01

    Thiazide diuretics are used, worldwide, as the first-choice drug for patients with uncomplicated hypertension. In addition to their anti-hypertensive actions, they increase bone mineral density and reduce the prevalence of fractures, indicating that thiazides may have a role in the management of postmenopausal osteoporosis. Traditionally, the bone-protective effects of thiazides have been attributed to an increase in renal calcium reabsorption, secondary to the inhibition of the sodium chloride cotransporter, NCC, expressed in the kidney distal tubule. Whether thiazides exert a direct osteoanabolic effect independently of their renal action is controversial. Here we demonstrate that freshly frozen sections of human and rat bone express NCC, principally in bone-forming cells, the osteoblasts. In primary and established culture models of osteoblasts, fetal rat calvarial (FRC) and human MG63 cells, NCC protein is virtually absent in proliferating cells while its expression is dramatically increased during differentiation. Thiazides directly stimulate the production of osteoblast markers, runt-related transcription factor 2 (runx2) and osteopontin, in the absence of a proliferative effect. Using overexpression/knockdown studies in FRC cells, we show that thiazides, but not loop diuretics, increase mineralized nodule formation acting on NCC. Overall, our study demonstrates that thiazides stimulate osteoblast differentiation and bone mineral formation independently of their renal actions. In addition to their use as part of a therapeutic treatment plan for elderly, hypertensive individuals, our discovery opens up the possibility that bone-specific drug targeting by thiazides may be developed for the prevention and treatment of osteoporosis in the patient population as a whole. PMID:17656470

  6. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway.

    PubMed

    Feng, Xiuyan; Zhang, Yiqian; Shao, Ningjun; Wang, Yanhui; Zhuang, Zhizhi; Wu, Ping; Lee, Matthew J; Liu, Yingli; Wang, Xiaonan; Zhuang, Jieqiu; Delpire, Eric; Gu, Dingying; Cai, Hui

    2015-05-15

    Thiazide-sensitive sodium chloride cotransporter (NCC) plays an important role in maintaining blood pressure. Aldosterone is known to modulate NCC abundance. Previous studies reported that dietary salts modulated NCC abundance through either WNK4 [with no lysine (k) kinase 4]-SPAK (Ste20-related proline alanine-rich kinase) or WNK4-extracellular signal-regulated kinase-1 and -2 (ERK1/2) signaling pathways. To exclude the influence of SPAK signaling pathway on the role of the aldosterone-mediated ERK1/2 pathway in NCC regulation, we investigated the effects of dietary salt changes and aldosterone on NCC abundance in SPAK knockout (KO) mice. We found that in SPAK KO mice low-salt diet significantly increased total NCC abundance while reducing ERK1/2 phosphorylation, whereas high-salt diet decreased total NCC while increasing ERK1/2 phosphorylation. Importantly, exogenous aldosterone administration increased total NCC abundance in SPAK KO mice while increasing DUSP6 expression, an ERK1/2-specific phosphatase, and led to decreasing ERK1/2 phosphorylation without changing the ratio of phospho-T53-NCC/total NCC. In mouse distal convoluted tubule (mDCT) cells, aldosterone increased DUSP6 expression while reducing ERK1/2 phosphorylation. DUSP6 Knockdown increased ERK1/2 phosphorylation while reducing total NCC expression. Inhibition of DUSP6 by (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased ERK1/2 phosphorylation and reversed the aldosterone-mediated increments of NCC partly by increasing NCC ubiquitination. Therefore, these data suggest that aldosterone modulates NCC abundance via altering NCC ubiquitination through a DUSP6-dependent ERK1/2 signal pathway in SPAK KO mice and part of the effects of dietary salt changes may be mediated by aldosterone in the DCTs.

  7. Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension.

    PubMed

    Terker, Andrew S; Yang, Chao-Ling; McCormick, James A; Meermeier, Nicholas P; Rogers, Shaunessy L; Grossmann, Solveig; Trompf, Katja; Delpire, Eric; Loffing, Johannes; Ellison, David H

    2014-07-01

    Excessive renal efferent sympathetic nerve activity contributes to hypertension in many circumstances. Although both hemodynamic and tubular effects likely participate, most evidence supports a major role for α-adrenergic receptors in mediating the direct epithelial stimulation of sodium retention. Recently, it was reported, however, that norepinephrine activates the thiazide-sensitive NaCl cotransporter (NCC) by stimulating β-adrenergic receptors. Here, we confirmed this effect and developed an acute adrenergic stimulation model to study the signaling cascade. The results show that norepinephrine increases the abundance of phosphorylated NCC rapidly (161% increase), an effect largely dependent on β-adrenergic receptors. This effect is not mediated by the activation of angiotensin II receptors. We used immunodissected mouse distal convoluted tubule to show that distal convoluted tubule cells are especially enriched for β₁-adrenergic receptors, and that the effects of adrenergic stimulation can occur ex vivo (79% increase), suggesting they are direct. Because the 2 protein kinases, STE20p-related proline- and alanine-rich kinase (encoded by STK39) and oxidative stress-response kinase 1, phosphorylate and activate NCC, we examined their roles in norepinephrine effects. Surprisingly, norepinephrine did not affect STE20p-related proline- and alanine-rich kinase abundance or its localization in the distal convoluted tubule; instead, we observed a striking activation of oxidative stress-response kinase 1. We confirmed that STE20p-related proline- and alanine-rich kinase is not required for NCC activation, using STK39 knockout mice. Together, the data provide strong support for a signaling system involving β₁-receptors in the distal convoluted tubule that activates NCC, at least in part via oxidative stress-response kinase 1. The results have implications about device- and drug-based treatment of hypertension.

  8. Functional kinomics establishes a critical node of volume-sensitive cation-Cl− cotransporter regulation in the mammalian brain

    PubMed Central

    Zhang, Jinwei; Gao, Geng; Begum, Gulnaz; Wang, Jinhua; Khanna, Arjun R.; Shmukler, Boris E.; Daubner, Gerrit M.; de los Heros, Paola; Davies, Paul; Varghese, Joby; Bhuiyan, Mohammad Iqbal H.; Duan, Jinjing; Zhang, Jin; Duran, Daniel; Alper, Seth L.; Sun, Dandan; Elledge, Stephen J.; Alessi, Dario R.; Kahle, Kristopher T.

    2016-01-01

    Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation – a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl−-sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl− uptake and stimulation of KCC3-mediated Cl− extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the cation-Cl− cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain. PMID:27782176

  9. Sodium-glucose cotransporter 2 inhibition: cardioprotection by treating diabetes-a translational viewpoint explaining its potential salutary effects.

    PubMed

    de Leeuw, Anne E; de Boer, Rudolf A

    2016-10-01

    Diabetes is a growing epidemic worldwide characterized by an elevated concentration of blood glucose, associated with a high incidence of cardiovascular disease and mortality. Although in general reduction of hyperglycaemia is considered a therapeutic goal, hypoglycaemic therapies do not necessarily reduce cardiovascular mortality and may even aggravate cardiovascular risk factors, such as body weight. A new class of antidiabetic drugs acts by inhibition of the sodium-glucose cotransporter 2 (SGLT2), which (partially) prevents reabsorption of glucose from the renal filtrate. The induction of glucose excretion via the urine (glycosuria) was turned into an effective strategy to reduce blood glucose. Ancillary advantages are the caloric and volumetric loss and thereby the reduction of body weight and blood pressure. Additionally, SGLT2 inhibition has been suggested to exert direct cardioprotective effects by the reduction of cardiac fibrosis, inflammation, and oxidative stress. This article summarizes the functional consequences of SGLT2 inhibition on the diabetic and hyperglycaemic organism. We especially focused on the effects on the kidney and the cardiovascular system as described in experimental studies. The interesting observations in experimental studies may extend to clinical medicine, as a recent trial reported a decrease in heart failure outcomes in patients at high cardiovascular risk. In conclusion, SGLT2 inhibition represents a novel treatment, which might be a promising target not only to (further) reduce blood glucose but also to target other cardiovascular risk factors. More research and long-term follow-ups will reveal the specific influence of SGLT2 inhibition on the circulatory system and cardiovascular outcomes.

  10. Splice cassette II of Na+,HCO3(-) cotransporter NBCn1 (slc4a7) interacts with calcineurin A: implications for transporter activity and intracellular pH control during rat artery contractions.

    PubMed

    Danielsen, Andreas A; Parker, Mark D; Lee, Soojung; Boron, Walter F; Aalkjaer, Christian; Boedtkjer, Ebbe

    2013-03-22

    Activation of Na(+),HCO3(-) cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pH(i)) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na(+),HCO3(-) cotransporter NBCn1 (slc4a7) and the Ca(2+)/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aβ. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aβ co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na(+),HCO3(-) cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4(+) prepulse. During depolarization with 50 mM extracellular K(+) to raise intracellular [Ca(2+)], Na(+),HCO3(-) cotransport activity was inhibited 20-30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na(+),HCO3(-) cotransport activity in VSMCs when cytosolic [Ca(2+)] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aβ. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aβ and the Na(+)/H(+) exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aβ and cassette II of NBCn1. Intracellular Ca(2+) activates Na(+),HCO3(-) cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification.

  11. The potential of sodium glucose cotransporter 2 (SGLT2) inhibitors to reduce cardiovascular risk in patients with type 2 diabetes (T2DM).

    PubMed

    Basile, Jan N

    2013-01-01

    Type 2 diabetes mellitus (T2DM) significantly increases morbidity and mortality from cardiovascular disease (CVD). Treatments for patients with T2DM have the potential to reduce cardiovascular (CV) risk. This review focuses on the potential of a new class of antidiabetic agents, the sodium glucose cotransporter 2 (SGLT2) inhibitors, to reduce CV risk in patients with T2DM through reductions in hyperglycemia, blood pressure (BP), and body weight. The results of clinical trials of SGLT2 inhibitors are summarized and discussed.

  12. EUGLYCEMIC DIABETIC KETOACIDOSIS AND SEVERE ACUTE KIDNEY INJURY SECONDARY TO OFF LABEL USE OF SODIUM GLUCOSE COTRANSPORTER-2 INHIBITOR IN A TYPE-1 DIABETIC PATIENT.

    PubMed

    Tahir, Hassan; Wani, Adil; Daruwalla, Vistasp; Daboul, Nour; Sagi, Jahnavi

    2015-01-01

    Sodium glucose Cotransporter-2 (SGLT2) inhibitors are a new class of drug approved for the treatment of type-2 diabetes; however they are also increasingly used off label in type-1 diabetic patients. SGLT2 Inhibitors work by increasing glucose excretion in urine. Euglycemic diabetic ketoacidosis (DKA) is potentially life threatening side effect as patients have normal glucose and minimal symptoms thus delaying diagnosis and treatment. Our case report highlights the risk of using SGLT2 inhibitors in type-1 diabetes and also supports the need for long term studies to define clear efficacy and complications of SGLT 2 inhibitors in both type-1 and type 2 diabetes mellitis. PMID:27004352

  13. [Sodium-glucose co-transporter-2 inhibitors: from the bark of apple trees and familial renal glycosuria to the treatment of type 2 diabetes mellitus].

    PubMed

    Mauricio, Dídac

    2013-09-01

    The therapeutic armamentarium for the treatment of hyperglycemia in type 2 diabetes mellitus is still inadequate. We are currently witnessing the introduction of a new mode of hypoglycemic treatment through induction of glycosuria to decrease the availability of the metabolic substrate, i.e. glucose. Clinical trials have shown that sodium-glucose co-transporter-2 (SGLT2) inhibitors are as efficacious as other oral hypoglycemic drugs. This article discusses the basic features of this new treatment concept and the efficacy and safety of this new drug group.

  14. [Sodium-glucose co-transporter-2 inhibitors: from the bark of apple trees and familial renal glycosuria to the treatment of type 2 diabetes mellitus].

    PubMed

    Mauricio, Dídac

    2013-09-01

    The therapeutic armamentarium for the treatment of hyperglycemia in type 2 diabetes mellitus is still inadequate. We are currently witnessing the introduction of a new mode of hypoglycemic treatment through induction of glycosuria to decrease the availability of the metabolic substrate, i.e. glucose. Clinical trials have shown that sodium-glucose co-transporter-2 (SGLT2) inhibitors are as efficacious as other oral hypoglycemic drugs. This article discusses the basic features of this new treatment concept and the efficacy and safety of this new drug group. PMID:24444522

  15. Synergy between scientific advancement and technological innovation, illustrated by a mechanism-based model characterizing sodium-glucose cotransporter-2 inhibition.

    PubMed

    Zhang, Liping; Ng, Chee M; List, James F; Pfister, Marc

    2010-09-01

    Advances in experimental medicine and technological innovation during the past century have brought tremendous progress in modern medicine and generated an ever-increasing amount of data from bench and bedside. The desire to extend scientific knowledge motivates effective data integration. Technological innovation makes this possible, which in turn accelerates the advancement in science. This mutually beneficial interaction is illustrated by the development of an expanded mechanism-based model for understanding a novel mechanism, sodium-glucose cotransporter-2 SGLT2 inhibition for potential treatment of type 2 diabetes mellitus.

  16. Phosphate: are we squandering a scarce commodity?

    PubMed

    Ferro, Charles J; Ritz, Eberhard; Townend, Jonathan N

    2015-02-01

    Phosphorus is an essential element for life but is a rare element in the universe. On Earth, it occurs mostly in the form of phosphates that are widespread but predominantly at very low concentration. This relative rarity has resulted in a survival advantage, in evolutionary terms, to organisms that conserve phosphate. When phosphate is made available in excess it becomes a cause for disease, perhaps best recognized as a potential cardiovascular and renal risk factor. As a reaction to the emerging public health issue caused by phosphate additives to food items, there have been calls for a public education programme and regulation to bring about a reduction of phosphate additives to food. During the Paleoproterzoic era, an increase in the bioavailability of phosphate is thought to have contributed significantly to the oxygenation of our atmosphere and a dramatic increase in the evolution of new species. Currently, phosphate is used poorly and often wasted with phosphate fertilizers washing this scarce commodity into water bodies causing eutrophication and algal blooms. Ironically, this is leading to the extinction of hundreds of species. The unchecked exploitation of phosphate rock, which is an increasingly rare natural resource, and our dependence on it for agriculture may lead to a strange situation in which phosphate might become a commodity to be fought over whilst at the same time, health and environmental experts are likely to recommend reductions in its use.

  17. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis

    PubMed Central

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-01-01

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO42−, NO3−, Cl−, and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis. PMID:26554016

  18. Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39.

    PubMed

    Zheng, Jiaqi J; Sinha, Dhriti; Wayne, Kyle J; Winkler, Malcolm E

    2016-01-01

    Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (μM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na(+)/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis. PMID:27379215

  19. Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39

    PubMed Central

    Zheng, Jiaqi J.; Sinha, Dhriti; Wayne, Kyle J.; Winkler, Malcolm E.

    2016-01-01

    Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (μM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na+/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis. PMID:27379215

  20. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula.

    PubMed

    Yang, Chengbo; Yang, Xiaojian; Lackeyram, Dale; Rideout, Todd C; Wang, Zirong; Stoll, Barbara; Yin, Yulong; Burrin, Douglas G; Fan, Ming Z

    2016-06-01

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis. PMID:26984322

  1. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy. PMID:27434305

  2. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy.

  3. Phosphate-limited culture of Azotobacter vinelandii.

    PubMed Central

    Tsai, J C; Aladegbami, S L; Vela, G R

    1979-01-01

    Batch cultures of Azotobacter vinelandii grown in phosphate-deficient media were compared with control cultures grown in phosphate-sufficient media. Phosphate limitation was assessed by total cell yield and by growth kinetics. Although cell protein, nucleic acids, and early growth rate were unaffected by phosphate deficiency, cell wall structure, oxygen uptake, and cell viability were significantly affected. Also, phosphate-limited cells contained much larger amounts of poly-beta-hydroxybutyric acid but lower adenylate nucleotide energy charge than did control cells. The ratio of adenosine 5'-triphosphate to adenosine 5'-diphosphate was much lower in phosphate-deficient cells. The data indicate a substrate saving choice of three metabolic pathways available to this organism under different growth conditions. Images PMID:457614

  4. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  5. Expression of sodium/hydrogen exchanger 3 and cation-chloride cotransporters in the kidney of Japanese eel acclimated to a wide range of salinities.

    PubMed

    Teranishi, Keitaro; Mekuchi, Miyuki; Kaneko, Toyoji

    2013-02-01

    Reabsorption of monovalent ions in the kidney is essential for adaptation to freshwater and seawater in teleosts. To assess a possible role of Na(+)/H(+) exchanger 3 (NHE3) in renal osmoregulation, we first identified a partial sequence of cDNA encoding NHE3 from the Japanese eel kidney. For comparison, we also identified cDNAs encoding kidney specific Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2α) and Na(+)-Cl(-) cotransporter (NCCα). In eels acclimated to a wide range of salinities from deionized freshwater to full-strength seawater, the expression of NHE3 in the kidney was the highest in eel acclimated to full-strength seawater. Meanwhile, the NCCα expression exhibited a tendency to increase as the environmental salinity decreased, whereas the NKCC2α expression was not significantly different among the experimental groups. Immunohistochemical studies showed that NHE3 was localized to the apical membrane of epithelial cells composing the second segments of the proximal renal tubule in seawater-acclimated eel. Meanwhile, the apical membranes of epithelial cells in the distal renal tubule and collecting duct showed more intense immunoreactions of NKCC2α and NCCα, respectively, in freshwater eel than in seawater eel. These findings suggest that renal monovalent-ion reabsorption is mainly mediated by NKCC2α and NCCα in freshwater eel and by NHE3 in seawater eel.

  6. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  7. Preparation of porous lanthanum phosphate with templates

    SciTech Connect

    Onoda, Hiroaki; Ishima, Yuya; Takenaka, Atsushi; Tanaka, Isao

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  8. Next generation calcium phosphate-based biomaterials

    PubMed Central

    LC, Chow

    2009-01-01

    It has been close to a century since calcium phosphate materials were first used as bone graft substitutes. Numerous studies conducted in the last two decades have produced a wealth of information on the chemistry, in vitro properties, and biological characteristics of granular calcium phosphates and calcium phosphate cement biomaterials. An in depth analysis of several key areas of calcium phosphate cement properties is presented with the aim of developing strategies that could lead to break-through improvements in the functional efficacies of these materials. PMID:19280963

  9. Functional diversity of electrogenic Na+–HCO3− cotransport in ventricular myocytes from rat, rabbit and guinea pig

    PubMed Central

    Yamamoto, Taku; Swietach, Pawel; Rossini, Alessandra; Loh, Shih-Hurng; Vaughan-Jones, Richard D; Spitzer, Kenneth W

    2005-01-01

    The Na+–HCO3− cotransporter (NBC) is an important sarcolemmal acid extruder in cardiac muscle. The characteristics of NBC expressed functionally in heart are controversial, with reports suggesting electroneutral (NBCn; 1HCO3− : 1Na+; coupling coefficient n = 1) or electrogenic forms of the transporter (NBCe; equivalent to 2HCO3− : 1Na+; n = 2). We have used voltage-clamp and epifluorescence techniques to compare NBC activity in isolated ventricular myocytes from rabbit, rat and guinea pig. Depolarization (by voltage clamp or hyperkalaemia) reversibly increased steady-state pHi while hyperpolarization decreased it, effects seen only in CO2/HCO3−-buffered solutions, and blocked by S0859 (cardiac NBC inhibitor). Species differences in amplitude of these pHi changes were rat > guinea pig ≈ rabbit. Tonic depolarization (−140 mV to −0 mV) accelerated NBC-mediated pHi recovery from an intracellular acid load. At 0 mV, NBC-mediated outward current at resting pHi was +0.52 ± 0.05 pA pF−1 (rat, n = 5), +0.26 ± 0.05 pA pF−1 (guinea pig, n = 5) and +0.10 ± 0.03 pA pF−1 (rabbit, n = 9), with reversal potentials near −100 mV, consistent with n = 2. The above results indicate a functionally active voltage-sensitive NBCe in these species. Voltage-clamp hyperpolarization negative to the reversal potential for NBCe failed, however, to terminate or reverse NBC-mediated pHi-recovery from an acid load although it was slowed significantly, suggesting electroneutral NBC may also be operational. NBC-mediated pHi recovery was associated with a rise of [Na+]i at a rate ∼25% of that mediated via NHE, and consistent with an apparent NBC stoichiometry between n = 1 and n = 2. In conclusion, NBCe in the ventricular myocyte displays considerable functional variation among the three species tested (greatest in rat, least in rabbit) and may coexist with some NBCn activity. PMID:15550467

  10. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity

    PubMed Central

    Ma, Lei-lei; Wu, Zhi-tao; Wang, Le; Zhang, Xue-feng; Wang, Jing; Chen, Chen; Ni, Xuan; Lin, Yun-fei; Cao, Yi-yi; Luan, Yang; Pan, Guo-yu

    2016-01-01

    Aim: Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. Methods: The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg·kg−1·d−1, ig) for 4 weeks, their blood samples were analyzed. Results: A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 μmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 μmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg−1·d−1) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg−1·d−1, all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. Conclusion: Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major

  11. Clinical Pharmacokinetic, Pharmacodynamic, and Drug-Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor.

    PubMed

    Devineni, Damayanthi; Polidori, David

    2015-10-01

    The sodium-glucose co-transporter 2 (SGLT2) inhibitors represent novel therapeutic approaches in the management of type 2 diabetes mellitus; they act on kidneys to decrease the renal threshold for glucose (RTG) and increase urinary glucose excretion (UGE). Canagliflozin is an orally active, reversible, selective SGLT2 inhibitor. Orally administered canagliflozin is rapidly absorbed achieving peak plasma concentrations in 1-2 h. Dose-proportional systemic exposure to canagliflozin has been observed over a wide dose range (50-1600 mg) with an oral bioavailability of 65 %. Canagliflozin is glucuronidated into two inactive metabolites, M7 and M5 by uridine diphosphate-glucuronosyltransferase (UGT) 1A9 and UGT2B4, respectively. Canagliflozin reaches steady state in 4 days, and there is minimal accumulation observed after multiple dosing. Approximately 60 % and 33 % of the administered dose is excreted in the feces and urine, respectively. The half-life of orally administered canagliflozin 100 or 300 mg in healthy participants is 10.6 and 13.1 h, respectively. No clinically relevant differences are observed in canagliflozin exposure with respect to age, race, sex, and body weight. The pharmacokinetics of canagliflozin remains unaffected by mild or moderate hepatic impairment. Systemic exposure to canagliflozin is increased in patients with renal impairment relative to those with normal renal function; however, the efficacy is reduced in patients with renal impairment owing to the reduced filtered glucose load. Canagliflozin did not show clinically relevant drug interactions with metformin, glyburide, simvastatin, warfarin, hydrochlorothiazide, oral contraceptives, probenecid, and cyclosporine, while co-administration with rifampin modestly reduced canagliflozin plasma concentrations and thus may necessitate an appropriate monitoring of glycemic control. Canagliflozin increases UGE and suppresses RTG in a dose-dependent manner, thereby lowering the plasma glucose

  12. Basolateral Na+/HCO3– cotransport activity is regulated by the dissociable Na+/H+ exchanger regulatory factor

    PubMed Central

    Bernardo, Angelito A.; Kear, Felicidad T.; Santos, Anna V.P.; Ma, Jianfei; Steplock, Debra; Robey, R. Brooks; Weinman, Edward J.

    1999-01-01

    In the renal proximal tubule, the activities of the basolateral Na+/HCO3– cotransporter (NBC) and the apical Na+/H+ exchanger (NHE3) uniformly vary in parallel, suggesting that they are coordinately regulated. PKA-mediated inhibition of NHE3 is mediated by a PDZ motif–containing protein, the Na+/H+ exchanger regulatory factor (NHE-RF). Given the common inhibition of these transporters after protein kinase A (PKA) activation, we sought to determine whether NHE-RF also plays a role in PKA-regulated NBC activity. Renal cortex immunoblot analysis using anti-peptide antibodies directed against rabbit NHE-RF demonstrated the presence of this regulatory factor in both brush-border membranes (BBMs) and basolateral membranes (BLMs). Using a reconstitution assay, we found that limited trypsin digestion of detergent solubilized rabbit renal BLM preparations resulted in NBC activity that was unaffected by PKA activation. Co-reconstitution of these trypsinized preparations with a recombinant protein corresponding to wild-type rabbit NHE-RF restored the inhibitory effect of PKA on NBC activity in a concentration-dependent manner. NBC activity was inhibited 60% by 10–8M NHE-RF; this effect was not observed in the absence of PKA. Reconstitution with heat-denatured NHE-RF also failed to attenuate NBC activity. To establish further a physiologic role for NHE-RF in NBC regulation, the renal epithelial cell line B-SC-1, which lacks detectable endogenous NHE-RF expression, was engineered to express stably an NHE-RF transgene. NHE-RF–expressing B-SC-1 cells (B-SC-RF) exhibited markedly lower basal levels of NBC activity than did wild-type controls. Inhibition of NBC activity in B-SC-RF cells was enhanced after 10 μM of forskolin treatment, consistent with a postulated role for NHE-RF in mediating the inhibition of NBC activity by PKA. These findings not only suggest NHE-RF involvement in PKA-regulated NBC activity, but also provide a unique molecular mechanism whereby

  13. Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus.

    PubMed

    Melo, Igor S; Santos, Yngrid M O; Costa, Maísa A; Pacheco, Amanda L D; Silva, Nívea K G T; Cardoso-Sousa, L; Pereira, U P; Goulart, L R; Garcia-Cairasco, Norberto; Duzzioni, Marcelo; Gitaí, Daniel L G; Tilelli, Cristiane Q; Sabino-Silva, Robinson; Castro, Olagide W

    2016-08-01

    Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, starting from secondary functional disorders due to several insults, including self-sustaining continuous seizures identified as status epilepticus (SE). Although hypoglycemia has been associated with SE, the effect of inhibition of the Na(+)/glucose cotransporters (SGLTs) on hippocampus during SE is still unknown. Here we evaluated the functional role of SGLT in the pattern of limbic seizures and neurodegeneration process after pilocarpine (PILO)-induced SE. Vehicle (VEH, 1μL) or phlorizin, a specific SGLT inhibitor (PZN, 1μL, 50μg/μL), was administered in the hippocampus of rats 30min before PILO (VEH+PILO or PZN+PILO, respectively). The limbic seizures were classified using the Racine's scale, and the amount of wet dog shakes (WDS) was quantified before and during SE. Neurodegeneration process was evaluated by Fluoro-Jade C (FJ-C), and FJ-C-positive neurons (FJ-C+) were counted 24h and 15days after SE. The PZN-treated rats showed higher (p<0.05) number of WDS when compared with VEH+PILO. There was no difference in seizure severity between PZN+PILO and VEH+PILO groups. However, the pattern of limbic seizures significantly changed in PZN+PILO. Indeed, the class 5 seizures repeated themselves more times (p<0.05) than the other classes in the PZN group at 50min after SE induction. The PZN+PILO animals had a higher (p<0.05) number of FJ-C+ cells in the dentate gyrus (DG), hilus, and CA3 and CA1 of hippocampus, when compared with VEH+PILO. The PZN+PILO animals had a decreased number (p<0.05) of FJ-C+ cells in CA1 compared with VEH+PILO 15days after SE induction. Taken together, our data suggest that SGLT inhibition with PZN increased the severity of limbic seizures during SE and increased neurodegeneration in hippocampus 24h after SE, suggesting that SGLT1 and SGLT2 could participate in the modulation of earlier stages of epileptogenic processes. PMID:27429292

  14. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. PMID:26608659

  15. WNK1-OSR1 kinase-mediated phospho-activation of Na+-K+-2Cl- cotransporter facilitates glioma migration

    PubMed Central

    2014-01-01

    Background The bumetanide (BMT)-sensitive Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) maintains cell volume homeostasis by increasing intracellular K+ and Cl- content via regulatory volume increase (RVI). Expression levels of NKCC1 positively correlate with the histological grade and severity of gliomas, the most common primary adult brain tumors, and up-regulated NKCC1 activity facilitates glioma cell migration and apoptotic resistance to the chemotherapeutic drug temozolomide (TMZ). However, the cellular mechanisms underlying NKCC1 functional up-regulation in glioma and in response to TMZ administration remain unknown. Methods Expression of NKCC1 and its upstream kinases With-No-K (Lysine) kinase 1 (WNK1) and oxidative stress-responsive kinase-1 (OSR1) in different human glioma cell lines and glioma specimens were detected by western blotting and immunostaining. Live cell imaging and microchemotaxis assay were applied to record glioma cell movements under different treatment conditions. Fluorescence indicators were utilized to measure cell volume, intracellular K+ and Cl- content to reflect the activity of NKCC1 on ion transportation. Small interfering RNA (siRNA)-mediated knockdown of WNK1 or OSR1 was used to explore their roles in regulation of NKCC1 activity in glioma cells. Results of different treatment groups were compared by one-way ANOVA using the Bonferroni post-hoc test in the case of multiple comparisons. Results We show that compared to human neural stem cells and astrocytes, human glioma cells exhibit robust increases in the activation and phosphorylation of NKCC1 and its two upstream regulatory kinases, WNK1 and OSR1. siRNA-mediated knockdown of WNK1 or OSR1 reduces intracellular K+ and Cl- content and RVI in glioma cells by abolishing NKCC1 regulatory phospho-activation. Unexpectedly, TMZ activates the WNK1/OSR1/NKCC1 signaling pathway and enhances glioma migration. Pharmacological inhibition of NKCC1 with its potent inhibitor BMT or si

  16. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications.

    PubMed

    Heerspink, Hiddo J L; Perkins, Bruce A; Fitchett, David H; Husain, Mansoor; Cherney, David Z I

    2016-09-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitors, including empagliflozin, dapagliflozin, and canagliflozin, are now widely approved antihyperglycemic therapies. Because of their unique glycosuric mechanism, SGLT2 inhibitors also reduce weight. Perhaps more important are the osmotic diuretic and natriuretic effects contributing to plasma volume contraction, and decreases in systolic and diastolic blood pressures by 4 to 6 and 1 to 2 mm Hg, respectively, which may underlie cardiovascular and kidney benefits. SGLT2 inhibition also is associated with an acute, dose-dependent reduction in estimated glomerular filtration rate by ≈5 mL·min(-1)·1.73 m(-2) and ≈30% to 40% reduction in albuminuria. These effects mirror preclinical observations suggesting that proximal tubular natriuresis activates renal tubuloglomerular feedback through increased macula densa sodium and chloride delivery, leading to afferent vasoconstriction. On the basis of reduced glomerular filtration, glycosuric and weight loss effects are attenuated in patients with chronic kidney disease (estimated glomerular filtration rate <60 mL·min(-1)·1.73 m(-2)). In contrast, blood pressure lowering, estimated glomerular filtration rate, and albuminuric effects are preserved, and perhaps exaggerated in chronic kidney disease. With regard to long-term clinical outcomes, the EMPA-REG OUTCOME trial (Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes) in patients with type 2 diabetes mellitus and established cardiovascular disease randomly assigned to empagliflozin versus placebo reported a 14% reduction in the primary composite outcome of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, and >30% reductions in cardiovascular mortality, overall mortality, and heart failure hospitalizations associated with empagliflozin, even though, by design, the hemoglobin A1c difference between the randomized groups was marginal. Aside from an increased risk of mycotic genital

  17. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension.

  18. Incretins and selective renal sodium-glucose co-transporter 2 inhibitors in hypertension and coronary heart disease

    PubMed Central

    Sanchez, Ramiro A; Sanabria, Hugo; de los Santos, Cecilia; Ramirez, Agustin J

    2015-01-01

    Hyperglycemia is associated with an increased risk of cardiovascular disease, and the consequences of intensive therapy may depend on the mechanism of the anti-diabetic agent(s) used to achieve a tight control. In animal models, stable analogues of glucagon-like peptide-1 (GLP-1) were able to reduce body weight and blood pressure and also had favorable effects on ischemia following coronary reperfusion. In a similar way, dipeptidyl peptidase IV (DPP-IV) showed to have favorable effects in animal models of ischemia/reperfusion. This could be due to the fact that DPP-IV inhibitors were able to prevent the breakdown of GLP-1 and glucose-dependent insulinotropic polypeptide, but they also decreased the degradation of several vasoactive peptides. Preclinical data for GLP-1, its derivatives and inhibitors of the DPP-IV enzyme degradation suggests that these agents may be able to, besides controlling glycaemia, induce cardio-protective and vasodilator effects. Notwithstanding the many favorable cardiovascular effects of GLP-1/incretins reported in different studies, many questions remain unanswered due the limited number of studies in human beings that aim to examine the effects of GLP-1 on cardiovascular endpoints. For this reason, long-term trials searching for positive cardiovascular effects are now in process, such as the CAROLINA and CARMELINA trials, which are supported by small pilot studies performed in humans (and many more animal studies) with incretin-based therapies. On the other hand, selective renal sodium-glucose co-transporter 2 inhibitors were also evaluated in the prevention of cardiovascular outcomes in type 2 diabetes. However, it is quite early to draw conclusions, since data on cardiovascular outcomes and cardiovascular death are limited and long-term studies are still ongoing. In this review, we will analyze the mechanisms underlying the cardiovascular effects of incretins and, at the same time, we will present a critical position about the real

  19. The SLC37 Family of Sugar-Phosphate/Phosphate Exchangers

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2014-01-01

    The SLC37 family members are endoplasmic reticulum (ER)-associated sugar-phosphate/phosphate (Pi) exchangers. Three of the four members, SLC37A1, SLC37A2, and SLC37A4, function as Pi-linked glucose-6-phosphate (G6P) antiporters catalyzing G6P:Pi and Pi:Pi exchanges. The activity of SLC37A3 is unknown. SLC37A4, better known as the G6P transporter (G6PT), has been extensively characterized, functionally and structurally, and is the best characterized family member. G6PT contains 10 transmembrane helices with both N and C termini facing the cytoplasm. The primary in vivo function of the G6PT protein is to translocate G6P from the cytoplasm into the ER lumen where it couples with either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α or G6PC) or the ubiquitously expressed G6Pase-β (or G6PC3) to hydrolyze G6P to glucose and Pi. The G6PT/G6Pase-α complex maintains interprandial glucose homeostasis, and the G6PT/G6Pase-β complex maintains neutro-phil energy homeostasis and functionality. G6PT is highly selective for G6P and is competitively inhibited by cholorogenic acid and its derivatives. Neither SLC37A1 nor SLC37A2 can couple functionally with G6Pase-α or G6Pase-β, and the antiporter activities of SLC37A1 or SLC37A2 are not inhibited by cholorogenic acid. Deficiencies in G6PT cause glycogen storage disease type Ib (GSD-Ib), a metabolic and immune disorder. To date, 91 separate SLC37A4 mutations, including 39 missense mutations, have been identified in GSD-Ib patients. Characterization of missense mutations has yielded valuable information on functionally important residues in the G6PT protein. The biological roles of the other SLC37 proteins remain to be determined and deficiencies have not yet been correlated to diseases. PMID:24745989

  20. Con: Phosphate binders in chronic kidney disease.

    PubMed

    Kestenbaum, Bryan

    2016-02-01

    Phosphate binders are prescribed to chronic kidney disease (CKD) patients based on associations of serum phosphate concentrations with mortality and calcification, experimental evidence for direct calcifying effects of phosphate on vascular smooth muscle tissue and the central importance of phosphate retention in CKD-mineral and bone disorder (CKD-MBD). Current knowledge regarding phosphate metabolism in CKD provides important insight into disease mechanisms and supports future clinical trials of phosphate binders in CKD patients to determine the impact of these medications on clinically relevant outcomes. The risks and benefits of phosphate binders cannot be inferred from association studies of serum phosphate concentrations, which are inconsistent and subject to confounding, animal-experimental data, which are based on conditions that differ from human disease, or physiological arguments, which are limited to known regulatory factors. Many interventions that targeted biochemical pathways suggested by association studies and suspected biological importance have yielded null or harmful results. Clinical trials of phosphate binders are of high clinical and scientific importance to nephrology. Demonstration of reduced rates of clinical disease in such trials could lead to important health benefits for CKD patients, whereas negative results would refocus efforts to understand and treat CKD-MBD. Clinical trials that employ highly practical or 'pragmatic' designs represent an optimal approach for determining the safety and effectiveness of phosphate binders in real-world settings. Absent clinical trial data, observational studies of phosphate binders in large CKD populations could provide important information regarding the benefits, risks and/or unintended side effects of these medications. PMID:26681747

  1. The measurement of xylulose 5-phosphate, ribulose 5-phosphate, and combined sedoheptulose 7-phosphate and ribose 5-phosphate in liver tissue.

    PubMed

    Casazza, J P; Veech, R L

    1986-12-01

    A modification of the method of Kauffman et al. (F. C. Kauffman, J. G. Brown, J. V. Passonneau, and O. H. Lowry (1969) J. Biol. Chem. 244, 3647-3653) for the spectrophotometric determination of xylulose 5-phosphate, ribulose 5-phosphate, and combined ribose 5-phosphate and sedoheptulose 7-phosphate in tissue extract is presented. Using commercially available enzymes all three assays come to a clear endpoint with the assays described. Values for these metabolites in liver in three dietary states are reported; 48 h starved, ad libitum feeding of standard NIH rat ration, and meal feeding of a fat-free diet. Xylulose 5-phosphate values were 3.8 +/- 0.3, 8.6 +/- 0.3, and 66.3 +/- 8.3 nmol/g. Ribulose 5-phosphate values were 3.4 +/- 0.3, 5.8 +/- 0.2, and 37.1 +/- 5.3 nmol/g. Combined ribose 5-phosphate and sedoheptulose 7-phosphate were 29.3 +/- 0.3, 38.2 +/- 1.2, and 108.2 +/- 14.5 nmol/g. The ratio of measured tissue content of [xylulose 5-phosphate]/[ribulose 5-phosphate] was found to be 1.12 +/- 0.07 in starved animals, 1.48 +/- 0.04 in ad libitum fed animals and 1.78 +/- 0.03 in low-fat meal fed animals. These data are in good agreement with the range of equilibrium constants reported for this reaction, suggesting that the ribulose 5-phosphate 3-epimerase reaction (EC 5.1.3.1) is a near equilibrium reaction despite a more than 10-fold change in the tissue content of these metabolites.

  2. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    PubMed

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite.

  3. Mineral resource of the month: phosphate rock

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2007-01-01

    Phosphate rock minerals provide the only significant global resources of phosphorus, which is an essential element for plant and animal nutrition. Phosphate rock is used primarily as a principal component of nitrogen-phosphorus-potassium fertilizers, but also to produce elemental phosphorus and animal feed.

  4. How inositol pyrophosphates control cellular phosphate homeostasis?

    PubMed

    Saiardi, Adolfo

    2012-05-01

    Phosphorus in his phosphate PO(4)(3-) configuration is an essential constituent of all life forms. Phosphate diesters are at the core of nucleic acid structure, while phosphate monoester transmits information under the control of protein kinases and phosphatases. Due to these fundamental roles in biology it is not a surprise that phosphate cellular homeostasis is under tight control. Inositol pyrophosphates are organic molecules with the highest proportion of phosphate groups, and they are capable of regulating many biological processes, possibly by controlling energetic metabolism and adenosine triphosphate (ATP) production. Furthermore, inositol pyrophosphates influence inorganic polyphosphates (polyP) synthesis. The polymer polyP is solely constituted by phosphate groups and beside other known functions, it also plays a role in buffering cellular free phosphate [Pi] levels, an event that is ultimately necessary to generate ATP and inositol pyrophosphate. Although it is not yet clear how inositol pyrophosphates regulate cellular metabolism, understanding how inositol pyrophosphates influence phosphates homeostasis will help to clarify this important link. In this review I will describe the recent literature on this topic, with in the hope of inspiring further research in this fascinating area of biology.

  5. Metallic function of lithium phosphate glass electrodes

    SciTech Connect

    Kochetova, T.I.; Bobrov, V.S.

    1995-05-20

    Specificity of metallic functions of lithium phosphate glasses toward univalent cations over a wide concentration range and their correlation with cation size have been studied. In the present work, the authors extended the spectrum of phosphate glass compositions: a study has been made how additions of gallium, titanium, and vanadium oxides influence electrode properties.

  6. Linking Gene Expression in the Intestine to Production of Gametes Through the Phosphate Transporter PITR-1 in Caenorhabditis elegans

    PubMed Central

    Balklava, Zita; Rathnakumar, Navin D.; Vashist, Shilpa; Schweinsberg, Peter J.; Grant, Barth D.

    2016-01-01

    Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane-bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi cotransporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than two decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the Caenorhabditis elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline. PMID:27449055

  7. Linking Gene Expression in the Intestine to Production of Gametes Through the Phosphate Transporter PITR-1 in Caenorhabditis elegans.

    PubMed

    Balklava, Zita; Rathnakumar, Navin D; Vashist, Shilpa; Schweinsberg, Peter J; Grant, Barth D

    2016-09-01

    Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane-bound transporters and coupled to Na(+) transport. Mammalian sodium-dependent Pi cotransporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than two decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the Caenorhabditis elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline. PMID:27449055

  8. Phosphate rock resources of the United States

    USGS Publications Warehouse

    Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.

    1984-01-01

    In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern

  9. Effects of Nickel on Calcium Phosphate Formation

    NASA Astrophysics Data System (ADS)

    Guerra-López, J.; González, R.; Gómez, A.; Pomés, R.; Punte, G.; Della Védova, C. O.

    2000-05-01

    We have investigated the effect of nickel on calcium phosphate formation from aqueous solutions. The calcium phosphates prepared under different reaction conditions (pH, temperature, and nickel concentration) were characterized by X-ray diffraction, FTIR spectroscopy, and chemical analysis. The apatite compounds were also studied thermogravimetrically. From the combined results of the techniques employed we have determined that nickel favors the formation of brushite and amorphous calcium phosphate. We have found, as well, that the presence of nickel in the solution inhibits calcium hydroxyapatite (CaHAP) and octacalcium phosphate formation. However in the synthesis performed at basic pH and 95°C the apatitic phase (HAP) could be obtained. The present results suggest that the presence of nickel may modify the precipitation of oral calcium phosphate.

  10. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis

    SciTech Connect

    Thiel, T.

    1988-03-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells.Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of P/sub i/. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent K/sub i/ values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.

  11. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  12. Phosphate Biomineralization of Cambrian Microorganisms

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  13. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    PubMed

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  14. Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex

    SciTech Connect

    Soleimani, M.; Bergman, J.A.; Hosford, M.A.; McKinney, T.D. )

    1990-10-01

    Most HCO3- reabsorption in proximal tubules occurs via electroneutral Na+/H+ exchange in brush border membranes (BBMS) and electrogenic Na+:CO3=:HCO3- cotransport in basolateral membranes (BLMS). Since potassium depletion (KD) increases HCO3- reabsorption in proximal tubules, we evaluated these transport systems using BBM and BLM vesicles, respectively, from control (C) and KD rats. Feeding rats a potassium deficient diet for 3-4 wk resulted in lower plasma (K+) (2.94 mEq/liter, KD vs. 4.47 C), and higher arterial pH (7.51 KD vs. 7.39 C). KD rats gained less weight than C but had higher renal cortical weight. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0, 10% CO2, 90% N2) into BLM vesicles was 44% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was DIDS sensitive, suggesting that Na+:CO3=:HCO3- cotransport accounted for the observed differences. Kinetic analysis of Na+ influx showed a Km of 8.2 mM in KD vs. 7.6 mM in C and Vmax of 278 nmol/min/mg protein in KD vs. 177 nmol/min/mg protein in C. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0) into BBM vesicles was 34% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was amiloride sensitive, suggesting that Na+/H+ exchange was responsible for the observed differences. Kinetic analysis of Na+ influx showed a Km of 6.2 mM in KD vs. 7.1 mM in C and Vmax of 209 nmol/min/mg protein in KD vs. 144 nmol/min/mg protein in C. Uptakes of Na(+)-dependent (3H)glucose into BBM and (14C)succinate into BLM vesicles were not different in KD and C groups, suggesting that the Na+/H+ exchanger and Na+:CO3=:HCO3- cotransporter activities were specifically altered in KD.

  15. Using Bacterial Surrogates to Assess Pathogen Transport in the Subsurface: Laboratory and Field Indications of Co-Transport Considerations

    NASA Astrophysics Data System (ADS)

    Emelko, M.; Stimson, J. R.; McLellan, N. L.; Mesquita, M.

    2009-12-01

    processes such as RBF. Here, duplicate column studies were conducted to evaluate the transport of nano- and micro-sized polystyrene micropsheres, aerobic spores of Bacillus subtilis, PR772 bacteriophage, and pathogenic Salmonella typhimurium bacteria in a well-sorted fine sand (d 50 = 0.6 mm). A field validation experiment investigating transport of 1.5 µm polystyrene micropsheres and aerobic spores in and RBF system comprised of unconsolidated silty sand, gravel, and boulders was conducted. The column studies demonstrated that the presence of the aerobic spores resulted in increased removal of 4.5 µm microspheres from< 2 log to ~4 log, and 1.5 µm microsphere removal from <0.5 log to ~1 log removal. Microscopic examination of the samples also revealed extensive clumping of microspheres and microorganisms during the experiments conducted with aerobic spores. A field trial during which microspheres and spores of B. subtilis were injected into the subsurface provided corroborating evidence of a co-transport effect of aerobic spores by demonstrating ~1.6 log increase in 1.5 µm microsphere removal in the presence of aerobic spores.

  16. Field-scale evaluation of the co-transport impacts of Bacillus subtilis endospores on other pathogen surrogates

    NASA Astrophysics Data System (ADS)

    Stimson, J. R.; Chik, A. H.; Mesquita, M. M.; McLellan, N. L.; Emelko, M.

    2009-12-01

    spores (TAS) occurred in the native groundwater at an average concentration of 1.4 x 10-1 ± 5.9 x 10-2 (n = 21) spore mL-1. When B. subtilis endospores were injected at a concentration of 6.7 x 104 spores mL-1, TAS recovery at the extraction well exceeded natural levels by ~1-log. The increase in TAS concentration is attributed to B. subtilis spore injection. The removal of 1.5 µm microspheres was increased from ~7-log in the absence of injected B. subtilis spores to ~8-log in the presence of the spores. The increased microsphere removal when spores were present was presumably due to spore-microsphere aggregation and/or the enhanced co-attachment of microspheres and spores to mineral surfaces. This observed surrogate interaction must be considered in studies where more than one tracer is employed to estimate removal efficiency of riverbank filtration systems. An additional field-scale co-transport study, examining Bacillus spore interaction with E. coli and bacteriophage PRD-1, will be conducted to assess the degree of interference observed with other biocolloids.

  17. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Alshahrani, Saeed; Brooks, Marybeth; McCormack, Francis X.; Smith, Roger D.; Zahedi, Kamyar

    2016-01-01

    Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and

  18. Salicylanilide diethyl phosphates as cholinesterases inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2015-02-01

    Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman's spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors. PMID:25462625

  19. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  20. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.

    PubMed

    Grochowski, Laura L; Xu, Huimin; White, Robert H

    2005-11-01

    Recent work has raised a question as to the involvement of erythrose-4-phosphate, a product of the pentose phosphate pathway, in the metabolism of the methanogenic archaea (R. H. White, Biochemistry 43:7618-7627, 2004). To address the possible absence of erythrose-4-phosphate in Methanocaldococcus jannaschii, we have assayed cell extracts of this methanogen for the presence of this and other intermediates in the pentose phosphate pathway and have determined and compared the labeling patterns of sugar phosphates derived metabolically from [6,6-2H2]- and [U-13C]-labeled glucose-6-phosphate incubated with cell extracts. The results of this work have established the absence of pentose phosphate pathway intermediates erythrose-4-phosphate, xylose-5-phosphate, and sedoheptulose-7-phosphate in these cells and the presence of D-arabino-3-hexulose-6-phosphate, an intermediate in the ribulose monophosphate pathway. The labeling of the D-ara-bino-3-hexulose-6-phosphate, as well as the other sugar-Ps, indicates that this hexose-6-phosphate was the precursor to ribulose-5-phosphate that in turn was converted into ribose-5-phosphate by ribose-5-phosphate isomerase. Additional work has demonstrated that ribulose-5-phosphate is derived by the loss of formaldehyde from D-arabino-3-hexulose-6-phosphate, catalyzed by the protein product of the MJ1447 gene.

  1. Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet.

    PubMed

    Hayami, Tomohide; Kato, Yoshiro; Kamiya, Hideki; Kondo, Masaki; Naito, Ena; Sugiura, Yukako; Kojima, Chika; Sato, Sami; Yamada, Yuichiro; Kasagi, Rina; Ando, Toshihito; Noda, Saeko; Nakai, Hiromi; Takada, Eriko; Asano, Emi; Motegi, Mikio; Watarai, Atsuko; Kato, Koichi; Nakamura, Jiro

    2015-09-01

    We present a case of a 32-year-old diabetic woman with Prader-Willi syndrome who developed severe ketoacidosis caused by a sodium-glucose cotransporter 2 (SGLT2) inhibitor, a novel class of antihyperglycemic agents, during a strict low-carbohydrate diet. At admission, a serum glucose level of 191 mg/dL was relatively low, though laboratory evaluations showed severe ketoacidosis. This is the first report of ketoacidosis caused by a SGLT2 inhibitor. It is necessary to not only pay attention when using a SGLT2 inhibitor in patients following a low-carbohydrate diet, but also to start a low-carbohydrate diet in patients treated with a SGLT2 inhibitor because of a high risk for developing ketoacidosis. PMID:26417418

  2. Non-occlusive Mesenteric Ischemia with Diabetic Ketoacidosis and Lactic Acidosis Following the Administration of a Sodium Glucose Co-transporter 2 Inhibitor.

    PubMed

    Gocho, Naoki; Aoki, Ema; Okada, Chiho; Omura, Kazuki; Hirashima, Takeshi; Suzuki, Natsuko; Tanaka, Hideki; Omori, Yasue

    2016-01-01

    We herein describe a patient with non-occlusive mesenteric ischemia (NOMI) potentially associated with the administration of a sodium glucose co-transporter 2 (SGLT2) inhibitor. A 60-year-old man with type 1 diabetes was transferred to our hospital due to vomiting and respiratory distress. He was treated with insulin, metformin and a SGLT2 inhibitor, which had recently been added. He was diagnosed with intestinal ischemia complicated by diabetic ketoacidosis and lactic acidosis. Urgent exploratory surgery was performed, and the gangrenous bowel was resected. Histological findings confirmed the diagnosis of NOMI. The administration of SGLT2 inhibitors therefore requires certain exceptions for type 1 diabetes and cautious monitoring for the occurrence of these possible adverse effects. PMID:27374678

  3. Euglycemic Diabetic Ketoacidosis in a 27 year-old female patient with type-1-Diabetes treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor Canagliflozin.

    PubMed

    Bader, Nimrah; Mirza, Lubna

    2016-01-01

    We are reporting a timely case of atypical euglycemic diabetic ketoacidosis in a type 1 diabetic patient treated with sodium-glucose cotransporter-2 (SGLT-2) inhibitor canagliflozin. The clinical history, physical examination findings and laboratory values are described. Other causes of acidosis such as salicylate toxicity or alcohol intoxication were excluded. Ketoacidosis resolved after increasing dextrose and insulin doses supporting the hypothesis that SGLT-2 inhibitors may lead to hypoinsulinemia. Euglycemic ketoacidosis did not recur in our patient after discontinuing canagliflozin. We recommend reserving SGLT2 inhibitor therapy to type 2 diabetics, discontinuing medication and treating patients presenting with ketoacidosis due to SGLT-2 inhibitors with higher concentrations of dextrose with appropriate doses of insulin to help resolve acidosis. PMID:27375734

  4. Expression and Purification of the Cytoplasmic N-Terminal Domain of the Na/HCO3 Cotransporter NBCe1-A: Structural Insights from the a Generalized Approach

    SciTech Connect

    Gill,H.; Boron, W.

    2006-01-01

    The cytoplasmic, N-terminal domain (Nt) of the electrogenic sodium/bicarbonate cotransporter -- NBCe1 -- over-expresses in Escherichia coli and yields a large amount of soluble protein. A novel purification strategy, which involves a streptomycin precipitation, overcomes obstacles of instability and copurifying proteins, and leads to the first seen Nt-NBCe1 crystals. The purification procedure generally lends itself to the purification of Nts from other classes of the SLC4 family. Size-exclusion chromatography suggests that the Nt of NBCe1 as well as the Nt of other SLC4 members form dimers. A comparison of Nt-NBCe1 to SLC4 member Nt-AE1, based on purification properties and predicted secondary-structure sequence alignments, suggests a similar mechanism for dimer stabilization.

  5. X-ray diffraction studies on merohedrally twinned Δ1-62NtNBCe1-A crystals of the sodium/bicarbonate cotransporter.

    PubMed

    Gill, Harindarpal S; Dutcher, Lauren; Boron, Walter F; Patel, Samir; Guay-Woodford, Lisa M

    2013-07-01

    NBCe1-A membrane-embedded macromolecules that cotransport sodium and bicarbonate ions across the bilayer serve to maintain acid-base homeostasis throughout the body. Defects result in a number of renal and eye disorders, including type-II renal tubular acidosis and cataracts. Here, crystals of a human truncated mutant of the cytoplasmic N-terminal domain of NBCe1 (Δ1-62NtNBCe1-A) are reported that diffract X-rays to 2.4 Å resolution. The crystal symmetry of Δ1-62NtNBCe1-A is of space group P31 with pseudo-P3121 symmetry and it has a hemihedral twin fraction of 33.0%. The crystals may provide insight into the pathogenic processes observed in a subset of patients with truncating and point mutations in the gene encoding NBCe1.

  6. Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet

    PubMed Central

    Hayami, Tomohide; Kato, Yoshiro; Kamiya, Hideki; Kondo, Masaki; Naito, Ena; Sugiura, Yukako; Kojima, Chika; Sato, Sami; Yamada, Yuichiro; Kasagi, Rina; Ando, Toshihito; Noda, Saeko; Nakai, Hiromi; Takada, Eriko; Asano, Emi; Motegi, Mikio; Watarai, Atsuko; Kato, Koichi; Nakamura, Jiro

    2015-01-01

    We present a case of a 32-year-old diabetic woman with Prader–Willi syndrome who developed severe ketoacidosis caused by a sodium-glucose cotransporter 2 (SGLT2) inhibitor, a novel class of antihyperglycemic agents, during a strict low-carbohydrate diet. At admission, a serum glucose level of 191 mg/dL was relatively low, though laboratory evaluations showed severe ketoacidosis. This is the first report of ketoacidosis caused by a SGLT2 inhibitor. It is necessary to not only pay attention when using a SGLT2 inhibitor in patients following a low-carbohydrate diet, but also to start a low-carbohydrate diet in patients treated with a SGLT2 inhibitor because of a high risk for developing ketoacidosis. PMID:26417418

  7. Aquatic Toxicity Assessment of Phosphate Compounds

    PubMed Central

    Kim, Eunju; Yoo, Sunkyoung; Ro, Hee-Young; Han, Hye-Jin; Baek, Yong-Wook; Eom, Ig-Chun; Kim, Pilje; Choi, Kyunghee

    2013-01-01

    Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC50) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC50) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC50 was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C50 was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth. PMID:23440935

  8. Early increasing-intensity treadmill exercise reduces neuropathic pain by preventing nociceptor collateral sprouting and disruption of chloride cotransporters homeostasis after peripheral nerve injury.

    PubMed

    López-Álvarez, Víctor M; Modol, Laura; Navarro, Xavier; Cobianchi, Stefano

    2015-09-01

    Activity treatments, such as treadmill exercise, are used to improve functional recovery after nerve injury, parallel to an increase in neurotrophin levels. However, despite their role in neuronal survival and regeneration, neurotrophins may cause neuronal hyperexcitability that triggers neuropathic pain. In this work, we demonstrate that an early increasing-intensity treadmill exercise (iTR), performed during the first week (iTR1) or during the first 2 weeks (iTR2) after section and suture repair of the rat sciatic nerve, significantly reduced the hyperalgesia developing rapidly in the saphenous nerve territory and later in the sciatic nerve territory after regeneration. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in sensory neurons and spinal cord was reduced in parallel. iTR prevented the extension of collateral sprouts of saphenous nociceptive calcitonin gene-related peptide fibers within the adjacent denervated skin and reduced NGF expression in the same skin and in the L3 dorsal root ganglia (DRG). Injury also induced Na⁺-K⁺-2Cl⁻ cotransporter 1 (NKCC1) upregulation in DRG, and K⁺-Cl⁻ cotransporter 2 (KCC2) downregulation in lumbar spinal cord dorsal horn. iTR normalized NKCC1 and boosted KCC2 expression, together with a significant reduction of microgliosis in L3-L5 dorsal horn, and a reduction of BDNF expression in microglia at 1 to 2 weeks postinjury. These data demonstrate that specific activity protocols, such as iTR, can modulate neurotrophins expression after peripheral nerve injury and prevent neuropathic pain by blocking early mechanisms of sensitization such as collateral sprouting and NKCC1/KCC2 disregulation. PMID:26090759

  9. A novel sodium bicarbonate cotransporter-like gene in an ancient duplicated region: SLC4A9 at 5q31

    PubMed Central

    Lipovich, Leonard; Lynch, Eric D; Lee, Ming K; King, Mary-Claire

    2001-01-01

    Background: Sodium bicarbonate cotransporter (NBC) genes encode proteins that execute coupled Na+ and HCO3- transport across epithelial cell membranes. We report the discovery, characterization, and genomic context of a novel human NBC-like gene, SLC4A9, on chromosome 5q31. Results: SLC4A9 was initially discovered by genomic sequence annotation and further characterized by sequencing of long-insert cDNA library clones. The predicted protein of 990 amino acids has 12 transmembrane domains and high sequence similarity to other NBCs. The 23-exon gene has 14 known mRNA isoforms. In three regions, mRNA sequence variation is generated by the inclusion or exclusion of portions of an exon. Noncoding SLC4A9 cDNAs were recovered multiple times from different libraries. The 3' untranslated region is fragmented into six alternatively spliced exons and contains expressed Alu, LINE and MER repeats. SLC4A9 has two alternative stop codons and six polyadenylation sites. Its expression is largely restricted to the kidney. In silico approaches were used to characterize two additional novel SLC4A genes and to place SLC4A9 within the context of multiple paralogous gene clusters containing members of the epidermal growth factor (EGF), ankyrin (ANK) and fibroblast growth factor (FGF) families. Seven human EGF-SLC4A-ANK-FGF clusters were found. Conclusion: The novel sodium bicarbonate cotransporter-like gene SLC4A9 demonstrates abundant alternative mRNA processing. It belongs to a growing class of functionally diverse genes characterized by inefficient highly variable splicing. The evolutionary history of the EGF-SLC4A-ANK-FGF gene clusters involves multiple rounds of duplication, apparently followed by large insertions and deletions at paralogous loci and genome-wide gene shuffling. PMID:11305939

  10. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases.

    PubMed

    Kitlar, T; Döring, F; Diedrich, D F; Frank, R; Wallmeier, H; Kinne, R K; Deutscher, J

    1994-04-01

    Phlorizin is a reversible inhibitor of the renal and small intestinal Na+/D-glucose cotransporter. In an attempt to purify the Na+/D-glucose cotransporter from a pig kidney brush border membrane fraction, we used an Affi-Gel affinity chromatography column to which 3-aminophlorizin had been coupled. A protein, composed according to crosslinking experiments of at least 3 subunits of molecular weight 60 kDa, was found to bind specifically to the phlorizin column. This protein was subsequently identified as catalase by sequence homology of three of its tryptic fragments to the sequence of several mammalian catalases as well as by its enzymatic activity. Although bovine liver catalase was bound tightly to the affinity matrix, phlorizin had no effect on the ability of the enzyme to degrade H2O2. In contrast, the Aspergillus niger and Neurospora crassa catalases did not bind to the phlorizin column. This difference may be related to the fact that mammalian catalases, but not the fungal catalases, contain an NADPH binding site with a yet unknown function. Interestingly, bovine liver catalase could be eluted with 50 microM NADPH from phlorizin columns. Irradiation in the presence of [3H]4-azidophlorizin allowed photolabeling of bovine liver catalase, which was prevented by the presence of 10 microM NADPH. After digestion of photolabeled catalase with chymotrypsin, a radioactive peptide was detected that was absent in catalase protected with NADPH. Docking simulations suggested that phlorizin can bind to the NADPH binding site with high affinity. PMID:8003987

  11. Na+,HCO3- -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane.

    PubMed

    Lee, Soojung; Mele, Marco; Vahl, Pernille; Christiansen, Peer M; Jensen, Vibeke E D; Boedtkjer, Ebbe

    2015-02-01

    Metabolic and biochemical changes during breast carcinogenesis enhance cellular acid production. Extrusion of the acid load from the cancer cells raises intracellular pH, while it decreases extracellular pH creating an inverted pH gradient across the plasma membrane compared to normal cells and promoting cancer cell metabolism, proliferation, migration, and invasion. We investigated the effects of breast carcinogenesis on the mechanisms of cellular pH control using multicellular epithelial organoids freshly isolated from human primary breast carcinomas and matched normal breast tissue. Intracellular pH was measured by fluorescence microscopy, while protein expression was investigated by immunofluorescence imaging and immunoblotting. We found that cellular net acid extrusion increased during human breast carcinogenesis due to enhanced Na(+),HCO3 (-)-cotransport, which created an alkaline shift (~0.3 units of magnitude) in steady-state intracellular pH of human primary breast carcinomas compared to normal breast tissue. Na(+)/H(+)-exchange activity and steady-state intracellular pH in the absence of CO2/HCO3 (-) were practically unaffected by breast carcinogenesis. These effects were evident under both acidic (pH 6.8, representative of the tumor microenvironment) and physiological (pH 7.4) extracellular conditions. Protein expression of the Na(+),HCO3 (-)-cotransporter NBCn1 (SLC4A7), which has been linked to breast cancer susceptibility in multiple genome-wide association studies, was twofold higher in human breast carcinomas compared to matched normal breast tissue. Protein expression of the Na(+)/H(+)-exchanger NHE1 (SLC9A1) was markedly less affected. We propose that upregulated NBCn1 during human breast carcinogenesis contributes to the characteristic acid distribution within human breast carcinomas and thereby plays a pathophysiological role for breast cancer development and progression.

  12. Substrate specificity of the electrogenic sodium/bicarbonate cotransporter NBCe1-A (SLC4A4, variant A) from humans and rabbits.

    PubMed

    Lee, Seong-Ki; Boron, Walter F; Parker, Mark D

    2013-04-01

    In the basolateral membrane of proximal-tubule cells, NBCe1-A (SLC4A4, variant A), operating with an apparent Na(+):HCO(3)(-) stoichiometry of 1:3, contributes to the reclamation of HCO(3)(-) from the glomerular filtrate, thereby preventing whole body acidosis. Others have reported that NBCe1-like activity in human, rabbit, and rat renal preparations is substantially influenced by lithium, sulfite, oxalate, and harmaline. These data were taken as evidence for the presence of distinct Na(+) and CO(3)(2-) binding sites in NBCe1-A, favoring a model of 1 Na(+):1 HCO(3)(-):1 CO(3)(2-). Here, we reexamine these findings by expressing human or rabbit NBCe1-A clones in Xenopus oocytes. In oocytes, NBCe1-A exhibits a 1:2 stoichiometry and could operate in one of five thermodynamically equivalent transport modes: 1) cotransport of Na(+) + 2 HCO(3)(-), 2) cotransport of Na(+) + CO(3)(2-), 3) transport of NaCO(3)(-), 4) exchange of Na(+) + HCO(3)(-) for H(+), or 5) HCO(3)(-)-activated exchange of Na(+) for 2 H(+). In contrast to the behavior of NBCe1-like activity in renal preparations, we find that cloned NBCe1-A is only slightly stimulated by Li(+), not at all influenced by sulfite or oxalate, and only weakly inhibited by harmaline. These negative data do not uniquely support any of the five models above. In addition, we find that NBCe1-A mediates a small amount of Na(+)-independent NO(3)(-) transport and that NBCe1-A is somewhat inhibited by extracellular benzamil. We suggest that the features of NBCe1-like activity in renal preparations are influenced by yet-to-be-identified renal factors. Thus the actual ionic substrates of NBCe1 remain to be identified.

  13. Essential role of the electroneutral Na+-HCO3- cotransporter NBCn1 in murine duodenal acid-base balance and colonic mucus layer build-up in vivo.

    PubMed

    Singh, Anurag Kumar; Xia, Weiliang; Riederer, Brigitte; Juric, Marina; Li, Junhua; Zheng, Wen; Cinar, Ayhan; Xiao, Fang; Bachmann, Oliver; Song, Penghong; Praetorius, Jeppe; Aalkjaer, Christian; Seidler, Ursula

    2013-04-15

    Duodenal epithelial cells need efficient defence strategies during gastric acidification of the lumen, while colonic mucosa counteracts damage by pathogens by building up a bacteria-free adherent mucus layer. Transport of HCO3(-) is considered crucial for duodenal defence against acid as well as for mucus release and expansion, but the transport pathways involved are incompletely understood. This study investigated the significance of the electroneutral Na(+)-HCO3(-) cotransporter NBCn1 for duodenal defence against acid and colonic mucus release. NBCn1 was localized to the basolateral membrane of duodenal villous enterocytes and of colonic crypt cells, with predominant expression in goblet cells. Duodenal villous enterocyte intracellular pH was studied before and during a luminal acid load by two-photon microscopy in exteriorized, vascularly perfused, indicator (SNARF-1 AM)-loaded duodenum of isoflurane-anaesthetized, systemic acid-base-controlled mice. Acid-induced HCO3(-) secretion was measured in vivo by single-pass perfusion and pH-stat titration. After a luminal acid load, NBCn1-deficient duodenocytes were unable to recover rapidly from intracellular acidification and could not respond adequately with protective HCO3(-) secretion. In the colon, build-up of the mucus layer was delayed, and a decreased thickness of the adherent mucus layer was observed, suggesting that basolateral HCO3(-) uptake is essential for optimal release of mucus. The electroneutral Na(+)-HCO3(-) cotransporter NBCn1 displays a differential cellular distribution in the murine intestine and is essential for HCO3(-)-dependent mucosal protective functions, such as recovery of intracellular pH and HCO3(-) secretion in the duodenum and secretion of mucus in the colon.

  14. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  15. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  16. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  17. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.

    PubMed

    Williams, J F; Blackmore, P F

    1983-01-01

    1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in

  18. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  19. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  20. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Cade-Menun, Barbara J.; Paytan, Adina

    2006-11-01

    Elkhorn Slough, a small seasonal estuary in central California, has been subjected to increased nutrient loading from agricultural and other non-point sources. However, because nutrients do not behave conservatively, tracing nutrient sources and cycling in ecosystems like Elkhorn Slough has been difficult to assess. This is particularly true of phosphorus (P), which has only one stable isotope and cannot be used as an isotopic tracer. However, isotopic fractionation of oxygen in phosphate at surface water temperatures only occurs as a result of enzyme-mediated, biochemical reactions. Thus, if phosphate demand is low relative to input and is not heavily cycled within the ecosystem, the δ18O of phosphate will reflect the isotopic composition of phosphate sources to the system. We utilized the δ18O of dissolved inorganic phosphate (DIP) within the main channel of the slough and nearby Moss Landing Harbor and the δ18O of reactive phosphate from sediment and soil samples collected within the watershed to understand phosphate sources and cycling within Elkhorn Slough. Trends in the δ18O of DIP were seasonally consistent with high values near the mouth reflecting oceanic phosphate (19.1‰-20.3‰), dropping to a minimum value near Hummingbird Island in the central slough (point source, 14.1‰-14.4‰), and increasing again near the head of the slough, reflecting fertilizer input (18.9‰-19.3‰). Reactive phosphate δ18O values extracted from sediments and soils in the watershed range from 10.6‰ in a drainage ditch to 22.3‰ in creek sediments near agriculture fields. The wide range in phosphate δ18O values reflects the variations in land use and application of different fertilizers in this agriculturally dominated landscape. These data suggest that phosphate δ18O can be an effective tool for identifying P sources and understanding phosphate dynamics in estuarine ecosystems.

  1. Phosphate Oxygen Isotopes as a Tracer for Sources and Cycling of Phosphate in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    McLaughlin, K.; Paytan, A.; Kendall, C.; Silva, S.

    2004-12-01

    Phosphorous is an essential macro-nutrient for primary productivity, but tracing sources and cycling of P in marine systems has been difficult to assess because P has only one stable isotope and can not be used as an isotopic tracer. Recently a new technique (McLaughlin et al., 2004) has been developed to track sources and cycling of phosphate in aquatic systems. This approach takes advantage of the strong P-O bond in phosphate, which is resistant to inorganic hydrolysis. The exchange of oxygen isotopes therein only occurs due to intracellular biological cycling. Because the d18O of phosphate will largely be determined by the isotopic composition of the water in which it is being recycled and because the isotopic composition of rivers and oceans is significantly different, the d18O of phosphate may be used as a tracer for different sources of phosphate to an estuarine system which is not phosphate limited. Consequently, the d18O of phosphate may be useful for quantifying the mixing of different sources of phosphate in estuarine systems. We applied this method to enhance our understanding of P sources and cycling in the San Francisco Bay. To this end we conducted four sampling transects from Coyote Creek in the South Bay to the Sacramento and San Joaquin Rivers in the North between October 2002 and August 2004. Phosphate d18O ranged from 10.1 to 20.1 per mil, with highest values at the Golden Gate and lowest at the San Joaquin River. Most of the Bay samples showed strong positive correlations with salinity, water d18O, and the inverse of phosphate concentration, suggesting a simple two-component mixing of oceanic and riverine sources. These data suggest that phosphate d18O can be an effective tool for identifying P point sources and understanding phosphate dynamics in the ecosystem.

  2. Optimization of Porous Pellets for Phosphate Recovery

    EPA Science Inventory

    The poster presents the preliminary adsorption experiment showing that phosphate concentration is decreasing over time as well as presenting the kinetics models that best fit the data collected over 25 days.

  3. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1954-01-01

    Airborne radioactivity surveys totaling 5, 600 traverse miles were made in 10 areas in Florida, which were thought to be geologically favorable for deposits of uraniferous phosphate. Abnormal radioactivity was recorded in 8 of the 10 areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; the river-pebble samples contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphatic rock containing as much as 0. 016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported.

  4. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1953-01-01

    Airborne radioactivity surveys totalling 5,600 traverse miles were made in ten areas in Florida, which were thought to be geologically favorable for the occurrence of uraniferous phosphate deposits. Abnormal radioactivity was recorded in eight of the ten areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; samples of the river pebble contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphate rock containing as much as 0.016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported to occur.

  5. Phosphate treatment of hypercalcaemia due to carcinoma.

    PubMed

    Thalassinos, N; Joplin, G F

    1968-10-01

    Thirteen patients with hypercalcaemia due to carcinoma received inorganic phosphate, orally or intravenously, as palliative treatment for their high serum calcium levels. The serum calcium promptly fell in all patients fully treated, and there was a striking clinical improvement in most patients. The blood urea was usually unchanged or became nearer to normal, while the serum phosphate altered variably. Only two of the eight patients who were studied at necropsy had microscopical nephrocalcinosis; corneal calcification was evident in both before phosphate treatment was started.This oral inorganic phosphate (1 gramme thrice daily) is a safe and effective means of treating hypercalcaemia due to carcinoma. An intravenous infusion of 1 gramme over eight hours may sometimes be required initially for patients who are vomiting.

  6. Phosphate Treatment of Hypercalcaemia Due to Carcinoma

    PubMed Central

    Thalassinos, N.; Joplin, G. F.

    1968-01-01

    Thirteen patients with hypercalcaemia due to carcinoma received inorganic phosphate, orally or intravenously, as palliative treatment for their high serum calcium levels. The serum calcium promptly fell in all patients fully treated, and there was a striking clinical improvement in most patients. The blood urea was usually unchanged or became nearer to normal, while the serum phosphate altered variably. Only two of the eight patients who were studied at necropsy had microscopical nephrocalcinosis; corneal calcification was evident in both before phosphate treatment was started. This oral inorganic phosphate (1 gramme thrice daily) is a safe and effective means of treating hypercalcaemia due to carcinoma. An intravenous infusion of 1 gramme over eight hours may sometimes be required initially for patients who are vomiting. PMID:4175670

  7. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  8. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth.

    PubMed

    Xiao, Chunqiao; Chi, Ruan; He, Huan; Qiu, Guanzhou; Wang, Dianzuo; Zhang, Wenxue

    2009-11-01

    Three phosphate-solubilizing fungi, identified as Penicillium expansum, Mucor ramosissimus, and Candida krissii, were isolated from phosphate mines (Hubei, People's Republic of China) and characterized. All the isolates demonstrated diverse levels of phosphate-solubilizing capability in National Botanical Research Institute's phosphate growth medium containing rock phosphate as sole phosphate source. Acidification of culture medium seemed to be the main mechanism for rock phosphate solubilization. Indeed, citric acid, oxalic acid, and gluconic acid were shown to be present in the culture medium inoculated with these isolates. Moreover, the isolates produced acid and alkaline phosphatases in culture medium, which may also be helpful for RP solubilization. A strong negative correlation between content of soluble phosphorus and pH (r = - 0.89; p < 0.01) in culture medium was observed in this study. All the isolates promoted growth, soil available phosphorus, phosphorus, and nitrogen uptake of wheat seedling in field soil containing rock phosphate under pot culture conditions, thus demonstrating the capability of these isolates to convert insoluble form of phosphorus into plant available form from rock phosphate, and therefore hold great potential for development as biofertilizers to enhance soil fertility and promote plant growth.

  9. Capturing phosphates with iron enhanced sand filtration.

    PubMed

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  10. Disorders of Phosphate Homeostasis and Tissue Mineralisation

    PubMed Central

    Bergwitz, Clemens; Jüppner, Harald

    2013-01-01

    Phosphate is absorbed from the diet in the gut, stored as hydroxyapatite in the skeleton, and excreted with the urine. The balance between these compartments determines the circulating phosphate concentration. Fibroblast growth factor 23 (FGF23) has recently been discovered and is part of a previously unrecognised hormonal bone-kidney axis. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome, and dentin matrix protein 1 regulate the expression of FGF23 in osteocytes, which then is O-glycosylated by UDP-N-acetyl-alpha-d-galactosamine: poly-peptide N-acetylgalactosaminyl-transferase 3 and secreted into the circulation. FGF23 binds with high affinity to fibroblast growth factor receptor 1c in the presence of its co-receptor Klotho. It inhibits, either directly or indirectly, reabsorption of phosphate and the synthesis of 1,25-dihydroxy-vita-min-D by the renal proximal tubule and the secretion of parathyroid hormone by the parathyroid glands. Acquired or inborn errors affecting this newly discovered hormonal system can lead to abnormal phosphate homeostasis and/or tissue mineralisation. This chapter will provide an update on the current knowledge of the pathophysiology, the clinical presentation, diagnostic evaluation and therapy of the disorders of phosphate homeostasis and tissue mineralisation. PMID:19494665

  11. The evolution of the marine phosphate reservoir.

    PubMed

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life. PMID:20981096

  12. The evolution of the marine phosphate reservoir.

    PubMed

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.

  13. Phosphate separation and recovery from wastewater by novel electrodialysis.

    PubMed

    Zhang, Yang; Desmidt, Evelyn; Van Looveren, Arnaud; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-06-01

    Stimulated by the depletion of phosphate resources, phosphate recovery systems have been studied in recent years. The use of struvite reactors has proven to be an effective phosphate recovery process. However, the struvite reactor effluent still consists of an excessive amount of phosphate that cannot be recovered nor can be directly discharged. In this study, selectrodialysis (SED) was used to improve the efficiency of phosphate recovery from a struvite reactor: SED was implemented in such a way that phosphate from the effluent of an USAB (upflow anaerobic sludge blanket) reactor was transferred to the recycled effluent of a struvite reactor. Prior to the experiments, synthetic water with chloride and phosphate was used to characterize the efficiency of SED for phosphate separation. Results indicate that SED was successful in concentrating phosphate from the feed stream. The initial current efficiency reached 72%, with a satisfying (9 mmol L(-1)) phosphate concentration. In the experiments with the anaerobic effluent as the phosphate source for enrichment of the effluent of the struvite reactor, the phosphate flux was 16 mmol m(-2) h(-1). A cost evaluation shows that 1 kWh electricity can produce 60 g of phosphate by using a full scale stack, with a desalination rate of 95% on the feed wastewater. Finally, a struvite precipitation experiment shows that 93% of phosphate can be recovered. Thus, an integrated SED-struvite reactor process can be used to improve phosphate recovery from wastewater.

  14. [Computation of the K+, Na+ and Cl- fluxes through plasma membrane of animal cell with Na+/K+ pump, NKCC, NC cotransporters, and ionic channels with and without non-Goldman rectification in K+ channels. Norma and apoptosis].

    PubMed

    Rubashkin, A A; Iurinskaia, V E; Vereninov, A A

    2010-01-01

    The balance of K+, Na+ and Cl- fluxes through cell membrane with the Na+/K+ pump, ion channels and NKCC and NC cotransporters is considered. It is shown that all unidirectional K+, Na+ and Cl- fluxes through cell membrane, permeability coefficients of ion channels and membrane potential can be computed for balanced ion distribution between cell and the medium if K+, Na+ and Cl- concentration in cell water and three fluxes are known: total Cl- flux, total K+ influx and ouabain-inhibitable "pump" component of the K+ influx. Changes in the mortovalent ion balance in lymphoid cells U937 induced to apoptosis by 1 microM staurosporine are analyzed as an example. It is found that the apoptotic shift in ion and water balance in studied cells is caused by a decrease in the pump activity which is accompanied by a decrease in the integral permeability of Na+ channels without significant increase in K+ and Cl- channel permeabilities. Computation shows that only a small part of the total fluxes of K+, Na+ and Cl- accounts for the fluxes via NKCC and NC cotransporters. Therefore, cotransport fluxes can not be studied using inhibitors. PMID:20799622

  15. Iron-based phosphate binders: do they offer advantages over currently available phosphate binders?

    PubMed Central

    Negri, Armando Luis; Ureña Torres, Pablo Antonio

    2015-01-01

    Increased cardiovascular morbidity and mortality has been associated with the hyperphosphatemia seen in patients with end-stage chronic kidney disease (CKD). Oral phosphate binders are prescribed in these patients to prevent intestinal absorption of dietary phosphate and reduce serum phosphate. In prospective observational cohorts they have shown to decrease all-cause and cardiovascular mortality risk. Different problems have been associated with currently available phosphate binders as positive calcium balance and impaired outcomes with calcium-based phosphate binders or increased costs with non-calcium-based phosphate binders. Iron-based phosphate binders represent a new class of phosphate binders. Several iron-based phosphate binders have undergone testing in clinical trials. Ferric citrate (JTT-751) and sucroferric oxyhydroxide (PA21) are the two iron-based binders that have passed to the clinical field after being found safe and effective in decreasing serum phosphate. Iron from ferric citrate is partially absorbed compared to sucroferric oxyhydroxide. Ferric citrate usage could result in an important reduction in erythropoiesis-stimulating agent (ESA) and IV iron usage, resulting in significant cost savings. Sucroferric oxyhydroxide was effective in lowering serum phosphorus in dialysis patients with similar efficacy to sevelamer carbonate, but with lower pill burden, and better adherence. Ferric citrate may be more suited for the treatment of chronic hyperphosphatemia in CKD patients requiring iron supplements but its use may have been hampered by potential aluminum overload, as citrate facilitates its absorption; sucroferric oxyhydroxide may be more suited for hyperphosphatemic CKD patients not requiring iron supplementation, with low pill burden. PMID:25815172

  16. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2015-01-01

    Inhibitors of sodium-glucose co-transporter type 2 (SGLT2) are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). Several compounds are already available in many countries (dapagliflozin, canagliflozin, empagliflozin and ipragliflozin) and some others are in a late phase of development. The available SGLT2 inhibitors share similar pharmacokinetic characteristics, with a rapid oral absorption, a long elimination half-life allowing once-daily administration, an extensive hepatic metabolism mainly via glucuronidation to inactive metabolites, the absence of clinically relevant drug-drug interactions and a low renal elimination as parent drug. SGLT2 co-transporters are responsible for reabsorption of most (90 %) of the glucose filtered by the kidneys. The pharmacological inhibition of SGLT2 co-transporters reduces hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. The amount of glucose excreted in the urine depends on both the level of hyperglycaemia and the glomerular filtration rate. Results of numerous placebo-controlled randomised clinical trials of 12-104 weeks duration have shown significant reductions in glycated haemoglobin (HbA1c), resulting in a significant increase in the proportion of patients reaching HbA1c targets, and a significant lowering of fasting plasma glucose when SGLT2 inhibitors were administered as monotherapy or in addition to other glucose-lowering therapies including insulin in patients with T2DM. In head-to-head trials of up to 2 years, SGLT2 inhibitors exerted similar glucose-lowering activity to metformin, sulphonylureas or sitagliptin. The durability of the glucose-lowering effect of SGLT2 inhibitors appears to be better; however, this remains to be more extensively investigated. The risk of hypoglycaemia was much lower with SGLT2 inhibitors than with sulphonylureas and was similarly low as that reported with metformin, pioglitazone or sitagliptin

  17. Kinetics of phosphate limited algal growth.

    PubMed

    Nyholm, N

    1977-04-01

    The kinetics of phosphate limited growth of two green algae Chlorella pyrenoidosa and Selenastrum capricornutum have been studied in chemostats. Several kinetic models which express the specific growth rate as a function of the intracellular phosphorus content have been examined, and one of the models was found to be significantly better than the other models. The principles of this model were described in a recent paper by Nyholm. The kinetics of phosphate uptake have been investigated by adding pulses of phosphate to the chemostats, The uptake by phosphorus deficient cells could be described by Michaelis-Menten kinetics for phosphate concentrations below approximately 500 microng P/liter. Further, with the assumption of a discontinuous adjustment of the uptake rate at the onset of phosphorus deficiency, a complete kinetic model for growth and phosphate removal is proposed. The mean cell size and the contents of chlorophyll a and RNA per unit dry weight have been measured for C. pyrenoidosa as a function of the dilution rate. PMID:856323

  18. Solvothermal synthesis of strontium phosphate chloride nanowire

    NASA Astrophysics Data System (ADS)

    Lam, W. M.; Wong, C. T.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Yang, C.; Chiu, K. Y.; Xu, B.; Lu, W. W.

    2007-08-01

    Strontium phosphate chloride nanowire was synthesized via a solvothermal treatment of strontium tri-polyphosphate and Collin salt in 1,4-dioxane at 150 °C. The effects of 1,4-dioxane concentration on particle morphology, crystallinity and phase purity were investigated in this study. The specimen morphology was analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the concentration of 1,4-dioxane was below 10%, micron-sized whisker was the dominant form. At 20-25% concentration of 1,4-dioxane, strontium phosphate chloride single-crystalline nanowire was 31±12 nm in diameter and 1.43±0.6 μm in length with an aspect ratio of 52.28±29.41. X-ray diffraction (XRD) pattern of this nanowire matched with that of strontium phosphate chloride (JCPDS #083-0973). When 1,4-dioxane concentration exceeded 25%, nanorod aggregate was the dominant form instead of nanowire. At 20-25% 1,4-dioxane concentration suitable strontium concentration combine with high chemical potential environment favors the formation of nanowires. By adding 1,4-dioxane impure phase such as β-strontium hydrogen phosphate, nanorod formation was suppressed. This method provides an efficient way to synthesize high aspect ratio strontium phosphate chloride nanowire. It has potential bioactive nanocomposite, high mechanical performance bioactive bone cement filler and fluorescent material applications.

  19. A Novel Tricyclic Polyketide, Vanitaracin A, Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Kaneko, Manabu; Kamisuki, Shinji; Matsunaga, Hiroki; Iwamoto, Masashi; Kawai, Fumihiro; Ohashi, Hirofumi; Tsukuda, Senko; Shimura, Satomi; Suzuki, Ryosuke; Aizaki, Hideki; Sugiyama, Masaya; Park, Sam-Yong; Ito, Takayoshi; Ohtani, Naoko; Sugawara, Fumio; Tanaka, Yasuhito; Mizokami, Masashi; Sureau, Camille; Wakita, Takaji

    2015-01-01

    ABSTRACT Anti-hepatitis B virus (HBV) drugs are currently limited to nucleos(t)ide analogs (NAs) and interferons. A challenge of drug development is the identification of small molecules that suppress HBV infection from new chemical sources. Here, from a fungus-derived secondary metabolite library, we identify a structurally novel tricyclic polyketide, named vanitaracin A, which specifically inhibits HBV infection. Vanitaracin A inhibited the viral entry process with a submicromolar 50% inhibitory concentration (IC50) (IC50 = 0.61 ± 0.23 μM), without evident cytotoxicity (50% cytotoxic concentration of >256 μM; selectivity index value of >419) in primary human hepatocytes. Vanitaracin A did not affect the HBV replication process. This compound was found to directly interact with the HBV entry receptor sodium taurocholate cotransporting polypeptide (NTCP) and impaired its bile acid transport activity. Consistent with this NTCP targeting, antiviral activity of vanitaracin A was observed with hepatitis D virus (HDV) but not hepatitis C virus. Importantly, vanitaracin A inhibited infection by all HBV genotypes tested (genotypes A to D) and clinically relevant NA-resistant HBV isolate. Thus, we identified a fungal metabolite, vanitaracin A, which was a potent, well-tolerated, and broadly active inhibitor of HBV and HDV entry. This compound, or its related analogs, could be part of an antiviral strategy for preventing reinfection with HBV, including clinically relevant nucleos(t)ide analog-resistant virus. IMPORTANCE For achieving better treatment and prevention of hepatitis B virus (HBV) infection, anti-HBV agents targeting a new molecule are in great demand. Although sodium taurocholate cotransporting polypeptide (NTCP) has recently been reported to be an essential host factor for HBV entry, there is a limited number of reports that identify new compounds targeting NTCP and inhibiting HBV entry. Here, from an uncharacterized chemical library, we isolated a

  20. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop

    PubMed Central

    Sasseville, Louis J.; Morin, Michael; Coady, Michael J.; Blunck, Rikard; Lapointe, Jean-Yves

    2016-01-01

    Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR). Addition of dipicrylamine (DPA, a negatively-charged amphiphatic fluorescence “quencher”) to the fluorescently-labelled oocytes is used to quench the fluorescence originating from hSGLT1 in a voltage-dependent manner. Using this arrangement with a cysteine residue introduced at position 624 in the loop between transmembrane segments 12 and 13, the voltage-dependent fluorescence signal clearly indicated that this portion of the 12–13 loop is located on the external side of the membrane. As the 12–13 loop begins on the intracellular side of the membrane, this suggests that the 12–13 loop is re-entrant. Using fluorescence resonance energy transfer (FRET), we observed that different hSGLT1 molecules are within molecular distances from each other suggesting a multimeric complex arrangement. In agreement with this conclusion, a western blot analysis showed that hSGLT1 migrates as either a monomer or a dimer in reducing and non-reducing conditions, respectively. A systematic mutational study of endogenous cysteine residues in hSGLT1 showed that a disulfide bridge is formed between the C355 residues of two neighbouring hSGLT1 molecules. It is concluded that, 1) hSGLT1 is expressed as a disulfide bridged homodimer via C355 and that 2) a portion of the intracellular 12–13 loop is re-entrant and readily accessible from the extracellular milieu. PMID:27137918

  1. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  2. Structural basis for phosphatidylinositol-phosphate biosynthesis

    PubMed Central

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  3. Inhibition of microbial arsenate reduction by phosphate.

    PubMed

    Slaughter, Deanne C; Macur, Richard E; Inskeep, William P

    2012-03-20

    The ratio of arsenite (As(III)) to arsenate (As(V)) in soils and natural waters is often controlled by the activity of As-transforming microorganisms. Phosphate is a chemical analog to As(V) and, consequently, may competitively inhibit microbial uptake and enzymatic binding of As(V), thus preventing its reduction to the more toxic, mobile, and bioavailable form - As(III). Five As-transforming bacteria isolated either from As-treated soil columns or from As-impacted soils were used to evaluate the effects of phosphate on As(V) reduction and As(III) oxidation. Cultures were initially spiked with various P:As ratios, incubated for approximately 48 h, and analyzed periodically for As(V) and As(III) concentration. Arsenate reduction was inhibited at high P:As ratios and completely suppressed at elevated levels of phosphate (500 and 1,000 μM; P inhibition constant (K(i))∼20-100 μM). While high P:As ratios effectively shut down microbial As(V) reduction, the expression of the arsenate reductase gene (arsC) was not inhibited under these conditions in the As(V)-reducing isolate, Agrobacterium tumefaciens str. 5B. Further, high phosphate ameliorated As(V)-induced cell growth inhibition caused by high (1mM) As pressure. These results indicate that phosphate may inhibit As(V) reduction by impeding As(V) uptake by the cell via phosphate transport systems or by competitively binding to the active site of ArsC. PMID:21741807

  4. Monte Carlo simulations of phosphate polyhedron connectivity in glasses

    SciTech Connect

    ALAM,TODD M.

    2000-01-01

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  5. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    SciTech Connect

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  6. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  7. Calcium and phosphate impact cardiovascular risk.

    PubMed

    Heine, Gunnar H; Nangaku, Masaomi; Fliser, Danilo

    2013-04-01

    Non-traditional risk factors substantially contribute to cardiovascular (CV) disease. A deranged calcium-phosphate metabolism-first identified as a major non-traditional CV risk factor in patients with chronic kidney disease-may be implicated in development and progression of CV disease even among individuals with intact renal function. This review thus summarizes epidemiological and experimental data on the role of calcium, phosphate, and its major regulating hormones-parathyroid hormone, calcitriol, and fibroblast growth factor 23-in CV medicine. PMID:23109644

  8. [Phosphate nephropathy: how to avoid it?].

    PubMed

    Bourquin, Vincent; Ponte, Belén; Zellweger, Michael; Levy, Marc; Hadengue, Antoine; Moll, Solange

    2011-11-16

    Colonoscopy is a commonly used procedure for colon cancer screening. The ideal bowel preparation for a good visualization of the colonic mucosa would be effective and well tolerated. Sodium phosphate (NaP) and polyethylen glycol (PEG) are the two most frequently used solutions in this indication. However, although NaP has been described as more effective and better tolerated, it can cause severe acute electrolytes disturbances and, in rare cases, lead to irreversible renal failure, called phosphate nephropathy. NaP should therefore be prescribed with caution and be formally banned for patients with risk factors. PMID:22400350

  9. Phosphate starvation regulon of Salmonella typhimurium.

    PubMed

    Foster, J W; Spector, M P

    1986-05-01

    Several phosphate-starvation-inducible (psi) genetic loci in Salmonella typhimurium were identified by fusing the lacZ gene to psi promoters by using the Mu d1 and Mu d1-8 bacteriophages. Although several different starvation conditions were examined, the psi loci responded solely to phosphate deprivation. A regulatory locus, psiR, was identified as controlling the psiC locus. The psiR locus did not affect the expression of the Escherichia coli phoA locus or any of the other psi loci described.

  10. Potentially Prebiotic Syntheses of Condensed Phosphates

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  11. Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites.

    PubMed

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a "charged brush" which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms.

  12. Synthesis of arabinitol 1-phosphate and its use for characterization of arabinitol-phosphate dehydrogenase.

    PubMed

    Soroka, Nikolai V; Kulminskaya, Anna A; Eneyskaya, Elena V; Shabalin, Konstantin A; Uffimtcev, Andrei V; Povelainen, Mira; Miasnikov, Andrei N; Neustroev, Kirill N

    2005-03-21

    D-arabinitol 1-phosphate (Ara-ol1-P), a substrate for D-arabinitol-phosphate dehydrogenase (APDH), was chemically synthesized from D-arabinonic acid in five steps (O-acetylation, chlorination, reduction, phosphorylation, and de-O-acetylation). Ara-ol1-P was used as a substrate for the characterization of APDH from Bacillus halodurans. APDH converts Ara-ol1-P to xylulose 5-phosphate in the oxidative reaction; both NAD(+) and NADP(+) were accepted as co-factors. Kinetic parameters for the oxidative and reductive reactions are consistent with a ternary complex mechanism.

  13. Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis1

    PubMed Central

    Ticconi, Carla A.; Delatorre, Carla A.; Abel, Steffen

    2001-01-01

    When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mm phosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus. PMID:11706178

  14. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease.

    PubMed

    Zhang, Yanling; Thai, Kerri; Kepecs, David M; Gilbert, Richard E

    2016-01-01

    Pharmacological inhibition of the proximal tubular sodium-glucose linked cotransporter-2 (SGLT2) leads to glycosuria in both diabetic and non-diabetic settings. As a consequence of their ability to modulate tubuloglomerular feedback, SGLT2 inhibitors, like agents that block the renin-angiotensin system, reduce intraglomerular pressure and single nephron GFR, potentially affording renoprotection. To examine this further we administered the SGLT2 inhibitor, dapagliflozin, to 5/6 (subtotally) nephrectomised rats, a model of progressive chronic kidney disease (CKD) that like CKD in humans is characterised by single nephron hyperfiltration and intraglomerular hypertension and where angiotensin converting enzyme inhibitors and angiotensin receptor blockers are demonstrably beneficial. When compared with untreated rats, both sham surgery and 5/6 nephrectomised rats that had received dapagliflozin experienced substantial glycosuria. Nephrectomised rats developed hypertension, heavy proteinuria and declining GFR that was unaffected by the administration of dapagliflozin. Similarly, SGLT2 inhibition did not attenuate the extent of glomerulosclerosis, tubulointerstitial fibrosis or overexpression of the profibrotic cytokine, transforming growth factor-ß1 mRNA in the kidneys of 5/6 nephrectomised rats. While not precluding beneficial effects in the diabetic setting, these findings indicate that SGLT2 inhibition does not have renoprotective effects in this classical model of progressive non-diabetic CKD. PMID:26741142

  15. A new approach to glucose control in type 2 diabetes: the role of kidney sodium-glucose co-transporter 2 inhibition.

    PubMed

    Basile, Jan

    2011-07-01

    Hyperglycemia is a defining characteristic of type 2 diabetes mellitus and is a major risk factor associated with the development of many microvascular complications. There are numerous therapies currently available to treat hyperglycemia, but glycemic control rates remain poor. One potential reason is the decline in ß-cell function over time, which decreases the effectiveness of therapies that rely on insulin action. The kidney occupies a central position in the control of glucose homeostasis by its role in gluconeogenesis and by regulating glucose excretion. Under normal conditions, glucose filtered by the kidney is virtually totally reabsorbed in the proximal tubule by the sodium-glucose co-transporter 2 (SGLT2). Inhibition of SGLT2 is an attractive, insulin-independent target for increasing glucose excretion in the setting of hyperglycemia. A number of SGLT2 inhibitors have been synthesized, and results from preclinical studies have shown that they increase glucose excretion and normalize plasma glucose in diabetic models. Initial clinical data are promising and suggest that SGLT2 inhibitors may be a new therapeutic option for treating type 2 diabetes mellitus.

  16. Pharmacokinetic and pharmacodynamic modeling of the effect of an sodium-glucose cotransporter inhibitor, phlorizin, on renal glucose transport in rats.

    PubMed

    Yamaguchi, Koji; Kato, Motohiro; Suzuki, Masayuki; Asanuma, Kimie; Aso, Yoshinori; Ikeda, Sachiya; Ishigai, Masaki

    2011-10-01

    A pharmacokinetic and pharmacodynamic (PK-PD) model for the inhibitory effect of sodium-glucose cotransporter (SGLT) inhibitors on renal glucose reabsorption was developed to predict in vivo efficacy. First, using the relationship between renal glucose clearance and plasma glucose level in rats and both the glucose affinity and transport capacity obtained from in vitro vesicle experiments, a pharmacodynamic model analysis was performed based on a nonlinear parallel tube model to express the renal glucose transport mediated by SGLT1 and SGLT2. This model suitably expressed the relationship between plasma glucose level and renal glucose excretion. A PK-PD model was developed next to analyze the inhibitory effect of phlorizin on renal glucose reabsorption. The PK-PD model analysis was performed using averaged concentrations of both the drug and glucose in plasma and the corresponding renal glucose clearance. The model suitably expressed the concentration-dependent inhibitory effect of phlorizin on renal glucose reabsorption. The in vivo inhibition constants of phlorizin for SGLT in rats were estimated to be 67 nM for SGLT1 and 252 nM for SGLT2, which are similar to the in vitro data reported previously. This suggests that the in vivo efficacy of SGLT inhibitors could be predicted from an in vitro study based on the present PK-PD model. The present model is based on physiological and biochemical parameters and, therefore, would be helpful in understanding individual differences in the efficacy of an SGLT inhibitor.

  17. Localization of Na(+)-K(+)-ATPase α/β, Na(+)-K(+)-2Cl-cotransporter 1 and aquaporin-5 in human eccrine sweat glands.

    PubMed

    Zhang, Mingjun; Zeng, Shaopeng; Zhang, Lei; Li, Haihong; Chen, Lu; Zhang, Xiang; Li, Xuexue; Lin, Changmin; Shu, Shenyou; Xie, Sitian; He, Yunpu; Mao, Xiaoyan; Peng, Lihong; Shi, Lungang; Yang, Lvjun; Tang, Shijie; Fu, Xiaobing

    2014-10-01

    In order to evaluate the function of the repaired or regenerated eccrine sweat glands, we must first localize the proteins involved in sweat secretion and absorption in normal human eccrine sweat glands. In our studies, the cellular localization of Na(+)-K(+)-ATPase α/β, Na(+)-K(+)-2Cl-cotransporter 1 (NKCC1) and aquaporin-5 (AQP5) in eccrine sweat glands were detected by immunoperoxidase labeling. The results showed that Na(+)-K(+)-ATPase α was immunolocalized in the cell membrane of the basal layer and suprabasal layer cells of the epidermis, the basolateral membrane of the secretory coils, and the cell membrane of the outer cells and the basolateral membrane of the luminal cells of the ducts. The localization of Na(+)-K(+)-ATPase β in the secretory coils was the same as Na(+)-K(+)-ATPase α, but Na(+)-K(+)-ATPase β labeling was absent in the straight ducts and epidermis. NKCC1 labeling was seen only in the basolateral membrane of the secretory coils. AQP5 was strongly localized in the apical membrane and weakly localized in the cytoplasm of secretory epithelial cells. The different distribution of these proteins in eccrine sweat glands was related to their functions in sweat secretion and absorption. PMID:25218052

  18. Combination therapy of sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors in type 2 diabetes: rationale and evidences.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    No single antidiabetic agent can correct all the pathophysiologic defects manifested in type 2 diabetes mellitus (T2DM) and, therefore, multiple agents are often required to achieve optimal glycemic control. Combination therapies, having different mechanisms of action, not only have the potential to complement their action, but may possess the properties to counter the undesired compensatory response. Recent finding suggests that sodium-glucose co-transporter-2 inhibitors (SGLT2i) increase endogenous glucose production (EGP) from liver, due to the increase in glucagon which may offset its glucose-lowering potential. In contrast, dipeptidyl peptidase-4 inhibitors (DPP4i) decrease glucagon and EGP. Especially in the light of this finding, combination therapies with SGLT2i and DPP4i are particularly appealing, and are expected to produce an additive effect. Indeed, studies find no drug-drug interaction between SGLT2i and DPP4i. Moreover, significant reduction in glycated hemoglobin has also been observed. This article aims to review the efficacy and safety of combination therapy of SGLT2i and DPP4i in T2DM.

  19. Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro.

    PubMed

    Gackière, Florian; Vinay, Laurent

    2015-04-01

    In healthy mature motoneurons (MNs), KCC2 cotransporters maintain the intracellular chloride concentration at low levels, a prerequisite for postsynaptic inhibition mediated by GABA and glycine. KCC2 expression in lumbar MNs is reduced after spinal cord injury (SCI) resulting in a depolarizing shift of the chloride equilibrium potential. Despite modeling studies indicating that such a downregulation of KCC2 function would reduce the strength of postsynaptic inhibition, physiological evidence is still lacking. The present study aimed at investigating the functional impact of a modification of KCC2 function. We focused on a well characterized disynaptic inhibitory pathway responsible for reciprocal inhibition between antagonistic muscles. We performed in vitro extracellular recordings on spinal cords isolated from rodents at the end of the first postnatal week. Genetic reduction of KCC2 expression, pharmacological blockade of KCC2, as well as SCI-induced downregulation of KCC2 all resulted in a reduction of the strength of reciprocal inhibition. We then tried to restore endogenous inhibition after SCI by means of zinc ions that have been shown to boost KCC2 function in other models. Zinc chloride indeed hyperpolarized the chloride equilibrium potential in MNs and increased reciprocal inhibition after neonatal SCI. This study demonstrates that the level of KCC2 function sets the strength of postsynaptic inhibition and suggests that the downregulation of KCC2 after SCI likely contributes to the high occurrence of flexor-extensor cocontractions in SCI patients. PMID:25834055

  20. The membrane trafficking and functionality of the K+-Cl− co-transporter KCC2 is regulated by TGF-β2

    PubMed Central

    Speer, Jan Manuel; Chudotvorova, Ilona; Khakipoor, Shokoufeh; Rivera, Claudio; Krieglstein, Kerstin

    2016-01-01

    ABSTRACT Functional activation of the neuronal K+-Cl− co-transporter KCC2 (also known as SLC12A5) is a prerequisite for shifting GABAA responses from depolarizing to hyperpolarizing during development. Here, we introduce transforming growth factor β2 (TGF-β2) as a new regulator of KCC2 membrane trafficking and functional activation. TGF-β2 controls membrane trafficking, surface expression and activity of KCC2 in developing and mature mouse primary hippocampal neurons, as determined by immunoblotting, immunofluorescence, biotinylation of surface proteins and KCC2-mediated Cl− extrusion. We also identify the signaling pathway from TGF-β2 to cAMP-response-element-binding protein (CREB) and Ras-associated binding protein 11b (Rab11b) as the underlying mechanism for TGF-β2-mediated KCC2 trafficking and functional activation. TGF-β2 increases colocalization and interaction of KCC2 with Rab11b, as determined by 3D stimulated emission depletion (STED) microscopy and co-immunoprecipitation, respectively, induces CREB phosphorylation, and enhances Rab11b gene expression. Loss of function of either CREB1 or Rab11b suppressed TGF-β2-dependent KCC2 trafficking, surface expression and functionality. Thus, TGF-β2 is a new regulatory factor for KCC2 functional activation and membrane trafficking, and a putative indispensable molecular determinant for the developmental shift of GABAergic transmission. PMID:27505893