Sample records for phosphate waste forms

  1. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  2. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  3. Secondary Waste Form Down Selection Data Package – Ceramicrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less

  4. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.

  5. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  6. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  7. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  8. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  9. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  10. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  11. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  12. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  13. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  14. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  15. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  16. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  17. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  18. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions weremore » 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.« less

  19. In situ formation of phosphate barriers in soil

    DOEpatents

    Moore, Robert C.

    2002-01-01

    Reactive barriers and methods for making reactive barriers in situ in soil for sequestering soil ontaminants including actinides and heavy metals. The barrier includes phosphate, and techniques are disclosed for forming specifically apatite barriers. The method includes injecting dilute reagents into soil in proximity to a contamination plume or source such as a waste drum to achieve complete or partial encapsulation of the waste. Controlled temperature and pH facilitates rapid formation of apatite, for example, where dilute aqueous calcium chloride and dilute aqueous sodium phosphate are the selected reagents. Mixing of reagents to form precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  20. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  2. Mercury stabilization in chemically bonded phosphate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.; Jeong, Seung-Young; Singh, Dileep

    1997-07-01

    We have investigated mercury stabilization in chemically bonded phosphate ceramic (CBPC) using four surrogate waste streams that represent U.S. Department of Energy (DOE) ash, soil, and two secondary waste streams resulting from the destruction of DOE`s high-organic wastes by the DETOX{sup SM} Wet Oxidation Process. Hg content in the waste streams was 0.1 to 0.5 wt.% (added as soluble salts). Sulfidation of Hg and its concurrent stabilization in the CBPC matrix yielded highly nonleachable waste forms. The Toxicity Characteristic Leaching Procedure showed that leaching levels were well below the U.S. Environmental Protection Agency`s regulatory limits. The American Nuclear Society`s ANSmore » 16.1 immersion test also gave very high leaching indices, indicating excellent retention of the contaminants. In particular, leaching levels of Hg in the ash waste form were below the measurement detection limit in neutral and alkaline water, negligibly low but measureable in the first 72 h of leaching in acid water, and below the detection limit after that. These studies indicate that the waste forms are stable in a wide range of chemical environments during storage. 9 refs., 5 tabs.« less

  3. Supported liquid inorganic membranes for nuclear waste separation

    DOEpatents

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  4. Chemical activation of gasification carbon residue for phosphate removal

    NASA Astrophysics Data System (ADS)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  5. Mercury stabilization in chemically bonded phosphate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, A. S.; Singh, D.; Jeong, S. Y.

    2000-04-04

    Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formationmore » of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount (< 1 wt.%) of Na{sub 2}S or K{sub 2}S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOX{trademark} residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient stabilization in all these cases is attributed to chemical immobilization as both a sulfide (cinnabar) and a phosphate, followed by its physical encapsulation in a dense matrix of the ceramic.« less

  6. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  7. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.; Johnson, F.; Crawford, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge canmore » be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the quenched glasses. However, the waste form failed to meet the vapor hydration test criteria listed in the WTP contract. In addition, the waste loading in the phosphate glasses were not as high as other candidate waste forms. Vitrification of HLW waste as borosilicate glass is a proven process; however the HLW and LAW streams at Hanford can vary significantly from waste currently being immobilized. The ccc glasses show lower release rates for B and Na than the quenched glasses and all glasses meet the acceptance criterion of < 4 g/L. Glass samples spiked with Re{sub 2}O{sub 7} also passed the PCT test. However, further vapor hydration testing must be performed since all the samples cracked and the test could not be performed. The waste loading of the iron phosphate and borosilicate glasses are approximately 20 and 25% respectively. The steam reforming process produced the predicted waste form for both the high and low aluminate waste streams. The predicted waste loadings for the monolithic samples is approximately 39%, which is higher than the glass waste forms; however, at the time of this report, no monolithic samples were made and therefore compliance with the PA cannot be determined. The waste loading in the geopolymer is approximately 40% but can vary with the sodium hydroxide content in the waste stream. Initial geopolymer mixes revealed compressive strengths that are greater than 500 psi for the low aluminate mixes and less than 500 psi for the high aluminate mixes. Further work testing needs to be performed to formulate a geopolymer waste form made using a high aluminate salt solution. A cementitious waste form has the advantage that the process is performed at ambient conditions and is a proven process currently in use for LAW disposal. The Saltstone/Cast Stone formulated using low and high aluminate salt solutions retained at least 97% of the Re that was added to the mix as a dopant. While this data is promising, additional leaching testing must be performed to show compliance with the PA. Compressive strength tests must also be performed on the Cast Stone monoliths to verify PA compliance. Based on testing performed for this report, the borosilicate glass and Cast Stone are the recommended waste forms for further testing. Both are proven technologies for radioactive waste disposal and the initial testing using simulated Hanford LAW waste shows compliance with the PA. Both are resistant to leaching and have greater than 25% waste loading.« less

  8. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young

    1998-01-01

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.

  9. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  10. Phosphate reduction in a hydroxyapatite fluoride removal system

    NASA Astrophysics Data System (ADS)

    Egner, A.

    2012-12-01

    Fluorosis is a widespread disease that occurs as a result of excess fluoride consumption and can cause severe tooth and bone deformations. To combat fluorosis, several previous studies have examined the potential to replace traditional bone char filters with synthetic hydroxyapatite. Calcite particles with a synthetic hydroxyapatite coating have been shown to effectively removed fluoride, yet the low-cost method for forming these particles leaves high amounts of phosphate both in synthesis waste-water and in filter effluent. High phosphate in filter effluent is problematic because consumption of extremely high phosphate can leach calcium from bones, further exacerbating the fluoride effect. This study examines ways of reducing and reusing waste. In particular, a method of fluoride removal is explored in which fluorapatite coatings may be formed directly. In preliminary studies, batches of 4.1g of Florida limestone (<710 μm) were equilibrated with 100 mL of 10ppm fluoride. In a control batch containing lime but no added phosphate, 14% treatment was achieved, but with added phosphate, 100% treatment was achieved in all batches. Batches with lower levels of phosphate took longer to reach 100% treatment, ranging from less than 24 hours in the highest phosphate batches to approximately 42 hours in the lowest batches. The lower levels tested were well within reasonable levels for drinking water and reached 0ppm fluoride in 42 hours or less.

  11. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting

    PubMed Central

    Riminucci, Mara; Collins, Michael T.; Fedarko, Neal S.; Cherman, Natasha; Corsi, Alessandro; White, Kenneth E.; Waguespack, Steven; Gupta, Anurag; Hannon, Tamara; Econs, Michael J.; Bianco, Paolo; Gehron Robey, Pamela

    2003-01-01

    FGF-23, a novel member of the FGF family, is the product of the gene mutated in autosomal dominant hypophosphatemic rickets (ADHR). FGF-23 has been proposed as a circulating factor causing renal phosphate wasting not only in ADHR (as a result of inadequate degradation), but also in tumor-induced osteomalacia (as a result of excess synthesis by tumor cells). Renal phosphate wasting occurs in approximately 50% of patients with McCune-Albright syndrome (MAS) and fibrous dysplasia of bone (FD), which result from postzygotic mutations of the GNAS1 gene. We found that FGF-23 is produced by normal and FD osteoprogenitors and bone-forming cells in vivo and in vitro. In situ hybridization analysis of FGF-23 mRNA expression identified “fibrous” cells, osteogenic cells, and cells associated with microvascular walls as specific cellular sources of FGF-23 in FD. Serum levels of FGF-23 were increased in FD/MAS patients compared with normal age-matched controls and significantly higher in FD/MAS patients with renal phosphate wasting compared with those without, and correlated with disease burden bone turnover markers commonly used to assess disease activity. Production of FGF-23 by FD tissue may play an important role in the renal phosphate–wasting syndrome associated with FD/MAS. PMID:12952917

  12. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  13. Interpretation of leaching data for cementitious waste forms using analytical solutions based on mass transport theory and empiricism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, R.D.; Godbee, H.W.; Tallent, O.K.

    1989-01-01

    The analysis of leaching data using analytical solutions based on mass transport theory and empiricism is presented. The waste forms leached to generate the data used in this analysis were prepared with a simulated radioactive waste slurry with traces of potassium ion, manganese ions, carbonate ions, phosphate ions, and sulfate ions solidified with several blends of cementitious materials. Diffusion coefficients were estimated from the results of ANS - 16.1 tests. Data of fraction leached versus time is presented and discussed.

  14. Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    2000-01-01

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  15. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    PubMed

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  16. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  17. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, Daphne L.; Tien, Albert J.

    1995-01-01

    A method and process for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate).

  18. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline.more » These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.« less

  19. Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures

    DOEpatents

    Stoner, D.L.; Tien, A.J.

    1995-09-26

    A method and process are disclosed for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate). 6 figs.

  20. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  1. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, Arun S.; Singh, Dileep

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  2. Ferric ion as a scavenging agent in a solvent extraction process

    DOEpatents

    Bruns, Lester E.; Martin, Earl C.

    1976-01-01

    Ferric ions are added into the aqueous feed of a plutonium scrap recovery process that employs a tributyl phosphate extractant. Radiolytic degradation products of tributyl phosphate such as dibutyl phosphate form a solid precipitate with iron and are removed from the extraction stages via the waste stream. Consequently, the solvent extraction characteristics are improved, particularly in respect to minimizing the formation of nonstrippable plutonium complexes in the stripping stages. The method is expected to be also applicable to the partitioning of plutonium and uranium in a scrap recovery process.

  3. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  4. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less

  5. Capturing the lost phosphorus.

    PubMed

    Rittmann, Bruce E; Mayer, Brooke; Westerhoff, Paul; Edwards, Mark

    2011-08-01

    Minable phosphorus (P) reserves are being depleted and will need to be replaced by recovering P that currently is lost from the agricultural system, causing water-quality problems. The largest two flows of lost P are in agricultural runoff and erosion (∼46% of mined P globally) and animal wastes (∼40%). These flows are quite distinct. Runoff has a very high volumetric flow rate, but a low P concentration; animal wastes have low flow rates, but a high P concentration together with a high concentration of organic material. Recovering the lost P in animal wastes is technically and economically more tractable, and it is the focus for this review of promising P-capture technologies. P capture requires that organic P be transformed into inorganic P (phosphate). For high-strength animal wastes, P release can be accomplished in tandem with anaerobic treatment that converts the energy value in the organic matter to CH(4), H(2), or electricity. Once present as phosphate, the P can be captured in a reusable form by four approaches. Most well developed is precipitation as magnesium or calcium solids. Less developed, but promising are adsorption to iron-based adsorbents, ion exchange to phosphate-selective solids, and uptake by photosynthetic microorganisms or P-selective proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  7. Iron-phosphate ceramics for solidification of mixed low-level waste

    DOEpatents

    Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

    2000-01-01

    A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

  8. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    PubMed

    Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Changing Face of Hypophosphatemic Disorders in the FGF-23 Era

    PubMed Central

    Lee, Janet Y.; Imel, Erik A.

    2014-01-01

    In the past decade, research in genetic disorders of hypophosphatemia has significantly expanded our understanding of phosphate metabolism. X-linked hypophosphatemia (XLH) is the most common inherited form of rickets due to renal phosphate wasting. Recent understanding of the mechanisms of disease and role of fibroblast growth factor 23 (FGF-23) in XLH and other hypophosphatemic disorders have opened new potential therapeutic avenues. We will discuss the current standard of treatment for XLH as well as promising future directions under study. PMID:23858620

  10. Experimental study on cesium immobilization in struvite structures.

    PubMed

    Wagh, Arun S; Sayenko, S Y; Shkuropatenko, V A; Tarasov, R V; Dykiy, M P; Svitlychniy, Y O; Virych, V D; Ulybkina, Е А

    2016-01-25

    Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. © The Author(s) 2015.

  12. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals - abstract

    EPA Science Inventory

    Phosphates adsorbed on calcium carbonate are environmental friendly, as they do not require further treatment for the phosphate species desorption due to its effectiveness as the plant fertilizer. In this study, an inexpensive calcium carbonate obtained as a waste material from d...

  13. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  14. FORMATION OF PYROMORPHITE IN ANGLESITE-HYDROXYAPATITE SUSPENSIONS UNDER VARYING PH CONDITIONS

    EPA Science Inventory

    Addition of phosphate to lead [Pb(II)] contaminated soil to immobilize soil Pb by formation of pyromorphite has been proposed as an alternative remediation technique. Lead sulfate (PbSO4, anglesite), a Pb-bearing form found in contaminated soils and wastes, was reacted with a sy...

  15. Use of phosphorus-sorbing materials to remove phosphate from greenhouse wastewater.

    PubMed

    Dunets, C Siobhan; Zheng, Youbin; Dixon, Mike

    2015-01-01

    High phosphate content in wastewater is currently a major issue faced by the North American greenhouse industry. Phosphate-sorbing material filters could provide a means of removing phosphate from wastewater prior to discharge to the environment, but the characterization of economically viable materials and specific recommendations for greenhouse wastewater are not available. Batch and column experiments were used to examine the capacity of two calcium-based waste materials, basic oxygen furnace slag and a concrete waste material, to remove phosphate from greenhouse nutrient solution at varied operating conditions. Material columns operating at a hydraulic retention time (HRT) of 3 h consistently removed >99% of influent phosphate at a concentration of 60 mg/L over repeated applications and demonstrated high phosphate retention capacity (PRC) of 8.8 and 5.1 g P/kg for slag and concrete waste, respectively. Both materials also provided some removal of the micronutrients Fe, Mn and Zn. Increasing HRT to 24 h increased P retention capacity of slag to >10.5 g P/kg but did not improve retention by concrete waste. Decreasing influent phosphate concentration to 20 mg/L decreased PRC to 1.64 g P/kg in concrete waste columns, suggesting fluctuations in greenhouse wastewater composition will affect filter performance. The pH of filter effluent was closely correlated to final P concentration and can likely be used to monitor treatment effectiveness. This study demonstrated that calcium-based materials are promising for the removal of phosphate from greenhouse wastewater, and worthy of further research on scaling up the application to a full-sized system.

  16. Water-quality and hydrogeologic data for three phosphate industry waste-disposal sites in central Florida, 1979-80

    USGS Publications Warehouse

    Miller, Ronald L.; Sutcliffe, Horace

    1982-01-01

    This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)

  17. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Celine; Courtois, Simone; Peysson, Sandrine

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL{sup -1}. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. Cmore » by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.« less

  18. Calcium phosphate stabilization of fly ash with chloride extraction.

    PubMed

    Nzihou, Ange; Sharrock, Patrick

    2002-01-01

    Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.

  19. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  20. 40 CFR 422.30 - Applicability; description of the phosphate subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PHOSPHATE MANUFACTURING POINT SOURCE CATEGORY Phosphate..., animal feed grade, calcium phosphate and human food grade calcium phosphate from phosphoric acid. The production of human food grade calcium phosphate creates waste water pollutants not completely amenable to...

  1. Phosphates behaviours in conversion of FP chlorides

    NASA Astrophysics Data System (ADS)

    Amamoto, I.; Kofuji, H.; Myochin, M.; Takasaki, Y.; Terai, T.

    2009-06-01

    The spent electrolyte of the pyroprocessing by metal electrorefining method should be considered for recycling after removal of fission products (FP) such as, alkali metals (AL), alkaline earth metals (ALE), and/or rare earth elements (REE), to reduce the volume of high-level radioactive waste. Among the various methods suggested for this purpose is precipitation by converting FP from chlorides to phosphates. Authors have been carrying out the theoretical analysis and experiment showing the behaviours of phosphate precipitates so as to estimate the feasibility of this method. From acquired results, it was found that AL except lithium and ALE are unlikely to form phosphate precipitates. However their conversion behaviours including REE were compatible with the theoretical analysis; in the case of LaPO 4 as one of the REE precipitates, submicron-size particles could be observed while that of Li 3PO 4 was larger; the precipitates were apt to grow larger at higher temperature; etc.

  2. Hydrometallurgical methods of recovery of scandium from the wastes of various technologies

    NASA Astrophysics Data System (ADS)

    Molchanova, T. V.; Akimova, I. D.; Smirnov, K. M.; Krylova, O. K.; Zharova, E. V.

    2017-03-01

    The recovery of scandium from the wastes of the production of uranium, titanium, iron-vanadium, and alumina is studied. The applied acid schemes of scandium transfer to a solution followed by ion-exchange recovery and extraction concentration of scandium ensure the precipitation of crude scandium oxides containing up to 5% Sc2O3. Scandium oxides of 99.96-99.99% purity are formed after additional refining of these crude oxides according to an extraction technology using a mixture 15% multiradical phosphine oxide or Cyanex-925 + 15% tributyl phosphate in kerosene.

  3. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guohui; Um, Wooyong; Wang, Zheming

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less

  4. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.

    PubMed

    Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon

    2017-10-03

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  5. Laboratory-Scale Bismuth Phosphate Extraction Process Simulation To Track Fate of Fission Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. JEFFREY; Lindberg, Michael J.; Jones, Thomas E.

    2007-02-28

    Recent field investigation that collected and characterized vadose zone sediments from beneath inactive liquid disposal facilities at the Hanford 200 Areas show lower than expected concentrations of a long-term risk driver, Tc-99. Therefore laboratory studies were performed to re-create one of the three processes that were used to separate the plutonium from spent fuel and that created most of the wastes disposed or currently stored in tanks at Hanford. The laboratory simulations were used to compare with current estimates based mainly on flow sheet estimates and spotty historical data. Three simulations of the bismuth phosphate precipitation process show that lessmore » that 1% of the Tc-99, Cs-135/137, Sr-90, I-129 carry down with the Pu product and thus these isotopes should have remained within the metals waste streams that after neutralization were sent to single shell tanks. Conversely, these isotopes should not be expected to be found in the first and subsequent cycle waste streams that went to cribs. Measurable quantities (~20 to 30%) of the lanthanides, yttrium, and trivalent actinides (Am and Cm) do precipitate with the Pu product, which is higher than the 10% estimate made for current inventory projections. Surprisingly, Se (added as selenate form) also shows about 10% association with the Pu/bismuth phosphate solids. We speculate that the incorporation of some Se into the bismuth phosphate precipitate is caused by selenate substitution into crystal lattice sites for the phosphate. The bulk of the U daughter product Th-234 and Np-237 daughter product Pa-233 also associate with the solids. We suspect that the Pa daughter products of U (Pa-234 and Pa-231) would also co-precipitate with the bismuth phosphate induced solids. No more than 1 % of the Sr-90 and Sb-125 should carry down with the Pu product that ultimately was purified. Thus the current scheme used to estimate where fission products end up being disposed overestimates by one order of magnitude the partitioning Sr-90, Cs-137, and Sb-125 and by at least two orders of magnitude the portioning of Tc-99 to the first and subsequent cycle waste streams that went to cribs. Conversely, the current scheme underestimates the lanthanide and yttrium fission product quantities that went to cribs by a factor of about 3.« less

  6. Ageing of a phosphate ceramic used to immobilize chloride-contaminated actinide waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, Brian; Donald, Ian W.; Fong, Shirley K.

    2009-03-31

    At AWE, we have developed a process for the immobilization of ILW waste containing a significant quantity of chloride with Ca 3(PO 4) 2 as the host material. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca 5(PO 4) 3Cl] and spodiosite [Ca 2(PO 4)Cl]. Non-active trials performed at AWE with Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, wer performed at PNNL where the waste form was found to be resistant to aqueous leaching. Initial leach trials conducted on 239Pu / 241Ammore » loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10 -5 g.m -2 and 2.7 x 10 -3 g.m -2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD patterns after the samples had experienced an α radiation dose of 4 x 10 18 g -1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.« less

  7. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    Treesearch

    Lisa L. Stillings; Michael C. Amacher

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0...

  8. EVALUATION OF CHEMICALLY BONDED PHOSPHATE CERAMICS FOR MERCURY STABILIZATION OF A MIXED SYNTHETIC WASTE

    EPA Science Inventory

    This experimental study was conducted to evaluate the stabilization and encapsulation technique developed by Argonne National Laboratory, called the Chemically Bonded Phosphate Ceramics technology for Hg- and HgCl2-contaminated synthetic waste materials. Leachability ...

  9. TENORM: Fertilizer and Fertilizer Production Wastes

    EPA Pesticide Factsheets

    Phosphate rock is used in the production of phosphate fertilizers. Due to its chemical properties, phosphate rock may contain significant quantities of naturally occurring radioactive materials (NORM).

  10. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needsmore » to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.« less

  11. Polonium-210 in the environment around a radioactive waste disposal area and phosphate ore processing plant.

    PubMed

    Arthur, W J; Markham, O D

    1984-04-01

    Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of 210Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically (P less than or equal to 0.05) greater than the other sampling locations; however, the mean 210Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical (P greater than 0.05) difference was observed for 210Po concentrations in vegetation among any of the sampling locations.

  12. Urinary metabolites of phosphate flame retardants in workers occupied with e-waste recycling and incineration.

    PubMed

    Yan, Xiao; Zheng, Xiaobo; Wang, Meihuan; Zheng, Jing; Xu, Rongfa; Zhuang, Xi; Lin, Ying; Ren, Mingzhong

    2018-06-01

    Urinary metabolites of phosphate flame retardants (PFRs) were determined in workers from an electronic waste (e-waste) recycling site and an incineration plant, in order to assess the PFR exposure risks of workers occupied with e-waste recycling and incineration. Bis(2-chloroethyl) phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and diphenyl phosphate (DPHP) were the most frequently detected chemicals (82-93%). The median concentrations of BCEP, BDCIPP, and DPHP were 1.77, 0.23, and 0.70 ng/mL, and 1.44, 0.22, and 0.11 ng/mL in samples from the e-waste site and the incineration plant, respectively. Dibutyl phosphate (DBP) was detected in all samples from the incineration plant, with a median level of 0.30 ng/mL. The concentrations of BDCIPP (r = -0.31, p < 0.05) were significantly correlated with the occupational exposure time rather than age in workers from the e-waste site. Negative and significant correlations were also observed between the concentrations of BCEP (r = -0.42, p < 0.05), BDCIPP (r = -0.37, p < 0.05), and DPHP (r = -0.37, p < 0.05) and occupational exposure time rather than age in workers from the incineration plant. No gender differences were observed in levels of PFR metabolites in urine samples (p > 0.05). Concentrations of BDCIPP in female were significantly correlated with occupational exposure time (r = -0.507, p < 0.01). Concentrations of PFR metabolites in male were not significantly correlated with age or occupational exposure time (p > 0.05). Overall, the workers with occupational exposure to PFRs had different profiles of urinary PFR metabolites. The age, occupational exposure time, and gender seemed not to be main factors mediating the exposure to PFRs for workers occupied with e-waste recycling and incineration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    PubMed

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 40 CFR 422.30 - Applicability; description of the phosphate subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., animal feed grade, calcium phosphate and human food grade calcium phosphate from phosphoric acid. The production of human food grade calcium phosphate creates waste water pollutants not completely amenable to... for human food grade calcium phosphates accordingly must differ from the rest of the subcategory at...

  15. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.

    PubMed

    Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I

    2015-08-15

    Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  17. 40 CFR 422.30 - Applicability; description of the phosphate subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are applicable to discharges of pollutants resulting from the manufacture of sodium tripolyphosphate, animal feed grade, calcium phosphate and human food grade calcium phosphate from phosphoric acid. The production of human food grade calcium phosphate creates waste water pollutants not completely amenable to...

  18. Effects of three phosphate industrial sites on ground-water quality in central Florida, 1979 to 1980

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1984-01-01

    Geologic, hydrologic, and water quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida are presented. The data were collected from September 1979 to October 1980 at the AMAX Phosphate, Inc. chemical plant, Piney Point; the USS Agri-Chemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximately 5,400 field and laboratory water quality determinations on water samples collected from about 100 test holes and 28 surface-water , 5 rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste disposal operations are tabulated. Maps are included to show sampling sites. (USGS)

  19. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  20. Hypophosphataemic osteomalacia in patients on adefovir dipivoxil.

    PubMed

    Girgis, Christian M; Wong, Tang; Ngu, Meng C; Emmett, Louise; Archer, Katherine A; Chen, Roger C Y; Seibel, Markus J

    2011-01-01

    Fanconi syndrome results from generalised renal tubular toxicity and, owing to phosphate wasting can cause hypophosphataemic osteomalacia. Large clinical trials advocated the safety of adefovir dipivoxil at a daily dose of 10 mg, the standard dose given to patients with hepatitis B. We diagnosed Fanconi syndrome in conjunction with severe osteomalacia in 2 hepatitis B-positive patients on standard-dose adefovir therapy. The first patient was a 40-year-old male with a 5 month history of bone pain involving his knees, ankles, and ribs. He had been receiving adefovir dipivoxil for 27 months before the development of hypophosphataemia, urinary phosphate wasting, and aminoaciduria. These abnormalities resolved within weeks of discontinuation of adefovir dipivoxil and supplementation with elemental phosphate, calcium carbonate, and cholecalciferol. The second patient was a 53-year-old female with a 6 month history of lethargy, cachexia, and generalized bone pain. She had been receiving adefovir for 64 months before the development of these symptoms. She had hypophosphataemia, hypocalcaemia, metabolic acidosis, and severe vitamin D deficiency, but initially no urinary phosphate wasting. Four months of high-dose cholecalciferol supplementation unmasked her Fanconi syndrome including significant urinary phosphate wasting. The patient improved within weeks of discontinuation of adefovir and supplementation with elemental phosphate, calcium carbonate, and calcitriol. Despite large clinical trials advocating the safety of adefovir dipivoxil at 10-mg daily, long-term use of this agent may be nephrotoxic and in rare cases, cause Fanconi syndrome and severe hypophosphataemic osteomalacia. Clinicians prescribing this drug should be aware of this potential complication.

  1. Functional magnetic microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Landel, Robert F. (Inventor); Yen, Shiao-Ping S. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  2. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  3. Effect of E-waste Recycling on Urinary Metabolites of Organophosphate Flame Retardants and Plasticizers and Their Association with Oxidative Stress.

    PubMed

    Lu, Shao-You; Li, Yan-Xi; Zhang, Tao; Cai, Dan; Ruan, Ju-Jun; Huang, Ming-Zhi; Wang, Lei; Zhang, Jian-Qing; Qiu, Rong-Liang

    2017-02-21

    In this study, three chlorinated (Cl-mOPs) and five nonchlorinated (NCl-mOPs) organophosphate metabolites were determined in urine samples collected from participants living in an electronic waste (e-waste) dismantling area (n = 175) and two reference areas (rural, n = 29 and urban, n = 17) in southern China. Bis(2-chloroethyl) phosphate [BCEP, geometric mean (GM): 0.72 ng/mL] was the most abundant Cl-mOP, and diphenyl phosphate (DPHP, 0.55 ng/mL) was the most abundant NCl-mOP. The GM concentrations of mOPs in the e-waste dismantling sites were higher than those in the rural control site. These differences were significant for BCEP (p < 0.05) and DPHP (p < 0.01). Results suggested that e-waste dismantling activities contributed to human exposure to OPs. In the e-waste sites, the urinary concentrations of bis(2-chloro-isopropyl) phosphate (r = 0.484, p < 0.01), BCEP (r = 0.504, p < 0.01), dibutyl phosphate (r = 0.214, p < 0.05), and DPHP (r = 0.440, p < 0.01) were significantly increased as the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of DNA oxidative stress, increased. Our results also suggested that human exposure to OPs might be correlated with DNA oxidative stress for residents in e-waste dismantling areas. To our knowledge, this study is the first to report the urinary levels of mOPs in China and examine the association between OP exposure and 8-OHdG in humans.

  4. Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs.

    PubMed

    Matsukami, Hidenori; Tue, Nguyen Minh; Suzuki, Go; Someya, Masayuki; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2015-05-01

    Three oligomeric organophosphorus flame retardants (o-PFRs), eight monomeric PFRs (m-PFRs), tetrabromobisphenol A (TBBPA), and polybrominated diphenyl ethers (PBDEs) were identified and quantified in surface soils and river sediments around the e-waste recycling area in Bui Dau, northern Vietnam. Around the e-waste recycling workshops, 1,3-phenylene bis(diphenyl phosphate) (PBDPP), bisphenol A bis(diphenyl phosphate) (BPA-BDPP), triphenyl phosphate (TPHP), TBBPA, and PBDEs were dominant among the investigated flame retardants (FRs). The respective concentrations of PBDPP, BPA-BDPP, TPHP, TBBPA and the total PBDEs were 6.6-14000 ng/g-dry, <2-1500 ng/g-dry, 11-3300 ng/g-dry, <5-2900 ng/g-dry, and 67-9200 ng/g-dry in surface soils, and 4.4-78 ng/g-dry, <2-20 ng/g-dry, 7.3-38 ng/g-dry, 6.0-44 ng/g-dry and 100-350 ng/g-dry in river sediments. Near the open burning site of e-waste, tris(methylphenyl) phosphate (TMPP), (2-ethylhexyl)diphenyl phosphate (EHDPP), TPHP, and the total PBDEs were abundantly with respective concentrations of <2-190 ng/g-dry, <2-69 ng/g-dry, <3-51 ng/g-dry and 1.7-67 ng/g-dry in surface soils. Open storage and burning of e-waste have been determined to be important factors contributing to the emissions of FRs. The environmental occurrence of emerging FRs, especially o-PFRs, indicates that the alternation of FRs addition in electronic products is shifting in response to domestic and international regulations of PBDEs. The emissions of alternatives from open storage and burning of e-waste might become greater than those of PBDEs in the following years. The presence and environmental effects of alternatives should be regarded as a risk factor along with e-waste recycling. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions.

    PubMed

    Vassileva, Maria; Serrano, Mercedes; Bravo, Vicente; Jurado, Encarnación; Nikolaeva, Iana; Martos, Vanessa; Vassilev, Nikolay

    2010-02-01

    One of the most studied approaches in solubilization of insoluble phosphates is the biological treatment of rock phosphates. In recent years, various techniques for rock phosphate solubilization have been proposed, with increasing emphasis on application of P-solubilizing microorganisms. The P-solubilizing activity is determined by the microbial biochemical ability to produce and release metabolites with metal-chelating functions. In a number of studies, we have shown that agro-industrial wastes can be efficiently used as substrates in solubilization of phosphate rocks. These processes were carried out employing various technologies including solid-state and submerged fermentations including immobilized cells. The review paper deals critically with several novel trends in exploring various properties of the above microbial/agro-wastes/rock phosphate systems. The major idea is to describe how a single P-solubilizing microorganism manifests wide range of metabolic abilities in different environments. In fermentation conditions, P-solubilizing microorganisms were found to produce various enzymes, siderophores, and plant hormones. Further introduction of the resulting biotechnological products into soil-plant systems resulted in significantly higher plant growth, enhanced soil properties, and biological (including biocontrol) activity. Application of these bio-products in bioremediation of disturbed (heavy metal contaminated and desertified) soils is based on another important part of their multifunctional properties.

  6. Removal of lead and phosphate ions from aqueous solutions by organo-smectite.

    PubMed

    Bajda, Tomasz; Szala, Barbara; Solecka, Urszula

    2015-01-01

    Smectite has been modified using hexadecyltrimethyl ammonium bromide in an amount of double cationic exchange capacity. This alteration makes it possible to use organo-smectite as a sorbent to remove anionic forms. The experiment consisted of the interchangeable sorption of phosphate(V) and lead(II) by organo-smectite. Research was carried out with varying pH (2-5) and various concentrations (0.1-5 mmol/L). Organo-smectite with previously adsorbed lead ions removed more phosphate than the untreated organo-smectite. Experimental data show that lead is more likely to absorb on the organo-smectite than on the organo-smectite with previously adsorbed phosphate ions. It follows that the most effective use of the organo-smectite is through the sorption of first - Pb cations and then PO4 anions. With an increasing concentration of Pb(II) or P(V), the sorption efficiency increases. The maximum sorption efficiency of lead and phosphate ions is observed at pH 5. This enables the removal of harmful lead and phosphorus compounds from waste water and immobilizes them on the sorbent's surface. The alternating reactions of lead and phosphorus ions result in the crystallization of brompyromorphite Pb5(PO4)3Br.

  7. Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge.

    PubMed

    Walling, Sam A; Kinoshita, Hajime; Bernal, Susan A; Collier, Nick C; Provis, John L

    2015-05-07

    A cementitious system for the immobilisation of magnesium rich Magnox sludge was produced by blending an Mg(OH)2 slurry with silica fume and an inorganic phosphate dispersant. The Mg(OH)2 was fully consumed after 28 days of curing, producing a disordered magnesium silicate hydrate (M-S-H) with cementitious properties. The structural characterisation of this M-S-H phase by (29)Si and (25)Mg MAS NMR showed clearly that it has strong nanostructural similarities to a disordered form of lizardite, and does not take on the talc-like structure as has been proposed in the past for M-S-H gels. The addition of sodium hexametaphosphate (NaPO3)6 as a dispersant enabled the material to be produced at a much lower water/solids ratio, while still maintaining the fluidity which is essential in practical applications, and producing a solid monolith. Significant retardation of M-S-H formation was observed with larger additions of phosphate, however the use of 1 wt% (NaPO3)6 was beneficial in increasing fluidity without a deleterious effect on M-S-H formation. This work has demonstrated the feasibility of using M-S-H as binder to structurally immobilise Magnox sludge, enabling the conversion of a waste into a cementitious binder with potentially very high waste loadings, and providing the first detailed nanostructural description of the material thus formed.

  8. Impact of endocrine hyperfunction and phosphate wasting on bone in McCune-Albright syndrome.

    PubMed

    Lala, R; Matarazzo, P; Andreo, M; Defilippi, C; de Sanctis, C

    2002-01-01

    Skin dysplasia, as café-au-lait spots, bone fibrous dysplasia and peripheral endocrinopathies are the main clinical features of McCune-Albright syndrome (MAS). This illness is due to activating mutations of the Gsalpha protein and is spread with a mosaic pattern in affected tissues that consist of intermixed areas of normal and mutated cells. Peripheral endocrine secretion, free of hypothalamic pituitary control, is the hallmark of the endocrine syndromes: precocious puberty, Cushing's syndrome, hyperthyroidism and gigantism/acromegaly. In addition, phosphate wasting as hyperphosphaturia is often present. The impact of hormonal hypersecretion and phosphate loss on the bones of patients with MAS is poorly understood both in normal and fibrous bone tissue. As hypercortisolism and hyperthyroidism increase bone resorption, hyperestrogenism and growth hormone hypersecretion stimulate bone growth and mineralization, and phosphate wasting reduces bone mineral content. All these actions can be exerted at varying times and degrees in a single patient on lesional and non-lesional bones. Sonographic evidence of multiple diffused hyperechogenic spots in the testes of patients with MAS do not seem to be related to alterations in calcium-phosphate metabolism but rather to zonal dysplasia/hyperplasia of testicular tissue.

  9. Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia)

    PubMed Central

    Stalder, Claudio; Rüggeberg, Andres; Neururer, Christoph; Spangenberg, Jorge E.; Spezzaferri, Silvia

    2018-01-01

    The marine environment in the Gulf of Gabes (southern Tunisia) is severely impacted by phosphate industries. Nowadays, three localities, Sfax, Skhira and Gabes produce phosphoric acid along the coasts of this Gulf and generate a large amount of phosphogypsum as a waste product. The Gabes phosphate industry is the major cause of pollution in the Gulf because most of the waste is directly discharged into the sea without preliminary treatment. This study investigates the marine environment in the proximity of the phosphate industries of Gabes and the coastal marine environment on the eastern coast of Djerba, without phosphate industry. This site can be considered as "pristine" and enables a direct comparison between polluted and “clean” adjacent areas. Phosphorous, by sequential extractions (SEDEX), Rock-Eval, C, H, N elemental analysis, and stable carbon isotope composition of sedimentary organic matter, X-ray diffraction (qualitative and quantitative analysis) were measured on sediments. Temperature, pH and dissolved oxygen were measured on the water close to the sea floor of each station to estimate environmental conditions. These analyses are coupled with video surveys of the sea floor. This study reveals clear differentiations in pollution and eutrophication in the investigated areas. PMID:29771969

  10. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  11. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  12. Synthesis and characterization of mangan oxide coated sand from Capkala kaolin

    NASA Astrophysics Data System (ADS)

    Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya

    2017-03-01

    Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.

  13. Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments

    DOE PAGES

    Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui; ...

    2017-12-05

    Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. Here, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO 4-reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K 2(UO 2) 6O 4(OH) 6·8H 2O]- and becquerelite [Ca(UO 2) 6O 4(OH) 6·8H 2O]-like species.more » Subsequent further removal of uranium coincided with that of Si and accumulation of boltwoodite, [(K, Na)(UO 2) 2O 4(HSiO 4) 2•0.5(H 2O)]-like species of uranium at 180 and 365 days. When present, PO 4 exerted a direct and strong control over U speciation. Furthermore, the detection of meta-ankoleite, [K 2(UO 2) 2O 4(PO 4) 2·6H 2O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO 4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO 4 present, nearly all uranium would have precipitated in the upper soil.« less

  14. Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui

    Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. In this study, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO(4)(-)reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K-2(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-and becquerelite [Ca(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-like species. Subsequent further removal of uranium coincided withmore » that of Si and accumulation of boltwoodite, [(K, Na)(UO2)(2)O-4(HSiO4)(2)center dot 0.5(H2O)]-like species of uranium at 180 and 365 days. When present, PO4 exerted a direct and strong control over U speciation. The detection of meta-ankoleite, [K-2(UO2)(2)O-4(PO4)(2)center dot 6H(2)O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO4 present, nearly all uranium would have precipitated in the upper soil.« less

  15. Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui

    Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. Here, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO 4-reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K 2(UO 2) 6O 4(OH) 6·8H 2O]- and becquerelite [Ca(UO 2) 6O 4(OH) 6·8H 2O]-like species.more » Subsequent further removal of uranium coincided with that of Si and accumulation of boltwoodite, [(K, Na)(UO 2) 2O 4(HSiO 4) 2•0.5(H 2O)]-like species of uranium at 180 and 365 days. When present, PO 4 exerted a direct and strong control over U speciation. Furthermore, the detection of meta-ankoleite, [K 2(UO 2) 2O 4(PO 4) 2·6H 2O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO 4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO 4 present, nearly all uranium would have precipitated in the upper soil.« less

  16. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  17. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com; Mousa, Sahar M.; Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could bemore » obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.« less

  18. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders

    PubMed Central

    Bai, Xiuying; Miao, Dengshun; Xiao, Sophia; Qiu, Dinghong; St-Arnaud, René; Petkovich, Martin; Gupta, Ajay; Goltzman, David; Karaplis, Andrew C.

    2016-01-01

    CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment. PMID:26784541

  19. Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia.

    PubMed

    Baum, Michel; Syal, Ashu; Quigley, Raymond; Seikaly, Mouin

    2006-08-01

    X-linked hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. PHEX stands for phosphate-regulating gene with endopeptidase activity, which is located on the X chromosome. Patients with X-linked hypophosphatemia have hypophosphatemia due to renal phosphate wasting and low or inappropriately normal levels of 1,25-dihydroxyvitamin D. The renal phosphate wasting is not intrinsic to the kidney but likely due to an increase in serum levels of fibroblast growth factor-23 (FGF-23), and perhaps other phosphate-wasting peptides previously known as phosphatonins. Patients with X-linked hypophosphatemia have short stature, rickets, bone pain and dental abscesses. Current therapy is oral phosphate and vitamin D which effectively treats the rickets and bone pain but does not adequately improve short stature. In this review, we describe recent observations using Hyp mice; mice with the same mutation as patients with X-linked hypophosphatemia. We have recently found that Hyp mice have abnormal renal prostaglandin production, which may be an important factor in the pathogenesis of this disorder. Administration of FGF-23 in vivo results in phosphaturia and an increase in prostaglandin excretion, and FGF-23 increases proximal tubule prostaglandin production in vitro. In Hyp mice, indomethacin improves the phosphate transport defect in vitro and in vivo. Whether indomethacin has the same effect in patients with X-linked hypophosphatemia is unknown.

  20. Phosphate flame retardants and novel brominated flame retardants in home-produced eggs from an e-waste recycling region in China.

    PubMed

    Zheng, Xiaobo; Xu, Fuchao; Luo, Xiaojun; Mai, Bixian; Covaci, Adrian

    2016-05-01

    Phosphate flame retardants (PFRs) and novel brominated flame retardants (NBFRs) (2-ethylhexyl-2,3,4,5-tetrabromo-benzoate (EH-TBB) and bis-(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP)) were measured in free-range chicken eggs from three e-waste recycling sites and a negative control site located in Guangdong province, Southern China. BEH-TEBP, tris-(chloroethyl)-phosphate (TCEP), tris-(chloropropyl)-phosphate (∑TCPP, two isomers) and tris-(1,3-dichloroisopropyl)-phosphate (TDCIPP) were detected in more than 50% of eggs samples with low concentrations. The median values of BEH-TEBP and total PFRs were 0.17-0.46 ng/g ww (wet weight) and 1.62-2.59 ng/g ww in eggs from the e-waste sites, respectively. The results indicate that EH-TBB, BEH-TEBP and PFRs are less persistent and bioaccumulative than polybrominated diphenyl ethers (PBDEs) in chicken eggs, and possibly also in other bio-matrices. Triphenyl phosphate (TPHP) were identified in albumen with higher frequencies, but at similar concentrations compared to yolk, while BEH-TEBP was mainly detected in yolk. The estimated daily intake (EDI) of BEH-TEBP and total PFRs from consumption of chicken eggs ranged from 0.03 to 0.09 and 0.32-0.52 ng/kg bw/day for adults, and 0.20-0.54 and 1.89-3.02 ng/kg bw/day for children in e-waste sites, respectively. Indoor dust ingestion seems to be a more important pathway for the intake of these FRs, while egg consumption is probably a more important exposure pathway for PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    USGS Publications Warehouse

    Stillings, Lisa L.; Amacher, Michael C.

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0), Se is also an integral component of sulfide phases (pyrite, sphalerite and vaesite–pyritess) in the waste rock. It may also be present as adsorbed selenate and/or selenite, and FeSe2 and organo-selenides.Se release from the waste rock has been observed in field and laboratory experiments. Release rates calculated from waste rock dump and column leachate solutions describe the net, overall Se release from all of the possible sources of Se listed above. In field studies, Se concentration in seepage water (pH 7.4–7.8) from the Wooley Valley Unit 4 dump ranges from 3600 µg/L in May to 10 µg/L by Sept. Surface water flow, Q, from the seep also declines over the summer, from 2 L/s in May to 0.03 L/s in Sept. Se flux ([Se] ⁎ Q) reaches a steady-state of < 150 mg/day in 1–4 months, depending upon the volume of Q. Se release (mg/L) follows a first order reaction with a rate constant, k, = 1.35 – 6.35e−3 h− 1 (11.8–55.6 yr− 1).Laboratory experiments were performed with the waste shale in packed bed reactors; residence time varied from 0.09 to 400 h and outlet pH ∼ 7.5. Here, Se concentration increased with increasing residence time and release was modeled with a first order reaction with k = 2.19e−3 h− 1 (19.2 yr− 1).Rate constants reported here fall within an order of magnitude of reported rate constants for oxidation of Se(0) formed by bacterial precipitation. This similarity among rate constants from both field and laboratory studies combined with the direct observation of Se(0) in waste shales of the Phosphoria Formation suggests that oxidation of Se(0) may control steady-state Se concentration in water draining the Wooley Valley waste dump.

  2. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources.

    PubMed

    Huang, Haiming; Xiao, Dean; Zhang, Qingrui; Ding, Li

    2014-12-01

    This paper presents a study concerning ammonia removal from landfill leachate by struvite precipitation with the use of waste phosphoric acid as the phosphate source. The results indicated that the Al(3+) ions present in the waste phosphoric acid significantly affected the struvite precipitation, and a removal ratio of ammonia close to that of pure phosphate salts could be achieved. Nevertheless, large amounts of NaOH were necessary to neutralize the H(+) present in the waste phosphoric acid. To overcome this problem, a low-cost magnesium source was proposed to be used as well as an alkali reagent in the struvite precipitation. The ammonia removal ratios were found to be 83%, with a remaining phosphate of 56 mg/L, by dosing the low-cost MgO in the Mg:N:P molar ratio of 3:1:1. An economic analysis showed that using waste phosphoric acid plus the low-cost MgO could save chemical costs by 68% compared with the use of pure chemicals. Post-treatment employment of a biological anaerobic filter process demonstrated that the high concentration of Mg(2+) remaining in the effluent of the struvite precipitation has no inhibitory effect on the performance of the biological treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa.

    PubMed

    Shimada, Takashi; Urakawa, Itaru; Yamazaki, Yuji; Hasegawa, Hisashi; Hino, Rieko; Yoneya, Takashi; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi

    2004-02-06

    Fibroblast growth factor (FGF)-23 was identified as a causative factor of tumor-induced osteomalacia and also as a responsible gene for autosomal dominant hypophosphatemic rickets. To clarify the pathophysiological roles of FGF-23 in these diseases, we generated its transgenic mice. The transgenic mice expressing human FGF-23 reproduced the common clinical features of these diseases such as hypophosphatemia probably due to increased renal phosphate wasting, inappropriately low serum 1,25-dihydroxyvitamin D level, and rachitic bone. The renal phosphate wasting in the transgenic mice was accompanied by the reduced expression of sodium phosphate cotransporter type IIa in renal proximal tubules. These results reinforce the notion that the excessive action of FGF-23 plays a causative role in the development of several hypophosphatemic rickets/osteomalacia.

  4. P2O5-doping in waste glasses: evolution of viscosity and crystallization processes

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Espuñes, Alex; Garcia-Valles, Maite; Martinez, Salvador

    2015-04-01

    Current concern for environmental preservation is the main motive for the study of new, more sustainable materials. Increasing amounts of sewage sludge are produced in wastewater treatment plants over the world every day. This fact represents a major problem for the municipalities and industries due to the volume of waste and also to the contaminant elements it may bear, which require expensive conditions for disposal in landfills. Vitrification is an established technique in the inertization of different types of toxic wastes (such as nuclear wastes and contaminated soils) that has been used successfully for sewage sludge. Glasses of basaltic composition (43.48SiO2-14.00Al2O3-12.86Fe2O3-10.00CaO-9.94MgO-3.27Na2O-1.96K2O-0.17MnO-0.55P2O5-2.48TiO2) are used as a laboratory analogous of wastes such as sewage sludge and galvanic sludge to study the properties of the inertization matrix. This basaltic matrix is doped by adding 1%, 2%, 3%, 4% and 20% of P5O5 in order to cover the compositional range of phosphate in sewage sludge encountered in the literature. In this study, the focus has been placed in the effect of the concentration of phosphate (P2O5) in glass stability, thermal properties and evolution of viscosity with temperature. The dependence of viscosity on temperature and the thermal behaviour of these glasses are critical parameters in the design of their production process. Regarding the compositional limits of the mixture, it has been observed that melt reactivity is much increased when P2O5 content is over 4%, hindering the glass conformation process. Moreover, stanfieldite (calcium and magnesium phosphate) crystallized during glass making when phosphate concentration approached 20%, hence establishing the upper limit for glass stability. Viscosity is also dramatically increased in this range, hence requiring production amends. Differential thermal analysis has provided nucleation and crystallization temperatures of the glasses around 915°C and 1050°C respectively at phosphate contents up to 4%. Subsequent analysis by X-Ray Diffraction has proved that newly formed phases are iron oxides, Ca - Mg silicates and feldspars. Glass transition temperature (Tg; approximately 635°C) obtained by dilatometry remains almost constant until very high phosphate contents; even then, the increase is not large (650°C at 20% P2O5). Hot-Stage microscopy (HSM) has shown the evolution of viscosity with temperature through the analysis of the morphological evolution of cylindrical probes of glass according to German standard DIN 51730. The annealing range (viscosity between 1013.5 and 1012 is reached at temperatures between 600 and 700°C. The temperatures of the lower limit of the working range (viscosity under 103 Pa-s) are between 1325 and 1375°C; decreasing slightly with the addition of P2O5.

  5. Preparation and Characterization of a Calcium Phosphate Ceramic for the Immobilization of Chloride-containing Intermediate Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.

    2003-12-01

    Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides aremore » chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.« less

  6. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.

    PubMed

    Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A

    2015-06-01

    The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Food waste as nutrient source in heterotrophic microalgae cultivation.

    PubMed

    Pleissner, Daniel; Lam, Wan Chi; Sun, Zheng; Lin, Carol Sze Ki

    2013-06-01

    Glucose, free amino nitrogen (FAN), and phosphate were recovered from food waste by fungal hydrolysis using Aspergillus awamori and Aspergillus oryzae. Using 100g food waste (dry weight), 31.9 g glucose, 0.28 g FAN, and 0.38 g phosphate were recovered after 24h of hydrolysis. The pure hydrolysate has then been used as culture medium and nutrient source for the two heterotrophic microalgae Schizochytrium mangrovei and Chlorella pyrenoidosa, S. mangrovei and C. pyrenoidosa grew well on the complex food waste hydrolysate by utilizing the nutrients recovered. At the end of fermentation 10-20 g biomass were produced rich in carbohydrates, lipids, proteins, and saturated and polyunsaturated fatty acids. Results of this study revealed the potential of food waste hydrolysate as culture medium and nutrient source in microalgae cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    NASA Astrophysics Data System (ADS)

    Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.

    2011-10-01

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  9. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  10. New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste.

    PubMed

    Tarayre, Cédric; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Camargo-Valero, Miller; Delvigne, Frank

    2016-04-01

    Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Leaching Characteristics of Hanford Ferrocyanide Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.

    2009-12-21

    A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less

  12. Engineering and Development Support of General Decon Technology for the DARCOM Installation Restoration Program. Task 4. General Technology Literature Searches (II) Solidification Techniques for Lagoon Waters

    DTIC Science & Technology

    1980-12-01

    40.8 Sodium 70.1 Zinc 0.01 37 The process includes the following steps (Pichat et al., 1979): - neutralization precipitation (silicates, borates...Compressive Strength of Polyester - Encapsulated Sodium Sulfate Waste Composite ....... .............. 64 9. Deep Chemical Mixer Mounted on a Barge...zinc, copper, lead, manganese and tin; sodium salts of arsenate, borate, phosphate, iodate, and sulfide; and sulfate salts. Sulfate salts form calcium

  13. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs.

    PubMed

    Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka

    2014-09-15

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, <0.01-0.048 μg m(-3) and <0.5-68 μg kg(-1). Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and unintentional POPs. Incineration is regarded as a best available technology (BAT) for waste management systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  15. Dual Paraneoplastic Syndromes: Small Cell Lung Carcinoma-related Oncogenic Osteomalacia, and Syndrome of Inappropriate Antidiuretic Hormone Secretion: Report of a Case and Review of the Literature

    PubMed Central

    Ng, Roland CK

    2011-01-01

    Acquired isolated renal phosphate wasting associated with a tumor, known as oncogenic osteomalacia or tumor-induced osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23. Oncogenic osteomalacia is usually associated with benign mesenchymal tumors. Syndrome of inappropriate antidiuretic hormone secretion (SIADH), on the other hand, is a common paraneoplastic syndrome caused by small cell carcinoma (SCC). Concomitant oncogenic osteomalacia and SIADH associated with SCC is very rare with only 4 other cases reported in the literature. The authors report a case of small cell lung cancer (SCLC)-related renal wasting hypophosphatemia and concurrent SIADH, and review the literature reporting 9 other cases of SCC associated with oncogenic osteomalacia. Almost half of reported cases of renal phosphate wasting associated with SCC concomitantly presented with SIADH. These cases had initial serum phosphorus level lower and survival periods shorter than those without SIADH. This rare combination of a dual paraneoplastic syndrome and low serum phosphorus may be a poor prognostic sign. In addition, both renal phosphate wasting and SIADH usually occur in a short period of time before identification of SCC. Therefore, renal wasting hypophosphatemia with concomitant SIADH/hyponatremia should prompt a search for SCC rather than a benign mesenchymal tumor. PMID:21886301

  16. Dual paraneoplastic syndromes: small cell lung carcinoma-related oncogenic osteomalacia, and syndrome of inappropriate antidiuretic hormone secretion: report of a case and review of the literature.

    PubMed

    Tantisattamo, Ekamol; Ng, Roland C K

    2011-07-01

    Acquired isolated renal phosphate wasting associated with a tumor, known as oncogenic osteomalacia or tumor-induced osteomalacia, is a rare paraneoplastic syndrome caused by overproduction of fibroblast growth factor 23. Oncogenic osteomalacia is usually associated with benign mesenchymal tumors. Syndrome of inappropriate antidiuretic hormone secretion (SIADH), on the other hand, is a common paraneoplastic syndrome caused by small cell carcinoma (SCC). Concomitant oncogenic osteomalacia and SIADH associated with SCC is very rare with only 4 other cases reported in the literature. The authors report a case of small cell lung cancer (SCLC)-related renal wasting hypophosphatemia and concurrent SIADH, and review the literature reporting 9 other cases of SCC associated with oncogenic osteomalacia. Almost half of reported cases of renal phosphate wasting associated with SCC concomitantly presented with SIADH. These cases had initial serum phosphorus level lower and survival periods shorter than those without SIADH. This rare combination of a dual paraneoplastic syndrome and low serum phosphorus may be a poor prognostic sign. In addition, both renal phosphate wasting and SIADH usually occur in a short period of time before identification of SCC. Therefore, renal wasting hypophosphatemia with concomitant SIADH/hyponatremia should prompt a search for SCC rather than a benign mesenchymal tumor.

  17. Agronomic efficiency of phosphate fertilizers produced by the re-use of a metallurgical acid residue.

    PubMed

    Barreto, Matheus Sampaio Carneiro; Mattiello, Edson Marcio; Santos, Wedisson Oliveira; Melo, Leônidas Carrijo Azevedo; Vergütz, Leonardus; Novais, Roberto Ferreira

    2018-02-15

    The production of fertilizers with industrial wastes reduces the environmental impacts of waste disposal and improves environmental sustainability by generating added-value products. Our objective with this study was to evaluate the agronomic performance and potential soil/plant contamination with heavy metals of alternative phosphate (P) fertilizers, obtained from the acidulation of phosphate rocks (PR) by a metallurgical acidic waste. Seven P fertilizers were evaluated: three PR (Araxá, Patos, and Bayóvar), their respective acidulated products (PAPR), and triple superphosphate fertilizer (TSP). A greenhouse trial was carried out to test the agronomic performances of fertilizers in a sequentially cultivated maize-soybean-white oat. The reaction of PR with acid waste was effective to increase their solubility and improve plant yield and P uptake compared to their natural PR. There was a cumulative recovery by plants of 1.4 and 8.1% of added P via PR and PAPR, respectively. No increase in heavy metal (Cd, Pb, Cr, and Ni) availability in soil or accumulation in shoots was observed, indicating that the PAPR were environmentally safe. The usage of acid waste to produce P fertilizers therefore represents a strategic way to employ marginal products for the production of fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  19. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  20. Chemical composition of samples collected from waste rock dumps and other mining-related features at selected phosphate mines in southeastern Idaho, western Wyoming, and northern Utah

    USGS Publications Warehouse

    Moyle, Phillip R.; Causey, J. Douglas

    2001-01-01

    This report provides chemical analyses for 31 samples collected from various phosphate mine sites in southeastern Idaho (25), northern Utah (2), and western Wyoming (4). The sampling effort was undertaken as a reconnaissance and does not constitute a characterization of mine wastes. Twenty-five samples were collected from waste rock dumps, 2 from stockpiles, and 1 each from slag, tailings, mill shale, and an outcrop. All samples were analyzed for a suite of major, minor, and trace elements. Although the analytical data set for the 31 samples is too small for detailed statistical analysis, a summary of general observations is made.

  1. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000-2002.

    PubMed

    Buszka, P M; Yeskis, D J; Kolpin, D W; Furlong, E T; Zaugg, S D; Meyer, M T

    2009-06-01

    Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000-2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill.

  2. 77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...

  3. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  4. Identification of a novel PHEX mutation in a Chinese family with X-linked hypophosphatemic rickets using exome sequencing.

    PubMed

    Yuan, Lamei; Wu, Song; Xu, Hongbo; Xiao, Jingjing; Yang, Zhijian; Xia, Hong; Liu, An; Hu, Pengzhi; Lu, Anjie; Chen, Yulan; Xu, Fengping; Deng, Hao

    2015-01-01

    Familial hypophosphatemic rickets (HR), the most common inherited form of rickets, is a group of inherited renal phosphate wasting disorders characterized by growth retardation, rickets with bone deformities, osteomalacia, poor dental development, and hypophosphatemia. The purpose of this study was to identify the genetic defect responsible for familial HR in a four-generation Chinese Han pedigree by exome sequencing and Sanger sequencing. Clinical features include skeletal deformities, teeth abnormalities, hearing impairments and variable serum phosphate level in patients of this family. A novel deletion mutation, c.1553delT (p.F518Sfs*4), was identified in the X-linked phosphate regulating endopeptidase homolog gene (PHEX). The mutation is predicted to result in prematurely truncated and loss-of-function PHEX protein. Our data suggest that exome sequencing is a powerful tool to discover mutation(s) in HR, a disorder with genetic and clinical heterogeneity. The findings may also provide new insights into the cause and diagnosis of HR, and have implications for genetic counseling and clinical management.

  5. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures.

    PubMed

    Unuofin, F O; Mnkeni, P N S

    2014-11-01

    Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered. Copyright © 2014. Published by Elsevier Ltd.

  6. Nitrogen conservation in simulated food waste aerobic composting process with different Mg and P salt mixtures.

    PubMed

    Li, Yu; Su, Bensheng; Liu, Jianlin; Du, Xianyuan; Huang, Guohe

    2011-07-01

    To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.

  7. DECREASING LEAD BIOAVAILABILITY OF MINE WASTES: TWO PHOSPHATE FIELD STUDIES

    EPA Science Inventory

    Findings from two evaluation studies of phosphate-based in situ treatment of soils for reducing lead (Pb) bioavailability at two lead mining and lead refining Superfund sites will be presented and discussed. These assessments correlated physicochemical data with results obtained...

  8. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000-2002

    USGS Publications Warehouse

    Buszka, P.M.; Yeskis, D.J.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.

    2009-01-01

    Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000-2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill. ?? 2009 Springer Science + Business Media, LLC.

  9. Crustacean derived calcium phosphate systems: Application in defluoridation of drinking water in East African rift valley.

    PubMed

    Wagutu, Agatha W; Machunda, Revocatus; Jande, Yusufu Abeid Chande

    2018-04-05

    Calcium phosphate adsorbents, derived from prawns and crabs shell biomass wastes have been developed using wet chemistry and low temperature treatment. The adsorbents were characterized by X-ray diffractometry and Fourier transform infrared spectroscopy. Batch adsorption test were carried out to investigate their effectiveness in adsorption of fluoride from ground and surface waters. Adsorption capacities were compared with bone char and synthetic hydroxyapatite (CCHA). Results indicate that prawns derived adsorbent (PHA) formed hexagonal structure with phases identifiable with hydroxyapatite while crabs based adsorbent (CHA) formed predominantly monoclinic structure with crystalline phase characteristic of brushite. Vibrational analysis and kinetic studies predicted defluoridation occurred mainly by ion exchange and ion adsorption mechanisms. Defluoridation capacity of the adsorbents was found to be superior compared to bone char and CCHA. CHA was the most effective with efficiencies above 92% and highest capacity of 13.6 mg/g in field water with fluoride concentration of 5-70 mg/L. PHA had highest capacity of 8.5 mg/g which was still better than 2.6 mg/g recorded by CCHA and bone char. Adsorption was best described by pseudo 2nd order kinetics. The findings indicate that crustacean derived calcium phosphate systems have better potential for defluoridation than traditional bone char and synthetic systems. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    PubMed

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  12. An optimal method for phosphorylation of rare earth chlorides in LiCl-KCl eutectic based waste salt

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, J. H.; Cho, Y. Z.; Choi, J. H.; Lee, T. K.; Park, H. S.; Park, G. I.

    2013-11-01

    A study on an optimal method for the phosphorylation of rare earth chlorides in LiCl-KCl eutectic waste salt generated the pyrochemical process of spent nuclear fuel was performed. A reactor with a pitched four blade impeller was designed to create a homogeneous mixing zone in LiCl-KCl eutectic salt. A phosphorylation test of NdCl3 in the salt was carried out by changing the operation conditions (operation temperature, stirring rate, agent injection amount). Based on the results of the test, a proper operation condition (450 °C, 300 rpm, 1 eq. of phosphorylation agent) for over a 0.99 conversion ratio of NdCl3 to NdPO4 was determined. Under this condition, multi-component rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Y) chlorides were effectively converted into phosphate forms. It was confirmed that the existing regeneration process of LiCl-KCl eutectic waste salt can be greatly improved and simplified through these phosphorylation test results.

  13. EVALUATION OF ULTRAFILTRATION TO RECOVER AQUEOUS IRON PHOSPHATING/DEGREASING BATH

    EPA Science Inventory

    Pollution prevention efforts studied in the report summarized here targeted the hazardous waste generated from a 5000-gal iron phosphating/degreasing bath used by a metal fabricator to clean and precondition steel parts for painting. This project was carried out in four stages: (...

  14. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations.

    PubMed

    Rufus, A L; Sathyaseelan, V S; Narasimhan, S V; Velmurugan, S

    2013-06-15

    Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-06-23

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  16. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Alshahrani, Saeed; Brooks, Marybeth; McCormack, Francis X.; Smith, Roger D.; Zahedi, Kamyar

    2016-01-01

    Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and phosphate in the proximal tubule via processes that are mediated by PGE-2. PMID:27442254

  17. Tertiary Excess of Fibroblast Growth Factor 23 and Hypophosphatemia Following Kidney Transplantation

    PubMed Central

    Seeherunvong, Wacharee; Wolf, Myles

    2010-01-01

    Hypophosphatemia due to inappropriate urinary phosphate wasting is a frequent metabolic complication of the early period following kidney transplantation. Although previously considered to be caused by tertiary hyperparathyroidism, recent evidence suggests a primary role for persistently elevated circulating levels of the phosphorus-regulating hormone, fibroblast growth factors 23 (FGF23). In the setting of a healthy renal allograft, markedly increased FGF23 levels from the dialysis period induce renal phosphate wasting and inhibition of calcitriol production, which contribute to hypophosphatemia. While such tertiary FGF23 excess and resultant hypophosphatemia typically abates within the first few weeks to months post-transplant, some recipients manifest persistent renal phosphate wasting. Furthermore, increased FGF23 levels have been associated with increased risk of kidney disease progression, cardiovascular disease and death outside of the transplant setting. Whether tertiary FGF23 excess is associated with adverse transplant outcomes is unknown. In this article, we review the physiology of FGF23, summarize its relationship with hypophosphatemia after kidney transplantation, and speculate on its potential impact on long term outcomes of renal allograft recipients. PMID:20946192

  18. 40 CFR 62.4950 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Maine Fluoride Emissions from Phosphate Fertilizer Plants § 62.4950 Identification of plan—negative... that there are no existing phosphate fertilizer plants in the state subject to part 60, subpart B of... Gases, Organic Compounds and Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With the...

  19. 40 CFR 62.4950 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Maine Fluoride Emissions from Phosphate Fertilizer Plants § 62.4950 Identification of plan—negative... that there are no existing phosphate fertilizer plants in the state subject to part 60, subpart B of... Gases, Organic Compounds and Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With the...

  20. 40 CFR 62.4950 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Maine Fluoride Emissions from Phosphate Fertilizer Plants § 62.4950 Identification of plan—negative... that there are no existing phosphate fertilizer plants in the state subject to part 60, subpart B of... Gases, Organic Compounds and Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With the...

  1. 40 CFR 62.4950 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Maine Fluoride Emissions from Phosphate Fertilizer Plants § 62.4950 Identification of plan—negative... that there are no existing phosphate fertilizer plants in the state subject to part 60, subpart B of... Gases, Organic Compounds and Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With the...

  2. 40 CFR 62.4950 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Maine Fluoride Emissions from Phosphate Fertilizer Plants § 62.4950 Identification of plan—negative... that there are no existing phosphate fertilizer plants in the state subject to part 60, subpart B of... Gases, Organic Compounds and Nitrogen Oxide Emissions From Existing Municipal Waste Combustors With the...

  3. Preparation of flexible bone tissue scaffold utilizing sea urchin test and collagen.

    PubMed

    Manchinasetty, Naga Vijaya Lakshmi; Oshima, Sho; Kikuchi, Masanori

    2017-10-13

    Gonads of sea urchin are consumed in Japan and some countries as food and most parts including its tests are discarded as marine wastes. Therefore, utilization of them as functional materials would reduce the waste as well as encourage Japanese fishery. In this study, magnesium containing calcite granules collected from sea urchin tests were hydrothermally phosphatized and the obtained granules were identified as approximately 82% in mass of magnesium containing β-tricalcium phosphate and 18% in mass of nonstoichiometric hydroxyapatite, i.e., a biphasic calcium phosphate, maintaining the original porous network. Shape-controlled scaffolds were fabricated with the obtained biphasic calcium phosphate granules and collagen. The scaffolds showed good open porosity (83.84%) and adequate mechanical properties for handling during cell culture and subsequent operations. The MG-63 cells showed higher proliferation and osteogenic differentiation in comparison to a control material, the collagen sponge with the same size. Furthermore, cell viability assay proved that the scaffolds were not cytotoxic. These results suggest that scaffold prepared using sea urchin test derived calcium phosphate and collagen could be a potential candidate of bone void fillers for non-load bearing defects in bone reconstruction as well as scaffolds for bone tissue engineering.

  4. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review

    PubMed Central

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275

  5. Whole-Genome Analysis Reveals that Mutations in Inositol Polyphosphate Phosphatase-like 1 Cause Opsismodysplasia

    PubMed Central

    Below, Jennifer E.; Earl, Dawn L.; Shively, Kathryn M.; McMillin, Margaret J.; Smith, Joshua D.; Turner, Emily H.; Stephan, Mark J.; Al-Gazali, Lihadh I.; Hertecant, Jozef L.; Chitayat, David; Unger, Sheila; Cohn, Daniel H.; Krakow, Deborah; Swanson, James M.; Faustman, Elaine M.; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.

    2013-01-01

    Opsismodysplasia is a rare, autosomal-recessive skeletal dysplasia characterized by short stature, characteristic facial features, and in some cases severe renal phosphate wasting. We used linkage analysis and whole-genome sequencing of a consanguineous trio to discover that mutations in inositol polyphosphate phosphatase-like 1 (INPPL1) cause opsismodysplasia with or without renal phosphate wasting. Evaluation of 12 families with opsismodysplasia revealed that INPPL1 mutations explain ∼60% of cases overall, including both of the families in our cohort with more than one affected child and 50% of the simplex cases. PMID:23273567

  6. 40 CFR Appendix Xi to Part 268 - Metal Bearing Wastes Prohibited From Dilution in a Combustion Unit According to 40 CFR 268.3(c)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphating in aluminum car washing when such phosphating is an exclusive conversion coating process. K002... primary production of steel in electric furnaces. K069 Emission control dust/sludge from secondary lead...

  7. Bench-Scale Evaluation Of Chemically Bonded Phosphate Ceramic Technology To Stabilize Mercury Waste Mixtures

    EPA Science Inventory

    This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...

  8. 40 CFR Appendix Xi to Part 268 - Metal Bearing Wastes Prohibited From Dilution in a Combustion Unit According to 40 CFR 268.3(c)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphating in aluminum car washing when such phosphating is an exclusive conversion coating process. K002... primary production of steel in electric furnaces. K069 Emission control dust/sludge from secondary lead...

  9. 40 CFR Appendix Xi to Part 268 - Metal Bearing Wastes Prohibited From Dilution in a Combustion Unit According to 40 CFR 268.3(c)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphating in aluminum car washing when such phosphating is an exclusive conversion coating process. K002... primary production of steel in electric furnaces. K069 Emission control dust/sludge from secondary lead...

  10. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including phosphate mines or other sites that are used for the disposal of phosphogypsum. ...

  11. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including phosphate mines or other sites that are used for the disposal of phosphogypsum. ...

  12. 40 CFR 61.201 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Phosphogypsum is the solid waste byproduct which results from the process of wet acid phosphorus production. (c) Phosphogypsum stacks or stacks are piles of waste resulting from wet acid phosphorus production, including phosphate mines or other sites that are used for the disposal of phosphogypsum. ...

  13. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Ambashta, R. D.; Sudarsan, V.; Ajithkumar, T.; Sen, D.; Mazumder, S.; Wattal, P. K.

    2017-04-01

    Sodium zirconium phosphate (NZP) ceramics have been prepared using conventional sintering and hot isostatic pressing (HIP) routes. The structure of NZP ceramics, prepared using the HIP route, has been compared with conventionally sintered NZP using a combination of X-ray diffraction (XRD) and (31P and 23Na) nuclear magnetic resonance (NMR) spectroscopy techniques. It is observed that NZP with no waste loading is aggressive toward the steel HIP-can during hot isostatic compaction and significant fraction of cations from the steel enter the ceramic material. Waste loaded NZP samples (10 wt% simulated FBR waste) show significantly low can-interaction and primary NZP phase is evident in this material. Upon exposure of can-interacted and waste loaded NZP to boiling water and steam, 31P NMR does not detect any major modifications in the network structure. However, the 23Na NMR spectra indicate migration of Na+ ions from the surface and possible re-crystallization. This is corroborated by Small-Angle Neutron Scattering (SANS) data and Scanning Electron Microscopy (SEM) measurements carried out on these samples.

  14. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    PubMed

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Biomineralization of copper: Solutions for waste remediation and biomining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, C.R.; Thompson, S.A.; Crusberg, T.C.

    1997-12-31

    The fungus Penicillium ochro-chloron is able to extract copper from aqueous solutions and form insoluble copper precipitates within the matrix of fungal mycelia. The formation of these complexes is probably a detoxification mechanism used by the organism to deal with the potentially lethal concentrations of heavy metals. Metal immobilization occurs external to the cells but within the mycelia when the solubility products of copper phosphate and copper oxalate are exceeded. This process may be exploited in biomining to remove and recover copper and perhaps other heavy metals that have become solubilized in pit mine lakes.

  16. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    PubMed

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  17. Mobility of rare earth elements in mine drainage: Influence of iron oxides, carbonates, and phosphates.

    PubMed

    Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Ward, Matthew; Pelletier, Mia

    2018-05-01

    The geochemical behavior of rare earth elements (REE) was investigated using weathering cells. The influence of sorption and precipitation on dissolved REE mobility and fractionation is evaluated using synthetic iron-oxides, carbonates, and phosphates. Sorption cell tests are conducted on the main lithologies of the expected waste rocks from the Montviel deposit. The sorbed materials are characterized using a scanning electron microscope (SEM) equipped with a microanalysis system (energy dispersive spectroscopy EDS) (SEM-EDS), X-ray diffraction (XRD), and X-ray absorption near edge structure (XANES) in order to understand the effect of the synthetic minerals on REE mobility. The results confirm that sorption and precipitation control the mobility and fractionation of REE. The main sorbent phases are the carbonates, phosphates (present as accessory minerals in the Montviel waste rocks), and iron oxides (main secondary minerals generated upon weathering of the Montviel lithologies). The XANES results show that REE are present as trivalent species after weathering. Thermodynamic equilibrium calculations results using Visual Minteq suggest that REE could precipitate as secondary phosphates (REEPO 4 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China.

    PubMed

    Wan, Weining; Zhang, Shuzhen; Huang, Honglin; Wu, Tong

    2016-07-01

    This study for the first time reported the occurrence, distribution and concentrations of organophosphate esters (OPEs) in soils caused by plastic waste treatment, as well as their influence on OPE accumulation in wheat (Triticum aestivum L.). Eight OPEs were detected with the total concentrations of 38-1250 ng/g dry weight in the soils from the treatment sites, and tributoxyethyl phosphate and tri(2-chloroethyl) phosphate present as the dominant OPEs. There were similar distribution patterns of OPEs and significant correlations between the total OPE concentrations in the soils from the plastic waste treatment sites with those in the nearby farmlands (P < 0.005), indicating that plastic waste treatment caused the OPE contamination of farmland soils. The uptake and translocation of OPEs by wheat were determined, with OPEs of high hydrophobicity more easily taken up from soils and OPEs with low hydrophobicity more liable to be translocated acropetally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data

    USGS Publications Warehouse

    Mars, J.C.; Crowley, J.K.

    2003-01-01

    Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.

  20. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    PubMed

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Recovery of phosphorous from industrial waste water by oxidation and precipitation.

    PubMed

    Ylmén, Rikard; Gustafsson, Anna M K; Camerani-Pinzani, Caterina; Steenari, Britt-Marie

    2017-07-03

    This paper describes the development of a method for recovery of phosphorous from one of the waste waters at an Akzo Nobel chemical plant in Ale close to Göteborg. It was found that it is possible to transform the phosphorous in the waste water to a saleable product, i.e. a slowly dissolving fertilizer. The developed process includes oxidation of phosphite to phosphate with hydrogen peroxide and heat. The phosphate is then precipitated as crystalline struvite (ammonium magnesium phosphate) by the addition of magnesium chloride. The environmental impacts of the new method were compared with those of the current method using life cycle assessment. It was found that the methodology developed in this project was an improvement compared with the current practice regarding element resource depletion and eutrophication. However, the effect on global warming would be greater with the new method. There could however be several ways to decrease the global warming effect. Since most of the carbon dioxide emissions come from the production of magnesium chloride from carbonates, changing to utilization of a magnesium chloride from desalination of seawater or from recycling of PVC would decrease the carbon footprint significantly.

  2. Method and apparatus for ion sequestration and a nanostructured metal phosphate

    DOEpatents

    Mattigod, Shas V [Richland, WA; Fryxell, Glen E [Kennewic, WA; Li, Xiaohong [Richland, WA; Parker, Kent E [Kennewick, WA; Wellman, Dawn M [West Richland, WA

    2010-04-06

    A nanostructured substance, a process for sequestration of ionic waste, and an ion-sequestration apparatus are disclosed in the specification. The nanostructured substance can comprise a Lewis acid transition metal bound to a phosphate, wherein the phosphate comprises a primary structural component of the substance and the Lewis acid transition metal is a reducing agent. The nanostructured substance has a Brunner-Emmet-Teller (BET) surface area greater than or equal to approximately 100 m.sup.2/g, and a distribution coefficient for an analyte, K.sub.d, greater than or equal to approximately 5000 ml/g. The process can comprise contacting a fluid and a nanostructured metal phosphate. The apparatus can comprise a vessel and a nanostructured metal phosphate. The vessel defines a volume wherein a fluid contacts the nanostructured metal phosphate.

  3. Development of the Use of Alternative Cements for the Treatment of Intermediate Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, M.; Godfrey, I.H.

    2007-07-01

    This paper describes initial development studies undertaken to investigate the potential use of alternative, non ordinary Portland cement (OPC) based encapsulation matrices to treat historic legacy wastes within the UK's Intermediate Level Waste (ILW) inventory. Currently these wastes are encapsulated in composite OPC cement systems based on high replacement with blast furnace slag of pulverised fuel ash. However, the high alkalinity of these cements can lead to high corrosion rates with reactive metals found in some wastes releasing hydrogen and forming expansive corrosion products. This paper therefore details preliminary results from studies on two commercial products, calcium sulfo-aluminate (CSA) andmore » magnesium phosphate (MP) cement which react with a different hydration chemistry, and which may allow wastes containing these metals to be encapsulated with lower reactivity. The results indicate that grouts can be formulated from both cements over a range of water contents and reactant ratios that have significantly improved fluidity in comparison to typical OPC cements. All designed mixes set in 24 hours with zero bleed and the pH values in the plastic state were in the range 10-11 for CSA and 5-7 for MP cements. In addition, a marked reduction in aluminium corrosion rate has been observed in both types of cements compared to a composite OPC system. These results therefore provide encouragement that both cement types can provide a possible alternative to OPC in the immobilisation of reactive wastes, however further investigation is needed. (authors)« less

  4. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro.

    PubMed

    Syal, Ashu; Schiavi, Susan; Chakravarty, Sumana; Dwarakanath, Vangipuram; Quigley, Raymond; Baum, Michel

    2006-02-01

    Fibroblast growth factor-23 (FGF-23) has been implicated in the renal phosphate wasting in X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemic rickets. Recently, we demonstrated that Hyp mice have greater urinary PGE2 levels compared with C57/B6 mice and that indomethacin administration in vivo and in vitro ameliorates the phosphate transport defect in Hyp mice. To determine further whether altered prostaglandin metabolism plays a role in the renal phosphate transport defect in Hyp mice, we incubated renal proximal tubules with arachidonic acid. We find that PGE2 production was higher in Hyp mice than in C57/B6 mice. Incubation of C57/B6 mouse renal proximal tubules with FGF-23R176Q, an active mutant form of FGR23, increased tubular PGE2 production, an effect that was inhibited by 50 microM PD-98059 and 10 microM SB-203580, inhibitors of the MAP kinase pathway. C57/B6 mice injected with FGF-23R176Q had a approximately 10-fold increase in PGE2 excretion 24 h after intraperitoneal injection of FGF-23R176Q compared with vehicle-treated controls. Finally, we show that PGE2 inhibited both phosphate and volume absorption in mouse proximal convoluted tubules perfused in vitro and reduced brush-border membrane vesicle NaPi-2a protein abundance from renal cortex incubated in vitro with PGE2. In conclusion, FGF-23 increases urinary and renal tubular PGE2 production via the MAP kinase pathway and PGE2 inhibits proximal tubule phosphate transport.

  5. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro

    PubMed Central

    Syal, Ashu; Schiavi, Susan; Chakravarty, Sumana; Dwarakanath, Vangipuram; Quigley, Raymond; Baum, Michel

    2014-01-01

    Fibroblast growth factor-23 (FGF-23) has been implicated in the renal phosphate wasting in X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemic rickets. Recently, we demonstrated that Hyp mice have greater urinary PGE2 levels compared with C57/B6 mice and that indomethacin administration in vivo and in vitro ameliorates the phosphate transport defect in Hyp mice. To determine further whether altered prostaglandin metabolism plays a role in the renal phosphate transport defect in Hyp mice, we incubated renal proximal tubules with arachidonic acid. We find that PGE2 production was higher in Hyp mice than in C57/B6 mice. Incubation of C57/B6 mouse renal proximal tubules with FGF-23R176Q, an active mutant form of FGR23, increased tubular PGE2 production, an effect that was inhibited by 50 μM PD-98059 and 10 μM SB-203580, inhibitors of the MAP kinase pathway. C57/B6 mice injected with FGF-23R176Q had a ~10-fold increase in PGE2 excretion 24 h after intraperitoneal injection of FGF-23R176Q compared with vehicle-treated controls. Finally, we show that PGE2 inhibited both phosphate and volume absorption in mouse proximal convoluted tubules perfused in vitro and reduced brush-border membrane vesicle NaPi-2a protein abundance from renal cortex incubated in vitro with PGE2. In conclusion, FGF-23 increases urinary and renal tubular PGE2 production via the MAP kinase pathway and PGE2 inhibits proximal tubule phosphate transport. PMID:16144964

  6. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za

    2014-11-15

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung andmore » rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.« less

  7. A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water.

    PubMed

    Nandi, Nibedita; Baral, Abhishek; Basu, Kingshuk; Roy, Subhasish; Banerjee, Arindam

    2017-01-01

    A short peptide-based molecule has been found to form a strong hydrogel at phosphate buffer solution of pH 7.46. The hydrogel has been characterized thoroughly using various techniques including field emission scanning electron microscopy (FE-SEM), wide angle powder X-ray diffraction (PXRD), and rheological analysis. It has been observed from FE-SEM images that entangled nanofiber network is responsible for gelation. Rheological investigation demonstrates that the self-assembly of this synthetic dipeptide results in the formation of mechanically strong hydrogel with storage modulus (G') around 10 4 Pa. This gel has been used for removing both cationic and anionic toxic organic dyes (Brilliant Blue, Congo red, Malachite Green, Rhodamine B) and metal ions (Co 2+ and Ni 2+ ) from waste water. Moreover, only a small amount of the gelator is required (less than 1 mg/mL) for preparation of this superhydrogel and even this hydrogel can be reused three times for dye/metal ion absorption. This signifies the importance of the hydrogel towards waste water management. © 2016 Wiley Periodicals, Inc.

  8. Modelling aqueous corrosion of nuclear waste phosphate glass

    NASA Astrophysics Data System (ADS)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  9. Resource Recovery and Reuse: Recycled Magnetically Separable Iron-based Catalysts for Phosphate Recovery and Arsenic Removal

    EPA Science Inventory

    Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...

  10. Chemical elimination of the harmful properties of asbestos from military facilities.

    PubMed

    Pawełczyk, Adam; Božek, František; Grabas, Kazimierz; Chęcmanowski, Jacek

    2017-03-01

    This work presents research on the neutralization of asbestos banned from military use and its conversion to usable products. The studies showed that asbestos can be decomposed by the use of phosphoric acid. The process proved very effective when the phosphoric acid concentration was 30%, the temperature was 90°C and the reaction time 60min. Contrary to the common asbestos treatment method that consists of landfilling, the proposed process ensures elimination of the harmful properties of this waste material and its transformation into inert substances. The obtained products include calcium phosphate, magnesium phosphate and silica. Chemical, microscopic and X-ray analyses proved that the products are free of harmful fibers and can be, in particular, utilized for fertilizers production. The obtained results may contribute to development of an asbestos utilization technique that fits well into the European waste policy, regulated by the EU waste management law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Measurement of tributyl phosphate (TBP) in groundwater at a legacy radioactive waste site and its possible role in contaminant mobilisation.

    PubMed

    Rowling, Brett; Kinsela, Andrew S; Comarmond, M Josick; Hughes, Catherine E; Harrison, Jennifer J; Johansen, Mathew P; Payne, Timothy E

    2017-11-01

    At many legacy radioactive waste sites, organic compounds have been co-disposed, which may be a factor in mobilisation of radionuclides at these sites. Tri-butyl phosphate (TBP) is a component of waste streams from the nuclear fuel cycle, where it has been used in separating actinides during processing of nuclear fuels. Analyses of ground waters from the Little Forest Legacy Site (LFLS) in eastern Australia were undertaken using solid-phase extraction (SPE) followed by gas chromatographic mass spectrometry (GCMS). The results indicate the presence of TBP several decades after waste disposal, with TBP only being detected in the immediate vicinity of the main disposal area. TBP is generally considered to degrade in the environment relatively rapidly. Therefore, it is likely that its presence is due to relatively recent releases of TBP, possibly stemming from leakage due to container degradation. The ongoing presence and solubility of TBP has the potential to provide a mechanism for nuclide mobilisation, with implications for long term management of LFLS and similar legacy waste sites. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Modelling phosphorus uptake in microalgae.

    PubMed

    Singh, Dipali; Nedbal, Ladislav; Ebenhöh, Oliver

    2018-04-17

    Phosphorus (P) is an essential non-renewable nutrient that frequently limits plant growth. It is the foundation of modern agriculture and, to a large extent, demand for P is met from phosphate rock deposits which are limited and becoming increasingly scarce. Adding an extra stroke to this already desolate picture is the fact that a high percentage of P, through agricultural runoff and waste, makes its way into rivers and oceans leading to eutrophication and collapse of ecosystems. Therefore, there is a critical need to practise P recovery from waste and establish a circular economy applicable to P resources. The potential of microalgae to uptake large quantities of P and use of this P enriched algal biomass as biofertiliser has been regarded as a promising way to redirect P from wastewater to the field. This also makes the study of molecular mechanisms underlying P uptake and storage in microalgae of great interest. In the present paper, we review phosphate models, which express the growth rate as a function of intra- and extracellular phosphorus content for better understanding of phosphate uptake and dynamics of phosphate pools. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Kidney and Phosphate Metabolism

    PubMed Central

    2008-01-01

    The serum phosphorus level is maintained through a complex interplay between intestinal absorption, exchange intracellular and bone storage pools, and renal tubular reabsorption. The kidney plays a major role in regulation of phosphorus homeostasis by renal tubular reabsorption. Type IIa and type IIc Na+/Pi transporters are important renal Na+-dependent inorganic phosphate (Pi) transporters, which are expressed in the brush border membrane of proximal tubular cells. Both are regulated by dietary Pi intake, vitamin D, fibroblast growth factor 23 (FGF23) and parathyroid hormone. The expression of type IIa Na+/Pi transporter result from hypophosphatemia quickly. However, type IIc appears to act more slowly. Physiological and pathophysiological alteration in renal Pi reabsorption are related to altered brush border membrane expression/content of the type II Na+/Pi cotransporter. Many studies of genetic and acquired renal phosphate wasting disorders have led to the identification of novel genes. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of genetic and acquired renal phosphate wasting disorders and studies are underway to define their mechanism on renal Pi regulation. In recent studies, sodium-hydrogen exchanger regulatory factor 1 (NHERF1) is reported as another new regulator for Pi reabsorption mechanism. PMID:24459526

  14. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  15. Backfill composition for secondary barriers in nuclear waste repositories

    DOEpatents

    Beall, Gary W.; Allard, Bert M.

    1982-01-01

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50-70% by weight of quartz, 10-30% by weight of montmorillonite, 1-10% by weight of phosphate mineral, 1-10% by weight of ferrous mineral, 1-10% by weight of sulfate mineral and 1-10% by weight of attapulgite.

  16. Radiation Stability of Benzyl Tributyl Ammonium Chloride towards Technetium-99 Extraction - 13016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, Patricia; Horkley, Jared; Campbell, Keri

    2013-07-01

    A closed nuclear fuel cycle combining new separation technologies along with generation III and generation IV reactors is a promising way to achieve a sustainable energy supply. But it is important to keep in mind that future recycling processes of used nuclear fuel (UNF) must minimize wastes, improve partitioning processes, and integrate waste considerations into processes. New separation processes are being developed worldwide to complement the actual industrialized PUREX process which selectively separates U(VI) and Pu(IV) from the raffinate. As an example, the UREX process has been developed in the United States to co-extract hexavalent uranium (U) and hepta-valent technetiummore » (Tc) by tri-n-butyl phosphate (TBP). Tc-99 is recognized to be one of the most abundant, long-lived radio-toxic isotopes in UNF (half-life, t{sub 1/2} = 2.13 x 10{sup 5} years), and as such, is targeted in UNF separation strategies for isolation and encapsulation in solid waste-forms for final disposal in a nuclear waste repository. Immobilization of Tc-99 by a durable solid waste-form is a challenge, and its fate in new advanced technology processes is of importance. It is essential to be able to quantify and locate 1) its occurrence in any new developed flowsheets, 2) its chemical form in the individual phases of a process, 3) its potential quantitative transfer in any waste streams, and consequently, 4) its quantitative separation for either potential transmutation to Ru-100 or isolation and encapsulation in solid waste-forms for ultimate disposal. In addition, as a result of an U(VI)-Tc(VII) co-extraction in a UREX-based process, Tc(VII) could be found in low level waste (LLW) streams. There is a need for the development of new extraction systems that would selectively extract Tc-99 from LLW streams and concentrate it for feed into high level waste (HLW) for either Tc-99 immobilization in metallic waste-forms (Tc-Zr alloys), and/or borosilicate-based waste glass. Studies have been launched to investigate the suitability of new macro-compounds such as crown-ethers, aza-crown ethers, quaternary ammonium salts, and resorcin-arenes for the selective extraction of Tc-99 from nitric acid solutions. The selectivity of the ligand is important in evaluating potential separation processes and also the radiation stability of the molecule is essential for minimization of waste and radiolysis products. In this paper, we are reporting the extraction of TcO{sub 4}{sup -} by benzyl tributyl ammonium chloride (BTBA). Experimental efforts were focused on determining the best extraction conditions by varying the ligand's matrix conditions and concentration, as well as varying the organic phase composition (i.e. diluent variation). Furthermore, the ligand has been investigated for radiation stability. The ?-irradiation was performed on the neat organic phases containing the ligand at different absorbed doses to a maximum of 200 kGy using an external Co-60 source. Post-irradiation solvent extraction measurements will be discussed. (authors)« less

  17. Ferric carboxymaltose-induced hypophosphataemia after kidney transplantation.

    PubMed

    Sari, V; Atiqi, R; Hoorn, E J; Heijboer, A C; van Gelder, T; Hesselink, D A

    2017-03-01

    Ferric carboxymaltose (FCM) can induce hypophosphataemia in the general population and patients with chronic kidney disease (CKD). Less is known about the effect of FCM in the kidney transplant population. It has been suggested that fibroblast growth factor 23 (FGF-23)-mediated renal phosphate wasting may be the most likely cause of this phenomenon. In the current study, the effects of FCM on phosphate metabolism were studied in a cohort of kidney transplant recipients. Two index patients receiving FCM are described. Additionally, data of 23 kidney transplant recipients who received a single dose of FCM intravenously between 1 January 2014 and 1 July 2015 were collected. Changes in the serum phosphate concentration were analysed in all subjects. Change in plasma FGF-23 concentrations was analysed in the index patients. In the two index patients an increase in FGF-23 and a decrease in phosphate concentrations were observed after FCM administration. In the 23 kidney transplant patients, median estimated glomerular filtration rate was 42 ml/min/1.73 m2 ( range 10-90 ml/ min/1.73 m2). Mean phosphate concentration before and after FCM administration was 1.05 ±; 0.35 mmol/l and 0.78 ±; 0.41 mmol/l, respectively (average decrease of 0.27 mmol/l; p = 0.003). In the total population, 13 (56.5%) patients showed a transient decline in phosphate concentration after FCM administration. Hypophosphataemia following FCM administration was severe (i.e. < 0.5 mmol/l) in 8 (34.8%) patients. Administration of a single dose of FCM may induce transient and mostly asymptomatic renal phosphate wasting and hypophosphataemia in kidney transplant recipients. This appears to be explained by an increase in FGF-23 concentration.

  18. Biochar can be used to recapture essential nutrients from dairy wastewater and improve soil quality

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-04-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available waste biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20 to 43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 t of ammonium-N and 920-4600 t of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of waste biomass.

  19. Production and characterization of carbonized sorbent products optimized for anionic contaminants

    NASA Astrophysics Data System (ADS)

    Viglasova, Eva; Fristak, Vladimir; Galambos, Michal; Hood-Nowotny, Rebecca; Soja, Gerhard

    2017-04-01

    Processing conditions, production methods and feedstock characteristics have been shown to affect the final sorption properties of biochar-based sorbents that have been produced in pyrolysis reactors. The content of O-containing carboxyl, phenolic and hydroxyl functional groups on the biochar surfaces plays a crucial role in sorption chemistry of hazardous materials. The sorption process can be affected by the presence of non-carbonized fractions in biochar matter as well. All these characteristics indicate that biochar shows good potential as a new tool in removal and separation technologies of various pollutants from waste water or contaminated soils. The sorption potential of wood-based biochars for cationic forms of heavy metals has been studied intensively and has already led to successful pilot applications in the field. However, anionic compounds (e.g. phosphate, nitrate, sulphate, As-, Cr-compounds) do not sorb well to unmodified biochar and need specific surface modification of biochar. Based on this fact, we try to obtain data about the sorptive separation of anionic forms of various contaminants from model aqueous solutions by different types of biochar-derived sorbents, or mineral-enriched biochar-derived sorbents. An important part of this research is the assesment of the effects of varying process parameters during biomass carbonisation, the role of biomass feedstock and pre-and/or post-treatment of the biochars onto sorption processes. We specify the most appropriate application strategies with biochar for remediation purposes of waste water or contaminated waters with elevated toxic metal concentrations that might compromise the quality of surface waters. The main aim of research is the preparation of modified biochar sorbent, the characterization of its surface and the investigation about new possibilities of modified biochar sorbent applications for sorption of various contaminants, mainly their anionic forms (e.g. phosphates, nitrates, arsenates). Modification of bamboo-based biochar with clay minerals, the preparation of its composites, could increase the surface area of bamboo-based biochar from 3 to 5 times. Other ways of modification e.g. by using FeCl3 ṡ 6H2O caused a significant increase of sorption ability for anionic forms

  20. Effect of heavy metals and water content on the strength of magnesium phosphate cements.

    PubMed

    Buj, Irene; Torras, Josep; Casellas, Daniel; Rovira, Miquel; de Pablo, Joan

    2009-10-15

    In this paper the mechanical properties of magnesium potassium phosphate cements used for the Stabilization/Solidification (S/S) of galvanic wastes were investigated. Surrogate wastes (metal nitrate dissolutions) were employed containing Cd, Cr(III), Cu, Ni, Pb or Zn at a concentration of 25 g dm(-3) and different water-to-solid (W/S) ratios (0.3, 0.4, 0.5 and 0.6 dm(3)kg(-1)) have been employed. Cements were prepared by mixing hard burned magnesia of about 70% purity with potassium dihydrogen phosphate. Compressive strength and tensile strength of specimens were determined. In addition the volume of permeable voids was measured. It was found that when comparing pastes that the volume of permeable voids increases and mechanical strength decreases with the increase of water-to-solid ratio (W/S). Nevertheless pastes with the same material proportions containing different metals show different mechanical strength values. The hydration products were analyzed by XRD. With the increase of water content not previously reported hydration compound was detected: bobierrite.

  1. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  2. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Guo, Xingming; Wu, Feng

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbentmore » from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.« less

  3. Phosphate barrier on pore-filled cation-exchange membrane for blocking complexing ions in presence of non-complexing ions

    NASA Astrophysics Data System (ADS)

    Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.

    2018-06-01

    In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.

  4. Localization of a renal sodium-phosphate cotransporter gene to human chromosome 5q35

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, C.H.; Tenenhouse, H.S.; Tihy, F.

    1994-01-01

    Several Mendelian disorders of renal phosphate reabsorption, associated with hypophosphatemia and bone disease, have been described. These include X-linked hypophosphatemia (XLH), hereditary hypophosphatemic rickets with hypercalciuria, hypophosphatemic bone disease, and autosomal dominant and autosomal recessive hypophosphatemic rickets. The underlying mechanisms for renal phosphate wasting in these disorders remain unknown. The proximal tubule is the major site of renal phosphate reabsorption. Thus, mutations in genes that participate in the transepithelial transport of phosphate in this segment of the nephron may be responsible for these disorders. Recently, a cDNA encoding a renal proximal tubular, brush-border membrane Na[sup +]-phosphate cotransporter (NaP[sub i]-3) wasmore » cloned from human kidney cortex. As a first step in establishing whether mutations in the NaP[sub i]-3 gene are the cause of inherited disorders in phosphate homeostasis, the authors sought to determine its chromosomal localization. 9 refs., 1 fig.« less

  5. Characteristics of solidified products containing radioactive molten salt waste.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  6. Recovery and safer disposal of phosphate coating sludge by solidification/stabilization.

    PubMed

    Ucaroglu, Selnur; Talinli, Ilhan

    2012-08-30

    Solidification/stabilization (S/S) of automotive phosphate coating sludge (PS) containing potentially toxic heavy metals was studied. The hazardous characteristics of this waste were assessed according to both Turkish and U.S. Environmental Protection Agency (EPA) regulations for hazardous solid waste. Unconfined compressive strength (UCS) and leaching behavior tests of the solidified/stabilized product were performed. Solidification studies were conducted using Portland cement (PC) as the binder. UCS was found to decrease with increasing waste content. It was found that recovery of the waste for construction applications was possible when the waste content of the mortar was 20% and below, but solidification for safe disposal was achieved only when higher waste concentrations were added. Cu, Cr, Ni, Pb and Zn were found to be significantly immobilized by the solidification/stabilization process. Ni and Zn, which were present at particularly high concentrations (2.281 and 135.318 g/kg respectively) in the PS, had highest the retention levels (94.87% and 98.74%, respectively) in the PC mortars. The organic contaminants and heavy metals present in PS were determined to be immobilized by the S/S process in accordance with the BS 6920 standard. Thus, the potential for hazardous PS waste to adversely impact human health and the environment was effectively eliminated by the S/S procedure. We conclude that S/S-treated PS is safe for disposal in landfills, while recovery of S/S-treated PS constituents remains possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    NASA Astrophysics Data System (ADS)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that biological activity and Pb mobilization are intimately connected: in humid regions with high biological activity in soil, Pb might be precipitated rapidly due to biologically-released phosphate, whereas Pb will be released to the environment from ore deposits or mine dumps much more easily in arid regions with low biological activity, because pyromorphite cannot form due to limited supply of phosphorus. Phosphate from magmatic, metamorphic or sedimentary rocks: The most important phosphate-bearing mineral in such rocks is apatite (Ca5[(PO4)3(F,Cl,OH)]). In magmatic and metamorphic rocks it generally occurs as fluorapatite (Piccoli and Candela, 2002; Filippelli, 2008), whereas sedimentary rocks may also contain considerable amounts of carbonate-fluorapatite. Phosphorites are present in the geological record since the Lower Proterozoic (Cook and McElhinny, 1979; Shemesh et al., 1983). Alteration with low-pH fluids can dissolve apatite and thereby release geochemical phosphate (Filippelli, 2008). Low pH values may be attained by dissolution of atmospheric CO2 or by reaction with sulfides present in the rocks or in adjacent ore deposits. Phosphate of organic origin, such as from plants, animals or microorganisms: Phosphorus is required in most biological systems, as it is an essential element in major organic molecules such as adenosine triphosphate in the energy cycle, or in phospholipids, which form cell walls (Bucher, 2007; Filippelli, 2008). Organisms take up phosphorus as dissolved inorganic phosphate and cycle it through metabolic processes (intracellular enzyme activity). Once entering the soil, the organic material is decomposed by extracellular enzyme activity (hydrolysis of ester bonds) and phosphate is being released (Bünemann et al., 2011). Phosphate of anthropogenic origin: Since phosphate is a limiting factor in organism growth, it is an important ingredient of fertilizers in the agricultural industry. Also, phosphate can be found as ingredients in detergents, toothpaste and as a release of waste water treatment plants (Young et al., 2009). Anthropogenic effects will not be discussed further in the following. On this basis, we consider three different cases of pyromorphite formation as illustrated on the conceptual scheme of Fig. 1. Case 1: Pyromorphite grown recently (within the last hundreds of years) on rock surfaces in former mines. Both, phosphate released geochemically from igneous rocks and phosphate released biologically during leaching from litter/lysis of microbial cells and soil organic matter decomposition are possible sources. Case 2: Pyromorphite formation on mine dumps, below vegetation (recent, during tens to hundreds of years). Based on the specific setting of these samples investigated here (they were found exclusively below a large fern; see more details in the section on sample description), biologically-mediated P release provides the phosphate for pyromorphite growth. Case 3: Pyromorphite growth in the oxidized zones of ore bodies prior to human interference. Most samples of our study belong to this case.Phosphorus generally forms very strong covalent bonds (Huminicki and Hawthorne, 2002) and there is only negligible exchange of oxygen isotopes between phosphate and ambient water under most near-surface conditions without biological activity (Winter et al., 1940; Longinelli, 1965). The only important exchange of oxygen isotopes between phosphate and ambient water involves biological activity and the oxygen isotope composition of phosphate (δ18OP) may be modified by different enzymatic/cellular processes. Once phosphate is taken up by organisms, intracellular pyrophosphatase mediates internal P cycling. This is associated with a temperature-dependent equilibrium isotope fractionation due to the reversible exchange of O atoms between the phosphate molecule and cell water. As a result the δ18OP is equilibrated with the ambient water, and the equilibrium temperature can be calculated following the revised empirical equation from Longinelli and Nuti (1973) presented by Puceat et al. (2010): T(°C)=118.7-4.22[(δ18OP+(22.6-δ18ONBS120c))-δ18OW] where T is the temperature of the ambient water, δ18OP is the oxygen isotope composition of the phosphate at equilibrium conditions, δ18ONBS120c is the oxygen isotope composition of reference material NBS120c according to Vennemann et al. (2002) and δ18OW is the oxygen isotope composition of the ambient water. Knowledge of the δ18OP of ambient water and its temperature renders it possible to calculate a theoretical equilibrium value for δ18OP. If phosphate is again released from organisms into the soil, it will reflect the δ18OP of the cell-internal P cycling. In addition, extracellular enzymes are released in soil if the demand for P requires the hydrolysis of organic P in soil (McGill and Cole, 1981). Extracellular enzymes also transfer O atoms from water to phosphate and thus, change δ18OP. The associated isotopic fractionation factors vary between -10‰ (enzyme: 5‧-nucleotidase) and -30‰ (enzyme: alkaline phosphatase; Liang and Blake, 2006, 2009). All recent publications on δ18OP of phosphate in the readily available P fraction in soil (resin P) showed δ18OP values in the range calculated for isotopic equilibrium fractionation irrespective of environmental conditions (parent material, climate, biome). At most 20% down to 0% of the measured δ18OP fell outside the calculated isotopic equilibrium range (Angert et al., 2011, 2012; Tamburini et al., 2012). We therefore infer a dominant role of intracellular enzyme activity for δ18OP values in resin P in soil.Theoretical calculations by Lecuyer et al. (1999) imply that oxygen isotope exchange between phosphate and water can also occur in the absence of biological activity. An extrapolation of their equations to temperatures of 10 °C shows, however, that it takes more than 6000 years to exchange 10% of the phosphate oxygen (Colman et al., 2005). Traditionally, the oxygen isotope composition of phosphate has been used as a tool for determining paleotemperatures (e.g., Longinelli, 1984), but recent studies suggested to test its suitability for tracing phosphate sources in aquatic systems (Gruau et al., 2005; Elsbury et al., 2009; Young et al., 2009). Most of these studies deal with short-term ecological cycles and therefore the inorganic exchange of oxygen is negligible. However, this effect has to be considered for processes that happen in geological timescales.Due to the low phosphate concentrations in natural waters (Blake et al., 2005) and the low solubility product of pyromorphite, it is reasonable to assume almost all phosphate to precipitate as pyromorphite without any fractionation. Accordingly, the δ18OP of pyromorphite reflects the oxygen isotope composition of the dissolved phosphate in the water from which it precipitated and records the source, if this phosphate was not modified during fluid transport.Different phosphate reservoirs differ in their oxygen-isotope composition and with more and more data available it is possible to discriminate between different sources. Data for phosphates in aquatic systems are provided by Young et al. (2009): Phosphates of anthropogenic origin (fertilizers and the corresponding processing stages, detergents and toothpaste) show δ18OP values between +13.3‰ and +22.3‰, for phosphates from organic sources (vegetation leachate and animal waste) values between +14.2‰ and +23.1‰ are reported and a range between +8.4‰ and +14.2‰ is covered by phosphates of waste water treatment plants. For terrestrial ecosystems, Tamburini et al. (2012) reported δ18OP values between +4.5‰ and +31.4‰ with most data falling in the range of +12.4‰ to +31.4‰ for phosphate in plants (N = 11). Microbial phosphate in soil covered a range of +11‰ to +19‰. Resin-extractable P in soil as the readily available P fraction in soil from which P-containing minerals would precipitate, showed a range of 14.5-20.0‰ (Angert et al., 2011, 2012; Weiner et al., 2011; Tamburini et al., 2012). Additionally, Tamburini et al., 2012 reported values for apatite, most likely from the metamorphosed granitic bedrock, to be about +7‰. This is consistent with theoretical considerations by Shemesh et al. (1983) and with data from a gabbro (+4.1‰) and a tonalite (+6.7‰) reported by Taylor and Epstein (1962). Mizota et al. (1992) analyzed δ18OP of apatites from carbonatites, volcanic ashes and hydrothermal vugs covering a range of +0.2 to +12.2‰ (N = 10), whereas phosphate from phosphorites have higher values of up to +20‰ (e.g., Shemesh et al. (1983).This study investigates the oxygen isotope composition of phosphate in pyromorphite and in apatite from crystalline rocks. To evaluate possible phosphate sources, the results will be checked for isotopic equilibrium with different ambient waters and possible phosphate sources will be discussed.

  8. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia

    PubMed Central

    Schlingmann, Karl P.; Ruminska, Justyna; Kaufmann, Martin; Dursun, Ismail; Patti, Monica; Kranz, Birgitta; Pronicka, Ewa; Ciara, Elzbieta; Akcay, Teoman; Bulus, Derya; Cornelissen, Elisabeth A.M.; Gawlik, Aneta; Sikora, Przemysław; Patzer, Ludwig; Galiano, Matthias; Boyadzhiev, Veselin; Dumic, Miroslav; Vivante, Asaf; Kleta, Robert; Dekel, Benjamin; Levtchenko, Elena; Bindels, René J.; Rust, Stephan; Forster, Ian C.; Hernando, Nati; Jones, Glenville; Wagner, Carsten A.

    2016-01-01

    Idiopathic infantile hypercalcemia (IIH) is characterized by severe hypercalcemia with failure to thrive, vomiting, dehydration, and nephrocalcinosis. Recently, mutations in the vitamin D catabolizing enzyme 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) were described that lead to increased sensitivity to vitamin D due to accumulation of the active metabolite 1,25-(OH)2D3. In a subgroup of patients who presented in early infancy with renal phosphate wasting and symptomatic hypercalcemia, mutations in CYP24A1 were excluded. Four patients from families with parental consanguinity were subjected to homozygosity mapping that identified a second IIH gene locus on chromosome 5q35 with a maximum logarithm of odds (LOD) score of 6.79. The sequence analysis of the most promising candidate gene, SLC34A1 encoding renal sodium-phosphate cotransporter 2A (NaPi-IIa), revealed autosomal-recessive mutations in the four index cases and in 12 patients with sporadic IIH. Functional studies of mutant NaPi-IIa in Xenopus oocytes and opossum kidney (OK) cells demonstrated disturbed trafficking to the plasma membrane and loss of phosphate transport activity. Analysis of calcium and phosphate metabolism in Slc34a1-knockout mice highlighted the effect of phosphate depletion and fibroblast growth factor-23 suppression on the development of the IIH phenotype. The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia. Clinical and laboratory findings persist despite cessation of vitamin D prophylaxis but rapidly respond to phosphate supplementation. Therefore, early differentiation between SLC34A1 (NaPi-IIa) and CYP24A1 (24-hydroxylase) defects appears critical for targeted therapy in patients with IIH. PMID:26047794

  9. The oxygen isotopic composition of phosphate in river water and its potential sources in the Upper River Taw catchment, UK.

    PubMed

    Granger, Steven J; Heaton, Tim H E; Pfahler, Verena; Blackwell, Martin S A; Yuan, Huimin; Collins, Adrian L

    2017-01-01

    The need to reduce both point and diffuse phosphorus pollution to aquatic ecosystems is widely recognised and in order to achieve this, identification of the different pollutant sources is essential. Recently, a stable isotope approach using oxygen isotopes within phosphate (δ 18 O PO4 ) has been used in phosphorus source tracing studies. This approach was applied in a one-off survey in September 2013 to the River Taw catchment in south-west England where elevated levels of phosphate have been reported. River water δ 18 O PO4 along the main channel varied little, ranging from +17.1 to +18.8‰. This was no >0.3‰ different to that of the isotopic equilibrium with water (Eδ 18 O PO4 ). The δ 18 O PO4 in the tributaries was more variable (+17.1 to +18.8‰), but only deviated from Eδ 18 O PO4 by between 0.4 and 0.9‰. Several potential phosphate sources within the catchment were sampled and most had a narrow range of δ 18 O PO4 values similar to that of river Eδ 18 O PO4 . Discharge from two waste water treatment plants had different and distinct δ 18 O PO4 from one another ranging between +16.4 and +19.6‰ and similar values to that of a dairy factory final effluent (+16.5 to +17.8‰), mains tap water (+17.8 to +18.4‰), and that of the phosphate extracted from river channel bed sediment (+16.7 to +17.6‰). Inorganic fertilizers had a wide range of values (+13.3 to +25.9‰) while stored animal wastes were consistently lower (+12.0 to +15.0‰) than most other sources and Eδ 18 O PO4 . The distinct signals from the waste water treatment plants were lost within the river over a short distance suggesting that rapid microbial cycling of phosphate was occurring, because microbial cycling shifts the isotopic signal towards Eδ 18 O PO4 . This study has added to the global inventory of phosphate source δ 18 O PO4 values, but also demonstrated the limitations of this approach to identifying phosphate sources, especially at times when microbial cycling is high. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  10. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    PubMed

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  11. Molecular Regulation of Phosphate Metabolism by Fibroblast Growth Factor-23–Klotho System

    PubMed Central

    Cheng, Chung-Yi; Kuro-o, Makoto; Razzaque, Mohammed S.

    2011-01-01

    Phosphorus is an essential nutrient and is routinely assimilated through consumption of food. The body’s need of phosphate is usually fulfilled by intestinal absorption of this element from the consumed food, whereas its serum level is tightly regulated by renal excretion or reabsorption. Sodium-dependent phosphate transporters, located in the luminal side of the proximal tubular epithelial cells, have a molecular control on renal phosphate excretion and reabsorption. The systemic regulation of phosphate metabolism is a complex multiorgan process, and the identification of fibroblast growth factor-23 (FGF23)–Klotho system as a potent phosphatonin has provided new mechanistic insights into the homeostatic control of phosphate. Hypophosphatemia as a result of an increase in urinary phosphate wasting after activation of the FGF23–Klotho system is a common phenomenon, observed in both animal and human studies, whereas suppression of the FGF23–Klotho system leads to the development of hyperphosphatemia. This article will briefly summarize how delicate interactions of the FGF23–Klotho system can regulate systemic phosphate homeostasis. PMID:21406293

  12. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?

    PubMed

    Zwetsloot, Marie J; Lehmann, Johannes; Solomon, Dawit

    2015-01-01

    Pyrolysis of slaughterhouse waste could promote more sustainable phosphorus (P) usage through the development of alternative P fertilizers. This study investigated how pyrolysis temperature (220, 350, 550 and 750 °C), rendering before pyrolysis, and wood or corn biomass additions affect P chemistry in bone char, plant availability, and its potential as P fertilizer. Linear combination fitting of synchrotron-based X-ray absorption near edge structure spectra demonstrated that higher pyrolysis temperatures decreased the fit with organic P references, but increased the fit with a hydroxyapatite (HA) reference, used as an indicator of high calcium phosphate (CaP) crystallinity. The fit to the HA reference increased from 0% to 69% in bone with meat residue and from 20% to 95% in rendered bone. Biomass additions to the bone with meat residue reduced the fit to the HA reference by 83% for wood and 95% for corn, and additions to rendered bone by 37% for wood. No detectable aromatic P forms were generated by pyrolysis. High CaP crystallinity was correlated with low water-extractable P, but high formic acid-extractable P indicative of high plant availability. Bone char supplied available P which was only 24% lower than Triple Superphosphate fertilizer and two- to five-fold higher than rock phosphate. Pyrolysis temperature and biomass additions can be used to design P fertilizer characteristics of bone char through changing CaP crystallinity that optimize P availability to plants. © 2014 Society of Chemical Industry.

  13. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants.

  14. Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate.

    PubMed

    Morillo, Jose Antonio; Aguilera, Margarita; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2006-09-01

    The present study investigated the use of two-phase olive mill waste (TPOMW) as substrate for the production of exopolysaccharide (EPS) by the endospore-forming bacilli Paenibacillus jamilae. This microorganism was able to grow and produce EPS in aqueous extracts of TPOMW as a unique source of carbon. The effects of substrate concentration and the addition of inorganic nutrients were investigated. Maximal polymer yield in 100-ml batch-culture experiments (2 g l(-1)) was obtained in cultures prepared with an aqueous extract of 20% TPOMW (w/v). An inhibitory effect was observed on growth and EPS production when TPOMW concentration was increased. Nutrient supplementation (nitrate, phosphate, and other inorganic nutrients) did not increase yield. Finally, an adsorption experiment of Pb (II), Cd (II), Cu (II), Zn (II), Co (II), and Ni (II) by EPS is reported. Lead was preferentially complexed by the polymer, with a maximal uptake of 230 mg/g EPS.

  15. Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming

    Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less

  16. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment

    PubMed Central

    2018-01-01

    Electrolysis of toilet wastewater with TiO2-coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm–2 (∼3.4 V), with greater than 20 m2 m–3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer. PMID:29607266

  17. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment.

    PubMed

    Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R

    2018-03-05

    Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.

  18. Characterization of submicrometer aqueous iron(III) colloids formed in the presence of phosphate by sedimentation field flow fractionation with multiangle laser light scattering detection.

    PubMed

    Magnuson, M L; Lytle, D A; Frietch, C M; Kelty, C A

    2001-10-15

    Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in water pipes. In this study, sedimentation field flow fractionation (SdFFF) is coupled on-line with multiangle laser light scattering (MALLS) detection to characterize these iron colloids formed following the oxygenation of iron(II) in the presence of phosphate. The SdFFF-MALLS data were used to calculate the hydrodynamic diameter, density, and particle size distribution of these submicrometer colloids. The system was first verified with standard polystyrene beads, and the results compared well with certified values. Iron(III) colloids were formed in the presence of phosphate at a variety of pH conditions. The colloids' hydrodynamic diameters, which ranged from 218 +/- 3 (pH 7) to 208 +/- 4 nm (pH 10), did not change significantly within the 95% confidence limit. Colloid density did increase significantly from 1.12 +/- 0.01 (pH 7) to 1.36 +/- 0.02 g/mL (pH 10). Iron(III) colloids formed at pH 10 in the presence of phosphate were compared to iron(III) colloids formed without phosphate and also to iron(III) colloids formed with silicate. The iron(III) colloids formed without phosphate or silicate were 0.46 g/mL more dense than any other colloids and were >6 times more narrowly distributed than the other colloids. The data suggest competitive incorporation of respective anions into the colloid during formation.

  19. Optimalisation of magnesium ammonium phosphate precipitation and its applicability to the removal of ammonium.

    PubMed

    Demeestere, K; Smet, E; Van Langenhove, H; Galbacs, Z

    2001-12-01

    Among the physico-chemical abatement technologies, mainly acid scrubbers have been used to control NH3-emission. The disadvantage of this technique is that it yields waste water, highly concentrated in ammonia. In this report, the applicability of the magnesium ammonium phosphate (MAP) process to regenerate the liquid phase, produced by scrubbing NH3-loaded waste gases, was investigated. In the MAP process, ammonium is precipitated as magnesium ammonium phosphate, which can be used as a slow release fertilizer. The influence of a number of parameters, e.g. pH, kinetics, molar ratio NH(+)4/Mg2+/PO(3-)4 on the efficiency of the formation of MAP and on the ammonium removal efficiency was investigated. In this way, optimal conditions were determined for the precipitation reaction. Next to this, interference caused by other precipitation reactions was studied. At aqueous NH(+)4-concentrations of about 600 mg l(-1), ammonium removal efficiencies of 97% could be obtained at a molar ratio NH(+)4/Mg2+/PO(3-)4 of 1/1.5/1.5. To obtain this result, the pH was continuously adjusted to a value of 9 during the reaction. According to this study, it is obvious that the MAP-precipitation technology offers opportunities for ammonium removal from scrubbing liquids. The practical applicability of the MAP-process in waste gas treatment systems, however, should be the subject for further investigations.

  20. Backfill composition for secondary barriers in nuclear waste repositories

    DOEpatents

    Beall, G.W.; Allard, B.M.

    1980-05-30

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50 to 70% by weight of quartz, 10 to 30% by weight of montmorillonite, 1 to 10% by weight of phosphate mineral, 1 to 10% by weight of ferrous mineral, 1 to 10% by weight of sulfate mineral and 1 to 10% by weight of attapulgite.

  1. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    PubMed

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. 40 CFR 62.1501 - Identification of sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Metals, Acid Gases, Organic Compounds and Nitrogen Oxides from Existing Large and Small Municipal Waste... amended at 70 FR 9229, Feb. 25, 2005] Fluoride Emissions From Phosphate Fertilizer Plants ...

  3. 40 CFR 62.1501 - Identification of sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Metals, Acid Gases, Organic Compounds and Nitrogen Oxides from Existing Large and Small Municipal Waste... amended at 70 FR 9229, Feb. 25, 2005] Fluoride Emissions From Phosphate Fertilizer Plants ...

  4. 40 CFR 62.1501 - Identification of sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Metals, Acid Gases, Organic Compounds and Nitrogen Oxides from Existing Large and Small Municipal Waste... amended at 70 FR 9229, Feb. 25, 2005] Fluoride Emissions From Phosphate Fertilizer Plants ...

  5. 40 CFR 62.1501 - Identification of sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Metals, Acid Gases, Organic Compounds and Nitrogen Oxides from Existing Large and Small Municipal Waste... amended at 70 FR 9229, Feb. 25, 2005] Fluoride Emissions From Phosphate Fertilizer Plants ...

  6. 40 CFR 62.1501 - Identification of sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Metals, Acid Gases, Organic Compounds and Nitrogen Oxides from Existing Large and Small Municipal Waste... amended at 70 FR 9229, Feb. 25, 2005] Fluoride Emissions From Phosphate Fertilizer Plants ...

  7. Discrimination of fluoride and phosphate contamination in central Florida for analyses of environmental effects

    NASA Technical Reports Server (NTRS)

    Coker, A. E.; Marshall, R.; Thomson, F.

    1972-01-01

    A study was made of the spatial registration of fluoride and phosphate pollution parameters in central Florida by utilizing remote sensing techniques. Multispectral remote sensing data were collected over the area and processed to produce multispectral recognition maps. These processed data were used to map land areas and waters containing concentrations of fluoride and phosphate. Maps showing distribution of affected and unaffected vegetation were produced. In addition, the multispectral data were processed by single band radiometric slicing to produce radiometric maps used to delineate areas of high ultraviolet radiance, which indicates high fluoride concentrations. The multispectral parameter maps and radiometric maps in combination showed distinctive patterns, which are correlated with areas known to be affected by fluoride and phosphate contamination. These remote sensing techniques have the potential for regional use to assess the environmental impact of fluoride and phosphate wastes in central Florida.

  8. Natural radionuclide concentrations in processed materials from Thai mineral industries.

    PubMed

    Chanyotha, S; Kranrod, C; Chankow, N; Kritsananuwat, R; Sriploy, P; Pangza, K

    2012-11-01

    The naturally occurring radioactive materials (NORMs) distributed in products, by-products and waste produced from Thai mineral industries were investigated. Samples were analysed for radioactivity concentrations of two principal NORM isotopes: (226)Ra and (228)Ra. The enrichment of NORM was found to occur during the treatment process of some minerals. The highest activity of (226)Ra (7 × 10(7) Bq kg(-1)) was in the scale from tantalum processing. The radium concentration in the discarded by-product material from metal ore dressing was also enriched by 3-10 times. Phosphogypsum, a waste produced from the production of phosphate fertilisers, contained 700 times the level of (226)Ra concentration found in phosphate ore. Hence, these residues were also sources of exposure to workers and the public, which needed to be controlled.

  9. Glasses of three alkyl phosphates show a range of kinetic stabilities when prepared by physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Beasley, M. S.; Tylinski, M.; Chua, Y. Z.; Schick, C.; Ediger, M. D.

    2018-05-01

    In situ AC nanocalorimetry was used to characterize vapor-deposited glasses of three phosphates with increasing lengths of alkyl side chains: trimethyl phosphate, triethyl phosphate, and tributyl phosphate. The as-deposited glasses were assessed in terms of their reversing heat capacity, onset temperature, and isothermal transformation time. Glasses with a range of kinetic stabilities were prepared, including kinetically stable glasses, as indicated by high onset temperatures and long transformation times. Trimethyl phosphate forms kinetically stable glasses, similar to many other organic molecules, while triethyl phosphate and tributyl phosphate do not. Triethyl phosphate and tributyl phosphate present the first examples of non-hydrogen bonding systems that are unable to form stable glasses via vapor deposition at 0.2 nm/s. Based on experiments utilizing different deposition rates, we conclude that triethyl phosphate and tributyl phosphate lack the surface mobility required for stable glass formation. This may be related to their high enthalpies of vaporization and the internal structure of the liquid state.

  10. Phosphorus release behaviors of poultry litter biochar as a soil amendment.

    PubMed

    Wang, Yue; Lin, Yingxin; Chiu, Pei C; Imhoff, Paul T; Guo, Mingxin

    2015-04-15

    Phosphorus (P) may be immobilized and consequently the runoff loss risks be reduced if poultry litter (PL) is converted into biochar prior to land application. Laboratory studies were conducted to examine the water extractability of P in PL biochar and its release kinetics in amended soils. Raw PL and its biochar produced through 400°C pyrolysis were extracted with deionized water under various programs and measured for water extractable P species and contents. The materials were further incubated with a sandy loam at 20 g kg(-1) soil and intermittently leached with water for 30 days. The P release kinetics were determined from the P recovery patterns in the water phase. Pyrolysis elevated the total P content from 13.7 g kg(-1) in raw PL to 27.1 g kg(-1) in PL biochar while reduced the water-soluble P level from 2.95 g kg(-1) in the former to 0.17 g kg(-1) in the latter. The thermal treatment transformed labile P in raw PL to putatively Mg/Ca phosphate minerals in biochar that were water-unextractable yet proton-releasable. Orthophosphate was the predominant form of water-soluble P in PL biochar, with condensed phosphate (e.g., pyrophosphate) as a minor form and organic phosphate in null. Release of P from PL biochar in both water and neutral soils was at a slower and steadier rate over a longer time period than from raw PL. Nevertheless, release of P from biochar was acid-driven and could be greatly promoted by the media acidity. Land application of PL biochar at soil pH-incorporated rates and frequency will potentially reduce P losses to runoffs and minimize the adverse impact of waste application on aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  11. A technical framework for implementing aquatic ecosystem loading limits (TMDLs) to reduce selenium pollution from phosphate mining wastes on Caribou National Forest, Idaho

    Treesearch

    A. Dennis Lemly

    2001-01-01

    Beginning in 1996, selenium associated with phosphate mining on Caribou National Forest (CNF) was implicated as the cause of death to horses and sheep grazing on private land adjacent to the national forest. In response to these concerns, the Forest Service began a monitoring study to determine selenium concentrations in and around the mine sites. By 1998, the study...

  12. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure.

    PubMed

    He, Chun-Tao; Zheng, Jing; Qiao, Lin; Chen, She-Jun; Yang, Jun-Zhi; Yuan, Jian-Gang; Yang, Zhong-Yi; Mai, Bi-Xian

    2015-08-01

    Organophosphorus flame retardants (OPFRs) are important alternatives to brominated flame retardants (BFRs), but information on their contamination of the environment in China is rare. We examined the occurrence of 12 OPFRs in indoor dust in four microenvironments of southern China, including a rural electronic waste (e-waste) recycling area, a rural non-e-waste area, urban homes, and urban college dormitory rooms. The OPFR concentrations (with a median of 25.0 μg g(-1)) were highest in the e-waste area, and the concentrations in other three areas were lower and comparable (7.48-11.0 μg g(-1)). The levels of OPFRs in the present study were generally relatively lower than the levels of OPFRs found in Europe, Canada, and Japan because BFRs are still widely used as the major FRs in China. The composition profile of OPFRs in the e-waste area was dominated by tricresyl phosphate (TCP) (accounting for 40.7%, on average), while tris(2-chloroethyl) phosphate (TCEP) was the most abundant OPFR (64.4%) in the urban areas (homes and college dormitories). These two distribution patterns represent two OPFR sources (i.e., emissions from past e-waste and from current household products and building materials). The difference in the OPFR profiles in the rural area relative to the OPFR profiles in the urban and e-waste areas suggests that the occurrence of OPFRs is due mainly to emissions from characteristic household products in rural homes. Although human exposures to all the OPFRs were under the reference doses, the health risk for residents in the e-waste area is a concern, considering the poor sanitary conditions in this area and exposure from other sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Effect of phosphate on the exchangeable form and the bioavailability of exogenous neodymium in soil].

    PubMed

    Xu, Z; Li, D; Yang, J; Peng, A

    2001-05-01

    Effects of phosphate on the exchangeable form and the bioavailability of exogenous neodymium (Nd) in soil were studied with 147Nd isotopic tracer. Exchangeable Nd was extracted with solution (pH8.2) of NaAc. The results indicated that Nd beyond 99.5% was adsorbed by soil whether phosphate exists in soil or not. Phosphate can precipitate dramatically Nd3+. And the Nd phosphate precipitates may set limits on the concentration of exchangeable Nd observed in soil. KH2PO4 ranging from 0.3 g.kg-1 to 1.5 g.kg-1 make a uniform impact on the exchangeable form of Nd. In addition, phosphate in soil can inhibit wheat seedling to absorb Nd. The concentration of exchangeable Nd is correlated significantly with the content of Nd in wheat seedling.

  14. EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash.

    PubMed

    Donatello, S; Tyrer, M; Cheeseman, C R

    2010-01-01

    A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.

  15. Engineering Glass Passivation Layers -Model Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting thatmore » the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan to look more closely at Vivianite [Fe3(PO4)2-8(H2O)] and Siderite [FeCO3] in the next stage of the project.« less

  16. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  17. Spatial database of mining-related features in 2001 at selected phosphate mines, Bannock, Bear Lake, Bingham, and Caribou Counties, Idaho

    USGS Publications Warehouse

    Moyle, Phillip R.; Kayser, Helen Z.

    2006-01-01

    This report describes the spatial database, PHOSMINE01, and the processes used to delineate mining-related features (active and inactive/historical) in the core of the southeastern Idaho phosphate resource area. The spatial data have varying degrees of accuracy and attribution detail. Classification of areas by type of mining-related activity at active mines is generally detailed; however, for many of the closed or inactive mines the spatial coverage does not differentiate mining-related surface disturbance features. Nineteen phosphate mine sites are included in the study, three active phosphate mines - Enoch Valley (nearing closure), Rasmussen Ridge, and Smoky Canyon - and 16 inactive (or historical) phosphate mines - Ballard, Champ, Conda, Diamond Gulch, Dry Valley, Gay, Georgetown Canyon, Henry, Home Canyon, Lanes Creek, Maybe Canyon, Mountain Fuel, Trail Canyon, Rattlesnake, Waterloo, and Wooley Valley. Approximately 6,000 hc (15,000 ac), or 60 km2 (23 mi2) of phosphate mining-related surface disturbance are documented in the spatial coverage. Spatial data for the inactive mines is current because no major changes have occurred; however, the spatial data for active mines were derived from digital maps prepared in early 2001 and therefore recent activity is not included. The inactive Gay Mine has the largest total area of disturbance, 1,900 hc (4,700 ac) or about 19 km2 (7.4 mi2). It encompasses over three times the disturbance area of the next largest mine, the Conda Mine with 610 hc (1,500 ac), and it is nearly four times the area of the Smoky Canyon Mine, the largest of the active mines with about 550 hc (1,400 ac). The wide range of phosphate mining-related surface disturbance features (141) from various industry maps were reduced to 15 types or features based on a generic classification system used for this study: mine pit; backfilled mine pit; waste rock dump; adit and waste rock dump; ore stockpile; topsoil stockpile; tailings or tailings pond; sediment catchment; facilities; road; railroad; water reservoir; disturbed land, undifferentiated; and undisturbed land. In summary, the spatial coverage includes polygons totaling about 1,100 hc (2,800 ac) of mine pits, 440 hc (1100 ac) of backfilled mine pits, 1,600 hc (3,800 ac) of waste rock dumps, 31 hc (75 ac) of ore stockpiles, and 44 hc (110 ac) of tailings or tailings ponds. Areas of undifferentiated phosphate mining-related land disturbances, called 'disturbed land, undifferentiated,' total about 2,200 hc (5,500 ac) or nearly 22 km2 (8.6 mi2). No determination has been made as to status of reclamation on any of the lands. Subsequent site-specific studies to delineate distinct mine features will allow additional revisions to this spatial database.

  18. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    PubMed

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  19. Bioavailability of organic and inorganic phosphates adsorbed on short-range ordered aluminum precipitate.

    PubMed

    Shang, C; Caldwell, D E; Stewart, J W; Tiessen, H; Huang, P M

    1996-01-01

    A nonreductive community-level study of P availability was conducted using various forms of adsorbed P. Orthophosphate (Pi), inositol hexaphosphate (IHP), and glucose 6-phosphate (G6P) were adsorbed to a short-range ordered Al precipitate. These bound phosphates provided a P source sufficient to support the growth of microbial communities from acidic Brazilian soils (oxisols). Adsorbed IHP, the most abundant form of organic phosphate in most soils, had the lowest bioavailability among the three phosphates studied. Adsorbed G6P and Pi were almost equally available. The amount of adsorbed Pi (1 cmol P kg(-1)) required to support microbial growth was at least 30 times less than that of IHP (30 cmol P kg(-1)). With increased surface coverage, adsorbed IHP became more bioavailable. This availability was attributed to a change in the structure of surface complexes and presumably resulted from the decreased number of high-affinity surface sites remaining at high levels of coverage. It thus appears that the bioavailability of various forms of adsorbed phosphate was determined primarily by the stability of the phosphate-surface complexes that they formed, rather than by the total amount of phosphate adsorbed. IHP, having the potential to form stable multiple-ring complexes, had the highest surface affinity and the lowest bioavailability. Bioaggregates consisting of bacteria and Al precipitate were observed and may be necessary for effective release of adsorbed P. Bacteria in the genera Enterobacter and Pseudomonas were the predominate organisms selected during these P-limited enrichments.

  20. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  1. Anaerobic Digestion Alters Copper and Zinc Speciation.

    PubMed

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  2. Reuse of hazardous calcium fluoride sludge from the integrated circuit industry.

    PubMed

    Zhu, Ping; Cao, Zhenbang; Ye, YiLi; Qian, Guangren; Lu, Bo; Zhou, Ming; Zhou, Jin

    2013-11-01

    The Chinese integrated circuit industry has been transformed from a small state-owned sector into a global competitor, but chip manufacturing produces large amounts of calcium fluoride sludges (CFS). In China, landfill is a current option for treating CFS. In order to solve the problem of unavailable landfill sites and prevent fluorine from dissolved CFS polluting water sources, CFS was tested as a component for a ceramic product made with sodium borate, sodium phosphate and waste alumina using a low-temperature sintering technology, and the effects of various factors on characteristics of the ceramic were investigated to optimize the process. The best sintering temperature was controlled at 700°C, and the optimal raw material ratio of the ceramic was 11% sodium borate, 54% sodium phosphate, 30% CFS and 5% waste alumina. The CFS ceramic was characterized by a morphological structure and X-ray diffraction. The results indicated that CFS was transformed into Na2Ca(PO4)F as an inert and a main crystalline phase in the ceramic, which was enclosed by the borophosphate glass. Toxicity characteristic leaching procedure, corrosion resistance and compressive strength tests verified CFS ceramic as a qualified construction ceramic material, and the fluorine from CFS was solidified in the inert crystalline phase, which would not be released to cause secondary pollution. This novel technology not only avoids the CFS hydrolyzing reaction forming harmful hydrofluoric acid gas at 800°C and above, but also produces high-performance ceramics as a construction material, in accordance with the concept of sustainable development.

  3. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  4. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  5. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  6. Mechanism of Phosphorus Removal from Hanford Tank Sludge by Caustic Leaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.

    Two experiments were conducted to explore the mechanism by which phosphorus is removed from Hanford tank sludge by caustic leaching. In the first experiment, a series of phosphate salts were treated with 3 M NaOH under conditions prototypic of the actual leaching process to be performed in the Waste Treatment and Immobilization Plant (WTP). The phosphates used were aluminum phosphate, bismuth phosphate, chromium(III) phosphate, and β-tri-calcium phosphate; all of these phases have previously been determined to exist in Hanford tank sludge. The leachate solution was sampled at selected time intervals and analyzed for the specific metal ion involved (Al, Bi,more » Ca, or Cr) and for P (total and as phosphate). The solids remaining after completion of the caustic leaching step were analyzed to determine the reaction product. In the second experiment, the dependence of P removal from bismuth phosphate was examined as a function of the hydroxide ion concentration. It was anticipated that a plot of log[phosphate] versus log[hydroxide] would provide insight into the phosphorus-removal mechanism. This report describes the test activities outlined in Section 6.3.2.1, Preliminary Investigation of Phosphate Dissolution, in Test Plan TP-RPP-WTP-467, Rev.1. The objectives, success criteria, and test conditions of Section 6.3.2.1 are summarized here.« less

  7. Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Chris; Willis, William; Carter, Robert

    2013-07-01

    Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for usemore » as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)« less

  8. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    NASA Astrophysics Data System (ADS)

    Metcalfe, B. L.; Donald, I. W.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2009-03-01

    A process for the immobilization of intermediate level waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material has been developed. Waste ions are incorporated into two phosphate-based phases, chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Non-active trials performed using Sm as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process, in which actinide-doped materials were used, were performed at PNNL which confirmed the wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu/241Am loaded ceramic at 313 K/28 days gave normalized mass losses of 1.2 × 10-5 g m-2 and 2.7 × 10-3 g m-2 for Pu and Cl, respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced with 238Pu. No changes to the crystalline structure of the waste were detected in the XRD spectra after the samples had experienced an α radiation fluence of 4 × 1018 g-1. Leach trials showed that there was an increase in the P and Ca release rates but no change in the Pu release rate.

  9. Waste handling: A study of tributyl phosphate compatibility with nonmetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, C.F.; Briedenbach, P.J.

    1989-01-01

    The need for numerous seals, plastic tubing, instrument components, and miles of plastic pipe for transferring process waste streams containing tributyl phosphate (TBP) and petroleum solvents led to an investigation of compatibility. TBP is a solvent for many plastics and elastomers and causes softening, crazing, or cracking of most nonmetallics tested. In this regard it may be considered an external plasticizer for some polymers. TBP also is a surfactant in aqueous solution. Dimension changes and property changes associated with softening will preclude the use of some materials as gaskets. Teflon/trademark/ and Kalrez/trademark/ gaskets appear to be compatible with TBP. Mixedmore » results were obtained with EPDM elastomers, but EPDM O-rings are less costly than Kalrez/trademark/ and are being applied in some areas. Exposure of CPVC rigid piping led to crazing and, ultimately, catastrophic stress cracking, thus precluding its use in the waste services described. High-density polyethylene and PVDF plastic piping were unaffected by the test exposures and are useable for process and process waste service. Applications include 25-30 miles of polyethylene pipe and a large number of EPDM gaskets in the filter assembly of an effluent treatment system at the Savannah River Plant. 3 refs., 7 figs., 3 tabs.« less

  10. A CLINICIAN'S GUIDE TO X-LINKED HYPOPHOSPHATEMIA

    PubMed Central

    Carpenter, Thomas O.; Imel, Erik A.; Holm, Ingrid A.; Jan de Beur, Suzanne M.; Insogna, Karl L.

    2011-01-01

    X-linked hypophosphatemia (XLH) is the prototypic disorder of renal phosphate wasting, and the most common form of heritable rickets. Physicians, patients, and XLH support groups have all expressed concerns about the dearth of information about this disease and the lack of treatment guidelines which frequently lead to missed diagnoses or mismanagement. This perspective addresses the recommendation by conferees for the dissemination of concise and accessible treatment guidelines for clinicians arising from the “Advances in Rare Bone Diseases Scientific Conference,” held at the National Institutes of Health in October 2008. We briefly review the clinical and pathophysiologic features of the disorder, and offer this guide in response to the conference recommendation, base on our collective accumulated experience in the management of this complex disorder. PMID:21538511

  11. Getters for Tc and I Removal from Liquid Waste

    NASA Astrophysics Data System (ADS)

    Qafoku, N. P.; Asmussen, M.; Lawter, A.; Neeway, J.; Smith, G.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental waste form for the low activity waste (LAW) at the Hanford Site, which contains significant amounts of radioactive 99Tc and 129I, as part of the tank waste cleanup mission. To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to decrease the rate of contaminant release and diffusivity, and improve Cast Stone performance. A series of kinetic batch sorption experiments was performed to determine the effectiveness of the getter materials. Several Tc getters [blast furnace slag, Sn (II) apatite, SnCl2, nanoporous Sn phosphate, KMS-2 (a potassium-metal-sulfide), and Sn(II) hydroxyapatite] and I getters [layered Bi hydroxide, natural argentite mineral, synthetic argentite, Ag-impregnated carbon, and Ag-exchanged zeolite] were tested in different solution media, 18.2 MΩ DI H2O and a caustic LAW waste simulant containing 6.5 M Na or 7.8 M Na. The experiments were conducted at room temperature in the presence or absence of air. Results indicated that most Tc getters (with the exception of KMS-2) performed better in the DI H2O solution than in the 6.5 and 7.8 M Na LAW simulant. In addition, Tc sequestration may be affected by the presence of other redox sensitive elements that were present in the LAW simulant, such as Cr. The Tc getter materials have been examined through various solid-state characterization techniques such as XRD, SEM/EDS, XANES and EXAFS which provided evidence for plausible mechanisms of aqueous Tc removal. The results indicated that the Tc precipitates differ depending on the getter material and that Tc(VII) is reduced to Tc(IV) in most of the getters but to a differing extents. For the I getters, Ag-exchanged zeolite and synthetic argentite were the most effective ones. The other I getters showed limited effectiveness for sorbing I under the high ionic strength and caustic conditions of the LAW simulant.

  12. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation

    PubMed Central

    Nandimath, Arusha P.; Karad, Dilip D.; Gupta, Shantikumar G.; Kharat, Arun S.

    2017-01-01

    Background and Objectives: Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. Materials and Methods: In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Results: Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml−1. Conclusion: As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting. PMID:29296275

  13. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    PubMed

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  14. DECO FRECASE (drywall eco-friendly from eggshell and cane bagasse) as an innovation of eco-friendly interior construction

    NASA Astrophysics Data System (ADS)

    Imron, M. A.; Ahkam, D. N. I.; Hidayat, A. W.

    2017-12-01

    The number of factories and home industries, both upper and lower middle class certainly adds waste generated, resulting in environmental pollution. The development of buildings is one of the largest contributors to global warming. For that, it takes technological innovations that lead to the criteria of green building. The application of green material is important aspects of environmentally friendly development, the selection of materials on the green material criteria of both roles should be applied continuously in order to realize the environmental sustainability of the material. Utilization Waste eggshell and bagasse which is a community waste, has the potential to become innovative environmentally friendly building materials. The eggshell is composed of 94% calcium carbonate, 1% magnesium carbonate, 1% calcium phosphate, and 4% organic material, especially protein, while the bagasse has a high content of silica (SiO2). In this study, the compounds are used as raw material for making alternative drywall in the form of DECO FRECASE. DECO FRECASE is an innovation of environmentally friendly building materials as an interior wall construction. Through DECO FRECASE, it is expected that building material innovation in Indonesia can be improved and of course environmental problems can be minimized by utilizing it as raw material for building construction.

  15. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  16. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  17. Phosphate interference during in situ treatment for arsenic in groundwater.

    PubMed

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  18. Structure of RNA 3′-phosphate cyclase bound to substrate RNA

    PubMed Central

    Desai, Kevin K.; Bingman, Craig A.; Cheng, Chin L.; Phillips, George N.

    2014-01-01

    RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme. PMID:25161314

  19. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  20. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    NASA Astrophysics Data System (ADS)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is dispersed into an ISPC and the performance of the final coating formulation is evaluated. Successful ISPCs formulated for multiple coating systems exhibited excellent adhesion, hardness and gloss, which supports their suitability as a chrome-free, single-step alternative for aerospace, original equipment manufacturing (OEM) and coil coating applications.

  1. Biochar as phosphorus transporter to support the closure of the phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Jagerhofer, Reinhard; Fristak, Vladimir; Pfeifer, Christoph

    2017-04-01

    Waste materials rich in phosphorus could partly substitute rock phosphate-based mineral fertilizers. As rock phosphate is listed as critical raw material, measures for increasing the recovery rate of phosphorus and for closing the phosphorus cycle are required. However, direct use of the waste materials as fertilizers are frequently not possible because of legal constraints, adverse side effects because of co-occurring contaminants or hygienic concerns. So this study had the objective to test the appropriateness of carbonizing P-rich residues that can be used as secondary P resources for producing P fertilizers. The resulting biochar or hydrochar products should be tested for the bioavailability of P for plant uptake. Feedstock materials tested as secondary P resources were chicken manure, animal bone flour, sewage sludge, and digestates. These materials were either pyrolyzed at different temperatures, partly with different chemical modifications, or hydrothermally carbonized. The biochar and hydrochar products were analyzed for their total and available P concentrations, and the plant bioavailability was determined with a standardized plant growth test with rye (Neubauer-test). The results showed that biochar produced from a mixture of chicken manure and saw dust was equivalent to a standard phosphate fertilizer (superphosphate) with respect to P available for plant uptake. For most materials, a pyrolysis temperature of 400 °C was slightly more beneficial for P availability than 500 °C. Pyrolytic carbonization mostly was more supportive for plant growth than hydrothermal carbonization of the tested feedstocks. For some feedstocks the addition of sodium carbonate improved the P uptake of the plants without affecting the biomass production. The results show that P-rich waste materials used as secondary resources for carbonization can effectively contribute to increased P recovery, savings in the use of mineral phosphate fertilizers and reduced P loads to non-target ecosystems. Additionally, other benefits of biochar application to agricultural soils like carbon sequestration or improvements of physical soil characteristics may supplement the fertilizer effect of P-enriched biochars or hydrochars.

  2. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept.

    PubMed

    Kujawa-Roeleveld, K; Fernandes, T; Wiryawan, Y; Tawfik, A; Visser, M; Zeeman, G

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of organic matter and nutrients from all waste(water)streams generated from different human activities. Anaerobic digestion of concentrated black water is a core technology in the DESAR concept. The applicability of the UASB septic tank for treatment of concentrated black water was investigated under two different temperatures, 15 and 25 degrees C. The removal of total COD was dependent on the operational temperature and attained 61 and 74% respectively. A high removal of the suspended COD of 88 and 94% respectively was measured. Effluent nutrients were mainly in the soluble form. Precipitation of phosphate was observed. Effective sludge/water separation, long HRT and higher operational temperature contributed to a reduction of E. coli. Based on standards there is little risk of contamination with heavy metals when treated effluent is to be applied in agriculture as fertiliser.

  3. Petrographic Descriptions of Selected Rock Specimens From the Meade Peak Phosphatic Shale Member, Phosphoria Formation (Permian), Southeastern Idaho

    USGS Publications Warehouse

    Johnson, Edward A.; Grauch, Richard I.; Herring, James R.

    2007-01-01

    Based on petrographic observations of 135 thin sections, rocks in the Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation in southeastern Idaho can be placed into one of four major lithofacies: organic claystone, muddy siltstone, peloidal phosphorite, and dolomitized calclithite-in order of decreasing abundance. Organic claystones are the most common lithofacies in the Meade Peak. Many of these rocks contain sufficient amounts of silt to make silty, organic claystones a common subtype. Organic claystones commonly contain crystals of muscovite and bioclasts as accessory components, and they are typically parallel laminated. Muddy siltstones are composed primarily of quartz silt, but some feldspar and rare carbonate silt are also present; some rocks are parallel laminated. Phosphate peloids are composed of varying amounts of opaque, complex, and translucent material, and observed internal structures are classified as simple, banded, cored, zoned, oolitic, nucleated, and polynucleated. Opaque, complex, and translucent peloids form the framework grains of three peloidal phosphorite rocks: wackestone phosphorite, packstone phosphorite, and grainstone phosphorite. Wackestone phosphorite is phosphatic-mud supported and contains more than 10 percent peloids; it is the most common type of phosphorite. Packstone phosphorite is peloid supported and contains interstitial phosphatic mud; it is also a common type. Grainstone phosphorite is peloid supported but lacks phosphatic mud; it is the least common type. Dolomitized calclithites contain three types of carbonate grains: macrocrystalline, microcrystalline, and crystalline with a microcrystalline nuclei-in order of decreasing abundance. Based on chemical staining and X-ray diffraction analyses, most of the carbonate is dolomite. Sufficient amounts of quartz silt or muddy material allow some rocks to be called silty dolomitized calclithite or muddy dolomitized calclithite, respectively. Sedimentary structures are absent except in some muddy dolomitized calclithites. Organic claystones, muddy siltstones, and dolomitized calclithites are detrital deposits. Many rocks in the Meade Peak contain calcite and apatite as fracture fillings and vug linings. As expected, peloidal phosphorites are most common in ore zones, and detrital rocks are most common in waste zones. Mine-specific marker beds are mostly composed of dolomitized calclithite.

  4. Mineral resource of the month: Phosphate rock

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2013-01-01

    As a mineral resource, “phosphate rock” is defined as unprocessed ore and processed concentrates that contain some form of apatite, a group of calcium phosphate minerals that is the primary source for phosphorus in phosphate fertilizers, which are vital to agriculture.

  5. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, Christian; Naille, Sébastien; Ona-Nguema, Georges

    The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is tomore » identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.« less

  6. CHARACTERIZATION OF SUB-MICRON AQUEOUS IRON(III) COLLOIDS FORMED IN THE PRESENCE OF PHOSPHATE BY SEDIMENTATION FIELD FLOW FRACTIONATION WITH MULTI-ANGLE LASER LIGHT SCATTERING DETECTION

    EPA Science Inventory

    Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in...

  7. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or...

  8. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or...

  9. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or...

  10. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    PubMed

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model.

    PubMed

    Nakatani, Teruyo; Ohnishi, Mutsuko; Razzaque, M Shawkat

    2009-11-01

    Hyp mice possess a mutation that inactivates the phosphate-regulating gene, which is homologous to the endopeptidases of the X-chromosome (PHEX). The mutation is associated with severe hypophosphatemia due to excessive urinary phosphate wasting. Such urinary phosphate wasting in Hyp mice is associated with an increased serum accumulation of fibroblast growth factor (FGF) 23. We wanted to determine the biological significance of increased serum FGF23 levels and concomitant hypophosphatemia in Hyp mice and to evaluate whether FGF23 activity could be modified by manipulating klotho (a cofactor of FGF23 signaling). We generated Hyp and klotho double-mutant mice (Hyp/klotho(-/-)). Severe hypophosphatemia of Hyp mice was reversed to hyperphosphatemia in Hyp/klotho(-/-) double mutants, despite the fact that the double mutants showed significantly increased serum levels of FGF23. Hyperphosphatemia in Hyp/klotho(-/-) mice was associated with increased renal expression of sodium/phosphate cotransporter 2a (NaPi2a) protein. Exogenous injection of bioactive parathyroid hormone 1-34 down-regulated renal expression of NaPi2a and consequently reduced serum levels of phosphate in Hyp/klotho(-/-) mice. Moreover, in contrast to the Hyp mice, the Hyp/klotho(-/-) mice showed significantly higher serum levels of 1,25-dihydroxyvitamin D and developed extensive calcification in soft tissues and vascular walls. Furthermore, compared with the Hyp mice, Hyp/klotho(-/-) mice were smaller in size, showed features of generalized tissue atrophy, and generally died by 15-20 wk of age. Our in vivo studies provide genetic evidence for a pathological role of increased FGF23 activities in regulating abnormal phosphate homeostasis in Hyp mice. Moreover, these results suggest that even when serum levels of FGF23 are significantly high, in the absence of klotho, FGF23 is unable to regulate systemic phosphate homeostasis. Our in vivo observations have significant clinical implications in diseases associated with increased FGF23 activity and suggest that the functions of FGF23 can be therapeutically modulated by manipulating the effects of klotho.

  12. Enhancing rock phosphate integration rate for fast bio-transformation of cow-dung waste-paper mixtures to organic fertilizer.

    PubMed

    Unuofin, F O; Siswana, M; Cishe, E N

    2016-01-01

    Rock phosphate (RP) addition in cow-dung waste-paper mixtures at rates above 2% P has been reported to increase the rate of bio-transformation and humification of organic waste mixtures during vermicomposting to produce organic fertilizer for organic farming. However, the optimization of RP for vermicomposting was not established. The objective of this study was to determine the optimal amount of RP integration rates for effective bio-transformation of cow-dung waste-paper mixtures. Arrays of RP integration degrees (0, 0.5, 1, 1.5, 2, and 4% P as RP) were thoroughly mixed with cow- dung waste-paper mixtures to achieve an optimized C:N ratio of 30 and allowed to vermidegrade following the introduction of earthworms at a stocking mass of 12.5 g-worms kg -1 . The bio-transformation of the waste mixtures was examined by measuring C:N ratios and humification index (HI) and per cent ash and volatile solids. Application of 1% P as RP resulted in fast bio-transformation and maturation of cow-dung waste-paper mixtures. A scanning electron microscopy (SEM) was used to evaluate the morphological properties of the different vermicomposts affected by rates of RP showing the degree of degradation of initial compacted aggregates of cellulose and protein fibres in the mixtures at maturity. A germination test was used to further determine phytotoxicity of the final composts and microbial biomass assessment. The final vermicompost (organic fertilizer) had a C:N ratio of 7, MBC of 900 mg kg -1 and HI of 27.1%. The RP incorporation rate of 1% P of RP investigated is therefore, recommended for efficient vermidegradation and humification of cow-dung waste-paper mixtures. However, higher rates of RP incorporation should be considered where greater P enrichment of the final vermicompost (organic fertilizer) is desired.

  13. Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum

    NASA Astrophysics Data System (ADS)

    Hu, Z.; Antonick, P.; Fujita, Y.; Reed, D. W.; Riman, R.; Eslamimanesh, A.; Das, G.; Anderko, A.; Wu, L.; Shivaramaiah, R.; Navrotsky, A.

    2017-12-01

    Rare earth elements (REE) are critical to many clean energy technologies. However, the lack of U.S. domestic production and the reliance on imported REE put U.S. energy security at risk. Consequently development of new sources is of strategic interest. Global phosphate deposits contain 27 million tons of REE and 38% of these REE end up in phosphogypsum (PG) waste during phosphate fertilizer production. Recovering REE from PG is a first step toward a trash-to-treasure transformation. We studied the leaching of REE from synthetic PG samples containing Y, Nd, or Eu using a suite of lixiviants including spent medium from the growth of the bacterium Gluconobacter oxydans ("biolixiviant"), gluconic acid, common mineral acids (phosphoric and sulfuric), and water. Synthetic PG was used to facilitate the comparison of the different lixiviants; real PG waste is extremely heterogeneous. Gluconic acid was the predominant identified organic acid in the biolixiviant. The leaching efficiency of the acidic lixiviants at the same pH (2.1) or molar concentration as gluconic acid in the biolixiviant (220 mM) were compared and rationalized by thermodynamic simulation using the mixed-solvent electrolyte model. Initial results indicate that the biolixiviant was more effective at leaching the REE than the mineral acids at pH 2.1. At 220 mM acid concentrations, sulfuric acid was the most effective, followed by the biolixiviant. Interestingly, for a given lixiviant, the leaching behavior of the REE differed. This study provides insight into the definition of an efficient lixiviant for leaching REE from phosphate fertilizer production waste.

  14. METHOD OF REMOVING STRONTIUM IONS

    DOEpatents

    Rhodes, D.W.; McHenry, J.R.; Ames, L.L. Jr.

    1962-05-01

    A method is given for removing trace amounts of Sr/sup 90/ from solutions. Phosphate ion is added to the solution and it is then brought into contact with a solid salt such as calcium carbonate which will react methathetically with the phosphate ion to form a salt such as calcium phosphate. During this reaction, strontium will be absorbed to a high degree within the newly formed lattice. (AEC)

  15. Evidence for an Intrinsic Renal Tubular Defect in Mice with Genetic Hypophosphatemic Rickets

    PubMed Central

    Cowgill, Larry D.; Goldfarb, Stanley; Lau, Kai; Slatopolsky, Eduardo; Agus, Zalman S.

    1979-01-01

    To investigate the role of parathyroid hormone (PTH) and(or) an intrinsic renal tubular reabsorptive defect for phosphate in mice with hereditary hypophosphatemic rickets, we performed clearance and micropuncture studies in hypophosphatemic mutants and nonaffected littermate controls. Increased fractional excretion of phosphate in mutants (47.2±4 vs. 30.8±2% in controls) was associated with reduced fractional and absolute reabsorption in the proximal convoluted tubule and more distal sites. Acute thyropara-thyroidectomy (TPTX) increased phosphate reabsorption in both mutants and controls with a fall in fractional phosphate excretion to ≅7.5% in both groups indicating that PTH modified the degree of phosphaturia in the intact mutants. Absolute reabsorption in the proximal tubule and beyond remained reduced in the mutants, however, possibly because of the reduced filtered load. Serum PTH levels were the same in intact mutants and normals as was renal cortical adenylate cyclase activity both before and after PTH stimulation. To evaluate the possibility that the phosphate wasting was caused by an intrinsic tubular defect that was masked by TPTX, glomerular fluid phosphate concentration was raised by phosphate infusion in TPTX mutants to levels approaching those of control mice. Phosphate excretion rose markedly and fractional reabsorption fell, but there was no change in absolute phosphate reabsorption in either the proximal tubule or beyond, indicating a persistent reabsorptive defect in the absence of PTH. We conclude that hereditary hypophosphatemia in the mouse is associated with a renal tubular defect in phosphate reabsorption, which is independent of PTH and therefore represents a specific intrinsic abnormality of phosphate transport. PMID:221535

  16. Effect of K-N-humates on dry matter production and nutrient use efficiency of maize in Sarawak, Malaysia.

    PubMed

    Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make

    2010-07-06

    Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to form Ca phosphate, an insoluble compound of phosphate that is generally not available to plants, especially roots. Mixing soil with humin produced from composted SW before application of fertilizers (T5 and T6) significantly increased maize dry matter production and nutrient use efficiency. Additionally, this practice does not only improve N, P, and K use efficiency, but it also helps to reduce the use of N-, P-, and K-based fertilizers by 50%.

  17. Overview of Phosphate-Based Remediation Technologies At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Thompson, K. M.; Fruchter, J. S.

    2009-12-01

    Phosphate-based technologies have been tested to sequester strontium-90 and uranium at the Hanford Site, part of the U.S. Department of Energy's (DOE)nuclear weapons complex that encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach) where localized groundwater plumes upwell into the river. Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed onto sediment beneath liquid waste disposal sites, and onto sediment that extends beneath the near-shore riverbed, remains a continuing contaminant source for impacting groundwater and the Columbia River. Initial remediation efforts using a pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-N Area hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. DOE is also evaluating the efficacy of using polyphosphate to reduce uranium concentrations in the groundwater with the goal of meeting drinking water standards (30 μg/L). This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long-term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. These remedial technologies are being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing the technologies in the field, with support from the Laboratory. An overview of the technologies and results to date are presented.

  18. Ageing of a phosphate ceramic used to immobilize chloride contaminated actinide waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, Brian L.; Donald, Ian W.; Fong, Shirley K.

    2009-03-31

    AWE has developed a process for the immobilization of ILW waste containing a significant quantity of chloride using Ca3(PO4)2 as the host material. Waste ions are incorporated into two phosphate based phases, chlorapatite, Ca5(PO4)3Cl, and spodiosite, Ca2(PO4)Cl. Non-active trials performed at AWE using samarium as the actinide surrogate demonstrated the durability of these phases in aqueous solution. Trials of the process using actinide-doped material were performed at PNNL which confirmed the immobilized wasteform resistant to aqueous leaching. Initial leach trials conducted on 239Pu /241Am loaded ceramic at 40°C/28 days gave normalized mass losses of 1.2 x 10-5 g.m-2 and 2.7more » x 10-3 g.m-2 for Pu and Cl respectively. In order to assess the response of the phases to radiation-induced damage, accelerated ageing trials were performed on samples in which the 239Pu was replaced by 238Pu. No changes to the crystalline structure of the waste were detected using XRD after the samples had experienced a radiation dose of 4 x 1018 α.g-1. Leach trials showed that there had been an increase in the P and Ca release rates but no change in the Pu release rate.« less

  19. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  20. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  1. Phosphate homeostasis in Bartter syndrome: a case-control study.

    PubMed

    Bettinelli, Alberto; Viganò, Cristina; Provero, Maria Cristina; Barretta, Francesco; Albisetti, Alessandra; Tedeschi, Silvana; Scicchitano, Barbara; Bianchetti, Mario G

    2014-11-01

    Bartter patients may be hypercalciuric. Additional abnormalities in the metabolism of calcium, phosphate, and calciotropic hormones have occasionally been reported. The metabolism of calcium, phosphate, and calciotropic hormones was investigated in 15 patients with Bartter syndrome and 15 healthy subjects. Compared to the controls, Bartter patients had significantly reduced plasma phosphate {mean [interquartile range]:1.29 [1.16-1.46] vs. 1.61 [1.54-1.67] mmol/L} and maximal tubular phosphate reabsorption (1.16 [1.00-1.35] vs. 1.41 [1.37-1.47] mmol/L) and significantly increased parathyroid hormone (PTH) level (6.1 [4.5-7.7] vs. 2.8 [2.2-4.4] pmol/L). However, patients and controls did not differ in blood calcium, 25-hydroxyvitamin D, alkaline phosphatase, and osteocalcin levels. In patients, an inverse correlation (P < 0.05) was noted between total plasma calcium or glomerular filtration rate and PTH concentration. A positive correlation was also noted between PTH and osteocalcin concentrations (P < 0.005), as well as between chloriduria or natriuria and phosphaturia (P < 0.001). No correlation was noted between calciuria and PTH concentration or between urinary or circulating phosphate and PTH. The results of this study demonstrate a tendency towards renal phosphate wasting and elevated circulating PTH levels in Bartter patients.

  2. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less

  3. Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge.

    PubMed

    Fischer, Fabian; Zufferey, Géraldine; Sugnaux, Marc; Happe, Manuel

    2015-01-01

    Phosphate was remobilised from iron phosphate contained in digested sewage sludge using a bio-electric cell. A significant acceleration above former results was caused by strongly basic catholytes. For these experiments a dual chambered microbial electrolysis cell with a small cathode (40 mL) and an 80 times larger anode (2.5 L) was equipped with a platinum sputtered reticulated vitreous carbon cathode. Various applied voltages (0.2-6.0 V) generated moderate to strongly basic catholytes using artificial waste water with pH close to neutral. Phosphate from iron phosphate contained in digested sewage sludge was remobilised most effectively at pH ∼13 with up to 95% yield. Beside minor electrochemical reduction, hydroxyl substitution was the dominating remobilisation mechanism. Particle-fluid kinetics using the "shrinking core" model allowed us to determine the reaction controlling step. Reaction rates changed with temperature (15-40 °C) and an activation energy of Ea = 55 kJ mol(-1) was found. These analyses indicated chemical and physical reaction control, which is of interest for future scale-up work. Phosphate remobilisation rates increased significantly, yields doubled and recovered PO4(3-) concentrations increased four times using a task specific bio-electric system. The result is a sustainable process for decentralized phosphate mining and a green chemical base generator useful also for many other sustainable processing needs.

  4. Manure derived biochar can successfully replace phosphate rock amendment in peatland restoration.

    PubMed

    Pouliot, Rémy; Hugron, Sandrine; Rochefort, Line; Godbout, Stéphane; Palacios, Joahnn H; Groeneveld, Elisabeth; Jarry, Isabelle

    2015-07-01

    Phosphate rock fertilization is commonly used in peatland restoration to promote the growth of Polytrichum strictum, a nurse plant which aids the establishment of Sphagnum mosses. The present study tested whether 1) phosphorus fertilization facilitates the germination of P. strictum spores and 2) biochar derived from local pig manure can replace imported phosphate rock currently used in peatland restoration. Various doses of biochar were compared to phosphate rock to test its effect directly on P. strictum stem regeneration (in Petri dishes in a growth chamber) and in a simulation of peatland restoration with the moss layer transfer technique (in mesocoms in a greenhouse). Phosphorus fertilization promoted the germination of P. strictum spores as well as vegetative stem development. Biochar can effectively replace phosphate rock in peatland restoration giving a new waste management option for rural regions with phosphorus surpluses. As more available phosphorus was present in biochar, an addition of only 3-9 g m(-2) of pig manure biochar is recommended during the peatland restoration process, which is less than the standard dose of phosphate rock (15 g m(-2)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herting, Daniel L.

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodiummore » phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.« less

  6. Enzyme-substrate and enzyme-inhibitor complexes of triose phosphate isomerase studied by 31P nuclear magnetic resonance.

    PubMed Central

    Campbell, I D; Jones, R B; Kiener, P A; Waley, S G

    1979-01-01

    The complex formed between the enzyme triose phosphate isomerase (EC 5.3.1.1.), from rabbit and chicken muscle, and its substrate dihydroxyacetone phosphate was studied by 31P n.m.r. Two other enzyme-ligant complexes examined were those formed by glycerol 3-phosphate (a substrate analogue) and by 2-phosphoglycollate (potential transition-state analogue). Separate resonances were observed in the 31P n.m.r. spectrum for free and bound 2-phosphoglycollate, and this sets an upper limit to the rate constant for dissociation of the enzyme-inhibitor complex; the linewidth of the resonance assigned to the bound inhibitor provided further kinetic information. The position of this resonance did not vary with pH but remained close to that of the fully ionized form of the free 2-phosphoglycollate. It is the fully ionized form of this ligand that binds to the enzyme. The proton uptake that accompanies binding shows protonation of a group on the enzyme. On the basis of chemical and crystallographic information [Hartman (1971) Biochemistry 10, 146--154; Miller & Waley (1971) Biochem. J. 123, 163--170; De la Mare, Coulson, Knowles, Priddle & Offord )1972) Biochem. J. 129, 321--331; Phillips, Rivers, Sternberg, Thornton & Wilson (1977) Biochem. Soc. Trans. 5, 642--647] this group is believed to be glutamate-165. On the other hand, the position of the resonance of D-glycerol 3 phosphate (sn-glycerol 1-phosphate) in the enzyme-ligand complex changes with pH, and both monoanion and dianon of the ligand bind, although dianion binds better. The substrate, dihydroxyacetone phosphate, behaves essentially like glycerol 3-phosphate. The experiments with dihydroxy-acetone phosphate and triose phosphate isomerase have to be carried out at 1 degree C because at 37 degrees C there is conversion into methyl glyoxal and orthophosphate. The mechanismof the enzymic reaction and the reasons for rate-enhancement are considered, and aspects of the pH-dependence are discussed in an Appendix. PMID:38777

  7. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  8. Effects on ground-water quality of seepage from a phosphatic clayey waste settling pond, north-central Florida

    USGS Publications Warehouse

    Hunn, J.D.; Seaber, P.R.

    1986-01-01

    Water samples were taken from test wells drilled near an inactive phosphatic clayey waste storage settling pond, from the settling pond and its perimeter ditch, and from an active settling pond near White Springs, Hamilton County, in north-central Florida. The purpose was to document the seepage of chemical constituents from the inactive settling pond and ditch into the adjacent surficial groundwater system, and to assess the potential for movement of these constituents into the deeper Floridan aquifer system which is the major source of public supply in the area. The study area is underlain by a 2 ,500-ft-thick sequence of Coastal Plain sediments of Early Cretaceous to Holocene age. The rocks of Tertiary and Quaternary age that underlie the test site area can be grouped into three major geohydrologic units. In descending order, these units are: surficial aquifer, Hawthorn confining unit, and Floridan aquifer system. Phosphate deposits occur in the upper part of the surficial aquifer. Water in the active settling pond is a calcium magnesium sulfate type with a dissolved solids concentration of 250 mg/L, containing greater amounts of phosphorus, iron, aluminum, barium, zinc, and chromium than the other surface waters. Water in the perimeter ditch is a calcium sulfate type with a dissolved solids concentration of 360 to 390 mg/L, containing greater amounts of calcium, sulfate, nitrogen, and fluoride than other surface waters. Water from the inactive settling pond is a calcium magnesium bicarbonate type with a dissolved solids concentration of 140 mg/L, containing more bicarbonate than the other surface waters. Large amounts of chemical constituents in the phosphate waste disposal slurry are apparently trapped in the sediments of the settling ponds. The quality of water in the upper part of the surficial aquifer from wells within 200 to 400 ft of the inactive settling pond shows no signs of chemical contamination from phosphate industry operations. The horizontal groundwater velocity calculated for this aquifer between the ditch surrounding the settling pond and the test wells is between 100 to 2,000 ft/year, which is enough time for water to have reached the test wells in the 6 years the pond has been operating. (Author 's abstract)

  9. Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents.

    PubMed

    Yang, Ying; Xu, Jianfeng; Vail, Daniel; Weathers, Pamela

    2011-04-01

    The feasibility of growth and oil production by Ettlia oleoabundans fed with anaerobic digester effluents of three agriculture wastes from the Arkansas Delta, catfish processing waste, soybean field waste, and rice hulls, was studied. Compared to standard BBM medium, all three effluents were deficient in phosphate and nitrate, but rich in ammonia and urea. Best growth was on 2% (v/v) soy effluent, but scant oil was produced on any of the effluents. When the three effluents were mixed, growth did not substantially increase, but oil content increased up to sixfold, depending on age of the effluent. Similar to growth in BBM, the main fatty acids produced were palmitic, oleic, and linoleic. These results show that anaerobically digested agricultural wastes can potentially support both growth and high oil productivity in E. oleoabundans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Heated blends of phosphate waste: Microstructure characterization, effects of processing factors and use as a phosphorus source for alfalfa growth.

    PubMed

    Loutou, M; Hajjaji, M; Mansori, M; Favotto, C; Hakkou, R

    2016-07-15

    Microstructure of expandable lightweight aggregates (LWAs), which was composed of phosphate waste (PW), cement kiln dust (CKD) and raw clay (RC) was investigated, and the effects of processing factors (temperature, waste content, soaking time) on their physical properties were quantified by using response surface methodology (RSM). The potential use of LWAs as a phosphorus source was assessed through the use of seeds of alfalfa. It was found that the main minerals of the waste, namely carbonates and fluorapatite, were involved in the formation of labradorite/anorthite and melt respectively. Stability of mullite- the main constituent of CKD- was sensitive to the melt content. The assemblage of the identified phases was discussed based on the CaO-SiO2-Al2O3 phase diagram. The results of RSM showed that the change of compressive strength, firing shrinkage and water absorption of LWAs versus processing factors was well described with a polynomial model and the weights of the effects of the factors increased in the following order: sintering temperature > waste content (in the case of PW-RC) > soaking time. On the other hand, it was found that due to the release of phosphorus by soil-embedded pellets, the growth of alfalfa plants improved, and the rate enhanced in this order: PW-RC > PW-CKD > PW-CKD-RC. The absorbed quantity of phosphorus (0.12%) was still lower than the common uptake amount. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  12. Fibroblast Growth Factor 23–Induced Hypophosphatemia in Acute Leukemia

    PubMed Central

    Reinert, Rachel B; Bixby, Dale; Koenig, Ronald J

    2018-01-01

    Abstract Fibroblast growth factor 23 (FGF23)–induced hypophosphatemia is a rare paraneoplastic syndrome of phosphate wasting that, if unrecognized, may cause tumor-induced osteomalacia. It is classically associated with benign mesenchymal tumors but occasionally has been found in patients with other malignancies. Hypophosphatemia has been associated with acute leukemia but has not previously been reported to be due to inappropriate FGF23 secretion. Here, we describe FGF23-induced severe hypophosphatemia and renal phosphate wasting associated with a mixed-phenotype Philadelphia chromosome-like acute leukemia in a previously healthy 22-year-old man. He was found to have low serum 1,25-dihydroxyvitamin D and extremely high FGF23 levels, as well as inappropriate urinary phosphorus excretion. The hypophosphatemia improved with calcitriol and oral phosphate treatment but normalized only during chemotherapy-induced ablation of the blasts. FGF23 levels declined with a reduction in peripheral blast counts. Using real-time reverse transcription polymerase chain reaction, we found that the leukemia cells were the source of FGF23. To our knowledge, this is the first description of FGF23-induced hypophosphatemia associated with acute leukemia. We recommend that the FGF23 paraneoplastic syndrome be considered as a possible etiology of hypophosphatemia in patients with acute leukemia. PMID:29696242

  13. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  14. Novel mode of inhibition by D-tagatose 6-phosphate through a Heyns rearrangement in the active site of transaldolase B variants.

    PubMed

    Stellmacher, Lena; Sandalova, Tatyana; Schneider, Sarah; Schneider, Gunter; Sprenger, Georg A; Samland, Anne K

    2016-04-01

    Transaldolase B (TalB) and D-fructose-6-phosphate aldolase A (FSAA) from Escherichia coli are C-C bond-forming enzymes. Using kinetic inhibition studies and mass spectrometry, it is shown that enzyme variants of FSAA and TalB that exhibit D-fructose-6-phosphate aldolase activity are inhibited covalently and irreversibly by D-tagatose 6-phosphate (D-T6P), whereas no inhibition was observed for wild-type transaldolase B from E. coli. The crystal structure of the variant TalB(F178Y) with bound sugar phosphate was solved to a resolution of 1.46 Å and revealed a novel mode of covalent inhibition. The sugar is bound covalently via its C2 atom to the ℇ-NH2 group of the active-site residue Lys132. It is neither bound in the open-chain form nor as the closed-ring form of D-T6P, but has been converted to β-D-galactofuranose 6-phosphate (D-G6P), a five-membered ring structure. The furanose ring of the covalent adduct is formed via a Heyns rearrangement and subsequent hemiacetal formation. This reaction is facilitated by Tyr178, which is proposed to act as acid-base catalyst. The crystal structure of the inhibitor complex is compared with the structure of the Schiff-base intermediate of TalB(E96Q) formed with the substrate D-fructose 6-phosphate determined to a resolution of 2.20 Å. This comparison highlights the differences in stereochemistry at the C4 atom of the ligand as an essential determinant for the formation of the inhibitor adduct in the active site of the enzyme.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, W.C.

    Hundreds of islands in the tropical Pacific Ocean contain phosphate deposits ranging from inconsequential to economically significant in size. Although many of these deposits clearly have formed by the interaction of avian guano with underlying limestone, some display evidence of having developed within an aqueous environment. Several of the emergent carbonate islands in the southern part of Palau contain phosphate deposits that the authors speculate formed in anoxic marine lakes, similar to those which still occur on a few of these islands. Lake water, sediments, and sediment pore waters from Jellyfish Lake, on the island of Eil Malk in Palau,more » were analyzed during an expedition in 1987. The results of this investigation supported, but did not provide, conclusive evidence of our hypothesis. Pore water profiles of phosphate and fluoride confirmed precipitation of carbonate fluorapatite. However, the extremely high bulk sediment accumulation rate, driven by the high biological productivity of the surface waters of the lake, dilutes authigenic phosphate to low levels. They have refined their original proposal to suggest that phosphate deposits may form either by: (1) subaerial weathering and concentration of phosphatic sediments after these lakes disappear; or (2) interaction of phosphate-enriched sediment pore solutions with limestone at the underlying contact. Another expedition to test these concepts is being planned.« less

  16. Phosphate uptake by a kidney cell line (LLC-PK1).

    PubMed

    Rabito, C A

    1983-07-01

    The uptake of inorganic phosphate was studied in an epithelial cell line of renal origin. Phosphate was accumulated through a mechanism with several features of a carrier-mediated process. The influx was accounted for by a saturable Na+-dependent and a nonsaturable Na+-independent process. Kinetic analysis at pH 6.6 and 7.4 suggests that the dibasic form of phosphate is the form transported by the saturable Na+-dependent system. The presence of Na+ in the incubation medium increased Vmax without affecting Km. Arsenate competitively inhibited the Na+-dependent phosphate transport with a Ki of 1.2 mM at 140 mM Na+ and pH 7.4. Other known inhibitors of phosphate reabsorption in the proximal tubule also inhibited phosphate transport by this cell line. Uptake studies from either side of the monolayers indicated that this transport system is preferentially located in the apical membrane of the cultured renal cells. These results show a close similarity between the Na+-dependent phosphate transport system in LLC-PK1 cells and the system present in the apical membrane of the proximal tubular cells.

  17. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    NASA Astrophysics Data System (ADS)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  18. Short-term implantation effects of a DCPD-based calcium phosphate cement.

    PubMed

    Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N

    1998-06-01

    Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.

  19. RISK ASSESSMENT FOR CADMIUM IN PHOSPHATE FERTILIZERS

    EPA Science Inventory

    Cadmium induced renal tubular dysfunction occurred where subsistence rice farmers produced their lifetime dietary rice on Zn-mine waste contaminated soils in Japan and other Asian countries. Research has shown that polished rice Cd is greatly increased while grain Zn is not incre...

  20. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  1. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC articlemore » comprising the radioisotope immobilized therein.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, Jeffrey G.; Giammar, Daniel E.; Wang, Zheming

    Phosphate addition is an in situ remediation approach that may enhance the sequestration of uranium without requiring sustained reducing conditions. However, the geochemical factors that determine the dominant immobilization mechanisms upon phosphate addition are insufficiently understood to design efficient remediation strategies or accurately predict U(VI) transport. The overall objective of our project is to determine the dominant mechanisms of U(VI)-phosphate reactions in subsurface environments. Our research approach seeks to determine the U(VI)-phosphate solid that form in the presence of different groundwater cations, characterize the effects of phosphate on U(VI) adsorption and precipitation on smectite and iron oxide minerals, examples ofmore » two major reactive mineral phases in contaminated sediments, and investigate how phosphate affects U(VI) speciation and fate during water flow through sediments from contaminated sites. The research activities conducted for this project have generated a series of major findings. U(VI) phosphate solids from the autunite mineral family are the sole phases to form during precipitation, with uranyl orthophosphate not occurring despite its predicted greater stability. Calcium phosphates may take up substantial quantities of U(VI) through three different removal processes (adsorption, coprecipitation, and precipitation) but the dominance of each process varies with the pathway of reaction. Phosphate co-adsorbs with U(VI) onto smectite mineral surfaces, forming a mixed uranium-phosphate surface complex over a wide range of conditions. However, this molecular-scale association of uranium and phosphate has not effect on the overall extent of uptake. In contrast, phosphate enhanced U(VI) adsorption to iron oxide minerals at acidic pH conditions but suppresses such adsorption at neutral and alkaline pH, despite forming mixed uranium-phosphate surface complexes during adsorption. Nucleation barriers exist that inhibit U(VI) phosphate solids from precipitating in the presence of smectite and iron oxide minerals as well as sediments from contaminated sites. Phosphate addition enhances retention of U(VI) by sediments from the Rifle, CO and Hanford, WA field research sites, areas containing substantial uranium contamination of groundwater. This enhanced retention is through adsorption processes. Both fast and slow uptake and release behavior is observed, indicating that diffusion of uranium between sediment grains has a substantial effect of U(VI) fate in flowing groundwater systems. This project has revealed the complexity of U(VI)-phosphate reactions in subsurface systems. Distinct chemical processes occur in acidic and alkaline groundwater systems. For the latter, calcium phosphate formation, solution complexation, and competition between phosphate and uranium for adsorption sites may serve to either enhance or inhibit U(VI) removal from groundwater. Under the groundwater conditions present at many contaminated sites in the U.S., phosphate appears to general enhance U(VI) retention and limit transport. However, formation of low-solubility uranium phosphate solids does not occur under field-relevant conditions, despite this being the desired product of phosphate-based remediation approaches. In addition, simple equilibrium approaches fail to well-predict uranium fate in contaminated sediments amended with phosphate, with reactive transport models that include reaction rates and mass transport through occluded domains needed to properly describe the system. Phosphate addition faces challenges to being effective as a stand-alone groundwater treatment approach but would prove beneficial as an add-on to other treatment methods that will further limit uranium migration in the subsurface.« less

  3. Re-evaluation and reconstruction of water purification system using soil. I. Assessment of soil as a sorbent of humic substances and phosphate ion.

    PubMed

    Fujikawa, Y; Hamasaki, T; Sugahara, M; Ozaki, H; Prasai, G; Yano, T; Imada, R; Tainaka, Y; Nakamura, W; Haruki, F

    2004-01-01

    The purpose of our study is to develop a treatment procedure for humic substances (HS hereafter) and phosphate ion in wastewater and environmental water by percolation of the water through a constructed soil layer at the hydraulic loading of a few metres per day. In the present work, batch sorption tests were conducted for more than 80 samples of soil, sludge, mineral and organic materials in order to find good sorbents for fulvic acid (FA hereafter) and phosphate ion. The results showed that the sorption of FA was high for some charcoal, and apatite and goethite minerals. Comparatively high sorption of FA was found for some Andosols and volcanic ash soil. Significant sorption of phosphate ion, on the other hand, was found for various types of soil, sludge from water treatment plants and some waste materials. The linear isotherm was obtained for the sorption of FA to a charcoal, apatite and goethite minerals, and Andosols.

  4. A regulatory perspective on the radiological impact of NORM industries: the case of the Spanish phosphate industry.

    PubMed

    García-Talavera, M; Matarranz, J L M; Salas, R; Ramos, L

    2011-01-01

    Radioactive and chemical risks coexist in NORM industries although they are usually addressed separately by regulations. The European Union (EU) has developed extensive legislation concerning both matters, which has been diversely reflected in national policies. We consider the case of the Spanish phosphate industry and analyse to which extent regulatory mandates have reduced the historical and ongoing radiological impact on the environment of phosphate facilities. Although no specific radiological constraints on effluent monitoring and release or on waste disposal have yet been imposed on NORM industries in Spain, other environmental regulations have achieved a substantial reduction on the phosphate industry impact. Nevertheless, a more efficient control could be established by eliminating the current conceptual and practical separation of chemical and radioactive risks in NORM industries. We highlight research needs to accomplish so and propose shorter-term measures that require active cooperation among the regulatory bodies involved. Copyright © 2010. Published by Elsevier Ltd.

  5. [Metabolic bone disease osteomalacia].

    PubMed

    Reuss-Borst, M A

    2014-05-01

    Osteomalacia is a rare disorder of bone metabolism leading to reduced bone mineralization. Underlying vitamin D deficiency and a disturbed phosphate metabolism (so-called hypophosphatemic osteomalacia) can cause the disease. Leading symptoms are dull localized or generalized bone pain, muscle weakness and cramps as well as increased incidence of falls. Rheumatic diseases, such as polymyalgia rheumatica, rheumatoid arthritis, myositis and fibromyalgia must be considered in the differential diagnosis. Alkaline phosphatase (AP) is typically elevated in osteomalacia while serum phosphate and/or 25-OH vitamin D3 levels are reduced. The diagnosis of osteomalacia can be confirmed by an iliac crest bone biopsy. Histological correlate is reduced or deficient mineralization of the newly synthesized extracellular matrix. Treatment strategies comprise supplementation of vitamin D and calcium and for patients with intestinal malabsorption syndromes vitamin D and calcium are also given parenterally. In renal phosphate wasting syndromes substitution of phosphate is the treatment of choice, except for tumor-induced osteomalacia when removal of the tumor leads to a cure in most cases.

  6. NON-POLLUTING REPLACEMENT FOR CHROMATE CONVERSION COATING & ZINC PHOSPHATING IN POWDER COATING APPLICATIONS

    EPA Science Inventory

    Picklex, a proprietary formulation, is an alternative to conventional metal surface pretreatments. Its developers claim that it does not produce waste or lower production rates, and it will maintain performance compared to conventional processes. A laboratory program was designed...

  7. Phosphorus recovery and reuse from waste streams

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  8. Immobilization of Technetium in a Metallic Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank; D. D. Keiser, Jr.; K. C. Marsden

    Fission-product technetium accumulated during treatment of spent nuclear fuel will ultimately be disposed of in a geological repository. The exact form of Tc for disposal has yet to be determined; however, a reasonable solution is to incorporate elemental Tc into a metallic waste form similar to the waste form produced during the pyrochemical treatment of spent, sodium-bonded fuel. This metal waste form, produced at the Idaho National Laboratory, has undergone extensive qualification examination and testing for acceptance to the Yucca Mountain geological repository. It is from this extensive qualification effort that the behavior of Tc and other fission products inmore » the waste form has been elucidated, and that the metal waste form is extremely robust in the retention of fission products, such as Tc, in repository like conditions. This manuscript will describe the metal waste form, the behavior of Tc in the waste form; and current research aimed at determining the maximum possible loading of Tc into the metal waste and subsequent determination of the performance of high Tc loaded metal waste forms.« less

  9. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.

    PubMed

    Ogbo, Frank C

    2010-06-01

    Two fungi characterized as Aspergillus fumigatus and Aspergillus niger, isolated from decaying cassava peels were used to convert cassava wastes by the semi-solid fermentation technique to phosphate biofertilizer. The isolates solubilized Ca(3)(PO(4))(2), AlPO(4) and FePO(4) in liquid Pikovskaya medium, a process that was accompanied by acid production. Medium for the SSF fermentation was composed of 1% raw cassava starch and 3% poultry droppings as nutrients and 96% ground (0.5-1.5mm) dried cassava peels as carrier material. During the 14days fermentation, both test organisms increased in biomass in this medium as indicated by increases in phosphatase activity and drop in pH. Ground cassava peels satisfied many properties required of carrier material particularly in respect of the organisms under study. Biofertilizer produced using A. niger significantly (p<.05) improved the growth of pigeon pea [Cajanus cajan (L.) Millsp.] in pot experiments but product made with A. fumigatus did not. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Hypophosphataemia: an easy strategy for diagnosis and treatment in HIV patients.

    PubMed

    Bagnis, Corinne Isnard; Karie, Svetlana; Deray, Gilbert; Essig, Marie

    2009-01-01

    Because HIV infection has become a chronic disease, it is crucial that metabolic complications secondary to HIV infection or prolonged therapy be diagnosed and managed appropriately over time. Therefore the optimal follow-up becomes complex and time consuming. Our review aimed to provide physicians in charge of HIV-infected patients with key data helping them to diagnose and understand hypophosphataemia in HIV patients. Hypophosphataemia is frequent and sometimes secondary to renal phosphate wasting. It is very rarely a component of a complex proximal tubular disorder, such as Fanconi syndrome. When isolated, hypophosphataemia is easy to rule out and treat. In rare cases, prolonged hypophosphataemia, when related to renal phosphate wasting and tubular dysfunction, might have potential consequences on bone outcome, however, more studies are needed. HIV infection by itself might be a risk factor for bone metabolism abnormalities; antiretroviral drugs might also be involved. Therefore, it seems valuable for patients that the minimal screening should be performed routinely, in order to prevent long-term disabilities.

  11. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  12. Performance Test on Polymer Waste Form - 12137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Se Yup

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation testing and water immersion testing, no degradation was observed in the waste forms. Also, by measuring the compressive strength after these tests, it was confirmed that the structural integrity was still retained. A leach test was performed by using non radioactive cobalt, cesium and strontium. The leaching of cobalt, cesium and strontium from the polymer waste forms was very low. Also, the polymer waste forms were found to possess adequate fire resistance. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, Performance tests with full scale polymer waste forms are on-going in order to obtain qualification certificate by the regulatory institute in Korea. (authors)« less

  13. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model

    PubMed Central

    Nakatani, Teruyo; Ohnishi, Mutsuko; Razzaque, M. Shawkat

    2009-01-01

    Hyp mice possess a mutation that inactivates the phosphate-regulating gene, which is homologous to the endopeptidases of the X-chromosome (PHEX). The mutation is associated with severe hypophosphatemia due to excessive urinary phosphate wasting. Such urinary phosphate wasting in Hyp mice is associated with an increased serum accumulation of fibroblast growth factor (FGF) 23. We wanted to determine the biological significance of increased serum FGF23 levels and concomitant hypophosphatemia in Hyp mice and to evaluate whether FGF23 activity could be modified by manipulating klotho (a cofactor of FGF23 signaling). We generated Hyp and klotho double-mutant mice (Hyp/klotho−/−). Severe hypophosphatemia of Hyp mice was reversed to hyperphosphatemia in Hyp/klotho−/− double mutants, despite the fact that the double mutants showed significantly increased serum levels of FGF23. Hyperphosphatemia in Hyp/klotho−/− mice was associated with increased renal expression of sodium/phosphate cotransporter 2a (NaPi2a) protein. Exogenous injection of bioactive parathyroid hormone 1-34 down-regulated renal expression of NaPi2a and consequently reduced serum levels of phosphate in Hyp/klotho−/− mice. Moreover, in contrast to the Hyp mice, the Hyp/klotho−/− mice showed significantly higher serum levels of 1,25-dihydroxyvitamin D and developed extensive calcification in soft tissues and vascular walls. Furthermore, compared with the Hyp mice, Hyp/klotho−/− mice were smaller in size, showed features of generalized tissue atrophy, and generally died by 15–20 wk of age. Our in vivo studies provide genetic evidence for a pathological role of increased FGF23 activities in regulating abnormal phosphate homeostasis in Hyp mice. Moreover, these results suggest that even when serum levels of FGF23 are significantly high, in the absence of klotho, FGF23 is unable to regulate systemic phosphate homeostasis. Our in vivo observations have significant clinical implications in diseases associated with increased FGF23 activity and suggest that the functions of FGF23 can be therapeutically modulated by manipulating the effects of klotho.—Nakatani, Y., Ohnishi, M., Razzaque, M. S. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. PMID:19584304

  14. Approach to treatment of hypophosphatemia.

    PubMed

    Felsenfeld, Arnold J; Levine, Barton S

    2012-10-01

    Hypophosphatemia can be acute or chronic. Acute hypophosphatemia with phosphate depletion is common in the hospital setting and results in significant morbidity and mortality. Chronic hypophosphatemia, often associated with genetic or acquired renal phosphate-wasting disorders, usually produces abnormal growth and rickets in children and osteomalacia in adults. Acute hypophosphatemia may be mild (phosphorus level, 2-2.5 mg/dL), moderate (1-1.9 mg/dL), or severe (<1 mg/dL) and commonly occurs in clinical settings such as refeeding, alcoholism, diabetic ketoacidosis, malnutrition/starvation, and after surgery (particularly after partial hepatectomy) and in the intensive care unit. Phosphate replacement can be given either orally, intravenously, intradialytically, or in total parenteral nutrition solutions. The rate and amount of replacement are empirically determined, and several algorithms are available. Treatment is tailored to symptoms, severity, anticipated duration of illness, and presence of comorbid conditions, such as kidney failure, volume overload, hypo- or hypercalcemia, hypo- or hyperkalemia, and acid-base status. Mild/moderate acute hypophosphatemia usually can be corrected with increased dietary phosphate or oral supplementation, but intravenous replacement generally is needed when significant comorbid conditions or severe hypophosphatemia with phosphate depletion exist. In chronic hypophosphatemia, standard treatment includes oral phosphate supplementation and active vitamin D. Future treatment for specific disorders associated with chronic hypophosphatemia may include cinacalcet, calcitonin, or dypyrimadole. Published by Elsevier Inc.

  15. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste.

    PubMed

    Siva Rama Krishna, D; Siddharthan, A; Seshadri, S K; Sampath Kumar, T S

    2007-09-01

    The eggshell waste has been value engineered to a nanocrystalline hydroxyapatite (HA) by microwave processing. To highlight the advantages of eggshell as calcium precursor in the synthesis of HA (OHA), synthetic calcium hydroxide was also used to form HA (SHA) following similar procedure and were compared with a commercially available pure HA (CHA). All the HAs were characterized by X-ray powder diffraction (XRD) method, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and specific surface area measurements. Nanocrystalline nature of OHA is revealed through characteristic broad peaks in XRD patterns, platelets of length 33-50 nm and width 8-14 nm in TEM micrograph and size calculations from specific surface area measurements. FT-IR spectra showed characteristic bands of HA and additionally peaks of carbonate ions. The cell parameter calculations suggest the formation of carbonated HA of B-type. The OHA exhibits superior sinterability in terms of hardness and density than both SHA and CHA may be due to larger surface area of its spherulite structure. The in vitro dissolution study shows longer stability in phosphate buffer and cell culture test using osteoblast cells establishes biocompatibility of OHA.

  16. Design for application of the DETOX{sup SM} wet oxidation process to mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R.A.; Dhooge, P.M.

    1994-04-01

    Conceptual engineering has been performed for application of the DETOX{sup SM} wet oxidation process to treatment of specific mixed waste types. Chemical compositions, mass balances, energy balances, temperatures, pressures, and flows have been used to define design parameters for treatment units capable of destroying 5. Kg per hour of polychlorinated biphenyls and 25. Kg per hour of tributyl phosphate. Equipment for the units has been sized and materials of construction have been specified. Secondary waste streams have been defined. Environmental safety and health issues in design have been addressed. Capital and operating costs have been estimated based on the conceptualmore » designs.« less

  17. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleyboecker, A.; Liebrich, M.; Kasina, M.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Correspondingmore » to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.« less

  18. Interconversion of large packets and small groups of cells of Micrococcus rubens: dependence upon magnesium and phosphate.

    PubMed Central

    Yamada, M; Koyama, T; Matsuhashi, M

    1977-01-01

    Micrococcus rubens, a gram-positive occus, usually forms large, cubic packets of more than 500 cells that are regularly arranged in three-dimensional cell groups. In medium with extremely low concentration of Mg2+ and phosphate, in which the cells can only grow on a agar surface, it formed small groups of 2 to 20 cells. Irregularly arraged cell groups of intermediated size were obtained in culture media containing intermediated concentrations of Mg2+ and phosphate. Mutants that formed irregular cell groups of intermediate size under normal culture conditions were also obtained. Images PMID:845123

  19. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  20. Recovery of ammonia and production of high-grade phosphates from digester effluents

    USDA-ARS?s Scientific Manuscript database

    Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...

  1. Separation of ammonia and phosphate minerals from wastewater using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...

  2. Phosphorus recovery from wastes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  3. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  4. Improvement of nuclide leaching resistance of paraffin waste form with low density polyethylene.

    PubMed

    Kim, Chang Lak; Park, Joo Wan; Kim, Ju Youl; Chung, Chang Hyun

    2002-01-01

    Low-level liquid borate wastes have been immobilized with paraffin wax using a concentrate waste drying system (CWDS) in Korean nuclear power plants. The possibility for improving chemical durability of paraffin waste form was suggested in this study. A small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form. The influence of LDPE on the leaching behavior of waste form was investigated by performing leaching test according to ANSI/ANS-16.1 procedure during 325 days. It was observed that the leaching of nuclides immobilized within paraffin waste form made a marked reduction although little content of LDPE was added to waste form. The acceptance criteria of paraffin waste form associated with leachability index (LI) and compressive strength after the leaching test were fully satisfied with the help of LDPE.

  5. Two Isoforms of Dihydroxyacetone Phosphate Reductase from the Chloroplasts of Dunaliella tertiolecta.

    PubMed

    Gee, R.; Goyal, A.; Byerrum, R. U.; Tolbert, N. E.

    1993-09-01

    Three isoforms of dihydroxyacetone phosphate reductase in extracts from Dunaliella tertiolecta have been separated by a diethylaminoethyl cellulose column chromatography with a shallow NaCl gradient. The chloroplasts contained the two major isoforms, and the third, minor form was in the cytosol. The isoforms are unstable in the absence of glycerol and they are cold labile, but they may be partially reactivated at 35[deg]C. The first chloroplast form to elute from the DEAE cellulose column was the major form when the cells were grown on high NaCl and it has been referred to as the form for glycerol production for osmoregulation or "osmoregulator form." The second form increased in specific activity when inorganic phosphate was increased in the growth media to stimulate growth, and it has been given the designation for the form for glyceride synthesis, "glyceride form." The osmoregulator form was stimulated by NaCl added to the enzyme assay, but not by reduced Escherichia coli thioredoxin. The glyceride form had properties similar to the enzyme in leaf chloroplast, such as inhibition by NaCl and by fatty acyl-coenzyme A derivatives and some stimulation by dithiothreitol, uridine diphosphate galactose, cyti-dine diphosphate dipalmatoyl diglyceride, and reduced E. coli thioredoxin. Thus, Dunaliella chloroplasts have a salt-stimulated osmoregulatory form of dihydroxyacetone phosphate reductase, which seems to have a role in glycerol production, and an isoform, which may be involved in glyceride synthesis and which has properties similar to the enzyme in chloroplasts of higher plants.

  6. Two Isoforms of Dihydroxyacetone Phosphate Reductase from the Chloroplasts of Dunaliella tertiolecta.

    PubMed Central

    Gee, R.; Goyal, A.; Byerrum, R. U.; Tolbert, N. E.

    1993-01-01

    Three isoforms of dihydroxyacetone phosphate reductase in extracts from Dunaliella tertiolecta have been separated by a diethylaminoethyl cellulose column chromatography with a shallow NaCl gradient. The chloroplasts contained the two major isoforms, and the third, minor form was in the cytosol. The isoforms are unstable in the absence of glycerol and they are cold labile, but they may be partially reactivated at 35[deg]C. The first chloroplast form to elute from the DEAE cellulose column was the major form when the cells were grown on high NaCl and it has been referred to as the form for glycerol production for osmoregulation or "osmoregulator form." The second form increased in specific activity when inorganic phosphate was increased in the growth media to stimulate growth, and it has been given the designation for the form for glyceride synthesis, "glyceride form." The osmoregulator form was stimulated by NaCl added to the enzyme assay, but not by reduced Escherichia coli thioredoxin. The glyceride form had properties similar to the enzyme in leaf chloroplast, such as inhibition by NaCl and by fatty acyl-coenzyme A derivatives and some stimulation by dithiothreitol, uridine diphosphate galactose, cyti-dine diphosphate dipalmatoyl diglyceride, and reduced E. coli thioredoxin. Thus, Dunaliella chloroplasts have a salt-stimulated osmoregulatory form of dihydroxyacetone phosphate reductase, which seems to have a role in glycerol production, and an isoform, which may be involved in glyceride synthesis and which has properties similar to the enzyme in chloroplasts of higher plants. PMID:12231930

  7. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  8. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging

    PubMed Central

    Ohnishi, Mutsuko; Razzaque, M. Shawkat

    2010-01-01

    Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho−/−) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho−/− mice. Genetically reducing serum phosphate levels in klotho−/− mice by generating a NaPi2a and klotho double-knockout (NaPi2a−/−/klotho−/−) strain resulted in amelioration of premature aging-like features. The NaPi2a−/−/klotho−/− double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a−/−/klotho−/− mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho−/− mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the aging process and suggest a novel role for phosphate in mammalian aging.—Ohnishi, M., Razzaque, M. S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. PMID:20418498

  9. Glass binder development for a glass-bonded sodalite ceramic waste form

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.; Canfield, Nathan L.; Zhu, Zihua; Zhang, Jiandong; Kruska, Karen; Schreiber, Daniel K.; Crum, Jarrod V.

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with ∼20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  10. 21 CFR 522.163 - Betamethasone dipropionate and betamethasone sodium phosphate aqueous suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sodium phosphate aqueous suspension. 522.163 Section 522.163 Food and Drugs FOOD AND DRUG ADMINISTRATION... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.163 Betamethasone dipropionate and betamethasone sodium phosphate aqueous suspension. (a) Specifications. Betamethasone dipropionate and betamethasone sodium...

  11. Grazing incidence synchrotron X-ray diffraction of marbles consolidated with diammonium hydrogen phosphate treatments: non-destructive probing of buried minerals

    NASA Astrophysics Data System (ADS)

    Possenti, Elena; Colombo, Chiara; Conti, Claudia; Gigli, Lara; Merlini, Marco; Plaisier, Jasper Rikkert; Realini, Marco; Gatta, G. Diego

    2018-05-01

    Diammonium hydrogen phosphate (DAP)-based consolidating treatments react with carbonatic stones and form calcium phosphates phases, whose composition depends on the availability of free calcium ions. In this work, an innovative non-destructive approach based on grazing incidence X-ray diffraction (GIXRD) with synchrotron radiation (SR) is used to investigate DAP-treated Carrara marble specimens and to study the influence of the substrate composition on the crystallization of calcium phosphate phases. The outcomes indicate that the presence of compositional micro-heterogeneity of Carrara marble favours the formation of specific phases. Dicalcium phosphate dihydrate, a calcium phosphate with a low Ca/P molar ratio, is formed on carbonatic phases with a low Ca amount, such as dolomite grains and Mg-containing veins. Furthermore, this study highlights the potentialities of SR-GIXRD as a powerful non-destructive tool for the diagnostic of Cultural Heritage objects since it allows investigating the conservation history of stone materials and their interaction with the environment.

  12. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements.

    PubMed

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2011-02-28

    Herein is presented a study on the long-term leaching behaviour of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. Two different semi-dynamic leaching tests were carried out on monolithic materials: ANS 16.1 test with liquid-to-solid ratio (L/S) of 10 dm(3) kg(-1) and increasing renewal times, and ASTM C1308 test with liquid-to-solid ratio (L/S) of 100 dm(3) kg(-1) and constant renewal time of 1 day. ASTM C1308 provides a lower degree of saturation of the leachant with respect to the leached material. The effectiveness of magnesium potassium phosphate cements for the inertization of nickel was proved. XRD analyses showed the presence of bobierrite on the monolith's surface after the leaching test, which had not been detected prior to the leaching test. In addition, the calculated cumulative release of the main components of the stabilization matrix (Mg(2+), total P and K(+)) was represented versus time in logarithmic scale and it was determined if the leaching mechanism corresponds to diffusion. Potassium is released by diffusion, while total phosphorous and magnesium show dissolution. Magnesium release in ANS 16.1 is slowed down because of saturation of the leachant. Experimental results demonstrate the importance of L/S ratio and renewal times in semi-dynamic leaching tests. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less

  14. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target formore » cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.« less

  15. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia

    PubMed Central

    Feng, Jian Q.; Clinkenbeard, Erica L.; Yuan, Baozhi; White, Kenneth E.; Drezner, Marc K.

    2013-01-01

    Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization. PMID:23403405

  16. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  17. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    EPA Science Inventory

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  18. TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST/ZVI PRB

    EPA Science Inventory

    A pilot permeable reactive barrier (PRB) consisting of a mixture of 30% yard waste compost, 20% zero-valent iron (ZVI), 5% limestone and 45% pea gravel by volume was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The pilo...

  19. Upper Cretaceous (Campanian) phosphorites in Jordan: implications for the formation of a south Tethyan phosphorite giant

    NASA Astrophysics Data System (ADS)

    Pufahl, Peir K.; Grimm, Kurt A.; Abed, Abdulkader M.; Sadaqah, Rushdi M. Y.

    2003-10-01

    A record of sedimentary, authigenic, and biological processes are preserved within the Upper Cretaceous (Campanian) Alhisa Phosphorite Formation (AP) in central and northern Jordan. The AP formed near the eastern extremity of the south Tethyan Phosphorite Province (STPP), a carbonate-dominated Upper Cretaceous to Eocene "phosphorite giant" that extends from Colombia, North Africa to the Middle East. Multidisciplinary research of the AP and associated cherts, chalks, and oyster buildups indicate that phosphatic strata formed on a highly productive, storm-dominated, east-west trending epeiric platform along the south Tethyan margin. The onset of phosphogenesis and the accumulation of economic phosphorite coincided with a rise in relative sea level that onlapped peritidal carbonates of the Ajlun Group. Pristine phosphates are associated with well-developed micrite concretionary horizons and contain abundant non-keeled spiral planktic foraminifera and a low diversity benthic assemblage of Buliminacean foraminifera, suggesting that pristine phosphates are a condensed facies and phosphogenesis was stimulated by the effects of a highly productive surface ocean and the suboxic diagenesis of sedimentary organic matter. The bulk sediment composition and absence of Fe-bearing authigenic phases such as glauconite, pyrite (including pyrite molds), siderite, and goethite within pristine phosphates suggests that deposition and authigenesis occurred under conditions of detrital starvation and that "iron-pumping" played a minimal role in phosphogenesis. Authigenic precipitation of phosphate occurred in a broad array of sedimentary environments—herein termed a "phosphorite nursery"—that spanned the entire platform. This is a non-uniformitarian phenomenon reflecting precipitation of sedimentary apatite across a wide depositional spectrum in a variety of depositional settings, wherever the conditions were suitable for phosphogenesis. Sedimentologic data indicate that pristine phosphates were concentrated into phosphatic grainstones through storm wave winnowing, and storm-generated, shelf-parallel geostrophic currents. Economic phosphorites formed through the amalgamation of storm-induced event beds. Stratigraphic packaging of phosphatic strata indicates that temporal variations in storm frequency were a prerequisite for the formation of economic phosphorite. Syndepositional phosphogenesis, reworking, and amalgamation to form phosphorites contrasts sharply with the principles of "Baturin Cycling". A transgressive systems tract coupled with high surface productivity created detritally starved settings favourable for phosphogenesis; storm reworking of pristine phosphate facies produced granular phosphorite; and amalgamation of storm-generated granular event beds formed economic phosphorite in a single systems tract.

  20. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.« less

  1. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rong; Pineda, Marco; Ajamian, Eunice

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+},more » which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.« less

  2. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less

  3. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan.

    PubMed

    Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard

    2015-07-01

    Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and Zn values in the clay waste were determined to have exceeded the severe effect level (SEL) limit values, whereas Cd and Cu level ranges between LEL and SEL indicate moderate contamination. I R values of heavy metals in the clay waste confirmed that Cd and Cu were bound to the exchangeable and carbonate fractions and presented higher mobility, whereas As, Cr, Mo, Pb, V, and Zn were bound to organic or residual fractions and consequently exhibit lower mobility. A Nemerow multi-factor index revealed that the mine site contains high levels of Cd, Cu, V, and Zn pollution. As and Cr were found at a moderate level of contamination, whereas Pb was present at a safe level of contamination. The order of the comprehensive contamination indices was Cd > Cu > Mo > Zn > V > Cr > As > Pb, indicating that the assessment of clay waste, especially with Cd and Cu, should be undertaken to control heavy metal contamination in adjacent urban and mine areas at the Eshidiya mines.

  4. Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste).

    PubMed

    Castaldi, Paola; Silvetti, Margherita; Garau, Giovanni; Deiana, Salvatore

    2010-10-15

    In the present work we investigated the interactions established between red mud (RM) and phosphate anions (P) at pH 4.0, 7.0 and 10.0. The amount of P sorbed by RM (P-RM) increased as the pH decreased being equal to 4.871 mmol g(-1) at pH 4.0, 0.924 mmol g(-1) at pH 7.0, and 0.266 mmol g(-1) at pH 10.0. Sequential extractions' data of P-RM equilibrated at pH 4.0 and 7.0, suggested that the phosphate sorption at these pH values was mainly regulated by two different mechanisms that gave rise to a chemical adsorption on RM phases, and to the formation of metal phosphate precipitates. By contrast, at pH 10.0 the P-sorption was regulated by a chemisorption mechanism on Fe-Al phases of RM. These findings were supported by FT-IR analysis, which showed a broad band at 1114 and 1105 cm(-1) in P-RM spectra at pH 4.0 and 7.0 respectively, attributable to P-O(H) stretching nu(3)-modes associated to inner-sphere complexes of phosphate on Fe-Al phases, or alternatively to stretching vibrations of PO(4)(3-) tetrahedra, arising from a precipitate of aluminium phosphate. Importantly, the FT-IR spectroscopy showed a phosphate-promoted dissolution of tectosilicates, notably cancrinite and sodalite, in RM exchanged with phosphate at pH 4.0 and 7.0. 2010 Elsevier B.V. All rights reserved.

  5. Oxygen isotopes as a tracer of phosphate sources and cycling in aquatic systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Paytan, A.

    2013-12-01

    The oxygen isotopic composition of phosphate can provide valuable information about sources and processes affecting phosphorus as it moves through hydrologic systems. Applications of this technique in soil and water have become more common in recent years due to improvements in extraction methods and instrument capabilities, and studies in multiple aquatic environments have demonstrated that some phosphorus sources may have distinct isotopic compositions within a given system. Under normal environmental conditions, the oxygen-phosphorus bonds in dissolved inorganic phosphate (DIP) can only be broken by enzymatic activity. Biological cycling of DIP will bring the phosphate oxygen into a temperature-dependent equilibrium with the surrounding water, overprinting any existing isotopic source signals. However, studies conducted in a wide range of estuarine, freshwater, and groundwater systems have found that the phosphate oxygen is often out of biological equilibrium with the water, suggesting that it is common for at least a partial isotopic source signal to be retained in aquatic systems. Oxygen isotope analysis on various potential phosphate sources such as synthetic and organic fertilizers, animal waste, detergents, and septic/wastewater treatment plant effluents show that these sources span a wide range of isotopic compositions, and although there is considerable overlap between the source groups, sources may be isotopically distinct within a given study area. Recent soil studies have shown that isotopic analysis of phosphate oxygen is also useful for understanding microbial cycling across different phosphorus pools, and may provide insights into controls on phosphorus leaching. Combining stable isotope information from soil and water studies will greatly improve our understanding of complex phosphate cycling, and the increasing use of this isotopic technique across different environments will provide new information regarding anthropogenic phosphate inputs and controls on biological cycling within hydrologic systems.

  6. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    PubMed Central

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  8. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  10. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na 2O-B 2O 3-SiO 2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na 2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion formore » the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  11. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE PAGES

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; ...

    2017-06-01

    This paper discusses work to develop Na 2O-B 2O 3-SiO 2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na 2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion formore » the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  12. Impact of animal waste application on runoff water quality in field experimental plots.

    PubMed

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers present after the simulated rainfall events were above 200/100 ml of sample water. It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoff water.

  13. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    PubMed Central

    Hill, Dagne D.; Owens, William E.; Tchounwou, Paul B.

    2005-01-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers present after the simulated rainfall events were above 200/100 ml of sample water. It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoff water. PMID:16705834

  14. Equilibrium Temperature Profiles within Fission Product Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  15. Closing the phosphorus cycle in a food system: insights from a modelling exercise.

    PubMed

    van Kernebeek, H R J; Oosting, S J; van Ittersum, M K; Ripoll-Bosch, R; de Boer, I J M

    2018-05-21

    Mineral phosphorus (P) used to fertilise crops is derived from phosphate rock, which is a finite resource. Preventing and recycling mineral P waste in the food system, therefore, are essential to sustain future food security and long-term availability of mineral P. The aim of our modelling exercise was to assess the potential of preventing and recycling P waste in a food system, in order to reduce the dependency on phosphate rock. To this end, we modelled a hypothetical food system designed to produce sufficient food for a fixed population with a minimum input requirement of mineral P. This model included representative crop and animal production systems, and was parameterised using data from the Netherlands. We assumed no import or export of feed and food. We furthermore assumed small P soil losses and no net P accumulation in soils, which is typical for northwest European conditions. We first assessed the minimum P requirement in a baseline situation, that is 42% of crop waste is recycled, and humans derived 60% of their dietary protein from animals (PA). Results showed that about 60% of the P waste in this food system resulted from wasting P in human excreta. We subsequently evaluated P input for alternative situations to assess the (combined) effect of: (1) preventing waste of crop and animal products, (2) fully recycling waste of crop products, (3) fully recycling waste of animal products and (4) fully recycling human excreta and industrial processing water. Recycling of human excreta showed most potential to reduce P waste from the food system, followed by prevention and finally recycling of agricultural waste. Fully recycling P could reduce mineral P input by 90%. Finally, for each situation, we studied the impact of consumption of PA in the human diet from 0% to 80%. The optimal amount of animal protein in the diet depended on whether P waste from animal products was prevented or fully recycled: if it was, then a small amount of animal protein in the human diet resulted in the most sustainable use of P; but if it was not, then the most sustainable use of P would result from a complete absence of animal protein in the human diet. Our results apply to our hypothetical situation. The principles included in our model however, also hold for food systems with, for example, different climatic and soil conditions, farming practices, representative types of crops and animals and population densities.

  16. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  17. Calcium phosphate mineralization is widely applied in crustacean mandibles.

    PubMed

    Bentov, Shmuel; Aflalo, Eliahu D; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-02-24

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous "jaw". From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait.

  18. Calcium phosphate mineralization is widely applied in crustacean mandibles

    PubMed Central

    Bentov, Shmuel; Aflalo, Eliahu D.; Tynyakov, Jenny; Glazer, Lilah; Sagi, Amir

    2016-01-01

    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous “jaw”. From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait. PMID:26906263

  19. Phosphatase-mediated bioprecipitation of lead by soil fungi.

    PubMed

    Liang, Xinjin; Kierans, Martin; Ceci, Andrea; Hillier, Stephen; Gadd, Geoffrey Michael

    2016-01-01

    Geoactive soil fungi were examined for their ability to release inorganic phosphate (Pi ) and mediate lead bioprecipitation during growth on organic phosphate substrates. Aspergillus niger and Paecilomyces javanicus grew in 5 mM Pb(NO3)2-containing media amended with glycerol 2-phosphate (G2P) or phytic acid (PyA) as sole P sources, and liberated Pi into the medium. This resulted in almost complete removal of Pb from solution and extensive precipitation of lead-containing minerals around the biomass, confirming the importance of the mycelium as a reactive network for biomineralization. The minerals were identified as pyromorphite (Pb5(PO4)3Cl), only produced by P. javanicus, and lead oxalate (PbC2O4), produced by A. niger and P. javanicus. Geochemical modelling of lead and lead mineral speciation as a function of pH and oxalate closely correlated with experimental conditions and data. Two main lead biomineralization mechanisms were therefore distinguished: pyromorphite formation depending on organic phosphate hydrolysis and lead oxalate formation depending on oxalate excretion. This also indicated species specificity in biomineralization depending on nutrition and physiology. Our findings provide further understanding of lead geomycology and organic phosphates as a biomineralization substrate, and are also relevant to metal immobilization biotechnologies for bioremediation, metal and P biorecovery, and utilization of waste organic phosphates. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Precipitation of Phosphate Minerals by Microorganisms Isolated from a Fixed-Biofilm Reactor Used for the Treatment of Domestic Wastewater

    PubMed Central

    Rivadeneyra, Almudena; Gonzalez-Martinez, Alejandro; Gonzalez-Lopez, Jesus; Martin-Ramos, Daniel; Martinez-Toledo, Maria Victoria; Rivadeneyra, Maria Angustias

    2014-01-01

    The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA), the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences). The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX). All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O), bobierrite [Mg3(PO4)2·8H2O] and baricite [(MgFe)3(PO4)2·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors. PMID:24699031

  1. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene

    PubMed Central

    Chen, Xi; Liang, Yong; Hua, Jing; Tao, Li; Qin, Wensheng; Chen, Sanfeng

    2010-01-01

    In order to efficiently utilize natural cellulose materials to produce ethylene, three expression vectors containing the ethylene-forming enzyme (efe) gene from Pseudomonas syringae pv. glycinea were constructed. The target gene was respectively controlled by different promoters: cbh I promoter from Trichoderma reesei cellobiohydrolases I gene, gpd promoter from Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase gene and pgk I promoter from T. reesei 3-phosphoglycerate kinase I gene. After transforming into T. reesei QM9414, 43 stable transformants were obtained by PCR amplification and ethylene determination. Southern blot analysis of 14 transformants demonstrated that the efe gene was integrated into chromosomal DNA with copy numbers from 1 to 4. Reverse transcription polymerase chain reaction (RT-PCR) analysis of 6 transformants showed that the heterologous gene was transcribed. By using wheat straw as a carbon source, the ethylene production rates of aforementioned 14 transformants were measured. Transformant C30-3 with pgk I promoter had the highest ethylene production (4,012 nl h-1 l-1). This indicates that agricultural wastes could be used to produce ethylene in recombinant filamentous fungus T. reesei. PMID:20150979

  2. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOEpatents

    Janikowski, Stuart K.

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  3. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.

    PubMed

    Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed

    2018-05-01

    Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.

  4. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    PubMed

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  5. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis.

    PubMed

    Kona, Fathima; Tao, Peng; Martin, Philip; Xu, Xingjue; Gatti, Domenico L

    2009-04-28

    Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) is active with a variety of different divalent metal ions bound in the active site. The Cd(2+), Zn(2+), and Cu(2+) substituted enzymes display similar values of k(cat) and similar dependence of K(m)(PEP) and K(m)(A5P) on both substrate and product concentrations. However, the flux-control coefficients for some of the catalytically relevant reaction steps are different in the presence of Zn(2+) or Cu(2+), suggesting that the type of metal bound in the active site affects the behavior of the enzyme in vivo. The type of metal also affects the rate of product release in the crystal environment. For example, the crystal structure of the Cu(2+) enzyme incubated with phosphoenolpyruvate (PEP) and arabinose 5-phosphate (A5P) shows the formed product, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), still bound in the active site in its linear conformation. This observation completes our structural studies of the condensation reaction, which altogether have provided high-resolution structures for the reactants, the intermediate, and the product bound forms of KDO8PS. The crystal structures of the Cd(2+), Zn(2+), and Cu(2+) substituted enzymes show four residues (Cys-11, His-185, Glu-222, and Asp-233) and a water molecule as possible metal ligands. Combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations reveal that the metal centers have a delocalized electronic structure, and that their true geometry is square pyramidal for Cd(2+) and Zn(2+) and distorted octahedral or distorted tetrahedral for Cu(2+). These geometries are different from those obtained by QM optimization in the gas phase (tetrahedral for Cd(2+) and Zn(2+), distorted tetrahedral for Cu(2+)) and may represent conformations of the metal center that minimize the reorganization energy between the substrate-bound and product-bound states. The QM/MM calculations also show that when only PEP is bound to the enzyme the electronic structure of the metal center is optimized to prevent a wasteful reaction of PEP with water.

  6. Novel PHEX nonsense mutation in a patient with X-linked hypophosphatemic rickets and review of current therapeutic regimens.

    PubMed

    Kienitz, T; Ventz, M; Kaminsky, E; Quinkler, M

    2011-07-01

    The most common form of familial hypophosphatemic rickets is X-linked. PHEX has been identified as the gene defective in this phosphate wasting disorder leading to decreased renal phosphate reabsorption, hypophosphatemia and inappropriate concentrations of 1,25-dihydroxyvitamin D in regard to hypophosphatemia. Clinical manifestation are skeletal deformities, short stature, osteomalacia, dental abscesses, bone pain, and loss of hearing. We report 3 cases of hypophosphatemic rickets with genetic mutational analysis of the PHEX gene. In 1 male patient an unknown nonsense mutation was found in exon 7, codon 245 (c.735T>G, Tyr245Term, Y245X). In both female patients known mutations were found: c.682delTC (exon 6, codon 228) and c.1952G>C (exon 19, codon 651, R651P). Age at diagnosis ranged from early childhood to the age of 35 years. Clinical complications were hip replacement in 1 patient, mild nephrocalcinosis in 2 patients and loss of hearing in 1 patient. All 3 patients have been treated with phosphate supplements and receive 1,25-dihydroxyvitamin D. Under this regimen all patients show stable biochemical markers with slight hyperparathyreoidism. In all patients at least one family member is affected by rickets, as well. We report a novel nonsense mutation of PHEX that has not been identified so far. The recent discovery of FGF23 and MEPE has changed our understanding of the kidney-bone metabolism, but also raises concerns about the efficacy of current therapeutic regimens that are reviewed in this context. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  7. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  8. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  9. Improvement of Leaching Resistance of Low-level Waste Form in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.Y.; Lee, B.C.; Kim, C.L.

    2006-07-01

    Low-level liquid concentrate wastes including boric acid have been immobilized with paraffin wax using concentrate waste drying system in Korean nuclear power plants since 1995. Small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form and the influence of LDPE on the leaching behavior of waste form was investigated. It was observed that the leaching of nuclides immobilized within paraffin waste form remarkably reduced as the content of LDPE increased. The acceptance criteria of paraffin waste form associated with leachability index and compressive strength after the leaching test were successfullymore » satisfied with the help of LDPE. (authors)« less

  10. Ability of a beta-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters.

    PubMed Central

    Holt, C; Wahlgren, N M; Drakenberg, T

    1996-01-01

    The ability of casein in the form of colloidal-sized casein micelles to modulate the phase separation of calcium phosphate during milk secretion is adapted to produce nanometre-sized particles of calcium phosphate stabilized by a casein phosphopeptide (nanoclusters). The nanoclusters were prepared from an undersaturated solution of salts and the peptide by raising the pH homogeneously from about 5.5 to 6.7 with urea plus urease. Chemical analysis and IR spectroscopy showed that they comprise an amorphous dicalcium phosophate bound to the phosphopeptide. Multinuclear NMR spectroscopy of the cluster solutions showed that the small ions and free peptide in the solution were in a state of dynamic exchange with the nanoclusters. The peptide is linked to the calcium phosphate through its sequence of phosphorylated residues, but, in a proportion of adsorbed conformational states, the termini retain the conformational freedom of the unbound peptide. The ability of casein to form nanoclusters in milk suggests a more general mechanism for avoiding pathological calcification and regulating calcium flow in tissues and biological fluids exposed to or containing high concentrations of calcium. PMID:8615755

  11. The effect of organic ligands on the crystallinity of calcium phosphate

    NASA Astrophysics Data System (ADS)

    van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia

    2003-03-01

    Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.

  12. A U-bearing composite waste form for electrochemical processing wastes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.

  13. A U-bearing composite waste form for electrochemical processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less

  14. Distinct generation, pharmacology, and distribution of sphingosine 1-phosphate and dihydro-sphingosine 1-phosphate in human neural progenitor cells

    USDA-ARS?s Scientific Manuscript database

    In-vivo and in-vitro studies suggest a crucial role for Sphingosine 1-phosphate (S1P) and its receptors in the development of the nervous system. Dihydrosphingosine 1-phosphate (dhS1P), a reduced form of S1P, is an active ligand at S1P receptors, but the pharmacology and physiology of dhS1P has not...

  15. PURIFICATION OF PLUTONIUM USING A CERIUM PRECIPITATE AS A CARRIER FOR FISSION PRODUCTS

    DOEpatents

    Faris, B.F.; Olson, C.M.

    1961-07-01

    Bismuth phosphate carrier precipitation processes are described for the separation of plutonium from fission products wherein in at least one step bismuth phosphate is precipitated in the presence of hexavalent plutonium thereby carrying a portion of the fission products from soluble plu tonium values. In this step, a cerium phosphate precipitate is formed in conjunction with the bismuth phosphate precipitate, thereby increasing the amount of fission products removed from solution.

  16. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the functional groups but also as a substrate inducing the nucleation of phosphate nanoparticles. Stable nano-sized Yb phosphate precipitates formed on yeast cell surfaces in the present study, which implies that this post-adsorption nano-particle formation process caused by microbial cells should be one of the important processes governing the long-term migration of heavy rare earth elements and presumably trivalent actinides in geological repository.

  17. Fabrication and characterization of poly(DL-lactic-co-glycolic acid)/zirconia-hybridized amorphous calcium phosphate composites

    PubMed Central

    WHITED, BRYCE M.; GOLDSTEIN, AARON S.; SKRTIC, DRAGO; LOVE, BRIAN J.

    2010-01-01

    Several minerals, such as hydroxyapatite and β-tricalcium phosphate, have been incorporated into bioresorbable polyester bone scaffolds to increase the osteoconductivity both in vitro and in vivo. More soluble forms of calcium phosphate that release calcium and phosphate ions have been postulated as factors that increase osteoblast differentiation and mineralization. Recently, a zirconia-hybridized pyrophosphate-stabilized amorphous calcium phosphate (Zr-ACP) has been synthesized allowing controlled release of calcium and phosphate ions. When incorporated into bioresorbable scaffolds, Zr-ACP has the potential to induce osteoconductivity. In this study, 80–90% (w/v) porous poly(DL-LActic-co-glycolic acid) (PLGA) scaffolds were formed by thermal phase separation from dioxane while incorporating Zr-ACP. Scanning electron microscopy revealed a highly porous structure with a pore size ranging from a few μm to about 100 μm, smaller than we had hoped for. Zr-ACP particles were evenly dispersed in the composite structure and incorporated into the pore walls. The amorphous structure of the Zr-ACP was maintained during composite fabrication, as found by X-ray diffraction. Composite scaffolds had larger compressive yield strengths and moduli compared to pure polymer scaffolds. These initial efforts demonstrate that PLGA/Zr-ACP composites can be formed in ways that ultimately serve as promising bone scaffolds in tissue engineering. PMID:16768292

  18. Liquid secondary waste: Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.« less

  19. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of P-Stereogenic, Z-Configured Bicyclo[7.3.1]- and Bicyclo[8.3.1]phosphates.

    PubMed

    Markley, Jana L; Maitra, Soma; Hanson, Paul R

    2016-02-05

    A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility.

  20. Purification of pectinase from mango (Mangifera indica L. cv. Chokanan) waste using an aqueous organic phase system: a potential low cost source of the enzyme.

    PubMed

    Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi

    2013-07-15

    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life. © 2011 American Chemical Society

  2. Tailoring the structure of biphasic calcium phosphate via synthesis procedure

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-12-01

    Nano calcium phosphate ceramics (CaPC) were synthesized using simple co-precipitation method at different preparation conditions. The selected Ca/P ratio with a variation of pH value lead to formation of dicalcium phosphate dihydrate (DCPD) at pH 5 and 6 while, hydroxyapatite (HAP) nano particles were formed at pH 9 and 12 at room temperature. The crystallite size was in the range of 15-55 nm depending on the obtained crystalline phase. The study displayed variation of decomposition depending on the annealing temperature. The significant note is the different transformation trend of each phase depending on the starting pH value. The HRTEM illustrated that the DCPD phase was formed as fibers with diameter around 4-6 nm, while HAP was formed in rod shape. The aspect ratio decreased from 6.6 at pH 9 to 4 at pH 12 which refer to the great influence of pH value on the morphology of calcium phosphates.

  3. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.

    PubMed

    Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

    2017-03-01

    The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.

  4. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  5. Processing liquid organic wastes at the NNL Preston laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera

    2013-07-01

    Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal.more » The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range of materials to be successfully treated. (authors)« less

  6. Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater.

    PubMed

    Azam, Hossain M; Finneran, Kevin T

    2014-02-01

    Phosphate is a water contaminant from fertilizers, soaps, and detergents that enters municipal and onsite wastewater from households, businesses, and other commercial operations. Phosphate is a limiting nutrient for algae, and is one of the molecules that promotes eutrophication of water bodies. Phosphate is especially problematic in onsite wastewater because there are few removal mechanisms under normal operating conditions; a system must be amended specifically with compounds to bond to or adsorb phosphate in the septic tank or within the leach field. Vivianite (Fe3(PO4)2⋅8H2O) is a stable mineral formed from ferrous iron and phosphate, often as the result of Fe(III) reducing microbial activity. What was unknown was the concentration of phosphate that could be removed by this process, and whether it was relevant to mixed microbial systems like septic tank wastewater. Data presented here demonstrate that significant concentrations of phosphate (12-14mM) were removed as vivianite in growing cultures of Geobacter metallireducens strain GS-15. Vivianite precipitates were identified on the cell surfaces and within multi cell clusters using TEM-EDX; the mineral phases were directly characterized using XRD. Phosphate was also removed in dilute and raw (undiluted) septic wastewater amended with different forms of Fe(III) including solid phase and soluble Fe(III). Vivianite precipitates were recovered and identified using XRD, along with siderite (ferrous carbonate), which was expected given that the systems were likely bicarbonate buffered. These data demonstrate that ferric iron amendments in septic wastewater increase phosphate removal as the mineral vivianite, and this may be a good strategy for phosphate attenuation in the septic tank portion of onsite wastewater systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Modulation of 14-3-3/Phosphotarget Interaction by Physiological Concentrations of Phosphate and Glycerophosphates

    PubMed Central

    Sluchanko, Nikolai N.; Chebotareva, Natalia A.; Gusev, Nikolai B.

    2013-01-01

    Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3. PMID:23977325

  8. Modulation of 14-3-3/phosphotarget interaction by physiological concentrations of phosphate and glycerophosphates.

    PubMed

    Sluchanko, Nikolai N; Chebotareva, Natalia A; Gusev, Nikolai B

    2013-01-01

    Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3.

  9. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  10. Investigations of systems ThO 2-MO 2-P 2O 5 (M=U, Ce, Zr, Pu). Solid solutions of thorium-uranium (IV) and thorium-plutonium (IV) phosphate-diphosphates

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Podor, R.; Brandel, V.; Genet, M.

    1998-02-01

    In the framework of nuclear waste management aiming at the research of a storage matrix, the chemistry of thorium phosphates has been completely re-examined. In the ThO 2-P 2O 5 system a new compound thorium phosphate-diphosphate Th 4(PO 4) 4P 2O 7 has been synthesized. The replacement of Th 4+ by a smaller cation like U 4+ and Pu 4+ in the thorium phosphate-diphosphate (TPD) lattice has been achieved. Th 4- xU x(PO 4) 4P 2O 7 and Th 4- xPu x(PO 4) 4P 2O 7 solid solutions have been synthesized through wet and dry processes with 0< x<3.0 for uranium and 0< x<1.0 for plutonium. From the variation of the unit cell parameters, an upper x value equal to 1.67 has been estimated for the thorium-plutonium (IV) phosphate-diphosphate solid solutions. Two other tetravalent cations, Ce 4+ and Zr 4+, cannot be incorporated in the TPD lattice: cerium (IV) because of its reduction into Ce (III) at high temperature, and zirconium probably because of its too small radius compared to thorium.

  11. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Liquid secondary waste. Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less

  13. Performance of fuel cell using calcium phosphate hydrogel membrane prepared from waste incineration fly ash and chicken bone powder.

    PubMed

    Fukui, Kunihiro; Arimitsu, Naoki; Jikihara, Kenji; Yamamoto, Tetsuya; Yoshida, Hideto

    2009-09-15

    Waste incineration fly ash and bone powder could be successfully recycled to calcium phosphate hydrogel, a type of fast proton conductor. The electric conductivity of the crystallized hydrogel from them was compared with that from calcium carbonate reagent. It was found that the conductivity of the hydrogel from bone powder is almost equal to that from calcium carbonate reagent, which is higher than that from incineration fly ash. Because the crystallized hydrogel from incineration ash has a lower crystallinity than that from bone powder and calcium carbonate reagent. However, the difference of the conductivity among them can be hardly observed above 100 degrees C. The fuel cell with membrane electrode assembly (MEA) using the calcium phosphate hydrogel membrane prepared from incineration fly ash and bone powder was observed to generate electricity. The performance of fuel cells having the hydrogel membrane obtained from all raw materials increases with the cell temperature, and the fuel cell containing the hydrogel membrane from incineration fly ash has the highest dependence of the fuel cell performance. For this reason, the difference in the cell performance among them can be hardly observed above 120 degrees C. This tendency agrees with the change in the electric conductivity with the temperature. Further, the performance of all fuel cells with the hydrogel membrane is superior to that of the fuel cell with perfluorosulfonic polymer membrane at temperatures greater than approximately 85 degrees C.

  14. Comparative assessment of the physico-chemical and bacteriological qualities of selected streams in Louisiana.

    PubMed

    Hill, Dagne D; Owens, William E; Tchounwou, Paul B

    2005-04-01

    The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control) and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002). An analysis of biological oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total dissolved solids (TDS), conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control) and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS) levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.

  15. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.« less

  16. High-level waste program progress report, April 1, 1980-June 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.

  17. Spent fuel treatment and mineral waste form development at Argonne National Laboratory-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Benedict, R.W.; Bateman, K.

    1996-07-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. Both mineral and metal high-level waste forms will be produced. The mineral waste form will contain the active metal fission products and the transuranics. Cold small-scale waste form testing has been on-going at Argonne in Illinois. Large-scale testing is commencing at ANL-West.

  18. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, L.

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  19. Options for the Separation and Immobilization of Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R Jeffrey; Crum, Jarrod V.; Riley, Brian J.

    Among radioactive constituents present in the Hanford tank waste, technetium-99 (Tc) presents a unique challenge in that it is significantly radiotoxic, exists predominantly in the liquid low-activity waste (LAW), and has proven difficult to effectively stabilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant, the LAW fraction will be converted to a glass waste form in the LAW vitrification facility, but a significant fraction of Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment system. This necessitates recycle of the off-gas condensate solution to the LAW glassmore » melter feed. The recycle process is effective in increasing the loading of Tc in the immobilized LAW (ILAW), but it also disproportionately increases the sulfur and halides in the LAW melter feed, which have limited solubility in the LAW glass and thus significantly reduce the amount of LAW (glass waste loading) that can be vitrified and still maintain good waste form properties. This increases both the amount of LAW glass and either the duration of the LAW vitrification mission or requires the need for supplemental LAW treatment capacity. Several options are being considered to address this issue. Two approaches attempt to minimize the off-gas recycle by removing Tc at one of several possible points within the tank waste processing flowsheet. The separated Tc from these two approaches must then be dispositioned in a manner such that the Tc can be safely disposed. Alternative waste forms that do not have the Tc volatility issues associated with the vitrification process are being sought for immobilization of Tc for subsequent storage and disposal. The first objective of this report is to provide insights into the compositions and volumes of the Tc-bearing waste streams including the ion exchange eluate from processing LAW and the off-gas condensate from the melter. The first step to be assessed will be the processing of ion exchange eluate. The second objective of this report is to assess the compatibility of the available waste forms with the anticipated waste streams. Two major categories of Tc-specific waste forms are considered in this report including mineral and metal waste forms. Overall, it is concluded that a metal alloy waste form is the most promising and mature Tc-specific waste form and offers several benefits. One obvious advantage of the disposition of Tc in the metal alloy waste form is the significant reduction of the generated waste form volume, which leads to a reduction of the required storage facility footprint. Among mineral waste forms, glass-bonded sodalite and possibly goethite should also be considered for the immobilization of Tc.« less

  20. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form evenmore » though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.« less

  1. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juan; Zhou, Yan-Feng; Li, Lan-Fen

    2006-11-01

    Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P4{sub 1}2{sub 1}2more » or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 50.08, c = 142.88 Å.« less

  2. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

    PubMed

    Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio

    2017-08-01

    Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .

  3. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized...

  4. RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS

    DOEpatents

    Hansford, D.L.; Raabe, E.W.

    1963-08-20

    Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)

  5. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... fatty acids. (a) Product. Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized...

  6. West Valley demonstration project: Alternative processes for solidifying the high-level wastes

    NASA Astrophysics Data System (ADS)

    Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.

    1981-10-01

    Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  7. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Pet'kov, Vladimir; Asabina, Elena; Loshkarev, Vladimir; Sukhanov, Maksim

    2016-04-01

    We have summarized our data and literature ones on the thermophysical properties and hydrolytic stability of Sr0.5Zr2(PO4)3 compound as a host NaZr2(PO4)3-type (NZP) structure for immobilization of 90Sr-containing radioactive waste. Absence of any polymorphic transformations on the temperature dependence of its heat capacity between 7 and 665 K is caused by the stability of crystalline Sr0.5Zr2(PO4)3. Calculated values of thermal conductivity coefficients at zero porosity in the range 298-673 K were 1.86-2.40 W·m-1 K-1. The compound may be classified as low thermal expanding material due to its average linear thermal expansion coefficient. Study of the hydrolytic stability in acid and alkaline media has shown that the relative mass fraction of Sr2+ ions, released into aggressive leaching media, didn't exceed 1% of the mass of sample. Soxhlet leaching studies have shown substantial resistance towards the release of Sr2+ ions into distilled water. Feeble sinterability constrains practical applications of NZP substances, that is why known in literature methods of Sr0.5Zr2(PO4)3 dense ceramics obtaining have been reviewed.

  8. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  9. Letter Report: LAW Simulant Development for Cast Stone Screening Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.

    2013-03-27

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A testing program was developed in fiscal year (FY) 2012 describing in some detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW (Westsik et al. 2012). Included within Westsik et al. (2012) is a section on the near-term needs to address Tri-Party Agreement Milestone M-062-40ZZ. The objectives of the testing program to be conducted in FY 2013 and FY 2014 are to: • Determine an acceptable formulation for the LAW Cast Stone waste form. • Evaluate sources of dry materials for preparing the LAW Cast Stone. • Demonstrate the robustness of the Cast Stone waste form for a range of LAW compositions. • Demonstrate the robustness of the formulation for variability in the Cast Stone process. • Provide Cast Stone contaminant release data for PA and risk assessment evaluations. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in pretreated LAW composition, waste stream concentrations, dry-materials sources, and mix ratios of waste feed to dry blend. A statistically designed test matrix will be used to evaluate the effects of these key parameters on the properties of the Cast Stone as it is initially prepared and after curing. The second phase of testing will focus on selection of a baseline Cast Stone formulation for LAW and demonstrating that Cast Stone can meet expected waste form requirements for disposal in the IDF. It is expected that this testing will use the results of the screening tests to define a smaller suite of tests to refine the composition of the baseline Cast Stone formulation (e.g. waste concentration, water to dry mix ratio, waste loading).« less

  10. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  11. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  12. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    PubMed

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Todd, Terry A.; Gray, Kimberly D.

    The U.S. Department of Energy, Office of Nuclear Energy has chartered an effort to develop technologies to enable safe and cost effective recycle of commercial used nuclear fuel (UNF) in the U.S. Part of this effort includes the evaluation of exiting waste management technologies for effective treatment of wastes in the context of current U.S. regulations and development of waste forms and processes with significant cost and/or performance benefits over those existing. This study summarizes the results of these ongoing efforts with a focus on the highly radioactive primary waste streams. The primary streams considered and the recommended waste formsmore » include: •Tritium separated from either a low volume gas stream or a high volume water stream. The recommended waste form is low-water cement in high integrity containers. •Iodine-129 separated from off-gas streams in aqueous processing. There are a range of potentially suitable waste forms. As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals. •Carbon-14 separated from LWR fuel treatment off-gases and immobilized as a CaCO3 in a cement waste form. •Krypton-85 separated from LWR and SFR fuel treatment off-gases and stored as a compressed gas. •An aqueous reprocessing high-level waste (HLW) raffinate waste which is immobilized by the vitrification process in one of three forms: a single phase borosilicate glass, a borosilicate based glass ceramic, or a multi-phased titanate ceramic [e.g., synthetic rock (Synroc)]. •An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel that is either included in the borosilicate HLW glass or is immobilized in the form of a metal alloy in the case of glass ceramics or titanate ceramics. •Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware that are washed and super-compacted for disposal or as an alternative Zr purification and reuse (or disposal as low-level waste, LLW) by reactive gas separations. •Electrochemical process salt HLW which is immobilized in a glass bonded Sodalite waste form known as the ceramic waste form (CWF). •Electrochemical process UDS and SS cladding hulls which are melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported.« less

  14. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  16. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM Evaluation of Soil Amendment Technologies at the Crooksville/RosevillePottery Area of Concern Rocky Mountain Remediation ServicesEnvirobond™ Process

    EPA Science Inventory

    RMRS developed the Envirobond™ process to treat heavy metals in soil.This phosphate-based technology consists of a proprietary powder and solution that binds with metals in contaminated waste. RMRS claims that the Envirobond™ process converts metal contaminants from their leach...

  17. Soil sulfur amendments suppress Selenium uptake by alfalfa and western wheatgrass

    Treesearch

    C. L. Mackowiak; M. C. Amacher

    2008-01-01

    Selenium (Se) is a potential soil contaminant in many parts of the world where it can pose a health risk to livestock and wildlife. Phosphate ore mining in Southeast Idaho has resulted in numerous waste rock dumps revegetated with forages to stabilize the dumps and support grazing. Alfalfa (Medicago sativa L.), smooth brome (Bromus inermis...

  18. The effect of Sinabung volcanic ash and rock phosphate nanoparticle on CEC (cation exchange capacity) base saturation exchange (K, Na, Ca, Mg) and base saturation at Andisol soils Ciater, West Java

    NASA Astrophysics Data System (ADS)

    Yuniarti, Anni; Arifin, Mahfud; Sofyan, Emma Trinurasi; Natalie, Betty; Sudirja, Rija; Dahliani, Dewi

    2018-02-01

    Andisol, soil orders which covers an upland area dominantly. The aim of this research is to know the effect between the ameliorant of Sinabung volcanic ashes with the ameliorant of rock phosphatenanoparticle towards CEC and base saturation exchange (K, Na, Ca, Mg) and the base saturation on Ciater's Andisols, West Java. A randomized complete block design (RCBD) factorial with two factors was used in this research. The first factor is the volcanic ash and the second factor is rock phosphate which consists of four levels each amount of 0%, 2.5%, 5%, 7.5% with three replications. The result showed that there was no interaction between volcanic ash and rock phosphate nanoparticle formed in first month and fourth month towards the improvement of CEC and saturation base exchange rate unless magnesium cation exchange increased in fourth month. There was independent effect of volcanic ash formed nanoparticles towards base saturation exchange increased for 5% dose. There was independent effect of rock phosphate formed nanoparticles towards base saturation exchange and increased for 5% dose. The dose combination of volcanic ashes 7.5% with phosphate rock, 5% increased the base saturation in the first month incubation.

  19. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.; Crawford, C.; Duignan, M.

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so itsmore » disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.« less

  20. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  1. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2017-04-01

    Rare earth elements (REEs) are commonly used proxies to reconstruct water chemistry and oxygen saturation during the formation of authigenic and biogenic phosphates in marine environments. In the modern ocean REEs exhibit a distinct pattern with enrichment of heavy REEs and strong depletion in cerium (Ce). The wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry has been very different in the Earth's past. However, both early and late diagenesis are known to affect REE signatures in phosphates altering primary marine signals. Herein we present a dataset of REE signatures in 38 grain specific LA-ICP-MS measurements of isolated phosphate and carbonate grains in three discrete rock samples. The phosphates mainly consist of authigenic phosphates and phosphatized microfossils that formed in a microbially mediated micro-milieu. In addition, isolated biogenic and reworked phosphatic grains are also present. The phosphates are emplaced in bioclastic grain- to packstones deposited on a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene Monterey event. The results reveal markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Grain shape and REE patterns together indicate that authigenic, biogenic and reworked phosphates have distinct REE patterns irrespective of the sample. Our study shows that while REE patterns in phosphates do reflect water chemistry during authigenesis, they are often already heavily altered during reworking, a process, which can occur in geologically negligible timespans. REE patterns are therefore more likely to reflect complex enrichment processes after their formation. Similarities in the REE patterns of reworked and biogenic phosphate further suggest that the frequently observed hat-shaped pattern in biogenic phosphates can result from increased middle REE (Neodymium to Holmium) scavenging during taphonomic processes prior to final deposition. Cluster analysis coupled with sedimentological and previously published geochemical data (bulk carbon isotope and X-ray fluorescence spectrometry) allowed the characterization of REE patterns of phosphates in terms of their formation conditions and depositional history, such as the distinction of phosphates formed in situ from reworked and transported phosphate grains.

  2. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.

    PubMed

    Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu

    2012-08-01

    The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.

  3. [Activity and thermal stability of acid phosphatase in homogenates of Amoeba proteus, acclimated to various temperatures].

    PubMed

    Sopina, V A

    2001-01-01

    Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.

  4. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  5. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.

    2016-05-01

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.

  6. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less

  7. Genetics Home Reference: DOLK-congenital disorder of glycosylation

    MedlinePlus

    ... called glycosylation, which attaches groups of sugar molecules (oligosaccharides) to proteins. Glycosylation changes proteins in ways that ... to dolichol phosphate in order to build the oligosaccharide chain. Once the chain is formed, dolichol phosphate ...

  8. E2P phosphoforms of Na,K-ATPase. I. Comparison of phosphointermediates formed from ATP and Pi by their reactivity toward hydroxylamine and vanadate.

    PubMed

    Fedosova, N U; Cornelius, F; Klodos, I

    1998-09-29

    The properties of Na,K-ATPase phosphoenzymes formed either from ATP in the presence of Mg2+ and Na+ or from Pi in the absence of alkali cations were investigated by biochemical methods and spectrofluorometry employing the styryl dye RH421. We characterized the phosphoenzyme species by their reaction to N-methyl hydroxylamine, which attacks specifically the protein-phosphate bond. We studied reactions of the phospho- and dephospho-enzymes with vanadate, which is a transition-state analogue of phosphate in this enzyme. On the basis of substantial differences in the properties of the phosphoenzyme species formed either from ATP or Pi, especially in their reactivity to N-methyl hydroxylamine, it is suggested that the two phosphoenzyme species are two subconformations of the E2P phosphoform. Analysis of the RH421 fluorescence responses under a variety of experimental conditions and comparing different enzyme sources suggested that the increase of RH421 fluorescence induced by inorganic phosphate in the absence of alkali cations is associated with the formation of the covalent acyl-phosphate bond.

  9. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  10. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7.

    PubMed

    Zhu, Hong-Ji; Sun, Li-Fan; Zhang, Yan-Fei; Zhang, Xiao-Li; Qiao, Jian-Jun

    2012-05-01

    To develop high-efficient biofertilizer, an environmental stress-tolerant phosphate-solubilizing microorganism (PSM) was isolated from agricultural wastes compost, and then applied to spent mushroom substrate (SMS). The isolate FL7 was identified as Pichia farinose with resistance against multiple environmental stresses, including 5-45°C temperature, 3-10 pH range, 0-23% (w/v) NaCl and 0-6M ammonium ion. Under the optimized cultivation condition, 852.8 mg/l total organic acids can be produced and pH can be reduced to 3.8 after 60 h, meanwhile, the soluble phosphate content reached 816.16 mg/l. The P. farinose was used to convert SMS to a phosphate biofertilizer through a semi-solid fermentation (SSF) process. After fermentation of 10 days, cell density can be increased to 5.6 × 10(8)CFU/g in biomass and pH in this medium can be decreased to 4.0. SMS biofertilizer produced by P. farinose significantly improved the growth of soybean in pot experiments, demonstrating a tremendous potential in agricultural application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System.

    PubMed

    Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-07-07

    An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.

  12. Health and Environmental Hazards of Electronic Waste in India.

    PubMed

    Borthakur, Anwesha

    2016-04-01

    Technological waste in the form of electronic waste (e-waste) is a threat to all countries. E-waste impacts health and the environment by entering the food chain in the form of chemical toxicants and exposing the population to deleterious chemicals, mainly in the form of polycyclic aromatic hydrocarbons and persistent organic pollutants. This special report tries to trace the environmental and health implications of e-waste in India. The author concludes that detrimental health and environmental consequences are associated with e-waste and the challenge lies in producing affordable electronics with minimum chemical toxicants.

  13. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at themore » Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.« less

  14. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO{sub 2} from rice husk by solid state reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com

    Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less

  15. Crystal-chemistry of alteration products of vitrified wastes: Implications on the retention of polluting elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterpenich, Jerome

    2008-07-01

    Alteration products of vitrified wastes coming from the incineration of household refuse (MSW) are described. Two vitrified wastes containing 50% and 70% of fly ash and a synthetic stained-glass with a composition close to that of an ancient glass (medieval stained-glass) were altered under different pH conditions (1, 5.5 corresponding to demineralized water and 10) during 181 days. Under acidic condition, the alteration layer is made of an amorphous hydrated silica gel impoverished in most of the initial elements. A minor phase MPO{sub 4} . nH{sub 2}O, where M represents Fe, Ti, Al, Ca and K cations, also constitutes themore » altered layer of the synthetic stained-glass. Under neutral and basic conditions, the altered layer is made of an amorphous hydrated silica gel and a crystallized calcium phosphate phase. The silica gel is depleted in alkalis and alkali-earth elements but contains significant amounts of aluminium, magnesium and transition elements, whereas the calcium phosphate is a hydroxylapatite-like phase with P-Si substitutions and a Ca/P ratio depending on the pH of the solution. This study shows: (i) the strong influence of pH conditions on the crystal-chemistry of alteration products and thus on the mechanisms of weathering resulting in different trapping of polluting elements, and (ii) that glass alteration does not necessary produce thermodynamically stable phases which has to be taken into account for the prediction of the long-term behavior.« less

  16. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  17. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    PubMed

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia.

    PubMed

    Jonsson, Kenneth B; Zahradnik, Richard; Larsson, Tobias; White, Kenneth E; Sugimoto, Toshitsugu; Imanishi, Yasuo; Yamamoto, Takehisa; Hampson, Geeta; Koshiyama, Hiroyuki; Ljunggren, Osten; Oba, Koichi; Yang, In Myung; Miyauchi, Akimitsu; Econs, Michael J; Lavigne, Jeffrey; Jüppner, Harald

    2003-04-24

    Mutations in fibroblast growth factor 23 (FGF-23) cause autosomal dominant hypophosphatemic rickets. Clinical and laboratory findings in this disorder are similar to those in oncogenic osteomalacia, in which tumors abundantly express FGF-23 messenger RNA, and to those in X-linked hypophosphatemia, which is caused by inactivating mutations in a phosphate-regulating endopeptidase called PHEX. Recombinant FGF-23 induces phosphaturia and hypophosphatemia in vivo, suggesting that it has a role in phosphate regulation. To determine whether FGF-23 circulates in healthy persons and whether it is elevated in those with oncogenic osteomalacia or X-linked hypophosphatemia, an immunometric assay was developed to measure it. Using affinity-purified, polyclonal antibodies against [Tyr223]FGF-23(206-222)amide and [Tyr224]FGF-23(225-244)amide, we developed a two-site enzyme-linked immunosorbent assay that detects equivalently recombinant human FGF-23, the mutant form in which glutamine is substituted for arginine at position 179 (R179Q), and synthetic human FGF-23(207-244)amide. Plasma or serum samples from 147 healthy adults (mean [+/-SD] age, 48.4+/-19.6 years) and 26 healthy children (mean age, 10.9+/-5.5 years) and from 17 patients with oncogenic osteomalacia (mean age, 43.0+/-13.3 years) and 21 patients with X-linked hypophosphatemia (mean age, 34.9+/-17.2 years) were studied. Mean FGF-23 concentrations in the healthy adults and children were 55+/-50 and 69+/-36 reference units (RU) per milliliter, respectively. Four patients with oncogenic osteomalacia had concentrations ranging from 426 to 7970 RU per milliliter, which normalized after tumor resection. FGF-23 concentrations were 481+/-528 RU per milliliter in those with suspected oncogenic osteomalacia and 353+/-510 RU per milliliter (range, 31 to 2335) in those with X-linked hypophosphatemia. FGF-23 is readily detectable in the plasma or serum of healthy persons and can be markedly elevated in those with oncogenic osteomalacia or X-linked hypophosphatemia, suggesting that this growth factor has a role in phosphate homeostasis. FGF-23 measurements might improve the management of phosphate-wasting disorders. Copyright 2003 Massachusetts Medical Society

  19. Topological analysis of void space in phosphate frameworks: Assessing storage properties for the environmentally important guest molecules and ions: CO 2, H 2O, UO 2, PuO 2, U, Pu, Sr 2+, Cs +, CH 4, and H 2

    DOE PAGES

    Cramer, Alisha J.; Cole, Jacqueline M.

    2016-06-27

    The entrapment of environmentally important materials to enable containment of polluting wastes from industry or energy production, storage of alternative fuels, or water sanitation, is of vital and immediate importance. Many of these materials are small molecules or ions that can be encapsulated via their adsorption into framework structures to create a host-guest complex. This is an ever-growing field of study and, as such, the search for more suitable porous materials for environmental applications is fundamental to progress. However, many industrial areas that require the use of adsorbents are fraught with practical challenges such as high temperatures, rapid gas expansion,more » radioactivity, or repetitive gas cycling, that the host material must withstand. Inorganic phosphates have a proven history of rigid structures, thermal stability, and are suspected to possess good resistance to radiation over geologic time scales. Furthermore, various experimental studies have established their ability to adsorb small molecules, such as water. In light of this, all known crystal structures of phosphate frameworks with meta- (P 3O 9) or ultra- (P 5O 14) stoichiometries are combined in a data-mining survey together with all theoretically possible structures of Ln aP bO c (where a, b, c are any integer, and Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, or Tm) that are statistically likely to form. Topological patterns within these framework structures are used to assess their suitability for hosting a variety of small guest molecules or ions that are important for environmental applications: CO 2, H 2O, UO 2, PuO 2, U, Pu, Sr 2+, Cs +, CH 4 and H 2. A range of viable phosphate-based host-guest complexes are identified from this data-mining and pattern-based structural analysis. Moreover, distinct topological preferences for hosting such guests are found, and metaphosphate stoichiometries are generally preferred over ultraphosphate configurations.« less

  20. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples collected in the spring 2016. The highest concentrations for most of the elements were measured in summer 2016 except for the Ca, Sn, Zn, Cd, Sb, and Ag which concentrations were the highest in the winter time 2015. Even though the seasonal changes in metallic and/or potentially valuable elements concentrations are visible their overall content is low. In addition they are dispersed within crystalline and amorphous phase, therefore it seems to be inappropriate to consider this material as a source of valuable elements. Due to high phosphorus content in the fly ash, equal to the low grade phosphorus ore, both in the form of phosphate minerals as well as dispersed within minerals can be treated as a potential source of this critical raw material. Acknowledgment: The study was supported by Polish National Science Centre. NCN grant No UMO-2014/15/B/ST10/04171

  1. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    PubMed

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes

    NASA Astrophysics Data System (ADS)

    Seyfoori, A.; Mirdamadi, Sh.; Khavandi, A.; Raufi, Z. Seyed

    2012-11-01

    Degradation behavior of coated magnesium alloys is among most prominent factors for their biomedical applications. In this study, bio-corrosion behavior of micro-arc oxidized magnesium AZ31 alloys formed in silicate and phosphate baths was investigated in r-SBF medium. For this purpose polarization behavior and open circuit profile of the coated samples were achieved by electrochemical and immersion tests, respectively. Moreover, the morphology and composition of the coatings were evaluated before and after immersion test using scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The results showed that the phosphate film had better corrosion resistance and greater thickness than silicate film and, in turn, the lesser degradability in SBF solution, so that Ca2+ and PO43- containing compounds were more abundant on silicate film than phosphate film. Moreover phosphate film had greater surface roughness and lesser hydrophilic nature.

  4. Calcium phosphate coating on magnesium alloy for modification of degradation behavior

    NASA Astrophysics Data System (ADS)

    Cui, Fu-zhai; Yang, Jing-xin; Jiao, Yan-peng; Yin, Qing-shui; Zhang, Yu; Lee, In-Seop

    2008-06-01

    Magnesium alloy has similar mechanical properties with natural bone, but its high susceptibility to corrosion has limited its application in orthopedics. In this study, a calcium phosphate coating is formed on magnesium alloy (AZ31) to control its degradation rate and enhance its bioactivity and bone inductivity. Samples of AZ31 plate were placed in the supersaturated calcification solution prepared with Ca(NO3)2, NaH2PO4 and NaHCO3, then the calcium phosphate coating formed. Through adjusting the immersion time, the thickness of uniform coatings can be changed from 10 to 20 μm. The composition, phase structure and morphology of the coatings were investigated. Bonding strength of the coatings and substrate was 2-4 MPa in this study. The coatings significantly decrease degradation rate of the original Mg alloy, indicating that the Mg alloy with calcium phosphate coating is a promising degradable bone material.

  5. Waste forms, packages, and seals working group summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhar, N.

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.

  6. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin

    2016-12-01

    The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tumour-associated osteomalacia and hypoglycaemia in a patient with prostate cancer: is Klotho involved?

    PubMed

    Latifyan, Sofiya Bedo; Vanhaeverbeek, Michel; Klastersky, Jean

    2014-11-17

    Tumour-associated osteomalacia is a paraneoplastic syndrome caused by renal phosphate wasting, leading to severe hypophosphataemia. Excess of circulating fibroblast growth factor 23 (FGF23) is the likely cause, acting via the FGF23/α-Klotho coreceptor, a critical regulator of phosphate metabolism. The other possible effects of that complex in humans are still under investigation. We present a case of an 84-year-old Belgian man, presenting prostate cancer with bone metastases. From June 2010 to March 2013, he presented three episodes of disease progression. From January 2012, the patient developed a progressively marked dorsal kyphosis with significant hypophosphataemia. The calculated TRP (tubular reabsorption of phosphate) was decreased and the FGF23 increased. Mid-March 2013, the patient died after a profound unconsciousness due to hypoglycaemia with hypothermia. We hypothesised that the two paraneoplastic manifestations of this patient (tumour-associated osteomalacia and refractory hypoglycaemia) were due to one cause chain with two main nodes-FGF23 and its coreceptor Klotho.. 2014 BMJ Publishing Group Ltd.

  9. The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents.

    PubMed

    Zhao, Yaqin; Yue, Qinyan; Li, Qian; Gao, Baoyu; Han, Shuxin; Yu, Hui

    2010-10-15

    In this research, various red mud granular adsorbents (RMGA), which were made from red mud--a kind of waste residue from the alumina industry, were manufactured under different sintering temperatures (ST). For the purpose of investigating the regeneration characteristics of them for phosphate removal, systematic experiments were carried out, including adsorption, desorption (using different desorption reagents) and resorption tests. When RMGA were desorbed by HCl solutions, the desorption efficiencies were relatively higher due to acid erosion, but the corresponding resorption capacities became small owing to extraction of effective components. Although RMGA rarely released phosphate in desorption process when being desorbed by deionised water, it performed well on resorption of phosphate afterwards. It was assumed that the lower pH in resorption process, which was caused by the reductive release of CaO into solution, contributed to a weaker competition of OH(-) on phosphate resorption. When NaOH solution was employed as the desorption reagent, resorption capacities of RMGA were relatively larger and increased with the increase of NaOH concentration, because OH(-) might ameliorate the chemical composition on the surface of RMGA potentially. In addition, several RMGA manufactured under lower ST obtained larger resorption capacities than their original adsorption capacities, because of the comparatively unstable crystal structure which led to a stronger amelioration on them. 2010 Elsevier B.V. All rights reserved.

  10. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  11. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  12. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  13. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    DOE PAGES

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; ...

    2015-12-23

    We can improve mitigation of hazardous and radioactive waste through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. But, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granularmore » samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. Finally, X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.« less

  14. Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice.

    PubMed

    Messner, Christoph B; Driscoll, Paul C; Piedrafita, Gabriel; De Volder, Michael F L; Ralser, Markus

    2017-07-11

    The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.

  15. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less

  16. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  17. Final report on cermet high-level waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  18. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the abilitymore » of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).« less

  19. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    NASA Astrophysics Data System (ADS)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  20. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    PubMed

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  1. Degradation processes of reinforced concretes by combined sulfate–phosphate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secco, Michele, E-mail: michele.secco@unipd.it; Department of Civil, Environmental and Architectural Engineering; Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk

    2015-02-15

    A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associatedmore » with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.« less

  2. Yielding Unexpected Results: Precipitation of Ba[subscript3](PO[subscript4])[subscript2] and Implications for Teaching Solubility Principles in the General Chemistry Curriculum

    ERIC Educational Resources Information Center

    Hazen, Jeffery L.; Cleary, David A.

    2014-01-01

    Precipitation of barium phosphate from aqueous solutions of a barium salt and a phosphate salt forms the basis for a number of conclusions drawn in general chemistry. For example, the formation of a solid white precipitate is offered as evidence that barium phosphate is insoluble. Furthermore, analysis of the supernatant is used to illustrate the…

  3. The contribution of phosphate–phosphate repulsions to the free energy of DNA bending

    PubMed Central

    Range, Kevin; Mayaan, Evelyn; Maher, L. J.; York, Darrin M.

    2005-01-01

    DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ∼30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle. PMID:15741179

  4. Long-term treatment with tenofovir in Asian-American chronic hepatitis B patients is associated with abnormal renal phosphate handling.

    PubMed

    Tien, Connie; Xu, Jason J; Chan, Linda S; Chang, Mimi; Lim, Carolina; Lee, Sue; Huh, Brian; Shinada, Shuntaro; Bae, Ho S; Fong, Tse-Ling

    2015-02-01

    Increased risk of defective urinary phosphate reabsorption and osteoporosis has been reported in HIV and chronic hepatitis B (CHB) patients treated with tenofovir disoproxil fumarate (TDF). Goals of this study were to evaluate the prevalence of renal phosphate wasting and abnormal bone mineral density in CHB patients taking TDF compared to CHB patients treated with entecavir (ETV) and untreated CHB patients. This is a cross-sectional study of 146 consecutive Asian-American CHB patients who were treatment naïve (n = 60) or treated with either TDF (n = 42) or ETV (n = 44). Proximal tubular handling of phosphate was assessed by the maximal rate of tubular reabsorption of phosphate (TmPO4) divided by glomerular filtration rate (GFR) (TmPO4/GFR). Bone mineral density (BMD) was measured using dual X-ray absorptiometry. TmPO4/GFR was similar among CHB patients treated with TDF compared to untreated patients and patients taking ETV. However, among patients treated with ≥18 months of TDF or ETV, prevalence of abnormal TmPO4/GFR was higher among patients treated with TDF compared to ETV (48.5 % (16/33) vs. 12.5 % (3/24), p = 0.005). Overall prevalence of osteoporosis in this cohort of CHB patients was 14 %, with no significant difference between the three groups. Renal phosphate handling did not correlate with osteoporosis. Chronic hepatitis B patients treated with ≥18 months of TDF experienced an increased risk of proximal tubular dysfunction. TDF did not increase the risk of osteoporosis. Longitudinal studies are needed to confirm these findings.

  5. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  6. Enzymes in Glycolysis and the Citric Acid Cycle in the Yeast and Mycelial Forms of Paracoccidioides brasiliensis

    PubMed Central

    Kanetsuna, Fuminori; Carbonell, Luis M.

    1966-01-01

    Kanetsuna, Fuminori (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela), and Luis M. Carbonell. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis. J. Bacteriol. 92:1315–1320. 1966.—Enzymatic activities in glycolysis, the hexose monophosphate shunt, and the citric acid cycle in cell-free extracts of the yeast and mycelial forms of Paracoccidioides brasiliensis were examined comparatively. Both forms have the enzymes of these pathways. Activities of glucose-6-phosphate dehydrogenase and malic dehydrogenase of the mycelial form were higher than those of the yeast form. Another 15 enzymatic activities of the mycelial form were lower than those of the yeast form. The activity of glyceraldehyde-3-phosphate dehydrogenase showed the most marked difference between the two forms, its activity in the mycelial form being about 20% of that in the yeast form. PMID:5924267

  7. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  8. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  9. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  10. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  11. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  12. Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Haijun; Zhang, Patrick; Jin, Zhen

    Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE cations. Finally, interaction of these two opposite effects determined the REE distribution between leaching solution and residue.« less

  13. Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production

    DOE PAGES

    Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...

    2017-08-01

    Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE cations. Finally, interaction of these two opposite effects determined the REE distribution between leaching solution and residue.« less

  14. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    PubMed

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  15. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expectedmore » to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containment and waste form performance. However, continued research is necessitated by the need to understand: the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties, and the associated impact on contaminant release. Recent reviews conducted by the National Academies of Science recognized the efficacy of cementitious materials for waste isolation, but further noted the significant shortcomings in our current understanding and testing protocol for evaluating the performance of various formulations.« less

  16. Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.

    A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less

  17. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less

  18. Assessment of nitrogen and phosphate balance and the roles of bacteria and viruses at the water-sediment interface in the Allal El Fassi reservoir (Morocco).

    PubMed

    Alaoui-Mhamdi, Mohamed; Dhib, Amel; Bouhaddioui, Abderrahim; Ziadi, Boutheina; Turki, Souad; Aleya, Lotfi

    2014-09-01

    Balances of nitrogen and phosphate were studied in the Allal El Fassi reservoir (Morocco); the results showing that nitrogen input (296 mg m(-2) d(-1)) was 161% higher than output (183 mg m(-2) d(-1)). Phosphate input (35.65 mg m(-2) d(-1)) was 865% higher than output (4.12 mg m(-2) d(-1)), causing a progressive increase in the internal phosphate stock. Sedimentation flux was equally high (53.80 and 18 mg m(-2) d(-1)) for both nitrogen and phosphate input, mainly from the Sebou River and in particulate form which immediately settles upon arrival in the reservoir. The release of nitrogen and phosphate from the sediment (5.40 and 1.15 mg m(-2) d(-1), respectively) depended on physicochemical and biological (bacteria and viruses) variability and the calcareous nature of the catchment basin. Calcium-bound phosphate prevailed in the reservoir. Drastic control of phosphate input is suggested to avoid accumulation of calcium-bound phosphate which may dissociate and thereby contribute to eutrophication.

  19. Double coating protection of Nd-Fe-B magnets: Intergranular phosphating treatment and copper plating

    NASA Astrophysics Data System (ADS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-12-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd-Fe-B magnets. In other words, the intergranular region of sintered Nd-Fe-B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd-Fe-B. The morphology and corrosion resistance of the phosphated sintered Nd-Fe-B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd-Fe-B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd-Fe-B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd-Fe-B is significantly better than that with a single phosphate film or single plating protection.

  20. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Williams, B. D.; Snyder, Michelle M. V.

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting themore » U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption K d (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.« less

  1. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  2. Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases.

    PubMed

    Cariani, L; Thomas, L; Brito, J; del Castillo, J R

    2004-01-01

    This paper describes a rapid and sensitive method to determine inorganic phosphate, even in the presence of labile organic phosphate compounds and large quantities of proteins. The method eliminates the use of sodium arsenite, a highly toxic compound, substituting bismuth citrate for it to stabilize the phosphomolybdic acid complex formed during the interaction of inorganic phosphate and molybdate reduced by ascorbic acid. This method has also been adapted to microplates and has been used to determine the activities of Na/K ATPase and alkaline phosphatase of intestinal basolateral and luminal plasma membranes.

  3. Effect of Phosphate on the Oxidation of Hydroxysulfate Green Rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benali, Omar; Abdelmoula, Mustapha; Genin, Jean-Marie R.

    During Hydroxysulfate green rust GR(SO{sub 4}{sup 2}) oxidation, lepidocrocite and goethite were formed. The oxidation of GR(SO{sub 4}{sup 2-}) in the presence of phosphate ions, also involved the formation of poorly crystallized lepidocrocite but not that of goethite. The dissolution of lepidocrocite is inhibited by adsorption of phosphate ions as confirmed by X-ray photoelectron spectroscopy. The formation of the poorly crystallized protective layer against corrosion is effectively due to the phosphate ions which adsorb on the surface of lepidocrocite, and prevents it to turn into a well crystallized oxide.

  4. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  5. The Phosphate Binder Ferric Citrate and Mineral Metabolism and Inflammatory Markers in Maintenance Dialysis Patients: Results From Prespecified Analyses of a Randomized Clinical Trial

    PubMed Central

    Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.

    2016-01-01

    Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open-label study, few peritoneal dialysis patients. Conclusions Ferric citrate was associated with similar phosphorus control compared to active control, with similar effects on markers of bone and mineral metabolism in dialysis patients. There was no evidence of protein-energy wasting/inflammation or aluminum toxicity, and fewer participants randomly assigned to ferric citrate had serious adverse events. Ferric citrate is an effective phosphate binder with a safety profile comparable to sevelamer and calcium acetate. PMID:25958079

  6. Anaerobic Digestion Assessment for Contingency Base Waste

    DTIC Science & Technology

    2014-05-01

    elements or molecules serve as the electron acceptor. Organisms serve as biological catalysts, using their enzymes to control these reactions for their...contingency bases. Contained reactors used for these applications allow for control of air contaminants. Additionally, as energy is a critical need for...enriched fertilizer product containing nitrogen, phosphate , and potassium (NPK). The digestate could also be used for a food supplement for farm animals

  7. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materialsmore » made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.« less

  8. Recapturing nutrients from dairy waste using biochar

    NASA Astrophysics Data System (ADS)

    Sarkhot, D.; Ghezzehei, T. A.; Berhe, A. A.

    2009-12-01

    Biochar or biomass derived black carbon is known to be highly resistant to decomposition with half-life periods ranging from hundreds of years to millennia. It is also reported to enhance soil productivity due to high nutrient retention and favorable effects on soil pH, water retention capacity as well as microbial population. Brazilian Terra Preta soils have shown the potential of biochar for long-term carbon sequestration capacity and productivity of soil and many researchers have now focused on utilizing this phenomenon to create fertile, carbon-rich soils, called Terra Preta Nova. Although the highly adsorptive nature of biochar is well characterized, the potential for using biochar in environmental cleanup efforts is relatively unexplored. Dairy waste is a source of significant water pollution because it introduces excess nutrients such as phosphates and nitrates into the soil and water system. Since many soils have limited capacity to retain nitrate and phosphate, especially for long periods of time, the utility of dairy waste manure to enhance soil fertility and nutrient availability to plants is limited. Here, we present results from a project that we started to determine the potential of biochar to recover the excess nutrients from dairy flushed manure. In this initial study, a commercially available biochar amendment was ground and used in a batch sorption experiment with the dairy flushed manure from a local dairy in Merced, California. Four manure dilutions viz. 10, 25, 50 and 100%, and three shaking times, viz. 1, 12 and 24 hours were used for this study. We then calculated the amount of ammonia, nitrate and phosphate adsorbed by the biochar using differences in nutrient concentrations before and after the sorption experiment. Biochar showed significant capacity of adsorbing these nutrients, suggesting a potential for controlling the dairy pollution. The resulting enriched biochar can potentially act as a slow release fertilizer and enhance soil productivity as well as increasing the long-term carbon sequestration potential of soils. We are currently initiating further research to determine the desorption potenial of the biochar sorbed nutrients in soil.

  9. LEACHING BOUNDARY MOVEMENT IN SOLIDIFIED/STABILIZED WASTE FORMS

    EPA Science Inventory

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indica- tors. The movement of the leach...

  10. Canister, Sealing Method And Composition For Sealing A Borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  11. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere

    NASA Astrophysics Data System (ADS)

    Glindemann, Dietmar; Edwards, Marc; Schrems, Otto

    Phosphine (PH 3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften83(1996a)131; Atmos. Environ. 37(2003)24 29). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds. Here, we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) for 5 s to a spark induced by microwave. The gas product analyzed by gas chromatography contained phosphine (yield up to 0.6 g kg -1 phosphate P) and methylphosphine (CH 3)PH 2 (yield up to 0.02 g kg -1 phosphate P). We suggest a plasma-chemical formation mechanism where organic compounds or methane or secondary hydrogen thereof reduce phosphate to phosphine of which a small fraction can subsequently react with methyl radicals to form methylphosphine. A small yield of 6 mg phosphine per kg phosphate P was even obtained in methane free medium, by simple plasmatic recombination of inorganic phosphorus. We believe that methane and hydrogen are useful model substances of pyrolytic gases with high reducing power which may form if lightning strikes biomass, soil and aerosol. These results suggest evidence that phosphine and methylphosphine (detectable in the field by intense garlic odor) are produced when atmospheric lightning strikes the ground or aerosol which is containing oxidized forms of phosphorus and chemical reductants. Additional reviewed data show that laboratory lightning was able to reduce a much more significant portion of phosphate to phosphite (up to 25% yield), methylphosphonic acid (up to 8.5% yield) and traces of hypophosphite in a matter of seconds.

  12. Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation

    NASA Astrophysics Data System (ADS)

    Ortega, Luis H.; Kaminski, Michael D.; Zeng, Zuotao; Cunnane, James

    2013-07-01

    In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 103 kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.

  13. Investigation of Tank 241-AN-101 Floating Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Douglas P.; Meznarich, H. K.

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less

  14. Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations

    DOE PAGES

    Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; ...

    2014-11-01

    Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.

  15. Atom-efficient route for converting incineration ashes into heavy metal sorbents.

    PubMed

    Chiang, Yi Wai; Santos, Rafael M; Vanduyfhuys, Kenneth; Meesschaert, Boudewijn; Martens, Johan A

    2014-01-01

    Bottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates. Two main mineral phases were formed: katoite and sodium aluminum phosphate silicate hydrate. These mineral alterations are accompanied by a tenfold increase in specific surface area and a twofold reduction in average particle size. Performance evaluation of the new sorbents for Cd(2+), Zn(2+), and Pb(2+) adsorption at pH5 indicates sorption capacities of 0.06, 0.08, and 0.22 mmol g(-1), respectively, which are similar to those of natural adsorbents and synthetic materials obtained from more demanding synthesis conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Methods and system for subsurface stabilization using jet grouting

    DOEpatents

    Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.

    1999-01-01

    Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.

  17. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite

    PubMed Central

    Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R.; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M.

    2015-01-01

    Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the ‘PHO regulon’ in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796

  18. Development of Alternative Technetium Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior ofmore » a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.« less

  19. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  20. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilonmore » metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).« less

  1. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of Phosphate on the Self-Assembly of Peptide EMK16-II

    NASA Astrophysics Data System (ADS)

    Zou, Da-Wei; Tie, Zuo-Xiu; Qin, Meng; Lu, Chun-Mei; Wang, Wei

    2009-08-01

    The ionic-complementary peptide EMK16-II is used to investigate the effects of hydrophobic and electrostatic interactions on the self-assembling process by atomic force microscopy and circular dichroism spectra. It is found that the increase of hydrophobicity of the peptides promotes the aggregation of fibrils in pure water. The effects of phosphate with different concentrations on electrostatic interactions are also investigated. It is found that the self-assembling process is enhanced at a low concentration of phosphate and more ordered fibrillar aggregates are formed. When the concentration of phosphate increases to a certain value (9 mM), only a few fibrils are found to be formed. No fibrils but amorphous aggregates exist when the concentration further increases. A physical interpretation is presented such that one divalent anion can interact with two positively charged residual groups in different peptide molecules like a “bridge" which destroys the ionic-complementary feature and largely inhibits the formation of ordered fibrils.

  2. Direct observation of the oxidation of DNA bases by phosphate radicals formed under radiation: a model of the backbone-to-base hole transfer.

    PubMed

    Ma, Jun; Marignier, Jean-Louis; Pernot, Pascal; Houée-Levin, Chantal; Kumar, Anil; Sevilla, Michael D; Adhikary, Amitava; Mostafavi, Mehran

    2018-05-30

    In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.

  3. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less

  4. Enhanced attenuation of septic system phosphate in noncalcareous sediments.

    PubMed

    Robertson, W D

    2003-01-01

    Review of phosphate behavior in four mature septic system plumes on similar textured sand has revealed a strong correlation between carbonate mineral content and phosphate concentrations. A plume on calcareous sand (Cambridge site, 27 wt % CaCO3 equiv.) has proximal zone PO4 concentrations (4.8 mg/L P average) that are about 75% of the septic tank effluent value, whereas three plumes on noncalcareous sand (Muskoka, L. Joseph, and Nobel sites, <1 wt % CaCO3 equiv.) have proximal zone phosphate concentrations (<0.1 mg/L P) that are consistently less than 2% of the effluent values. Phosphate attenuation at the noncalcareous sites appears to be an indirect result of the development of acidic conditions (site average pH 3.5 to 5.9) and elevated Al concentrations (up to 24 mg/L), which subsequently causes the precipitation of Al-P minerals such as variscite (AlPO4 x 2H2O). This is supported by scanning electron microscope analyses, which show the widespread occurrence of (Al+P)--rich secondary mineral coatings on sand grains below the infiltration beds. All of these septic systems are more than 10 years old, indicating that these attenuation reactions have substantial longevity. A field lysimeter experiment demonstrated that this reaction sequence can be readily incorporated into engineered waste water treatment systems. We feel this important P removal mechanism has not been adequately recognized, particularly for its potential significance in reducing P loading from septic systems in lakeshore environments.

  5. Octreotide Is Ineffective in Treating Tumor-Induced Osteomalacia: Results of a Short-Term Therapy.

    PubMed

    Ovejero, Diana; El-Maouche, Diala; Brillante, Beth A; Khosravi, Azar; Gafni, Rachel I; Collins, Michael T

    2017-08-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which unregulated hypersecretion of fibroblast growth factor 23 (FGF23) by phosphaturic mesenchymal tumors (PMT) causes renal phosphate wasting, hypophosphatemia, and osteomalacia. The resulting mineral homeostasis abnormalities and skeletal manifestations can be reversed with surgical resection of the tumor. Unfortunately, PMTs are often difficult to locate, and medical treatment with oral phosphate and vitamin D analogues is either insufficient to manage the disease or not tolerated. Octreotide has been proposed as a potential treatment for TIO due to the presence of somatostatin receptors (SSTR) on PMTs; however, the role of somatostatin signaling in PMTs and the efficacy of treatment of TIOs with somatostatin analogues is not clear. In an effort to evaluate the efficacy of octreotide therapy in TIO, five subjects with TIO were treated with octreotide for 3 days. Blood intact FGF23, phosphate, and 1,25(OH) 2 D 3 , and tubular reabsorption of phosphate (TRP) were measured at frequent time points during treatment. Octreotide's effects were assessed by comparing group means of the biochemical parameters at each time-point to mean baseline values. There were no significant changes in blood phosphate, FGF23, 1,25(OH) 2 D 3 , or TRP during octreotide treatment, consistent with a lack of efficacy of octreotide in treating TIO. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  6. 10 CFR 60.17 - Contents of site characterization plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...

  7. 10 CFR 60.17 - Contents of site characterization plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...

  8. 10 CFR 60.17 - Contents of site characterization plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...

  9. 10 CFR 60.17 - Contents of site characterization plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...

  10. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    NASA Astrophysics Data System (ADS)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  11. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase.

    PubMed

    Liyasova, Mariya S; Schopfer, Lawrence M; Lockridge, Oksana

    2013-03-25

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of "aerotoxic syndrome", affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase

    PubMed Central

    Liyasova, Mariya S.; Schopfer, Lawrence M.; Lockridge, Oksana

    2012-01-01

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of “aerotoxic syndrome”, affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. PMID:22898212

  13. Potentials and limitations of microorganisms as renal failure biotherapeutics

    PubMed Central

    Jain, Poonam; Shah, Sapna; Coussa, Razek; Prakash, Satya

    2009-01-01

    Renal insufficiency leads to uremia, a complicated syndrome. It thus becomes vital to reduce waste metabolites and regulate water and electrolytes in kidney failure. The most common treatment of this disease is either dialysis or transplantation. Although these treatments are very effective, they are extremely costly. Recently artificial cells, microencapsulated live bacterial cells, and other cells have been studied to manage renal failure metabolic wastes. The procedure for microencapsulation of biologically active material is well documented and offers many biomedical applications. Microencapsulated bacteria have been documented to efficiently remove urea and several uremic markers such as ammonia, creatinine, uric acid, phosphate, potassium, magnesium, sodium, and chloride. These bacteria also have further potential as biotherapeutic agents because they can be engineered to remove selected unwanted waste. This application has enormous potential for removal of waste metabolites and electrolytes in renal failure as well as other diseases such as liver failure, phenylketonuria, and Crohn’s disease, to name a few. This paper discusses the various options available to date to manage renal failure metabolites and focuses on the potential of using encapsulated live cells as biotherapeutic agents to control renal failure waste metabolites and electrolytes. PMID:19707412

  14. The influence of sawmill wood wastes on the distribution and population of macroinvertebrates at Benin River, Niger Delta area, Nigeria.

    PubMed

    Arimoro, Francis O; Osakwe, Emeka I

    2006-05-01

    The impact of sawmill wood wastes on the distribution of benthic macroinvertebrates at the Sapele section of Benin River, Niger Delta, Nigeria, was investigated from March 2005 to August 2005. A total of 434 individuals were collected by kick-sampling method, representing 21 taxa of benthic macroinvertebrates. Three stations, 1, 2, and 3, were selected from upstream of the site, receiving wood wastes discharge, the impacted site and its down stream, respectively. Among the water quality variables, conductivity, dissolved oxygen, biochemical oxigen demand (BOD(5)), nitrate-nitrogen, phosphate-phosphorus, transparency, and alkalinity were significantly different (P<0.05) among the stations. Orthogonal comparison by Duncan's multiple range test showed that station 2 (the impacted site) was the cause of the difference. More sensitive species such as Ephemeroptera or Plecoptera were completely absent from station 2, the impacted site. Species abundance was similar in station 1 and 3, indicating that the wood wastes must have adversely affected the distribution of these macroinvertebrates, especially the intolerant species. The wood waste discharge not only altered the water chemistry, but also stimulated the abundance of less-sensitive macroinvertebrate species.

  15. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  16. The Path of Carbon in Photosynthesis XVIII. The Identification of Nucleotide Coenzymes

    DOE R&D Accomplishments Database

    Buchanan, J. G.; Lynch, V. H.; Benson, A. A.; Calvin, M.; Bradley, D. F.

    1953-01-19

    The radioactive compounds to be observed when algae or green leaves are allowed to photosynthesize in C{sup 14}O{sub 2} for short periods are almost all phosphorylated derivatives of sugars. Of these, phosphate esters of trioses, sedoheptulose and fructose are the first to incorporate C{sup 14} followed closely by ribulose diphosphate, glucose-6-phosphate and a phosphate of mannose. It has been noted, in earlier papers of this series, that on radiograms of the products of photosynthesis, a dark area appeared in a position occupied by no known sugar phosphate and which gave glucose on acid hydrolysis or on treatment with a phosphatase preparation. This has hitherto been referred to as an 'unknown glucose phosphate'. It was found that this substance was more labile to acid than glucose-l-phosphate, itself a readily hydrolysable phosphate, and furthermore that other labile glucose derivatives were formed as intermediates during the acid hydrolysis. Accumulation of labeled glucose in this area precedes that in sucrose and suggests its synthetic relationship to sucrose phosphate synthesis.

  17. Organic materials as templates for the formation of mesoporous inorganic materials and ordered inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ziegler, Christopher R.

    Hierarchically structured inorganic materials are everywhere in nature. From unicellular aquatic algae such as diatoms to the bones and/or cartilage that comprise the skeletal systems of vertebrates. Complex mechanisms involving site-specific chemistries and precision kinetics are responsible for the formation of such structures. In the synthetic realm, reproduction of even the most basic hierarchical structure effortlessly produced in nature is difficult. However, through the utilization of self-assembling structures or "templates", such as polymers or amphiphilic surfactants, combined with some favorable interaction between a chosen inorganic, the potential exists to imprint an inorganic material with a morphology dictated via synthetic molecular self-assembly. In doing so, a very basic hierarchical structure is formed on the angstrom and nanometer scales. The work presented herein utilizes the self-assembly of either surfactants or block copolymers with the desired inorganic or inorganic precursor to form templated inorganic structures. Specifically, mesoporous silica spheres and copolymer directed calcium phosphate-polymer composites were formed through the co-assembly of an organic template and a precursor to form the desired mesostructured inorganic. For the case of the mesoporous silica spheres, a silica precursor was mixed with cetyltrimethylammonium bromide and cysteamine, a highly effective biomimetic catalyst for the conversion of alkoxysilanes to silica. Through charge-based interactions between anionic silica species and the micelle-forming cationic surfactant, ordered silica structures resulted. The incorporation of a novel, effective catalyst was found to form highly condensed silica spheres for potential application as catalyst supports or an encapsulation media. Ordered calcium phosphate-polymer composites were formed using two routes. Both routes take advantage of hydrogen bonding and ionic interactions between the calcium and phosphate precursors and the self-assembling copolymer template. Some evidence suggests that the copolymer morphology remained in the composite despite the known tendency for calcium phosphates to form highly elongated crystalline structures with time, as is commonly the case for synthetic hydroxyapatites. Such materials have obvious application as bone grafts and bone coatings due, in part, to the osteoconductive nature of calcium phosphate as well as to the mesoporosity generated through the cooperative assembly of the block copolymer and the inorganic. Future work, including potential experiments to determine osteoconductivity of as-prepared composites, is also presented herein.

  18. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus , a New Twist on ATP Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.

    Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show thatS. aciditrophicususes an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.« less

  19. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus , a New Twist on ATP Formation

    DOE PAGES

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; ...

    2016-08-16

    Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show thatS. aciditrophicususes an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.« less

  20. Campanian-Maastrichtian phosphorites of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Bassam, K. S.; Al-Dahan, A. A.; Jamil, A. K.

    1983-08-01

    Bedded marine sedimentary phosphate rocks of Campanian-Maastrichtian age are exposed in the Western Desert of Iraq, forming part of the Tethyan phosphate province. The studied phosphorites are found in three horizons within carbonate rocks; they are mostly pelletal in texture, associated with bone fragments and detrital quartz grains, and cemented by calcite or chert. The mineralogy of the phosphate is dominated by carbonate-fluorapatite. The phosphate and the associated carbonate rocks are relatively enriched with Cr, Ni, Cu, Zn, V, and organic matter. The apatite is enriched with isotopically light carbon and heavy sulfur. The mode of phosphorite formation seems to have included syngenetic deposition of phosphate under reducing, slightly alkaline conditions in shallow marine environment. Decomposition of organic phosphatic remnants appear to have been the local source of phosphorus enrichment. However, the major tectonic and paleogeographic development of the Tethys Sea during Upper Cretaceous have probably played an important role in providing suitable setting for large scale formation of phosphorite.

Top