Science.gov

Sample records for phosphine oxides sulfides

  1. Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides

    PubMed Central

    Malysheva, Svetlana F; Artem’ev, Alexander V; Gusarova, Nina K; Belogorlova, Nataliya A; Albanov, Alexander I; Liu, C W

    2015-01-01

    Summary Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides) under aerobic and solvent-free conditions (80 °C, air, 7–30 h) to afford 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides in 70–93% yields. PMID:26664618

  2. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. PMID:26869216

  3. Phenylcarbazole and phosphine oxide/sulfide hybrids as host materials for blue phosphors: effectively tuning the charge injection property without influencing the triplet energy.

    PubMed

    Wu, Jie; Liao, Yi; Wu, Shui-Xing; Li, Hai-Bin; Su, Zhong-Min

    2012-02-01

    Compared with red and green phosphorescent organic light-emitting diodes (PHOLEDs), efficient blue PHOLEDs are still scarce, because it is difficult for the host materials for blue phosphors to achieve a trade-off between a wide triplet energy and good charge injection properties. We theoretically studied a series of hybrid phosphine oxide/sulfide-phenylcarbazole host molecules (PO(S)PhCBZs) for blue phosphors through different linkage modes between phenylcarbazole (PhCBZ) and phosphine oxide/sulfide (PO/PS) moieties. The results indicate that the singlet excitons of all PO(S)-PhCBZs are delocalized over the entire molecule with intramolecular charge transfer (ICT) character and different linkage modes cause various degrees of ICT, which determines the injection abilities of carriers from neighboring layers following the order: PO-Phs (PO linked to the phenyl of PhCBZ) > para-POs (PO linked to the para-positions of PhCBZ) > meta-POs (PO linked to the meta-positions of PhCBZ). By contrast, the triplet excitons are confined to the carbazole unit for all PO(S)-PhCBZs. High triplet energies (E(T)) are therefore kept up for all systems, except for para-POs showing a slight drop in E(T) due to the delocalization of their triplet excitons to the phenyl moiety of PhCBZ. All hybrid PO(S)-PhCBZs, especially PO(s)-Phs, exhibit an enhancement in electron injection and triplet energy compared with the most widely used host material (N,N-dicarbazolyl-3,5-benzene) for blue PHOLEDs, and thereby have great potential for application in highly efficient light emitting diodes. PMID:22193557

  4. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  5. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  6. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  7. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  8. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  9. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31Р-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  10. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  11. Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines

    PubMed Central

    2016-01-01

    Catalytic synthesis of nonracemic P-chiral phosphine derivatives remains a significant challenge. Here we report Cu-catalyzed enantioselective arylation of secondary phosphine oxides with diaryliodonium salts for the synthesis of tertiary phosphine oxides with high enantiomeric excess. The new process is demonstrated on a wide range of substrates and leads to products that are well-established P-chiral catalysts and ligands. PMID:27689432

  12. Phosphine

    Integrated Risk Information System (IRIS)

    Phosphine ; CASRN 7803 - 51 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  13. A superior method for the reduction of secondary phosphine oxides.

    PubMed

    Busacca, Carl A; Lorenz, Jon C; Grinberg, Nelu; Haddad, Nizar; Hrapchak, Matt; Latli, Bachir; Lee, Heewon; Sabila, Paul; Saha, Anjan; Sarvestani, Max; Shen, Sherry; Varsolona, Richard; Wei, Xudong; Senanayake, Chris H

    2005-09-15

    [reaction: see text] Diisobutylaluminum hydride (DIBAL-H) and triisobutylaluminum have been found to be outstanding reductants for secondary phosphine oxides (SPOs). All classes of SPOs can be readily reduced, including diaryl, arylalkyl, and dialkyl members. Many SPOs can now be reduced at cryogenic temperatures, and conditions for preservation of reducible functional groups have been found. Even the most electron-rich and sterically hindered phosphine oxides can be reduced in a few hours at 50-70 degrees C. This new reduction has distinct advantages over existing technologies. PMID:16146406

  14. Experimental and theoretical investigations of the stereoselective synthesis of p-stereogenic phosphine oxides.

    PubMed

    Copey, Laurent; Jean-Gérard, Ludivine; Framery, Eric; Pilet, Guillaume; Robert, Vincent; Andrioletti, Bruno

    2015-06-15

    An efficient enantioselective strategy for the synthesis of variously substituted phosphine oxides has been developed, incorporating the use of (1S,2S)-2-aminocyclohexanol as the chiral auxiliary. The method relies on three key steps: 1) Highly diastereoselective formation of P(V) oxazaphospholidine, rationalized by a theoretical study; 2) highly diastereoselective ring-opening of the oxazaphospholidine oxide with organometallic reagents that takes place with inversion of configuration at the P atom; 3) enantioselective synthesis of phosphine oxides by cleavage of the remaining P-O bond. Interestingly, the use of a P(III) phosphine precursor afforded a P-epimer oxazaphospholidine. Hence, the two enantiomeric phosphine oxides can be synthesized starting from either a P(V) or a P(III) phosphine precursor, which constitutes a clear advantage for the stereoselective synthesis of sterically hindered phosphine oxides.

  15. Palladium-catalyzed dehydrogenative coupling of terminal alkynes with secondary phosphine oxides.

    PubMed

    Yang, Jia; Chen, Tieqiao; Zhou, Yongbo; Yin, Shuangfeng; Han, Li-Biao

    2015-02-28

    The dehydrogenative coupling of terminal alkynes with secondary phosphine oxides is developed. In the presence of a silver additive, palladium acetate could efficiently catalyze the dehydrocoupling of secondary phosphine oxides with a variety of terminal alkynes to produce the corresponding alkynylphosphine oxides in high yields. A reaction mechanism is proposed. PMID:25627893

  16. Polyimides Containing Pendent Phosphine Oxide Groups for Space Applications

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Watson, K. A.; Connell, J. W.

    2002-01-01

    As part of an ongoing materials development activity to produce high performance polymers that are durable to the space environment, phosphine oxide containing polyimides have been under investigation. A novel dianhydride was prepared from 2,5-dihydroxyphenyldiphenylphosphine oxide in good yield. The dianhydride was reacted with commercially available diamines, and a previously reported diamine was reacted with commercially available dianhydrides to prepare isomeric polyimides. The physical and mechanical properties, particularly thermal and optical properties, of the polymers were determined. One material exhibited a high glass transition temperature, high tensile properties, and low solar absorptivity. The chemistry, physical, and mechanical properties of these resins will be discussed.

  17. Isocyanide and Phosphine Oxide Coordination in Binuclear Chromium Pacman Complexes.

    PubMed

    Stevens, Charlotte J; Nichol, Gary S; Arnold, Polly L; Love, Jason B

    2013-12-01

    The new binuclear chromium Pacman complex [Cr2(L)] of the Schiff base pyrrole macrocycle H4L has been synthesized and structurally characterized. Addition of isocyanide, C≡NR (R = xylyl, (t)Bu), or triphenylphosphine oxide donors to [Cr2(L)] gives contrasting chemistry with the formation of the new coordination compounds [Cr2(μ-CNR)(L)], in which the isocyanides bridge the two Cr(II) centers, and [Cr2(OPPh3)2(L)], a Cr(II) phosphine oxide adduct with the ligands exogenous to the cleft.

  18. Advances in Homogeneous Catalysis Using Secondary Phosphine Oxides (SPOs): Pre-ligands for Metal Complexes.

    PubMed

    Achard, Thierry

    2016-01-01

    The secondary phosphine oxides are known to exist in equilibrium between the pentavalent phosphine oxides (SPO) and the trivalent phosphinous acids (PA). This equilibrium can be displaced in favour of the trivalent tautomeric form upon coordination to late transition metals. This tutorial review provides the state of the art of the use of secondary phosphine oxides as pre-ligands in transition metal-catalysed reactions. Using a combination of SPOs and several metals such as Pd, Pt, Ru, Rh and Au, a series of effective and original transformations have been obtained and will be discussed here.

  19. Hydrogen Sulfide Oxidation by Myoglobin.

    PubMed

    Bostelaar, Trever; Vitvitsky, Victor; Kumutima, Jacques; Lewis, Brianne E; Yadav, Pramod K; Brunold, Thomas C; Filipovic, Milos; Lehnert, Nicolai; Stemmler, Timothy L; Banerjee, Ruma

    2016-07-13

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue. PMID:27310035

  20. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides.

    PubMed

    Zhang, Pengbo; Zhang, Liangliang; Gao, Yuzhen; Xu, Jian; Fang, Hua; Tang, Guo; Zhao, Yufen

    2015-05-01

    The general method for the tandem phosphination-decarboxylation-oxidation of alkynyl acids under aerobic conditions has been developed. In the presence of CuSO4·5H2O and TBHP, the reactions provide a novel access to β-ketophosphine oxides in good to excellent yields. This transformation allows the direct formation of a P-C bond and the construction of a keto group in one reaction.

  1. Synthesis and Coordination Chemistry of Phosphine Oxide Decorated Dibenzofuran Platforms

    SciTech Connect

    Rosario-Amorin, Daniel; Duesler, Eileen N.; Paine, Robert T.; Hay, Benjamin; Delmau, Laetitia Helene; Reilly, Sean D.; Gaunt, Andrew J.; Scott, Brian L.

    2012-01-01

    A four-step synthesis for 4,6-bis(diphenylphosphinoylmethyl)dibenzofuran (4) from dibenzofuran and a two-step synthesis for 4,6-bis(diphenylphosphinoyl)dibenzofuran (5) are reported along with coordination chemistry of 4 with In(III), La(III), Pr(III), Nd(III), Er(III), and Pu(IV) and of 5 with Er(III). Crystal structure determinations for the ligands, 4 {center_dot} CH{sub 3}OH and 5, the 1:1 complexes [In(4)(NO{sub 3}){sub 3}], [Pr(4)(NO{sub 3}){sub 3}(CH{sub 3}CN)] {center_dot} 0.5CH{sub 3}CN, [Er(4)(NO{sub 3}){sub 3}(CH{sub 3}CN)] {center_dot} CH{sub 3}CN, [Pu(4)Cl4] {center_dot} THF and the 2:1 complex [Nd(4){sub 2}(NO{sub 3}){sub 2}]{sub 2}(NO{sub 3}){sub 2} {center_dot} (H{sub 2}O) {center_dot} 4(CH{sub 3}OH) are described. In these complexes, ligand 4 coordinates in a bidentate POP{prime}O{prime} mode via the two phosphine oxide O-atoms. The dibenzofuran ring O-atom points toward the central metal cations, but in every case it is more than 4 {angstrom} from the metal. A similar bidentate POP{prime}O{prime} chelate structure is formed between 5 and Er(III) in the complex, {l_brace}[Er(5){sub 2}(NO{sub 3}){sub 2}](NO{sub 3}) {center_dot} 4(CH{sub 3}OH){r_brace}0.5, although the nonbonded Er{hor_ellipsis} O{sub furan} distance is reduced to 3.6 {angstrom}. The observed bidentate chelation modes for 4 and 5 are consistent with results from molecular mechanics computations. The solvent extraction performance of 4 and 5 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions is described and compared against the extraction behavior of n-octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (O{Phi}DiBCMPO) measured under identical conditions.

  2. Prevention of sulfide oxidation in sulfide-rich waste rock

    NASA Astrophysics Data System (ADS)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  3. Distinction between coordination and phosphine ligand oxidation: interactions of di- and triphosphines with Pn(3+) (Pn = P, As, Sb, Bi).

    PubMed

    Chitnis, Saurabh S; Vos, Kevin A; Burford, Neil; McDonald, Robert; Ferguson, Michael J

    2016-01-14

    Reactions of polydentate phosphines with sources of Pn(3+) (Pn = P, As, Sb, Bi) yield complexes of Pn(1+) (Pn = P, As) or Pn(3+) (Pn = Sb, Bi) acceptors. The distinction between coordination of a phosphine center to Pn and oxidation of a phosphine ligand is dependent on Pn. The first structurally verified triphosphine complexes of Sb(III) and Bi(III) acceptors are reported.

  4. Sulfide oxidation under chemolithoautotrophic denitrifying conditions.

    PubMed

    Cardoso, Ricardo Beristain; Sierra-Alvarez, Reyes; Rowlette, Pieter; Flores, Elias Razo; Gómez, Jorge; Field, Jim A

    2006-12-20

    Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate.

  5. A novel tridentate bis(phosphinic acid)phosphine oxide based europium(III)-selective Nafion membrane luminescent sensor.

    PubMed

    Sainz-Gonzalo, F J; Popovici, C; Casimiro, M; Raya-Barón, A; López-Ortiz, F; Fernández, I; Fernández-Sánchez, J F; Fernández-Gutiérrez, A

    2013-10-21

    A new europium(III) membrane luminescent sensor based on a new tridentate bis(phosphinic acid)phosphine oxide (3) system has been developed. The synthesis of this new ligand is described and its full characterization by NMR, IR and elemental analyses is provided. The luminescent complex formed between europium(III) chloride and ligand 3 was evaluated in solution, observing that its spectroscopic and chemical characteristics are excellent for measuring in polymer inclusion membranes. Included in a Nafion membrane, all the parameters (ligand and ionic additives) that can affect the sensitivity and selectivity of the sensing membrane as well as the instrumental conditions were carefully optimized. The best luminescence signal (λexc = 229.06 nm and λem = 616.02 nm) was exhibited by the sensing film having a Nafion : ligand composition of 262.3 : 0.6 mg mL(-1). The membrane sensor showed a short response time (t95 = 5.0 ± 0.2 min) and an optimum working pH of 5.0 (25 mM acetate buffer solution). The membrane sensor manifested a good selectivity toward europium(III) ions with respect to other trivalent metals (iron, chromium and aluminium) and lanthanide(III) ions (lanthanum, samarium, terbium and ytterbium), although a small positive interference of terbium(III) ions was observed. It provided a linear range from 1.9 × 10(-8) to 5.0 × 10(-6) M with a very low detection limit (5.8 × 10(-9) M) and sensitivity (8.57 × 10(-7) a.u. per M). The applicability of this sensing film has been demonstrated by analyzing different kinds of spiked water samples obtaining recovery percentages of 95-97%.

  6. Synthesis and Lanthanide Coordination Chemistry of Phosphine Oxide Decorated Dibenzothiophene and Dibenzothiophene Sulfone Platforms

    SciTech Connect

    Rosario-Amorin, Daniel; Ouizem, Sabrina; Dickie, D. A.; Paine, Robert T.; Cramer, Roger E.; Hay, Benjamin; Podair, Julien; Delmau, Laetitia Helene

    2014-01-01

    Syntheses for new ligands based upon dibenzothiophene and dibenzothiophene sulfone platforms, decorated with phosphine oxide and methylphosphine oxide donor groups, are described. Coordination chem. of 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene (8) , 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene- 5, 5- dioxide (9) and 4, 6- bis(diphenylphosphinoyl) dibenzothiophene- 5, 5- dioxide (10) with lanthanide nitrates, Ln(NO3) 3 (H2O) n is outlined, and crystal structure detns. reveal a range of chelation interactions on Ln(III) ions. The HNO3 dependence of the solvent extn. performance of 9 and 10 in 1, 2- dichloroethane for Eu(III) and Am(III) is described and compared against the extn. behavior of related dibenzofuran ligands (2, 3; R = Ph) and n- octyl(phenyl) - N, N- diisobutylcarbamoylmethyl phosphine oxide (4) measured under identical conditions.

  7. Adjustable coordination of a hybrid phosphine-phosphine oxide ligand in luminescent Cu, Ag and Au complexes.

    PubMed

    Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O

    2016-09-28

    A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength. PMID:27530362

  8. Syntheses and properties of phosphine-substituted ruthenium(II) polypyridine complexes with nitrogen oxides.

    PubMed

    Nakamura, Go; Kondo, Mio; Crisalli, Meredith; Lee, Sze Koon; Shibata, Akane; Ford, Peter C; Masaoka, Shigeyuki

    2015-10-21

    Four novel phosphine-substituted ruthenium(ii) polypyridine complexes with nitrogen oxides-trans(P,NO2)-[Ru(trpy)(Pqn)(NO2)]PF6 (trans-NO2), cis(P,NO2)-[Ru(trpy)(Pqn)(NO2)]PF6 (cis-NO2), [Ru(trpy)(dppbz)(NO2)]PF6 (PP-NO2), and cis(P,NO)-[Ru(trpy)(Pqn)(NO)](PF6)3 (cis-NO)-were synthesised (trpy = 2,2':6',2''-terpyridine, Pqn = 8-(diphenylphosphanyl)quinoline, and dppbz = 1,2-bis(diphenylphosphanyl)benzene). The influence of the number and position of the phosphine group(s) on the electronic structure of these complexes was investigated using single-crystal X-ray structural analysis, UV-vis absorption spectroscopy, and electrochemical measurements. The substitution lability of the nitrogen oxide ligand of each complex is discussed in comparison with that of the corresponding acetonitrile complexes.

  9. Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants

    DOE PAGES

    McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.; Gordon, Mark S.; Moyer, Bruce A.; Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2016-02-17

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R2(O)P-link-P(O)R2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theory and themore » performance of known bis-phosphine oxide extractants. For the case where link is -CH2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less

  10. Designing Organic Phosphine Oxide Host Materials Using Heteroaromatic Building Blocks: Inductive Effects on Electroluminescence

    SciTech Connect

    Sapochak, Linda S.; Padmaperuma, Asanga B.; Vecchi, Paul A.; Cai, Xiuyu; Burrows, Paul E.

    2007-11-19

    Phosphine oxide substitution of small molecules with high triplet exciton energies allows development of vacuum sublimable, electron transporting host materials for blue OLEDs. Heteroaromatic building blocks (carbazole, dibenzofuran and dibenzothiophene) with ET ~ 3 eV were incorporated into phosphine oxide (PO) structures. External quantum efficiencies (EQEs) at lighting brightness (i.e., 800 cd/m2) reached as high as 9.8% at 5.2V for OLEDs using the heteroaromatic PO hosts doped with the sky blue phosphor, iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic). Comparing device properties at a similar current density (i.e., J = 13 mA/cm2) showed the dibenzothiophene-bridged PO compound exhibits the highest EQEs and lowest operating voltages at all phosphor dopant levels. These results are explained with respect to the effects of the inductive phosphine oxide substituents on electrochemical, photophysical and electroluminescence properties of the substituted heteroaromatic building blocks.

  11. Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants.

    PubMed

    McCann, Billy W; Silva, Nuwan De; Windus, Theresa L; Gordon, Mark S; Moyer, Bruce A; Bryantsev, Vyacheslav S; Hay, Benjamin P

    2016-06-20

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R2(O)P-link-P(O)R2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theory and the performance of known bis-phosphine oxide extractants. For the case where the link is -CH2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the "anomalous aryl strengthening" effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.

  12. Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pike, Sebastian D.; White, Edward R.; Shaffer, Milo S. P.; Williams, Charlotte K.

    2016-10-01

    The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use 31P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly and self-assemble in solution based on thermodynamic equilibria rather than nucleation kinetics. These clusters are also identified in situ during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn11 cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. In addition to a versatile and accessible route to (optionally doped) zinc clusters, the findings provide an understanding of the role of well-defined molecular precursors during the synthesis of small (2-4 nm) nanoparticles.

  13. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  14. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  15. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  16. Three- versus four-coordinate phosphorus in the gas phase and in solution: Treacherous relative energies for phosphine oxide and phosphinous acid

    NASA Astrophysics Data System (ADS)

    Wesolowski, Steven S.; Brinkmann, Nicole R.; Valeev, Edward F.; Schaefer, Henry F.; Repasky, Matthew P.; Jorgensen, William L.

    2002-01-01

    Previous ab initio studies have consistently predicted phosphine oxide (H3PO) to be less stable than its nearly isoenergetic cis- and trans-phosphinous acid isomers (H2POH). However, complete basis set extrapolations employing the coupled-cluster series show that phosphine oxide is actually ca. 1.0 kcal/mol more stable than its acid forms in the gas phase. Incorporation of tight d functions via Dunning's core-valence (cc-pCVXZ) or newly constructed "plus d" [cc-pV(X+d)Z] basis sets is essential for rapid convergence of core polarization effects which are evident even at the SCF level. The precision to which the phosphorus hybridization is described in the three- and four-coordinate environments ultimately determines the predicted gas-phase relative energy orderings. Focal-point analyses demonstrate that this system represents a disturbing case where use of a conventional valence quadruple-ζ quality basis set (cc-pVQZ)—even at the CCSD(T) level—fails to provide the correct relative energy ordering for simple closed-shell species which do not exhibit appreciable multireference character. Thus, we underscore the importance of using phosphorus basis sets which have the flexibility to describe core polarization adequately. In addition, Monte Carlo (MC) free-energy perturbation simulations in solution clearly demonstrate that the small energy gap significantly increases in favor of the oxide (10.0 kcal/mol) upon solvation due to stronger hydrogen bonding with the highly polar Pδ+→Oδ- bond.

  17. Sulfide-oxidizing bacteria: Their role during air-stripping

    SciTech Connect

    Dell`Orco, M.J.; Chadik, P.A.; Bitton, G.; Neumann, R.P.

    1998-10-01

    Air-stripping, used to remove hydrogen sulfide naturally present in many groundwater supplies, commonly causes sulfide-oxidizing bacteria to proliferate. The role of sulfide-oxidizing bacteria during air-stripping was investigated in a diffused-air pilot reactor modeled after an existing treatment facility. Visible bacterial filaments and biofilm developed within a few days and increased both the sulfide removed from and turbidity in the effluent. Total sulfide, dissolved oxygen, pH, and electrode potential were monitored at eight locations in the reactor to characterize the process.

  18. One-Electron Oxidation of Hydrogen Sulfide by a Stable Oxidant: Hexachloroiridate(IV).

    PubMed

    Hu, Ying; Stanbury, David M

    2016-08-01

    Detailed reports on the oxidation of aqueous H2S by mild one-electron oxidants are lacking, presumably because of the susceptibility of these reactions to trace metal-ion catalysis and the formation of turbid sulfur sols. Here we report on the reaction of [IrCl6](2-) with H2S in acetate buffers. Dipicolinic acid (dipic) is shown to be effective in suppressing metal-ion catalysis. In the presence of dipic the reaction produces [IrCl6](3-) and polysulfides; turbidity develops primarily after the Ir(IV) oxidant is consumed. Water-soluble phosphines are shown to prevent the development of turbidity; in the case of tris-hydroxymethylphosphine (THMP) the product is the corresponding sulfide, THMP═S. THMP diminishes the rates of reduction of Ir(IV), and the rate law with sufficient THMP is first order in [Ir(IV)] and first order in [HS(-)]. The rate-limiting step is inferred to be electron transfer from HS(-) to Ir(IV) with ket = 2.9 × 10(4) M(-1) s(-1) at 25.0 °C and μ = 0.1 M. The kinetic inhibition by THMP is attributed to its interception of a polysulfide chain elongation process. PMID:27410173

  19. Nickel Phosphine Catalysts with Pendant Amines for Electrocatalytic Oxidation of Alcohols

    SciTech Connect

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.; Appel, Aaron M.

    2015-01-01

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles

    PubMed Central

    Pike, Sebastian D.; White, Edward R.; Shaffer, Milo S. P.; Williams, Charlotte K.

    2016-01-01

    The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use 31P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly and self-assemble in solution based on thermodynamic equilibria rather than nucleation kinetics. These clusters are also identified in situ during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn11 cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. In addition to a versatile and accessible route to (optionally doped) zinc clusters, the findings provide an understanding of the role of well-defined molecular precursors during the synthesis of small (2–4 nm) nanoparticles. PMID:27734828

  1. Synthesis and characterization of aryl phosphine oxide containing thermoplastic polyimides and thermosetting polyimides with controlled reactivity

    NASA Astrophysics Data System (ADS)

    Zhuang, Hong

    1998-11-01

    Phosphorus containing monomers, bis(3-aminophenyl)methyl phosphine oxide (m-DAMPO) and bis(3-aminophenyl)phenyl phosphine oxide (m-DAPPO), were synthesized and incorporated into a thermoplastic poly(arylene ether imide) based upon 2,2sp'-bis (4-(3,4-dicarboxyphenoxy)phenyl) propane dianhydride and 1,3-phenylene diamine, in order to study their influence on flame resistance and other properties. DAMPO or DAPPO were quantitatively incorporated in concentrations of 25, 50, 75 and 100 mole percent, using the "one pot" ester-acid method. The number average molecular weights of the prepared materials were controlled to 20,000g/mol by off-setting the stoichiometry and endcapping with phthalic anhydride. This strategy enabled one to distinguish the effects of the phosphine oxide incorporation from the influence of molecular weight. The resulting copolymers demonstrated a significant increase in char yield as a function of the phosphine oxide content, thus suggesting improved fire resistance. Glass transition temperatures similar to the control were determined by DSC analysis. Analysis of the mechanical behavior of the DAMPO system at room temperature showed that tensile strength and elongation at failure values were comparable to the control system, while the DAPPO containing copolymers were surprisingly brittle. The influence of the reactive endgroup on the synthesis, cure behavior and network properties of thermosetting polyetherimides was investigated. Reactive phenylacetylene, acetylene and maleimide terminated poly(ether imide) oligomers were prepared and characterized. Optimal reaction conditions were established to produce fully endcapped oligomers with imidized structures and controlled molecular weight. The phenylacetylene endcapped system was synthesized by a conventional ester-acid method. The acetylene endcapped system was prepared via modified ester-acid method and the maleimide endcapped system was fabricated utilizing an amic-acid route. It was determined

  2. Extraction of phenols from water with tri-octyl phosphine oxide

    SciTech Connect

    MacGlashan, J.D.

    1982-03-01

    Tri-octyl phosphine oxide (TOPO) was examined as an extractant for removing phenol; the dihydric phenols catechol, resorcinol, and hydroquinone; and the trihydric phenols pyrogallol, phloroglucinol, and 1,2,4-benzenetriol from water. Distribution coefficients were measured and results modelled for extractions with different diluents, solvent compositions, temperatures, and extractant-to-solute stoichiometric ratios. Modelling of the results indicates that the extraction mechanism is complicated, with the diluent probably playing an important role. The most effective diluents are those that have some electron-donating ability and are thus able to solvate the solute-TOPO complex, without competing with the solute for the phosphoryl oxygen on TOPO. The distribution coefficients decrease with increasing temperature, and show a linear dependence when plotted as ln(K/sub D/) vs. l/T.

  3. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi

    SciTech Connect

    Powell, M.A.; Somero, G.N.

    1986-08-01

    Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation (adenosine triphosphate (ATP) synthesis). The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.

  4. Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate.

    PubMed

    Pokasoowan, Chanya; Kanitchaidecha, Wilawan; K C, Bal Krishna; Annachhatre, Ajit P

    2009-01-01

    Airlift bioreactor was established for recovering sulfur from synthetic sulfide wastewater under controlled dissolved oxygen condition. The maximum recovered sulfur was 14.49 g/day when sulfide loading rate, dissolved oxygen (DO) and pH values were 2.97 kgHS(-)/m(3)-day, 0.2-1.0 mg/L and 7.2-7.8, respectively. On the other hand, the increase in recovered sulfur reduced the contact surface of sulfide oxidizing bacteria which affects the recovery process. This effect caused to reduce the conversion of sulfide to sulfur. More recovered sulfur was produced at high sulfide loading rate due to the change of metabolic pathway of sulfide-oxidizing bacteria which prevented the toxicity of sulfide in the culture. The maximum activity in this system was recorded to be about 3.28 kgS/kgVSS-day. The recovered sulfur contained organic compounds which were confirmed by the results from XRD and CHN analyzer. Afterwards, by annealing the recovered sulfur at 120 degrees C for 24 hrs under ambient Argon, the percentage of carbon reduced from 4.44% to 0.30%. Furthermore, the percentage of nitrogen and hydrogen decreased from 0.79% and 0.48% to 0.00% and 0.14%, respectively. This result showed the success in increasing the purity of recovered sulfur by using the annealing technique. The pilot-scale biological sulfide oxidation process was carried out using real wastewater from Thai Rayon Industry in Thailand. The airlift reactor successfully removed sulfide more than 90% of the influent sulfide at DO concentration of less than 0.1 mg/L, whereas the elementary sulfur production was 2.37 kgS/m(3)-day at sulfide loading rate of 2.14 kgHS(-)/m(3)-day. The sulfur production was still increasing as the reactor had not yet reached its maximum sulfide loading rate. PMID:19085599

  5. Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines

    SciTech Connect

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM; Helm, Monte L.; Appel, Aaron M.

    2014-09-05

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidation with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  6. Anodic oxidation of sulfide ions in molten lithium fluoride

    SciTech Connect

    Lloyd, C.L.; Gilbert, J.B. II . Applied Research Lab.)

    1994-10-01

    The study of sulfur and sulfide oxidation in molten salt systems is of current interest in high energy battery, and metallurgical applications. Cyclic voltammetry experiments have been performed on lithium sulfide in a lithium fluoride electrolyte at 1,161 K using a graphite working electrode and a platinum quasi-reference electrode. Two distinct oxidation mechanisms are observed for the sulfide ions. The first oxidation produces sulfur and at a higher potential a disulfide species is proposed to have formed. Both oxidations appear to be reversible and diffusion controlled.

  7. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    PubMed

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  8. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  9. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  10. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  11. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  12. Diphen­yl[2-(2-pyridylamino­meth­yl)phen­yl]phosphine oxide

    PubMed Central

    Hernández-Ortega, Simón; Cuenu Cabeza, Fernando; Cabrera-Ortiz, Armando

    2010-01-01

    The title compound, C24H21N2OP, was obtained by reacting 2-amino­pyridine and 2-(diphenyl­phosphin­yl)benzaldehyde in ethanol. It crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. The amino­pyridine units and the benzene ring bonded to the phosphine oxide P atom form dihedral angles of 88.58 (7) and 82.47 (9)° in the two mol­ecules. The crystal structure displays strong N—H⋯O and weak C—H⋯O hydrogen bonds along the b axis and C—H⋯π aromatic intra- and inter­molecular inter­actions. PMID:21579222

  13. Phosphine Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Devices

    SciTech Connect

    Von Ruden, Amber L.; Cosimbescu, Lelia; Polikarpov, Evgueni; Koech, Phillip K.; Swensen, James S.; Wang, Liang; Darsell, Jens T.; Padmaperuma, Asanga B.

    2010-10-26

    We report the design, synthesis, thermal, and photophysical properties of two phosphine oxide based electron transport/hole blocking materials, 2,6-bis(4-(diphenylphosphoryl)phenyl)pyridine (BM-A11) and 2,4-bis(4-(diphenyl-phosphoryl)phenyl)pyridine (BM-A10) for blue electrophosphorescent organic light emitting devices (OLEDs). The use of these materials in blue OLED with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C2’]picolinate (Firpic) as the phosphor was demonstrated. Using the dual host device architecture with BM-A10 as the ETM yields a maximum EQE of 8.9% with a power efficiency of 21.5 lm/W (4.0V and 35 cd/m2). When BM-A11 is used as the ETM, the maximum EQE and power efficiency improves to 14.9% and 48.4 lm/W, respectively (3.0V and 40 cd/m2).

  14. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster.

    PubMed

    Liu, Tao; Li, Li; Zhang, Fanhua; Wang, Yuejin

    2015-10-01

    Phosphine (PH3) is a toxic substance to pest insects and is therefore commonly used in pest control. The oxidative damage induced by PH3 is considered to be one of the primary mechanisms of its toxicity in pest insects; however, the precise mode of PH3 action in this process is still unclear. In this study, we evaluated the responses of several oxidative biomarkers and two of the main antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), after fumigation treatment with PH3 in Drosophila melanogaster as a model system. The results showed that larvae exposed to sub-lethal levels of PH3 (0.028 mg/L) exhibited lower aerobic respiration rates and higher levels of hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, unlike SOD, the activity and expression of CAT and its encoding gene were downregulated by PH3 in a time- and dose-dependent manner. Finally, the responses of six potential transcription factors of PH3 were determined by real-time polymerase chain reaction to explore the regulation mechanism of DmCAT by PH3. There were no significant effects of PH3 on three nuclear factor-kappa B homologs (DORSAL, DIF, and RELISH) or two activator protein-1 genes (JUN and FOS), while dramatic inhibition of DNA replication-related element factor (DREF) expression was observed after fumigation with PH3, suggesting that PH3 could inhibit the expression of DmCAT via the DRE/DREF system. These results confirmed that PH3 induces oxidative stress and targets CAT by downregulating its encoding gene in Drosophila. Our results provide new insight into the signal transduction mechanism between PH3 and its target genes.

  15. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster.

    PubMed

    Liu, Tao; Li, Li; Zhang, Fanhua; Wang, Yuejin

    2015-10-01

    Phosphine (PH3) is a toxic substance to pest insects and is therefore commonly used in pest control. The oxidative damage induced by PH3 is considered to be one of the primary mechanisms of its toxicity in pest insects; however, the precise mode of PH3 action in this process is still unclear. In this study, we evaluated the responses of several oxidative biomarkers and two of the main antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), after fumigation treatment with PH3 in Drosophila melanogaster as a model system. The results showed that larvae exposed to sub-lethal levels of PH3 (0.028 mg/L) exhibited lower aerobic respiration rates and higher levels of hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, unlike SOD, the activity and expression of CAT and its encoding gene were downregulated by PH3 in a time- and dose-dependent manner. Finally, the responses of six potential transcription factors of PH3 were determined by real-time polymerase chain reaction to explore the regulation mechanism of DmCAT by PH3. There were no significant effects of PH3 on three nuclear factor-kappa B homologs (DORSAL, DIF, and RELISH) or two activator protein-1 genes (JUN and FOS), while dramatic inhibition of DNA replication-related element factor (DREF) expression was observed after fumigation with PH3, suggesting that PH3 could inhibit the expression of DmCAT via the DRE/DREF system. These results confirmed that PH3 induces oxidative stress and targets CAT by downregulating its encoding gene in Drosophila. Our results provide new insight into the signal transduction mechanism between PH3 and its target genes. PMID:26453223

  16. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term.

  17. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    PubMed

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  18. The Sulfide Capacity of Iron Oxide-Rich Slags

    NASA Astrophysics Data System (ADS)

    Motlagh, M.

    1988-03-01

    The relationship between the sulfide capacity of slags rich in iron oxide and the sulfur partition ratio between the metal and slag is strongly related to the slag's iron oxide concentration. For slags containing little or no lime, this relationship is linear for a constant concentration of iron oxide in the slag. The effect of silica on changes in the sulfide capacity of slags rich in iron oxide is similar to that of basic steel-making slags, particularly at low activity of silica in slag.

  19. Sulfonated poly(arylene ether sulfone)s with phosphine oxide moieties: a promising material for proton exchange membranes.

    PubMed

    Fu, Lingchao; Xiao, Guyu; Yan, Deyue

    2010-06-01

    Sulfonated poly(arylene ether sulfone)s with phosphine oxide moieties (sPESPO) were achieved by polycondensation of bis(4-hydroxyphenyl)phenylphosphine oxide with 3,3'-disulfonate-4,4'-difluorodiphenyl sulfone (SFDPS) and 4-fluorophenyl sulfone (FPSF). Sulfonated poly(arylene ether sulfone)s (sPES) were also synthesized by polymerization of 4,4'-sulfonyldiphenol with SFDPS and FPSF for comparison. The comparative study demonstrates that the sPESPO ionomers exhibit strong intermolecular interactions and high oxidative stability because of the phosphine oxide groups. Furthermore, the sPESPO membrane and the sPES membrane with an equal ion exchange capacity show much different nanophase separation morphology. As a result, the former shows better properties than the latter. The sPESPO membranes exhibit excellent overall properties. For instance, the sPESPO membrane, with a disulfonation degree of 45%, exhibits high thermal and oxidative stability. Moreover, it shows a water uptake of 30.8% and a swelling ratio of 15.8% as well as a proton conductivity of 0.087 S/cm at 80 degrees C.

  20. Evidence supporting biologically mediated sulfide oxidation in hot spring ecosystems

    NASA Astrophysics Data System (ADS)

    Cox, A. D.; Shock, E.

    2011-12-01

    The sulfide concentration of fluids in hydrothermal ecosystems is one of several factors determining the transition to microbial photosynthesis (Cox et al., 2011, Chem. Geol. 280, 344-351). To investigate the loss of sulfide in Yellowstone hot spring systems, measurements of total dissolved sulfide with respect to time were made in incubation experiments conducted on 0.2-micron filtered (killed controls) vs. unfiltered hot spring water at locations with three different pH:sulfide combinations (pH 2.5 with 50 μM sulfide, 5.2 with 5.6 μM sulfide, and 8.3 with 86 μM sulfide). At the higher pH values, the experiments yielded similar rates of sulfide loss in filtered and unfiltered water of approximately 0.8 (pH 5.2) and 7.6 nmol sulfide L-1s-1 (pH 8.3). At the acidic spring, the unfiltered water lost sulfide at a rate 1.6 times that of the filtered water (8.2 vs. 5 nmol sulfide L-1s-1). These results suggest that the pelagic biomass at the pH 5.2 and 8.3 springs may not affect sulfide loss, whereas in the pH 2.5 spring there appears to be an effect. In addition, the incubation of filamentous biomass with unfiltered water increased the rate of sulfide loss by approximately two-fold at a pH of 2.5 (59 vs. 31 nmol L-1s-1; Cox et al., 2011), five-fold at a pH of 5.2 (3.9 vs. 0.8 nmol sulfide L-1s-1), and barely increased the rate of sulfide loss at a pH of 8.3 (9.1 vs. 8.4 nmol sulfide L-1s-1). Sulfide is predominately present as HS- at a pH of 8.3, which may not be taken up as easily by microorganisms as the H2S (aq) that dominates sulfide speciation at pH 2.5 and 5.2. That the loss of sulfide at acidic pH is due to biotic rather than abiotic factors is further supported by studies with whole mat samples that show greater sulfide consumption than killed controls (D'Imperio et al., 2008, AEM 74, 5802-5808). Taken together, the results of these experiments suggest that the majority of sulfide oxidation occurs in the filamentous biomass of hot spring ecosystems, although

  1. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  2. (2,4,6-Trimethyl­phen­yl)boronic acid–triphenyl­phosphine oxide (1/1)

    PubMed Central

    Roşca, Sorin; Olaru, Marian; Raţ, Ciprian I.

    2012-01-01

    In the crystal structure of the title compound, C9H13BO2·C18H15OP, there are O—H⋯O hydrogen bonds between the O atom of triphenyl­phosphine oxide and one hy­droxy group of the boronic acid. Boronic acid mol­ecules form inversion-related hydrogen-bonded dimers in an R 2 2(8) motif. The structure is consolidated by inter­molecular C—H⋯O bonds and C—H⋯π inter­actions. PMID:22259536

  3. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe2 + and Fe3 + in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe2 + and Fe3 +), particularly for the case of pyrrhotite minerals.

  4. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  5. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    PubMed

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds. PMID:25950871

  6. Wet oxidation of oil-bearing sulfide wastes

    SciTech Connect

    Miller, R.L.; Hotz, N.J.

    1991-01-01

    Oil-bearing metal sulfide sludges produced in treatment of an industrial wastewater, which includes plating wastes, have yielded to treatment by electrooxidation and hydrogen peroxide processes. The oxidation can be controlled to be mild enough to avoid decomposition of the organic phase while oxidizing the sulfides to sulfates. The pH is controlled to near neutral conditions where iron, aluminum and chromium(III) precipitate as hydrous oxides. Other metals, such as lead and barium, may be present as sulfate precipitates with limited solubility, while metals such as nickel and cadmium would be present as complexed ions in a sulfate solution. The oxidations were found to proceed smoothly, without vigorous reaction; heat liberation was minimal. 2 refs., 12 figs.

  7. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    SciTech Connect

    Van Der Sluys, W.G.; Burns, C.J.; Smith, D.C.

    1991-04-02

    This invention is comprised of a process of preparing an actinide compound of the formula An{sub x}Z{sub y} wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effective amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  8. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  9. Synthesis of P-stereogenic diarylphosphinic amides by directed lithiation: transformation into tertiary phosphine oxides via methanolysis, aryne chemistry and complexation behaviour toward zinc(ii).

    PubMed

    del Águila-Sánchez, Miguel A; Navarro, Yolanda; García López, Jesús; Guedes, Guilherme P; López Ortiz, Fernando

    2016-02-01

    The highly diastereoselective synthesis of P-stereogenic phosphinic amides via directed ortho lithiation (DoLi) of (SC)-P,P-diphenylphosphinic amides with t-BuLi followed by electrophilic quench reactions is described. Functionalised derivatives containing a wide variety of ortho substituents (Cl, Br, I, OH, N3, SiMe3, SnMe3, P(O)Ph2, Me, allyl, (t)BuOCO) have been prepared in high yields with diastereomeric ratios up to 98 : 2. The X-ray diffraction structure of the ortho-stannylated and ortho-iodo compounds showed that the pro-S P-phenyl ring was stereoselectively ortho-deprotonated by the organolithium base. The usefulness of the method is supported by two key transformations, the synthesis of P-stereogenic methyl phosphinates through replacement of the chiral auxiliary by a methoxy group and the first example of the insertion of benzyne into the P-N bond of a P-stereogenic phosphinic amide. A DFT study of this reaction showed that the insertion proceeds through a [2 + 2] cycloaddition and a subsequent ring-opening with retention of the P-configuration. Explorative coordination chemistry of the new P-stereogenic ligands provided access to a chiral phosphinic amide-phosphine oxide Zn(ii) complex, the crystal structure of which is reported.

  10. Phosphine Oxide-Sc(OTf)3 Catalyzed Highly Regio- and Enantioselective Bromoaminocyclization of (E)-Cinnamyl Tosylcarbamates. An Approach to a Class of Synthetically Versatile Functionalized Molecules.

    PubMed

    Pan, Hongjie; Huang, Hu; Liu, Weigang; Tian, Hua; Shi, Yian

    2016-03-01

    A highly regio- and enantioselective bromoaminocyclization of (E)-cinnamyl tosylcarbamates catalyzed by a chiral phosphine oxide-Sc(OTf)3 complex is described. A wide variety of optically active aryl 5-bromo-1,3-oxazinan-2-ones can be obtained with high yield and enantioselectivity.

  11. Phosphine Oxide-Sc(OTf)3 Catalyzed Highly Regio- and Enantioselective Bromoaminocyclization of (E)-Cinnamyl Tosylcarbamates. An Approach to a Class of Synthetically Versatile Functionalized Molecules.

    PubMed

    Pan, Hongjie; Huang, Hu; Liu, Weigang; Tian, Hua; Shi, Yian

    2016-03-01

    A highly regio- and enantioselective bromoaminocyclization of (E)-cinnamyl tosylcarbamates catalyzed by a chiral phosphine oxide-Sc(OTf)3 complex is described. A wide variety of optically active aryl 5-bromo-1,3-oxazinan-2-ones can be obtained with high yield and enantioselectivity. PMID:26894481

  12. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans].

    PubMed

    Malakhova, P T; Chebotarev, G M; Kovalenko, E V; Volkov, Iu A

    1981-01-01

    Samples of natural pyrites and sphalerites were subjected to the action of the mineral medium 9K with 1 g of Fe3+ per litre in the presence and in the absence of Thiobacillus ferrooxidans, and incubated at 28 degrees C under the stationary conditions for 30 days. The chemical composition of the solutions was studied after leaching as well as changes of the surfaces of monoliths. The deepest etching of surfaces with the formation of crusts and films of jarosite, limonite and goslarite occurs upon the combined action of bacteria and Fe3+ in regions of a fine-zonal structure enriched with an isomorphous arsenic admixture which are characterized by a defective weak structure. The pyrite and sphalerite from Charmitan with a higher arsenic and iron content were leached more than the pyrite and sphalerite from Kurgashincan. This was also corroborated by chemical analyses of leaching solutions and by monometric studies of crushed sulfide samples. PMID:7219212

  13. Interactions among sulfide-oxidizing bacteria

    NASA Technical Reports Server (NTRS)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  14. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans].

    PubMed

    Malakhova, P T; Chebotarev, G M; Kovalenko, E V; Volkov, Iu A

    1981-01-01

    Samples of natural pyrites and sphalerites were subjected to the action of the mineral medium 9K with 1 g of Fe3+ per litre in the presence and in the absence of Thiobacillus ferrooxidans, and incubated at 28 degrees C under the stationary conditions for 30 days. The chemical composition of the solutions was studied after leaching as well as changes of the surfaces of monoliths. The deepest etching of surfaces with the formation of crusts and films of jarosite, limonite and goslarite occurs upon the combined action of bacteria and Fe3+ in regions of a fine-zonal structure enriched with an isomorphous arsenic admixture which are characterized by a defective weak structure. The pyrite and sphalerite from Charmitan with a higher arsenic and iron content were leached more than the pyrite and sphalerite from Kurgashincan. This was also corroborated by chemical analyses of leaching solutions and by monometric studies of crushed sulfide samples.

  15. Temperature-programmed sulfiding of precursor cobalt oxide genesis of highly active sites on sulfided cobalt catalyst for hydrogenation and isomerization

    SciTech Connect

    Inamura, Kazuhiro; Takyu, Toshiyuki ); Okamoto, Yasuaki; Nagata, Kozo; Imanaka, Toshinobu )

    1992-02-01

    It was found that the method of sulfidation of cobalt oxide strongly affects the catalytic activities and selectivities of the resultant cobalt sulfide catalyst, as well as the calcination temperature of the cobalt oxide. When cobalt oxide was sulfided at 673 K by a temperature-programmed sulfiding method (a heating rate of 6 K/min), catalytic activities for the hydrogenation of butadiene and the isomerization of 1-butene were considerably enhanced compared with those for cobalt sulfide prepared by isothermal sulfidation at 673 K. Results of temperature-programmed sulfiding (TPS), temperature-programmed reduction (TPR), and X-ray diffraction (XRD) suggest that the catalysts showing high catalytic activities after sulfidation are partially sulfided at 673 K and consist of the unsulfided cobalt core phases (CoO or metallic Co). The sulfidation property of precursor cobalt oxides has been studied using TPS, simulating the sulfidation process of the cobalt sulfide catalysts. Two distinctly different kinds of sulfidation process are estimated by TPS measurements of the cobalt oxides. The calcination temperature of the precursor cobalt oxides strongly affects the sulfidation paths. They are differentiated in terms of the presence of a metallic Co intermediate. The relationship of the mechanism of sulfidation of the cobalt oxides to the generation of highly active sites is discussed.

  16. The preparation of sol-gel materials doped with ionic liquids and trialkyl phosphine oxides for yttrium(III) uptake.

    PubMed

    Liu, Yinghui; Sun, Xiaoqi; Luo, Fang; Chen, Ji

    2007-12-01

    A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C8mim+ PF6(-)) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.

  17. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    NASA Astrophysics Data System (ADS)

    Mendiratta, Neeraj K.

    2000-10-01

    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrhotite, are few of the most abundant minerals, yet economically insignificant. Their existence with other sulfide minerals leads to an inefficient separation process as well as environmental problems, such as acid mine drainage during mining and processing and SO 2 emissions during smelting process. A part of the present study is focused on understanding their behavior, which leads to undesired flotation and difficulties in separation. The major reasons for the undesired flotation are attributed to the collectorless hydrophobicity and the activation with heavy metal ions. To better understand the collectorless hydrophobicity of pyrite, Electrochemical Impedance Spectroscopy (EIS) of freshly fractured pyrite electrodes was used to study the oxidation and reduction of the mineral. The EIS results showed that the rate of reaction increases with oxidation and reduction. At moderate oxidizing potentials, the rate of reaction is too slow to replenish hydrophilic iron species leaving hydrophobic sulfur species on the surface. However, at higher potentials, iron species are replaced fast enough to depress its flotation. Effects of pH and polishing were also explored using EIS. Besides collectorless hydrophobicity, the activation of pyrrhotite with nickel ions and interaction with xanthate ions makes the separation more difficult. DETA and SO2 are commonly used as pyrrhotite depressants; however, the mechanism is not very well understood. Contact angle measurements, cyclic voltammetry and Tafel

  18. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  19. Phosphine oxide derivatives as hosts for blue phosphors: A joint theoretical and experimental study of their electronic structure

    SciTech Connect

    Kim, Dongwook; Salman, Seyhan; Coropceanu, Veaceslav; Salomon, Eric; Padmaperuma, Asanga B.; Sapochak, Linda S.; Kahn, Antoine; Bredas, Jean-Luc

    2010-01-12

    We report on a joint theoretical and experimental investigation of the electronic structure of a series of bis(diphenylphosphine oxide) derivatives containing a central aromatic core with high triplet energy. Such molecules can serve as host material in the emissive layer of blue electro-phosphorescent organic devices. The aromatic cores considered in the theoretical study consist of biphenyl, fluorene, dibenzofuran, dibenzothiophene, dibenzothiophenesulfone or carbazole, linked to the two phosphoryl groups in either para or meta positions. With respect to the isolated core molecules, it is found that addition of the diphenylphosphine oxide moieties has hardly any impact on the core geometry and only slightly reduces the energy of the lowest triplet state (by at most ~0.2 eV). However, the diphenylphosphine oxide functionalities significantly impact the ionization potential and electron affinity values, in a way that is different for para and meta substitutions. Excellent comparison is obtained between the experimental UPS and IPES spectra of the para biphenyl and meta dibenzothiophene and dibenzothiophenesulfone compounds and the simulated spectra. In general, the phosphine oxide derivatives present triplet energies that are calculated to be at least 0.2 eV higher than those of currently widely used blue phosphorescent emitters.

  20. Temperature-programmed sulfiding of vanadium oxides and alumina-supported vanadium oxide catalysts

    SciTech Connect

    Bonne, R.L.C.; Langeveld, A.D. van; Moulijn, J.A.

    1995-06-01

    Sulfiding of bulk and alumina-supported vanadium oxides has been studied using temperature-programmed sulfiding and reduction techniques. Bulk compounds (V{sub 2}O{sub 5}, V{sub 2}O{sub 3}) and V/Al{sub 2}O{sub 3} catalysts are sulfided via a similar mechanism. For bulk V{sub 2}O{sub 5}, two major sulfiding steps have been identified. At temperatures up to 673K, V{sub 2}O{sub 5} is reduced to V{sub 2}O{sub 3} by O-S exchange and subsequent rupture of V-S bonds where H{sub 2}S acts as reducing agent. Sulfiding to V{sub 2}S{sub 3} takes place above 673K. The catalysts are sulfided more easily than the bulk oxides due to the higher dispersion of the vanadium species. In catalysts sulfided at 673K which are still partially oxidic, four types of sulfur have been observed, viz. adsorbed H{sub 2}S, stoichiometric sulfur, S-H groups, and nonstoichiometric (excess) sulfur (S{sub x}). There are indications that (isothermal) room temperature H{sub 2}S adsorption can be used to determine the dispersion of the supported microcrystallites at higher vanadium loadings. From the present results it is inferred that alumina-supported vanadium-based catalysts, when sulfided at temperatures commonly applied in hydrotreating operations, essentially consist of an oxide, the outer surface of which is sulfided. 22 refs., 6 figs., 4 tabs.

  1. Fluidized Bed Selective Oxidation-Sulfation Roasting of Nickel Sulfide Concentrate: Part I. Oxidation Roasting

    NASA Astrophysics Data System (ADS)

    Yu, Dawei; Utigard, Torstein A.; Barati, Mansoor

    2014-04-01

    Two-stage oxidation-sulfation roasting of nickel sulfide concentrate in fluidized bed was investigated to generate water-soluble metal sulfates as an alternative process to smelting of the sulfide concentrate for the recovery of valuable metals. The first stage, i.e., oxidation roasting, was employed to preferentially oxidize the iron before performing sulfation roasting. A batch fluidized bed roaster was constructed for roasting tests. Roasting products from various roasting temperatures and different roasting times were analyzed by SEM/EDS, EPMA, XRD, and ICP-OES to investigate the oxidation roasting behavior of the nickel concentrate as a function of temperature and time.

  2. Modeling of hydrogen sulfide oxidation in concrete corrosion products from sewer pipes.

    PubMed

    Jensen, Henriette Stokbro; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2009-04-01

    Abiotic and biotic oxidation of hydrogen sulfide related to concrete corrosion was studied in corrosion products originating from a sewer manhole. The concrete corrosion products were suspended in an acidic solution, mimicking the conditions in the pore water of corroded concrete. The removal of hydrogen sulfide and dissolved oxygen was measured in parallel in the suspension, upon which the suspension was sterilized and the measurement repeated. The results revealed the biotic oxidation to be fast compared with the abiotic oxidation. The stoichiometry of the hydrogen sulfide oxidation was evaluated using the ratio between oxygen and hydrogen sulfide uptake. The ratio for the biotic oxidation pointed in the direction of elemental sulfur being formed as an intermediate in the oxidation of hydrogen sulfide to sulfuric acid. The experimental results were applied to suggest a hypothesis and a mathematical model describing the hydrogen sulfide oxidation pathway in a matrix of corroded concrete. PMID:19445325

  3. Modeling of hydrogen sulfide oxidation in concrete corrosion products from sewer pipes.

    PubMed

    Jensen, Henriette Stokbro; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2009-04-01

    Abiotic and biotic oxidation of hydrogen sulfide related to concrete corrosion was studied in corrosion products originating from a sewer manhole. The concrete corrosion products were suspended in an acidic solution, mimicking the conditions in the pore water of corroded concrete. The removal of hydrogen sulfide and dissolved oxygen was measured in parallel in the suspension, upon which the suspension was sterilized and the measurement repeated. The results revealed the biotic oxidation to be fast compared with the abiotic oxidation. The stoichiometry of the hydrogen sulfide oxidation was evaluated using the ratio between oxygen and hydrogen sulfide uptake. The ratio for the biotic oxidation pointed in the direction of elemental sulfur being formed as an intermediate in the oxidation of hydrogen sulfide to sulfuric acid. The experimental results were applied to suggest a hypothesis and a mathematical model describing the hydrogen sulfide oxidation pathway in a matrix of corroded concrete.

  4. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  5. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Karpuk, M.E.; Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-09-01

    The system is based on the absorption of hydrogen sulfide (H{sub 2}S) by stannic (tin) oxide. Two sorbents are required, the first sorbent is tin oxide and the second sorbent is a zinc oxide based material (i.e., zinc ferrite or zinc titanate) which is regenerated by air producing SO{sub 2}. TDA`s process carries out a modified Claus reaction to reduce the SO{sub 2} from the second sorbent generation to elemental sulfur. In this case the sulfided stannic oxide forms stannous sulfide (SnS) which reduces the SO{sub 2}. The absorption by SnO{sub 2} could remove over 90% of the H{sub 2}S from typical coal gas streams, but we use zinc ferrite (or zinc titanate), (a) to reduce H{sub 2}S to less than 20 ppM and (b) as a source of SO{sub 2} in regeneration. Due to stoichiometry of regeneration we want to remove half of the H{sub 2}S by SnO{sub 2} and the remainder by the second sorbent. The reactions with stannic oxide minimize the heat released during H{sub 2}S removal and regeneration. The absorption by SnO{sub 2} is slightly endothermic and cools the gas stream by less that 5{degrees}F (2.8{degrees}C) during absorption. Regeneration with SO{sub 2} is exothermic but releases only 11% of the heat that is liberated in regenerating the ZnO. For a nominal 6.5:1 steam to air the regeneration of ZnO increases the temperature by {approx_equal}400{degrees}F. The regeneration of SnO{sub 2} increases the temperature by less than 50{degrees}F (28{degrees}C) in the same gas flow.

  6. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis

    PubMed Central

    Hanson, Thomas E.; Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Hess, Daniel

    2013-01-01

    Previously, we presented data that indicated microbial sulfide oxidation would out-compete strictly chemical, abiotic sulfide oxidation reactions under nearly all conditions relevant to extant ecosystems (Luther et al., 2011). In particular, we showed how anaerobic microbial sulfide oxidation rates were several orders of magnitude higher than even metal catalyzed aerobic sulfide oxidation processes. The fact that biotic anaerobic sulfide oxidation is kinetically superior to abiotic reactions implies that nearly all anaerobic and sulfidic environments should host microbial populations that oxidize sulfide at appreciable rates. This was likely an important biogeochemical process during long stretches of euxinia in the oceans suggested by the geologic record. In particular, phototrophic sulfide oxidation allows the utilization of carbon dioxide as the electron acceptor suggesting that this process should be particularly widespread rather than relying on the presence of other chemical oxidants. Using the Chesapeake Bay as an example, we argue that phototrophic sulfide oxidation may be more important in many environments than is currently appreciated. Finally, we present methodological considerations to assist other groups that wish to study this process. PMID:24391629

  7. Redox-active phosphines: synthesis and crystal structures of palladium(II) complexes of a metallaphosphine in two different oxidation states.

    PubMed

    Tohmé, Ayham; Labouille, Stéphanie; Roisnel, Thierry; Dorcet, Vincent; Carmichael, Duncan; Paul, Frédéric

    2014-05-21

    The redox-active metallaphosphine [Fe(dppe)(η(5)-C5Me5)(C≡C-PPh2)] reacts with [Pd(1,5-cod)Cl2] to give mono- and bis-phosphine coordinated palladium centres as a function of stoichiometry, and these complexes provide a stable redox-active platform which allows reversible one-electron {Fe(II)→Fe(III)(+)} oxidations within the palladium coordination sphere. PMID:24710466

  8. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways

    PubMed Central

    Mishanina, Tatiana V; Libiad, Marouane; Banerjee, Ruma

    2016-01-01

    The chemical species involved in H2S signaling remain elusive despite the profound and pleiotropic physiological effects elicited by this molecule. The dominant candidate mechanism for sulfide signaling is persulfidation of target proteins. However, the relatively poor reactivity of H2S toward oxidized thiols, such as disulfides, the low concentration of disulfides in the reducing milieu of the cell and the low steady-state concentration of H2S raise questions about the plausibility of persulfide formation via reaction between an oxidized thiol and a sulfide anion or a reduced thiol and oxidized hydrogen disulfide. In contrast, sulfide oxidation pathways, considered to be primarily mechanisms for disposing of excess sulfide, generate a series of reactive sulfur species, including persulfides, polysulfides and thiosulfate, that could modify target proteins. We posit that sulfide oxidation pathways mediate sulfide signaling and that sulfurtransferases ensure target specificity. PMID:26083070

  9. Synergistic extraction of rare earths with bis(2,4,4-trimethyl pentyl) dithiophosphinic acid and trialkyl phosphine oxide.

    PubMed

    Reddy, M L; Bosco Bharathi, J R; Peter, S; Ramamohan, T R

    1999-08-23

    Synergistic extraction of trivalent rare earths from nitrate solutions using mixtures of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301=HX) and trialkyl phosphine oxide (Cyanex 923=TRPO) in xylene has been investigated. The results demonstrate that these trivalent metal ions are extracted into xylene as MX(3).3HX with Cyanex 301 alone. In the presence of Cyanex 923, La(III) and Nd(III) are found to be extracted as MX(2).NO(3).TRPO. On the other hand, Eu(III), Y(III) and heavier rare earths are found to be extracted as MX(3).HX.2TRPO. The addition of a trialkylphosphine oxide to the metal extraction system not only enhances the extraction efficiency of these metal ions but also improves the selectivities significantly, especially between yttrium and heavier lanthanides. The separation factors between these metal ions were calculated and compared with that of commercially important extraction systems like di-2-ethylhexyl phosphoric acid.

  10. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    metal oxides with bimodal pore size distributions can be obtained. Combining nanocasting with chemical etching, a cobalt oxide with a hierarchical porous structure was synthesized, which possessed a surface area up to 250 m(2) g(-1), representing the highest surface area reported to date for nanoporous cobalt oxides. Lastly, this Account also covers the syntheses of nanoporous metal carbides and sulfides. The combination of in situ carburization and nanocasting enabled the syntheses of two ordered nanoporous metal carbides, Mo2C and W2C. For nanoporous metal sulfides, an "oxide-to-sulfide" synthetic strategy was proposed to address the large volume change issue of converting metal nitrate precursors to metal sulfide products in nanocasting. The successful syntheses of ordered nanoporous FeS2, CoS2, and NiS2 demonstrated the feasibility of the "oxide-to-sulfide" method. Concluding remarks include a summary of recent advances in the syntheses of nanoporous metal-based solids and a brief discussion of future opportunities in the hope of stimulating new interests and ideas.

  11. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, Ken; Baxter, David J.

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  12. Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, K.; Baxter, D.J.

    1983-07-26

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

  13. The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Barnes, I.; Becker, K. H.; Patroescu, I.

    1994-11-01

    In laboratory investigations of the gas-phase OH initiated oxidation of dimethyl sulfide (DMS: CH3SCH3) at room temperature the formation of SO2, dimethyl sulfoxide (DMSO: CH3SOCH3), and OCS have been observed. A yield of 0.7±0.2% S was measured for OCS. These new results represent a hitherto unknown and quite considerable in situ atmospheric source of OCS. Based on the global DMS source strength as given in the literature and provided that the results from the laboratory study are valid under atmospheric conditions we estimate a contribution in the range 0.10 to 0.28 Tg (OCS) yr-1 from the gas-phase atmospheric photooxidation of DMS to the global OCS budget.

  14. High temperature hydrogen sulfide removal with tin oxide

    SciTech Connect

    Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1993-06-01

    This Phase II SBIR contract is developing a sorbent and process which removes H{sub 2}S from hot gasified coal and generates sulfur during regeneration of the sorbent. The process can be used with any type of reactor (e.g., fixed or moving bed) and any gasifier (e.g., KRW or Texaco) and shows lower costs that competing H{sub 2}S removal processes. TDA Research`s (TDA) process uses a regenerable stannic oxide-based (SnO{sub 2}) sorbent as the first sorbent and zinc ferrite (or zinc titanate) as a second sorbent to remove H{sub 2}S to very low concentrations. The process converts the sulfides from both sorbents to elemental sulfur, a commercial product which is easy to store and transport. The object of this phase is to develop chemically active, high sulfur loadings, and durable stannic oxide sorbents and to demonstrate the process at the bench scale.

  15. Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides

    PubMed Central

    Couture, Raoul-Marie; Van Cappellen, Philippe; Corkhill, Claire L.; Charnock, John M.; Polya, David A.; Vaughan, David; Vanbroekhoven, Karolien; Lloyd, Jonathan R.

    2013-01-01

    Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 μM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 μM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 μM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit. PMID:23666325

  16. Arsenic bioremediation by biogenic iron oxides and sulfides.

    PubMed

    Omoregie, Enoma O; Couture, Raoul-Marie; Van Cappellen, Philippe; Corkhill, Claire L; Charnock, John M; Polya, David A; Vaughan, David; Vanbroekhoven, Karolien; Lloyd, Jonathan R

    2013-07-01

    Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 μM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 μM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 μM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit.

  17. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.

    PubMed

    Jensen, Henriette Stokbro; Lens, Piet N L; Nielsen, Jeppe L; Bester, Kai; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-05-30

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d(-1) and 1.33 d(-1) as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur. PMID:21440988

  18. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.

    PubMed

    Jensen, Henriette Stokbro; Lens, Piet N L; Nielsen, Jeppe L; Bester, Kai; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-05-30

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d(-1) and 1.33 d(-1) as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  19. Prebiotic Potential of Reduced Oxidation State Phosphorus. The H-Phosphinate-Pyruvate System

    NASA Astrophysics Data System (ADS)

    Bryant, D. E.; Marriott, K. E. R.; MacGregor, S. A.; Fishwick, C. W. G.; Kilner, C.; Bullough, E. K.; Pasek, M. A.; Kee, T. P.

    2010-04-01

    Phosphorus (P) is central to life as we know it but problems with using geologically available orthophosphate en route to life remain. Here we discuss how reduced oxidation state P-chemistry may offer additional possibilities for prebiotic chemistry.

  20. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    PubMed Central

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  1. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review.

    PubMed

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  2. High-efficiency turquoise-blue electrophosphorescence from a Pt(II)-pyridyltriazolate complex in phosphine oxide host

    SciTech Connect

    Bhansali, Unnat S; Polikarpov, Evgueni; Swensen, James S; Chen, Wei; Jia, Huiping; Gaspar, Daniel J; Gnade, Bruce E; Padmaperuma, Asanga B; Omary, Mohammad A

    2009-12-10

    We have demonstrated high-efficiency turquoise-blue electrophosphorescence from the complex Pt(ptp)2 = bis[3,5–bis(2–pyridyl)–1,2,4–triazolato]platinum(II) doped in the wide band-gap, ambipolar phosphine oxide host HM-A1 = 4-(diphenylphosphoryl)-N,N-diphenylaniline. For devices with 5% Pt(ptp)2 doping in HM-A1, we have achieved a peak external quantum efficiency and power efficiency of (11.8 ± 0.6) % and (61.2 ± 5.9) lm/W with high-pixel values of 13.1 % and 70.6 lm/W, respectively. These parameters maintained (10.6 ± 0.2) % and (40.3 ± 1.2) lm/W at a brightness of 1000 cd/m2 with high-pixel values of 10.8 % and 41.6 lm/W. Examination of several device structures suggests that the high performance is due to improved charge transport and exciton confinement in the emissive region. Devices with 1-10% doping concentration exhibit turquoise-blue emissions (λmax ~ 480 nm) with a monotonic decrease in monomer/excimer intensity ratio upon increasing the doping concentration. Devices with 5% doping exhibit sufficient blue contribution to attain white light upon combination with highly-doped or neat emissive layers of the same phosphor; the work herein represents a significant backdrop toward optimizing such white OLEDs given the performance metrics above, which to our knowledge represent the highest performance for OLEDs that exhibit blue emission maxima.

  3. Synthesis of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide – a tailor-made photoinitiator for dental adhesives

    PubMed Central

    Lamparth, Iris; Angermann, Jörg; Fischer, Urs Karl; Zeuner, Frank; Bock, Thorsten; Liska, Robert; Rheinberger, Volker

    2010-01-01

    Summary Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 °C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by 1H NMR, 13C NMR, 31P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV–vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations. PMID:20502649

  4. Synthesis of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide - a tailor-made photoinitiator for dental adhesives.

    PubMed

    Moszner, Norbert; Lamparth, Iris; Angermann, Jörg; Fischer, Urs Karl; Zeuner, Frank; Bock, Thorsten; Liska, Robert; Rheinberger, Volker

    2010-01-01

    Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 ° C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV-vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations. PMID:20502649

  5. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    SciTech Connect

    Gevertz, D.; Zimmerman, S.; Jenneman, G.E.

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  6. PCN pincer palladium(II) complex catalyzed enantioselective hydrophosphination of enones: synthesis of pyridine-functionalized chiral phosphine oxides as NC(sp(3))O pincer preligands.

    PubMed

    Hao, Xin-Qi; Huang, Juan-Juan; Wang, Tao; Lv, Jing; Gong, Jun-Fang; Song, Mao-Ping

    2014-10-17

    A series of chiral PCN pincer Pd(II) complexes VI-XIII with aryl-based aminophosphine-imidazoline or phosphinite-imidazoline ligands were synthesized and characterized. They were examined as enantioselective catalysts for the hydrophosphination of enones. Among them, complex IX, which features a Ph2PO donor as well as an imidazoline donor with (4S)-phenyl and N-Tol-p groups, was found to be the optimal catalyst. Thus, in the presence of 2-5 mol % of complex IX a wide variety of enones reacted smoothly with diarylphosphines to give the corresponding chiral phosphine derivatives in high yields with enantioselectivities of up to 98% ee. In particular, heteroaryl species such as 2-thienyl-, 2-furyl-, and 2-pyridinyl-containing enones that have a strong coordination ability to the Pd center were also appropriate substrates for the current catalytic system. For example, hydrophosphination of 2-alkenoylpyridines with diphenylphosphine followed by oxidation with H2O2 afforded the corresponding pyridine-functionalized chiral phosphine oxides in good yields with good to excellent enantioselectivities (10 examples, up to 95% ee). Furthermore, it had been demonstrated that the obtained pyridine-containing phosphine oxide acted as a tridentate ligand in the reaction with PdCl2 to form an intriguing NCsp(3)O pincer Pd(II) complex via Csp(3)-H bond activation, which to our knowledge is the first example of a chiral DCsp(3)D' Pd pincer (D ≠ D'; D and D' denote donor atoms such as P, N, etc.).

  7. cis-Bis(nitrato-κO,O')bis-(triethyl-phosphine oxide-κO)nickel(II).

    PubMed

    Seidel, Rüdiger W

    2009-05-07

    In the title compound, [Ni(NO(3))(2)(C(6)H(15)OP)(2)], the Ni(II) ion, lying on a crystallographic twofold axis, adopts a distorted octa-hedral coordination, consisting of O-donor atoms of two symmetry-related triethyl-phospine oxide and two bidentate nitrate ligands.

  8. Microbially mediated phosphine emission.

    PubMed

    Roels, Joris; Huyghe, Gwen; Verstraete, Willy

    2005-02-15

    There is still a lot of controversy in literature concerning the question whether a biochemical system exists enabling micro-organisms to reduce phosphate to phosphine gas. The search for so-called 'de novo synthesised' phosphine is complicated by the fact that soils, slurries, sludges, etc., which are often used as inocula, usually contain matrix bound phosphine (MBP). Matrix bound phosphine is a general term used to indicate non-gaseous reduced phosphorus compounds that are transformed into phosphine gas upon reaction with bases or acids. A study was carried out to compare the different digestion methods, used to transform matrix bound phosphine into phosphine gas. It was demonstrated that caustic and acidic digestion methods should be used to measure the matrix bound phosphine of the inoculum prior to inoculation to avoid false positive results concerning de novo synthesis. This is especially true if anthropogenically influenced inocula possibly containing minute steel or aluminium particles are used. The comparative study on different digestion methods also revealed that the fraction of phosphorus in mild steel, converted to phosphine during acid corrosion depended on the temperature. Following these preliminary studies, anaerobic growth experiments were set up using different inocula and media to study the emission of phosphine gas. Phosphine was detected in the headspace gases and its quantity and timeframe of emission depended on the medium composition, suggesting microbially mediated formation of the gas. The amount of phosphine emitted during the growth experiments never exceeded the bound phosphine present in inocula, prior to inoculation. Hence, de novo synthesis of phosphine from phosphate could not be demonstrated. Yet, microbially mediated conversion to phosphine of hitherto unknown reduced phosphorus compounds in the inoculum was evidenced. PMID:15713333

  9. Selective extraction of U(VI) and some other metals from nitric acid media by poly-phosphine poly-oxides

    SciTech Connect

    Nogami, M.; Sugiyama, Y.; Ikeda, Y.; Maruyama, K.

    2008-07-01

    For the selective extraction of radionuclides from nitrate media, the extractabilities of organo-poly-phosphine poly-oxides were examined in the form of impregnated resins. It was found that the extractability of 1,1,3,5,5-pentaphenyl-1,3,5-tri-phospha-pentane trioxide (PPTPT) for U(VI) is quite unusual with very high values at both low and high concentrations of nitric acid, which is not observed for other types of extractants. Thus, this extractant might be promising for the selective extraction of U(VI) in very high concentrations of HNO{sub 3}. (authors)

  10. Catalytic Enantioselective Carbon-Oxygen Bond Formation: Phosphine-Catalyzed Synthesis of Benzylic Ethers via the Oxidation of Benzylic C-H Bonds.

    PubMed

    Ziegler, Daniel T; Fu, Gregory C

    2016-09-21

    Benzylic alcohols and ethers are common subunits in bioactive molecules, as well as useful intermediates in organic chemistry. In this Communication, we describe a new approach to the enantioselective synthesis of benzylic ethers through the chiral phosphine-catalyzed coupling of two readily available partners, γ-aryl-substituted alkynoates and alcohols, under mild conditions. In this process, the alkynoate partner undergoes an internal redox reaction. Specifically, the benzylic position is oxidized with good enantioselectivity, and the alkyne is reduced to the alkene. PMID:27618638

  11. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution

    NASA Technical Reports Server (NTRS)

    Fry, B.; Ruf, W.; Gest, H.; Hayes, J. M.

    1988-01-01

    Normal sulfur isotope effects averaging epsilon = -5.2 +/- 1.4% (s.d.) were consistently observed for the oxidation of sulfide in aqueous solution. Reaction products were sulfate, thiosulfate and sulfite at pH 10.8-11 in distilled water; S0 was formed in two experiments with synthetic seawater at pH 8-9.5. Because the -5.2% normal isotope effect differs significantly from the previously measured +2% inverse effect associated with anaerobic oxidation of sulfide by photosynthetic bacteria, stable sulfur isotopic measurements are potentially useful for distinguishing aerobic vs. anaerobic sulfide oxidation in marine and freshwater sulfureta.

  12. Characterization of a transient +2 sulfur oxidation state intermediate from the oxidation of aqueous sulfide

    SciTech Connect

    Vairavmurthy, M.A.; Zhou, Weiqing

    1995-04-01

    The oxidation H{sub 2}S to sulfate involves a net transfer of eight electrons and occurs through the formation of several partially oxidized intermediates with oxidation states ranging from {minus}1 to +5. Known intermediates include elemental sulfur (oxidation state 0), polysulfides (outer sulfur: {minus}1, inner sulfur: 0), sulfite (+4) and thiosulfate (outer sulfur: {minus}1, inner sulfur: +5). A noticeable gap in this series of intermediates is that of a +2 sulfur oxidation state oxoacid/oxoanion species, which was never detected experimentally. Here, we present evidence of the transient existence of +2 oxidation state intermediate in the Ni(II)-catalyzed oxidation of aqueous sulfide. X-ray absorption near-edge structure (XANES) spectroscopy and Fourier-transform-infrared (FT-IR) spectroscopy were used to characterize this species; they suggest that it has a sulfoxylate ion (SO{sub 2}{sup 2{minus}}) structure.

  13. Catalytic activity of metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide

    SciTech Connect

    Marshneva, V.I.; Mokrinskii, V.V.

    1989-02-01

    Separate investigations have been made of the catalytic activities of a wide range of oxides by groups I-VIII metals in the Claus reaction and oxidation of H/sub 2/S by oxygen. Only 9 of 21 oxides used in the Claus reaction exhibit stable activity. The remaining oxides are deactivated, mainly by absorbing H/sub 2/S and being converted into sulfides. There are similar tendencies in the changes of sulfur formation specific velocities in both processes in the series of stable oxides V/sub 2/O/sub 5/, TiO/sub 2/, Mn/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, MgO, Cr/sub 2/O/sub 3/. Vanadium pentoxide is the most active catalyst in the total and partial oxidations of H/sub 2/S and the Claus reaction.

  14. Sulfur speciation and sulfide oxidation in the water column of the Black Sea

    NASA Astrophysics Data System (ADS)

    Luther, George W., III; Church, Thomas M.; Powell, David

    We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on

  15. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  16. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  17. Modelling of sulfide oxidation with reactive transport at a mine drainage site

    NASA Astrophysics Data System (ADS)

    Bain, J. G.; Blowes, D. W.; Robertson, W. D.; Frind, E. O.

    2000-01-01

    A plume of groundwater affected by sulfide oxidation extends 160 m downgradient from the Nickel Rim Mine tailings impoundment and discharges to a small lake. The plume water has near neutral pH, but contains high concentrations of Fe and SO 4. Field observations indicate that the release of SO 4, H +, Fe 2+ and other metals and their distribution in the aquifer is controlled by the rate of sulfide oxidation in the vadose zone of the tailings and by subsequent dissolution and precipitation of carbonate and oxyhydroxide mineral phases in the tailings and aquifer. Using field-determined aqueous and solid geochemistry, a conceptual geochemical model for the site was developed. This model accounts for trends in pH and in the concentrations of Fe and SO 4. The numerical model MINTOX was used in conjunction with this conceptual model to simulate sulfide oxidation and two-dimensional reactive transport of dissolved sulfide oxidation products. Simulated sulfide oxidation and transport are compared to trends observed in the field after 35 years of oxidation. Similarity between observed and simulated concentrations demonstrates that, when used with a well-developed conceptual geochemical model, MINTOX is capable of simulating sulfide oxidation and plume evolution at mine drainage sites.

  18. Oxidative nucleophilic strategy for synthesis of thiocyanates and trifluoromethyl sulfides from thiols.

    PubMed

    Yamaguchi, Kazuya; Sakagami, Konomi; Miyamoto, Yumi; Jin, Xiongjie; Mizuno, Noritaka

    2014-12-01

    Thiocyanates and trifluoromethyl sulfides are important compounds and have classically been synthesized via multistep procedures together with the formation of significant amounts of byproducts. Herein, we demonstrate an oxidative nucleophilic strategy for the synthesis of thiocyanates and trifluoromethyl sulfides from thiol starting materials using nucleophilic reagents such as TMSCN and TMSCF3 (TMS = trimethylsilyl). In the presence of a 2 × 2 manganese oxide-based octahedral molecular sieve (OMS-2) and potassium fluoride (KF), various structurally diverse thiocyanates and trifluoromethyl sulfides could be synthesized in almost quantitative yields (typically >90%). The presented cyanation and trifluoromethylation reactions proceed through the OMS-2-catalyzed oxidative homocoupling of thiols to give disulfides followed by nucleophilic bond cleavage to produce the desired compounds and thiolate species (herein S-trimethylsilylated thiols). OMS-2 can catalyze oxidative homocoupling of the thiolate species, thus resulting formally in the quantitative production of thiocyanates and trifluoromethyl sulfides from thiols. PMID:25297894

  19. Kinetics and mechanism of the oxidation of organic sulfides by N-bromobenzamide

    SciTech Connect

    Chowdhury, K.; Banerji, K.K. )

    1990-09-14

    Kinetics of oxidation of 34 organic sulfides by N-bromobenzamide (NBB), to yield the corresponding sulfoxides, have been studied. The reaction is first-order with respect to the sulfide, NBB, and hydrogen ions. There is no effect of added benzamide. Protonated NBB has been postulated as the reactive oxidizing species. Reactivity of the sulfides toward NBB was subjected to correlation analysis by using multiparametric equations. The polar reaction constants are negative. Steric effects play a minor inhibitory role. A mechanism involving formulation of a halogenosulfonium cation, in the rate-determining step, has been proposed.

  20. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Amit, Iddo; Subramani, Thangavel; Zaidiner, Seva; Rosenwaks, Yossi; Yerushalmi, Roie

    2012-11-27

    Contact doping method for the controlled surface doping of silicon wafers and nanometer scale structures is presented. The method, monolayer contact doping (MLCD), utilizes the formation of a dopant-containing monolayer on a donor substrate that is brought to contact and annealed with the interface or structure intended for doping. A unique feature of the MLCD method is that the monolayer used for doping is formed on a separate substrate (termed donor substrate), which is distinct from the interface intended for doping (termed acceptor substrate). The doping process is controlled by anneal conditions, details of the interface, and molecular precursor used for the formation of the dopant-containing monolayer. The MLCD process does not involve formation and removal of SiO(2) capping layer, allowing utilization of surface chemistry details for tuning and simplifying the doping process. Surface contact doping of intrinsic Si wafers (i-Si) and intrinsic silicon nanowires (i-SiNWs) is demonstrated and characterized. Nanowire devices were formed using the i-SiNW channel and contact doped using the MLCD process, yielding highly doped SiNWs. Kelvin probe force microscopy (KPFM) was used to measure the longitudinal dopant distribution of the SiNWs and demonstrated highly uniform distribution in comparison with in situ doped wires. The MLCD process was studied for i-Si substrates with native oxide and H-terminated surface for three types of phosphorus-containing molecules. Sheet resistance measurements reveal the dependency of the doping process on the details of the surface chemistry used and relation to the different chemical environments of the P═O group. Characterization of the thermal decomposition of several monolayer types formed on SiO(2) nanoparticles (NPs) using TGA and XPS provides insight regarding the role of phosphorus surface chemistry at the SiO(2) interface in the overall MLCD process. The new MLCD process presented here for controlled surface doping

  1. Synthesis and characterisation: Zinc oxide-sulfide nanocomposites

    NASA Astrophysics Data System (ADS)

    Verma, Prinsa; Pandey, Avinash C.; Bhargava, R. N.

    2009-11-01

    A novel synthesis method is presented for the preparation of nanosized-semiconductor zinc oxide-sulphide (ZnO/ZnS) core-shell nanocomposites, both formed sequentially from a single-source solid precursor. ZnO nanocrystals were synthesized by a simple co-precipitation method and ZnO/ZnS core-shell nanocomposites were successfully fabricated by sulfidation of ZnO nanocrystals via a facile chemical synthesis at room temperature. The as-obtained samples were characterized by X-ray diffraction and transmission electron microscopy. The results showed that the pure ZnO nanocrystals were hexagonal wurtzite crystal structures and the ZnS nanoparticles were sphalerite structure with the size of about 10 nm grown on the surface of the ZnO nanocrystals. Optical properties measured reveal that ZnO/ZnS core-shell nanocomposites have integrated the photoluminescent effect of ZnO and ZnS. Based on the results of the experiments, a possible formation mechanism of ZnO/ZnS core-shell nanocomposites was also suggested. This treatment is suggested to improve various properties of optoelectronically valuable ZnO/ZnS nanocomposites. These nanosized semiconductor nanocomposites can form a new class of luminescent materials for various applications.

  2. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.

    PubMed

    Kijjanapanich, Pimluck; Kijjanapanich, Pairoje; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2015-02-01

    Sulfide is the product of the biological sulfate reduction process which gives toxicity and odor problems. Wastewaters or bioreactor effluents containing sulfide can cause severe environmental impacts. Electrochemical treatment can be an alternative approach for sulfide removal and sulfur recovery from such sulfide rich solutions. This study aims to develop a spontaneous electrochemical sulfide oxidation/vanadium(V) reduction cell with a graphite electrode system to recover sulfide as elemental sulfur. The effects of the internal and external resistance on the sulfide removal efficiency and electrical current produced were investigated at different pH. A high surface area of the graphite electrode is required in order to have as less internal resistance as possible. In this study, graphite powder was added (contact area >633 cm(2)) in order to reduce the internal resistance. A sulfide removal efficiency up to 91% and electrical charge of more than 400 C were achieved when using five graphite rods supplemented with graphite powder as the electrode at an external resistance of 30 Ω and a sulfide concentration of 250 mg L(-1).

  3. Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp.

    PubMed Central

    Schwedt, Anne; Kreutzmann, Anne-Christin; Kuypers, Marcel M. M.; Milucka, Jana

    2014-01-01

    Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S0 under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (Sn2−). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that Sn2− species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS− as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S0 deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M. PMID:24212585

  4. Evaluation of Nitrous Oxide Emission from Sulfide- and Sulfur-Based Autotrophic Denitrification Processes.

    PubMed

    Liu, Yiwen; Peng, Lai; Ngo, Huu Hao; Guo, Wenshan; Wang, Dongbo; Pan, Yuting; Sun, Jing; Ni, Bing-Jie

    2016-09-01

    Recent studies have shown that sulfide- and sulfur-based autotrophic denitrification (AD) processes play an important role in contributing to nitrous oxide (N2O) production and emissions. However, N2O production is not recognized in the current AD models, limiting their ability to predict N2O accumulation during AD. In this work, a mathematical model is developed to describe N2O dynamics during sulfide- and sulfur-based AD processes for the first time. The model is successfully calibrated and validated using N2O data from two independent experimental systems with sulfide or sulfur as electron donors for AD. The model satisfactorily describes nitrogen reductions, sulfide/sulfur oxidation, and N2O accumulation in both systems. Modeling results revealed substantial N2O accumulation due to the relatively low N2O reduction rate during both sulfide- and sulfur-based AD processes. Application of the model to simulate long-term operations of activated sludge systems performing sulfide- and sulfur-based AD processes indicates longer sludge retention time reduced N2O emission. For sulfide-based AD process, higher initial S/N ratio also decreased N2O emission but with a higher operational cost. This model can be a useful tool to support process operation optimization for N2O mitigation during AD with sulfide or sulfur as electron donor. PMID:27501384

  5. Iron sulfide oxidation and the chemistry of acid generation

    SciTech Connect

    Sullivan, P.J.; Yelton, J.L. ); Reddy, K.J. )

    1988-06-01

    Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (Al), iron (Fe), and sulfate (SO{sub 4}) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6% pyrite) and a Chattanooga Shale (1.5% pyrite) were used. The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe{sup 3+}, Fe{sup 2+}, Al{sup 3+}, and SO{sub 4}{sup 2{minus}} increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe + pH (redox-potential). The Fe{sup 3+} and Fe{sup 2+} activities appeared to be controlled by amorphous Fe(OH){sub 3} solid phase above a pH of 6.0 and below pe + pH 11.0. The Fe{sup 3+}, Fe{sup 2+}, and SO{sub 4}{sup 2{minus}} activities reached saturation with respect to FeOHSO{sub 4} solid phase between pH 3.0 and 6.0 and below pe + pH 11.0. Below a pH of 3.0 and above a pe + pH of 11.0, Fe{sup 2+}, Fe{sup 3+}, and SO{sub 4}{sup 2{minus}} activities are supported by FeSO{sub 4}{center dot}7H{sub 2}O solid phase. Above a pH of 6.0, the Al{sup 3+} activity showed an equilibrium with amorphous Al(OH){sub 3} solid phase. Below pH 6.0, Al{sup 3+} and SO{sub 4}{sup 2{minus}} activities are regulated by the AlOHSO{sub 4} solid phase, irrespective of pe + pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox.

  6. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.

    PubMed

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2014-08-01

    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed.

  7. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.

    PubMed

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang

    2010-10-15

    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution.

  8. Synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water.

    PubMed

    Jacukowicz-Sobala, Irena; Wilk, Łukasz J; Drabent, Krzysztof; Kociołek-Balawejder, Elżbieta

    2015-12-15

    Hybrid materials containing iron oxides based on macroporous and gel-type sulfonic and carboxylic cation exchangers as supporting materials were obtained. Multiple factors, including the kind of functional groups, ion exchange capacity, and polymer matrix type (chemical constitution and porous structure), affected the amount of iron oxides introduced into their matrix (7.8-35.2% Fe). Products containing the highest iron content were obtained using carboxylic cation exchangers, with their inorganic deposit being mostly a mixture of iron(III) oxides, including maghemite. Obtained hybrid polymers were used for removal of sulfides from anoxic aqueous solutions (50-200mgS(2-)/dm(3)). The research showed that the form (Na(+) or H(+)) of ionic groups of hybrid materials had a crucial impact on the sulfide removal process. Due to high iron oxide content (35% Fe), advantageous chemical constitution and porous structure, the highest removal efficiency (60mgS(2-)/g) was exhibited by a hybrid polymer obtained using a macroporous carboxylic cation exchanger as the host material. The process of sulfide removal was very complex and proceeded with heterogeneous oxidation, iron(III) oxide reductive dissolution and formation of sulfide oxidation and precipitation products such as iron(II) sulfides, thiosulfates and polysulfides.

  9. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our

  10. Sulfide Oxidation by a Noncanonical Pathway in Red Blood Cells Generates Thiosulfate and Polysulfides*

    PubMed Central

    Vitvitsky, Victor; Yadav, Pramod K.; Kurthen, Angelika; Banerjee, Ruma

    2015-01-01

    A cardioprotectant at low concentrations, H2S is a toxin at high concentrations and inhibits cytochrome c oxidase. A conundrum in H2S homeostasis is its fate in red blood cells (RBCs), which produce H2S but lack the canonical mitochondrial sulfide oxidation pathway for its clearance. The sheer abundance of RBCs in circulation enhances the metabolic significance of their clearance strategy for H2S, necessary to avoid systemic toxicity. In this study, we demonstrate that H2S generation by RBCs is catalyzed by mercaptopyruvate sulfurtransferase. Furthermore, we have discovered the locus of sulfide oxidation in RBCs and describe a new role for an old protein, hemoglobin, which in the ferric or methemoglobin state binds H2S and oxidizes it to a mixture of thiosulfate and hydropolysulfides. Our study reveals a previously undescribed route for the biogenesis of hydropolysulfides, which are increasingly considered important for H2S-based signaling, but their origin in mammalian cells is unknown. An NADPH/flavoprotein oxidoreductase system restores polysulfide-carrying hemoglobin derivatives to ferrous hemoglobin, thus completing the methemoglobin-dependent sulfide oxidation cycle. Methemoglobin-dependent sulfide oxidation in mammals is complex and has similarities to chemistry reported for the dissolution of iron oxides in sulfidic waters and during bioleaching of metal sulfides. The catalytic oxidation of H2S by hemoglobin explains how RBCs maintain low steady-state H2S levels in circulation, and suggests that additional hemeproteins might be involved in sulfide homeostasis in other tissues. PMID:25688092

  11. Voltammetric study of the anodic oxidation of sulfide ions in molten fluorides

    SciTech Connect

    Minh, N.Q.; Yao, N.P.

    1983-05-01

    Information regarding the electrochemical behavior of sulfide ions in molten salts is important for questions of battery technology in the case of high-temperature secondary batteries, and for metallurgical molten-salt processes. The present investigation is concerned with the electrochemical behavior of sulfide in molten LiF-NaF. The investigation has the objective to evaluate the feasibility of the LiF-NaF melt as solvent for the electrolysis of Al2S3. The results are presented of a voltammetric study of the electrochemical oxidation of sulfide in LiF-NaF eutectic at 1023 K. It is found that the anodic oxidation of sulfide ions in LiF-NaF eutectic is reversible and diffusion controlled. The obtained experimental data correspond to the reaction mechanism 2S(2-) yields reversibly S2(2-) + 2e(-).

  12. Synthesis of Functionalized Furans via Chemoselective Reduction/Wittig Reaction Using Catalytic Triethylamine and Phosphine.

    PubMed

    Lee, Chia-Jui; Chang, Tzu-Hsiu; Yu, Jhen-Kuei; Madhusudhan Reddy, Ganapuram; Hsiao, Ming-Yu; Lin, Wenwei

    2016-08-01

    An efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction has been developed using catalytic amounts of phosphine and triethylamine. Silyl chloride served as the initial promoter to activate the phosphine oxide. Reduction of the activated phosphine oxide by hydrosilane resulted in generation of phosphine, while decomposition of Et3N·HCl resulted in regeneration of base, which mediated formation of phosphorus ylide. Remarkably, the in situ generated byproduct, Et3N·HCl, also catalyzes reduction of phosphine oxide. PMID:27434727

  13. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    PubMed Central

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  14. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    PubMed

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  15. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    PubMed

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  16. Pathways of sulfide oxidation by haloalkaliphilic bacteria in limited-oxygen gas lift bioreactors.

    PubMed

    Klok, Johannes B M; van den Bosch, Pim L F; Buisman, Cees J N; Stams, Alfons J M; Keesman, Karel J; Janssen, Albert J H

    2012-07-17

    Physicochemical processes, such as the Lo-cat and Amine-Claus process, are commonly used to remove hydrogen sulfide from hydrocarbon gas streams such as landfill gas, natural gas, and synthesis gas. Biodesulfurization offers environmental advantages, but still requires optimization and more insight in the reaction pathways and kinetics. We carried out experiments with gas lift bioreactors inoculated with haloalkaliphilic sulfide-oxidizing bacteria. At oxygen-limiting levels, that is, below an O(2)/H(2)S mole ratio of 1, sulfide was oxidized to elemental sulfur and sulfate. We propose that the bacteria reduce NAD(+) without direct transfer of electrons to oxygen and that this is most likely the main route for oxidizing sulfide to elemental sulfur which is subsequently oxidized to sulfate in oxygen-limited bioreactors. We call this pathway the limited oxygen route (LOR). Biomass growth under these conditions is significantly lower than at higher oxygen levels. These findings emphasize the importance of accurate process control. This work also identifies a need for studies exploring similar pathways in other sulfide oxidizers such as Thiobacillus bacteria.

  17. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    SciTech Connect

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-06-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique.

  18. Sulfidation of mixed metal oxides in a fluidized-bed reactor

    SciTech Connect

    Christoforou, S.C.; Efthimiadis, E.A.; Vasalos, I.A. )

    1995-01-01

    Mixed metal oxides were used for the removal of hydrogen sulfide from a hot gas stream. Sorbents were prepared according to the dry and wet impregnation techniques. The desulfurization performance of the metal oxide sorbents was experimentally tested in a fluidized-bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that the preparation procedure and technique, the type and the amount of the impregnated metal oxide, the type of the solid carrier, and the size of the solid reactant affect the H[sub 2]S removal capacity of the sorbents. The pore structure of fresh and sulfided sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  19. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulfide oxidation: Reaction kinetics and stoichiometry

    PubMed Central

    Xu, Xi-Jun; Chen, Chuan; Guo, Hong-liang; Wang, Ai-jie; Ren, Nan-qi; Lee, Duu-Jong

    2016-01-01

    Sulfide biooxidation by the novel sulfide-oxidizing bacteria Pseudomonas sp. C27, which could perform autotrophic and heterotrophic denitrification in mixotrophic medium, was studied in batch and continuous systems. Pseudomonas sp. C27 was able to oxidize sulfide at concentrations as high as 17.66 mM. Sulfide biooxidation occurred in two distinct stages, one resulting in the formation of sulfur with nitrate reduction to nitrite, followed by thiosulfate formation with nitrite reduction to N2. The composition of end-products was greatly impacted by the ratio of sulfide to nitrate initial concentrations. At a ratio of 0.23, thiosulfate represented 100% of the reaction products, while only 30% with a ratio of 1.17. In the continuous bioreactor, complete removal of sulfide was observed at sulfide concentration as high as 9.38 mM. Overall sulfide removal efficiency decreased continuously upon further increases in influent sulfide concentrations. Based on the experimental data kinetic parameter values were determined. The value of maximum specific growth rate, half saturation constant, decay coefficient, maintenance coefficient and yield were to be 0.11 h−1, 0.68 mM sulfide, 0.11 h−1, 0.21 mg sulfide/mg biomass h and 0.43 mg biomass/mg sulfide, respectively, which were close to or comparable with those reported in literature by other researches. PMID:26864216

  20. Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture

    PubMed Central

    Kamp, Anja; Stief, Peter; Schulz-Vogt, Heide N.

    2006-01-01

    A lithotrophic freshwater Beggiatoa strain was enriched in O2-H2S gradient tubes to investigate its ability to oxidize sulfide with NO3− as an alternative electron acceptor. The gradient tubes contained different NO3− concentrations, and the chemotactic response of the Beggiatoa mats was observed. The effects of the Beggiatoa sp. on vertical gradients of O2, H2S, pH, and NO3− were determined with microsensors. The more NO3− that was added to the agar, the deeper the Beggiatoa filaments glided into anoxic agar layers, suggesting that the Beggiatoa sp. used NO3− to oxidize sulfide at depths below the depth that O2 penetrated. In the presence of NO3− Beggiatoa formed thick mats (>8 mm), compared to the thin mats (ca. 0.4 mm) that were formed when no NO3− was added. These thick mats spatially separated O2 and sulfide but not NO3− and sulfide, and therefore NO3− must have served as the electron acceptor for sulfide oxidation. This interpretation is consistent with a fourfold-lower O2 flux and a twofold-higher sulfide flux into the NO3−-exposed mats compared to the fluxes for controls without NO3−. Additionally, a pronounced pH maximum was observed within the Beggiatoa mat; such a pH maximum is known to occur when sulfide is oxidized to S0 with NO3− as the electron acceptor. PMID:16820468

  1. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is

  2. The sulfide ore looping oxidation process: An alternative to current roasting and smelting practice

    NASA Astrophysics Data System (ADS)

    McHugh, Larry F.; Balliett, Robert; Mozolic, Jean A.

    2008-07-01

    This novel method utilizes the reactions of metal sulfides and metal oxides. It is applicable to single-metal systems such as Mo, Cu, Co, Ni, Fe, and Zn individual sulfides and to mixed sulfides such as chalcopyrite and Mo/Fe. In addition to primary ores, waste stream products such as spent catalysts can be effectively processed. The benchmark work done on MoS2/MoO3 resulted in an MoO2 product with less than 0.095 wt.% sulfur. Other sulfide concentrate materials showed similar results. In the first stage of the looping process, a highly concentrated SO2 off-gas stream is produced that could be directed to an acid plant or converted to liquid. The products from the first process step can be directed down line for further processing or can be used as is. In the second step of looping oxidation, the product is oxidized back to its fully oxidized state and is mainly looped back to drive the oxidation process in the first reaction. There are also several opportunities for energy recovery and conversion, making looping oxidation an energy-efficient process.

  3. Thermodynamic Model and Database for Sulfides Dissolved in Molten Oxide Slags

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Pelton, Arthur D.

    2009-12-01

    A thermodynamic model has been developed in the framework of the modified quasichemical model in the quadruplet approximation to permit the calculation of solubilities of various gaseous species (sulfide, sulfate, nitride, carbide, water, etc.) in molten slags. The model calculates the solubilities solely from knowledge of the thermodynamic activities of the component oxides and the Gibbs energies of the pure liquid components (oxides, sulfides, sulfates, etc.). In the current article, it is shown that solubilities of sulfur as sulfide in Al2O3-CaO-FeO-Fe2O3-MgO-MnO-SiO2-TiO2-Ti2O3 multicomponent slags, which are predicted from the current model with no adjustable model parameters, are in good agreement with all available experimental data. The article also provides a thorough review of experimental sulfide capacity data for this system. The model applies at all compositions from pure oxides to pure sulfides and from basic to acidic slags. By coupling this database with other evaluated databases, such as those for molten metal and gaseous phases, and with general software for Gibbs energy minimization, practically important slag/metal/gas/solid equilibria can be computed such as S-distribution ratios.

  4. Kinetic Constants for Biological Ammonium and Nitrite Oxidation Processes Under Sulfide Inhibition.

    PubMed

    Bejarano-Ortiz, Diego Iván; Huerta-Ochoa, Sergio; Thalasso, Frédéric; Cuervo-López, Flor de María; Texier, Anne-Claire

    2015-12-01

    Inhibition of nitrification by sulfide was assessed using sludge obtained from a steady-state nitrifying reactor. Independent batch activity assays were performed with ammonium and nitrite as substrate, in order to discriminate the effect of sulfide on ammonium and nitrite oxidation. In the absence of sulfide, substrate affinity constants (K S,NH4  = 2.41 ± 0.11 mg N/L; K s, NO2  = 0.74 ± 0.03 mg N/L) and maximum specific rates (q max,NH4  = 0.086 ± 0.008 mg N/mg microbial protein h; q max,NO2  = 0.124 ± 0.001 mg N/mg microbial protein h) were determined. Inhibition of ammonium oxidation was no-competitive (inhibition constant (K i , NH4 ) of 2.54 ± 0.12 mg HS(-)-S/L) while inhibition of nitrite oxidation was mixed (competitive inhibition constant (K' i , NO2 ) of 0.22 ± 0.03 mg HS(-)-S/L and no-competitive inhibition constant (K i , NO2 ) of 1.03 ± 0.06 mg HS(-)-S/L). Sulfide has greater inhibitory effect on nitrite oxidation than ammonium oxidation, and its presence in nitrification systems should be avoided to prevent accumulation of nitrite. By simulating the effect of sulfide addition in a continuous nitrifying reactor under steady-state operation, it was shown that the maximum sulfide concentration that the sludge can tolerate without affecting the ammonium consumption efficiency and nitrate yield is 1 mg HS(-)-S/L.

  5. Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Brabec, Michelle Y.; Lyons, Timothy W.; Mandernack, Kevin W.

    2012-04-01

    Sulfide-mediated anoxygenic photosynthesis (SMAP) carried out by anaerobic phototrophic bacteria may have played an important role in sulfur cycling, formation of sulfate, and, perhaps, primary production in the Earth’s early oceans. Determination of ε34SSO4-Sulfide- and ε18OSO4-H2O values for bacterial sulfide oxidation will permit more refined interpretation of the δ34S and δ18OSO4 values measured in modern anoxic environments, such as meromictic lakes where sulfide commonly extends into the photic zone, and in the ancient rock record, particularly during periods of the Precambrian when anoxic and sulfidic (euxinic) conditions were believed to be more pervasive than today. Laboratory experiments with anaerobic purple and green sulfur phototrophs, Allochromatium vinosum and Chlorobaculum tepidum, respectively, were conducted to determine the sulfur and oxygen isotope fractionation during the oxidation of sulfide to sulfate. Replicate experiments were conducted at 25 °C for A. vinosum and 45 °C for C. tepidum, and in duplicate at three different starting oxygen isotope values for water to determine sulfate-water oxygen isotope fractionations accurately (ε18OSO4-H2O). ε18OSO4-H2O values of 5.6 ± 0.2‰ and 5.4 ± 0.1‰ were obtained for A. vinosum and C. tepidum, respectively. Temperature had no apparent effect on the ε18OSO4-H2O values. By combining all data from both cultures, an average ε18OSO4-H2O value of 5.6 ± 0.3‰ was obtained for SMAP. This value falls between those previously reported for bacterial oxidation of sphalerite and elemental sulfur (7-9‰) and abiotic and biotic oxidation of pyrite and chalcopyrite (2-4‰). Sulfur isotope fractionation between sulfide and sulfate formed by A.vinosum was negligible (0.1 ± 0.2‰) during all experiments. For C. tepidum an apparent fractionation of -2.3 ± 0.5‰ was observed during the earlier stages of oxidation based on bulk δ34S measurements of sulfate and sulfide and became smaller (-0.7

  6. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  7. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring

    PubMed Central

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-01-01

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893

  8. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring.

    PubMed

    Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki

    2016-06-25

    We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.

  9. [Oxidation Process of Dissolvable Sulfide by Manganite and Its Influencing Factors].

    PubMed

    Luo, Yao; Li, Shan; Tan, Wen-feng; Liu, Fan; Cai, Chong-fa; Qiu, Guo-hong

    2016-04-15

    As one of the manganese oxides, which are easily generated and widely distributed in supergene environment, manganite participates in the oxidation of dissolvable sulfide (S²⁻), and affects the migration, transformation, and the fate of sulfides. In the present work, the redox mechanism was studied by determining the intermediates, and the influence of initial pH and oxygen atmosphere on the processes were studied. The chemical composition, crystal structures and micromorphologies were characterized by XRD, FTIR and TEM. The concentration of S²⁻ and its oxidation products were analyzed using spectrophotometer, high performance liquid chromatograph and ion chromatograph. The results indicated that elemental sulfur was formed as the major oxidation product of S²⁻ oxidation, and decreased pH could accelerate the oxidation rate of S²⁻ in the initial stage, however, there was no significant influence on final products. Elemental S could be further oxidized to S₂O₃²⁻ when the reaction system was bubbled with oxygen, and manganite exhibited excellent catalytic performance and chemical stability during the oxidation of dissolvable sulfide by oxygen. After reaction of more than 10 h, the crystal structure of manganite remained stable. PMID:27548980

  10. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.

    PubMed

    Vera, Mario; Schippers, Axel; Sand, Wolfgang

    2013-09-01

    Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.

  11. Product distribution study of the Cl-atom initiated oxidation of ethyl methyl sulfide and diethyl sulfide

    NASA Astrophysics Data System (ADS)

    Oksdath-Mansilla, Gabriela; Peñéñory, Alicia B.; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.

    2014-03-01

    The products formed in the gas-phase reactions of Cl atoms with (CH3CH2)2S and CH3CH2SCH3 have been investigated in a large volume reactor in NOx-free air at atmospheric pressure and (298 ± 2) K using long path “in situ” FTIR spectroscopy for the analysis. HCl, SO2 and CH3CHO were identified as the major products for both reactions. For the Cl + CH3CH2SCH3 reaction HCHO was also identified as a major product. The yields of the products obtained for the reaction of Cl with (CH3CH2)2S were (59 ± 2) %, (52 ± 5) % and (103 ± 4) % for HCl, SO2 and CH3CHO, respectively. For the reaction of Cl with CH3CH2SCH3 yields of (43 ± 5) %, (55 ± 3) %, (58 ± 3) % and (53 ± 5) % were obtained for HCl, SO2, CH3CHO and HCHO, respectively. This is the first products and mechanistic study for the gas-phase Cl-initiated oxidation of non-CH3SCH3 alkyl sulfides. Comparison with previous results for the reaction of Cl with dimethyl sulfide is made and simple atmospheric degradation mechanisms are postulated to explain the formation of the observed products.

  12. Microbially mediated re-oxidation of sulfide during dissimilatory sulfate reduction by Desulfobacter latus

    NASA Astrophysics Data System (ADS)

    Eckert, T.; Brunner, B.; Edwards, E. A.; Wortmann, U. G.

    2011-06-01

    Enzymatic reactions during dissimilatory sulfate reduction (DSR) are often treated as unidirectional with respect to dissolved sulfide. However, quantitative models describing kinetic sulfur isotope fractionations during DSR consider the individual enzymatic reactions as reversible ( Rees, 1973). Brunner and Bernasconi (2005) extended this line of thought, and suggested that as long as cell external sulfide (CES) concentrations are high enough, CES may diffuse back across the cytoplasmic cell membrane and may subsequently be re-oxidized to sulfate. Here, we test this hypothesis by measuring the time evolution of the δ34S-sulfate signal during DSR in closed system experiments under different levels of sulfide stress (0-20 mM and 0-40 mM total dissolved sulfide). Our results show that the measured δ34S-sulfate signal is markedly different in the latter case and that the observed sulfate S-isotope time-evolution is incompatible with a Rayleigh type fractionation model. In contrast, our results are consistent with a sulfate reduction and fractionation model that allows for a cell internal oxidation of dissolved sulfide by a sulfate reducer.

  13. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals

    EPA Science Inventory

    Cadmium enrichment (relative to Fe and Zn) in paddy rice grain occurs during the pre-harvest drainage of flooded soil, which causes oxidative dissolution of sulfide minerals present in reduced soil. We investigated this process over a range of environmentally realistic Cdcontain...

  14. Temperature dependence of the oxidative stability of corn oil and polyalphaolefin in the presence of sulfides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of sulfide-modified corn oil (SMCO) and ditertiary dodecyl pentasulfide (PS) additives on the oxidative stability of corn (CO) and polyalphaolefin (PAO) oils was investigated using pressurized differential scanning calorimetry in dynamic (DDSC) and isothermal (IDSC) modes. DDSC showed a ...

  15. Magnetite-sulfide chondrules and nodules in CK carbonaceous chondrites - Implications for the timing of CK oxidation

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    CK carbonaceous chondrites contain rare (about 0.1 vol pct) magnetite-sulfide chondrules that range from about 240 to 500 microns in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures, and concentric layering. They resemble the magnetite-sulfide nodules occurring inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration. Hence, the pervasive silicate darkening of CK chondrites was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.

  16. Insertion of phosphinidene complexes into the P-H bond of secondary phosphine oxides: a new version of the phospha-Wittig synthesis of P=C double bonds.

    PubMed

    Hao, Yanwei; Wu, Di; Tian, Rongqiang; Duan, Zheng; Mathey, François

    2016-01-21

    Terminal phosphinidene complexes [RP-W(CO)5], as generated at 60 °C in the presence of copper chloride from the appropriate 7-phosphanorbornadiene complexes, react with secondary phosphine oxides Ar2P(O)H to give the insertion products into the P-H bonds. After metalation with NaH, these products react with aldehydes to give the corresponding phosphaalkenes which are trapped by dimethylbutadiene. PMID:26661055

  17. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes

    NASA Astrophysics Data System (ADS)

    Niemeyer, Zachary L.; Milo, Anat; Hickey, David P.; Sigman, Matthew S.

    2016-06-01

    The mechanistic foundation behind the identity of a phosphine ligand that best promotes a desired reaction outcome is often non-intuitive, and thus has been addressed in numerous experimental and theoretical studies. In this work, multivariate correlations of reaction outcomes using 38 different phosphine ligands were combined with classic potentiometric analyses to study a Suzuki reaction, for which the site selectivity of oxidative addition is highly dependent on the nature of the phosphine. These studies shed light on the generality of hypotheses regarding the structural influence of different classes of phosphine ligands on the reaction mechanism(s), and deliver a methodology that should prove useful in future studies of phosphine ligands.

  18. Transformation and destabilization of graphene oxide in reducing aqueous solutions containing sulfide.

    PubMed

    Fu, Heyun; Qu, Xiaolei; Chen, Wei; Zhu, Dongqiang

    2014-12-01

    The colloidal stability of carbon nanomaterials is a key factor controlling their fate and bioavailability in natural aquatic systems. The authors report that graphene oxide nanoparticles could be destabilized in reducing aqueous solutions containing a low concentration (0.5 mM) of sulfide, a naturally occurring reductant. Spectroscopic characterization using combined X-ray photoelectron, Fourier-transform infrared, X-ray diffraction, and Raman analyses revealed that the surface oxygen-containing groups (mainly epoxy groups) of graphene oxide were significantly reduced after reacting with sodium sulfide. The destabilization of graphene oxide was likely caused by the enhanced surface hydrophobicity of the reduced graphene oxide, whereas electrostatic repulsion played a minimal role. Solution pH was found to affect both the deoxygenation process and the aggregation behavior of graphene oxide. Coexisting humic acid reduced the reaction efficiency and stabilized graphene oxide through steric hindrance. These findings suggest for the first time that the colloidal behavior of carbon nanomaterials might change drastically when they enter natural reducing environments containing sulfide such as anaerobic aquifers and sediments.

  19. Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron

    SciTech Connect

    Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.; Tratnyek, P. G.; Lezama Pacheco, Juan S.; Kukkadapu, Ravi K.; Kovarik, Libor; Engelhard, Mark H.; Bowden, Mark E.

    2014-06-02

    The dissolution of Tc(IV) sulfide and concurrent transformation of sulfidated ZVI during 2 oxidation were examined. Kinetic data obtained with 10 mL batch reactors showed that Tc(VII) 3 reduced by sulfidated nZVI has significantly slower reoxidation rates than Tc(VII) reduced by 4 nZVI only. In a 50 mL batch reactor, initial inhibition of Tc(IV) dissolution was apparent and 5 lasted until 120 hours at S/Fe = 0.112, presumably due to the redox buffer capacity of FeS. This 6 is evidenced by the parallel trends in oxidation-reduction potentials (ORP) and Tc dissolution 7 kinetics. Mӧssbauer spectra and micro X-ray diffraction of S/Fe = 0.112 suggested the 8 persistence of FeS after 24-h oxidation although X-ray photoelectron spectroscopy indicated 9 substantial surface oxidation. After 120-h oxidation, all characterizations showed complete 10 oxidation of FeS, which further indicates that FeS inhibits Tc oxidation. X-ray absorption 11 spectroscopy for S/Fe = 0.011 showed significantly increasing percentage of TcS2 in the solid 12 phase after 24-h oxidation, indicating TcS2 is more resistant to oxidation than TcO2. At S/Fe = 13 0.112, the XAS results revealed significant transformation of Tc speciation from TcS2 to TcO2 14 after 120-h oxidation at S/Fe = 0.112. Given that no apparent Tc dissolution occurred during this 15 period, the speciation transformation might play a secondary role in hindering Tc oxidation, 16 especially as redox buffer capacity approached depletion.

  20. Bicarbonate surfoxidants: micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide.

    PubMed

    Yao, Huirong; Richardson, David E

    2003-05-21

    The mechanism and kinetics of bicarbonate-catalyzed oxidations of sulfides by H(2)O(2) at the aqueous /cationic micellar interface have been investigated. The general term surfoxidant is introduced to describe the combination of an ionic surfactant with a reactive counterion that is itself an oxidant or activates an oxidant from the bulk solution to form an oxidant counterion. It is shown that the new catalytic cationic surfoxidant CTAHCO(3) (cetyltrimethylammonium bicarbonate) significantly enhances the overall oxidation rates as compared to the addition of bicarbonate salts to CTACl and CTABr, for which the halide counterions must undergo equilibrium displacement by the oxidant anion (peroxymonocarbonate, HCO(4)(-)). General equations based on the classic pseudophase model have been derived to account for the preequilibrium reaction in the aqueous and micellar phases, and the resulting model can be used to describe any micellar reaction with associated preequilibria. Rate constants and relevant equilibrium constants for HCO(4)(-) oxidations of aryl sulfides at micellar surfaces have been estimated for CTAHCO(3), CTACl, and CTABr. The second-order rate constants in the Stern layer (k(2)(m)) for sulfide oxidations by HCO(4)(-) are estimated to be approximately 50-fold (PhSEtOH) and approximately 180-fold (PhSEt) greater than the background rate constant k(m)(0) for oxidation by H(2)O(2) at the micellar surface. The estimated values of k(2)(m) are lower than the corresponding values in water by a factor of 20-70 depending on the substrate, but the high local concentration of the bicarbonate activator in the surfoxidant and the local accumulation of substrate as a result of strong binding to the micelle lead to a net increase in the observed reaction rates. Comparisons of CTAHCO(3)-activated peroxide to other highly reactive oxidants such as peroxymonosulfate (HSO(5)(-)) in aqueous surfactant media suggest a wide variety of potential applications for this green

  1. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOEpatents

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  2. Reduced graphene oxide based silver sulfide hybrid films formed at a liquid/liquid interface

    SciTech Connect

    Bramhaiah, K. John, Neena S.

    2014-04-24

    Free-standing, ultra-thin films of silver sulfide and reduced graphene oxide (RGO) based silver sulfide hybrids are prepared at a liquid/liquid interface employing in situ chemical reaction strategy. Ag{sub 2}S and RGO−Ag{sub 2}S hybrid films are characterized by various techniques such as UV-visible and photo luminescence spectroscopy, X-ray diffraction and scanning electron microscopy. The morphology of hybrid films consists of Ag{sub 2}S nanocrystals on RGO surface while Ag{sub 2}S films contains branched network of dendritic structures. RGO−Ag{sub 2}S exhibit interesting optical and electrical properties. The hybrid films absorb in the region 500–650 nm and show emission in the red region. A higher conductance is observed for the hybrid films arising from the RGO component. This simple low cost method can be extended to prepare other RGO based metal sulfides.

  3. Degradation, cleanup, and reusability of octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO) during partitioning of minor actinides from high level waste (HLW) solutions

    SciTech Connect

    Mathur, J.N.; Murali, M.S.; Ruikar, P.B.; Nagar, M.S.; Sipahimalani, A.T.; Bauri, A.K.; Banerji, A.

    1998-10-01

    The radiolytic degradation of the extractant mixture 0.2 M octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO) + 1.2 M tributyl phosphate in n-dodecane [to be utilized for the partitioning of minor actinides from high level waste (HLW) solutions of PUREX origin] has been investigated in contact with 3 M HNO{sub 3} or synthetic pressurized heavy water reactors (PHWR)-HLW solution under dynamic conditions. The distribution ratios of Am, Zr, Fe and Ru with the irradiated extractant mixture at varying doses have been determined under various aqueous phase conditions and correlated with the formation of degradation products. Various cycles of loading the extractant mixture with Am from PHWR-HLW, irradiating at a fixed gamma dose, and then primary and secondary clean-up of the solvent has been carried out to illustrate its reusability during partitioning of minor actinides from actual HLW solutions. The degradation products of CMPO have been identified by employing GC and GC-MS techniques.

  4. Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron.

    PubMed

    Fan, Dimin; Anitori, Roberto P; Tebo, Bradley M; Tratnyek, Paul G; Lezama Pacheco, Juan S; Kukkadapu, Ravi K; Kovarik, Libor; Engelhard, Mark H; Bowden, Mark E

    2014-07-01

    Our previous study showed that formation of TcS2-like phases is favored over TcO2 under sulfidic conditions stimulated by nano zerovalent iron. This study further investigates the stability of Tc(IV) sulfide upon reoxidation by solution chemistry, solid phase characterization, and X-ray absorption spectroscopy. Tc dissolution data showed that Tc(VII) reduced by sulfide-transformed nZVI has substantially slower reoxidation kinetics than Tc(VII) reduced by nZVI only. The initial inhibition of Tc(IV) dissolution at S/Fe = 0.112 is due to the redox buffer capacity of FeS, which is evidenced by the parallel trends in oxidation-reduction potentials (ORP) and Tc dissolution kinetics. The role of FeS in inhibiting Tc oxidation is further supported by the Mössbauer spectroscopy and micro X-ray diffraction data at S/Fe = 0.112, showing persistence of FeS after 24-h oxidation but complete oxidation after 120-h oxidation. X-ray absorption spectroscopy data for S/Fe = 0.011 showed significantly increasing percentages of TcS2 in the solid phase after 24-h oxidation, indicating stronger resistance of TcS2 to oxidation. At S/Fe = 0.112, the XAS results revealed significant transformation of Tc speciation from TcS2 to TcO2 after 120-h oxidation. Given that no apparent Tc dissolution occurred during this period, the speciation transformation might play a secondary role in hindering Tc oxidation. Collectively, the results indicate that sequestrating Tc as TcS2 under stimulated sulfate reduction is a promising strategy to improve the long-term stability of reduced Tc in subsurface remediation.

  5. Oxidation and sulfidation resistant alloys with silicon additions

    SciTech Connect

    Dunning, John S.; Alman, David E.; Poston, J.A., Jr.; Siriwardane, R.

    2003-01-01

    The Albany Research Center (ARC) has considerable experience in developing lean chromium, austenitic stainless steels with improved high temperature oxidation resistance. Using basic alloy design principles, a baseline composition of Fe-16Cr-16Ni-2Mn-1Mo alloys with Si and Al addition at a maximum of 5 weight percent was selected for potential application at temperatures above 700ºC for supercritical and ultra-supercritical power plant application. The alloys were fully austenitic. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700ºC to 800ºC. Oxidation resistances of alloys with Si only additions were outstanding, particularly at 800ºC (i.e., these alloys possessed weight gains 4 times less than a standard type-304 alloy). In addition, Si alloys pre-oxidized at 800ºC, showed a zero weight gain in subsequent testing for 1000 hours at 700ºC. Similar improvements were observed for Si only alloy after H2S exposure at 700ºC compared with type 304 stainless steel. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms at ARC. Depth profile analysis and element concentration profiles (argon ion etching/x-ray photoelectron spectroscopy) were conducted on oxidized specimens and base material at the National Energy Technology Laboratory.

  6. Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills.

    PubMed

    Fang, Yuan; Du, Yao; Feng, Huan; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang

    2015-04-01

    Because H2S emitted by landfill sites has seriously endangered human health, its removal is urgent. H2S removal by use of an autotrophic denitrification landfill biocover has been reported. In this process, nitrate-reducing and sulfide-oxidizing bacteria use a reduced sulfur source as electron donor when reducing nitrate to nitrogen gas and oxidizing sulfur compounds to sulfate. The research presented here was performed to investigate the possibility of endogenous mitigation of H2S by autotrophic denitrification of landfill waste. The sulfide oxidation bioprocess accompanied by nitrate reduction was observed in batch tests inoculated with mineralized refuse from a landfill site. Repeated supply of nitrate resulted in rapid oxidation of the sulfide, indicating that, to a substantial extent, the bioprocess may be driven by functional microbes. This bioprocess can be realized under conditions suitable for the autotrophic metabolic process, because the process occurred without addition of acetate. H2S emissions from landfill sites would be substantially reduced if this bioprocess was introduced.

  7. High-temperature oxidation/sulfidation resistance of iron-aluminide coatings

    SciTech Connect

    Tortorelli, P.F.; Wright, I.G.; Goodwin, G.M.; Howell, M.

    1996-04-01

    Iron aluminides containing > 20-25 at. % Al have oxidation and sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. Accordingly, these alloys may find application as coatings or claddings on more conventional higher-strength materials which are generally less corrosion-resistant at high temperatures. To this end, iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. Specimens were cut from weld deposits and exposed to a highly aggressive oxidizing-sulfidizing (H2S-H2-H2O-Ar) environment at 800 C. All the weld overlayers showed good corrosion behavior under isothermal conditions, including a gas metal arc-produced deposit with only 21 at. % Al. Rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initally grown scales spalled and the rate of reaction was then not controlled by formation of slowly growing Al oxide. Higher starting Al concentrations (> {approximately} 25 at. %) are needed to assure overall oxidation-sulfidation resistance of the weld overlays, but hydrogen cracking susceptibility must be minimized in order to physically separate the corrosive species from the reactive substrate material.

  8. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    PubMed

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors. PMID:23751359

  9. Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings

    NASA Astrophysics Data System (ADS)

    Romano, Connie G.; Ulrich Mayer, K.; Jones, David R.; Ellerbroek, David A.; Blowes, David W.

    2003-02-01

    Long term environmentally sound disposal of the millions of tons of mining residue is a serious challenge to the international mining industry. This paper evaluates, through a numerical investigation, the potential performance of desulfurized tailings as a cover material for the reduction of acidic drainage from sulfidic tailings. This evaluation is facilitated through a comparison of various cover types as decommissioning options. The cover types considered consist of a desulfurized tailings material cover exposed to ambient climate conditions, a water cover (flooded tailings), and a combination cover type. As part of the evaluation of cover performances, the effect of climatic variability on the potential rate of sulfide oxidation in tailings with an open ground surface, was also assessed. The numerical analysis was conducted using the model PYROX, which was modified to allow for variably-saturated conditions, time varying moisture contents, and to account for the temperature dependence of Henry's law and gas diffusion. In the case study presented here, the benign cover material consists of a low sulfide waste stream (cassiterite float tails, CFT), a by-product of the production of tin concentrate (cassiterite, SnO 2). Modelling results after a simulation period of 100 years indicate that a water cover alone or an exposed CFT cover alone are both less effective options than the combined cover type. A water cover alone leads to a reduction of approximately 99.1%, in the oxidation rate relative to uncovered tailings while the combined cover type results in the lowest potential extent of sulfide oxidation after mine closure-an approximately 99.8% reduction. Importantly, a CFT cover exposed to ambient environmental conditions can still substantially reduce the sulfide oxidation rate, by approximately 75-82% over a 100-year time period, relative to uncovered tailings. Variability in precipitation (and hence percent saturation of the surface layer) had less of an

  10. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.

    PubMed

    Hébert, S; Berthebaud, D; Daou, R; Bréard, Y; Pelloquin, D; Guilmeau, E; Gascoin, F; Lebedev, O; Maignan, A

    2016-01-13

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of 'rattlers'…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  11. Catalytic oxidation of aqueous hydrogen sulfide in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.; Chhatre, R.M.

    1985-06-01

    Nickel sulfate catalyzes the reaction of hydrogen sulfide with oxygen in aqueous solution. This reaction was studied, and an empirical rate expression and a reaction mechanism were deduced. The rate of oxidation is independent of oxygen concentration and pH over the range investigated. The reaction rate is one half order in nickel, and it changes from second to first order in sulfide with increasing concentration. The oxidation reaction is an autocatalytic, free radical chain reaction. Nickel catalyzes the chain initiation step, and polysulfido radical ions propagate the chains. Colloidal sulfur is a major, frequently undesirable reaction product. Sodium sulfite suppresses formation of colloidal sulfur by converting it to thiosulfate. Cobalt is an equally potent catalyst, but a colloidal dispersion of cobalt oxysulfide is produced. Iron compounds are much weaker catalysts; iron citrate and iron HEDTA (n-hydroxyethylenediaminetriacetic acid) were among those tested. 24 references, 15 figures, 3 tables.

  12. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    NASA Astrophysics Data System (ADS)

    Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A.

    2016-01-01

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  13. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOEpatents

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  14. Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans

    SciTech Connect

    Sublette, K.L.; Sylvester, N.D.

    1987-04-01

    In order to study the anaerobic oxidation of H/sub 2/S by T. denitrificans under constant growth conditions the organism was cultured in a continuous stirred tank reactor. A series of experiments was conducted having three purposes: 1) to identify any unforeseen problems which might be associated with growth of T. denitrificans on a continuous basis; 2) to examine the effect of metabolic state and environment on the maximum loading of H/sub 2/S; and 3) to examine the relationship between growth rate and yield of biomass per mole H/sub 2/S oxidized.

  15. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives

    NASA Astrophysics Data System (ADS)

    Calmels, Damien; Gaillardet, Jérôme; Brenot, Agnès; France-Lanord, Christian

    2007-11-01

    The chemical weathering of rocks with sulfuric acid is usually not considered in reconstructions of the past evolution of the carbon cycle, although this reaction delivers cations and alkalinity to the ocean without involvement of atmospheric CO2. The contribution of sulfuric acid as a weathering agent is still poorly quantified; the identification of riverine sulfate sources is difficult. The use of δ34S and δ18O of dissolved sulfate allows us to demonstrate that most of the sulfate in surface waters of the Mackenzie River system, Canada, derives from pyrite oxidation (85% ± 5%) and not from sedimentary sulfate. The calculated flux of pyrite-derived sulfate is 0.13 × 1012 mol/yr, corresponding to 20%-27% of the estimated global budget. This result suggests that the modern global ocean delivery of sulfide-derived sulfate, and thus chemical weathering with sulfuric acid, may be significantly underestimated. A strong correlation between sulfide oxidation rates and mechanical erosion rates suggests that the exposure of fresh mineral surfaces is the rate-limiting factor of sulfide oxidation in the subbasins investigated. The chemical weathering budget of the Mackenzie River shows that more than half of the dissolved inorganic carbon discharged to the ocean is ancient sedimentary carbon from carbonate (62%) and not atmospheric carbon (38%). The subsequent carbonate precipitation in the ocean will thus release more CO2 in the atmosphere-ocean system than that consumed by continental weathering, typically on glacial-interglacial time scales.

  16. Alteration of Mantle Sulfides: the Effects of Oxidation and Melt Infiltration in a Kilbourne Hole Harzburgite Xenolith

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Harvey, J.; Warren, J. M.; Klein, F.; Walshaw, R.

    2013-12-01

    Sulfides, while commonly present in volumetrically minor amounts (< 0.1 modal %; e.g.[1]) in the mantle, impart a strong control over many of the highly siderophile and strongly chalcophile elements. The mass balance of some elements, such as Os, are almost completely controlled by heterogeneously distributed sulfide grains[2][3]. Hence, processes that re-distribute sulfides and / or alter their composition can have profound effects on the information preserved within them regarding primary mantle processes. Different generations of interstitial sulfide may partly or completely re-equilibrate with one another or may be exposed to open-system processes that mobilize and / or precipitate sulfides[4]. In mantle xenoliths in particular, supergene weathering at the Earth's surface can oxidize sulfide to soluble sulfate, and its removal affects highly siderophile and strongly chalcophile element abundances [6]. Here we present the initial results from a study of interstitial mantle sulfides (n = 24) recovered from a single harzburgitic xenolith from Kilbourne Hole, NM. Large compositional differences are observed in the sulfides even at the scale of a single xenolith. Mono-sulfide solid solution has exsolved into two Fe-Ni-rich phases, one with a significantly larger Ni content for a given Fe abundance. Occurrences of Cu-rich sulfides are rare, but where present Cu can account for up to 22 weight % of the sulfide. Critically, no fresh, unaltered sulfides were recovered and in all of the sulfides there is evidence for at least two secondary processes. EDS mapping of the sulfides reveals pervasive, but incomplete, oxidation in all of the grains; Raman spectroscopy reveals this oxide to be goethite. In addition, there is also evidence for the interaction of many of the sulfides with a volatile-rich silicate melt. Silicate melt veins cross-cut the original sulfide mineralogy in some areas of the sulfide grain, while leaving other areas virtually untouched. The degree of

  17. Sulfide-oxidizing autotrophic denitrification: an evaluation for nitrogen removal from anaerobically pretreated domestic sewage.

    PubMed

    Souza, Theo S O; Foresti, Eugenio

    2013-07-01

    Nitrogen removal from effluents of anaerobic reactors using conventional nitrification/denitrification processes depends on the availability of electron donors for denitrification. As sulfide is normally present in such effluents, autotrophic denitrification using sulfide can be an alternative to avoid or reduce the requirements of exogenous organic carbon sources. This study evaluated the application of sulfide-oxidizing autotrophic denitrification to anaerobically pretreated domestic sewage. A denitrifying reactor was fed with a mixture, at different proportions, of anaerobically pretreated (containing sulfides and residual organic matter) and nitrified (containing nitrates) effluents produced by reactors treating synthetic domestic sewage. Autotrophic denitrification was responsible for most of the nitrogen removal and coexisted with heterotrophic activity, resulting in high denitrification efficiencies. Efficient denitrification could be attained at a molar NO3 (-)/S(2-) ratio of 2.1, higher than values reported before, and this represents an important parameter for the strategic application of the process. Under the experimental conditions studied, autotrophic denitrification showed to be an efficient and feasible alternative to conventional denitrification using exogenous electron donors.

  18. Continuous Operation of Fluidized Bed Bioreactor for Biogenic Sulfide Oxidation Using Immobilized Cells of Thiobacillus sp.

    NASA Astrophysics Data System (ADS)

    Ravichandra, P.; Mugeraya, Gopal; Gangagni Rao, A.; Ramakrishna, M.; Jetty, Annapurna

    In the present study, obligate autotrophic Thiobacillus sp. was isolated from aerobic sludge distillery effluent treatment plant and the experiments were conducted in a fluidized bed bioreactor for the biological oxidation of sulfide using Ca-alginate immobilized Thiobacillus sp. All the experiments were conducted in continuous mode at different sulfide loading rates 0.018, 0.02475, 0.03375, 0.03825 and 0.054 and different hydraulic retention times 5, 3.67, 2.67, 2.35 and 1.67 h by varying flow rates 2.4x10-4, 3.3x10-4, 4.5x10-4, 5.1x10-4 and 7.2x10-4. Sulfide conversions higher than 90% were obtained at almost all sulfide loading rates and hydraulic retention times. All the experiments were conducted at constant pH of around 6 and temperature of 30±5°C.

  19. High temperature hydrogen sulfide removal with stannic oxide

    SciTech Connect

    Karpuk, M.E.; Copeland, R.J.; Feinberg, D.; Wickham, D.; Windecker, B.; Yu, J.

    1994-10-01

    This contract focuses on the development of sorbents and processes for removal of H{sub 2}S from hot coal gas with the product of sorbent regeneration being elemental sulfur. TDA Research`s process uses a regenerable tin(IV) oxide-based (SnO{sub 2}) sorbent as the first sorbent and zinc ferrite (or zinc titanate) as a second sorbent.

  20. Predicting the Release of Sulfide Oxidation Products at Mine Waste Sites

    NASA Astrophysics Data System (ADS)

    Blowes, D. W.; Ptacek, C. J.; Mayer, K. U.; Bain, J. G.; Moncur, M. C.; Jambor, J. L.

    2004-05-01

    Reactive solute transport models provide sophisticated tools for predicting the magnitude and duration of acid generation and metal release in mine waste disposal facilities. Over the past decade, these models have become increasingly advanced. The ability of reactive solute transport models to simulate integrated biogeochemical and hydrological processes now challenges our ability to characterize these systems on the field and laboratory scale. Application of reactive solute transport models relies on the development of an accurate conceptual model and specification of the chemical, physical and hydrological characteristics of the waste materials. Release of acidic water and dissolved metals from mine waste disposal facilities is controlled by a complex combination of physical, chemical, and biological processes. The oxidation of sulfide minerals is ultimately controlled by the availability of oxygen, which is usually transported in its gaseous form. The reaction between oxygen and sulfide minerals is catalyzed by chemolithotrophic bacteria. The oxidation of individual sulfide minerals occurs at differing rates. Sulfide oxidation reactions release acid, sulfate and dissolved metals. The acid released may be neutralized by reaction with carbonate, hydroxide and aluminosilicate minerals. The metals released may be attenuated by precipitation of secondary minerals, by coprecipitation or by adsorption reactions. Thorough characterization of the waste properties which control gas transport and water flow through the waste materials is required. In addition, a thorough knowledge of the initial composition and mineralogy is required to develop representative estimates of the environmental effects of the waste materials. When sufficient information is available, the results of reactive solute transport simulations show close agreement to measurements made at field sites and in laboratory experiments.

  1. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment-water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands). Our results show that e-SOx enhanced sediment O2 consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment-water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment-water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO3 dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H2S oxidation (an alkalinity sink) in deeper sediments to cathodic O2 reduction (an alkalinity source) near the sediment-water interface. The resulting sediment alkalinity

  2. Kinetics of the dissolution of zinc sulfide in an oxidizing slag

    NASA Astrophysics Data System (ADS)

    Gupta, Suresh K.

    1990-10-01

    A new concept has been developed for the production of zinc from zinc and complex zinc concentrates. It is a two-stage process involving oxidation of zinc sulfide to oxide and dissolution into slag and the fuming of zinc from the slag by injecting carbonaceous materials into it to produce zinc vapors which can be subsequently condensed in a lead-splash condenser such as those used in the Imperial Smelting Process (ISP). In this paper, the effects of the quantity of air, temperature, and concentrate feed rate have been discussed on the production of zinc-rich slag, which is the first stage of the proposed process.

  3. Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies

    USGS Publications Warehouse

    Sato, M.

    1992-01-01

    At temperatures prevailing near the Earth's surface, metastable co-existence of chemical substances is common because chemical reactions that would directly lead to the attainment of thermody-namically most stable equilibria are often blocked by high activation energy barriers. The persistency of a metastable assemblage is then governed by alternative reaction paths that provide lower activation energy barriers. Comparison of observed mineral assemblages in the supergene oxidized and enriched sulfide ores with corresponding stability Eh-pH diagrams reveals that the supergene assemblages are mostly metastable due primarily to the persistency of sulfide minerals beyond stability boundaries. A new set of diagrams called persistency-field Eh-pH diagrams has been constructed for binary metal sulfides on the basis of electrochemical and other experimental data. Each diagram delineates the persistency field, which is a combined field of thermodynamic stability and reaction path-controlled metastability, for a specific sulfide mineral. When applied to the supergene assemblages, these new diagrams show much better correspondence to the field observations. Although there may still be room for further refinement, the new diagrams appear to provide a strong visual aid to the understanding of the behavior of sulfide minerals in the supergene conditions. ?? 1992.

  4. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments

    SciTech Connect

    Peterson, G.S.; Ankley, G.T.; Leonard, E.N.

    1996-12-01

    Recent studies have demonstrated the role of acid-volatile sulfide (AVS) in controlling the bioavailability of several cationic metals in anoxic sediments. However, metal-sulfide complexes can be relatively labile with respect to oxidation associated with factors such as seasonal changes in rates of oxidation/production of AVS. Another potentially important mechanism of AVS oxidation in surficial sediments is bioturbation. The authors used different densities of the burrowing oligochaete Lumbriculus variegatus in a series of laboratory experiments to evaluate the effect of bioturbation on oxidation of AVS and subsequent bioavailability of cadmium and zinc spiked into freshwater sediments. Metal bioavailability was determined directly by bioaccumulation in the test organisms and indirectly through analysis of interstitial (pore) water metal concentrations. In the studies, horizon-specific sediment analyses were conducted to assess spatial differences in AVS and pore-water metal concentrations specifically related to organism activity. Burrowing activity of the oligochaete significantly reduced AVS concentrations in surficial sediments in a density-dependent manner and resulted in elevated interstitial water concentrations of cadmium but not zinc. Concentrations of cadmium in pore water from deeper horizons were consistently lower than those in the surficial sediments. The bioaccumulation of cadmium, but not zinc, but the oligochaetes. Overall, the results indicate that bioturbation can enhance the bioavailability of some cationic metals in surficial sediments, via oxidation of AVS, and demonstrate the importance of analyzing surficial sediments when assessing bioavailability of metals in sediments.

  5. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake.

    PubMed

    Pjevac, Petra; Korlević, Marino; Berg, Jasmine S; Bura-Nakić, Elvira; Ciglenečki, Irena; Amann, Rudolf; Orlić, Sandi

    2015-01-01

    Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica's chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake's chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake. PMID:25344237

  6. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    PubMed

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  7. Sulfidation and reduction of zinc titanate and zinc oxide sorbents for injection in gasifier exit ducts

    SciTech Connect

    Ishikawa, K. |; Krueger, C.; Flytzani-Stephanopoulos, M.; Jl, W.; Higgins, R.J.; Bishop, B.A.; Goldsmith, R.L.

    1995-12-31

    The sulfidation reaction kinetics of fine particles of zinc titanate and zinc oxide with H{sub 2}S were studied in order to test the potential of the sorbent injection hot-gas desulfurization process. Fine sorbent particles with diameter between 0.3 and 60 {mu}m were sulfided with H{sub 2}S and/or reduced with H{sub 2} in a laminar flow reactor over the temperature range of 500-900{degrees}C. Sulfidation/reduction conversion was compared for different particle sizes and sorbents with various porosities and atomic ratios of Zn and Ti. In reduction of ZnO with H{sub 2} and without H{sub 2}S, significant amount of Zn was formed and vaporized, while the presence of H{sub 2}S suppressed elemental Zn formation. This suggests that H{sub 2}S may suppress the surface reduction of ZnO and/or gaseous Zn may react with H{sub 2}S homogeneously and form fine particles of ZnS. Formation and vaporization of elemental Zn from zinc titanate sorbents was slower than from zinc oxide with and without H{sub 2}S.

  8. Synthesis of Unsymmetrical Sulfides and Their Oxidation to Sulfones to Discover Potent Antileishmanial Agents.

    PubMed

    Dar, Ajaz A; Enjamuri, Nagasuresh; Shadab, Md; Ali, Nahid; Khan, Abu T

    2015-11-01

    Unsymmetrical sulfides were first synthesized using combinations of a 1,3-dicarbonyl, an aromatic aldehyde and a thiol in the presence of 10 mol % ethanolic piperidine. These sulfides derivatives were subsequently converted into corresponding sulfones via oxidation in the presence of m-chloroperoxybenzoic acid (m-CPBA) at ice-bath to room temperature. The former reaction was achieved at room temperature through one-pot three-component. The later was obtained in good yields using mild reaction conditions with flexibility in choice from a range of substrates. The antimicrobial properties of the newly synthesized sulfone derivatives were investigated against the protozoan parasite, Leishmania donovani, a causative agent of visceral leishmaniasis (VL). Nine sulfone derivatives were found to be efficacious and exhibited significant antimicrobial activity. Further, these compounds were nontoxic on murine peritoneal macrophages thus eliminating potential cytoxicity in the host cells. These compounds may be indicated as potential leads in the treatment of visceral leishmaniasis. PMID:26441303

  9. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.

    PubMed

    Janfada, Behdokht; Yazdian, Fatemeh; Amoabediny, Ghassem; Rahaie, Mahdi

    2015-01-01

    Four sulfur-oxidizing bacteria (Thiobacillus thioparus, Acidithiobacillus thiooxidans PTCC1717, Acidithiobacillus ferrooxidans PTCC1646, and Acidithiobacillus ferrooxidans PTCC1647) were used as biorecognition elements in a hydrogen sulfide biosensing system. All the experiments were performed in 0.1 M phosphate buffer solution containing 1-20 ppm H2S with optimum pH and temperature for each species. Although H2 S was applied to the biosensing system, the dissolved O2 content decreased. Dissolved O2 consumed by cells in both free and immobilized forms was measured using a dissolved oxygen sensor. Free bacterial cells exhibit fast response (<200 Sec). Immobilization of the cells on polyvinyl alcohol was optimized using an analytical software. Immobilized A. ferrooxidans and A. thiooxidans retained more than 50% of activity after 30 days of immobilization. According to the data, A. thiooxidans and A. ferrooxidans are appropriate species for hydrogen sulfide biosensor.

  10. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect

    Schwartz, Viviane; Baskova, Svetlana; Armstrong, Timothy R.

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  11. cis-Bis(nitrato-κ2 O,O′)bis­(triethyl­phosphine oxide-κO)nickel(II)

    PubMed Central

    Seidel, Rüdiger W.

    2009-01-01

    In the title compound, [Ni(NO3)2(C6H15OP)2], the NiII ion, lying on a crystallographic twofold axis, adopts a distorted octa­hedral coordination, consisting of O-donor atoms of two symmetry-related triethyl­phospine oxide and two bidentate nitrate ligands. PMID:21582983

  12. Identification of Bacteria Potentially Responsible for Oxic and Anoxic Sulfide Oxidation in Biofilters of a Recirculating Mariculture System

    PubMed Central

    Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; de Beer, Dirk; Minz, Dror

    2005-01-01

    Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term incubations (10 to 20 h), total DNA and RNA were extracted, and a 550-bp fragment of the 16S rRNA genes was PCR amplified either directly or after reverse transcription. DGGE analysis of DNA showed no significant change of the original microbial consortia upon incubation. In contrast, DGGE of cDNA revealed several phylotypes whose relative band intensities markedly increased or decreased in response to certain incubation conditions, indicating enhanced or suppressed rRNA transcription and thus implying metabolic activity under these conditions. Specifically, species of the gammaproteobacterial genus Thiomicrospira and phylotypes related to symbiotic sulfide oxidizers could be linked to oxygen-dependent sulfide oxidation, while members of the Rhodobacteraceae (genera Roseobacter, Rhodobacter, and Rhodobium) were putatively active in anoxic, nitrate-dependent sulfide oxidation. For all these organisms, the physiology of their closest cultured relatives matches their DT-DGGE-inferred function. In addition, higher band intensities following exposure to 5 mM sulfide and nitrate were observed for Thauera-, Hydrogenophaga-, and Dethiosulfovibrio-like phylotypes. For these genera, nitrate-dependent sulfide oxidation has not been documented previously and therefore DT-DGGE might indicate a higher relative tolerance to high sulfide concentrations than that of other community members. We anticipate that DT-DGGE will be of general use in tracing functionally equivalent yet

  13. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation

    USGS Publications Warehouse

    Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn

    2014-01-01

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.

  14. Oxidation of sulfides and rapid weathering in recent landslides

    NASA Astrophysics Data System (ADS)

    Emberson, Robert; Hovius, Niels; Galy, Albert; Marc, Odin

    2016-09-01

    Linking together the processes of rapid physical erosion and the resultant chemical dissolution of rock is a crucial step in building an overall deterministic understanding of weathering in mountain belts. Landslides, which are the most volumetrically important geomorphic process at these high rates of erosion, can generate extremely high rates of very localised weathering. To elucidate how this process works we have taken advantage of uniquely intense landsliding, resulting from Typhoon Morakot, in the T'aimali River and surrounds in southern Taiwan. Combining detailed analysis of landslide seepage chemistry with estimates of catchment-by-catchment landslide volumes, we demonstrate that in this setting the primary role of landslides is to introduce fresh, highly labile mineral phases into the surface weathering environment. There, rapid weathering is driven by the oxidation of pyrite and the resultant sulfuric-acid-driven dissolution of primarily carbonate rock. The total dissolved load correlates well with dissolved sulfate - the chief product of this style of weathering - in both landslides and streams draining the area (R2 = 0.841 and 0.929 respectively; p < 0.001 in both cases), with solute chemistry in seepage from landslides and catchments affected by significant landsliding governed by the same weathering reactions. The predominance of coupled carbonate-sulfuric-acid-driven weathering is the key difference between these sites and previously studied landslides in New Zealand (Emberson et al., 2016), but in both settings increasing volumes of landslides drive greater overall solute concentrations in streams. Bedrock landslides, by excavating deep below saprolite-rock interfaces, create conditions for weathering in which all mineral phases in a lithology are initially unweathered within landslide deposits. As a result, the most labile phases dominate the weathering immediately after mobilisation and during a transient period of depletion. This mode of

  15. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  16. Reactivity of a Nickel Sulfide with Carbon Monoxide and Nitric Oxide.

    PubMed

    Hartmann, Nathaniel J; Wu, Guang; Hayton, Trevor W

    2016-09-28

    The reactivity of the "masked" terminal nickel sulfide complex, [K(18-crown-6)][(L(tBu))Ni(II)(S)] (L(tBu) = {(2,6-(i)Pr2C6H3)NC((t)Bu)}2CH), with the biologically important small molecules CO and NO, was surveyed. [K(18-crown-6)][(L(tBu))Ni(II)(S)] reacts with carbon monoxide (CO) via addition across the Ni-S bond to give a carbonyl sulfide complex, [K(18-crown-6)][(L(tBu))Ni(II)(S,C:η(2)-COS)] (1). Additionally, [K(18-crown-6)][(L(tBu))Ni(II)(S)] reacts with nitric oxide (NO) to yield a nickel nitrosyl, [(L(tBu))Ni(NO)] (2), and a perthionitrite anion, [K(18-crown-6)][SSNO] (3). The isolation of 3 from this reaction confirms, for the first time, that transition metal sulfides can react with NO to form the biologically important [SSNO](-) anion. PMID:27606792

  17. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Stachnik, Łukasz; Majchrowska, Elżbieta; Yde, Jacob C.; Nawrot, Adam P.; Cichała-Kamrowska, Katarzyna; Ignatiuk, Dariusz; Piechota, Agnieszka

    2016-07-01

    This study aims to determine the rate of chemical denudation and the relationships between dominant geochemical reactions operating in the proglacial and subglacial environments of the polythermal glacier Werenskioldbreen (SW Svalbard) during an entire ablation season. Water sampling for major ion chemistry was performed at a proglacial hydrometric station and from subglacial outflows from May to September 2011. These data were combined with measurements of discharge and supraglacial ablation rates. The slopes and intercepts in best-fit regressions of [*Ca2+ + *Mg2+ vs. *SO42-] and [HCO3- vs. *SO42-] in meltwater from ice-marginal subglacial channels were close to the stoichiometric parameters of sulfide oxidation and simple hydrolysis coupled to carbonate dissolution (*concentrations corrected for input of sea-salt). This shows that these relationships predominates the meltwater chemistry. Our findings also show that sulfide oxidation is a better indicator of the configuration of subglacial drainage systems than, for instance, Na+ and K+. In the proglacial area and in sub-artesian outflows, the ion associations represent sulfide oxidation but other processes such as ion exchange and dissolution of Ca and Mg efflorescent salts may also contribute to the solute variations. These processes may cause enhanced fluxes of Ca2+ and HCO3- from glacierized basins during the early ablation and peak flow seasons as the proglacial salts re-dissolve. The overall chemical denudation rate in the basin for 2011 (ranging from 1601 to 1762 meq m-2 yr-1 (121.9 to 132.2 t km-2 yr-1)) was very high when compared to other Svalbard valley glaciers suggesting that the high rate of chemical denudation was mostly caused by the high rates of discharge and ablation. Chemical weathering intensities (876 and 964 meq m-3 yr-1) exceeded previously reported intensities in Svalbard.

  18. First-principles search for n -type oxide, nitride, and sulfide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Garrity, Kevin F.

    2016-07-01

    Oxides have many potentially desirable characteristics for thermoelectric applications, including low cost and stability at high temperatures, but thus far there are few known high z T n -type oxide thermoelectrics. In this work, we use high-throughput first-principles calculations to screen transition metal oxides, nitrides, and sulfides for candidate materials with high power factors and low thermal conductivity. We find a variety of promising materials, and we investigate these materials in detail in order to understand the mechanisms that cause them to have high power factors. These materials all combine a high density of states near the Fermi level with dispersive bands, reducing the trade-off between the Seebeck coefficient and the electrical conductivity, but they do so for several different reasons. In addition, our calculations indicate that many of our candidate materials have low thermal conductivity.

  19. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    SciTech Connect

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  20. Cobalt (hydr)oxide/graphite oxide composites: importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide.

    PubMed

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-07-15

    Composites of cobalt (hydr)oxide and graphite oxide (GO) were obtained and evaluated as adsorbents of hydrogen sulfide at ambient conditions. The surface properties of the initial and exhausted samples were studied by FTIR, TEM, SEM/EDX, XRD, adsorption of nitrogen, potentiometric titration, and thermal analysis. The results obtained show a significant improvement in their adsorption capacities compared to parent compounds. The importance of the OH groups of cobalt (hydr)oxide/GO composites and new interface chemistry for the adsorption of hydrogen sulfide on these materials is revealed. The oxygen activation by the carbonaceous component resulted in formation of sulfites. Water enhanced the removal process. This is the result of the basic environment promoting dissociation of H(2)S and acid-base reactions. Finally, the differences in the performance of the materials with different mass ratios of GO were linked to the availability of active sites on the surface of the adsorbents, dispersion of these sites, their chemical heterogeneity, and location in the pore system.

  1. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem

    NASA Astrophysics Data System (ADS)

    Hayakawa, Atsushi; Hatakeyama, Mizuho; Asano, Ryoki; Ishikawa, Yuichi; Hidaka, Shin

    2013-06-01

    studies of denitrification have focused on organic carbon as an electron donor, but reduced sulfur can also support denitrification. Few studies have reported nitrate (NO3-) reduction coupled with pyrite oxidation and its stoichiometry in surface sediments, especially without experimental pyrite addition. In this study, we evaluated NO3- reduction coupled with sulfur oxidation by long-term incubation of surface sediments from a sulfide-rich ecosystem in Akita Prefecture, Japan. The surface sediments were sampled from a mud pool and a riverbed. Fresh sediments and water were incubated under anoxic conditions (and one oxic condition) at 20°C. NO3- addition increased the SO42- concentration and decreased the NO3- concentration. SO42- production (∆SO42-) was strongly and linearly correlated with NO3- consumption (∆NO3-) during the incubation period (R2 = 0.983, P < 0.01, and n = 8), and the slope of the regression (∆NO3-/∆SO42-) and the stoichiometry indicated sulfur-driven NO3- reduction by indigenous autotrophic denitrifying bacteria. Framboidal pyrite and marcasite (both FeS2) were present in the sediments and functioned as the electron donors for autotrophic denitrification. Both ∆NO3- and ∆SO42- were higher in the riverbed sediment than in the mud pool sediment, likely because of the higher amount of easily oxidizable S (pyrite) in the riverbed sediment. Consistently low ammonium (NH4+) concentrations indicated that NO3- reduction by dissimilatory NO3- reduction to NH4+ was small but could not be disregarded. Our results demonstrate that sulfide-rich ecosystems with easily oxidizable metal-bound sulfides such as FeS2 near the ground surface may act as denitrification hot spots.

  2. Chemical reactivity of labile sulfur of iron-sulfur proteins. The reaction of triphenyl phosphine.

    PubMed

    Manabe, T; Goda, K; Kimura, T

    1976-04-23

    The reaction of triphenyl phosphine to iron-sulfur proteins from adrenal cortex mitochondria, spinach chloroplasts, and Clostridium pasteurianum was investigated. As ethanol concentrations in the reaction mixture increased, the rate of the reaction decreased. In the simultaneous presence of 1 M KC1 and 5 M urea, the reaction rate reached at maximum. Under these conditions the initial rates of the decolorization reaction by the phosphine were found to be 8.7, 0.88, and 1.8 nmol of ferredoxin per min at 25 degrees C for adrenal, spinach, and clostridial ferredoxins, respectively. The kinetic curves for the reaction of the phosphine sulfide formation, the loss of labile sulfur, and the deterioriation of visible absorption showed a similar pattern with a comparable rate. During this reaction, the complete reduction of ferric ions present in ferredoxin was observed with a fast rate under either aerobic or anaerobic conditions. These results suggest that the iron atoms in ferredoxin are first reduced by the intramolecular reductants in the presence of triphenyl phosphine with the concomitant formation of S2-2, which then reacts with triphenyl phosphine resulting in the formation of triphenyl phosphine sulfide.

  3. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    PubMed

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur. PMID:27003697

  4. INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION. QUARTERLY AND FINAL REPORT

    SciTech Connect

    K.C. KWON

    1998-08-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Experiments on removal reaction of H{sub 2}S from coal gas mixtures with formulated metal oxide sorbents were conducted in a batch reactor or a differential reactor. The objectives of this research project are to formulate promising metal oxide sorbents for removal of sulfur from coal gas mixtures, to find initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of hydrogen, nitrogen and moisture on dynamic absorption and equilibrium absorption at various absorption temperatures. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders, and calcining these powder mixtures. The Research Triangle Institute (RTI), a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide, and review experimental results.

  5. Light-Dependent Sulfide Oxidation in the Anoxic Zone of the Chesapeake Bay Can Be Explained by Small Populations of Phototrophic Bacteria

    PubMed Central

    Bennett, Alexa J.; Hanson, Thomas E.; Luther, George W.

    2015-01-01

    Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min−1 (mg protein−1). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone. PMID:26296727

  6. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria.

    PubMed

    Findlay, Alyssa J; Bennett, Alexa J; Hanson, Thomas E; Luther, George W

    2015-11-01

    Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min(-1) (mg protein(-1)). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone. PMID:26296727

  7. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria.

    PubMed

    Findlay, Alyssa J; Bennett, Alexa J; Hanson, Thomas E; Luther, George W

    2015-11-01

    Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min(-1) (mg protein(-1)). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone.

  8. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    SciTech Connect

    Agúndez, M.; Cernicharo, J.; Encrenaz, P.; Teyssier, D.

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  9. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  10. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment

    PubMed Central

    Luther, George W.; Findlay, Alyssa J.; MacDonald, Daniel J.; Owings, Shannon M.; Hanson, Thomas E.; Beinart, Roxanne A.; Girguis, Peter R.

    2011-01-01

    The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H2S and HS• as well as O2, reactive oxygen species, nitrate, nitrite, and NOx species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment. PMID:21833317

  11. Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide.

    PubMed

    Othman, Mohamed A; Zahid, Waleed M; Abasaeed, Ahmed E

    2013-06-15

    In the context of finding high efficient sorbent materials for removing hydrogen sulfide (H2S) from air stream, a screening study was performed to find the best combination of metals for the synthesis of layered double hydroxides (LDHs) and their derivative mixed metal oxides. Based on selectivity of 998 natural mineral species of sulfur-containing compounds, Cu(2+), Ni(2+) and Zn(2+) were selected as divalent metals, and Fe(3+), Al(3+) and Cr(3+) as trivalent metals to synthesis the LDHs sorbents. 10 LDHs materials and their calcined mixed metal oxides, Ni(0.66)Al(0.34), Cu(0.35)Ni(0.32)Al(0.33), Zn(0.66)Al(0.34), Cu(0.36)Zn(0.32)Al(0.32), Ni(0.64)Fe(0.36), Cu(0.35)Ni(0.31)Fe(0.34), Ni(0.66)Cr(0.34), Cu(0.35)Ni(0.31)Cr(0.34), Zn(0.66)Cr(0.34), Cu(0.33)Zn(0.32)Cr(0.35) were synthesized, characterized chemically and physically, and then tested using breakthrough test to determine their sulfur uptake. Ni(0.64)Fe(0.36) mixed metal oxides was found to have the best uptake of hydrogen sulfide (136 mg H₂S/g). Regeneration of spent Ni(0.64)Fe(0.36) mixed metal oxides was studied using two different mixture solutions, NaCl/NaOH and acetate-buffer/NaCl/NaOH. The latter mixture successfully desorbed the sulfur from the Ni0.64Fe0.36 sorbent for 2 cycles of regeneration/sorption.

  12. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    PubMed Central

    Li, Shiue-Lin; Nealson, Kenneth H.

    2015-01-01

    Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes. PMID:25741331

  13. Sulfide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments: A numerical model

    NASA Astrophysics Data System (ADS)

    Wunderly, M. D.; Blowes, D. W.; Frind, E. O.; Ptacek, C. J.

    1996-10-01

    A versatile numerical model that couples oxygen diffusion and sulfide-mineral oxidation (PYROX) has been developed to simulate the oxidation of pyrite in the vadose zone of mine tailings. A shrinking-core oxidation model and a finite element numerical scheme are used to simulate the transport of oxygen and oxidation of pyrite grains. The rate of pyrite oxidation is assumed to be limited by the transport of oxygen to the reaction site. The model determines the spatially variable bulk diffusion coefficient for oxygen on the basis of moisture content, porosity, and temperature, all of which are variable input parameters. The model PYROX has been coupled to an existing reactive transport model (MINTRAN), which uses a finite element scheme for transport of contaminants and MINTEQA2 to solve for the equilibrium geochemistry. The reactions described by MINTRAN are subject to the local equilibrium assumption. The resulting model, MINTOX, is capable of simulating tailings impoundments where the oxidation of pyrite or pyrrhotite is causing acidic drainage and where acid neutralization and attenuation of dissolved metals can be attributed to equilibrium reactions. Because MINTOX uses realistic boundary conditions and hydrogeological properties, the potential benefits of various remediation schemes, such as moisture-retaining covers, can be quantitatively evaluated.

  14. Sulfidation of electrodeposited microcrystalline/nanocrystalline cuprous oxide thin films for solar energy applications

    NASA Astrophysics Data System (ADS)

    Jayathilaka, K. M. D. C.; Kapaklis, V.; Siripala, W.; Jayanetti, J. K. D. S.

    2012-12-01

    Grain size of polycrystalline semiconductor thin films in solar cells is optimized to enhance the efficiency of solar cells. This paper reports results on an investigation carried out on electrodeposited n-type cuprous oxide (Cu2O) thin films on Ti substrates with small crystallites and sulfidation of them to produce a thin-film solar cell. During electrodeposition of Cu2O films, pH of an aqueous acetate bath was optimized to obtain films of grain size of about 100 nm, that were then used as templates to grow thicker n-type nanocrystalline Cu2O films. XRD and SEM analysis revealed that the films were of single phase and the substrates were well covered by the films. A junction of Cu2O/CuxS was formed by partially sulfiding the Cu2O films using an aqueous sodium sulfide solution. It was observed that the photovoltaic properties of nano Cu2O/CuxS heterojunction structures are better than micro Cu2O/CuxS heterojunction solar cells. Resulting Ti/nano Cu2O/CuxS/Au solar cell structure produced an energy conversion efficiency of 0.54%, Voc = 610 mV and Jsc = 3.4 mA cm-2, under AM 1.5 illumination. This is a significant improvement compared to the use of microcrystalline thin film Cu2O in the solar cell structure where the efficiency of the cell was limited to 0.11%. This improvement is attributed mainly to the increased film surface area associated with nanocrystalline Cu2O films.

  15. In-Situ Incubation of Iron-Sulfide Mineral in Seawater Reveals Colonization by Iron-Oxidizing Gammaproteobacteria and Zetaproteobacteria.

    NASA Astrophysics Data System (ADS)

    Barco, R. A.; Ramírez, G. A.; Sylvan, J. B.; Edwards, K. J.

    2015-12-01

    Sulfide mineral precipitation occurs at mid-ocean ridge (MOR) spreading centers, both in the form of plume particles and massive sulfide structures. A common constituent of MOR sulfide mineral is pyrrhotite (Fe1-xS). This mineral was chosen as a substrate for in-situ incubation studies in the shallow waters of Catalina Islands, CA to investigate the colonization of iron-oxidizing bacteria. Gammaproteobacteria and Alphaproteobacteria largely dominated the bacterial community on pyrrhotite samples incubated in the water column. Pyrrhotite samples incubated at the sediment/water column interface showed more even dominance by Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria and Bacteroidetes. Cultivations that originated from these pyrrhotite samples resulted in the enrichment of Zetaproteobacteria with either twisted-stalks (Mariprofundus) or sheath structures. Additionally, a candidate novel Gammaproteobacterium was isolated and shown to grow autotrophically via the oxidation of iron.

  16. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    SciTech Connect

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  17. First principles study of transition metal (TM=Pb, Cu) oxides/sulfides

    NASA Astrophysics Data System (ADS)

    Caudle, Sean; Tao, Meng; Peng, Xihong

    2012-10-01

    Earth-abundant transition meal oxides/sulfides have inspired special research attention recently due to their potential applications in solar cells. A clear understanding of the fundamental properties of these materials, especially the electronic properties and their tunability via chemical doping, are critically important towards the applications. In this presentation, we report first principles density-functional theory (DFT) study on the electronic structures of Pb and Cu oxides/sulfides and their oxysulfides compositions. The band structure and bandgap can be systematically tuned by increasing S component in the metal oxides. For example, the DFT predicted bandgap for PbO is 1.72 eV. While the bandgaps for PbO0.937 S0.063, PbO0.875S0.125, and PbO0.75S0.25 are 1.64 eV, 1.43 eV, and 0.79 eV, respectively. For Cu2O, the standard DFT seriously underestimates the bandgap to be 0.49 eV, compared to the experimental value of 2.17 eV. Two methods, DFT+U and hybrid functional (HSE06), were implemented to overcome this problem. Our results showed that DFT+U method fails and the bandgap doesn't further open up by providing a U potential. The hybrid functional predicts the bandgap to be 2.00 eV, which is in a good agreement with the experimental value.

  18. The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung.

    PubMed

    Li, Qingzhao; Hu, Xiaoli; Bai, Yuping; Alattar, Mohamed; Ma, Dong; Cao, Yanhua; Hao, Yulan; Wang, Lihua; Jiang, Chunyang

    2013-10-01

    Lead sulfide nanoparticles (PbS NPs) are one important nanoparticle materials which is widely used in photoelectric production, but its potential health hazard to respiratory system is not clear. This study aimed to explore the possible mechanism of lung injury induced by PbS NPs. Male SD rats were treated with nanoparticles of 60 nm and 30 nm lead sulfide. The main methods were detecting the vigor of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) and the content of malondialdehyde (MDA) in both blood and lung tissues and observing the pathological changes in lung tissue. PbS NPs suppressed the activity of SOD and T-AOC, and increased serum MDA content (P<0.05); both effects were observed together in lung tissues of 30-nm group (P<0.05) accompanied by an obviously inflammatory response. PbS NPs induced oxidative damage and inflammatory response in lung tissue, which may be an underlying mechanism for its pulmonary toxicity. Additionally, the toxicity of PbS NPs was closely related with the size of nanoparticles.

  19. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems.

  20. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea.

    PubMed

    Häusler, Stefan; Weber, Miriam; Siebert, Christian; Holtappels, Moritz; Noriega-Ortega, Beatriz E; De Beer, Dirk; Ionescu, Danny

    2014-12-01

    Abundant microbial mats, recently discovered in underwater freshwater springs in the hypersaline Dead Sea, are mostly dominated by sulfur-oxidizing bacteria. We investigated the source of sulfide and the activity of these communities. Isotopic analysis of sulfide and sulfate in the spring water showed a fractionation of 39-50‰ indicative of active sulfate reduction. Sulfate reduction rates (SRR) in the spring sediment (< 2.8 nmol cm(-3) day(-1)) are too low to account for the measured sulfide flux. Thus, sulfide from the springs, locally reduced salinity and O2 from the Dead Sea water are responsible for the abundant microbial biomass around the springs. The springs flow is highly variable and accordingly the local salinities. We speculate that the development of microbial mats dominated by either Sulfurimonas/Sulfurovum-like or Thiobacillus/Acidithiobacillus-like sulfide-oxidizing bacteria, results from different mean salinities in the microenvironment of the mats. SRR of up to 10 nmol cm(-3) day(-1) detected in the Dead Sea sediment are surprisingly higher than in the less saline springs. While this shows the presence of an extremely halophilic sulfate-reducing bacteria community in the Dead Sea sediments, it also suggests that extensive salinity fluctuations limit these communities in the springs due to increased energetic demands for osmoregulation.

  1. Mössbauer study of electrochemically deposited amorphous iron-sulfide-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Kajima, Takahiro; Kawai, Shoichi; Mibu, Ko

    2016-03-01

    Iron-sulfide-oxide thin films, which are promising candidates for solar cell materials, were deposited by electrochemical deposition. As-deposited and annealed films were characterized by Mössbauer spectroscopy, X-ray diffraction (XRD), and Raman scattering at room temperature. The as-deposited film is amorphous, and the oxygen content is about 1/4 of the sulfur content (S/Fe ≈ 1.5, O/Fe ≈ 0.4). The Mössbauer spectrum for the as-deposited film is a doublet with a broad line profile having hyperfine parameters similar to those of FeS2 pyrite or marcasite. This indicates that Fe atoms are in the Fe2+ low-spin state, as in FeS2.

  2. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste.

    PubMed

    Matthies, R; Krahé, L; Blowes, D W

    2014-07-15

    Accelerated oxidative weathering in a reaction cell (ASTM D 5744 standard protocol) was performed over a 33 week period on well characterized, sulfidic mine waste from the Kidd Creek Cu-Zn volcanogenic massive sulfide deposit, Canada. The cell leachate was monitored for physicochemical parameters, ion concentrations and stable isotope ratios of zinc. Filtered zinc concentrations (<0.45 μm) in the leachate ranged between 4.5 mg L(-1) and 1.9 g L(-1)-potentially controlled by pH, mineral solubility kinetics and (de)sorption processes. The zinc stable isotope ratios varied mass-dependently within +0.1 and +0.52‰ relative to IRMM 3702, and were strongly dependent on the pH (rpH-d66Zn=0.65, p<0.005, n=31). At a pH below 5, zinc mobilization was governed by sphalerite oxidation and hydroxide dissolution-pointing to the isotope signature of sphalerite (+0.1 to +0.16‰). Desorption processes resulted in enrichment of (66)Zn in the leachate reaching a maximum offset of +0.32‰ compared to the proposed sphalerite isotope signature. Over a period characterized by pH=6.1 ± 0.6, isotope ratios were significantly more enriched in (66)Zn with an offset of ≈ 0.23‰ compared to sphalerite, suggesting that zinc release may have been derived from a second zinc source, such as carbonate minerals, which compose 8 wt.% of the tailings. This preliminary study confirms the benefit of applying zinc isotopes alongside standard monitoring parameters to track principal zinc sources and weathering processes in complex multi-phase matrices.

  3. Thermithiobacillus plumbiphilus sp. nov., a sulfur-oxidizing bacterium isolated from lead sulfide.

    PubMed

    Watanabe, Tomohiro; Miura, Aya; Shinohara, Arisa; Kojima, Hisaya; Fukui, Manabu

    2016-05-01

    A novel sulfur oxidizer, strain wk12T, was isolated from an industrially synthesized lead (II) sulfide. The G+C content of the genomic DNA was around 58.5 mol%. The major components in the cellular fatty acid profile were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The strain oxidized lead sulfide, thiosulfate and tetrathionate as electron donors to support autotrophic growth. Cells of strain wk12T were motile, rod-shaped (0.5-1.0 × 0.7-2.2 μm), and Gram-stain-negative. For growth, the temperature range was 5-37 °C, and optimum growth was observed at 28-32 °C. The pH range for growth was 5.8-8.7, with optimum growth at pH 6.4-7.1. Optimum growth of the isolate was observed in medium without NaCl, and no growth was observed in the medium containing 0.5 M or more NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the class Acidithiobacillia. The closest relative with a validly published name was Thermithiobacillus tepidarius DSM 3134T, with a 16S rRNA gene sequence similarity of 96 %. On the basis of phylogenetic and phenotypic properties, strain wk12T represents a novel species of the genus Thermithiobacillus, for which the name Thermithiobacillus plumbiphilus sp. nov. is proposed. The type strain is wk12T ( = NBRC 111508T = DSM 101799T).

  4. Effects of Chlorine Promoted Oxidation on Arsenic Release from Sulfide Minerals

    NASA Astrophysics Data System (ADS)

    West, N.; Schreiber, M.; Gotkowitz, M.

    2007-12-01

    High arsenic concentrations (>100 ppb) have been measured in wells completed in the Ordovician St. Peter sandstone aquifer of eastern Wisconsin. The primary source of arsenic is As-bearing sulfide minerals within the aquifer. Periodic disinfection of wells by chlorination may facilitate arsenic release to groundwater by increasing the rate of sulfide mineral oxidation. During typical well disinfection procedures, aquifer solids exposed along uncased portions of wells remain in direct contact with chlorine disinfection solutions for up to twenty-four hours. Due to the redox sensitivity of arsenic mobility in groundwater, it is important to evaluate the effect of repeatedly adding oxidizers to an arsenic impacted aquifer system. This study focuses on abiotic processes that mobilize arsenic from the solid phase during controlled exposure to chlorinated solutions. Two St. Peter samples with As concentrations of 21 and 674 ppm were selected for the experiments. Before reaction, the aquifer mineralogy is characterized using scanning electron microscopy (SEM) and electron microprobe analysis (EMPA). The samples are then reacted with solutions of 60 mg/L free chlorine, 1200 mg/L free chlorine, or nanopure water (control) at pH 7.0 and pH 8.5. These parameters represent typical solution chemistries present within the wells after disinfection. Solutions are sampled periodically during the experiments and analyzed for As, Fe, other trace metals such as Co, Mo, Cr, and Ni, and sulfate. Analysis of the post-reaction solids using SEM, EMPA, laser ablation ICP-MS and Raman techniques are used to document the changes in mineralogy due to chlorination and to document which solid phases contain As.

  5. Kinetics of catalytic oxidation of sulfide in aqueous solutions on activated carbon and slime of green lye

    SciTech Connect

    Yakovlev, V.A.; Andreev, S.B.

    1993-12-20

    The kinetics of heterogeneous catalytic oxidation of sulfide ion in alkali solutions by dissolved oxygen with activated carbon and the carbon component of the slime of green lye (the waste of paper and pulp production) as the catalysts has been studied experimentally. The apparent and actual rate constants of the oxidation are measured within the framework of the model of the first order reaction under diffusive limitations.

  6. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, April--June 1995

    SciTech Connect

    Kwon, K.C.

    1995-07-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute, a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results.

  7. Non-oxidative removal of hydrogen sulfide from gaseous, petrochemical, and other streams

    SciTech Connect

    Bricker, J.C.; Imai, T.

    1991-07-23

    This patent describes a method of reducing the hydrogen sulfide level in streams containing hydrogen sulfide at concentrations from about 2 ppm up to about 1,000 ppm. It comprises reacting the hydrogen sulfide with an unsaturated hydrocarbon in the presence of an acidic solid catalyst selected from the group consisting of polymeric sulfonic acid resins, solid polyphosphoric acid, supported sulfuric acid, supported boric acid, silica-aluminas, clays, faujasite, mordenite, and L, omega, X or Y zeolites at mercaptan-forming concentrations, and recovering a stream having a reduced hydrogen sulfide concentration and containing no more than 5 ppm hydrogen sulfide.

  8. Thermodynamic modeling and experimental analysis of oxidation/sulfidation of nickel-chromium-aluminum model alloy coatings

    NASA Astrophysics Data System (ADS)

    Mueller, Erik M.

    With the current focus on finding future energy sources, land-based power gas turbines offer a desirable alternative to common coal-fired steam power generation. Ni-Cr-Al-X alloys are the material basis for producing overlay bond coats for the turbine blades used in sections of the turbine engine experiencing the most extreme environments. These overlay coatings are designed to provide environmental protection for the blades and vanes. While the oxidation of such alloys has been investigated and modeled in-depth, the concurrent sulfidation attack has not. This corrosion mode is now being heavily researched with the desire to use gasified coal, biomass, and other renewable fuel sources in gas turbines that often contain significant amounts of sulfur. The purpose of this dissertation was to use thermodynamic calculations to describe and predict the oxidation/sulfidation processes of two Ni-Cr-Al model alloys regarding phase evolution, composition, and component activities. These calculations, in the form of potential and phase fraction diagrams, combined with sulfidation experiments using kinetic measurements and materials characterization techniques, were able to describe and predict the simultaneous oxidation and sulfidation that occurred in these alloys.

  9. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, October--December 1994

    SciTech Connect

    Kwon, K.C.

    1995-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbent for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes.

  10. Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction.

    SciTech Connect

    Lee, Ji-Hoon; Kennedy, David W.; Dohnalkova, Alice; Moore, Dean A.; Nachimuthu, Ponnusamy; Reed, Samantha B.; Fredrickson, Jim K.

    2011-09-27

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 produced γ-MnS (rambergite) nanoparticles under the concurrent reduction of synthetic MnO2 and thiosulfate coupled to H2 oxidation. Using two MR-1 mutants defective in outer membrane c-type cytochromes (ΔmtrC/ΔomcA and ΔmtrC/ΔomcA/ΔmtrF) to eliminate the direct reduction pathway for solid electron acceptors, it was determined that respiratory reduction of MnO2 was dominant relative to chemical reduction by biogenic sulfide generated from bacterial thiosulfate reduction. Although bicarbonate was excluded from the medium, incubations of MR-1 using lactate as the sole electron donor produced MnCO3 (rhodochrosite) as well as MnS in nearly equivalent amounts as estimated by micro X-ray diffraction (micro-XRD) analysis. It was concluded that carbonate released from lactate metabolism promoted MnCO3 formation and that Mn(II) mineralogy was strongly affected by carbonate ions even in the presence of abundant sulfide and weakly alkaline conditions that favor the precipitation of MnS. Formation of the biogenic MnS, as determined by a combination of micro-XRD, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction analyses was consistent with equilibrium speciation modeling predictions. Although biogenic MnS likely only forms and is stable over a relatively narrow range of conditions, it may be a significant sink for Mn in anoxic marine basins and terrestrial subsurface sediments where Mn and sulfur compounds are undergoing concurrent reduction.

  11. Semi-Coke–Supported Mixed Metal Oxides for Hydrogen Sulfide Removal at High Temperatures

    PubMed Central

    Jie, Mi; Yongyan, Zhang; Yongsheng, Zhu; Ting, Guo; Huiling, Fan

    2012-01-01

    Abstract To improve the desulfurization efficiency of sorbents at low cost, modified semi-coke was used as the substrate for mixed metal oxides (ZFM; oxides of zinc [Zn], iron [Fe], and manganese [Mn]) in hot gas desulfurization. Performance of the prepared ZFM/modified semi-coke (MS) sorbents were evaluated in a fixed-bed reactor in the temperature range 400–550°C. Results showed that the molar ratio of Mn to Zn, effect of the substrate, the calcination temperature, and the sulfidation temperature influenced the performance of the sorbents. Optimum conditions for the preparation of the ZFM/MS sorbents were molar ratio of Mn(NO3)2·6H2O, Zn(NO3)2, and Fe(NO3)3, 0.6:1:2; mass ratio of ZFM0.6 to modified semi-coke support, 1:1; and calcination temperature, 600°C. The ZFM0.6/MS sorbent thus prepared exhibited the best sorption sulfur capacity of 27.46% at 450°C. PMID:22783061

  12. New catalysts active for the mild oxidation of hydrogen sulfide to sulfur

    SciTech Connect

    Laperdrix, E.; Costentin, G.; Guyen, N.N.; Saur, O.; Lavalley, J.C.

    1999-10-25

    Nickel iron phosphates were studied for the selective oxidation of hydrogen sulfide to sulfur. Nickel iron phosphate and Fe/Cr samples were more active than simple iron, chromium, and mixed iron-chromium oxides, which has been previously studied. Nickel iron phosphate catalyst prepared by solid-solid method with, consequently, a very low specific surface area was intrinsically active and selective to sulfur (conversion 17%, S{sub n} selectivity 97%); no rapid deactivation was observed. Even though higher specific surface area samples, prepared according to a solution method at various calcination temperatures, showed better performance (conversion 76%, S{sub n}selectivity {gt}90%), the specific activity depended on the crystallinity of the samples. The reaction is apparently structure sensitive. The structure of the catalytic material must facilitate electronic exchange, evidence by Moessbauer characterization. The establishment of the mixed valency Fe{sub 2+}/Fe{sup 3+} under catalytic feed was shown to be an essential factor in this reaction.

  13. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System

    PubMed Central

    Nagpure, B. V.; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress. PMID:26640616

  14. Semi-Coke-Supported Mixed Metal Oxides for Hydrogen Sulfide Removal at High Temperatures.

    PubMed

    Jie, Mi; Yongyan, Zhang; Yongsheng, Zhu; Ting, Guo; Huiling, Fan

    2012-07-01

    To improve the desulfurization efficiency of sorbents at low cost, modified semi-coke was used as the substrate for mixed metal oxides (ZFM; oxides of zinc [Zn], iron [Fe], and manganese [Mn]) in hot gas desulfurization. Performance of the prepared ZFM/modified semi-coke (MS) sorbents were evaluated in a fixed-bed reactor in the temperature range 400-550°C. Results showed that the molar ratio of Mn to Zn, effect of the substrate, the calcination temperature, and the sulfidation temperature influenced the performance of the sorbents. Optimum conditions for the preparation of the ZFM/MS sorbents were molar ratio of Mn(NO(3))(2)·6H(2)O, Zn(NO(3))(2), and Fe(NO(3))(3), 0.6:1:2; mass ratio of ZFM0.6 to modified semi-coke support, 1:1; and calcination temperature, 600°C. The ZFM0.6/MS sorbent thus prepared exhibited the best sorption sulfur capacity of 27.46% at 450°C.

  15. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System.

    PubMed

    Nagpure, B V; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, "gasotransmitters" in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.

  16. Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor

    NASA Astrophysics Data System (ADS)

    Parra-Sánchez, Víctor Roberto; Pérez-Tello, Manuel; Duarte-Ruiz, Cirilo Andrés; Sohn, Hong Yong

    2014-04-01

    A mathematical model to predict the size distribution and chemical composition of a cloud of sulfide particles during high-temperature oxidation in a flash reactor is presented. The model incorporates the expansion and further fragmentation of the reacting particles along their trajectories throughout the reaction chamber. A relevant feature of the present formulation is its flexibility to treat a variety of flash reacting systems, such as the flash smelting and flash converting processes. This is accomplished by computing the chemical composition of individual particles and the size distribution and overall composition of the particle cloud in separate modules, which are coupled through a database of particle properties previously stored on disk. The flash converting of solid copper mattes is considered as an example. The model predictions showed good agreement with the experimental data collected in a large laboratory reactor in terms of particle size distribution and sulfur remaining in the population of particles. The cumulative contribution and distribution coefficients are introduced to quantify the relationship between specific particle sizes in the feed and those in the reacted products upon oxidation, the latter of which has practical implications on the amount and chemical composition of dust particles produced during the industrial operation.

  17. Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide

    SciTech Connect

    Toro, D.M. di |; Mahony, J.D.; Gonzalez, A.M.

    1996-12-01

    A model is proposed for the kinetics of the oxidation of acid-volatile sulfide (AVS). It is based on a surface oxidation reaction that erodes the particle surface until the particle disappears. A monodisperse particle size distribution is assumed with a reaction rate that is proportional to the surface area remaining and a dimensional exponent that related the surface area to the particle volume. The model is fit to time course data from a number of experiments conducted using synthetic FeS at various pHs, oxygen concentrations, and ionic strengths. The reaction rate constants are modeled using a surface complexation model. It is based upon the formation of two activated surface complexes with molecular oxygen, one of which is charged. The complexation model provides a good fit to the variation of the reaction rate constant with respect to O{sub 2}, pH, temperature, and ionic strength. The dimensional exponent {nu} increases with pH from values characteristic of plates and needles to values reflecting more spherical particles, presumably due to coagulation. However the increase in {nu} with respect to O{sub 2} at high concentrations is unexplained.

  18. Investigation of the active sites of rhodium sulfide for hydrogen evolution/oxidation using carbon monoxide as a probe.

    PubMed

    Singh, Nirala; Upham, David C; Liu, Ru-Fen; Burk, Jonathan; Economou, Nick; Buratto, Steven; Metiu, Horia; McFarland, Eric W

    2014-05-20

    Carbon monoxide (CO) was observed to decrease the activity for hydrogen evolution, hydrogen oxidation, and H2-D2 exchange on rhodium sulfide, platinum, and rhodium metal. The temperature at which the CO was desorbed from the catalyst surface (detected by recovery in the H2-D2 exchange activity of the catalyst) was used as a descriptor for the CO binding energy to the active site. The differences in the CO desorption temperature between the different catalysts showed that the rhodium sulfide active site is not metallic rhodium. Using density functional theory, the binding energy of CO to the Rh sites in rhodium sulfide is found comparable to the binding energy on Pt. Coupled with experiment this supports the proposition that rhodium rather than sulfur atoms in the rhodium sulfide are the active site for the hydrogen reaction. This would indicate the active sites for hydrogen evolution/oxidation as well as oxygen reduction (determined by other groups using X-ray absorption spectroscopy) may be the same.

  19. Tracking photosynthetic sulfide oxidation in a meromictic lake using sulfate δ34S and δ18O

    NASA Astrophysics Data System (ADS)

    Gilhooly, W. P.; Reinhard, C.; Lyons, T. W.; Glass, J. B.

    2012-12-01

    Phototrophic sulfur bacteria oxidize sulfide and fix carbon dioxide in the presence of sunlight without producing oxygen. Environmental conditions in the Paleo- and Mesoproterozoic, when atmospheric oxygen concentrations were at low levels and portions of the oceans were anoxic and sulfidic (euxinic), were conducive to widespread carbon fixation by anoxygenic photosynthesis. This pathway may have helped sustain euxinic conditions in the Proterozoic water column. With limited organic biomarker and geochemical evidence for widespread production of anoxygenic phototrophs, however, additional proxies are needed to fingerprint paleoecological and biogeochemical signals associated with photic zone euxinia. Paired δ34S and δ18O from ancient sulfates (gypsum, barite, or CAS) may offer an added constraint on the history and ecological dominance of photosynthetic S-oxidation. Sulfate-oxygen can fractionate during sulfate reduction, but the extent of isotopic enrichment is controlled either by kinetic isotope effects imparted during intracellular enzymatic steps or equilibrium oxygen exchange with ambient water. An improved understanding of these processes can be gained from modern natural environments. Mahoney Lake is a density-stratified lake located within the White Lake Basin of British Columbia. The euxinic water column supports a dense plate of purple sulfur bacteria (Amoebobacter purpureus) that thrives where free sulfide intercepts the photic zone at ~7 m water depth. We analyzed the isotopic composition of sulfate (δ34SSO4 and δ18OSO4), sulfide (δ34SH2S), and water (δ18OH2O) to track the potentially coupled processes of dissimilatory sulfate reduction and phototrophic sulfide oxidation within this meromictic lake. Large isotopic offsets observed between sulfate and sulfide within the monimolimnion (δ34SSO4-H2S = 51‰) and within pore waters along the oxic margin (δ34SSO4-H2S >50‰) are consistent with sulfate reduction in both the sediments and the anoxic

  20. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment.

    PubMed

    Ayswarya, A; Kurian, G A

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  1. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment

    PubMed Central

    Ayswarya, A.; Kurian, G. A.

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  2. Sensitivity of Interfibrillar and Subsarcolemmal Mitochondria to Cobalt Chloride-induced Oxidative Stress and Hydrogen Sulfide Treatment.

    PubMed

    Ayswarya, A; Kurian, G A

    2016-01-01

    Oxidative stress plays a significant role not only in cardiovascular disease but also in non-communicable diseases, where it plays a significant role the mortality rate. Hydrogen sulfide, the biological gaseous signaling molecule that preserves mitochondria in its mode of action, is an effective cardioprotective drug. However, cardiac mitochondria comprise of two distinct populations, namely interfibrillar and subsarcolemmal mitochondria, which respond distinctly in cardiovascular disease. This study was designed to determine the direct impact of cobalt chloride-induced oxidative stress in isolated mitochondrial subpopulations with an intention to examine the efficacy of hydrogen sulfide in preserving interfibrillar and subsarcolemmal mitochondria functional activities when they were incubated as pretreated, co-treated and post-treated agent. Mitochondrial subpopulations were isolated from the heart of male Wistar rats and subjected to cobalt chloride treatment (500 μM) for 20 min, followed by incubation with 10 μM sodium hydrosulfide in three different ways (Pre, Co, and Post-cobalt chloride treatment). Mitochondrial oxidative stress was measured by the concentration of thiobarbituric acid reactive species, reduced glutathione and the activities of enzymes like superoxide dismutase, catalase and glutathione peroxidase. Mitochondrial membrane potential, swelling behavior and enzyme activities were measured to assess its function. The increased level of lipid peroxidation and the decreased level of reduced glutathione in cobalt chloride-induced group confirm the induction of oxidative stress and were more predominant in the subsarcolemmal mitochondria. Hydrogen sulfide treatment to interfibrillar and subsarcolemmal mitochondria preserved their functional activities, but the effect was prominent only with co-treated group. In conclusion, the present study demonstrated that subsarcolemmal mitochondria are more prone to oxidative stress and the co-treatment of the

  3. Photoinduced One-Electron Oxidation of Benzyl Methyl Sulfides in Acetonitrile: Time-Resolved Spectroscopic Evidence for a Thionium Ion Intermediate.

    PubMed

    Bettoni, Marta; Del Giacco, Tiziana; Stradiotto, Marina; Elisei, Fausto

    2015-08-21

    The photo-oxidation of 4-methoxybenzyl methyl sulfide (1a), benzyl methyl sulfide (1b), and 4-cyanobenzyl methyl sulfide (1c) has been investigated in the presence of N-methoxy phenanthridinium hexafluorophosphate (MeOP(+)PF6(-)) under nitrogen in CH3CN. The steady-state photolysis experiments showed for the investigated sulfides exclusively the formation of the corresponding benzaldehyde as the oxidation product, reasonably due to a deprotonation of the sulfide radical cations. Photo-oxidation of 1a-1c occurs through an electron transfer process. Indeed, laser flash photolysis measurements showed an efficient formation of sulfide radical cations, detected in their dimeric form [(4-X-C6H4CH2SCH3)2(+•)] at ≈520 nm. At longer delay times, the absorption of the dimer radical cation was replaced by an absorption band assigned to the (α-thio)benzyl cation (thionium ion, λmax = 420-400 nm), formed by oxidation of the benzyl radical and not by that of the (α-thiomethyl)benzyl radical, as expected if a Cα-H bond cleavage is operative. This finding highlights a particular stability of this kind of cation never reported before, even though its involvement in one-electron oxidation mechanisms of various sulfides has already been invoked. Density functional theory calculations allowed identification of a significant charge and spin delocalization involving both the phenyl ring and the sulfur atom of the radical cations.

  4. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  5. Rapid and selective nitroxyl (HNO) trapping by phosphines: kinetics and new aqueous ligations for HNO detection and quantitation

    PubMed Central

    Reisz, Julie A.; Zink, Charles N.; King, S. Bruce

    2011-01-01

    Recent studies distinguish the biological and pharmacological effects of nitroxyl (HNO) from its oxidized/deprotonated product nitric oxide (NO), but lack of HNO detection methods limits understanding its in vivo mechanisms and the identification of endogenous sources. We previously demonstrated that reaction of HNO with triarylphosphines provides aza-ylides and HNO-derived amides, which may serve as stable HNO biomarkers. We now report a kinetic analysis for the trapping of HNO by phosphines, ligations of enzyme-generated HNO, and compatibility studies illustrating the selectivity of phosphines for HNO over other physiologically relevant nitrogen oxides. Quantification of HNO using phosphines is demonstrated using an HPLC-based assay and ligations of phosphine carbamates generate HNO-derived ureas. These results further demonstrate the potential of phosphine probes for reliable biological detection and quantification of HNO. PMID:21699183

  6. A Matter of Timing: Contrasting Effects of Hydrogen Sulfide on Oxidative Stress Response in Shewanella oneidensis

    PubMed Central

    Wu, Genfu; Wan, Fen; Fu, Huihui; Li, Ning

    2015-01-01

    ABSTRACT Hydrogen sulfide (H2S), well known for its toxic properties, has recently become a research focus in bacteria, in part because it has been found to prevent oxidative stress caused by treatment with some antibiotics. H2S has the ability to scavenge reactive oxygen species (ROS), thus preventing oxidative stress, but it is also toxic, leading to conflicting reports of its effects in different organisms. Here, with Shewanella oneidensis as a model, we report that the effects of H2S on the response to oxidative stress are time dependent. When added simultaneously with H2O2, H2S promoted H2O2 toxicity by inactivating catalase, KatB, a heme-containing enzyme involved in H2O2 degradation. Such an inhibitory effect may apply to other heme-containing proteins, such as cytochrome cbb3 oxidase. When H2O2 was supplied 20 min or later after the addition of H2S, the oxidative-stress-responding regulator OxyR was activated, resulting in increased resistance to H2O2. The activation of OxyR was likely triggered by the influx of iron, a response to lowered intracellular iron due to the iron-sequestering property of H2S. Given that Shewanella bacteria thrive in redox-stratified environments that have abundant sulfur and iron species, our results imply that H2S is more important for bacterial survival in such environmental niches than previously believed. IMPORTANCE Previous studies have demonstrated that H2S is either detrimental or beneficial to bacterial cells. While it can act as a growth-inhibiting molecule by damaging DNA and denaturing proteins, it helps cells to combat oxidative stress. Here we report that H2S indeed has these contrasting biological functions and that its effects are time dependent. Immediately after H2S treatment, there is growth inhibition due to damage of heme-containing proteins, at least to catalase and cytochrome c oxidase. In contrast, when added a certain time later, H2S confers an enhanced ability to combat oxidative stress by activating the

  7. Consecutive oxygen-for-sulfur exchange reactions between vanadium oxide cluster anions and hydrogen sulfide.

    PubMed

    Jia, Mei-Ye; Xu, Bo; Deng, Ke; He, Sheng-Gui; Ge, Mao-Fa

    2014-09-18

    Vanadium oxide cluster anions Vm(16)On(-) and Vm(18)On(-) were prepared by laser ablation and reacted with hydrogen sulfide (H2S) in a fast flow reactor under thermal collision conditions. A time-of-flight mass spectrometer was used to detect the cluster distributions before and after the interactions with H2S. The experiments suggest that the oxygen-for-sulfur (O/S) exchange reaction to release water was evidenced in the reactor for most of the cluster anions: VmOn(-) + H2S → VmOn-1S(-) + H2O. For reactions of clusters VO3(-) and VO4(-) with H2S, consecutive O/S exchange reactions led to the generation of sulfur containing vanadium oxide cluster anions VO3-kSk(-) (k = 1-3) and VO4-kSk(-) (k = 1-4). Density functional theory calculations were performed for the reactions of VO3-4(-) with H2S, and the results indicate that the O/S exchange reactions are both thermodynamically and kinetically favorable, which supports the experimental observations. The reactions of VmOn(+) cluster cations with H2S have been reported previously (Jia, M.-Y.; Xu, B.; Ding, X.-L.; Zhao, Y.-X.; He, S.-G.; Ge, M.-F. J. Phys. Chem. C 2012, 116, 9043), and this study of cluster anions provides further new insights into the transformations of H2S over vanadium oxides at the molecular level.

  8. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    PubMed

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis.

  9. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.

    PubMed

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Recent data show that lower concentrations of hydrogen sulfide (H2S), as well as endogenous, intramitochondrial production of H2S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H2S pathway in vitro. Hydrogen peroxide (H2O2, 100-500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H2O2 (50-500 μM) caused a concentration-dependent decrease in production of H2S from 3-MP. In cultured murine hepatoma cells H2O2, (3-100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100-300 nM) was completely abolished by pre-treatment of the cells with H2O2 (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H2S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging. PMID:23537657

  10. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    SciTech Connect

    Módis, Katalin; Asimakopoulou, Antonia; Coletta, Ciro; Papapetropoulos, Andreas; Szabo, Csaba

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  11. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells.

    PubMed

    Moraes, B S; Souza, T S O; Foresti, E

    2011-01-01

    Sulfide-oxidizing autotrophic denitrification is an advantageous alternative over heterotrophic denitrification, and may have potential for nitrogen removal of low-strength wastewaters, such as anaerobically pre-treated domestic sewage. This study evaluated the fundamentals and kinetics of this process in batch reactors containing suspended and immobilized cells. Batch tests were performed for different NOx-/S2- ratios and using nitrate and nitrite as electron acceptors. Autotrophic denitrification was observed for both electron acceptors, and NOx-/S2- ratios defined whether sulfide oxidation was complete or not. Kinetic parameter values obtained for nitrate were higher than for nitrite as electron acceptor. Zero-order models were better adjusted to profiles obtained for suspended cell reactors, whereas first-order models were more adequate for immobilized cell reactors. However, in the latter, mass transfer physical phenomena had a significant effect on kinetics based on biochemical reactions. Results showed that sulfide-oxidizing autotrophic denitrification can be successfully established for low-strength wastewaters and have potential for nitrogen removal from anaerobically pre-treated domestic sewage. PMID:22097054

  12. Optical properties of copper oxide thin films as selective sensing principle for hydrogen sulfide detection

    NASA Astrophysics Data System (ADS)

    Kneer, Janosch; Boxberg, Manuel; Wöllenstein, Jürgen

    2013-05-01

    Semiconducting cuprous (Cu2O) and cupric oxide (CuO) have been subject to intense research efforts, mainly because of the materials' potential for photovoltaic applications and as doping material. In this work, the impact of hydrogen sulfide (H2S) exposure on thin film samples of CuO and Cu2O has been investigated, focusing on alterations in the optical properties. The materials composition was verified using Raman spectroscopy. The samples were exposed to well-defined dosages of H2S and the transmission and reflection characteristics in the expanded UV/Vis regime (350-1100 nm) were recorded. Cu2O films showed an explicit increase in transmissivity for the wavelength region l = 550-900 nm, besides a general decrease in reflectivity of all samples within the considered spectral range. Optical band gaps were determined using Tauc's plotting, revealing a shift in the slope of a2 of CuO after gas exposure. The observed effects can be exploited as sensing effect, which was examined in a thin film total-internal-reflection (TIR) set-up to transiently monitor surface-gas interactions, yielding reproducible changes in response to 20 min exposure to5 ppm H2S.

  13. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. PMID:25772261

  14. Factors affecting activated carbon-based catalysts for selective hydrogen sulfide oxidation

    SciTech Connect

    Li, Huixing; Monnell, J.D.; Alvin, M.A.; Vidic, R.D.

    2008-09-01

    The primary product of coal gasification processes is synthesis gas (syngas), a mixture of CO, H2, CO2, H2O and a number of minor components. Among the most significant minor components in syngas is hydrogen sulfide (H2S). In addition to its adverse environmental impact, H2S poisons the catalysts and hydrogen purification membranes, and causes severe corrosion in gas turbines. Technologies that can remove H2S from syngas and related process streams are, therefore, of considerable practical interest. To meet this need, we work towards understanding the mechanism by which prospective H2S catalysts perform in simulated fuel gas conditions. Specifically, we show that for low-temperature gas clean-up (~1408C) using activated carbon fibers and water plays a significant role in H2S binding and helps to prolong the lifetime of the material. Basic surface functional groups were found to be imperative for significant conversion of H2S to daughter compounds, whereas metal oxides (La and Ce) did little to enhance this catalysis. We show that although thermal regeneration of the material is possible, the regenerated material has a substantially lower catalytic and sorption capacity.

  15. Carbon Monoxide, Hydrogen Sulfide, and Nitric Oxide as Signaling Molecules in the Gastrointestinal Tract

    PubMed Central

    Farrugia, Gianrico; Szurszewski, Joseph H.

    2014-01-01

    Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for H2S) smelly gaseous molecules; now they are known to have important signaling functions in the gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric nerves and can regulate the immune system. The pathways that produce nitric oxide (NO) H2S and CO interact—each can inhibit and potentiate the level and activity of the other. However, there are significant differences between these molecules, such as in half-lives; CO is more stable and therefore able to have effects distal to the site of production, whereas NO and H2S are short lived and act only close to sites of production. We review their signaling functions in the luminal gastrointestinal tract and discuss how their pathways interact. We also describe other physiologic functions of CO and H2S and how they might be used as therapeutic agents. PMID:24798417

  16. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems.

  17. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.

    PubMed

    Sun, Ruimin; Wei, Qiulong; Li, Qidong; Luo, Wen; An, Qinyou; Sheng, Jinzhi; Wang, Di; Chen, Wei; Mai, Liqiang

    2015-09-23

    As an alternative system of rechargeable lithium ion batteries, sodium ion batteries revitalize researchers' interest due to the low cost, abundant sodium resources, and similar storage mechanism to lithium ion batteries. VS4 has emerged as a promising anode material for SIBs due to low cost and its unique linear chains structure that can offer potential sites for sodium storage. Herein, we present the growth of VS4 on reduced graphene oxide (rGO) as SIBs anode for the first time. The VS4/rGO anode exhibits promising performance in SIBs. It delivers a reversible capacity of 362 mAh g(-1) at 100 mA g(-1) and a good rate performance. We also investigate the sodium storage behavior of the VS4/rGO. Different than most transition metal sulfides, the VS4/rGO composite experiences a three-step separation mechanism during the sodiation process (VS4 to metallic V and Na2S, then the electrochemical mechanism is akin to Na-S). The VS4/rGO composite proves to be a promising material for rechargeable SIBs.

  18. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Hettich, Robert {Bob} L; Orphan, V

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  19. Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat

    PubMed Central

    Anuar, Farhana; Whiteman, Matthew; Siau, Jia Ling; Kwong, Shing Erl; Bhatia, Madhav; Moore, Philip K

    2006-01-01

    The biosynthesis of both nitric oxide (NO) and hydrogen sulfide (H2S) is increased in lipopolysaccharide (LPS)-injected mice and rats but their interaction in these models is not known. In this study we examined the effect of the NO donor, nitroflurbiprofen (and the parent molecule flurbiprofen) on NO and H2S metabolism in tissues from LPS-pretreated rats. Administration of LPS (10 mg kg−1, i.p.; 6 h) resulted in an increase (P<0.05) in plasma TNF-α, IL-1β and nitrate/nitrite (NOx) concentrations, liver H2S synthesis (from added cysteine), CSE mRNA, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO) activity (marker for neutrophil infiltration) and nuclear factor-kappa B (NF-κB) activation. Nitroflurbiprofen (3–30 mg kg−1, i.p.) administration resulted in a dose-dependent inhibition of the LPS-mediated increase in plasma TNF-α, IL-1β and NOx concentration, liver H2S synthesis (55.00±0.95 nmole mg protein−1, c.f. 62.38±0.47 nmole mg protein−1, n=5, P<0.05), CSE mRNA, iNOS, MPO activity and NF-κB activation. Flurbiprofen (21 mg kg−1, i.p.) was without effect. These results show for the first time that nitroflurbiprofen downregulates the biosynthesis of proinflammatory H2S and suggest that such an effect may contribute to the augmented anti-inflammatory activity of this compound. These data also highlight the existence of ‘crosstalk' between NO and H2S in this model of endotoxic shock. PMID:16491094

  20. Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro.

    PubMed

    Al-Magableh, Mohammad R; Kemp-Harper, Barbara K; Ng, Hooi H; Miller, Alyson A; Hart, Joanne L

    2014-01-01

    The aim of this study was to examine the ability of H2S, released from NaHS to protect vascular endothelial function under conditions of acute oxidative stress by scavenging superoxide anions (O2(-)) and suppressing vascular superoxide anion production. O2(-) was generated in Krebs' solution by reacting hypoxanthine with xanthine oxidase (Hx-XO) or with the O2(-) generator pyrogallol to model acute oxidative stress in vitro. O2(-) generation was measured by lucigenin-enhanced chemiluminescence. Functional responses in mouse aortic rings were assessed using a small vessel myograph. NaHS scavenged O2(-) in a concentration-dependent manner. Isolated aortic rings exposed to either Hx-XO or pyrogallol displayed significantly attenuated maximum vasorelaxation responses to the endothelium-dependent vasodilator acetylcholine, and significantly reduced NO bioavailability, which was completely reversed if vessels were pre-incubated with NaHS (100 μM). NADPH-stimulated aortic O2(-) production was significantly attenuated by the NADPH oxidase inhibitor diphenyl iodonium. Prior treatment of vessels with NaHS (100 nM-100 μM; 30 min) inhibited NADPH-stimulated aortic O2(-) production in a concentration-dependent manner. This effect persisted when NaHS was washed out prior to measuring NADPH-stimulated O2(-) production. These data show for the first time that NaHS directly scavenges O2(-) and suppresses vascular NADPH oxidase-derived O2(-) production in vitro. Furthermore, these properties protect endothelial function and NO bioavailability in an in vitro model of acute oxidative stress. These results suggest that H2S can elicit vasoprotection by both scavenging O2(-) and by reducing vascular NADPH oxidase-derived O2(-) production.

  1. Surface modifications of steels to improve corrosion resistance in sulfidizing-oxidizing environments

    NASA Astrophysics Data System (ADS)

    Behrani, Vikas

    Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind

  2. Sulfide oxidation and distribution of metals near abandoned copper mines in coastal environments, Prince William Sound, Alaska, USA

    USGS Publications Warehouse

    Koski, R.A.; Munk, L.; Foster, A.L.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ??? sphalerite < chalcopyrite ??? pyrite; thus, pyrrhotite-rich rocks are typically more oxidized than those dominated by pyrite. The pervasive alteration of pyrrhotite begins with rim replacement by marcasite followed by replacement of the core by sulfur, Fe sulfate, and Fe-Al sulfate. The oxidation of chalcopyrite and pyrite involves an encroachment by colloform Fe oxyhydroxides at grain margins and along crosscutting cracks that gradually consumes the entire grain. The complete oxidation of sulfide-rich samples results in a porous aggregate of goethite, lepidocrocite and amorphous Fe-oxyhydroxide enclosing hydrothermal and sedimentary silicates. An inverse correlation between pH and metal concentrations is evident in water data from all three sites. Among all waters sampled, pore waters from Ellamar beach gravels have the lowest pH (???3) and highest concentrations of base metals (to ???25,000 ??g/L), which result from oxidation of abundant sulfide-rich debris in the sediment. High levels of dissolved Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4

  3. Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1989-01-01

    Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.

  4. Study of the active surface on titanium oxide catalysts for the oxidation of hydrogen sulfide

    SciTech Connect

    Khanmamedov, T.K.; Kalinkin, A.V.; Rakhimova, N.R.

    1989-02-01

    A study was carried out on the change in the composition of a Ti-Mo-W catalyst depending on the conditions for their treatment by H/sub 2/S-SO/sub 2/ and H/sub 2/S-O/sub 2/ gas mixtures, which serve as models for the technological gases in Klaus apparatuses and the direct catalytic oxidation of H/sub 2/S. X-ray photoelectron spectroscopy was used to establish the formation of sulfur as S/sup 2/minus// and S/sup 6+/ on the surface. The presence of S/sup 6+/ along with the changes in E/sub b/ of the electrons in the T-Mo-W catalyst indicates the formation of MoS/sub 2/ and TiO(SO/sub 4/) species.

  5. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-07-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  6. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-10-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  7. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine. PMID:27133282

  8. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  9. Zinc oxide nanocubes as a destructive nanoadsorbent for the neutralization chemistry of 2-chloroethyl phenyl sulfide: A sulfur mustard simulant.

    PubMed

    Kiani, Armin; Dastafkan, Kamran

    2016-09-15

    Zinc oxide nanocubes were surveyed for their destructive turn-over to decontaminate 2-chloro ethyl phenyl sulfide, a sulfur mustard simulant. Prior to the reaction, nanocubes were prepared through sol-gel method using monoethanolamine, diethylene glycol, and anhydrous citric acid as the stabilizing, cross linking/structure directing agents, respectively. The formation of nanoscale ZnO, the cubic morphology, crystalline structure, and chemical-adsorptive characteristics were certified by FESEM-EDS, TEM-SAED, XRD, FTIR, BET-BJH, H2-TPR, and ESR techniques. Adsorption and destruction reactions were tracked by GC-FID analysis in which the effects of polarity of the media, reaction time, and temperature on the destructive capability of the surface of nanocubes were investigated and discussed. Results demonstrated that maximum neutralization occurred in n-heptane solvent after 1/2h at 55°C. Kinetic study construed that the neutralization reaction followed the pseudo-second order model with a squared correlation coefficient and rate constant of 0.9904 and 0.00004gmg(-1)s(-1), respectively. Furthermore, GC-MS measurement confirmed the formation of 2-hydroxy ethyl phenyl sulfide (2-HEPS) and phenyl vinyl sulfide (PVS) as neutralization products that together with Bronsted and Lewis acid/base approaches exemplify the role of hydrolysis and elimination mechanisms on the surface of zinc oxide nanocubes.

  10. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    NASA Astrophysics Data System (ADS)

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-06-01

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide and ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, 34S, and three 13C species of the DMS-DME and a-type and b-type rotational transitions for the normal, 34S, and two 13C species of the EO-ES. The observed transitions were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)---O and one S---H-C(DME) hydrogen bonds. The barrier height V3 to internal rotation of the "free" methyl group in the DME was determined to be 915.4 (23) wn, which is smaller than that of the DME monomer, 951.72 (70) wn, and larger than that of the DME dimer, 785.4 (52) wn. For the EO-ES complex the observed data were interpreted in the terms of an antiparallel Cs geometry with the EO bound to the ES by two C-H(ES)---O and two S---H-C(EO) hydrogen bonds. We have applied a natural bond orbital (NBO) analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which were closely correlated with the binding energy EB, as found for other related complexes. Y. Niide and M. Hayashi, J. Mol. Spectrosc. 220, 65-79 (2003). Y. Tatamitani, B. Liu, J. Shimada, T. Ogata, P. Ottaviani, A. Maris, W. Caminati, and J. L. Alonso, J. Am. Chem. Soc. 124, 2739-2743 (2002).

  11. Use of ORP (oxidation-reduction potential) to control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate wastewater.

    PubMed

    Khanal, S K; Shang, C; Huang, J C

    2003-01-01

    In this study, oxidation-reduction potential (ORP) was used as a controlling parameter to regulate oxygen dosing to the recycled biogas for online sulfide oxidation in an upflow anaerobic filter (UAF) system. The UAF was operated with a constant influent COD of 18,000 mg/L, but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially operated under a natural ORP of -290 mV (without oxygen injection), and was then followed by oxygenation to raise its ORP by 25 mV above the natural level for each influent sulfate condition. At 6,000 mg/L sulfate without oxygen injection, the dissolved sulfide reached 733.8 mg S/L with a corresponding free sulfide of 250.3 mg S/L, thus showing a considerable inhibition to methanogens. Upon oxygenation to raise its ORP to -265 mV (i.e., a 25 mV increase), the dissolved sulfide was reduced by more than 98.5% with a concomitant 45.9% increase of the methane yield. Under lower influent sulfate levels of 1,000 and 3,000 mg/L, the levels of sulfides produced, even under the natural ORP, did not impose any noticeable toxicity to methanogens. Upon oxygenation to raise the ORP by +25 mV, the corresponding methane yields were actually reduced by 15.5% and 6.2%, respectively. However, such reductions were not due to the adverse impact of the elevated ORP; instead, they were due to a diversion of some organic carbon to support the facultative activities inside the reactor as a result of excessive oxygenation. In other words, to achieve satisfactory sulfide oxidation for the lower influent sulfate conditions, it was not necessary to raise the ORP by as much as +25 mV. The ORP increase actually needed depended on both the influent sulfate and also actual wastewater characteristics. This study had proved that the ORP controlled oxygenation was reliable for achieving consistent online sulfide control.

  12. The Diversity of Sulfide Oxidation and Sulfate Reduction Genes Expressed by the Bacterial Communities of the Cariaco Basin, Venezuela.

    PubMed

    Rodriguez-Mora, Maria J; Edgcomb, Virginia P; Taylor, Craig; Scranton, Mary I; Taylor, Gordon T; Chistoserdov, Andrei Y

    2016-01-01

    Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp., Methylomicrobium alcaliphilum, Sulfurovum sp. NBC37-1, Sulfurimonas autotrophica, Thiorhodospira sibirica and Chlorobium tepidum. The dsrA gene sequences obtained from the redoxcline of the Cariaco Basin belonged to chemoorganotrophic and chemoautotrophic sulfate and sulfur reducers belonging to the class Deltaproteobacteria (phylum Proteobacteria) and the order Clostridiales (phylum Firmicutes). PMID:27651847

  13. The Diversity of Sulfide Oxidation and Sulfate Reduction Genes Expressed by the Bacterial Communities of the Cariaco Basin, Venezuela

    PubMed Central

    Rodriguez-Mora, Maria J.; Edgcomb, Virginia P.; Taylor, Craig; Scranton, Mary I.; Taylor, Gordon T.; Chistoserdov, Andrei Y.

    2016-01-01

    Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp., Methylomicrobium alcaliphilum, Sulfurovum sp. NBC37-1, Sulfurimonas autotrophica, Thiorhodospira sibirica and Chlorobium tepidum. The dsrA gene sequences obtained from the redoxcline of the Cariaco Basin belonged to chemoorganotrophic and chemoautotrophic sulfate and sulfur reducers belonging to the class Deltaproteobacteria (phylum Proteobacteria) and the order Clostridiales (phylum Firmicutes). PMID:27651847

  14. The Diversity of Sulfide Oxidation and Sulfate Reduction Genes Expressed by the Bacterial Communities of the Cariaco Basin, Venezuela

    PubMed Central

    Rodriguez-Mora, Maria J.; Edgcomb, Virginia P.; Taylor, Craig; Scranton, Mary I.; Taylor, Gordon T.; Chistoserdov, Andrei Y.

    2016-01-01

    Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp., Methylomicrobium alcaliphilum, Sulfurovum sp. NBC37-1, Sulfurimonas autotrophica, Thiorhodospira sibirica and Chlorobium tepidum. The dsrA gene sequences obtained from the redoxcline of the Cariaco Basin belonged to chemoorganotrophic and chemoautotrophic sulfate and sulfur reducers belonging to the class Deltaproteobacteria (phylum Proteobacteria) and the order Clostridiales (phylum Firmicutes).

  15. Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Ma, Qingxin

    2008-04-01

    The experimental determination of rate constants for atmospheric reactions and how these rate constants vary with temperature remain a crucially important part of atmosphere science. In this study, the temperature dependence of the heterogeneous reaction of carbonyl sulfide (COS) on magnesium oxide (MgO) has been investigated using a Knudsen cell reactor and a temperature-programmed reaction apparatus. We found that the adsorption and the heterogeneous reaction are sensitive to temperature. The initial uptake coefficients (gammat(Ini)) of COS on MgO decrease from 1.07 +/- 0.71 x 10-6 to 4.84 +/- 0.60 x 10-7 with the increasing of temperature from 228 to 300 K, and the steady state uptake coefficients (gammat(SS)) increase from 5.31 +/- 0.06 x 10-8 to 1.68 +/- 0.41 x 10-7 with the increasing of temperature from 240 to 300 K. The desorption rate constants (kdes) were also found to increase slightly with the enhancement of temperature. The empirical formula between the uptake coefficients, desorption rate constants and temperature described in the form of Arrhenius expression were obtained. The activation energies for the heterogeneous reaction and desorption of COS on MgO were measured to be 11.02 +/- 0.34 kJ.mol-1 and 6.30 +/- 0.81 kJ.mol-1, respectively. The results demonstrate that the initial uptake of COS on MgO is mainly contributed by an adsorption process and the steady state uptake is due to a catalytic reaction. The environmental implication was also discussed.

  16. Equilibriums between Cu, Fe, and Zn sulfides and oxides in chloride solution: A thermodynamic study

    NASA Astrophysics Data System (ADS)

    Strel'Tsova, N. I.

    2009-10-01

    The results of thermodynamic modeling of equilibriums between Cu, Fe, and Zn sulfides and oxides pertaining to the Cu-Fe-Zn-S-O2 system in water and aqueous chloride solution are presented. The system comprises solid phases of constant composition: pyrite, pyrrhotite, hematite, magnetite, wüstite, γ-iron, chalcocite, covellite, cuprite, native copper, chalcopyrite, and bornite, as well as more than 100 ions, complexes, and molecules in an aqueous solution. The GIBBS program with the UNITHERM thermodynamic dataset used in calculations allows numerical analysis of phase assemblages in a dry system and in equilibrium with an aqueous solution. How the temperature, pressure, and the composition of the solution in the system opened for oxygen and sulfur affects the composition of phase assemblages was considered in temperature and pressure ranges of 50-350 C and 100-1000 bar, respectively. Decrease in temperature leads to a shift in stability fields of the studied phases toward the region of elevated oxygen and sulfur partial pressures. Variation of temperature is an important factor affecting precipitation of ore minerals, primarily, Cu- and Zn-bearing. The calculation results are presented in tables and diagrams. Each point in the (log m_{S_{tot} } - log f_{O_2 } ) diagram is characterized by a single possible assemblage of phases equilibrated with a solution of the given composition within the considered temperature and pressure range. Since the composition of the mineral assemblage is controlled by physicochemical conditions at the moment of mineral formation, comparison of the calculation results with mineral assemblages at ore deposits makes it possible to estimate the parameters of ore deposition at the early stage of investigation, including oxygen and sulfur activity and, occasionally, the composition and salinity of the solution. These parameters control the formation of such assemblages.

  17. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.

    PubMed

    de Livera, Jennifer; McLaughlin, Mike J; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled "reaction cell" experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake.

  18. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    PubMed

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions.

  19. Phosphine Catalysis of Allenes with Electrophiles

    PubMed Central

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-01-01

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles. PMID:24663290

  20. Vibrational study of new Pt(II) and Pd(II) complexes with functionalized nitrogen-containing tertiary phosphine oxides. Ab initio study of ortho-, meta- and para-dimethylphosphinylmethyleneoxyaniline.

    PubMed

    Trendafilova, N; Bauer, G; Georgieva, I; Tosheva, T; Varbanov, S

    2003-01-01

    Vibrational study of new Pt(II) and Pd(II) complexes of functionalized nitrogen-containing tertiary phosphine oxides, namely ortho-, meta- and para-dimethylphosphinylmethyleneoxyaniline (o-, m- and p-dpmoa), (CH3)2P(O)CH2OC6H4NH2, have been presented. Geometry optimization of the ligands was performed at HF/6-31G* and B3LYP/6-31G* levels of the theory. Harmonic frequencies were calculated at HF/6-31G* optimized geometries. Relative gas-phase and solution-phase (H2O and CH3CN) basicities of o-, m- and p-dpmoa ligands have been determined by ab initio calculations at STO-3G level with the Onsager reaction field model. On the basis of the vibrational study, physical and analytical data it was suggested that the ligands in the complexes studied coordinate through the amino group and form square-planar platinum and palladium complexes of the general formula ML2Cl2 (M = Pt, Pd, L = o-, m- and p-dpmoa).

  1. Single-step co-deposition of nanostructured tungsten oxide supported gold nanoparticles using a gold-phosphine cluster complex as the gold precursor

    NASA Astrophysics Data System (ADS)

    Molkenova, Anara; Sarip, Rozie; Sathasivam, Sanjay; Umek, Polona; Vallejos, Stella; Blackman, Chris; Hogarth, Graeme; Sankar, Gopinathan

    2014-12-01

    The use of a molecular gold organometallic cluster in chemical vapour deposition is reported, and it is utilized, together with a tungsten oxide precursor, for the single-step co-deposition of (nanostructured) tungsten oxide supported gold nanoparticles (NPs). The deposited gold-NP and tungsten oxide supported gold-NP are highly active catalysts for benzyl alcohol oxidation; both show higher activity than SiO2 supported gold-NP synthesized via a solution-phase method, and tungsten oxide supported gold-NP show excellent selectivity for conversion to benzaldehyde.

  2. Iron-Catalyzed Ortho C-H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand.

    PubMed

    Shang, Rui; Ilies, Laurean; Nakamura, Eiichi

    2016-08-17

    Iron-catalyzed C-H functionalization of aromatics has attracted widespread attention from chemists in recent years, while the requirement of an elaborate directing group on the substrate has so far hampered the use of simple aromatic carbonyl compounds such as benzoic acid and ketones, much reducing its synthetic utility. We describe here a combination of a mildly reactive methylaluminum reagent and a new tridentate phosphine ligand for metal catalysis, 4-(bis(2-(diphenylphosphanyl)phenyl)phosphanyl)-N,N-dimethylaniline (Me2N-TP), that allows us to convert an ortho C-H bond to a C-CH3 bond in aromatics and heteroaromatics bearing simple carbonyl groups under mild oxidative conditions. The reaction is powerful enough to methylate all four ortho C-H bonds in benzophenone. The reaction tolerates a variety of functional groups, such as boronic ester, halide, sulfide, heterocycles, and enolizable ketones.

  3. Iron-Catalyzed Ortho C-H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand.

    PubMed

    Shang, Rui; Ilies, Laurean; Nakamura, Eiichi

    2016-08-17

    Iron-catalyzed C-H functionalization of aromatics has attracted widespread attention from chemists in recent years, while the requirement of an elaborate directing group on the substrate has so far hampered the use of simple aromatic carbonyl compounds such as benzoic acid and ketones, much reducing its synthetic utility. We describe here a combination of a mildly reactive methylaluminum reagent and a new tridentate phosphine ligand for metal catalysis, 4-(bis(2-(diphenylphosphanyl)phenyl)phosphanyl)-N,N-dimethylaniline (Me2N-TP), that allows us to convert an ortho C-H bond to a C-CH3 bond in aromatics and heteroaromatics bearing simple carbonyl groups under mild oxidative conditions. The reaction is powerful enough to methylate all four ortho C-H bonds in benzophenone. The reaction tolerates a variety of functional groups, such as boronic ester, halide, sulfide, heterocycles, and enolizable ketones. PMID:27487172

  4. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    PubMed

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  5. Fourier Transform Microwave Spectra of CO{2}-ETHYLENE Sulfide, CO{2}-ETHYLENE Oxide and CO{2}-PROPYLENE Oxide Complexes

    NASA Astrophysics Data System (ADS)

    Orita, Yukari; Kawashima, Yoshiyuki; Hirota, Eizi

    2010-06-01

    We have previously examined the difference in roles of O and S in structure and dynamics of the CO-ethylene oxide (EO) and CO-ethylene sulfide (ES) complexes. We have extended the investigation to CO{2}-EO and CO{2}-ES for comparison. We have also observed the CO{2}-propylene oxide (PO) complex, which is an important intermediate in the reaction of PO with CO{2} leading to polycarbonate. Both a-type and b-type transitions were observed for the CO{2}-EO and CO{2}-ES, but no c-type transitions were observed at all. We also detected the {34}S and {13}C isotopic species in natural abundance and the species containing {18}OCO and C{18}O% {2}, which were synthesized by burning paper in an {18}O{2} and{% 16}O{2} mixture. By analyzing the observed spectra we concluded the CO{2} moiety of CO{2}-EO and CO{2}-ES located in a plane % prependicular to the three-membered ring and bisecting the COC or CSC angle of EO or ES, respectively, as in the case of CO-EO and CO-ES complexes. An % ab initio MO calculation at the level of MP2/6-311G(d, p) yielded an optimized structure in good agreement with the experimental result. We have derived from the observed spectra the distance, the stretching force constant, and the binding energy of the bonds between the constituents of the CO{2}-EO and CO{2}-ES complexes and have found that the distances of the two complexes were shorter by 0.2Å than those in CO-EO and CO-ES, respectively, and that the intermolecular bonds were two times stronger in the CO{2} complexes than in the corresponding CO complexes. We have concluded from the observed spectra that the CO{2} moiety in CO{2}-PO is located on the PO three-membered ring plane opposite to the methyl group. The constituents in CO{2}-PO were more weakly bound than those in CO{2}-EO and CO{2}-ES. S. Sato, Y. Kawashima, Y. Tatamitani, and E. Hirota, 63rd International Symposium on Molecular Spectroscopy, WF05 (2008).

  6. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.

    PubMed

    Muthuswamy, Elayaraja; Brock, Stephanie L

    2010-11-17

    Unexpected reactivity on the part of oxide nanoparticles that enables their transformation into phosphides or sulfides by solution-phase reaction with trioctylphosphine (TOP) or sulfur, respectively, at temperatures of ≤370 °C is reported. Impressively, single-phase phosphide products are produced, in some cases with controlled anisotropy and narrow polydispersity. The generality of the approach is demonstrated for Ni, Fe, and Co, and while manganese oxides are not sufficiently reactive toward TOP to form phosphides, they do yield MnS upon reaction with sulfur. The reactivity can be attributed to the small size of the precursor particles, since attempts to convert bulk oxides or even particles with sizes approaching 50 nm were unsuccessful. Overall, the use of oxide nanoparticles, which are easily accessed via reaction of inexpensive salts with air, in lieu of organometallic reagents (e.g., metal carbonyls), which may or may not be transformed into metal nanoparticles, greatly simplifies the production of nanoscale phosphides and sulfides. The precursor nanoparticles can easily be produced in large quantities and stored in the solid state without concern that "oxidation" will limit their reactivity.

  7. Sulfide Oxidation in Marine Sedimentary Rocks as a Source of Trace Metals and Sulfate to Urban California Streams

    NASA Astrophysics Data System (ADS)

    Bardsley, A.; Hammond, D. E.; von Bitner, T.

    2013-12-01

    Watersheds in southern Orange County, CA have received regulatory scrutiny for elevated levels of total dissolved solids (TDS) along with cadmium, nickel, and sulfate as threats to in-stream and marine ecology. Multiple source investigations have failed to attribute these chronic contaminants to anthropogenic sources. Patterns of high TDS in the study region's surface waters correlate poorly with landuse and instead appear to follow geologic substrate. Measurements of springs and seeps reveal groundwater pH as low as 4.8, TDS as high as 8700 mg/L, dissolved concentrations of sulfate up to 50 mM, cadmium up to 1.8 uM, selenium up to 2.4 uM, and nickel up to 14.8 uM flowing directly into creeks. We suggest that subsurface oxidation of sulfide in prevalent Neogene marine sedimentary rock formations is the key weathering mechanism behind this phenomenon. Bulk analysis of the Capistrano and other local formations indicates that they are enriched in select trace metals up to two orders of magnitude relative to average crustal abundance, making them a plausible source of contamination to groundwater, and ultimately, surface water. Though carbonate dissolution in these same formations may offset the acidity at some sites, many groundwater samples were substantially undersaturated in calcite and capable of maintaining low pH and high dissolved metals concentration. While sulfide mineral weathering has been invoked as the cause of significant contamination at former mining sites and undeveloped mineralized regions, our findings indicate this same weathering mechanism may have implications for urbanized catchments that contain marine sedimentary units. Sulfide mineral oxidation can result in substantial sulfate loading, acid production and subsequent mobilization of trace metals and other ions from the surrounding rock matrix, leading to high dissolved contaminant levels. To evaluate water and sulfate sources to these high TDS springs, we measured stable isotopes of water and

  8. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  9. Toward the formation of alkylphosphonic acids in phosphine ices

    NASA Astrophysics Data System (ADS)

    Turner, Andrew; Kaiser, Ralf-Ingo

    2016-10-01

    Phosphorus is one of the elemental building blocks of life on Earth and is important for information storage (RNA/DNA), energy transfer (ATP), cell membranes (phospholipids), and structure (bones & teeth). Due to the poor bioavailability of highly oxidized phosphorus (P(V)) found in ubiquitous phosphate (PO43-) minerals, reduced oxidation state (P(III)) compounds have been proposed as a phosphorus source for early life on Earth. Among these, the alkylphosphonic acids, which are the only phosphorus-containing organic compounds discovered in the Murchison meteorite, are a suggested exogenous source of prebiotic phosphorus. Phosphine (PH3) is a known component of the atmospheres of Jupiter and Saturn, and the confirmation of circumstellar phosphine in the carbon-rich envelop of IRC +10216 along with the recent detection of phosphorus in the comet 67P/Churyumov-Gerasimenko provide an additional foundation for studying extraterrestrial phosphorus chemistry and the origins of the alkylphosphonic acids. In the present study, reactions of phosphine ices with water (H2O), carbon dioxide (CO2), and methane (CH4) were investigated using Fourier transform infrared spectroscopy (FTIR), quadrupole mass spectrometry (QMS), and most notably, reflectron time-of-flight mass spectrometry using tunable photoionization (PI-ReTOF-MS). Experiments were conducted at ultra-high vacuum pressures and cryogenic temperatures to better understand reaction pathways and products of phosphorus-containing compounds under icy conditions found in comets or the interstellar medium. The results of this study can provide support to the hypothesis that the alkylphosphonic acids were formed from interstellar phosphine and incorporated into meteorites such as Murchison.

  10. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    SciTech Connect

    Kawai, Shoichi Sobue, Susumu; Okuno, Eiichi; Yamazaki, Ryuta; Ichimura, Masaya

    2014-03-01

    Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO{sub 4} and Na{sub 2}S{sub 2}O{sub 3}. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  11. Oxidative Addition of Disulfides, Alkyl Sulfides, and Diphosphides to an Aluminum(I) Center.

    PubMed

    Chu, Terry; Boyko, Yaroslav; Korobkov, Ilia; Kuzmina, Lyudmila G; Howard, Judith A K; Nikonov, Georgii I

    2016-09-01

    The aluminum(I) compound NacNacAl (1) reacts with diphenyl disulfide and diethyl sulfide to form the respective four-coordinate bis(phenyl sulfide) complex NacNacAl(SPh)2 (2) and alkyl thiolate aluminum complex NacNacAlEt(SEt) (3). As well, reaction of 1 with tetraphenyl diphosphine furnishes the bis(diphenyl phosphido) complex NacNacAl(PPh2)2 (4). Production of 3 and 4 are the first examples of C(sp(3))-S and R2P-PR2 activation by a main-group element complex. All three complexes were characterized by multinuclear NMR spectroscopy and X-ray crystal structure analysis. Furthermore, a variable-temperature NMR spectroscopic study was undertaken on 4 to study its dynamic behavior in solution. PMID:27529564

  12. Chemoselective nucleophilic arylation and single-step oxidative esterification of aldehydes using siloxanes and a palladium-phosphinous acid as a reaction switch.

    PubMed

    Lerebours, Rachel; Wolf, Christian

    2006-10-11

    Aldehydes and siloxanes form methyl esters in a single step through mild oxidative esterification in the presence of a palladium catalyst or, alternatively, afford secondary alcohols via TBAF-promoted arylation in the absence of a catalyst at increased temperatures under otherwise identical reaction conditions.

  13. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles.

    PubMed

    Babaahamdi-Milani, Majid; Nezamzadeh-Ejhieh, Alireza

    2016-11-15

    The Ni(II)-Pb(II) exchanged clinoptilolite nanoparticles (NCP) were transformed to corresponding oxides and sulfides via calcination and sulfiding processes, respectively. The obtained catalysts were characterized by XRD, FT-IR, TEM and DRS and used in photodegradation of p-nitrophenol (4-NP) aqueous solution under Hg-lamp irradiation. Results showed considerable increase in activity of the coupled semiconductors with respect to monocomponent one. In NiO-PbO-NCP system, conduction band (CB) of NiO is enough negative for easily migration of photogenerated electrons to CB-PbO level, while such phenomena take place from more negative CB-PbS level to CB-NiS level in NiS-PbS-NCP. These phenomena significantly prevented from electron-hole recombination which increased photocatalytic activity of the coupled semiconductors. Best photodegradation activities obtained by NiO1.3%-PbO14.7%-NCP and NiS2.1%-PbS10.0%-NCP, confirming semiconductors' mass-ratio dependence of the photocatalytic process. The supported coupled semiconductors showed blue shifts in band gap energies with respect to the bulk semiconductors which confirm formation of semiconductors nanoparticles inside the zeolite framework. The highest degradation percentage of 4-NP was obtained at: 0.5gL(-1) photocatalysts, 15mgL(-1) 4-NP at pH 7.5.

  14. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.

    PubMed

    Couture, R-M; Rose, J; Kumar, N; Mitchell, K; Wallschläger, D; Van Cappellen, P

    2013-06-01

    Sorption to iron (Fe) minerals determines the fate of the toxic metalloid arsenic (As) in many subsurface environments. Recently, thiolated As species have been shown to dominate aqueous As speciation under a range of environmentally relevant conditions, thus highlighting the need for a quantitative understanding of their sorption behavior. We conducted batch experiments to measure the time-dependent sorption of two S-substituted arsenate species, mono- and tetrathioarsenate, and compared it to the sorption of arsenite and arsenate, in suspensions containing 2-line ferrihydrite, goethite, mackinawite, or pyrite. All four As species strongly sorbed to ferrihydrite. For the other sorbents, binding of the thiolated As species was generally lower compared to arsenate and arsenite, with the exception of the near instantaneous and complete sorption of monothioarsenate to pyrite. Analysis of the X-ray absorption spectroscopy (XAS) spectra of sorbed complexes implied that monothioarsenate binds to Fe oxides as a monodentate, inner-sphere complex. In the presence of Fe sulfides, mono- and tetrathioarsenate were both unstable and partially reduced to arsenite. Adsorption of the thiolated As species to the Fe sulfide minerals also caused the substitution of surface sulfur (S) atoms by As and the formation of As-Fe bonds.

  15. Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores - a review

    NASA Astrophysics Data System (ADS)

    Charykova, Marina V.; Krivovichev, Vladimir G.

    2016-08-01

    Contemporary mineralogy and geochemistry are concerned with understanding and deciphering processes that occur near the surface of the Earth. These processes are especially important for resolving ecological challenges and developing principles of good environmental management. Selenium oxysalts, selenites and selenates, are relatively rare as minerals; there are presently only 34 known mineral species. Thirty-one "pure" selenites, which contain only selenite anionic groups, are known to occur naturally. The other three minerals each contain two anionic groups: selenate and selenite (schmiederite), selenate and sulphate (olsacherite), and selenate and iodate (carlosruizite). This work is intended to provide a classification of natural selenium oxysalts based on their chemical composition. Selenites belong to a particular mineral system, whose components are chemical elements required to construct the crystal structure of a mineral (species-defining constituents). The number of components represents the minimum number of independent elements necessary to define the composition of the system. All selenites and selenates are divided into two groups: anhydrous selenites (I) and hydrous selenites and selenates (II). The paper also presents systematized data published on the thermodynamics of selenites, which are formed in the weathering zone of sulfide and selenide ores, and determines approaches to the quantitative physicochemical modeling of formation conditions. The Eh-pH diagrams of the Me-Se-H2O systems (Me = Cu, Co, Ni, Fe, Zn, Ca, Al) were calculated and plotted for the average contents of these elements in aqueous weathering solutions in sulfide deposit oxidation zones.

  16. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles.

    PubMed

    Babaahamdi-Milani, Majid; Nezamzadeh-Ejhieh, Alireza

    2016-11-15

    The Ni(II)-Pb(II) exchanged clinoptilolite nanoparticles (NCP) were transformed to corresponding oxides and sulfides via calcination and sulfiding processes, respectively. The obtained catalysts were characterized by XRD, FT-IR, TEM and DRS and used in photodegradation of p-nitrophenol (4-NP) aqueous solution under Hg-lamp irradiation. Results showed considerable increase in activity of the coupled semiconductors with respect to monocomponent one. In NiO-PbO-NCP system, conduction band (CB) of NiO is enough negative for easily migration of photogenerated electrons to CB-PbO level, while such phenomena take place from more negative CB-PbS level to CB-NiS level in NiS-PbS-NCP. These phenomena significantly prevented from electron-hole recombination which increased photocatalytic activity of the coupled semiconductors. Best photodegradation activities obtained by NiO1.3%-PbO14.7%-NCP and NiS2.1%-PbS10.0%-NCP, confirming semiconductors' mass-ratio dependence of the photocatalytic process. The supported coupled semiconductors showed blue shifts in band gap energies with respect to the bulk semiconductors which confirm formation of semiconductors nanoparticles inside the zeolite framework. The highest degradation percentage of 4-NP was obtained at: 0.5gL(-1) photocatalysts, 15mgL(-1) 4-NP at pH 7.5. PMID:27427895

  17. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    DOEpatents

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  18. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant.

    PubMed

    Shen, Rong; Kusakabe, Taichi; Yatsu, Tomofumi; Kanno, Yuichiro; Takahashi, Keisuke; Nemoto, Kiyomitsu; Kato, Keisuke

    2016-01-01

    An efficient Pd(II)/Pd⁰-p-benzoquinone/hydroquinone-CuCl₂/CuCl catalyst system was developed that uses environmentally friendly molecular oxygen as the terminal oxidant to catalyze the cyclization-carbonylation-cyclization coupling reaction (CCC-coupling reaction) of (o-alkynyl phenyl) (methoxymethyl) sulfides. PMID:27607997

  19. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant.

    PubMed

    Shen, Rong; Kusakabe, Taichi; Yatsu, Tomofumi; Kanno, Yuichiro; Takahashi, Keisuke; Nemoto, Kiyomitsu; Kato, Keisuke

    2016-09-05

    An efficient Pd(II)/Pd⁰-p-benzoquinone/hydroquinone-CuCl₂/CuCl catalyst system was developed that uses environmentally friendly molecular oxygen as the terminal oxidant to catalyze the cyclization-carbonylation-cyclization coupling reaction (CCC-coupling reaction) of (o-alkynyl phenyl) (methoxymethyl) sulfides.

  20. Observed and calculated 1H and 13C chemical shifts induced by the in situ oxidation of model sulfides to sulfoxides and sulfones.

    PubMed

    Dracínský, Martin; Pohl, Radek; Slavetínská, Lenka; Budesínský, Milos

    2010-09-01

    A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta-chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed (1)H and (13)C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy-minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the 'cheap' DFT B3LYP/6-31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Delta delta values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (-S-, -SO-, -SO(2)-).

  1. Molecular and biochemical evidence on the protection of cardiomyocytes from phosphine-induced oxidative stress, mitochondrial dysfunction and apoptosis by acetyl-L-carnitine.

    PubMed

    Baghaei, Amir; Solgi, Reza; Jafari, Abbas; Abdolghaffari, Amir Hossein; Golaghaei, Alireza; Asghari, Mohammad Hossein; Baeeri, Maryam; Ostad, Seyed Nasser; Sharifzadeh, Mohammad; Abdollahi, Mohammad

    2016-03-01

    The aim of the present study was to investigate the efficacy of acetyl-L-carnitine (ALCAR) on pathologic changes of mitochondrial respiratory chain activity, ATP production, oxidative stress, and cellular apoptosis/necrosis induced by aluminum phosphide (AlP) poisoning. The study groups included: the Sham that received almond oil only; the AlP that received oral LD50 dose of aluminum; the AC-100, AC-200, and AC-300 which received concurrent oral LD50 dose of AlP and single 100, 200, and 300 mg/kg of ALCAR by intraperitoneal injection. After 24 h, the rats were sacrificed; the heart and blood sample were taken for measurement of biochemical and mitochondrial factors. The results specified that ALCAR significantly attenuated the oxidative stress (elevated ROS and plasma iron levels) caused by AlP poisoning. ALCAR also increased the activity of cytochrome oxidase, which in turn amplified ATP production. Furthermore, flow cytometric assays and caspase activity indicated that ALCAR prohibited AlP-induced apoptosis in cardiomyocytes. PMID:26773361

  2. Phosphine photochemistry in Saturn's atmosphere

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.; Strobel, D. F.

    1983-10-01

    The phosphine photochemistry on Saturn is studied with a 1D photochemical model. The PH3 concentration is rapidly depleted with height (scale height 3.5 km) in the upper troposphere. Formation of P, a probable precursor of P4, (a potential red chromophore in the atmosphere), is highly improbable unless the rate constant for the recombination reaction PH + H2 + M yields PH3 + M is less than 10 to the -41st cm exp 6/molecule-squared sec. Coupling of PH3 and hydrocarbon photochemistry, specifically the C2H2 catalyzed photodissociation of CH, is important. Column production rates of the organophosphorus compounds CH3PH2 and HCP of 3 x 10 to the 8th/sq cm sec are predicted, with potentially observable column densities of greater than 1 x 10 to the 17th/sq cm.

  3. Iron-sulfides, iron-oxides and aqueous processing of organic materials in CM and CI meteorites and IDPs

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J.

    Why do CM meteorites have such a rich variety of organics? D/H isotope ratios prove an interstellar component of the organic matter in CM and CI carbonaceous meteorites wherein the complex ``organics'' could in part be due to Fischer-Tropsch type (FTT) processes and processing of organic precursors on Fe-sulfide, Fe-oxide or clay catalysts. ``Origin of Life'' scenarios refer to the richly varied organics in CM (Murchison) meteorites as the precursor materials delivered to the Earth 4.2-3.9 Gyrs ago. Aggregate interplanetary dust particles (IDPs) have more carbon, incl. an interstellar component, than CI and CM meteorites but their original ``organics'' and amounts are modified by pyrolysis during atmospheric entry. Here, I will assume that anhydrous aggregate IDPs formed the originally anhydrous CI and CM matrix. These IDPs contain submicron CHON, mixed and `silicate' principal components (PCs), e.g. Fe-rich serpentine dehydroxylate, (Mg,Fe)3Si2O7, PCs [Fe/(Mg+Fe)(fe) = 0.3-0.8], and micron-size Fe-sulfides, olivine and pyroxenes. In a Mg-Fe-Si diagram with an Fe-apex, these PC compositions plot on a serpentine, (Mg,Fe)/Si line. The hydrated CI matrix compositions also define a straight line that, anchored at serpentine, fe = 0.3, is rotated towards higher (Mg,Fe)/Si ratios with increasing serpentine fe-ratio when during hydration of an initially ``serpentine dehydroxylate PC'' CI matrix reacted with Fe-sulfide, Fe-oxide, or both. The straight line defining hydrated CM matrix compositions is rotated even more towards higher (Mg,Fe)/Si ratios when hydrated CI-like material continued reacting with Fe-oxide and Fe-sulfide and formed tochilinite, a mineral unique to CM meteorites. Continuous hydration of IDP-like material with an ample supply of Fe-minerals acting as catalysts for formation and processing ``organics'' would have affected the redox conditions of a buffered C-H-O-S aqueous fluid during the time ``organics' were modified to the unique mélanges of CM

  4. Chloroperoxidase-catalyzed enantioselective oxidation of methyl phenyl sulfide with dihydroxyfumaric acid/oxygen or ascorbic acid/oxygen as oxidants.

    PubMed

    Pasta; Carrea; Monzani; Gaggero; Colonna

    1999-02-01

    The chloroperoxidase catalyzed oxidation of methyl phenyl sulfide to (R)-methyl phenyl sulfoxide was investigated, both in batch and membrane reactors, using as oxidant H2O2, or O2 in the presence of either dihydroxyfumaric acid or ascorbic acid. The effects of pH and nature and concentration of the oxidants on the selectivity, stability, and productivity of the enzyme were evaluated. The highest selectivity was displayed by ascorbic acid/O2, even though the activity of chloroperoxidase with this system was lower than that obtained with the others. When the reaction was carried out in a membrane reactor, it was possible to reuse the enzyme for several conversion cycles. The results obtained with ascorbic acid/O2 and dihydroxyfumaric acid/O2 as oxidants do not seem to be compatible with either a mechanism involving hydroxyl radicals as the active species or with the hypothesis that oxidation occurs through the initial formation of H2O2. Copyright 1999 John Wiley & Sons, Inc.

  5. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated. PMID:27133088

  6. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution.

    PubMed

    Esmaili-Hafshejani, Javad; Nezamzadeh-Ejhieh, Alireza

    2016-10-01

    Photocatalytic activity of the coupled ZnO-CuO and ZnS-CuS semiconductors supported onto clinoptilolite nanoparticles (CNP) and micronized one (CMP) was studied in photodegradation of benzophenone (BP) aqueous solution. The ZnO-CuO/CNP (or MCP) and ZnS-CuS/CNP (or MCP) catalysts were prepared via calcination and sulfiding of their Zn(II)-Cu(II) ion-exchanged samples, respectively. XRD patterns confirmed loading of the mentioned semiconductors onto the zeolite, and nano dimension of the catalysts was confirmed by XRD and TEM results. Typical Tauc plots obtained from UV-vis DRS spectra showed red shifts for the band gap energies of the supported coupled semiconductors with respect to the supported monocomponent ones especially for ZnO/NCP and ZnS/NCP catalysts. Also, in both indirect and direct transitions, these red shifts were more considerable in the oxidic systems with respect to the sulfidic systems. Accordingly, the supported oxidic systems showed better photocatalytic activity than the sulfidic one. In the oxidic systems changing the dose of CuO played important role while in the sulfidic systems ZnS played considerable role in the degradation of BP. In the used systems, CuO and ZnS played the main e/h generators in the oxidic and sulfidic systems, respectively, while ZnO and CuS played the preventer e/h recombination. Based on the results, production of e/h is the rate limiting step in the used systems. The maximum degradation activity of the catalysts was obtained at: 0.12gL(-1) of ZnO0.80-CuO3.18/NCP and 0.10gL(-1) of ZnS1.39-CuS2.88/NCP catalysts, initial BP concentration of 30mgL(-1) at pH 7.5.

  7. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution.

    PubMed

    Esmaili-Hafshejani, Javad; Nezamzadeh-Ejhieh, Alireza

    2016-10-01

    Photocatalytic activity of the coupled ZnO-CuO and ZnS-CuS semiconductors supported onto clinoptilolite nanoparticles (CNP) and micronized one (CMP) was studied in photodegradation of benzophenone (BP) aqueous solution. The ZnO-CuO/CNP (or MCP) and ZnS-CuS/CNP (or MCP) catalysts were prepared via calcination and sulfiding of their Zn(II)-Cu(II) ion-exchanged samples, respectively. XRD patterns confirmed loading of the mentioned semiconductors onto the zeolite, and nano dimension of the catalysts was confirmed by XRD and TEM results. Typical Tauc plots obtained from UV-vis DRS spectra showed red shifts for the band gap energies of the supported coupled semiconductors with respect to the supported monocomponent ones especially for ZnO/NCP and ZnS/NCP catalysts. Also, in both indirect and direct transitions, these red shifts were more considerable in the oxidic systems with respect to the sulfidic systems. Accordingly, the supported oxidic systems showed better photocatalytic activity than the sulfidic one. In the oxidic systems changing the dose of CuO played important role while in the sulfidic systems ZnS played considerable role in the degradation of BP. In the used systems, CuO and ZnS played the main e/h generators in the oxidic and sulfidic systems, respectively, while ZnO and CuS played the preventer e/h recombination. Based on the results, production of e/h is the rate limiting step in the used systems. The maximum degradation activity of the catalysts was obtained at: 0.12gL(-1) of ZnO0.80-CuO3.18/NCP and 0.10gL(-1) of ZnS1.39-CuS2.88/NCP catalysts, initial BP concentration of 30mgL(-1) at pH 7.5. PMID:27235827

  8. Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs.

    PubMed

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2016-04-01

    Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75μm) and coarse (500 to 1200μm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens.

  9. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.

    PubMed

    Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg

    2011-05-30

    Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. PMID:21316846

  10. Pyritic event beds and sulfidized Fe (oxyhydr)oxide aggregates in metalliferous black mudstones of the Paleoproterozoic Talvivaara formation, Finland

    NASA Astrophysics Data System (ADS)

    Virtasalo, Joonas J.; Laitala, Jaakko J.; Lahtinen, Raimo; Whitehouse, Martin J.

    2015-12-01

    The Paleoproterozoic, 2.0-1.9 Ga Talvivaara formation of Finland was deposited during the Shunga Event, a worldwide episode of enhanced accumulation of organic-rich sediments in the aftermath of the Lomagundi-Jatuli carbon isotope excursion. Sulfidic carbonaceous mudstones in the Talvivaara formation contain one of the largest known shale-hosted nickel deposits. In order to gain new insight into this Shungian sedimentary environment, sedimentological, petrographical and in situ S and Fe isotopic microanalyses were carried out on samples representing depositional and early-diagenetic conditions. The event-bedded lithology with tidal signatures in the organic-rich mudstones strongly indicates deposition from predominantly river-delivered mud on a highly-productive coastal area, below storm-wave base. The riverine supply of phosphorus, sulfate and iron supported high primary productivity and resulted in strong lateral and vertical chemical gradients in the nearshore waters with a shallow oxic surface layer underlain by euxinic water. The stratigraphic upper part of the Talvivaara formation contains banded intervals of thin alternating pyrite beds and carbonaceous mudstone beds. The pyrite beds were deposited by seaward excursions of the concentrated, acidic Fe-rich river plume subsequent to droughts or dry seasons, which led to intense pyrite precipitation upon mixing with euxinic waters. δ34S and δ56Fe values of the bedded pyrite (median δ34S = - 10.3 ‰ and δ56Fe = - 0.79 ‰) are consistent with the reaction of dissolved Fe(II) with H2S from bacterial sulfate reduction. Organic-rich clayey Fe-monosulfide-bearing granules were transported from the muddy estuary, and enclosed in Fe (oxyhydr)oxide aggregates that were forming by wave and current reworking in nearshore accumulations of river-delivered iron. The isotopic composition of these presently pyrrhotitic inclusions (median δ34S = - 3.3 ‰ and δ56Fe = - 1.6 ‰) indicates microbial iron reduction. The Fe

  11. Photodegradation of dimethyl sulfide (DMS) in natural waters: laboratory assessment of the nitrate-photolysis-induced DMS oxidation.

    PubMed

    Bouillon, René-Christian; Miller, William L

    2005-12-15

    The interaction of sunlight and dissolved chromophoric matter produces reactive chemical species that are significant in the removal of dimethyl sulfide (DMS) in the surface ocean. Using artificial solar radiation, we examined the role of several inorganic components of seawater on the kinetics of NO3- -photolysis-induced DMS removal in aqueous solution. This study strongly suggests that NO3- photolysis products react significantly with DMS in aqueous solution possibly via an electrophilic attack on the electron-rich sulfur atom. This supports previous field observations that indicate that NO3- photolysis has a substantial control on DMS photochemistry in nutrient-rich waters. A key finding of this research is that the oxidation rate of DMS induced by NO3- photolysis is dramatically enhanced in the presence of bromide ion. Moreover, our results suggest that bicarbonate/carbonate ions are involved in free radical production/scavenging processes important for DMS photochemistry. These reactions are pH dependent. We propose that DMS removal by some selective free radicals derived from bromide and bicarbonate/carbonate ion oxidation is a potentially important and previously unrecognized pathway for DMS photodegradation in marine waters. PMID:16475324

  12. Corrosion behavior of an HVOF-sprayed Fe3Al coating in a high-temperature oxidizing/sulfidizing environment

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Shrestha, S.; Harvey, D.

    2005-01-01

    An iron aluminide (Fe3Al) intermetallic coating was deposited onto a F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was examined by electron microscopy and X-ray diffraction and was characterized in terms of oxidation and adhesion. Fe3Al-coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment at 500, 600, 700, and 800DGC for approximately seven days. The gaseous environment consisted of N2-10%CO-5%CO2-2%H2O-0.12%H2S (by volume). All specimens gained mass after exposure to the environment and the mass gains were found to be inversely proportional to temperature increases. Representative specimens exposed at each temperature were cross-sectioned and subjected to examination under a scanning electron microscope (SEM) and X-ray mapping. Results are presented in terms of corrosion weight gain and corrosion product formation. The purpose of the research presented here was to evaluate the effectiveness of an HVOF-sprayed Fe3Al coating in protecting a steel substrate exposed to a fossil energy environment.

  13. Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms

    SciTech Connect

    Rodrigues, A.; Duchesne, J.; Fournier, B.; Durand, B.; Rivard, P.; Shehata, M.

    2012-10-15

    Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damaged concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.

  14. Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 3. Kinetics and mechanism of the OH initiated oxidation of dimethyl, dipropyl, and dibutyl sulfides: reactivity trends in the alkyl sulfides and development of a predictive expression for the reaction of OH with DMS.

    PubMed

    Williams, M B; Campuzano-Jost, P; Hynes, A J; Pounds, A J

    2009-06-18

    A pulsed laser photolysis-pulsed laser-induced fluorescence technique has been employed to measure rate coefficients for the OH-initiated oxidation of dimethyl sulfide (DMS), its deuterated analog (DMS-d(6)), dipropyl sulfide (DPS), and dibutyl sulfide (DBS). Effective rate coefficients have been measured as a function of the partial pressure of O(2) over the temperature range of 240-295 K and at 200 and 600 Torr total pressure. We report the first observations of an O(2) enhancement in the effective rate coefficients for the reactions of OH with DPS and DBS. All observations are consistent with oxidation proceeding via a two-channel oxidation mechanism involving abstraction and addition channels. Structures and thermochemistry of the DPSOH and DBSOH adducts were calculated. Calculated bond strengths of adducts increase with alkyl substitution but are comparable to that of the DMSOH adduct and are consistent with experimental observations. Reactivity trends across the series of alkyl sulfide (C(2)-C(8)) reactions are analyzed. All reactions proceed via a two-channel mechanism involving either an H-atom abstraction or the formation of an OH adduct that can then react with O(2). Measurements presented in this work, in conjunction with previous measurements, have been used to develop a predictive expression for the OH-initiated oxidation of DMS. This expression is based on the elementary rate coefficients in the two-channel mechanism. The expression can calculate the effective rate coefficient for the reaction of OH with DMS over the range of 200-300 K, 0-760 Torr, and 0-100% partial pressure of O(2). This expression expands on previously published work but is applicable to DMS oxidation throughout the troposphere.

  15. New silylated iminophosphorano(amino)phosphines Me(3)SiN=PPh(2)N(R)PPh(2) (R = Et, (n)Pr, (n)Bu). Crystal and molecular structure of trimethylsilyliminophosphorano(propylamino)diphenylphosphine Me(3)SiN=PPh(2)N((n)Pr)PPh(2). Further oxidative derivatization with S, Se, and azides, titanium(IV) transmetalation of the imine, and syntheses of rhodium(I), palladium(II), and platinum(II) complexes of these iminophosphorano(amino)phosphines.

    PubMed

    Balakrishna, M S; Teipel, S; Pinkerton, A A; Cavell, R G

    2001-04-01

    Bis(phosphino)amines Ph(2)PN(R)PPh(2) (R = Et, (n)Pr, (n)Bu) react with stoichiometric amounts of trimethylsilyl azide to give the trimethylsilyliminophosphorano(amino)phosphines Me(3)SiN=PPh(2)N(R)PPh(2) (1, R = Et; 2, R = (n)Pr; 3, R = (n)Bu) as crystalline compounds. The structure of 2 has been determined by single-crystal X-ray analysis. (Crystal data for 2: monoclinic, P2(1)/c, a = 10.235(1) A, b = 16.802(2) A, c = 17.075(2) A, beta = 101.05(1) degrees, V = 2882.9(5) A(3), Z = 4.) The structure of 2, which is the first example of an iminophosphoranophosphine with the P(III)-N-P(V)=N skeleton, was solved by direct methods and refined to R = 0.044. Compound 2 readily reacts with elemental sulfur, selenium, or phosphoryl azide to give fully oxidized phosphinimines Ph(2)P(E)N((n)()Pr)Ph(2)P=NSiMe(3) (4, E = S; 5, E = Se; 6, E = NP(O)(OPh)(2)). Compounds 4-6 are very sensitive to moisture and readily undergo desilylation to give the parent phosphinimines Ph(2)P(E)N((n)()Pr)Ph(2)P=NH, which can be isolated as moderately stable crystalline solids. The phosphiniminophosphine 2 and the oxidized phosphinimines (4 and 5) react with CpTiCl(3) to give new nitrogen-bound Ti(IV) derivatives Ph(2)P(E)N((n)Pr)Ph(2)P=NTi(Cp)Cl(2) (10, E = lone pair; 11, E = S; 12, E = Se). Compounds 1-3 readily react with rhodium(I), palladium(II), and platinum(II) complexes to give five-membered metallacycles via phosphorus(III) and imine nitrogen coordination. PMID:11312734

  16. Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs

    SciTech Connect

    Sublette, K.L.; Sylvester, N.D.

    1987-04-01

    A process for the microbial desulfurization of natural gas based on the oxidation of H/sub 2/S(g) by Thiobacillus denitrificans has been previously proposed. The proposed process could be greatly simplified if aseptic operation of the reactor was not required. Accordingly, the authors report here a study of the effects of heterotrophic contaminants on H/sub 2/S(g) oxidation by T. denitrificans.

  17. Electrochemical behavior of silver sulfide

    SciTech Connect

    Drouven, B.U.E.

    1982-01-01

    The electrochemical behavior of silver sulfide in sulfuric acid as well as in nitric acid was studied using electrodes made from synthetic silver sulfide. The primary techniques used were potentiostatic, potentiodynamic, galvanostatic and corrosion cell experiments. The cathodic reaction of silver sulfide produces silver and hydrogen sulfide. This reaction mechanism is a sequential two step charge transfer involving a single electron in each step. Silver ions are produced from silver sulfide upon applying an anodic potential. The dissolution rate of silver sulfide can be so high that the formation of silver sulfate occurs which partially covers the silver sulfide surface and inhibits a further rate increase. The sulfur from the silver sulfide will be oxidized at low overpotentials to elemental sulfur; at high overpotentials, the oxidation to sulfate or bisulfate is observed. The results suggest that the catalysis of chalcopyrite by the addition of silver ions is caused by the formation and subsequent dissolution of silver sulfide leaving a porous layer behind. The understanding of the reaction mechanism of silver sulfide dissolution and its optimization will significantly improve the economic evaluation of industrial processes using the catalyzed leaching of chalcopyrite. The present knowledge of the catalysis indicates that other ions may be substituted for silver ions which would increase the feasibility of hydrometallurgical processes.

  18. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    PubMed Central

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2), tungsten oxide (WO3) and indium oxide (In2O3) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500) followed by WO3 (1200) and In2O3 (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2) or oxidizing (NO2) gases. PMID:22291557

  19. Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide.

    PubMed

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO(2)), tungsten oxide (WO(3)) and indium oxide (In(2)O(3)) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H(2)S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of R(air)/R(gas) is given by Cu-SnO(2) films (2500) followed by WO(3) (1200) and In(2)O(3) (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO(2)) or oxidizing (NO(2)) gases. PMID:22291557

  20. Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excello Shale Member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA

    USGS Publications Warehouse

    Hatch, J.R.; Leventhal, M.S.

    1997-01-01

    A process of early diagenetic partial oxidation of organic matter and sulfides has altered the chemical composition of the Middle Pennsylvanian Excello Shale Member of the Fort Scott Limestone and equivalents in the northern Midcontinent region. This process was identified by comparison of organic carbon contents, Rock-Eval hydrogen indices, organic carbon ??13C and element compositions of core and surface mine samples of the Excello Shale Member with analyses of three other underlying and overlying organic-matter-rich marine shales (offshore shale lithofacies) from southern Iowa, northern Missouri, eastern Kansas and northeastern Oklahoma. The end product of the partial oxidation process is shale with relatively low contents of hydrogen-poor, C13-enriched organic matter, lower contents of sulfur and sulfide-forming elements, and relatively unchanged contents of phosphorus and many trace elements (e.g. Cr, Ni, and V). However, because of lower organic carbon contents, element/organic carbon ratios are greatly increased. The partial oxidation process apparently took place during subaerial exposure of the overlying marine carbonate member (Blackjack Creek Member of the Fort Scott Limestone) following a marine regression when meteoric waters percolated down to the level of the Excello muds allowing oxidation of organic matter and sulfides. This hypothesis is supported by earlier workers, who have identified meteoric carbonate cements within, and soil horizons at the top of the Blackjack Creek Member. The period of oxidation is constrained in that organic matter and sulfides in the Little Osage Shale Member of the Fort Scott Limestone and equivalents (immediately overlying the Blackjack Creek Member) appear unaltered. Similar alteration of other shales in the Middle and Upper Pennsylvanian sections may be local to regional in extent and would depend on the extent and duration of the marine regression and be influenced by local variations in permeability and topography

  1. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  2. Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific Ocean ▿ †

    PubMed Central

    Ver Eecke, Helene C.; Kelley, Deborah S.; Holden, James F.

    2009-01-01

    The abundances of hyperthermophilic heterotrophs, methanogens, and autotrophic reducers of amorphous Fe(III) oxide in 18 samples of deep-sea hydrothermal vent sulfide chimneys of the Endeavour Segment were measured. The results indicate that conditions favor the growth of iron reducers toward the interiors of these deposits and that of heterotrophs toward the outer surfaces near high-temperature polychaete worms (Paralvinella sulfincola). PMID:18978076

  3. In Site Bioimaging of Hydrogen Sulfide Uncovers Its Pivotal Role in Regulating Nitric Oxide-Induced Lateral Root Formation

    PubMed Central

    Xian, Ming; Zhou, Li-Gang; Han, Fengxiang X.; Gan, Li-Jun; Shi, Zhi-Qi

    2014-01-01

    Hydrogen sulfide (H2S) is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in tomato (Solanum lycopersicum) roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO), and Ca2+ in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca2+ accumulation and CaM1 (calmodulin 1) expression could be abolished by inhibiting H2S synthesis. Ca2+ chelator or Ca2+ channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca2+ in regulating lateral root formation. PMID:24587333

  4. Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal.

    PubMed

    Huang, Zheng-Hong; Liu, Guoqiang; Kang, Feiyu

    2012-09-26

    Zinc-based metal-organic frameworks/graphene oxide (MOF-5/GO) composites were synthesized via the solvothermal method. The materials were characterized by scanning electron microscopy (SEM), nitrogen adsorption, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS), and their performances for hydrogen sulfide (H(2)S) removal were evaluated by dynamic testing at room temperature. The composites exhibit microporous structure with a small amount of mesopores, and the structure is highly dependent on the amount of GO loaded. The surface area and pore volume first increase and then decrease with increasing GO, reaching the maximum value when the GO ratio is 5.25%. The composites exhibit high adsorption capacities for H(2)S, with the maximum uptakes reaching up to 130.1 mg/g. Although the loading of GO makes a contribution to the enhancement of dispersive force in the porous structure, it leads to the crystal distortion of MOF-5. The introduction of glucose can restrain this distortion to maintain the structure stability. A good match between GO and glucose have a well synergy effect to develop the porous structure, resulting in the highest H(2)S adsorption capacity.

  5. Coexistence of Bacterial Sulfide Oxidizers, Sulfate Reducers, and Spirochetes in a Gutless Worm (Oligochaeta) from the Peru Margin

    PubMed Central

    Blazejak, Anna; Erséus, Christer; Amann, Rudolf; Dubilier, Nicole

    2005-01-01

    Olavius crassitunicatus is a small symbiont-bearing worm that occurs at high abundance in oxygen-deficient sediments in the East Pacific Ocean. Using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization, we examined the diversity and phylogeny of bacterial symbionts in two geographically distant O. crassitunicatus populations (separated by 385 km) on the Peru margin (water depth, ∼300 m). Five distinct bacterial phylotypes co-occurred in all specimens from both sites: two members of the γ-Proteobacteria (Gamma 1 and 2 symbionts), two members of the δ-Proteobacteria (Delta 1 and 2 symbionts), and one spirochete. A sixth phylotype belonging to the δ-Proteobacteria (Delta 3 symbiont) was found in only one of the two host populations. Three of the O. crassitunicatus bacterial phylotypes are closely related to symbionts of other gutless oligochaete species; the Gamma 1 phylotype is closely related to sulfide-oxidizing symbionts of Olavius algarvensis, Olavius loisae, and Inanidrilus leukodermatus, the Delta 1 phylotype is closely related to sulfate-reducing symbionts of O. algarvensis, and the spirochete is closely related to spirochetal symbionts of O. loisae. In contrast, the Gamma 2 phylotype and the Delta 2 and 3 phylotypes belong to novel lineages that are not related to other bacterial symbionts. Such a phylogenetically diverse yet highly specific and stable association in which multiple bacterial phylotypes coexist within a single host has not been described previously for marine invertebrates. PMID:15746360

  6. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    PubMed

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass.

  7. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri; Tomashevich, Yevgeny; Vorobyev, Sergey; Saikova, Svetlana; Romanchenko, Alexander; Félix, Roberto

    2016-11-01

    Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS2 and pyrrhotite Fe1-xS before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1-4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  8. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms

    PubMed Central

    Kühl, Michael; Jørgensen, Bo Barker

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively. PMID:16348687

  9. Triggers on sulfide saturation in Fe-Ti oxide-bearing, mafic-ultramafic layered intrusions in the Tarim large igneous province, NW China

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Wang, Christina Yan; Xu, Yi-Gang; Xing, Chang-Ming; Ren, Ming-Hao

    2016-08-01

    Three Fe-Ti oxide-bearing layered intrusions (Mazaertag, Wajilitag, and Piqiang) in the Tarim large igneous province (NW China) have been investigated for understanding the relationship of sulfide saturation, Platinum-group element (PGE) enrichment, and Fe-Ti oxide accumulation in layered intrusions. These mafic-ultramafic layered intrusions have low PGE concentrations (<0.4 ppb Os, <0.7 ppb Ir, <1 ppb Ru, <0.2 ppb Rh, <5 ppb Pt, and <8 ppb Pd) and elevated Cu/Pd (2.2 × 104 to 3.3 × 106). The low PGE concentrations of the rocks are mainly attributed to PGE-depleted, parental magma that was produced by low degrees of partial melting of the mantle. The least contaminated rocks of the Mazaertag and Wajilitag intrusions have slightly enriched Os isotopic compositions with γOs(t = 280 Ma) values ranging from +13 to +23, indicating that the primitive magma may have been generated from a convecting mantle, without appreciable input of lithospheric mantle. The Mazaertag and Wajilitag intrusions have near-chondritic γOs(t) values (+13 to +60) against restricted ɛ Nd(t) values (-0.4 to +2.8), indicating insignificant crustal contamination. Rocks of the Piqiang intrusion have relatively low ɛ Nd(t) values of -3.1 to +1.0, consistent with ˜15 to 25 % assimilation of the upper crust. The rocks of the Mazaertag and Wajilitag intrusions have positive correlation of PGE and S, pointing to the control of PGE by sulfide. Poor correlation of PGE and S for the Piqiang intrusion is attributed to the involvement of multiple sulfide-stage liquids with different PGE compositions or sulfide-oxide reequilibration on cooling. These three layered intrusions have little potential of reef-type PGE mineralization. Four criteria are summarized in this study to help discriminate between PGE-mineralized and PGE-unmineralized mafic-ultramafic intrusions.

  10. Anode materials for hydrogen sulfide containing feeds in a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Roushanafshar, Milad

    SOFCs which can directly operate under high concentration of H2S would be economically beneficial as this reduces the cost of gas purification. H2S is highly reactive gas specie which can poison most of the conventional catalysts. As a result, developing anode materials which can tolerate high concentrations of H2S and also display high activity toward electrochemical oxidation of feed is crucial and challenging for this application. The performance of La0.4Sr0.6TiO3+/-delta -Y0.2Ce0.8O2-delta (LST-YDC) composite anodes in solid oxide fuel cells significantly improved when 0.5% H2 S was present in syngas (40% H2, 60% CO) or hydrogen. Gas chromatography and mass spectrometry analyses revealed that the rate of electrochemical oxidation of all fuel components improved when H2S containing syngas was present in the fuel. Electrochemical stability tests performed under potentiostatic condition showed that there was no power degradation for different feeds, and that there was power enhancement when 0.5% H2S was present in various feeds. The mechanism of performance improvement by H2S was discussed. Active anodes were synthesized via wet chemical impregnation of different amounts of La0.4Ce0.6O1.8 (LDC) and La 0.4Sr0.6TiO3 (L4ST) into porous yttria-stabilized zirconia (YSZ). Co-impregnation of LDC with LS4T significantly improved the performance of the cell from 48 mW.cm-2 (L4ST) to 161 mW.cm -2 (LDC-L4ST) using hydrogen as fuel at 900 °C. The contribution of LDC to this improvement was investigated using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). EIS measurements using symmetrical cells showed that the polarization resistance decreased from 3.1¦O.cm 2 to 0.5 O.cm2 when LDC was co-impregnated with LST, characterized in humidified H2 (3% H2O) at 900 °C. In addition, the microstructure of the cell was modified when LDC was impregnated prior to L4ST into the porous YSZ. TEM and SEM

  11. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms

    SciTech Connect

    Kuehl, M.; Joergensen, B.B. )

    1992-04-01

    The microzonation of O{sub 2} respiration, H{sub 2}S oxidation, and SO{sub 4}{sup 2{minus}} reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 {mu}m) with microsensors for O{sub 2}, S{sup 2{minus}}, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H{sub 2}S produced from sulfate reduction was reoxidized by O{sub 2} in a narrow reaction zone, and no H{sub 2}S escaped to the overlying water. Turnover times of H{sub 2}S and O{sub 2} in the reaction zone were only a few seconds owing to rapid bacterial H{sub 2}S oxidation. Anaerobic H{sub 2}S oxidation with NO{sub 3}{sup {minus}} could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO{sub 4}{sup 2{minus}} or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively.

  12. Reactions of two-coordinate phosphines with acetylenes: Synthesis of new allenic and acetylenic phosphines

    SciTech Connect

    Angelov, C.M.; Neilson, R.H. )

    1993-02-03

    The two-coordinate phosphines (Me[sub 3]Si)[sub 2]NP[double bond]ESiMe[sub 3] (1, E = N; 2, E = CH) reacted smoothly with 2-butyne via an ene process (instead of the expected cycloaddition reaction) to give the novel allenic phosphines H[sub 2]C[double bond]C[double bond]C(CH[sub 3])P[E(H)SiMe[sub 3

  13. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation.

    PubMed

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu; Jensen, Frank B; Thiel, Bonnie; Evans, Alina L; Kindberg, Jonas; Fröbert, Ole; Stuehr, Dennis J; Kevil, Christopher G; Fago, Angela

    2014-08-01

    During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears. PMID:24909614

  14. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation.

    PubMed

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu; Jensen, Frank B; Thiel, Bonnie; Evans, Alina L; Kindberg, Jonas; Fröbert, Ole; Stuehr, Dennis J; Kevil, Christopher G; Fago, Angela

    2014-08-01

    During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears.

  15. Phosphine from rocks: mechanically driven phosphate reduction?

    PubMed

    Glindemann, Dietmar; Edwards, Marc; Morgenstern, Peter

    2005-11-01

    Natural rock and mineral samples released trace amounts of phosphine during dissolution in mineral acid. An order of magnitude more phosphine (average 1982 ng PH3 kg rock and maximum 6673 ng PH3/kg rock) is released from pulverized rock samples (basalt, gneiss, granite, clay, quartzitic pebbles, or marble). Phosphine was correlated to hardness and mechanical pulverization energy of the rocks. The yield of PH3 ranged from 0 to 0.01% of the total P content of the dissolved rock. Strong circumstantial evidence was gathered for reduction of phosphate in the rock via mechanochemical or "tribochemical" weathering at quartz and calcite/marble inclusions. Artificial reproduction of this mechanism by rubbing quartz rods coated with apatite-phosphate to the point of visible triboluminescence, led to detection of more than 70 000 ng/kg PH3 in the apatite. This reaction pathway may be considered a mechano-chemical analogue of phosphate reduction from lightning or electrical discharges and may contribute to phosphine production via tectonic forces and processing of rocks.

  16. Hydrogen Sulfide Regulates Ca2+ Homeostasis Mediated by Concomitantly Produced Nitric Oxide via a Novel Synergistic Pathway in Exocrine Pancreas

    PubMed Central

    Moustafa, Amira

    2014-01-01

    Abstract Aim: The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca2+ homeostasis in rat pancreatic acini. Results: Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. The NaHS-induced [Ca2+]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca2+ but was abolished by thapsigargin, indicating that both Ca2+ entry and Ca2+ release contributed to the increase. The [Ca2+]i increase was markedly inhibited in the presence of NG-monomethyl L-arginine or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), and diaminofluorescein-2/diaminofluorescein-2 triazole (DAF-2/DAF-2T) fluorometry demonstrated that nitric oxide (NO) was also produced by H2S in a dose-dependent manner with an EC50 of 64.8 μM, indicating that NO was involved in the H2S effect. The H2S-induced [Ca2+]i increase was inhibited by pretreatment with U73122, xestospongin C, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, KT5823, and GP2A, indicating that phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, soluble guanylate cyclase (sGC), protein kinase G (PKG), and Gq-protein play roles as intermediate components in the H2S-triggered intracellular signaling. Innovation: To our knowledge, our study is the first one highlighting the effect of H2S on intracellular Ca2+ dynamics in pancreatic acinar cells. Moreover, a novel cascade was presumed to function via the synergistic interaction between H2S and NO. Conclusion: We conclude that H2S affects [Ca2+]i homeostasis that is mediated by H2S-evoked NO production via an endothelial nitric oxide synthase (eNOS)-NO-sGC-cyclic guanosine monophosphate-PKG-Gq-protein-PLC-IP3 pathway to induce Ca2+ release, and this pathway is identical to the one we recently proposed for a sole effect of NO and the two gaseous molecules synergistically function to regulate Ca2+ homeostasis

  17. Sulfide oxidation in coal-mine dumps: Laboratory measurement of acidifying potential with H2O2 and its application to characterize spoil materials

    NASA Astrophysics Data System (ADS)

    Urrutia, M. M.; Garcia-Rodeja, E.; Macias, F.

    1992-01-01

    A method for rapidly determining potential H+ production by sulfide oxidation with H2O2 in mine-spoil materials has been tested. Measuring pH 6 h after the addition of the H2O2 in a 1:20 sample-solution (w/v) ratio, seems to be an adequate period for most of the samples. The method was applied to spoil samples, being recommended as a measure of the potential of a material to acidify the environment, in the first steps of characterization of the tailing's materials. The same procedure after grinding can also indicate the inherent ability to neutralize the acidity. This will allow the selection of the most suitable materials to be mixed in the spoil with the sulfide-rich ones, facilitating the later field work.

  18. Thioarsenates in sulfidic waters.

    PubMed

    Stauder, S; Raue, B; Sacher, F

    2005-08-15

    It has long been recognized that the formation of soluble arsenic sulfur complexes plays a key role for the mobility and toxicity of arsenic in sulfate-reducing environments. Knowledge of the exact arsenic species is essential to understand the behavior of arsenic in sulfidic aquifers and to develop remediation strategies. In the past, monomeric and trimeric thioarsenites were assumed to be the existing species in sulfidic systems. In this study, thioarsenates were identified by IC-ICP/MS in arsenite- and sulfide-containing solutions as well as in a reduced groundwater from a contaminated site. The unexpected finding of an oxidation of As(lll) to As(V) in thioarsenates in strongly reducing systems can be explained by the high affinity between As(Ill) and sulfur. In sulfide-containing solutions without oxidant, As(lll) therefore undergoes disproportionation to thioarsenates (As(V)) and elemental arsenic. It has previously been supposed that mobility as well as toxicity of arsenic increases if the redox state decreases. For sulfidic waters, the opposite is probably the case. Thus, the formation of thioarsenates could be used in connection with remediation strategies. Thioarsenates are highly sensitive to oxygen and pH. This is important for analytical procedures. A loss of soluble arsenic as well as a conversion to arsenite and arsenate may occur if water samples containing thioarsenates are analyzed with conventional methods.

  19. Selenium Sulfide

    MedlinePlus

    Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium sulfide usually is used twice a week for the first ... it is irritating. Rinse off all of the lotion.Do not use this medication on children younger ...

  20. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots

    PubMed Central

    Chen, Juan; Wang, Wen-Hua; Wu, Fei-Hua; He, En-Ming; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K+/Na+ balance by decreasing the net K+ efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K+ uptake system (HvHAK4). H2S and NO maintained the lower Na+ content in the cytoplast by increasing the amount of PM H+-ATPase, the transcriptional levels of PM H+-ATPase (HvHA1) and Na+/H+ antiporter (HvSOS1). H2S and NO modulated Na+ compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na+/H+ antiporter (HvVNHX2) and H+-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na+/H+ antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal. PMID:26213372

  1. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    PubMed

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-01

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. PMID:26212441

  2. Synthesis and characterization of new ternary transition metal sulfide anodes for H 2S-powered solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Luo, J. L.; Sanger, A. R.; Chuang, K. T.

    A number of ternary transition metal sulfides with general composition AB 2S 4 (where A and B are different transition metal atoms) have been prepared and investigated as potential anode catalysts for use in H 2S-powered solid oxide fuel cells (SOFCs). For the initial screening, polarization resistance of the materials was measured in a two electrode symmetrical cell at 700-850 °C. Vanadium-based materials showed the lowest polarization resistance, and so were chosen for subsequent full cell tests using the configuration [H 2S, AV 2S 4/YSZ/Pt, air] (where A = Ni, Cr, Mo). MoV 2S 4 anode had superior activity and performance in the full cell setup, consistent with results from symmetrical cell tests. Polarization curves showed MoV 2S 4 had the lowest potential drop, with up to a 200 mA cm -2 current density at 800 °C. The highest power density of ca. 275 mW cm -2 at 800 °C was obtained with a pure H 2S stream. Polarization resistance of materials was a strong function of current density, and showed a sharp change of slope attributable to a change in the rate-limiting step of the anode reaction mechanism. MoV 2S 4 was chemically stable during prolonged (10 days) exposure to H 2S at 850 °C, and fuel cell performance was stable during continuous 3-day operation at 370 mA cm -2 current density.

  3. NOSH-aspirin (NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid, reduces inflammatory pain

    PubMed Central

    Fonseca, Miriam D; Cunha, Fernando Q; Kashfi, Khosrow; Cunha, Thiago M

    2015-01-01

    The development of nitric oxide (NO)- and hydrogen sulfide (H2S)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) has generated more potent anti-inflammatory drugs with increased safety profiles. A new hybrid molecule incorporating both NO and H2S donors into aspirin (NOSH-aspirin) was recently developed. In the present study, the antinociceptive activity of this novel molecule was compared with aspirin in different models of inflammatory pain. It was found that NOSH-aspirin inhibits acetic acid-induced writhing response and carrageenan (Cg)-induced inflammatory hyperalgesia in a dose-dependent (5–150 μmol/kg, v.o.) manner, which was superior to the effect of the same doses of aspirin. NOSH-aspirin’s antinociceptive effect was also greater and longer compared to aspirin upon complete Freund’s adjuvant (CFA)-induced inflammatory hyperalgesia. Mechanistically, NOSH-aspirin, but not aspirin, was able to reduce the production/release of interleukin-1 beta (IL-1β) during Cg-induced paw inflammation. Furthermore, NOSH-aspirin, but not aspirin, reduced prostaglandin E2-induced hyperalgesia, which was prevented by treatment with a ATP-sensitive potassium channel (KATP) blocker (glibenclamide; glib.). Noteworthy, the antinociceptive effect of NOSH-aspirin was not associated with motor impairment. The present results indicate that NOSH-aspirin seems to present greater potency than aspirin to reduce inflammatory pain in several models. The enhanced effects of NOSH-aspirin seems to be due to its ability to reduce the production of pronociceptive cytokines such as IL-1 β and directly block hyperalgesia caused by a directly acting hyperalgesic mediator in a mechanism dependent on modulation of KATP channels. In conclusion, we would like to suggest that NOSH-aspirin represents a prototype of a new class of analgesic drugs with more potent effects than the traditional NSAID, aspirin. PMID:26236481

  4. Sulfide-mediated dehydrative glycosylation.

    PubMed

    Nguyen, H M; Chen, Y; Duron, S G; Gin, D Y

    2001-09-12

    The development of a new method for glycosylation with 1-hydroxy glycosyl donors employing dialkyl sulfonium reagents is described. The process employs the reagent combination of a dialkyl sulfide and triflic anhydride to effect anomeric bond constructions. This controlled dehydrative coupling of various C(1)-hemiacetal glycosyl donors and nucleophilic acceptors proceeds by way of a sulfide-to-sulfoxide oxidation process in which triflic anhydride serves as the oxidant.

  5. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    NASA Astrophysics Data System (ADS)

    Huang, Liangliang; Seredych, Mykola; Bandosz, Teresa J.; van Duin, Adri C. T.; Lu, Xiaohua; Gubbins, Keith E.

    2013-11-01

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  6. Sulfide Oxidation by O2: Synthesis, Structure and Reactivity of Novel Sulfide-Incorporated Fe(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Siegler, Maxime A.

    2013-01-01

    The unsymmetrical iron(II) bis(imino)pyridine complexes [FeII(LN3SMe)(H2O)3](OTf)2 (1), and [FeII(LN3SMe)Cl2] (2) were synthesized and their reactivity with O2 was examined. Complexes 1 and 2 were characterized by single crystal X-ray crystallography, LDI-MS, 1H-NMR and elemental analysis. The LN3SMe ligand was designed to incorporate a single sulfide donor and relies on the bis(imino)pyridine scaffold. This scaffold was selected for its ease of synthesis and its well-precedented ability to stabilize Fe(II) ions. Complexes 1 and 2 ware prepared via a metal-assisted template reaction from the unsymmetrical pyridyl ketone precursor 2-(O=CMe)-6-(2,6-(iPr2-C6H3N=CMe)-C5H3N. Reaction of 1 with O2 was shown to afford the S-oxygenated sulfoxide complex [Fe(LN3S(O)Me)(OTf)]2+(3), whereas compound 2, under the same reaction conditions, afforded the corresponding sulfone complex [Fe(LN3S(O2)Me)Cl]2+ (4). PMID:23878411

  7. Highly enantioselective oxidation of phenyl methyl sulfide and its derivatives into optically pure (S)-sulfoxides with Rhodococcus sp. CCZU10-1 in an n-octane-water biphasic system.

    PubMed

    He, Yu-Cai; Ma, Cui-Luan; Yang, Zhen-Xing; Zhou, Min; Xing, Zhen; Ma, Jiang-Tao; Yu, Hui-Lei

    2013-12-01

    Enantiopure sulfoxides can be prepared via the asymmetric oxidation of sulfides using sulfide monooxygenases. The n-octane-water biphasic system was chosen for the bio-oxidation of a water-insoluble phenyl methyl sulfide (PMS) by Rhodococcus sp. CCZU10-1. In this n-octane-water system, the optimum reaction conditions were obtained. (S)-phenyl methyl sulfoxide ((S)-PMSO) with >99.9 % enantiomeric excess formed at 55.3 mM in the n-octane-water biphasic system. Using fed-batch method, a total of 118 mM (S)-PMSO accumulated in 1-L reaction mixture after the 7th feed, and no (R)-PMSO and sulfone were detected. Moreover, Rhodococcus sp. CCZU10-1 displayed fairly good activity and enantioselectivity toward other sulfides. In conclusion, Rhodococcus sp. CCZU10-1 is a promising biocatalyst for synthesizing highly optically active sulfoxides.

  8. Influence of Nitrate Radical on the Oxidation of Dimethyl Sulfide in a Polluted Marine Environment: Implications for non Sea-Salt Sulfate Production

    NASA Astrophysics Data System (ADS)

    Stark, H.; Brown, S. S.; Goldan, P. D.; Aldener, M.; Kuster, W. C.; Jakoubek, R.; Fehsenfeld, F. C.; Meagher, J. F.; Bates, T. S.; Ravishankara, A. R.

    2006-12-01

    Dimethylsulfide (DMS, CH3SCH3) is the largest natural source of non-sea-salt sulfate (nss) in the marine environment via its oxidation to sulfuric acid (H2SO4). Aerosol particles produced from marine sulfur emissions may have a significant influence on the Earth's climate. The most important oxidants for DMS are hydroxyl (OH) radicals during daytime and nitrate (NO3) radicals during nighttime. Nitrate radical is an important nocturnal oxidant for several other biogenic and some anthropogenic compounds mainly originating from land. We performed simultaneous, in-situ atmospheric measurements of dimethyl sulfide (DMS) and nitrate radical (NO3) from the NOAA research vessel Ronald H. Brown off the New England Coast during the summer of 2002. We observed a clear anticorrelation between NO3 and DMS on 13 of 17 measurement nights. Diurnal averages indicate a stronger oxidation by NO3 at night than by OH at daytime under polluted conditions. These increased oxidation rates may influence global new nss aerosol particle production, depending on the chemical oxidation mechanism of DMS and the yield of sulfuric acid. We will discuss the influence of different scenarios for nss production from DMS oxidation mechanisms. We will also discuss the possible influence of halogens (e.g. Cl and BrO) on the DMS oxidation and their implication on nss aerosol production. Our measurements suggest that anthropogenic NO2 sources may influence marine boundary layer chemistry for up to 5 days or 3000 km downwind from NOx source regions.

  9. Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes generated furans appending reactive phosphorus ylides through cumulated trienoates as key intermediates: a phosphine α-addition-δ-evolvement of an anion pathway.

    PubMed

    Deng, Jie-Cheng; Chuang, Shih-Ching

    2014-11-01

    Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes have been demonstrated, providing trisubstituted furans appending reactive phosphorus ylides, through cumulated trienoates as key intermediates. The proposed trienoate intermediates, 1,5-dipolar species formed via nucleophilic α-attack of phosphines toward diynedioates (α-addition-δ-evolvement of an anion, abbreviated αAδE), undergo addition to aryl aldehydes followed by 5-endo-dig cyclization, proton transfer, and resonance to give trisubstituted furans. Furthermore, the phosphorus ylides are oxidized to α-keto ester furans and utilized as Wittig reagents.

  10. Molybdenum oxides versus molybdenum sulfides: geometric and electronic structures of Mo₃X(y)⁻ (X = O, S and y = 6, 9) clusters.

    PubMed

    Mayhall, Nicholas J; Becher, Edwin L; Chowdhury, Arefin; Raghavachari, Krishnan

    2011-03-24

    We have conducted a comparative computational investigation of the molecular structure and water adsorption properties of molybdenum oxide and sulfide clusters using density functional theory methods. We have found that while Mo₃O₆⁻ and Mo₃S₆⁻ assume very similar ring-type isomers, Mo₃O₉⁻ and Mo₃S₉⁻ clusters are very different with Mo₃O₉⁻ having a ring-type structure and Mo₃S₉⁻ having a more open, linear-type geometry. The more rigid ∠(Mo-S-Mo) bond angle is the primary geometric property responsible for producing such different lowest energy isomers. By computing molecular complexation energies, it is observed that water is found to adsorb more strongly to Mo₃O₆⁻ than to Mo₃S₆⁻, due to a stronger oxide-water hydrogen bond, although dispersion effects reduce this difference when molybdenum centers contribute to the binding. Investigating the energetics of dissociative water addition to Mo₃X₆⁻ clusters, we find that, while the oxide cluster shows kinetic site-selectivity (bridging position vs terminal position), the sulfide cluster exhibits thermodynamic site-selectivity.

  11. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae).

    PubMed

    Ashitani, T; Garboui, S S; Schubert, F; Vongsombath, C; Liblikas, I; Pålsson, K; Borg-Karlson, A-K

    2015-12-01

    Hyptis suaveolens (Lamiaceae), a plant traditionally used as a mosquito repellent, has been investigated for repellent properties against nymphs of the tick Ixodes ricinus. Essential oils and volatile compounds of fresh and dried leaves, from plants originating from Laos and Guinea-Bissau, were identified by GC-MS and tested in a tick repellency bioassay. All the essential oils were strongly repellent against the ticks, even though the main volatile constituents differed in their proportions of potentially tick repellent chemicals. (+)/(-)-sabinene were present in high amounts in all preparations, and dominated the emission from dry and fresh leaves together with 1,8-cineol and α-phellandrene. 1,8-Cineol and sabinene were major compounds in the essential oils from H. suaveolens from Laos. Main compounds in H. suaveolens from Guinea-Bissau were (-)-sabinene, limonene and terpinolene. Among the sesquiterpene hydrocarbons identified, α-humulene exhibited strong tick repellency (96.8 %). Structure activity studies of oxidation or sulfidation products of germacrene D, α-humulene and β-caryophyllene, showed increased tick repellent activity: of mint sulfide (59.4 %), humulene-6,7-oxide (94.5 %) and caryophyllene-6,7-oxide (96.9 %). The substitution of oxygen with sulfur slightly lowered the repellency. The effects of the constituents in the oils can then be regarded as a trade off between the subsequently lower volatility of the sesquiterpene derivatives compared to the monoterpenes and may thus increase their potential usefulness as tick repellents. PMID:26385208

  12. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells.

    PubMed

    Huang, Qian; Sparatore, Anna; Del Soldato, Piero; Wu, Lingyun; Desai, Kaushik

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects

  13. Animal adaptations for tolerance and exploitation of poisonous sulfide.

    PubMed

    Grieshaber, M K; Völkel, S

    1998-01-01

    Many aquatic animal species can survive sulfide exposure to some extent through oxidation of the sulfide, which results mainly in thiosulfate. In several species, sulfide oxidation is localized in the mitochondria and is accompanied by ATP synthesis. In addition, blood-based and intracellular compounds can augment sulfide oxidation. The formation of thiosulfate requires oxygen, which results in an increase in oxygen consumption of some species. If not all sulfide is detoxified, cytochrome C oxidase is inhibited. Under these conditions, a sulfide-dependent anaerobic energy metabolism commences. PMID:9558453

  14. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  15. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes*

    PubMed Central

    Lee, Hak Joo; Feliers, Denis; Mariappan, Meenalakshmi M.; Sataranatarajan, Kavithalakshmi; Choudhury, Goutam Ghosh; Gorin, Yves; Kasinath, Balakuntalam S.

    2015-01-01

    Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). Nω-Nitro-l-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1

  16. Field method for sulfide determination

    SciTech Connect

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  17. Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines.

    PubMed

    Azizpoor Fard, M; Rabiee Kenaree, A; Boyle, P D; Ragogna, P J; Gilroy, J B; Corrigan, J F

    2016-02-21

    Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3-nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3-nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3-nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal-chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(i) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the ClAg distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(i) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear (1)H, (13)C{(1)H} and (31)P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(ii)/Fe(iii) oxidation couple, suggesting the

  18. Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines.

    PubMed

    Azizpoor Fard, M; Rabiee Kenaree, A; Boyle, P D; Ragogna, P J; Gilroy, J B; Corrigan, J F

    2016-02-21

    Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3-nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3-nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3-nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal-chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(i) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the ClAg distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(i) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear (1)H, (13)C{(1)H} and (31)P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(ii)/Fe(iii) oxidation couple, suggesting the

  19. Perfluoropropenyl-containing phosphines from HFC replacements.

    PubMed

    Brisdon, Alan K; Ali Ghaba, Hana; Beutel, Bernd; Ejgandi, Amina; Egjandi, Amina; Addaraidi, Arij; Pritchard, Robin G

    2015-12-01

    A series of new perfluoropropenyl-containing phosphines of the type R3-nP(E-CF[double bond, length as m-dash]CFCF3)n (R = Ph, iPr, n = 1, 2; R = tBu, n = 2) have been prepared from the reaction of the hydrofluoroolefin Z-CF3CF[double bond, length as m-dash]CFH (HFO-1225ye) with base and the appropriate chlorophosphine, while reaction with Cl2PCH2CH2PCl2 gave (CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2, the first example of a bidentate perfluoroalkenyl-containing phosphine. An alternative route to these phosphines based on the room- or low-temperature deprotonation of CF3CF2CH2F (HFC-236ea) gives mainly the E-isomer, but also a small amount of the Z-isomer, the ratio of which depends on the reaction temperature. All of the phosphines could be readily oxidised with either H2O2 or urea·H2O2, and the phosphine selenides R3-nP(Se)(E-CF[double bond, length as m-dash]CFCF3)n (R = Ph, n = 1,2; R = iPr, n = 1; R = tBu, n = 2) were also prepared. The steric and electronic properties of these ligands were determined based on their platinum(ii), palladium(ii) and molybdenum carbonyl complexes. The crystal structures of (CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2, (CF3CF[double bond, length as m-dash]CF)2P(O)CH2CH2P(O)(CF[double bond, length as m-dash]CFCF3)2, iPr2P(Se)(CF[double bond, length as m-dash]CFCF3)2, trans-[PtCl2{Ph(3-n)P(E-CF[double bond, length as m-dash]CFCF3)n}2] (n = 1 or 2), trans-[PdCl2{R2P(E-CF[double bond, length as m-dash]CFCF3)}2] (R = Ph, iPr) and [Mo(CO)4{(CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2}] are reported. PMID:26212860

  20. Metabolism in the Uncultivated Giant Sulfide-Oxidizing Bacterium Thiomargarita Namibiensis Assayed Using a Redox-Sensitive Dye

    NASA Astrophysics Data System (ADS)

    Bailey, J.; Flood, B.; Ricci, E.

    2014-12-01

    The colorless sulfur bacteria are non-photosynthetic chemolithotrophs that live at interfaces between nitrate, or oxygen, and hydrogen sulfide. In sulfidic settings such as cold seeps and oxygen minimum zones, these bacteria are thought to constitute a critical node in the geochemical cycling of carbon, sulfur, nitrogen, and phosphorous. Many of these bacteria remain uncultivated and their metabolisms and physiologies are incompletely understood. Thiomargarita namibiensis is the largest of these sulfur bacteria, with individual cells reaching millimetric diameters. Despite the current inability to maintain a Thiomargarita culture in the lab, their large size allows for individual cells to be followed in time course experiments. Here we report on the novel use of a tetrazolium-based dye that measures the flux of NADH production from catabolic pathways via a colorimetric response. Staining with this dye allows for metabolism to be detected, even in the absence of observable cell division. When coupled to microscopy, this approach also allows for metabolism in Thiomargaritato be differentiated from that of epibionts or contaminants in xenic samples. The results of our tetrazolium dye-based assay suggests that Thiomargarita is the most metabolically versatile under anoxic conditions where it appears capable of using acetate, succinate, formate, thiosulfate, citrate, thiotaurine, hydrogen sulfide, and perhaps hydrogen as electron donors. Under hypoxic conditions, staining results suggest the utilization of acetate, citrate, and hydrogen sulfide. Cells incubated under oxic conditions showed the weakest tetrazolium staining response, and then only to hydrogen sulfide and questionably succinate. These initial results using a redox sensitive dye suggest that Thiomargarita is most metabolically versatile under anaerobic and hypoxic conditions. The results of this assay can be further evaluated using molecular approaches such as transcriptomics, as well as provide cultivation

  1. Evidence for Niche Partitioning Revealed by the Distribution of Sulfur Oxidation Genes Collected from Areas of a Terrestrial Sulfidic Spring with Differing Geochemical Conditions

    PubMed Central

    Engel, Annette Summers

    2013-01-01

    The diversity and phylogenetic significance of bacterial genes in the environment has been well studied, but comparatively little attention has been devoted to understanding the functional significance of different variations of the same metabolic gene that occur in the same environment. We analyzed the geographic distribution of 16S rRNA pyrosequences and soxB genes along a geochemical gradient in a terrestrial sulfidic spring to identify how different taxonomic variations of the soxB gene were naturally distributed within the spring outflow channel and to identify possible evidence for altered SoxB enzyme function in nature. Distinct compositional differences between bacteria that utilize their SoxB enzyme in the Paracoccus sulfide oxidation pathway (e.g., Bradyrhizobium, Paracoccus, and Rhodovulum) and bacteria that utilize their SoxB enzyme in the branched pathway (e.g., Chlorobium, Thiothrix, Thiobacillus, Halothiobacillus, and Thiomonas) were identified. Different variations of the soxB genes were present at different locations within the spring outflow channel in a manner that significantly corresponded to geochemical conditions. The distribution of the different soxB gene sequence variations suggests that the enzymes encoded by these genes are functionally different and could be optimized to specific geochemical conditions that define niche space for bacteria capable of oxidizing reduced sulfur compounds. PMID:23220955

  2. Synthesis, Characterization, and Catalytic Activity of Sulfided Silico-Alumino-Titanate (Si-Al-Ti) Mixed Oxides Xerogels Supported Ni-Mo Catalyst

    SciTech Connect

    Al-Adwani, H.A.; Anthony, R.G.; Gardner, T.J.; Thammachote, N.

    1999-02-24

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136-367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 3.6-4.7 nrn. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ti catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  3. Selective Irreversible Inhibition of Neuronal and Inducible Nitric-oxide Synthase in the Combined Presence of Hydrogen Sulfide and Nitric Oxide.

    PubMed

    Heine, Christian L; Schmidt, Renate; Geckl, Kerstin; Schrammel, Astrid; Gesslbauer, Bernd; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2015-10-01

    Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10(-5) and ∼7.9·10(-5) m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10(-5) m at pH 6.0 and increased to ∼8.3·10(-5) m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10(-5) m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0-6.1·10(-4) m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3-2.0·10(-5) m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.

  4. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions

    SciTech Connect

    Fowler, T.A.; Crundwell, F.K.

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferroxidans at the same conditions in solution. The extent of leaching of ZnS with Bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, which no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T.ferroxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.

  5. FTIR spectra of the photolysis products of the phosphine-ozone complex in solid argon

    SciTech Connect

    Withnall, R.; Andrews, L.

    1987-02-12

    Red visible photolysis of the PH/sub 3/-O/sub 3/ complex, formed by reagent codeposition with excess argon at 12-18 K, gave seven major products, which are grouped by wavelength-dependent photochemical changes and identified by using /sup 16,18/O/sub 3/ and PH/sub x/D/sub 3-x/ (x = 0, 1, 2, 3) mixed isotopic precursors. The primary products are phosphine oxide (H/sub 3/PO) and phosphinous acid (H/sub 2/POH), structural isomers that were not interconverted by further irradiation, and phosphonic acid ((HO)/sub 2/HPO). The intermediate species HPO, also produced on red photolysis, gave way to HOOPO and HP(O/sub 2/)O on blue-green irradiation. Metaphosphoric acid (HOPO/sub 2/) absorptions increased throughout the irradiation sequence.

  6. 7 CFR 305.7 - Phosphine treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Phosphine treatment schedules. 305.7 Section 305.7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Chemical Treatments § 305.7 Phosphine treatment schedules. Treatmentschedule...

  7. Preparation of phosphines through C–P bond formation

    PubMed Central

    Wauters, Iris; Debrouwer, Wouter

    2014-01-01

    Summary Phosphines are an important class of ligands in the field of metal-catalysis. This has spurred the development of new routes toward functionalized phosphines. Some of the most important C–P bond formation strategies were reviewed and organized according to the hybridization of carbon in the newly formed C–P bond. PMID:24991257

  8. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.

    PubMed

    Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang

    2015-05-01

    To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.

  9. Simple spectrophotometric method for determination of phosphine residues in wheat.

    PubMed

    Rangaswamy, J R

    1984-01-01

    A method has been developed for determination of phosphine residues in wheat, based on the reaction of phosphine with silver nitrate in aqueous solution to form an egg-yellow chromophore with an absorption maximum at 400 nm. At this wavelength, there is a linear relationship between absorbance and concentration of phosphine in the range 10-100 ng/mL. Phosphine-fumigated wheat is soaked in a known volume of AgNO3 solution, and the absorbance of the filtrate is read against a blank at 400 nm. The method is sensitive, with lower detection and estimation limits of 0.008 and 0.01 micrograms PH3, respectively. Recovery of added phosphine from a closed system was 85-100%. Accuracy for this method has been compared with that for the gas chromatographic method.

  10. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies that exploit the properties of silver nanoparticles (Ag-NPs) raises questions concerning the impact of Ag on the environment. Ag-NPs are currently among the most widely used in the nanotechnology industry and the amount released into the environment is expected to increase along with production (1). When present in geochemical systems, Ag-NPs may undergo a variety of changes due to varying redox, pH, and chemical conditions. Expected changes range from surface modification (e.g., oxidation, sulfidation, chloridation etc.) to complete dissolution and re-precipitation. In this context, the focus of our work is on understanding the behavior of synthetic Ag-NPs with different particle sizes under varying conditions relevant to the environment. Sulfidation of Ag-NPs is of particular interest since it among the processes most likely to occur in aqueous systems, in particular under reducing conditions. Three sizes of Ag-NPs coated with polyvinyl pyrrolidone were produced using the polyol process (2) (7 ±1; 20 ±4, and 40 ±9 nm). Batch solutions containing the different Ag-NPs were subsequently reacted with Na2S solutions of different concentrations. The sulfidation process was followed step-wise for 24 hours and the corrosion products formed were characterized by electron microscopy (TEM/SEM), diffraction (XRD), and photo-electron spectroscopy (XPS). Surface charge (pHPZC) of the products formed during this process was also measured, as were changes in solubility and reactivity. Based on experimental observations we infer that the sulfidation process is the result of dissolution-precipitation and find that: (i) acanthite (Ag2S) is formed as a corrosion product; (ii) Ag-NPs aggregation increased with sulfidation rate; (iii) pHPZC increases with the rate of sulfidation; and (iv) the solubility of the corrosion products formed from sulfidation appears lower than that of non-sulfidated Ag-NPs. We observe size-dependent differences in

  11. Anaerobic methane oxidation and a deep H 2S sink generate isotopically heavy sulfides in Black Sea sediments

    NASA Astrophysics Data System (ADS)

    Jørgensen, Bo Barker; Böttcher, Michael E.; Lüschen, Holger; Neretin, Lev N.; Volkov, Igor I.

    2004-05-01

    The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO 42--CH 4 transition where H 2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H 2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe 2+ diffusing up from below. The H 2S-Fe 2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO 42- and 10 yr for H 2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO 42--CH 4 and H 2S-Fe 2+ cause the trapping of isotopically heavy iron sulfide with δ 34S = +15 to +33‰ at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO 42- diffusing downward into the SO 42--CH 4 transition has an isotopic composition of +19‰, close to the +23‰ of H 2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO 42- (+43‰) and H 2S (-15‰) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H 2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth's history.

  12. Communication: Tunnelling splitting in the phosphine molecule

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  13. Communication: Tunnelling splitting in the phosphine molecule.

    PubMed

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2. PMID:27608982

  14. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  15. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  16. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.

    PubMed

    Peng, Shengjie; Han, Xiaopeng; Li, Linlin; Zhu, Zhiqiang; Cheng, Fangyi; Srinivansan, Madhavi; Adams, Stefan; Ramakrishna, Seeram

    2016-03-01

    Exploitation of high-performance anode materials is essential but challenging to the development of sodium-ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g(-1) at 1 A g(-1) ), excellent rate capability (636 mAh g(-1) at 0.1 A g(-1) and 306 mAh g(-1) at 10 A g(-1)), and extraordinarily cycle stability (420 mAh g(-1) at 1 A g(-1) after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high-performance SIBs.

  18. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries.

    PubMed

    Park, Gi Dae; Choi, Seung Ho; Lee, Jung-Kul; Kang, Yun Chan

    2014-09-15

    A facile, one-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide (RGO) composite powders by spray pyrolysis is reported. The direct sulfidation of ZnO nanocrystals decorated on spherical-like RGO powders resulted in ZnS-RGO composite powders. ZnS nanocrystals with a size below 20 nm were uniformly dispersed on spherical-like RGO balls. The discharge capacities of the ZnS-RGO, ZnO-RGO, bare ZnS, and bare ZnO powders at a current density of 1000 mA g(-1) after 300 cycles were 628, 476, 230, and 168 mA h g(-1), respectively, and the corresponding capacity retentions measured after the first cycles were 93, 70, 40, and 21 %, respectively. The discharge capacity of the ZnS-RGO composite powders at a high current density of 4000 mA g(-1) after 700 cycles was 437 mA h g(-1). The structural stability of the highly conductive ZnS-RGO composite powders with ultrafine crystals during cycling resulted in excellent electrochemical properties.

  19. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.

    PubMed

    Peng, Shengjie; Han, Xiaopeng; Li, Linlin; Zhu, Zhiqiang; Cheng, Fangyi; Srinivansan, Madhavi; Adams, Stefan; Ramakrishna, Seeram

    2016-03-01

    Exploitation of high-performance anode materials is essential but challenging to the development of sodium-ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g(-1) at 1 A g(-1) ), excellent rate capability (636 mAh g(-1) at 0.1 A g(-1) and 306 mAh g(-1) at 10 A g(-1)), and extraordinarily cycle stability (420 mAh g(-1) at 1 A g(-1) after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high-performance SIBs. PMID:26763142

  20. Zinc Oxides, Silicates and Sulfides in Grenville Supergroup Marbles of the Western Central Metasedimentary Belt: Their Distribution and Their Genetic Significance

    NASA Astrophysics Data System (ADS)

    Gauthier, M.

    2004-05-01

    Mesoproterozoic Grenville Supergroup marbles of the Canadian Shield and adjacent Precambrian Appalachians outliers host world-class zinc sulfide deposits (e,g. Balmat-Edwards, N.Y.) and zinc oxide-silicate deposits (e.g. Franklin and Sterling Hill, N.J.). In fact, the latter group of deposits represents the largest zinc oxide-silicate district in the world. The relationship between these two types of deposits is unclear because they are separated spatially in two districts, the first being in southeastern CMB and the second in the Appalachians. Furthermore, zinc sulfide and oxide-silicate mineralizations seem to be mutually exclusive. This is a phenomenon explained by recent experimental work1 but not very well evaluated by field-work. The western part of the Central Metasedimentary Belt presents the largest continuous outcrop of Grenville Supergroup marbles. Small tonnage zinc sulfide deposits have been mined in this region (e.g. Cadieux, Ont, and Maniwaki-Gracefield, Qué.). Zincian magnetite has also been reported and zinc silicates recently identified in this belt. This marble belt thus affords a unique opportunity to study the link that may exist between Balmat-Edwards and Franklin-Sterling Hill types of deposits. The metamorphic grade of these sedimentary deposits is especially high (e.g. mid-amphibolite to granulite facies) and they have been affected by polyphase deformation events. Tracing their origin therefore presents a difficult challenge. Luckily, regional-scale variations of sedimentary and diagenetic facies appear to be easier to recognize than local features that are commonly obliterated by anatexis, folding, boudinage and transposition. Thus, although the field- and laboratory observations presented will be at a local scale, they will be put in a regional perspective to "see" through the dynamo-metamorphic overprint. Existing models suggest that the Grenville Supergroup zinc deposits are of SEDEX-type; yet recent studies on un

  1. Oxidation of Aryl Diphenylmethyl Sulfides Promoted by a Nonheme Iron(IV)-Oxo Complex: Evidence for an Electron Transfer-Oxygen Transfer Mechanism.

    PubMed

    Barbieri, Alessia; De Carlo Chimienti, Rosemilia; Del Giacco, Tiziana; Di Stefano, Stefano; Lanzalunga, Osvaldo; Lapi, Andrea; Mazzonna, Marco; Olivo, Giorgio; Salamone, Michela

    2016-03-18

    The oxidation of a series of aryl diphenylmethyl sulfides (4-X-C6H4SCH(C6H5)2, where X = OCH3 (1), X = CH3 (2), X = H (3), and X = CF3 (4)) promoted by the nonheme iron(IV)-oxo complex [(N4Py)Fe(IV)═O](2+) occurs by an electron transfer-oxygen transfer (ET-OT) mechanism as supported by the observation of products (diphenylmethanol, benzophenone, and diaryl disulfides) deriving from α-C-S and α-C-H fragmentation of radical cations 1(+•)-4(+•), formed besides the S-oxidation products (aryl diphenylmethyl sulfoxides). The fragmentation/S-oxidation product ratios regularly increase through a decrease in the electron-donating power of the aryl substituents, that is, by increasing the fragmentation rate constants of the radical cations as indicated by a laser flash photolysis (LFP) study of the photochemical oxidation of 1-4 carried out in the presence of N-methoxyphenanthridinium hexafluorophosphate (MeOP(+)PF6(-)). PMID:26886491

  2. Oxidation of Aryl Diphenylmethyl Sulfides Promoted by a Nonheme Iron(IV)-Oxo Complex: Evidence for an Electron Transfer-Oxygen Transfer Mechanism.

    PubMed

    Barbieri, Alessia; De Carlo Chimienti, Rosemilia; Del Giacco, Tiziana; Di Stefano, Stefano; Lanzalunga, Osvaldo; Lapi, Andrea; Mazzonna, Marco; Olivo, Giorgio; Salamone, Michela

    2016-03-18

    The oxidation of a series of aryl diphenylmethyl sulfides (4-X-C6H4SCH(C6H5)2, where X = OCH3 (1), X = CH3 (2), X = H (3), and X = CF3 (4)) promoted by the nonheme iron(IV)-oxo complex [(N4Py)Fe(IV)═O](2+) occurs by an electron transfer-oxygen transfer (ET-OT) mechanism as supported by the observation of products (diphenylmethanol, benzophenone, and diaryl disulfides) deriving from α-C-S and α-C-H fragmentation of radical cations 1(+•)-4(+•), formed besides the S-oxidation products (aryl diphenylmethyl sulfoxides). The fragmentation/S-oxidation product ratios regularly increase through a decrease in the electron-donating power of the aryl substituents, that is, by increasing the fragmentation rate constants of the radical cations as indicated by a laser flash photolysis (LFP) study of the photochemical oxidation of 1-4 carried out in the presence of N-methoxyphenanthridinium hexafluorophosphate (MeOP(+)PF6(-)).

  3. Ferrous Iron and Sulfur Oxidation and Ferric Iron Reduction Activities of Thiobacillus ferrooxidans Are Affected by Growth on Ferrous Iron, Sulfur, or a Sulfide Ore

    PubMed Central

    Suzuki, Isamu; Takeuchi, Travis L.; Yuthasastrakosol, Trin D.; Oh, Jae Key

    1990-01-01

    Eight strains of Thiobacillus ferrooxidans (laboratory strains Tf-1 [= ATCC 13661] and Tf-2 [= ATCC 19859] and mine isolates SM-1, SM-2, SM-3, SM-4, SM-5, and SM-8) and three strains of Thiobacillus thiooxidans (laboratory strain Tt [= ATCC 8085] and mine isolates SM-6 and SM-7) were grown on ferrous iron (Fe2+), elemental sulfur (S0), or sulfide ore (Fe, Cu, and Zn). The cells were studied for their aerobic Fe2+ - and S0-oxidizing activities (O2 consumption) and anaerobic S0-oxidizing activity with ferric iron (Fe3+) (Fe2+ formation). Fe2+-grown T. ferrooxidans cells oxidized S0 aerobically at a rate of 2 to 4% of the Fe2+ oxidation rate. The rate of anaerobic S0 oxidation with Fe3+ was equal to the aerobic oxidation rate in SM-1, SM-3, SM-4, and SM-5, but was only one-half or less that in Tf-1, Tf-2, SM-2, and SM-8. Transition from growth on Fe2+ to that on S0 produced cells with relatively undiminished Fe2+ oxidation activities and increased S0 oxidation (both aerobic and anaerobic) activities in Tf-2, SM-4, and SM-5, whereas it produced cells with dramatically reduced Fe2+ oxidation and anaerobic S0 oxidation activities in Tf-1, SM-1, SM-2, SM-3, and SM-8. Growth on ore 1 of metal-leaching Fe2+-grown strains and on ore 2 of all Fe2+-grown strains resulted in very high yields of cells with high Fe2+ and S0 oxidation (both aerobic and anaerobic) activities with similar ratios of various activities. Sulfur-grown Tf-2, SM-1, SM-4, SM-6, SM-7, and SM-8 cultures leached metals from ore 3, and Tf-2 and SM-4 cells recovered showed activity ratios similar to those of other ore-grown cells. It is concluded that all the T. ferrooxidans strains studied have the ability to produce cells with Fe2+ and S0 oxidation and Fe3+ reduction activities, but their levels are influenced by growth substrates and strain differences. PMID:16348205

  4. Synthesis and anti-cancer potential of the positional isomers of NOSH-aspirin (NBS-1120) a dual nitric oxide and hydrogen sulfide releasing hybrid.

    PubMed

    Vannini, Federica; MacKessack-Leitch, Andrew C; Eschbach, Erin K; Chattopadhyay, Mitali; Kodela, Ravinder; Kashfi, Khosrow

    2015-10-15

    We recently reported the synthesis of NOSH-aspirin, a novel hybrid compound capable of releasing both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e., ortho-NOSH-aspirin. Here we report on the synthesis of meta- and para-NOSH-aspirins. We also made a head-to-head evaluation of the effects of these three positional isomers of NOSH-aspirin on colon cancer cell kinetics and induction of reactive oxygen species, which in recent years has emerged as a key event in causing cancer cell regression. Electron donating/withdrawing groups incorporated about the benzoate moiety significantly affected the potency of these compounds with respect to colon cancer cell growth inhibition.

  5. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Chen, Taiqiang; Lu, Ting; Chua, Daniel H. C.; Pan, Likun

    2016-01-01

    Layered nickel sulfide (NS)-reduced graphene oxide (RGO) composites are prepared via a simple microwave-assisted method and subsequent annealing in N2/H2 atmosphere. A detailed array of characterization tools are used to study their morphology, structure and electrochemical performance. It was found that these composites exhibit significantly improved sodium-ion storage ability as compared with pure NS under galvanostatic cycling at a specific current of 100 mA g-1 in a potential limitation of 0.005-3.0 V. Furthermore, the composite with the RGO content of 35 wt.% achieves a high maximum reversible specific capacity of about 391.6 mAh g-1 at a specific current of 100 mA g-1 after 50 cycles. These results prove that NS-RGO composites are highly promising when applied directly as anode materials in sodium-ion batteries.

  6. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine.

    PubMed

    Zheng, Dehua; Wang, Mei; Chen, Lin; Wang, Ning; Sun, Licheng

    2014-02-01

    A diiron dithiolate complex with a pendant phosphine coordinated to one of the iron centers, [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe2(CO)5}] (1), was prepared and structurally characterized. The pendant phosphine is dissociated together with a CO ligand in the presence of excess PMe3, to afford [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe(CO)2(PMe3)}2] (2). Redox reactions of 2 and related complexes were studied in detail by in situ IR spectroscopy. A series of new Fe(II)Fe(I) ([3](+) and [6](+)), Fe(II)Fe(II) ([4](2+)), and Fe(I)Fe(I) (5) complexes relevant to Hox, Hox(CO), and Hred states of the [FeFe]-hydrogenase active site were detected. Among these complexes, the molecular structures of the diferrous complex [4](2+) with the internal amine and the pendant phosphine co-coordinated to the same iron center and the triphosphine diiron complex 5 were determined by X-ray crystallography. To make a comparison, the redox reactions of an analogous complex, [(μ-SCH2)2N(CH2C6H5){Fe(CO)2(PMe3)}2] (7), were also investigated by in situ IR spectroscopy in the absence or presence of extrinsic PPh3, which has no influence on the oxidation reaction of 7. The pendant phosphine in the second coordination sphere makes the redox reaction of 2 different from that of its analogue 7.

  7. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  8. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds.

    PubMed

    Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua

    2015-01-01

    Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810

  9. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    PubMed

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C.

  10. Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals

    DOEpatents

    Katti, K.V.; Singh, P.R.; Reddy, V.S.; Katti, K.K.; Volkert, W.A.; Ketring, A.R.

    1999-03-02

    This research discloses a compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises a functionalized hydroxyalkyl phosphine ligand and a metal combined with the ligand. 16 figs.

  11. Phosphine derivatives of sparfloxacin - Synthesis, structures and in vitro activity

    NASA Astrophysics Data System (ADS)

    Komarnicka, Urszula K.; Starosta, Radosław; Guz-Regner, Katarzyna; Bugla-Płoskońska, Gabriela; Kyzioł, Agnieszka; Jeżowska-Bojczuk, Małgorzata

    2015-09-01

    We synthesized two derivatives of sparfloxacin (HSf): aminomethyl(diphenyl)phosphine (PSf) and its oxide (OPSf). The compounds were characterized by NMR spectroscopy, MS and elemental analysis. In addition, the molecular structures of the compounds were determined using DFT and X-ray (OPSf) analysis. The antibacterial activity of HSf and both derivatives was tested against four reference and fifteen clinical Gram-positive and Gram-negative strains of bacteria (sensitive or resistant to fluoroquinolones). The results showed that the activity of PSf was similar to or higher than the activity of HSf, while OPSf was found significantly less active. The compounds were also tested in vitro toward the following cancer cell lines: mouse colon carcinoma (CT26) and human lung adenocarcinoma (A549). Regardless of the cancer cell line, derivatization of HSf resulted in the gradual increase of cytotoxicity. OPSf exhibited the highest one (4 h - incubation time: IC50(CT26) = 51.0 ± 1.2; IC50(A549) = 74.9 ± 1.4 and 24 h: IC50(CT26) = 109.2 ± 8.8; IC50(A549) = 52.7 ± 9.2).

  12. Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50‧N East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Toner, B. M.; Fakra, S. C.; Marcus, M. A.; White, S. N.; Thurnherr, A. M.; German, C. R.

    2012-07-01

    Deep-sea hydrothermal plume particles are known to sequester seawater trace elements and influence ocean-scale biogeochemical budgets. The relative importance of biotic versus abiotic oxidation-reduction and other particle-forming reaction, however, and the mechanisms of seawater trace element sequestration remain unknown. Suspended particulate material was collected from a non-buoyant hydrothermal plume by in situ filtration at 9°50‧N East Pacific Rise during a 3-day, 24 sample, time-series. Twenty-three samples were digested for total elemental analysis. One representative sample was selected for particle-by-particle geochemical analyses including elemental composition by X-ray fluorescence, speciation of Fe, S, and C by 1s X-ray absorption near edge structure spectroscopy, and X-ray diffraction. Consistent with past studies, positive linear correlations were observed for P, V, As, and Cr with Fe in the bulk chemistry. Arsenic was associated with both Fe oxyhydroxides and sulfides but not uniformly distributed among either mineral type. Particle aggregation was common. Aggregates were composed of minerals embedded in an organic matrix; the minerals ranged from <20 nm to >10 μm in diameter. The speciation of major mineral forming elements (Fe, Mn, S) was complex. Over 20 different minerals were observed, nine of which were either unpredicted by thermodynamic modeling or had no close match in the thermodynamic database. Sulfur-bearing phases consisted of polysulfides (S6, S8), and metal sulfides (Fe, Cu, Zn, Mn). Four dominant species, Fe oxyhydroxide, Fe monosulfide, pyrrhotite, and pyrite, accounted for >80% of the Fe present. Particulate Mn was prevalent in both oxidized and reduced minerals. The organic matrix was: (1) always associated with minerals, (2) composed of biomolecules, and (3) rich in S. Possible sources of this S-rich organic matter include entrained near vent biomass and in situ production by S-oxidizing microorganisms. These results indicate

  13. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  14. The hydrogen sulfide releasing compounds ATB-346 and diallyl trisulfide attenuate streptozotocin-induced cognitive impairment, neuroinflammation, and oxidative stress in rats: involvement of asymmetric dimethylarginine.

    PubMed

    Mostafa, Dalia K; El Azhary, Nesrine M; Nasra, Rasha A

    2016-07-01

    Hydrogen sulfide (H2S) has attracted interest as a gaseous mediator involved in diverse processes in the nervous system, particularly with respect to learning and memory. However, its therapeutic potential in Alzheimer disease (AD) is not fully explored. Therefore, the effects of H2S-releasing compounds against AD-like behavioural and biochemical abnormalities were investigated. Memory deficit was induced by intracerberoventicular injection of streptozotocin (STZ, 3 mg·kg(-1)). Animals were randomly assigned into 5 groups (12 rats each): normal control, STZ treated, and 3 drug-treated groups receiving naproxen, H2S-releasing naproxen (ATB-346), and diallyl trisulfide in 20, 32, 40 mg·kg(-1)·day(-1), respectively. Memory function was assessed by passive avoidance and T-maze tasks. After 21 days, hippocampal IL-6, malondialdehyde, reduced glutathione (GSH), asymmetric dimethylarginine (ADMA), and acetylcholinestrase activity were determined. ATB-346 and diallyl trisulfide ameliorated behavioural performance and reduced malondialdehyde, ADMA, and acetylcholinestrase activity while increasing GSH. This study demonstrates the beneficial effects of H2S release in STZ-induced memory impairment by modulation of neuroinflammation, oxidative stress, and cholinergic function. It also delineates the implication of ADMA to the cognitive impairment induced by STZ. These findings draw the attention to H2S-releasing compounds as new candidates for treating neurodegenerative disorders that have prominent oxidative and inflammatory components such as AD.

  15. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  16. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  17. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  18. Microstructure degradation of YSZ in Ni/YSZ anodes of SOFC operated in phosphine-containing fuels

    SciTech Connect

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Zondlod, John; Celik, Ismail; Song, Xueyan; Gerdes, Kirk

    2013-03-07

    The interaction of trace (ppm) phosphine with the nickel/yttria stabilized zirconia (YSZ) anode of commercial solid oxide fuel cells has been investigated and evaluated for both synthesis gas and hydrogen fuels in an effort to examine P–Y reactions. The Ni poisoning effects reported in literature were confirmed and degradation was examined by electrochemical methods and post-test microstructural and chemical analyses. The results indicate that P-induced degradation rates and mechanisms are fuel dependent and that degradation of cells operated in synthesis gas (syngas) with phosphine is more severe than that of cells operated in hydrogen with phosphine. As reported in published literature, a cell operated in syngas containing 10 ppm phosphine demonstrated significant microstructural degradation within the Ni phase, including formation of Ni–P phases concentrated on the outer layer of the anode and significant pitting corrosion in the Ni grains. In this research, a previously undetected YPO{sub 4} phase is observed at the YSZ/YSZ/Ni triple grain junctions located at the interface with the YSZ electrolyte. Tetragonal YSZ (t-YSZ) and cubic-YSZ (c-YSZ) domains with sizes of several tens of nanometers are also newly observed along the Ni/YSZ interface. These observations contrast with data obtained for a cell operated in dry hydrogen with phosphine, where no YPO{sub 4} phase is observed and the alternating t-YSZ and c-YSZ domains at the Ni/YSZ interface are smaller with typical sizes of 5–10 nm. The data imply that electrolyte attack by P is a potentially debilitating mode of degradation in SOFC anodes, and that the associated reaction mechanisms and rates are worthy of further examination.

  19. AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo.

    PubMed

    Ahmad, Akbar; Olah, Gabor; Szczesny, Bartosz; Wood, Mark E; Whiteman, Matthew; Szabo, Csaba

    2016-01-01

    This study evaluated the effects of AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triphenyl phosphonium bromide], a mitochondrially targeted donor of hydrogen sulfide (H2S) in an in vitro model of hypoxia/oxidative stress injury in NRK-49F rat kidney epithelial cells (NRK cells) and in a rat model of renal ischemia-reperfusion injury. Renal oxidative stress was induced by the addition of glucose oxidase, which generates hydrogen peroxide in the culture medium at a constant rate. Glucose oxidase (GOx)-induced oxidative stress led to mitochondrial dysfunction, decreased intracellular ATP content, and, at higher concentrations, increased intracellular oxidant formation (estimated by the fluorescent probe 2, 7-dichlorofluorescein, DCF) and promoted necrosis (estimated by the measurement of lactate dehydrogenase release into the medium) of the NRK cells in vitro. Pretreatment with AP39 (30-300 nM) exerted a concentration-dependent protective effect against all of the above effects of GOx. Most of the effects of AP39 followed a bell-shaped concentration-response curve; at the highest concentration of GOx tested, AP39 was no longer able to afford cytoprotective effects. Rats subjected to renal ischemia/reperfusion responded with a marked increase (over four-fold over sham control baseline) blood urea nitrogen and creatinine levels in blood, indicative of significant renal damage. This was associated with increased neutrophil infiltration into the kidneys (assessed by the myeloperoxidase assay in kidney homogenates), increased oxidative stress (assessed by the malondialdehyde assay in kidney homogenates), and an increase in plasma levels of IL-12. Pretreatment with AP39 (0.1, 0.2, and 0.3 mg/kg) provided a dose-dependent protection against these pathophysiological alterations; the most pronounced protective effect was observed at the 0.3 mg/kg dose of the H2S donor; nevertheless, AP39 failed to achieve a complete normalization of any of the injury

  20. Synthesis of a "Masked" Terminal Nickel(II) Sulfide by Reductive Deprotection and its Reaction with Nitrous Oxide.

    PubMed

    Hartmann, Nathaniel J; Wu, Guang; Hayton, Trevor W

    2015-12-01

    The addition of 1 equiv of KSCPh3 to [L(R)NiCl] (L(R) = {(2,6-iPr2C6H3)NC(R)}2CH; R = Me, tBu) in C6H6 results in the formation of [L(R)Ni(SCPh3)] (1: R = Me; 2: R = tBu) in good yields. Subsequent reduction of 1 and 2 with 2 equiv of KC8 in cold (-25 °C) Et2O in the presence of 2 equiv of 18-crown-6 results in the formation of "masked" terminal Ni(II) sulfides, [K(18-crown-6)][L(R)Ni(S)] (3: R = Me; 4: R = tBu), also in good yields. An X-ray crystallographic analysis of these complexes suggests that they feature partial multiple-bond character in their Ni-S linkages. Addition of N2O to a toluene solution of 4 provides [K(18-crown-6)][L(tBu)Ni(SN=NO)], which features the first example of a thiohyponitrite (κ(2)-[SN=NO](2-)) ligand. PMID:26457792

  1. Crystal and Magnetic Structures of the Oxide Sulfides CaCoSO and BaCoSO.

    PubMed

    Salter, Edward J T; Blandy, Jack N; Clarke, Simon J

    2016-02-15

    CaCoSO, synthesized from CaO, Co, and S at 900 °C, is isostructural with CaZnSO and CaFeSO. The structure is non-centrosymmetric by virtue of the arrangement of the vertex-sharing CoS3O tetrahedra which are linked by their sulfide vertices to form layers. The crystal structure adopts space group P63mc (No. 186), and the lattice parameters are a = 3.7524(9) Å and c = 11.138(3) Å at room temperature with two formula units in the unit cell. The compound is highly insulating, and powder neutron diffraction measurements reveal long-range antiferromagnetic order with a propagation vector k = (1/3, 1/3, 1/2). The magnetic scattering from a powder sample can be modeled starting from a 120° arrangement of Co(2+) spin vectors in the triangular planes and then applying a canting out of the planes which can be modeled in the magnetic space group C(c)c (space group 9.40 in the Belov, Neronova, and Smirnova (BNS) scheme) with Co(2+) moments of 2.72(5) μ(B). The antiferromagnetic structure of the recently reported compound BaCoSO, which has a very different crystal structure from CaCoSO, is also described, and this magnetic structure and the magnitude of the ordered moment (2.75(2) μ(B)) are found by experiment to be similar to those predicted computationally.

  2. Mechanisms of hydrogen sulfide removal with steel making slag.

    PubMed

    Kim, Kyunghoi; Asaoka, Satoshi; Yamamoto, Tamiji; Hayakawa, Shinjiro; Takeda, Kazuhiko; Katayama, Misaki; Onoue, Takasumi

    2012-09-18

    In the present study, we experimentally investigated the removal of hydrogen sulfide using steel-making slag (SMS) and clarified the mechanism of hydrogen sulfide removal with the SMS. The results proved that SMS is able to remove hydrogen sulfide dissolved in water, and the maximum removal amount of hydrogen sulfide per unit weight of the SMS for 8 days was estimated to be 37.5 mg S/g. The removal processes of hydrogen sulfide were not only adsorption onto the SMS, but oxidation and precipitation as sulfur. The chemical forms of sulfide adsorbed onto the SMS were estimated to be sulfur and manganese sulfide in the ratio of 81% and 19%, respectively. It is demonstrated here that the SMS is a promising material to remediate organically enriched coastal sediments in terms of removal of hydrogen sulfide. Furthermore, using SMS is expected to contribute to development of a recycling-oriented society.

  3. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  4. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  5. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  6. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    PubMed Central

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  7. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    PubMed

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  8. One-Pot Synthesis of Copper Sulfide Nanowires/Reduced Graphene Oxide Nanocomposites with Excellent Lithium-Storage Properties as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Feng, Caihong; Zhang, Le; Yang, Menghuan; Song, Xiangyun; Zhao, Hui; Jia, Zhe; Sun, Kening; Liu, Gao

    2015-07-29

    Copper sulfide nanowires/reduced graphene oxide (CuSNWs/rGO) nanocompsites are successfully synthesized via a facile one-pot and template-free solution method in a dimethyl sulfoxide (DMSO)-ethyl glycol (EG) mixed solvent. It is noteworthy that the precursor plays a crucial role in the formation of the nanocomposites structure. SEM, TEM, XRD, IR and Raman spectroscopy are used to investigate the morphological and structural evolution of CuSNWs/rGO nanocomposites. The as-fabricated CuSNWs/rGO nanocompsites show remarkably improved Li-storage performance, excellent cycling stability as well as high-rate capability compared with pristine CuS nanowires. It obtains a reversible capacity of 620 mAh g(-1) at 0.5C (1C = 560 mA g(-1)) after 100 cycles and 320 mAh g(-1) at a high current rate of 4C even after 430 cycles. The excellent lithium storage performance is ascribed to the synergistic effect between CuS nanowires and rGO nanosheets. The as-formed CuSNWs/rGO nanocomposites can effectively accommodate large volume changes, supply a 2D conducting network and trap the polysulfides generated during the conversion reaction of CuS. PMID:26135049

  9. Vasorelaxant Effect of a New Hydrogen Sulfide-Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through cGMP Pathway

    PubMed Central

    Wu, Dan; Hu, Qingxun; Ma, Fenfen; Zhu, Yi Zhun

    2016-01-01

    Endothelium-dependent vasorelaxant injury leads to a lot of cardiovascular diseases. Both hydrogen sulfide (H2S) and nitric oxide (NO) are gasotransmitters, which play a critical role in regulating vascular tone. However, the interaction between H2S and NO in vasorelaxation is still unclear. ZYZ-803 was a novel H2S and NO conjugated donor developed by H2S-releasing moiety (S-propyl-L-cysteine (SPRC)) and NO-releasing moiety (furoxan). ZYZ-803 could time- and dose-dependently relax the sustained contraction induced by PE in rat aortic rings, with potencies of 1.5- to 100-fold greater than that of furoxan and SPRC. Inhibition of the generations of H2S and NO with respective inhibitors abolished the vasorelaxant effect of ZYZ-803. ZYZ-803 increased cGMP level and the activity of vasodilator stimulated phosphoprotein (VASP) in aortic rings, and those effects could be suppressed by the inhibitory generation of H2S and NO. Both the inhibitor of protein kinase G (KT5823) and the inhibitor of KATP channel (glibenclamide) suppressed the vasorelaxant effect of ZYZ-803. Our results demonstrated that H2S and NO generation from ZYZ-803 cooperatively regulated vascular tone through cGMP pathway, which indicated that ZYZ-803 had therapeutic potential in cardiovascular diseases. PMID:26635911

  10. The thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. XI. Solubility of synthetic chalcomenite analog and zinc selenite at 25°C

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Krivovichev, V. G.; Ivanova, N. M.; Semenova, V. V.

    2015-12-01

    The aim of this study is the synthesis of CuSeO3·2H2O (chalcomenite analog), ZnSeO3·2H2O, and ZnSeO3·H2O and the investigation of their solubility in water. CuSeO3·2H2O has been synthesized from solutions of Cu nitrate and Na selenite, while Zn selenites were synthesized from solutions of Zn nitrate and Na selenite. The samples obtained have been examined with X-ray diffraction and infrared and Raman spectroscopy. The solubility has been determined using the isothermal saturation method in ampoules at 25°C. The solubility has been calculated using the Geochemist's Workbench (GMB 9.0) software package. Solubility products have been calculated for CuSeO3·2H2O (10-10.63), ZnSeO3·2H2O (10-8.35), and ZnSeO3·H2O (10-7.96). The database used comprises thermodynamic characteristics of 46 elements, 47 base particles, 48 redox pairs, 551 particles in solution, and 624 solid phases. The Eh-pH diagrams of the Zn-Se-H2O and Cu-Se-H2O systems were plotted for the average contents of these elements in underground water in oxidation zones of sulfide deposits.

  11. Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Lu, Haiyan; Xiao, Lifen; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-10-01

    Stannous sulfide@reduced graphene oxide (SnS@RGO) composite is successfully synthesized via a facile precipitation route. The structural and morphological characterizations reveal SnS@RGO composites are composed of SnS nanoparticles of the size 5-10 nm, which are uniformly anchored on the surface of RGO. The electrochemical measurements demonstrate the reversible capacity of the SnS@RGO composite - that includes contributions from the conversion reaction of SnS to Sn and NaxS and the alloying reaction of Sn to NaxSn. The SnS@RGO electrode exhibits a reversible capacity of 457 mAh g-1 at 20 mA g-1, superior cycling stability (94% capacity retention over 100 cycles at 100 mA g-1) and adequate rate performance. Compared to the neat SnS nanoparticles, the enhanced electrochemical performance of the SnS@RGO composite is primarily due to the incorporation of RGO as a highly conductive, flexible component as well as possessing a large available surface area, which provides desirable properties such as improved electronic contact between active materials, aggregation suppression of intermediate products, and alleviation of the volume change during sodiation and desodiation. Encouraging experimental results suggest that the SnS@RGO composite is a promising material to achieve a high-capacity and stable anode for NIBs.

  12. One-Pot Synthesis of Copper Sulfide Nanowires/Reduced Graphene Oxide Nanocomposites with Excellent Lithium-Storage Properties as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Feng, Caihong; Zhang, Le; Yang, Menghuan; Song, Xiangyun; Zhao, Hui; Jia, Zhe; Sun, Kening; Liu, Gao

    2015-07-29

    Copper sulfide nanowires/reduced graphene oxide (CuSNWs/rGO) nanocompsites are successfully synthesized via a facile one-pot and template-free solution method in a dimethyl sulfoxide (DMSO)-ethyl glycol (EG) mixed solvent. It is noteworthy that the precursor plays a crucial role in the formation of the nanocomposites structure. SEM, TEM, XRD, IR and Raman spectroscopy are used to investigate the morphological and structural evolution of CuSNWs/rGO nanocomposites. The as-fabricated CuSNWs/rGO nanocompsites show remarkably improved Li-storage performance, excellent cycling stability as well as high-rate capability compared with pristine CuS nanowires. It obtains a reversible capacity of 620 mAh g(-1) at 0.5C (1C = 560 mA g(-1)) after 100 cycles and 320 mAh g(-1) at a high current rate of 4C even after 430 cycles. The excellent lithium storage performance is ascribed to the synergistic effect between CuS nanowires and rGO nanosheets. The as-formed CuSNWs/rGO nanocomposites can effectively accommodate large volume changes, supply a 2D conducting network and trap the polysulfides generated during the conversion reaction of CuS.

  13. Reactivity of Sulfide Mineral Surfaces

    SciTech Connect

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    In the preceding chapter, the fundamental nature of sulfide mineral surfaces has been discussed, and the understanding we have of the ways in which the surface differs from a simple truncation of the bulk crystal structure reviewed. This naturally leads on to considering our understanding of sulfide surface chemistry, in the sense of how sulfide surfaces interact and react, particularly with gases and liquids. As noted elsewhere in this volume, research on sulfide mineral surfaces and surface reactivity is a relatively recent concern of mineralogists and geochemists, partly prompted by the availability of new imaging and spectroscopic methods, powerful computers and new computer algorithms. There has been a significantly longer history of sulfide mineral surface research associated with technologists working with, or within, the mining industry. Here, electrochemical methods, sometimes combined with analytical and spectroscopic techniques, have been used to probe surface chemistry. The motivation for this work has been to gain a better understanding of the controls of leaching reactions used to dissolve out metals from ores, or to understand the chemistry of the froth flotation systems used in concentrating the valuable (usually sulfide) minerals prior to metal extraction. The need for improved metal extraction technologies is still a major motivation for research on sulfide surfaces, but in the last couple of decades, new concerns have become important drivers for such work. In particular, much greater awareness of the negative environmental impact of acid and toxic metal-bearing waters derived from breakdown of sulfide minerals at former mining operations has prompted research on oxidation reactions, and on sorption of metals at sulfide surfaces. At the interface between fundamental geochemistry and industrial chemistry, the role of sulfide substrates in catalysis, and in the self-assembly and functionalization of organic molecules, has become an area of

  14. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na(+)/K(+) Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress.

    PubMed

    Mostofa, Mohammad G; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na(+) and the Na(+)/K(+) ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  15. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  16. Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions.

    PubMed

    Foo, C Y; Lim, H N; Pandikumar, A; Huang, N M; Ng, Y H

    2016-03-01

    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+). PMID:26595899

  17. Compositions, ages, and diagenetic histories of the carbonate, sulfide, oxide, and phosphatic concretions at Gay Head, Massachusetts

    USGS Publications Warehouse

    Poppe, L.J.; Commeau, R.F.; O'Leary, D. W.

    1988-01-01

    The calcite/ankerite concretions were formed in a hot, seasonally arid, caliche-prone environment of early Raritan age; the pyrite, marcasite, and siderite concretions precipitated in sediments deposited in low-energy, marshy, estuarine environments of late Raritan age. The phosphate concretions formed in a middle to inner shelf environment. The goethite and lepidocrocite concretions are secondary oxidation or alteration products of the prexistent Cretaceous concretions that were excavated during the Pleistocene and incorporated into the glacial drift. -from Authors

  18. Responses of Phosphate Transporter Gene and Alkaline Phosphatase in Thalassiosira pseudonana to Phosphine

    PubMed Central

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton. PMID:23544096

  19. Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in major stored-cereal pests worldwide. To understand the molecular bases of phosphine resistance in insects, we used RNA-...

  20. Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas

    PubMed Central

    Valmas, Nicholas; Ebert, Paul R.

    2006-01-01

    Background With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. Principal Findings Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20°C has been determined with an LC50 of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20°C is 600 times more potent than phosphine (LC50 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, phosphine in a laboratory environment has now been substantially reduced by the implementation of our novel gas generation chamber. We have also identified a novel phosphine synergist, the glutathione depletor DEM, suggesting an effective pathway to be targeted in future synergist research; as well as quantifying the efficacy of a potential alternative to phosphine, dimethyl disulphide. PMID:17205134

  1. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  2. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning. PMID:24456468

  3. Aerobic oxidation of methyl p-tolyl sulfide catalyzed by a remarkably labile heteroscorpionate RuII-aqua complex, fac-[RuII(H2O)(dpp)(tppm)]2+.

    PubMed

    Huynh, My Hang V; Witham, Laura M; Lasker, Joanne M; Wetzler, Modi; Mort, Brendan; Jameson, Donald L; White, Peter S; Takeuchi, Kenneth J

    2003-01-15

    fac-[RuII(Cl)(dpp)(L3)]+ (L3 = tris(pyrid-2-yl)methoxymethane (tpmm) = [1A]+ and tris(pyrid-2-yl)pentoxymethane (tppm) = [1B]+ and dpp = di(pyrazol-1-yl)propane) rapidly undergo ligand substitution with water to form fac-[RuII(H2O)(dpp)(L3)]2+ (L3 = tpmm = [2A]2+ and tppm = [2B]2+). In the structure of [2A]2+, the distorted octahedral arrangement of ligands around Ru is evident by a long Ru(1)-O(40) of 2.172(3) A and a large angle O(40)-Ru(1)-N(51) of 96.95(14) degrees . The remarkably short distance between O(40) of H2O and H(45a) of dpp confirms the heteroscorpionate ligand effect of dpp on H2O. [2B]2+ aerobically catalyzes methyl p-tolyl sulfide to methyl p-tolyl sulfoxide in 1,2-dichlorobenzene at 25.0 +/- 0.1 degrees C under 11.4 psi of O2. Experimental facts in support of this aerobic sulfide oxidation are the absence of H2O2 and the oxidative reactivity of the putative Ru(IV)-oxo intermediate toward methyl p-tolyl sulfide, 2-propanol, and allyl alcohol. This study provides the first documented example of aerobic-sulfide oxidation catalyzed by the remarkably labile heteroscorpionate Ru(II)-aqua complex without the formation of a highly reactive peroxide as an intermediate.

  4. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere

    NASA Astrophysics Data System (ADS)

    Glindemann, Dietmar; Edwards, Marc; Schrems, Otto

    Phosphine (PH 3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften83(1996a)131; Atmos. Environ. 37(2003)24 29). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds. Here, we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) for 5 s to a spark induced by microwave. The gas product analyzed by gas chromatography contained phosphine (yield up to 0.6 g kg -1 phosphate P) and methylphosphine (CH 3)PH 2 (yield up to 0.02 g kg -1 phosphate P). We suggest a plasma-chemical formation mechanism where organic compounds or methane or secondary hydrogen thereof reduce phosphate to phosphine of which a small fraction can subsequently react with methyl radicals to form methylphosphine. A small yield of 6 mg phosphine per kg phosphate P was even obtained in methane free medium, by simple plasmatic recombination of inorganic phosphorus. We believe that methane and hydrogen are useful model substances of pyrolytic gases with high reducing power which may form if lightning strikes biomass, soil and aerosol. These results suggest evidence that phosphine and methylphosphine (detectable in the field by intense garlic odor) are produced when atmospheric lightning strikes the ground or aerosol which is containing oxidized forms of phosphorus and chemical reductants. Additional reviewed data show that laboratory lightning was able to reduce a much more significant portion of phosphate to phosphite (up to 25% yield), methylphosphonic acid (up to 8.5% yield) and traces of hypophosphite in a matter of seconds.

  5. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also

  6. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT)

    SciTech Connect

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth H; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mikhailova, Natalia; Pati, Amrita; Palaniappan, Krishna; Land, Miriam L; Pan, Chongle; Rohde, Manfred; Pukall, Rudiger; Goker, Markus; Detter, J. Chris; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Mavromatis, K

    2012-01-01

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp, harbors 3,626 protein-coding and 69 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  8. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.

    PubMed

    Cheng, Liqiu; House, Mitch W; Weiss, W Jason; Banks, M Katherine

    2016-02-01

    Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process.

  9. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors.

    PubMed

    Cheng, Liqiu; House, Mitch W; Weiss, W Jason; Banks, M Katherine

    2016-02-01

    Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process. PMID:26707733

  10. Alkylation of H-Phosphinate Esters under Basic Conditions

    PubMed Central

    Abrunhosa-Thomas, Isabelle; Sellers, Claire E.; Montchamp, Jean-Luc

    2008-01-01

    An efficient and general procedure was developed for the direct alkylation of H-phosphinate esters with LiHMDS at low temperature. The simplicity of the reaction allows the use of various H-phosphinate esters and takes place with a wide range of electrophiles. The approach can be employed to access some GABA analogs or precursors to GABA analogs. The isolated yields are moderate to good. This is the first report of an alkylation with a secondary iodide, or a primary chloride. PMID:17352490

  11. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  12. Stabilization of 3:1 site-differentiated cubane-type clusters in the [Fe(4)S(4)](1+) core oxidation state by tertiary phosphine ligation: synthesis, core structural diversity, and S = 1/2 ground states.

    PubMed

    Deng, Liang; Majumdar, Amit; Lo, Wayne; Holm, R H

    2010-12-01

    An extensive series of 3:1 site-differentiated cubane-type clusters [Fe(4)S(4)(PPr(i)(3))(3)L] (L = Cl(-), Br(-), I(-), RO(-), RS(-), RSe(-)) has been prepared in 40-80% yield by two methods: ligand substitution of [Fe(4)S(4)(PPr(i)(3))(4)](1+) in tetrahydrofuran (THF)/acetonitrile by reaction with monoanions, and reductive cleavage of ligand substrates (RSSR, RSeSeR, I(2)) by the all-ferrous clusters [Fe(8)S(8)(PPr(i)(3))(6)]/[Fe(16)S(16)(PPr(i)(3))(8)] in THF. These neutral clusters are stable and do not undergo ligand redistribution reactions involving charged species in benzene and THF solutions. X-ray structural studies confirm the cubane stereochemistry but with substantial and variable distortions of the [Fe(4)S(4)](1+) core from idealized cubic core geometry. Based on Fe-S bond lengths, seven clusters were found to have compressed tetragonal distortions (4 short and 8 long bonds), and the remaining seven display other types of distortions with different combinations of long, short, and intermediate bond lengths. These results further emphasize the facile deformabililty of this core oxidation state previously observed in [Fe(4)S(4)(SR)(4)](3-) clusters. The Fe(2.25+) mean oxidation state was demonstrated from (57)Fe isomer shifts, and the appearance of two quadrupole doublets arises from the spin-coupled |9/2,4,1/2> state. The S = 1/2 ground state was further supported by electron paramagnetic resonance spectra and magnetic susceptibility data.

  13. Nanocomposite of tin sulfide nanoparticles with reduced graphene oxide in high-efficiency dye-sensitized solar cells.

    PubMed

    Yang, Bo; Zuo, Xueqin; Chen, Peng; Zhou, Lei; Yang, Xiao; Zhang, Haijun; Li, Guang; Wu, Mingzai; Ma, Yongqing; Jin, Shaowei; Chen, Xiaoshuang

    2015-01-14

    A nanocomposite of SnS2 nanoparticles with reduced graphene oxide (SnS2@RGO) had been successfully synthesized as a substitute conventional Pt counter electrode (CE) in a dye-sensitized solar cell (DSSC) system. The SnS2 nanoparticles were uniformly dispersed onto graphene sheets, which formed a nanosized composite system. The effectiveness of this nanocomposite exhibited remarkable electrocatalytic properties upon reducing the triiodide, owning to synergistic effects of SnS2 nanoparticles dispersed on graphene sheet and improved conductivity. Consequently, the DSSC equipped with SnS2@RGO nanocomposite CE achieved power conversion efficiency (PCE) of 7.12%, which was higher than those of SnS2 nanoparticles (5.58%) or graphene sheet alone (3.73%) as CEs and also comparable to the value (6.79%) obtained with pure Pt CE as a reference.

  14. Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations.

    PubMed

    Zambianchi, F; Pasta, P; Carrea, G; Colonna, S; Gaggero, N; Woodley, J M

    2002-06-01

    The performance, in Baeyer-Villiger and heteroatom oxidations, of a partially purified preparation of cyclohexanone monooxygenase obtained from an Escherichia coli strain in which the gene of the enzyme was cloned and overexpressed was investigated. As model reactions, the oxidations of racemic bicyclo[3.2.0]hept-2-en-6-one into two regioisomeric lactones and of methyl phenyl sulphide into the corresponding (R)-sulphoxide were used. Enzyme stability and reuse, substrate and product inhibition, product removal, and cofactor recycling were evaluated. Of the various NADPH regeneration systems tested, 2-propanol/alcohol dehydrogenase from Thermoanerobium brockii appeared the most suitable because of the low cost of the second substrate and the high regeneration rate. Concerning enzyme stability, kosmotropic salts were the only additives able to improve it (e.g., half-life from 1 day in diluted buffer to 1 week in 1 M sodium sulphate) but only under storage conditions. Instead, significant stabilization under working conditions was obtained by immobilization on Eupergit C (half-life approximately 2.5 days), a procedure that made it possible to reuse the catalyst up to 16 times with complete substrate (5 g x L(-1)) conversion at each cycle. Reuse of free enzyme was also achieved in a membrane reactor but with lower efficiency. Water-organic solvent biphasic systems, which would overcome substrate inhibition and remove from the aqueous phase, where reaction takes place, the formed product, were unsuccessful because of their destabilizing effect on cyclohexanone monooxygenase. More satisfactory was continuous substrate feeding, which shortened reaction times and, very importantly, yielded in the case of bicyclo[3.2.0]hept-2-en-6-one (10 g x L(-1)) both lactone products with high optical purity (enantiomeric excess > or = 96%), which was not the case when all of the substrate was added in a single batch. PMID:12115117

  15. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.

    PubMed

    Pan, Yun-xiang; Zhuang, Huaqiang; Hong, Jindui; Fang, Zheng; Liu, Hai; Liu, Bin; Huang, Yizhong; Xu, Rong

    2014-09-01

    In this work, CdS quantum dots (QDs) supported on Ga2O3 and In2O3 are applied for visible-light-driven H2 evolution from aqueous solutions that contain lactic acid. With Pt as the cocatalyst, the H2 evolution rates on CdS/Pt/Ga2O3 and CdS/Pt/In2O3 are as high as 995.8 and 1032.2 μmol h(-1), respectively, under visible light (λ>420 nm) with apparent quantum efficiencies of 43.6 and 45.3% obtained at 460 nm, respectively. These are much higher than those on Pt/CdS (108.09 μmol h(-1)), Pt/Ga2O3 (0.12 μmol h(-1)), and Pt/In2O3 (0.05 μmol h(-1)). The photocatalysts have been characterized thoroughly and their band structures and photocurrent responses have been measured. The band alignment between the CdS QDs and In2O3 can lead to interfacial charge separation, which cannot occur between the CdS QDs and Ga2O3. Among the various possible factors that contribute to the high H2 evolution rates on CdS/Pt/oxide, the surface properties of the metal oxides play important roles, which include (i) the anchoring of CdS QDs and Pt nanoparticles for favorable interactions and (ii) the efficient trapping of photogenerated electrons from the CdS QDs because of surface defects (such as oxygen defects) based on photoluminescence and photocurrent studies.

  16. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma.

  17. Competition for Dimethyl Sulfide and Hydrogen Sulfide by Methylophaga sulfidovorans and Thiobacillus thioparus T5 in Continuous Cultures

    PubMed Central

    De Zwart, J.; Sluis, J.; Kuenen, J. G.

    1997-01-01

    Pure and mixed cultures of Methylophaga sulfidovorans and Thiobacillus thioparus T5 were grown in continuous cultures on either dimethyl sulfide, dimethyl sulfide and H(inf2)S, or H(inf2)S and methanol. In pure cultures, M. sulfidovorans showed a lower affinity for sulfide than T. thioparus T5. Mixed cultures, grown on dimethyl sulfide, showed coexistence of both species. M. sulfidovorans fully converted dimethyl sulfide to thiosulfate, which was subsequently further oxidized to sulfate by T. thioparus T5. Mixed cultures supplied with sulfide and methanol showed that nearly all the sulfide was used by T. thioparus T5, as expected on the basis of the affinities for sulfide. The sulfide in mixed cultures supplied with dimethyl sulfide and H(inf2)S, however, was used by both bacteria. This result may be explained by the fact that the H(inf2)S-oxidizing capacity of M. sulfidovorans remains fully induced by intracellular H(inf2)S originating from dimethyl sulfide metabolism. PMID:16535680

  18. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore.

    PubMed

    Biswas, Sujoy; Pathak, P N; Roy, S B

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. PMID:22381794

  19. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure.

    PubMed

    Scuffi, Denise; Álvarez, Consolación; Laspina, Natalia; Gotor, Cecilia; Lamattina, Lorenzo; García-Mata, Carlos

    2014-12-01

    Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells.

  20. Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation.

    PubMed

    Sun, Junhui; Aponte, Angel M; Menazza, Sara; Gucek, Marjan; Steenbergen, Charles; Murphy, Elizabeth

    2016-05-01

    Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO.

  1. Effects of Tai Chi exercise on blood pressure and plasma levels of nitric oxide, carbon monoxide and hydrogen sulfide in real-world patients with essential hypertension.

    PubMed

    Pan, Xiaogui; Zhang, Yi; Tao, Sai

    2015-01-01

    Objective was to investigate the effects of Tai Chi exercise on nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) levels, and blood pressure (BP) in patients with essential hypertension (EH). EH patients were assigned to the Tai Chi exercise group (HTC, n = 24), and hypertension group (HP, n = 16) by patients' willingness. Healthy volunteers matched for age and gender were recruited as control (NP, n = 16). HTC group performed Tai Chi (60 min/d, 6 d/week) for 12 weeks. Measurements (blood glucose, cholesterol, NO, CO, H2S and BP) were obtained at week 0, 6, and 12. SBP, MAP, and low-density lipoprotein cholesterol levels decreased, and high-density lipoprotein cholesterol levels increased by week 12 in the HTC group (all p < 0.05 versus baseline). Plasma NO, CO, and H2S levels in the HTC group were increased after 12 weeks (all p < 0.05 versus baseline). SBP, DBP and MAP levels were significantly lower in the HTC than in the HP group (all p < 0.05). However, no changes were observed in the HP and NP groups. Correlations were observed between changes in SBP and changes in NO, CO and H2S (r = -0.45, -0.51 and -0.46, respectively, all p < 0.05), and between changes in MAP and changes in NO, CO and H2S (r = -0.36, -0.45 and -0.42, respectively, all p < 0.05). In conclusion, Tai Chi exercise seems to have beneficial effects on BP and gaseous signaling molecules in EH patients. However, further investigation is required to understand the exact mechanisms underlying these observations, and to confirm these results in a larger cohort.

  2. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  3. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling.

    PubMed

    Olson, Kenneth R

    2012-10-01

    Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes. PMID:22430869

  4. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    PubMed

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance. PMID:27510460

  5. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    PubMed

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance.

  6. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    PubMed

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use. PMID:22812116

  7. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  8. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  9. SULFIDE MINERALS IN SEDIMENTS

    EPA Science Inventory

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  10. Gene interactions constrain the course of evolution of phosphine resistance in the lesser grain borer, Rhyzopertha dominica.

    PubMed

    Schlipalius, D I; Chen, W; Collins, P J; Nguyen, T; Reilly, P E B; Ebert, P R

    2008-05-01

    Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.

  11. Sulfide-Driven Microbial Electrosynthesis

    SciTech Connect

    Gong, YM; Ebrahim, A; Feist, AM; Embree, M; Zhang, T; Lovley, D; Zengler, K

    2013-01-01

    Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day.m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day.m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.

  12. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide.

    PubMed

    Singh, Vijay Pratap; Singh, Samiksha; Kumar, Jitendra; Prasad, Sheo Mohan

    2015-06-01

    In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress.

  13. Synthesis, Structure, and Applications of α-Cationic Phosphines.

    PubMed

    Alcarazo, Manuel

    2016-09-20

    In α-cationic phosphines, at least one of the three substituents on phosphorus corresponds to a cationic (normally, but not always heteroaromatic) group, which is attached without any spacer to the phosphorus atom by a relatively inert P-C bond. This unique architecture confers to the resulting ligand strong acceptor properties, which frequently surpass those of traditional acceptor ligands such as phosphites or polyfluorinated phosphines. In addition, the fine-tuning of the stereoelectronic properties of α-cationic phosphines is also possible by judicious selection of the number and nature of the cationic groups. The opportunities offered in catalysis by α-cationic ligands arise from this ability to deplete electron density from the metals they coordinate. Thus, if in a hypothetical catalytic cycle the step that determines the rate is facilitated by an increase of the Lewis acidity at the metal center, then an acceleration of the whole process is expected by their use as ancillary ligands. Interestingly, this situation is found more frequently than one might think; many common elementary steps involved in catalytic cycles, such as reductive eliminations, coordination of substrates to metals, or attack of nucleophiles to coordinated substrates, belong to this category and are often fostered by electron poor metal centers. In this regard, our group has observed remarkable ligand acceleration effects by the employment of α-cationic phosphines in Au(I)- and Pt(II)-promoted hydroarylation and cycloisomerization reactions. These results seem to be general in π-acid catalysis when the nucleophile used is not especially electron rich because then their attack to the activated alkene or alkyne is normally rate determining. On the other hand, the use of cationic phosphines also presents drawbacks that limit their range of application. As a general rule, the reduced σ-donation from the phosphine is not compensated by the increased π-back-donation from the metal making

  14. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    NASA Astrophysics Data System (ADS)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  15. (2-{[2-(diphenyl-phosphino)phen-yl]thio}-phen-yl)diphenyl-phosphine sulfide.

    PubMed

    Alvarez-Larena, Angel; Martinez-Cuevas, Francisco J; Flor, Teresa; Real, Juli

    2012-11-01

    In the title compound, C(36)H(28)P(2)S(2), the dihedral angle between the central benzene rings is 66.95 (13)°. In the crystal, molecules are linked via C(ar)-H⋯π and π-π inter-actions [shortest centroid-centroid distance between benzene rings = 3.897 (2) Å].

  16. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts.

    PubMed

    Girguis, P R; Childress, J J; Freytag, J K; Klose, K; Stuber, R

    2002-10-01

    Intracellular symbiosis requires that the host satisfy the symbiont's metabolic requirements, including the elimination of waste products. The hydrothermal vent tubeworm Riftia pachyptila and the hydrocarbon seep worm Lamellibrachia cf luymesi are symbiotic with chemolithoautotrophic bacteria that produce sulfate and protons as end-products. In this report, we examine the relationship between symbiont metabolism and host proton equivalent elimination in R. pachyptila and L. cf luymesi, and the effects of sulfide exposure on proton-equivalent elimination by Urechis caupo, an echiuran worm that lacks intracellular symbionts (for brevity, we will hereafter refer to proton-equivalent elimination as 'proton elimination'). Proton elimination by R. pachyptila and L. cf luymesi constitutes the worms' largest mass-specific metabolite flux, and R. pachyptila proton elimination is, to our knowledge, the most rapid reported for any metazoan. Proton elimination rates by R. pachyptila and L. cf luymesi correlated primarily with the rate of sulfide oxidation. Prolonged exposure to low environmental oxygen concentrations completely inhibited the majority of proton elimination by R. pachyptila, demonstrating that proton elimination does not result primarily from anaerobic metabolism. Large and rapid increases in environmental inorganic carbon concentrations led to short-lived proton elimination by R. pachyptila, as a result of the equilibration between internal and external inorganic carbon pools. U. caupo consistently exhibited proton elimination rates 5-20 times lower than those of L. cf luymesi and R. pachyptila upon exposure to sulfide. Treatment with specific ATPase inhibitors completely inhibited a fraction of proton elimination and sulfide and inorganic carbon uptake by R. pachyptila, suggesting that proton elimination occurs in large part via K(+)/H(+)-ATPases and Na(+)/H(+)-ATPases. In the light of these results, we suggest that protons are the primary waste product of the

  17. Process for thin film deposition of cadmium sulfide

    DOEpatents

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  18. Hydrogen Sulfide Generated by l-Cysteine Desulfhydrase Acts Upstream of Nitric Oxide to Modulate Abscisic Acid-Dependent Stomatal Closure1[C][W

    PubMed Central

    Scuffi, Denise; Álvarez, Consolación; Laspina, Natalia; Gotor, Cecilia; Lamattina, Lorenzo; García-Mata, Carlos

    2014-01-01

    Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells. PMID:25266633

  19. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure.

    PubMed

    Scuffi, Denise; Álvarez, Consolación; Laspina, Natalia; Gotor, Cecilia; Lamattina, Lorenzo; García-Mata, Carlos

    2014-12-01

    Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells. PMID:25266633

  20. (Trimethylsilyl)phosphine as a Versatile Reagent for Syntheses of New 4-Sila- and 4-Phosphaphosphorinanes.

    PubMed

    Hackney, Michael L. J.; Schubert, David M.; Brandt, Paul F.; Haltiwanger, R. C.; Norman, Arlan D.

    1997-04-23

    (Trimethylsilyl)phosphine (Me(3)SiPH(2)) undergoes radical P-H bond addition to vinylphosphines and -silanes to form new 4-phospha- and 4-silaphosphorinanes [vinyl reagent]: [PhP(CH=CH(2))(2)], PhP(C(2)H(4))(2)PSiMe(3) diastereomers (9A/9B); [Et(2)NP(CH=CH(2))(2)], Et(2)NP(C(2)H(4))(2)PSiMe(3) (11); [Me(2)Si(CH=CH(2))(2)], Me(2)Si(C(2)H(4))(2)PSiMe(3) (14); [Si(CH=CH(2))(4)], (CH=CH(2))(2)Si(C(2)H(4))(2)PSiMe(3) (16) and [Me(3)SiP(C(2)H(4))(2)](2)Si (17). Reactions are accompanied by formation of only small quantities of the Markovnikov addition product phospholanes. Methanolysis of the new silylphosphines yields PhP(C(2)H(4))(2)PH diastereomers (10A/10B), Me(2)Si(C(2)H(4))PH (15), (CH=CH(2))(2)Si(C(2)H(4))(2)PH (18), and [HP(C(2)H(4))(2)](2)Si (19). Stepwise methanolysis of 11 yields the phosphorinanes Et(2)NP(C(2)H(4))(2)PH (12) and MeOP(C(2)H(4))(2)PH (13). Oxidation of 15 and 14 with O(2) or O(2)/H(2)O, respectively, yields the phosphine oxide Me(2)Si(C(2)H(4))(2)P(O)H (20) and the phosphinic acid Me(2)Si(C(2)H(4))(2)P(O)OH (21). New compounds were characterized by spectral ((31)P, (1)H, and (13)C NMR, IR, and MS) data. 21 was further characterized by a single-crystal X-ray analysis: monoclinic, P2(1)/c, a = 10.416(2) Å, b = 6.817(1) Å, c = 14.237(3) Å, beta = 106.32(2) degrees, Z = 4, V = 970.3(3) Å(3). The ring of 21 adopts a chair conformation with the P=O bond in an equatorial position. From spectral data, tentative isomeric and conformational structural assignments are made for the new phosphorinanes in solution.

  1. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.

    PubMed

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-03-01

    Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.

  2. Dihydrogen Activation by Titanium Sulfide Complexes

    PubMed Central

    Sweeney, Zachary K.; Polse, Jennifer L.; Bergman*, Robert G.; Andersen*, Richard A.

    2005-01-01

    The titanocene sulfido complex Cp*2Ti(S)py (1, Cp* = pentamethylcyclopentadienyl; py = pyridine) is synthesized by addition of a suspension of S8 to a toluene solution of Cp*2Ti-(CH2CH2) (2) and py. The rate of rotation of the pyridine ligand in solution was determined by 1H NMR spectroscopy, and the structure of 1 was determined by X-ray crystallography. Complex 1 reacts reversibly with dihydrogen to give Cp*2Ti(H)SH (6) and py. Reaction of 1 with HD gives an equilibrium mixture of Cp*2Ti(D)SH and Cp*2Ti(H)SD; H2 and D2 are not formed in this reaction. 1D 1H NMR magnetization transfer spectra and 2D EXSY 1H NMR spectra of 6 in the presence of H2 show that in solution the H2, hydride, and hydrosulfido hydrogen atoms exchange. A four-center mechanism for this exchange is proposed. The EXSY studies show that the Ti–H and S–H hydrogens exchange with each other more rapidly than either of those hydrogens exchanges with external H2. A transient dihydrogen complex intermediate is proposed to explain this observation. The infrared spectrum of 6 shows an absorption assigned to the Ti–H stretching mode at 1591 cm−1 that shifts upon deuteration to 1154 cm−1. Reaction of 1 with trimethylsilane, diethylsilane, or dimethylsilane gives Cp*2-Ti(H)SSiMe3 (7), Cp*2Ti(H)SSiHEt2 (8), or Cp*2Ti(H)SSiHMe2 (9), respectively. The isotope effect for the reaction producing 7 has been measured, and a mechanism is proposed. Treatment of 1 with an additional equivalent of S8 results in the formation of the disulfide Cp*2Ti(S2) (4). Acetylene inserts into the Ti–S bond of 4 to produce the vinyl disulfide complex 5. The structures of 4 and 5 have been determined by X-ray diffraction. Compound 4 reacts with 2 in the presence of py to produce 1. Phosphines react with 4 in the presence of H2 to provide 6 and the corresponding phosphine sulfide. Reaction of hydrogen with 4 gives Cp*2-Ti(SH)2 (3). The reactions of 1 and 4 with dihydrogen provide a model for possible mechanisms of H2

  3. Microbial control of hydrogen sulfide production

    SciTech Connect

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  4. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  5. Nitratotris(triphenyl­phosphine)copper(I) methanol solvate

    PubMed Central

    Steyl, Gideon

    2009-01-01

    The title compound, [Cu(NO3)(C18H15P)3]·CH3OH, is a methanol solvate derivative of nitratotris(triphenyl­phos­phine)copper(I). The complex crystallizes with three triphenyl­phosphine ligands coordinated to the copper centre, with an O—H⋯O hydrogen bond observed between the nitrate ligand and the methanol solvent mol­ecule. The coordination around the CuI centre is distorted tetrahedral. PMID:21582060

  6. Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS

    NASA Technical Reports Server (NTRS)

    Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.

    2004-01-01

    On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.

  7. A convenient and selective palladium-catalyzed aerobic oxidation of alcohols.

    PubMed

    Gowrisankar, Saravanan; Neumann, Helfried; Gördes, Dirk; Thurow, Kerstin; Jiao, Haijun; Beller, Matthias

    2013-11-18

    An efficient procedure for the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively, with molecular oxygen under ambient conditions has been achieved. By applying catalytic amounts of Pd(OAc)2 in the presence of tertiary phosphine oxides (O=PR3) as ligands, a variety of substrates are selectively oxidized without formation of ester byproducts. Spectroscopic investigations and DFT calculations suggest stabilization of the active palladium(II) catalyst by phosphine oxide ligands.

  8. The response of phosphine-resistant lesser grain borer Rhyzopertha dominica and rice weevil Sitophilus oryzae in mixed-age cultures to varying concentrations of phosphine.

    PubMed

    Rajendran, Somiahnadar; Gunasekaran, Nagamuthu

    2002-03-01

    The response of Rhyzopertha dominica and Sitophilus oryzae (both phosphine-resistant) in mixed-age cultures to phosphine at fixed concentration-time products (CT) of 10,500 to 168,000 microliters litre 1 h (ppm h) with either constant, rising or falling concentrations for 7 days was studied at 27 (+/- 2) degrees C. At lower CT products, rising concentrations of phosphine led to significantly fewer survivors of R dominica and S oryzae. Conversely, exposure to falling concentrations of phosphine resulted in significantly more survivors. The influence of changing concentrations of phosphine was more pronounced in S oryzae than in R dominica. In the latter, at the lower CT products of 21,000 and 42,000 microliters-1 h, the adult stage proved to be most tolerant, contrary to the accepted belief that the egg or pupal stage are always more tolerant to phosphine. The results indicate that application of phosphine in rising concentrations is more effective than in constant or falling concentrations.

  9. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    PubMed

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  10. Chemical dissolution of sulfide minerals

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  11. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  12. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  13. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.

    PubMed

    Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J

    2005-01-01

    A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place. PMID:16206860

  14. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.

    PubMed

    Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J

    2005-01-01

    A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.

  15. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  16. Synthesis of γ-hydroxypropyl P-chirogenic (±)-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors

    PubMed Central

    Binyamin, Iris; Meidan-Shani, Shoval

    2015-01-01

    Summary The synthesis of P-chirogenic (±)-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent. PMID:26425187

  17. Experiments in Thermodynamics and Kinetics of Phosphine Substitution in (p-Cymene)RuCl[subscript 2](PR[subscript 3])

    ERIC Educational Resources Information Center

    Ozerov, Oleg V.; Fafard, Claudia M.; Hoffman, Norris W.

    2007-01-01

    This manuscript describes a set of three experiments that investigates the thermodynamic and kinetic aspects of phosphine substitution at a Ru center. In the first experiment, the students synthesize a Ru organometallic complex containing a phosphine ligand. In the second, equilibria for phosphine substitution involving several different…

  18. Synthesis and reactivity of α-cationic phosphines: the effect of imidazolinium and amidinium substituents.

    PubMed

    Haldón, Estela; Kozma, Ágnes; Tinnermann, Hendrik; Gu, Lianghu; Goddard, Richard; Alcarazo, Manuel

    2016-02-01

    Mono- and dicationic phosphines have been synthesized through the reaction of chloroimidazolinium or chloroamidinium salts with secondary or primary phosphines respectively. The resulting ligands, which depict a significantly reduced donor ability compared with their neutral analogues, have been used to design Pt(II) and Au(I) complexes that effectively catalyse the hydroarylation of alkynes.

  19. Modeling of Sulfide Microenvironments on Mars

    NASA Technical Reports Server (NTRS)

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  20. Transition Metal Complexes of Phosphinous Acids Featuring a Quasichelating Unit: Synthesis, Characterization, and Hetero-bimetallic Complexes.

    PubMed

    Allefeld, Nadine; Bader, Julia; Neumann, Beate; Stammler, Hans-Georg; Ignat'ev, Nikolai; Hoge, Berthold

    2015-08-17

    Diorganophosphane oxides were employed as preligands for the synthesis of catalytically active transition metal complexes of the phosphinous acids (CF3)2POH and (C2F5)2POH. Their reactions with solid PtCl2 and PdCl2 led to the formation of mononuclear phosphinous acid complexes [Cl2M{P(R(f))2OH}2] (M = Pd, Pt; R(f) = C2F5, CF3), which can be crystallized, for example, as its pyridinium salts, 2[HPy](+)[Cl2Pd{P(CF3)2O}2](2-). In vacuo HCl is liberated from the neutral palladium complexes affording mixtures of di- and polynuclear complexes. Moreover, (C2F5)2POH was reacted with several β-diketonato complexes of palladium, platinum, and nickel yielding air- and moisture-stable complexes [(acac)M{[P(R(f))2O]2H}], featuring a quasichelating phosphinous acid phosphinito unit {P(R(f))2O···H···O(R(f))2P}(-). Treatment of [Ni(Cp)2] (Cp = cyclopentadienyl) and [(cod)RhCl]2 (cod = 1,5-cyclooctadiene) with (C2F5)2POH leads to the substitution of one Cp or chloro ligand by a quasichelating unit. The novel coordination compounds were characterized by NMR and IR spectroscopies, mass spectrometry, and X-ray diffraction analysis. The platinum complex [(acac)Pt{[P(C2F5)2O]2H}] (acac = acetylacetonato) was used for the construction of hetero-bimetallic complexes by the treatment with [(cod)RhCl]2 and [Ni(Cp)2]. The trinuclear bimetallic complex [{(acac)Pt[P(C2F5)2O]2}2Ni] is the first structurally characterized hetero-bimetallic species containing a bis(perfluoroalkyl)phosphinito bridge.

  1. Phosphine-ligated dinitrosyl iron complexes for redox-controlled NO release.

    PubMed

    Wittkamp, F; Nagel, C; Lauterjung, P; Mallick, B; Schatzschneider, U; Apfel, U-P

    2016-06-21

    Here we present the syntheses and structural, spectroscopic, as well as electrochemical properties of four dinitrosyl iron complexes (DNICs) based on silicon- and carbon-derived di- and tripodal phosphines. Whereas CH3C(CH2PPh2)3 and Ph2Si(CH2PPh2)2 coordinate iron in a η(2) - binding mode, CH3Si(CH2PPh2)3 undergoes cleavage of one Si-C bond to afford [Fe(NO)2(P(CH3)Ph2)2] at elevated temperatures. The complexes were characterized by IR spectroelectrochemistry as well as UV-vis measurements. The oxidized {Fe(NO)2}(9) compounds were obtained by oxidation with (NH4)2[Ce(NO3)6] and their properties evaluated with Mössbauer and IR spectroscopy. Stability experiments on the complexes suggest that they are capable of releasing their NO-ligands in the oxidized {Fe(NO)2}(9) but not in the reduced {Fe(NO)2}(10) form. A detailed DFT analysis is provided in order to understand the electronic configurations and the complexes' ability to release NO. PMID:27241282

  2. Phosphine-ligated dinitrosyl iron complexes for redox-controlled NO release.

    PubMed

    Wittkamp, F; Nagel, C; Lauterjung, P; Mallick, B; Schatzschneider, U; Apfel, U-P

    2016-06-21

    Here we present the syntheses and structural, spectroscopic, as well as electrochemical properties of four dinitrosyl iron complexes (DNICs) based on silicon- and carbon-derived di- and tripodal phosphines. Whereas CH3C(CH2PPh2)3 and Ph2Si(CH2PPh2)2 coordinate iron in a η(2) - binding mode, CH3Si(CH2PPh2)3 undergoes cleavage of one Si-C bond to afford [Fe(NO)2(P(CH3)Ph2)2] at elevated temperatures. The complexes were characterized by IR spectroelectrochemistry as well as UV-vis measurements. The oxidized {Fe(NO)2}(9) compounds were obtained by oxidation with (NH4)2[Ce(NO3)6] and their properties evaluated with Mössbauer and IR spectroscopy. Stability experiments on the complexes suggest that they are capable of releasing their NO-ligands in the oxidized {Fe(NO)2}(9) but not in the reduced {Fe(NO)2}(10) form. A detailed DFT analysis is provided in order to understand the electronic configurations and the complexes' ability to release NO.

  3. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  4. Spectrophotometric method for determination of phosphine residues in cashew kernels.

    PubMed

    Rangaswamy, J R

    1988-01-01

    A spectrophotometric method reported for determination of phosphine (PH3) residues in wheat has been extended for determination of these residues in cashew kernels. Unlike the spectrum for wheat, the spectrum of PH3 residue-AgNO3 chromophore from cashew kernels does not show an absorption maximum at 400 nm; nevertheless, reading the absorbance at 400 nm afforded good recoveries of 90-98%. No interference occurred from crop materials, and crop controls showed low absorbance; the method can be applied for determinations as low as 0.01 ppm PH3 residue in cashew kernels.

  5. Phosphinate-containing heterocycles: A mini-review

    PubMed Central

    Berger, Olivier

    2014-01-01

    Summary This review provides an overview of recent efforts towards the synthesis of phosphinate heterocycles R1R2P(O)(OR). Our laboratory and others’ have been involved in this field and as a result new P–C, P–N, and P–O containing heterocyclic motifs are now available through a variety of methods. While developing rapidly, this area is still in its infancy so that biological testing of the compounds has not yet been conducted and applications are rare. The growing availability of synthetic methods will undoubtedly change this situation in the near future. PMID:24778726

  6. In vitro cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function.

    PubMed

    Downs, Craig A; Fauth, John E; Downs, Virgil D; Ostrander, Gary K

    2010-01-01

    The logistics involved in obtaining and maintaining large numbers of corals hampers research on the toxicological effects of environmental contaminants for this ecologically and economically important taxon. A method for creating and culturing single-cell suspensions of viable coral cells was developed. Cell segregation/separation was based on specific cell densities and resulting cell cultures were viable for at least 2 mos. Low-density cells lacking symbiotic zooxanthallae and rich in mitochondria were isolated and cultured for toxicity studies. Cells were exposed to differing degrees or concentrations of heat stress, rotenone, cyanide, sulfide, and cuprous oxide. Cells were assayed for mitochondrial membrane potential using the fluorescent probe, JC-9, and for overall viability using the MTT/formazan spectrophotometric viability assay. Significant differences were observed between controls and treatments and the efficacy of this method was validated; only 2 cm(2) of tissue was required for a seven-point concentration-exposure series.

  7. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  8. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  9. Do phosphine resistance genes influence movement and dispersal under starvation?

    PubMed

    Kaur, Ramandeep; Ebert, Paul R; Walter, Gimme H; Swain, Anthony J; Schlipalius, David I

    2013-10-01

    Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.

  10. Do phosphine resistance genes influence movement and dispersal under starvation?

    PubMed

    Kaur, Ramandeep; Ebert, Paul R; Walter, Gimme H; Swain, Anthony J; Schlipalius, David I

    2013-10-01

    Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field. PMID:24224272

  11. Influence of sulfide concentration on the corrosion behavior of titanium in a simulated oral environment.

    PubMed

    Harada, Rino; Takemoto, Shinji; Kinoshita, Hideaki; Yoshinari, Masao; Kawada, Eiji

    2016-05-01

    This study assessed the corrosion behavior of titanium in response to sulfide by determining the effects of sulfide concentration and pH over immersion period. Corrosion was evaluated through changes in color, glossiness, surface characterization, and titanium release. Sulfide solutions were prepared in 3 different concentrations with Na2S, each in pH unadjusted (sulfide-alkaline) and pH adjusted to 7.5 (sulfide-neutral). Titanium discoloration increased and glossiness decreased as sulfide concentration and immersion period increased in sulfide-alkaline solutions. Coral-like complexes were observed on the surface of these specimens, which became more pronounced as concentration increased. Small amounts of titanium release were detected in sulfide-alkaline solutions; however, this was not affected by immersion periods. Corrosion was indicated through considerable surface oxidation suggesting the formation of a thick oxide layer. No significant changes in color and glossiness, or titanium release were indicated for titanium specimens immersed in sulfide-neutral solutions indicating that pH had a significant effect on corrosion. Our findings suggest that a thick oxide layer on the titanium surface was formed in sulfide-alkaline solutions due to excessive oxidation.

  12. Influence of sulfide concentration on the corrosion behavior of titanium in a simulated oral environment.

    PubMed

    Harada, Rino; Takemoto, Shinji; Kinoshita, Hideaki; Yoshinari, Masao; Kawada, Eiji

    2016-05-01

    This study assessed the corrosion behavior of titanium in response to sulfide by determining the effects of sulfide concentration and pH over immersion period. Corrosion was evaluated through changes in color, glossiness, surface characterization, and titanium release. Sulfide solutions were prepared in 3 different concentrations with Na2S, each in pH unadjusted (sulfide-alkaline) and pH adjusted to 7.5 (sulfide-neutral). Titanium discoloration increased and glossiness decreased as sulfide concentration and immersion period increased in sulfide-alkaline solutions. Coral-like complexes were observed on the surface of these specimens, which became more pronounced as concentration increased. Small amounts of titanium release were detected in sulfide-alkaline solutions; however, this was not affected by immersion periods. Corrosion was indicated through considerable surface oxidation suggesting the formation of a thick oxide layer. No significant changes in color and glossiness, or titanium release were indicated for titanium specimens immersed in sulfide-neutral solutions indicating that pH had a significant effect on corrosion. Our findings suggest that a thick oxide layer on the titanium surface was formed in sulfide-alkaline solutions due to excessive oxidation. PMID:26952423

  13. Sulfide inhibition of and metabolism by cytochrome c oxidase.

    PubMed

    Nicholls, Peter; Marshall, Doug C; Cooper, Chris E; Wilson, Mike T

    2013-10-01

    Hydrogen sulfide (H2S), a classic cytochrome c oxidase inhibitor, is also an in vitro oxidase substrate and an in vivo candidate hormonal ('gasotransmitter') species affecting sleep and hibernation. H2S, nitric oxide (NO) and carbon monoxide (CO) share some common features. All are low-molecular-mass physiological effectors and also oxidase inhibitors, capable of binding more than one enzyme site, and each is an oxidizable 'substrate'. The oxidase oxidizes CO to CO2, NO to nitrite and sulfide to probable persulfide species. Mitochondrial cytochrome c oxidase in an aerobic steady state with ascorbate and cytochrome c is rapidly inhibited by sulfide in a biphasic manner. At least two successive inhibited species are involved, probably partially reduced. The oxidized enzyme, in the absence of turnover, occurs in at least two forms: the 'pulsed' and 'resting' states. The pulsed form reacts aerobically with sulfide to form two intermediates, 'P' and 'F', otherwise involved in the reaction of oxygen with reduced enzyme. Sulfide can directly reduce the oxygen-reactive a3CuB binuclear centre in the pulsed state. The resting enzyme does not undergo such a step, but only a very slow one-electron reduction of the electron-transferring haem a. In final reactivation phases, both the steady-state inhibition of catalysis and the accumulation of P and F states are reversed by slow sulfide oxidation. A model for this complex reaction pattern is presented. PMID:24059525

  14. Oxygenated phosphine fumigation for control of Epiphyas postvittana (Lepidoptera: Tortricidae) eggs on lettuce.

    PubMed

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2014-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), is a quarantined pest in most countries. Its establishment in California and potential spread to other parts of the state and beyond make it urgent to develop effective postharvest treatments to control the pest on fresh commodities. Fumigation with cylindered phosphine at low temperature has emerged to be a practical methyl bromide alternative treatment for postharvest pest control on fresh commodities. However, its use to control E. postvittana eggs on sensitive commodities such as lettuce is problematic. E. postvittana eggs are tolerant of phosphine and long phosphine treatment also injures lettuce. In the current study, E. postvittana eggs were subjected to oxygenated phosphine fumigations to develop an effective treatment at a low storage temperature of 2 degrees C. In addition, soda lime as a CO2 absorbent was tested to determine its effects in reducing and preventing injuries to lettuce associated with phosphine fumigations. Three-day fumigation with 1,000 ppm phosphine under 60% O2 achieved 100% mortality of E. postvittana eggs in small-scale laboratory tests. In the presence of the CO2 absorbent, a 3-d large-scale fumigation of lettuce with 1,700 ppm phosphine under 60% O2 resulted in a relative egg mortality of 99.96% without any negative effect on lettuce quality. The 3-d fumigation treatment without the CO2 absorbent, however, resulted in significant injuries to lettuce and consequential quality reductions. The study demonstrated that oxygenated phosphine fumigation has the potential to control E. postvittana eggs and the CO2 absorbent has the potential to prevent injuries and quality reductions of lettuce associated with long-term oxygenated phosphine fumigation.

  15. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur.

    PubMed

    Canfield, D E; Thamdrup, B

    1994-12-23

    Bacteria that disproportionate elemental sulfur fractionate sulfur isotopes such that sulfate is enriched in sulfur-34 by 12.6 to 15.3 per mil and sulfide is depleted in sulfur-34 by 7.3 to 8.6 per mil. Through a repeated cycle of sulfide oxidation to S0 and subsequent disproportionation, these bacteria can deplete sedimentary sulfides in sulfur-34. A prediction, borne out by observation, is that more extensive sulfide oxidation will lead to sulfides that are more depleted in sulfur-34. Thus, the oxidative part of the sulfur cycle creates circumstances by which sulfides become more depleted in sulfur-34 than would be possible with sulfate-reducing bacteria alone.

  16. The Production of 34S-Depleted Sulfide During Bacterial Disproportionation of Elemental Sulfur

    NASA Astrophysics Data System (ADS)

    Canfield, Donald E.; Thamdrup, Bo

    1994-12-01

    Bacteria that disproportionate elemental sulfur fractionate sulfur isotopes such that sulfate is enriched in sulfur-34 by 12.6 to 15.3 per mil and sulfide is depleted in sulfur-34 by 7.3 to 8.6 per mil. Through a repeated cycle of sulfide oxidation to S^0 and subsequent disproportionation, these bacteria can deplete sedimentary sulfides in sulfur-34. A prediction, borne out by observation, is that more extensive sulfide oxidation will lead to sulfides that are more depleted in sulfur-34. Thus, the oxidative part of the sulfur cycle creates circumstances by which sulfides become more depleted in sulfur-34 than would be possible with sulfate-reducing bacteria alone.

  17. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Thamdrup, B.

    1994-01-01

    Bacteria that disproportionate elemental sulfur fractionate sulfur isotopes such that sulfate is enriched in sulfur-34 by 12.6 to 15.3 per mil and sulfide is depleted in sulfur-34 by 7.3 to 8.6 per mil. Through a repeated cycle of sulfide oxidation to S0 and subsequent disproportionation, these bacteria can deplete sedimentary sulfides in sulfur-34. A prediction, borne out by observation, is that more extensive sulfide oxidation will lead to sulfides that are more depleted in sulfur-34. Thus, the oxidative part of the sulfur cycle creates circumstances by which sulfides become more depleted in sulfur-34 than would be possible with sulfate-reducing bacteria alone.

  18. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.

    PubMed

    Tangerman, Albert

    2009-10-15

    This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH) group and appear in the free gaseous form, in the acid-labile form and in the dithiothreitol-labile form. Dimethyl sulfide is a neutral molecule and exists only in the free form. The foul odor of these sulfur volatiles is a striking characteristic and plays a major role in bad breath, feces and flatus. Because sulfur is a biologically active element, the biological significance of the sulfur volatiles are also highlighted. Despite its highly toxic properties, hydrogen sulfide has been lately recommended to become the third gasotransmitter, next to nitric oxide and carbon monoxide, based on high concentration found in healthy tissues, such as blood and brain. However, there is much doubt about the reliability of the assay methods used. Many artifacts in the sulfide assays exist. The methods to detect the various forms of hydrogen sulfide are critically reviewed and compared with findings of our group. Recent findings that free gaseous hydrogen sulfide is absent in whole blood urged the need to revisit its role as a blood-borne signaling molecule.

  19. Photophysical studies of chromium sensitizers designed for excited state hole transfer to semiconductors and sequential hole/electron transfers from photoexcited cadmium sulfide nanorods to mononuclear ruthenium water-oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Tseng, Huan-Wei

    a photoexcited cadmium sulfide nanorod and [Ru(diethyl 2,2'-bipyridine-4,4'-dicarboxylate)(2,2':6',2"-terpyridine)Cl] +, a mononuclear water-oxidation catalyst. Upon photoexcitation, hole transfer from the cadmium sulfide nanorod oxidizes the catalyst (Ru 2+ → Ru3+) on a 100 ps to 1 ns timescale. This is followed by electron transfer (10-100 ns) from the nanorod to reduce the Ru3+ center. The relatively slow electron transfer dynamics may provide opportunities for the accumulation of multiple holes at the catalyst, which is required for water oxidation.

  20. Line Intensities of the Phosphine Dyad at 10 mu m

    SciTech Connect

    Brown, Linda R.; Sams, Robert L.; Kleiner, Isabelle; Cottaz, C; Sagui, L

    2002-10-01

    Over 1000 measured line intensities of phosphine (PH3) are reported for the 830 to 1310 cm-1 region that contains the two lowest fundamentals in Coriolis interaction. These measurements are fitted to 1.5% for v2 at 992.13 cm-1 for v4 at 1118.31 cm-1, respectively, using five intensity parameters that include three Herman-Wallis type terms. In addition, some 60 intensities of the 2v2-v2 hot band are modeled. The corresponding assignments and line positions of the dyad from previous work [L. Fusina and G. Di Lonardo, J. Mol. Struct. 517-518, 67-78 (2000)] are combined with the present intensity study to provide an improved PH3 database for planetary studies. The total integrated intensity for the dyad is 156.(4) cm-2atm-1 at 296 K.