Science.gov

Sample records for phosphodiesterase iii inhibitor

  1. The matching of electrostatic extrema: A useful method in drug design? A study of phosphodiesterase III inhibitors

    NASA Astrophysics Data System (ADS)

    Apaya, Robert P.; Lucchese, Baldo; Price, Sarah L.; Vinter, J. G.

    1995-02-01

    Ligands which bind to a specific protein binding site are often expected to have a similar electrostatic environment which complements that of the binding site. One method of assessing molecular electrostatic similarity is to examine the possible overlay of the maxima and minima in the electrostatic potential outside the molecules and thereby match the regions where strong electrostatic interactions, including hydrogen bonds, with the residues of the binding site may be possible. This approach is validated with accurate calculations of the electrostatic potential, derived from a distributed multipole analysis of an ab initio charge density of the molecule, so that the effects of lone pair and π-electron density are correctly included. We have applied this method to the phosphodiesterase (PDE) III substrate adenosine-3',5'-cyclic monophosphate (cAMP) and a range of nonspecific and specific PDE III inhibitors. Despite the structural variation between cAMP and the inhibitors, it is possible to match three or four extrema to produce relative orientations in which the inhibitors are sufficiently sterically and electrostatically similar to the natural substrate to account for their affinity for PDE III. This matching of extrema is more apparent using the accurate electrostatic models than it was when this approach was first applied, using semiempirical point charge models. These results reinforce the hypothesis of electrostatic similarity and give weight to the technique of extrema matching as a useful tool in drug design.

  2. Effects of the new phosphodiesterase-III inhibitor R80122 on contractility and calcium current in human cardiac tissue.

    PubMed

    Li, Q; Himmel, H M; Ravens, U

    1994-07-01

    The selective phosphodiesterase III (PDE-III) inhibitor R80122 ((E)-N-cyclohexal-N-methyl-2-[[[phenyl-(1,2,3,5- tetrahydro-2-oxoimidazo-[2,1b]-quinazolin-7-yl)-methylene]-a mino]-oxy]-acetamide) has been reported to possess greater cardiotonic potency and less side effects than the standard compounds milrinone or enoximone. To characterize this new compound further, we investigated the effects of R80122 on force of contraction (Fc) and calcium current (ICa) in human right atrium (HRA) and human left ventricle (HLV) with reference to the nonselective PDE-inhibitor IBMX (3-isobutyl-1-methylxanthine). With "late" exposure (300- to 330-min equilibration) of human atrial trabeculae, R80122 (3 microM) increased Fc by 60 +/- 11%; log EC50 was -6.2 +/- 0.1. R80122 (3 microM) induced a relative leftward shift of forskolin concentration-response curves by 0.34 log units; the respective value for IBMX (20 microM) was 0.46. A positive inotropic effect of R80122 was also shown in guinea pig papillary muscles. ICa was measured in voltage-clamped isolated myocytes of human right atrial and left ventricular (LV) tissue, and, for comparison, guinea pig ventricle. With clamp steps from -40 to +5 mV, R80122 (3 microM) increased peak ICa from 3.1 +/- 0.2 to 5.4 +/- 0.3 pA/pF in HRA cells, from 2.9 +/- 0.4 to 5.1 +/- 0.6 pA/pF in HLV cells, and from 4.4 +/- 0.3 to 6.6 +/- 0.5 pA/pF in guinea pig myocytes. IBMX 20 microM increased ICa to a greater extent. Washout or addition of carbachol 10 microM partially reversed the effect of R80122. Voltage dependence, inactivation time course, and steady-state inactivation of ICa were little changed by either compound. Stimulation of Ca2+ influx by L-type Ca2+ channels contributes to the positive inotropic effect of the selective PDE-III inhibitor R80122.

  3. Phosphodiesterase inhibitors: history of pharmacology.

    PubMed

    Schudt, Christian; Hatzelmann, Armin; Beume, Rolf; Tenor, Hermann

    2011-01-01

    The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.

  4. Strategic approaches to drug design. II. Modelling studies on phosphodiesterase substrates and inhibitors

    NASA Astrophysics Data System (ADS)

    Davis, A.; Warrington, B. H.; Vinter, J. G.

    1987-07-01

    Modelling studies have been carried out on the phosphodiesterase (PDE) substrates, adenosine- and guanosine-3'5'-cyclic monophosphates, and on a number of non-specific and type III-specific phosphodiesterase inhibitors. These studies have assisted the understanding of PDE substrate differentiation and the design of potent, selective PDE type III inhibitors.

  5. Selective Phosphodiesterase 4B Inhibitors: A Review

    PubMed Central

    Azam, Mohammed Afzal; Tripuraneni, Naga Srinivas

    2014-01-01

    Abstract Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B. PMID:25853062

  6. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.

    PubMed

    Kovalishyn, Vasyl; Tanchuk, Vsevolod; Charochkina, Larisa; Semenuta, Ivan; Prokopenko, Volodymyr

    2012-02-01

    A series of diverse organic compounds, phosphodiesterase type 4 (PDE-4) inhibitors, have been modeled using a QSAR-based approach. 48 QSAR models were compared by following the same procedure with different combinations of descriptors and machine learning methods. QSAR methodologies used random forests and associative neural networks. The predictive ability of the models was tested through leave-one-out cross-validation, giving a Q² = 0.66-0.78 for regression models and total accuracies Ac=0.85-0.91 for classification models. Predictions for the external evaluation sets obtained accuracies in the range of 0.82-0.88 (for active/inactive classifications) and Q² = 0.62-0.76 for regressions. The method showed itself to be a potential tool for estimation of IC₅₀ of new drug-like candidates at early stages of drug development. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Phosphodiesterase Inhibitors as Therapeutics for Traumatic Brain Injury

    PubMed Central

    Titus, David J.; Oliva, Anthony A.; Wilson, Nicole M.; Atkins, Coleen M.

    2014-01-01

    Developing therapeutics for traumatic brain injury remains a challenge for all stages of recovery. The pathological features of traumatic brain injury are diverse, and it remains an obstacle to be able to target the wide range of pathologies that vary between traumatic brain injured patients and that evolve during recovery. One promising therapeutic avenue is to target the second messengers cAMP and cGMP with phosphodiesterase inhibitors due to their broad effects within the nervous system. Phosphodiesterase inhibitors have the capability to target different injury mechanisms throughout the time course of recovery after brain injury. Inflammation and neuronal death are early targets of phosphodiesterase inhibitors, and synaptic dysfunction and circuitry remodeling are late potential targets of phosphodiesterase inhibitors. This review will discuss how signaling through cyclic nucleotides contributes to the pathology of traumatic brain injury in the acute and chronic stages of recovery. We will review our current knowledge of the successes and challenges of using phosphodiesterase inhibitors for the treatment of traumatic brain injury and conclude with important considerations in developing phosphodiesterase inhibitors as therapeutics for brain trauma. PMID:25159077

  8. [Phosphodiesterase-5 inhibitors for the treatment of pulmonary arterial hypertension].

    PubMed

    Beltrán-Gámez, Miguel E; Sandoval-Zárate, Julio; Pulido, Tomás

    2015-01-01

    In experimental and clinical cardiology, phosphodiesterase type 5 (PDE-5) inhibitors have brought scientific interest as a therapeutic tool in pulmonary arterial hypertension (PAH) management in recent years. Phosphodiesterases are a superfamily of enzymes that inactivate cyclic adenosine monophosphate and cyclic guanosine monophosphate, the second messengers of prostacyclin and nitric oxide. The rationale for the use of PDE-5 inhibitors in PAH is based on their capacity to overexpresss the nitric oxide pathway pursued inhibition of cyclic guanosine monophosphate hydrolysis. By increasing cyclic guanosine monophosphate levels it promotes vasodilation, antiproliferative and pro-apoptotic effects that may reverse pulmonary vascular remodeling. There is also evidence that these drugs may directly enhance right ventricular contractility through an increase in cyclic adenosine monophosphate mediated by the inhibition of the cyclic guanosine monophosphate -sensitive PDE-3. Sildenafil, tadalafil and vardenafil are 3 specific PDE-5 inhibitors in current clinical use, which share similar mechanisms of action but present some significant differences regarding potency, selectivity for PDE-5 and pharmacokinetic properties. Sildenafil received approval in 2005 by the Food and Drug Administration and the European Medicines Agency and tadalafil in 2009 by the Food and Drug Administration and the European Medicines Agency for the treatment of PAH in patients classified as NYHA/WHO functional class II and III. In Mexico, sildenafil and tadalafil were approved by Comisión Federal de Protección contra Riesgos Sanitarios for this indication in 2010 and 2011, respectively. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  9. Diabetic nephropathy: Treatment with phosphodiesterase type 5 inhibitors.

    PubMed

    Thompson, Cecil Stanley

    2013-08-15

    The importance of nitric oxide (NO) in vascular physiology is irrefutable; it stimulates the intracellular production of cyclic guanosine monophosphate (cGMP), initiating vascular smooth muscle relaxation. This biochemical process increases the diameter of small arteries, regulating blood flow distribution between arterioles and the microvasculature. The kidney is no exception, since NO predominantly dilates the glomerular afferent arterioles. It is now evident that the vascular production of cGMP can be augmented by inhibitors of phosphodiesterase type 5 (PDE 5), the enzyme which breakdowns this cyclic nucleotide. This has clinical relevance, since diabetic nephropathy (DN) a major microvascular complication of diabetes mellitus and the most common cause of end-stage renal disease, increases intraglomerular capillary pressure, leading to glomerular hypertension. PDE 5 inhibitors may have, therefore, the potential to reduce glomerular hypertension. This review describes the use of PDE 5 inhibitors to improve the metabolic, haemodynamic and inflammatory pathways/responses, all of which are dysfunctional in DN.

  10. Therapeutic utility of phosphodiesterase type I inhibitors in neurological conditions.

    PubMed

    Medina, Alexandre E

    2011-01-01

    Neuronal plasticity is an essential property of the brain that is impaired in different neurological conditions. Phosphodiesterase type 1 (PDE1) inhibitors can enhance levels of the second messengers cAMP/cGMP leading to the expression of neuronal plasticity-related genes, neurotrophic factors, and neuroprotective molecules. These neuronal plasticity enhancement properties make PDE1 inhibitors good candidates as therapeutic agents in many neurological conditions. However, the lack of specificity of the drugs currently available poses a challenge to the systematic evaluation of the beneficial effect of these agents. The development of more specific drugs may pave the way for the use of PDE1 inhibitors as therapeutic agents in cases of neurodevelopmental conditions such as fetal alcohol spectrum disorders and in degenerative disorders such as Alzheimer's and Parkinson's.

  11. Effect of some phosphodiesterase inhibitors on central dopamine mechanisms.

    PubMed

    Fredholm, B B; Fuxe, K; Agnati, L

    1976-07-01

    The effect of five phosphodiesterase (PDE) inhibitors (papaverine, IBMX, theophyllamine, dipyridamol and M & B 22,948) was studied on adenylate cyclase and on cyclic nucleotide phosphodiesterase activities in extracts of rat caudate nucleus. For comparison the effect on DA turnover and on turning behaviour in rats with unilateral lesions of the nigro-neostriatal DA nerurons was studied. Cyclic AMP PDE was inhibited by papaverine, dipyridamol, IBMX, M & B 22,948 and theophyllamine in that order of potency. Cylcic GMP PDE was inhibited by IBMX, papaverine, M & B 22,948 and theophyllamine, but not by dipyridamol. Basal adenylate cyclase washigher if assayed in the presence of papaverine or dipyridamol than if theophyllamine or IBMX was present. The degree of stimulation caused by DA was not significantly influenced by the PDE inhibitors. Papaverine and dipyridamol enhanced DA disappearance in the caudate nucleus and the tuberculum accumbens, but not in the median eminence. Caffeine had no significant effect. Papaverine (1-28 mg/kg) had no signigicant effect on L-dopa (5 mg/kg)-induced turning, and actually inhibited turning induced by the combination of L-dopa (10 mg/kg) and atropine (5 mg/kg). The other four PDE inhibitors all potentiated L-dopa-induced turning. Theophyllamine (20 mg/kg) and IBMX (5 mg/kg) even caused turning when given alone. The data are compatible with the opinion that PDE inhibition leads to an enhanced effect of DA in the caudate nucleus. However, the results also demonstrate that several of the PDE inhibitors have effects on central DA mechanisms that are difficult to explain solely on the basis of PED inhibition.

  12. Identification and Characterization of Baicalin as a Phosphodiesterase 4 Inhibitor.

    PubMed

    Park, Kyuhee; Lee, Jong Suk; Choi, Jung Suk; Nam, Yeon-Ju; Han, Jong-Heon; Byun, Hoo-Dhon; Song, Myung-Jin; Oh, Joa-Sup; Kim, Sung Gyu; Choi, Yongmun

    2016-01-01

    Asthma is a chronic inflammatory disease of lung airways, and pharmacological inhibitors of cyclic adenosine monophosphate-specific phosphodiesterase 4 (PDE4) have been considered as therapeutics for the treatment of asthma. However, development of PDE4 inhibitors in clinical trials has been hampered because of the severe side effects of non-selective PDE4 inhibitors. Here, screening of a plant extract library in conjunction with dereplication technology led to identification of baicalin as a new type of PDE4-selective inhibitor. We demonstrated that while rolipram inhibited the enzyme activity of a range of PDE4 subtypes in in vitro enzyme assays, baicalin selectively inhibited the enzyme activity of PDE4A and 4B. In addition, baicalin suppressed lipopolysaccharide-induced TNF-α expression in macrophage where PDE4B plays a key role in lipopolysaccharide-induced signaling. Furthermore, baicalin treatment in an animal model of allergic asthma reduced inflammatory cell infiltration and TNF-α levels in bronchoalveolar lavage fluids, indicating that the antiinflammatory effects of baicalin in vivo are attributable, in part, to its ability to inhibit PDE4. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Sildenafil and Phosphodiesterase-5 Inhibitors to Reduce Cardiotoxicity and Enhance the Response of Breast Tumors to Doxorubicin

    DTIC Science & Technology

    2007-03-01

    AD_________________ Award Number: W81XWH-06-1-0360 TITLE: Sildenafil and phosphodiesterase-5...Feb 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Sildenafil and phosphodiesterase-5 inhibitors to reduce cardiotoxicity and enhance the...the differential effects of phosphodiesterase inhibitors, such as sildenafil , in terms of protecting cardiac cells and the heart from the toxicity

  14. Practical enantioselective process for a chiral phosphodiesterase-4 inhibitor.

    PubMed

    Chen, Cheng-Yi

    2005-11-01

    L-869298 is a potent and selective phosphodiesterase-4 (PDE4) inhibitor, which is potentially useful in the treatment of asthma and chronic obstructive pulmonary disorder. A catalytic asymmetric synthesis that is suitable for the preparation of kilogram quantities of L-869298, and which does not require the use of chromatography, has been developed to support the on-going drug development program of L-869298 at Merck Research Laboratories. The catalytic asymmetric hydrogenation of an aromatic heteroaromatic ketone afforded the corresponding alcohol in almost perfect enantioselectivity. Activation of the alcohol via formation of the 4-toluenesulfonate, followed by an unprecedented displacement of the tosylate via the lithium enolate of ethyl-3-pyridyl acetate N-oxide, generated the chiral tetra-substituted ethane. The displacement reaction proceeded with inversion of configuration and without loss of optical purity. Deprotection of the displacement adduct followed by decarboxylation, afforded L-869298 in excellent overall yield. The methodology developed could be readily extended to the synthesis of several other chiral PDE4 inhibitors.

  15. The Wonders of Phosphodiesterase-5 Inhibitors: A Majestic History.

    PubMed

    Elhwuegi, A S

    2016-01-01

    The Nobel Prize winning discovery of nitric oxide (NO) in 1986 was the starting point for a new innovation in drug discovery. NO acting as a mediator at different physiological systems is believed to be involved in many physiological and pathological conditions through the formation of the second messenger cyclic guanosine monophosphate (cGMP). cGMP-dependent vasodilation effect of NO is important in regulating pulmonary and systemic pressures, maintaining penis erection, preventing atherosclerosis, preventing platelet aggregation, and protecting and controlling cardiac functions. The main enzyme involved in the termination of cGMP effects is phosphodiesterase enzyme 5 (PDE-5), which is overexpressed in ventricular hypertrophy and heart failure. A milestone in drug discovery was the selective inhibitors of PDE-5 that developed to be a multibillion dollar blockbuster in drug market. PDE-5 inhibitors are approved for the treatment of erectile dysfunctions (EDs), pulmonary hypertension, and benign prostatic hypertrophy. They are also under clinical trials for their cardiac protection against damage induced by ischemia or heart failure. This review article is an update about the pharmacotherapeutics of PDE-5 inhibitors and the majestic history that led to their discovery. The information reported in this review was obtained from the electronic sources of different databases such as PubMed Central, Google Scholar, and Scopus. Keywords used for search included cGMP (mechanisms and functions), EDs (drugs used), nitric oxide, and PDE-5 inhibitors (clinical applications). A total of 165 articles were studied, of which 45 articles were referred to in this review.

  16. The Wonders of Phosphodiesterase-5 Inhibitors: A Majestic History

    PubMed Central

    Elhwuegi, AS

    2016-01-01

    The Nobel Prize winning discovery of nitric oxide (NO) in 1986 was the starting point for a new innovation in drug discovery. NO acting as a mediator at different physiological systems is believed to be involved in many physiological and pathological conditions through the formation of the second messenger cyclic guanosine monophosphate (cGMP). cGMP-dependent vasodilation effect of NO is important in regulating pulmonary and systemic pressures, maintaining penis erection, preventing atherosclerosis, preventing platelet aggregation, and protecting and controlling cardiac functions. The main enzyme involved in the termination of cGMP effects is phosphodiesterase enzyme 5 (PDE-5), which is overexpressed in ventricular hypertrophy and heart failure. A milestone in drug discovery was the selective inhibitors of PDE-5 that developed to be a multibillion dollar blockbuster in drug market. PDE-5 inhibitors are approved for the treatment of erectile dysfunctions (EDs), pulmonary hypertension, and benign prostatic hypertrophy. They are also under clinical trials for their cardiac protection against damage induced by ischemia or heart failure. This review article is an update about the pharmacotherapeutics of PDE-5 inhibitors and the majestic history that led to their discovery. The information reported in this review was obtained from the electronic sources of different databases such as PubMed Central, Google Scholar, and Scopus. Keywords used for search included cGMP (mechanisms and functions), EDs (drugs used), nitric oxide, and PDE-5 inhibitors (clinical applications). A total of 165 articles were studied, of which 45 articles were referred to in this review. PMID:27398244

  17. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.

    PubMed

    Chong, Jimmy; Leung, Bonnie; Poole, Phillippa

    2013-11-04

    Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE4) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. To evaluate the efficacy and safety of oral PDE4 inhibitors in the management of stable COPD. We identified randomised controlled trials (RCTs) from the Cochrane Airways Group Specialised Register of trials (date of last search June 2013). We found other trials from web-based clinical trial registers. We included RCTs if they compared oral PDE4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. One review author extracted data and a second review author checked the data, before entry into The Cochrane Collaboration software program (RevMan version 5.2). We reported pooled data as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). Twenty-nine separate RCTs studying roflumilast (15 trials, 12,654 patients) or cilomilast (14 trials, 6457 patients) met the inclusion criteria, with a duration between six weeks and one year. These included people across international study centres with moderate to very severe COPD (GOLD grades II-IV), with a mean age of 64 years.Treatment with a PDE4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV1) over the trial period compared with placebo (MD 45.60 mL; 95% confidence interval (CI) 39.45 to 51.75, 22 trials with 15,670 participants, moderate quality evidence due to moderate levels of heterogeneity and risk of reporting bias). There were small improvements in quality of life (St George's Respiratory Questionnaire MD -1.04; 95% CI -1.66 to -0.41, 10 trials with 7618 participants, moderate

  18. The Association between Phosphodiesterase Type 5 Inhibitors and Prostate Cancer: Results from the REDUCE Study.

    PubMed

    Jamnagerwalla, Juzar; Howard, Lauren E; Vidal, Adriana C; Moreira, Daniel M; Castro-Santamaria, Ramiro; Andriole, Gerald L; Freedland, Stephen J

    2016-09-01

    Despite routine use of phosphodiesterase type 5 inhibitor to treat erectile dysfunction the role in prostate cancer chemoprevention remains unclear. Only a few studies have explored the link between phosphodiesterase type 5 inhibitor use and prostate cancer. We tested the association between phosphodiesterase type 5 inhibitor and prostate cancer risk in the REDUCE (Reduction by Dutasteride of Prostate Cancer Events) trial. REDUCE was a 4-year multicenter study testing the effect of daily dutasteride on prostate cancer risk in men with prostate specific antigen 2.5 to 10.0 ng/ml and negative biopsy who underwent study mandated biopsies at 2 and 4 years. The association of phosphodiesterase type 5 inhibitor with overall prostate cancer risk and disease grade (Gleason 2-6 and 7-10) was examined using adjusted logistic and multinomial regression analysis. Secondary analysis was performed to explore the association between phosphodiesterase type 5 inhibitor and prostate cancer risk in North American men, given the significantly higher use of phosphodiesterase type 5 inhibitor in these subjects. Phosphodiesterase type 5 inhibitor was not associated with prostate cancer diagnosis (OR 0.90, 95% CI 0.68-1.20, p = 0.476), low grade disease (OR 0.93, 95% CI 0.67-1.27, p = 0.632) or high grade disease (OR 0.85, 95% CI 0.51-1.39, p = 0.508). An inverse trend was seen between phosphodiesterase type 5 inhibitor and prostate cancer diagnosis in North American men but this was not statistically significant (OR 0.67, 95% CI 0.42-1.07, p = 0.091). Phosphodiesterase type 5 inhibitor use was not associated with decreased prostate cancer diagnoses on post-hoc analysis of REDUCE. In North American men, who had much higher baseline use of phosphodiesterase type 5 inhibitor, this treatment was associated with an inverse trend of prostate cancer diagnosis that approached but did not reach statistical significance. Copyright © 2016 American Urological Association Education and

  19. Phosphodiesterase type 5 inhibitor abuse: a critical review.

    PubMed

    Lowe, Gregory; Costabile, Raymond

    2011-06-01

    Abuse of sildenafil has been reported since its introduction in 1999 and commonly documented in combination with illicit drugs among men and women of all ages. Increased risks of sexually transmissible diseases including HIV have been associated with sildenafil use in men who have sex with men. Recognizing the abuse potential of phosphodiesterase type 5 inhibitors (PDE5), we aim to summarize the current knowledge of this abuse. An investigation of EMBASE, PubMed, the Food and Drug Administration (FDA) website, MedWatch, and search engines was performed to evaluate information regarding sildenafil, tadalafil, and vardenafil abuse. The EMBASE search provided 46 articles fitting the search criteria and evaluation led to 21 separate publications with specific information regarding PDE5 abuse. A PubMed search found 10 additional publications. MedWatch reported 44 separate warnings since 2000, most of which reported contamination of herbal products with active drug components. Few reports of abuse were among the 14,818 reports in the FDA AERS for sildenafil. A search for "internet drug store" revealed 6.4 million hits and of 7000 internet pharmacies identified by the Verified Internet Pharmacy Practice Sites Program (VIPPS) only 4% were in proper compliance. The role internet pharmacies play in counterfeit PDE5 or abuse is not well documented; however based on easy access, direct patient marketing, and low advertised cost it is likely this role is underreported. Currently the best recommendation for providers is to recognize the possibility of abuse and to educate patients on risks of this behavior.

  20. Counterfeit phosphodiesterase type 5 inhibitors pose significant safety risks

    PubMed Central

    Jackson, G; Arver, S; Banks, I; Stecher, V J

    2010-01-01

    Counterfeit drugs are inherently dangerous and a growing problem; counterfeiters are becoming increasingly sophisticated. Growth of the counterfeit medication market is attributable in part to phosphodiesterase type 5 inhibitor (PDE5i) medications for erectile dysfunction (ED). Millions of counterfeit PDE5is are seized yearly and account for the bulk of all counterfeit pharmaceutical product seizures. It has been estimated that up to 2.5 million men in Europe are exposed to illicit sildenafil, suggesting that there may be as many illegal as legal users of sildenafil. Analysis of the contents of counterfeit PDE5is shows inconsistent doses of active pharmaceutical ingredients (from 0% to > 200% of labelled dose), contaminants (including talcum powder, commercial paint and printer ink) and alternative ingredients that are potentially hazardous. In one analysis, only 10.1% of samples were within 10% of the labelled tablet strength. Estimates place the proportion of counterfeit medications sold over the Internet from 44% to 90%. Of men who purchase prescription-only medication for ED without a prescription, 67% do so using the Internet. Counterfeit PDE5is pose direct and indirect risks to health, including circumvention of the healthcare system. More than 30% of men reported no healthcare interaction when purchasing ED medications. Because > 65% actually had ED, these men missed an opportunity for evaluation of comorbidities (e.g. diabetes and hypertension). Globally, increased obstacles for counterfeiters are necessary to combat pharmaceutical counterfeiting, including fines and penalties. The worldwide nature of the counterfeit problem requires proper coordination between countries to ensure adequate enforcement. Locally, physicians who treat ED need to inform patients of the dangers of ordering PDE5is via the Internet. PMID:20088883

  1. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.

    PubMed

    Chong, Jimmy; Leung, Bonnie; Poole, Phillippa

    2017-09-19

    Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE4) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This is an update of a Cochrane review first published in 2011 and updated in 2013. To evaluate the efficacy and safety of oral PDE4 inhibitors in the management of stable COPD. We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search October 2016). We found other trials from web-based clinical trials registers. We included RCTs if they compared oral PDE4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. One review author extracted data and a second review author checked the data. We reported pooled data in Review Manager as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). We converted the odds ratios into absolute treatment effects in a 'Summary of findings' table. Thirty-four separate RCTs studying roflumilast (20 trials with 17,627 participants) or cilomilast (14 trials with 6457 participants) met the inclusion criteria, with a duration of between six weeks and one year. These included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II-IV), with a mean age of 64 years.We considered that the methodological quality of the 34 published and unpublished trials was acceptable overall. Treatment with a PDE4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV1) over the trial period compared with placebo (MD 51.53 mL, 95% confidence interval (CI) 43.17 to 59.90, 27 trials with

  2. Discovery of a highly potent series of oxazole-based phosphodiesterase 4 inhibitors.

    PubMed

    Kuang, Rongze; Shue, Ho-Jane; Blythin, David J; Shih, Neng-Yang; Gu, Danlin; Chen, Xiao; Schwerdt, John; Lin, Ling; Ting, Pauline C; Zhu, Xiaohong; Aslanian, Robert; Piwinski, John J; Xiao, Li; Prelusky, Daniel; Wu, Ping; Zhang, Ji; Zhang, Xiang; Celly, Chander S; Minnicozzi, Michael; Billah, Motasim; Wang, Peng

    2007-09-15

    Substituted quinolyl oxazoles were discovered as a novel and highly potent series of phosphodiesterase 4 (PDE4) inhibitors. Structure-activity relationship studies revealed that the oxazole core, with 4-carboxamide and 5-aminomethyl groups, is a novel PDE4 inhibitory pharmacophore. Selectivity profiles and in vivo biological activity are also reported.

  3. Intravenously administered phosphodiesterase 4 inhibitors dilate retinal blood vessels in rats.

    PubMed

    Miwa, Tomoyo; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2009-01-05

    In the present study, we examined effects of intravenously administered inhibitors of phosphodiesterase 4 (rolipram and 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro-20-1724)) and non-selective inhibitor of phosphodiesterases (theophylline) on diameter of retinal blood vessel and fundus (retinal/choroidal) blood flow in rats. Male Wistar rats (8- to 10-week-old) were treated with tetrodotoxin (50 microg/kg, i.v.) to eliminate any nerve activity and prevent the eye movement under artificial ventilation. Methoxamine was used to maintain adequate systemic circulation. Ocular fundus images were captured with an original high-resolution digital fundus camera for small animals. Diameters of retinal blood vessels contained in the digital images were measured using image-processing softwares on a personal computer. Fundus blood flow was measured using a laser Doppler flow meter. Both rolipram (0.01-10 microg/kg/min, i.v.) and Ro-20-1724 (0.01-10 microg/kg/min, i.v.) increased diameters of retinal blood vessels in a dose-dependent manner without significant effect on systemic blood pressure, heart rate and fundus blood flow. The effects of phosphodiesterase 4 inhibitors on retinal arterioles were greater than those on retinal venules. Similarly, theophylline (0.1-10 mg/kg/min, i.v.) dilated retinal blood vessels, whereas it decreased blood pressure and increased heart rate markedly. These results suggest that phosphodiesterase 4 contributes to maintenance of retinal vascular tone. Inhibitors of phosphodiesterase 4 could be considered as a candidate for therapeutic drugs to treat diseases associated with disorders of retinal circulation without severe cardiovascular side-effects.

  4. Effects of Intrarenal and Intravenous Infusion of the Phosphodiesterase 3 Inhibitor Milrinone on Renin Secretion

    NASA Technical Reports Server (NTRS)

    Kumagai, Kazuhiro; Reid, Ian A.

    1994-01-01

    We have reported that administration of the phosphodiesterase III inhibitor milrinone increases renin secretion in conscious rabbits. The aim of the present study was to determine if the increase in renin secretion results from a direct renal action of milrinone, or from an indirect extrarenal effect of the drug. This was accomplished by comparing the effects of intrarenal and intravenous infusion of graded doses of milrinone on plasma renin activity in unilaterally nephrectomized conscious rabbits. Milrinone was infused into the renal artery in doses of 0.01, 0.1 and 1.0 micro-g/kg/min, and intravenously in the same rabbits in doses of 0.01, 0.1, 1.0 and 10 micro-g/kg/min. Each dose was infused for 15 min. No intrarenal dose of milrinone altered plasma renin activity or arterial pressure, although at the highest dose, there was a small increase in heart rate. Intravenous infusion of milrinone at 1.0 micro-g/kg/min increased plasma renin activity to 176 +/- 55% of the control value (P less than 0.05). Heart rate increased but arterial pressure did not change. Intravenous infusion of milrinone at 1O micro-g/kg/min increased plasma renin activity to 386 +/- 193% of control in association with a decrease in arterial pressure and an increase in heart rate. These results confirm that milrinone increases renin secretion, and indicate that the stimulation is due to an extrarenal effect of the drug.

  5. The effect of cyclic AMP and cyclic GMP phosphodiesterase inhibitors on the superoxide burst of guinea-pig peritoneal macrophages.

    PubMed Central

    Turner, N. C.; Wood, L. J.; Burns, F. M.; Gueremy, T.; Souness, J. E.

    1993-01-01

    1. The cyclic nucleotide phosphodiesterase (PDE) activity of guinea-pig peritoneal macrophages was partially characterized and the effects of selective and non-selective inhibitors of adenosine 3':5'-cyclic monophosphate (cyclic AMP PDE) and guanosine 3':5'-cyclic monophosphate (cyclic GMP PDE) phosphodiesterases on superoxide generation were investigated using peritoneal macrophages from horse-serum pretreated guinea-pigs. 2. The non-selective PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX) and the PDE I/V selective inhibitor, zaprinast, inhibited spontaneous superoxide generation with IC50s of 30.7 +/- 11.3 microM and 145 +/- 17 microM respectively (n = 6 and 5). The concentration-response curves for the PDE IV selective inhibitors rolipram and Ro20-1724 were biphasic; mean maximum inhibitions were 56.9 +/- 5.9% and 66.8 +/- 10.5% respectively at 300 microM, but in 2 out of 6 (rolipram) and 2 out of 5 (Ro20-1724) experiments inhibition was < 50%. The PDE III inhibitor SK&F 94120 was without effect. Spontaneous superoxide generation was reduced 57 +/- 10% by 1 microM prostaglandin E2 (PGE2) and 62.6 +/- 3.76% by 1 microM salbutamol. 3. The increase in superoxide generation elicited by FMLP (10(-9)-10(-5)M) was unaffected by any of the PDE inhibitors studied. Inhibition of FMLP-stimulated superoxide generation by PGE2 was enhanced in the presence of 10 microM IBMX. 4. Macrophages were found to contain a predominantly membrane bound cyclic AMP PDE (90% of total activity) which was unaffected by cyclic GMP or calcium/calmodulin. The cyclic AMP PDE activity in the cytosolic fraction was enhanced in the presence of calcium/calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8387385

  6. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair

    PubMed Central

    Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.

    2017-01-01

    A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622

  7. Synthesis of triazole Schiff bases: novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1.

    PubMed

    Khan, Khalid Mohammed; Siddiqui, Salman; Saleem, Muhammad; Taha, Muhammad; Saad, Syed Muhammad; Perveen, Shahnaz; Choudhary, M Iqbal

    2014-11-15

    A series of Schiff base triazoles 1–25 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 lM), 13 (IC50 = 152.83 ± 2.39 lM), and 22 (IC50 = 251.0 ± 6.64 lM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 lM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.

  8. The role of phosphodiesterase inhibitors in the management of pulmonary vascular diseases

    PubMed Central

    Butrous, Ghazwan

    2014-01-01

    Phosphodiesterase inhibitors (PDE) can be used as therapeutic agents for various diseases such as dementia, depression, schizophrenia and erectile dysfunction in men, as well as congestive heart failure, chronic obstructive pulmonary disease, rheumatoid arthritis, other inflammatory diseases, diabetes and various other conditions. In this review we will concentrate on one type of PDE, mainly PDE5 and its role in pulmonary vascular diseases. PMID:25780785

  9. Investigation of the alkenyldiarylmethane non-nucleoside reverse transcriptase inhibitors as potential cAMP phosphodiesterase-4B2 inhibitors.

    PubMed

    Cullen, Matthew D; Cheung, York-Fong; Houslay, Miles D; Hartman, Tracy L; Watson, Karen M; Buckheit, Robert W; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2008-02-15

    The alkenyldiarylmethanes (ADAMs) are currently being investigated as non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs) of potential value in the treatment of HIV infection and AIDS. During the course of these studies, a number of ADAM analogues have been identified that protect HIV-infected cells from the cytopathic effects of the virus by an unknown, HIV-1 RT-independent mechanism. Since the phosphodiesterase 4 family is required for HIV infection, the effect of various ADAMs on the activity of PDE4B2 was investigated in an effort to determine if the ADAMs could possibly be targeting phosphodiesterases. Six compounds representative of the ADAM class were tested for inhibition of cAMP hydrolysis by PDE4B2 enzymatic activity. Four ADAMs were found to be weak inhibitors of PDE4B2 and two of them were inactive. The experimental results are consistent with an antiviral mechanism that does not include inhibition of PDE4 isoforms.

  10. RESPITE: switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors.

    PubMed

    Hoeper, Marius M; Simonneau, Gérald; Corris, Paul A; Ghofrani, Hossein-Ardeschir; Klinger, James R; Langleben, David; Naeije, Robert; Jansa, Pavel; Rosenkranz, Stephan; Scelsi, Laura; Grünig, Ekkehard; Vizza, Carmine Dario; Chang, MiKyung; Colorado, Pablo; Meier, Christian; Busse, Dennis; Benza, Raymond L

    2017-09-01

    A proportion of pulmonary arterial hypertension (PAH) patients do not reach treatment goals with phosphodiesterase-5 inhibitors (PDE5i). RESPITE investigated the safety, feasibility and benefit of switching from PDE5i to riociguat in these patients.RESPITE was a 24-week, open-label, multicentre, uncontrolled study. Patients in World Health Organization (WHO) functional class (FC) III, with 6-min walking distance (6MWD) 165-440 m, cardiac index <3.0 L·min(-1)·m(-2) and pulmonary vascular resistance >400 dyn·s·cm(-5) underwent a 1-3 day PDE5i treatment-free period before receiving riociguat adjusted up to 2.5 mg maximum t.i.d Exploratory end-points included change in 6MWD, WHO FC, N-terminal prohormone of brain natriuretic peptide (NT-proBNP) and safety.Of 61 patients enrolled, 51 (84%) completed RESPITE. 50 (82%) were receiving concomitant endothelin receptor antagonists. At week 24, mean±sd 6MWD had increased by 31±63 m, NT-proBNP decreased by 347±1235 pg·mL(-1) and WHO FC improved in 28 patients (54%). 32 patients (52%) experienced study drug-related adverse events and 10 (16%) experienced serious adverse events (2 (3%) study drug-related, none during the PDE5i treatment-free period). Six patients (10%) experienced clinical worsening, including death in two (not study drug-related).In conclusion, selected patients with PAH may benefit from switching from PDE5i to riociguat, but this strategy needs to be further studied. Copyright ©ERS 2017.

  11. Phosphodiesterase 3 inhibitors suppress oocyte maturation and consequent pregnancy without affecting ovulation and cyclicity in rodents.

    PubMed Central

    Wiersma, A; Hirsch, B; Tsafriri, A; Hanssen, R G; Van de Kant, M; Kloosterboer, H J; Conti, M; Hsueh, A J

    1998-01-01

    During each reproductive cycle, a preovulatory surge of gonadotropins induces meiotic maturation of the oocyte in the preovulatory follicle followed by ovulation. Although gonadotropins stimulate cAMP production in somatic cells of the follicle, a decrease in intra-oocyte cAMP levels is required for resumption of meiosis in oocytes. Based on the observed compartmentalization of the cAMP-degrading enzyme, phosphodiesterase, in follicular somatic and germ cells, inhibitors of phosphodiesterase 3 were used to block meiosis in ovulating oocytes in rodents. By this strategy, we demonstrated that fertilization and pregnancy could be prevented without disturbing follicle rupture and normal estrous cyclicity. In contrast to conventional contraceptive pills that disrupt ovarian steroidogenesis and reproductive cycles, the present strategy achieves effective contraception by selective blockage of oocyte maturation and development without alterations in ovulation and reproductive cyclicity. PMID:9691090

  12. Sildenafil and Phosphodiesterase-5 Inhibitors to Reduce Cardiotoxicity and Enhance the Response of Breast Tumor Cells to Doxorubicin

    DTIC Science & Technology

    2009-03-01

    work was based on the observations that phosphodiesterase-5 inhibitors, specifically erectile dysfunction drugs such as sildenafil, could protect...Kukreja R.C. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic...Jackson-Cook, CK, Gewirtz DA, and Holt SE.. Adriamycin –induced senescence in breast tumor cells involves functional p53 and telomere dysfunction . J

  13. Pathophysiology of visual disorders induced by phosphodiesterase inhibitors in the treatment of erectile dysfunction.

    PubMed

    Moschos, Marilita M; Nitoda, Eirini

    2016-01-01

    The aim of this review was to summarize the ocular action of the most common phosphodiesterase (PDE) inhibitors used for the treatment of erectile dysfunction and the subsequent visual disorders. This is a literature review of several important articles focusing on the pathophysiology of visual disorders induced by PDE inhibitors. PDE inhibitors have been associated with ocular side effects, including changes in color vision and light perception, blurred vision, transient alterations in electroretinogram (ERG), conjunctival hyperemia, ocular pain, and photophobia. Sildenafil and tadalafil may induce reversible increase in intraocular pressure and be involved in the development of non-arteritic ischemic optic neuropathy. Reversible idiopathic serous macular detachment, central serous chorioretinopathy, and ERG disturbances have been related to the significant impact of sildenafil and tadalafil on retinal perfusion. So far, PDE inhibitors do not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors. However, physicians should write down any visual symptom observed during PDE treatment and refer the patients to ophthalmologists.

  14. Efficacy and safety of phosphodiesterase-5 inhibitors for treating erectile dysfunction in kidney transplant recipients: a meta-analysis.

    PubMed

    Fanbin, Lv; Mei, Yang; Yan, Zhang; Yirong, Yang; Shaoling, Zheng; Yong, Cai; Peng, Xia

    2014-06-01

    Erectile dysfunction is common after kidney transplant. The phosphodiesterase-5 inhibitors are the primary drugs for the treatment of erectile dysfunction. The purpose of this study was to evaluate the efficacy and safety of these drugs in the treatment of erectile dysfunction after kidney transplant. Randomized controlled trials were identified and extracted from MEDLINE, the Web of Science, Cochrane Central, and reference lists. The database search, quality assessment, and data extraction were performed independently by 2 reviewers. Eligible studies were randomized controlled trials and quasi-randomized controlled trials. Treatment efficacy was assessed with the International Index of Erectile Function score. There were 3 studies identified that satisfied inclusion criteria. The International Index of Erectile Function score for phosphodiesterase-5 inhibitors increased ≥ 9 points compared with placebo (mean difference, 11.81; 95% confidence interval: 9.14-14.48; P < .00001). There were no differences between the phosphodiesterase-5 inhibitors and placebo in the incidence of adverse events, creatinine levels, or concentrations of cyclosporine or tacrolimus. Phosphodiesterase-5 inhibitors are effective and safe in treating erectile dysfunction after kidney transplant. Phosphodiesterase-5 inhibitors do not cause changes in kidney function or immunosuppressive drug concentrations after kidney transplant and may be used as the first-line treatment for erectile dysfunction in kidney transplant recipients.

  15. Do phosphodiesterase type 5 inhibitors protect against condom-associated erection loss and condom slippage?

    PubMed

    Sanders, Stephanie A; Milhausen, Robin R; Crosby, Richard A; Graham, Cynthia A; Yarber, William L

    2009-05-01

    Some physicians prescribe phosphodiesterase type 5 inhibitors (PDE5i) for men who experience condom-associated erection difficulties with a view to increasing condom use and reducing risk of sexually transmitted infections. To examine whether the prevalence of erection-related condom problems differs between men using and not using PDE5i at the last condom-protected penile-vaginal (PVI) or penile-anal intercourse. Seven hundred-five men who had used a male condom during the past 3 months for PVI were selected from a sample recruited through advertisement to an electronic mailing list for a large, internet-based, sexual-enhancement product company. An internet-based questionnaire posted in 2006 assessed condom-use errors and problems. Men who did and did not use PDE5i during the last time a condom was used were compared on: (i) erection loss while applying a condom; (ii) erection loss during sex while using a condom; (iii) condom slipped off during sex; (iv) delayed condom application (penetration of the vagina or anus prior to application of the male condom); (v) early condom removal (condom taken off and intercourse continued without it); (vi) "problem with the way the condom fit"; (vii) "problem with the way the condom felt"; and (viii) condom breakage. Controlling for age, marital status (yes/no), and having children (yes/no), PDE5i users, compared with nonusers, were: (i) three times more likely to report erection loss during sex while using a condom (adjusted odds ratio [AOR] = 3.21, 95% confidence interval [CI] = 1.40-7.39, P = 0.006); (ii) almost five times more likely to report the condom slipped off during sex (AOR = 4.75, 95% CI = 1.68-13.44, P = 0.003); and (iii) more than twice as likely to remove condoms before sex was over (AOR = 2.46, 95% CI = 1.09-5.56, P = 0.03). Physicians prescribing PDE5i may want to evaluate whether men are experiencing condom-associated erection difficulties and, if they are, consider titrating dosages and/or making referrals

  16. Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition

    PubMed Central

    Peixoto, Christina Alves; Nunes, Ana Karolina Santana; Garcia-Osta, Ana

    2015-01-01

    Phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a potential therapeutic strategy for neuroinflammatory, neurodegenerative, and memory loss diseases. Mechanistically, PDE5-Is produce an anti-inflammatory and neuroprotection effect by increasing expression of nitric oxide synthases and accumulation of cGMP and activating protein kinase G (PKG), the signaling pathway of which is thought to play an important role in the development of several neurodiseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The aim of this paper was to review present knowledge of the signaling pathways that underlie the use of PDE5-Is in neuroinflammation, neurogenesis, learning, and memory. PMID:26770022

  17. T-1032, a novel specific phosphodiesterase type 5 inhibitor, increases venous compliance in anesthetized rats.

    PubMed

    Inoue, H; Yano, K; Ikeo, T; Noto, T; Kikkawa, K

    2001-06-22

    Nitric oxide (NO) donors including organic nitrates dilate capacitance vessels. As inhibition of phosphodiesterase type 5 results in the accumulation of guanosine 3'5'-cyclic monophosphate (cGMP), specific phosphodiesterase type 5 inhibitors are expected to have a vasodilator property similar to that of NO donors. To test this hypothesis, we examined the effect of methyl2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032), a novel specific phosphodiesterase type 5 inhibitor, on mean arterial pressure and mean circulatory filling pressure (an index of venodilation) compared with that of nitroglycerin and diltiazem in mecamylamine- and noradrenaline-treated anesthetized rats. Intravenous infusion of T-1032 (0.1, 1, 10 microg/kg/min) dose-dependently decreased mean arterial pressure (-3.8+/-0.3%, -9.1+/-0.8%, -16.8+/-1.5% at doses of 0.1, 1 and 10 microg/kg/min, respectively) and mean circulatory filling pressure (-6.1+/-0.9%, -12.5+/-0.7%, -18.6+/-3.0% at doses of 0.1, 1 and 10 microg/kg/min, respectively). The mean circulatory filling pressure-mean arterial pressure relationship revealed that T-1032 had a selective action on the mean circulatory filling pressure compared with diltiazem (10, 100 microg/kg/min) and a similar or more selective effect than nitroglycerin (0.3, 3 and 30 microg/kg/min). In the next study, we calculated venous compliance and unstressed volume from the mean circulatory filling pressure-volume relationship. Intravenous infusion of T-1032 (3 microg/kg/min) increased venous compliance (3.35+/-0.40 in T-1032 vs. 2.31+/-0.15 ml/kg/mm Hg in vehicle, P<0.05) without changing the unstressed volume (37.2+/-2.80 in T-1032 vs. 42.6+/-2.37 ml/kg in vehicle, P>0.05). It was concluded that T-1032 increased venous capacitance by increasing venous compliance, and that this selective phosphodiesterase type 5 inhibitor appeared to have a different vasodilator action from that of an

  18. Effect of the selective phosphodiesterase type 5 inhibitor sildenafil on erectile dysfunction in the anesthetized dog.

    PubMed

    Carter, A J; Ballard, S A; Naylor, A M

    1998-07-01

    The effects of sildenafil, a highly selective inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase type 5, on erectile function in the anesthetized dog were evaluated. In pentobarbital-anesthetized dogs, increases in intracavernosal pressure in the corpus cavernosum and penile blood flow were induced by pelvic nerve stimulation over a frequency range of 1 to 16 hertz. The effects of increasing doses of sildenafil on electrically stimulated intracavernosal pressure, penile blood flow, blood pressure, and heart-rate were evaluated. In parallel experiments, the effects of the nitric oxide synthase inhibitor N omega-Nitro-L-Arginine (L-NOArg) on these same parameters also were assessed. The effects of nerve stimulation on intracavernosal pressure and blood flow to the penis were blocked by L-NOArg, 0.1-3 mg./kg., in a dose-related manner, confirming the important role of nitric oxide in producing erections. Sildenafil, 1-100 microg./kg administered intravenously, had no direct effect on intracavernosal pressure but potentiated the increase in intracavernosal pressure induced by nerve stimulation. This potentiation occurred at sildenafil plasma concentrations consistent with its relaxation effect on isolated human cavernosal tissue and its inhibition of phosphodiesterase type 5 in vitro. Sildenafil had no significant effect on blood pressure or heart rate. By inhibiting cyclic guanosine monophosphate-specific phosphodiesterase type 5, sildenafil augments the neuronal mechanism responsible for penile erection. This mechanism explains the significant improvements reported in the rigidity and duration of erections seen in patients with erectile dysfunction who have been treated with oral sildenafil.

  19. Short-term cardiovascular effects of selective phosphodiesterase 3 inhibitor olprinone versus non-selective phosphodiesterase inhibitor aminophylline in a meconium-induced acute lung injury.

    PubMed

    Mokra, D; Tonhajzerova, I; Pistekova, H; Visnovcova, Z; Mokry, J; Drgova, A; Repcakova, M; Calkovska, A

    2013-12-01

    Various anti-inflammatory drugs have been used for treatment of neonatal meconium aspiration syndrome (MAS). As their adverse effects are poorly described, this study compared effects of selective phosphodiesterase (PDE) 3 inhibitor olprinone and non-selective PDE inhibitor aminophylline on cardiovascular parameters in animal model of MAS. Oxygen-ventilated rabbits were intratracheally instilled 4 mL/kg of meconium (25 mg/mL) or saline. Thirty minutes later, meconium-instilled animals were intravenously given olprinone (0.2 mg/kg) at a single dose at 0.5 h after meconium instillation, or aminophylline (2.0 mg/kg) at two doses at 0.5 and 2.5 h after meconium instillation, or were left without treatment. Cardiovascular changes were evaluated within 5 min of administration and 5 min after finishing the administration. Furthermore, respiratory and cardiovascular parameters were measured within 5 hours following treatment delivery. Oxidation markers (thiobarbituric acid-reactive substances (TBARS), and total antioxidant status) and markers of cardiovascular injury (aldosterone, gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were determined in the plasma. Meconium instillation induced acute lung injury associated with oxidative stress, elevated aldosterone, and slightly increased GGT and AST levels. Both aminophylline and olprinone improved lung functions and reduced oxidation stress. However, the PDE inhibitors acutely increased blood pressure and heart rate, whereas heart rate variability remained higher till the end of experiment and correlated well with markers of cardiovascular injury. Considering that systemic administration of olprinone and aminophylline was accompanied by acute cardiovascular changes in the meconium-instilled animals, use of PDE inhibitors in the newborns with MAS should be carefully monitored.

  20. An Insight into the Pharmacophores of Phosphodiesterase-5 Inhibitors from Synthetic and Crystal Structural Studies

    SciTech Connect

    Chen,G.; Wang, H.; Robinson, H.; Cai, J.; Wan, Y.; Ke, H.

    2008-01-01

    Selective inhibitors of cyclic nucleotide phosphodiesterase-5 (PDE5) have been used as drugs for treatment of male erectile dysfunction and pulmonary hypertension. An insight into the pharmacophores of PDE5 inhibitors is essential for development of second generation of PDE5 inhibitors, but has not been completely illustrated. Here we report the synthesis of a new class of the sildenafil derivatives and a crystal structure of the PDE5 catalytic domain in complex with 5-(2-ethoxy-5-(sulfamoyl)-3-thienyl)-1-methyl-3-propyl-1, 6-dihydro-7H-pyrazolo[4, 3-d]pyrimidin-7-one (12). Inhibitor 12 induces conformational change of the H-loop (residues 660-683), which is different from any of the known PDE5 structures. The pyrazolopyrimidinone groups of 12 and sildenafil are well superimposed, but their sulfonamide groups show a positional difference of as much as 1.5 Angstroms . The structure-activity analysis suggests that a small hydrophobic pocket and the H-loop of PDE5 are important for the inhibitor affinity, in addition to two common elements for binding of almost all the PDE inhibitors: the stack against the phenylalanine and the hydrogen bond with the invariant glutamine. However, the PDE5-12 structure does not provide a full explanation to affinity changes of the inhibitors. Thus alternatives such as conformational change of the M-loop are open and further structural study is required.

  1. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer's disease.

    PubMed

    Prickaerts, Jos; Heckman, Pim R A; Blokland, Arjan

    2017-09-01

    Phosphodiesterase (PDE) inhibitors improve signaling pathways in brain circuits by increasing intracellular cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). In the last decade, the first clinical studies investigating selective PDE inhibitors in Alzheimer's disease (AD) have been initiated, based on their positive effects on cognitive processes and neuroprotection in numerous animal studies. Areas covered: This article reviews the clinical studies investigating the pro-cognitive/neuroprotective effects of PDE inhibitors in patients with AD, as well as in age-associated memory impaired elderly and patients with mild cognitive impairment (MCI), the prodromal stage of AD. PDE inhibitors will also be discussed with respect to adverse effects including safety and tolerability. Expert opinion: The limited available data of clinical studies with PDE inhibitors tested in different populations of AD patients do not allow the drawing of any concrete conclusion yet. Currently, studies with a PDE3 (cilostazol) or PDE9 inhibitor (BI 409,306) are still ongoing in patients with MCI or AD, respectively. Studies with PDE4 inhibitors (HT-0712, roflumilast and BPN14770) in healthy elderly and elderly with age-associated memory impairments indicate that the optimum dose and/or inhibiting the most relevant PDE isoform hold great promise when tested in the appropriate population of patients with MCI or AD eventually.

  2. Changes in peak systolic velocity induced by chronic therapy with phosphodiesterase type-5 inhibitor.

    PubMed

    Sighinolfi, M C; Mofferdin, A; De Stefani, S; Celia, A; Micali, S; Cicero, A F G; Bianchi, G

    2006-06-01

    The aim of this study was to assess the influence of chronic therapy with phosphodiesterase type-5 inhibitor on penile haemodynamics at colour Doppler ultrasound. Thirty patients affected by erectile dysfunction (ED) of different aetiology tested with the International Index of Erectile Function (IIEF-5) were evaluated with penile colour Doppler ultrasound during basic and dynamic phases (10 microg PGE1) before and after chronic self-administration of sildenafil citrate (dosage: 100 mg as required, two to three times a week) for a period of 5-20 months (mean: 12.3). Treatment was interrupted 14-21 days before the second ultrasound evaluation. Peak systolic velocity (PSV) and end-diastolic velocity (EDV) were recorded by means of colour Doppler; cut off values were 25 and 5 cm s(-1) respectively. Data were compared by nonparametric tests. Twenty-two of the 30 patients showed normal pre-treatment PSV, while eight of 30 had an insufficient arterial flow. Mean pre-treatment EDV was 4.7 +/- 0.5. After chronic therapy with sildenafil, a global improvement of 10.5% on PSV was seen (P < 0.001), without any statistical difference between patients with normal pre-treatment peak and those with a borderline one. No statistically significant changes were found for EDV (P = 0.98). It is concluded that chronic therapy with phosphodiesterase-5 inhibitor results in a significant improvement in PSV values, probably due to a penile chronic vasoactive enhancement.

  3. Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2

    PubMed Central

    Hornyak, Peter; Askwith, Trevor; Walker, Sarah; Komulainen, Emilia; Paradowski, Michael; Pennicott, Lewis E.; Bartlett, Edward J.; Brissett, Nigel C.; Raoof, Ali; Watson, Mandy; Jordan, Allan M.; Ogilvie, Donald J.; Ward, Simon E.; Atack, John R.; Pearl, Laurence H.; Caldecott, Keith W.; Oliver, Antony W.

    2016-01-01

    Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5′-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a ‘humanized’ form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2. PMID:27099339

  4. Comparative molecular field analysis (CoMFA) of phthalazine derivatives as phosphodiesterase IV inhibitors.

    PubMed

    Chakraborti, Asit K; Gopalakrishnan, B; Sobhia, M Elizabeth; Malde, Alpeshkumar

    2003-08-04

    A comparative molecular field analysis (CoMFA) of phthalazine class of phosphodiesterase IV (PDE IV) inhibitors has been performed to correlate their chemical structures with their observed biological activity. A statistically valid model with good correlative and predictive power is reported. The leave one out cross-validation study gave cross-validation r(2)(cv) of value 0.507 at six optimum components and conventional r(2) of value 0.98. The predictive ability of the model was tested by predicting the seven molecules belonging to the test set giving predictive correlation coefficient of 0.59. This model is potentially helpful in the design of novel and more potent PDE IV inhibitors.

  5. Structures of the Four Subfamilies of Phosphodiesterase-4 Provide Insight into the Selectivity of Their Inhibitors

    SciTech Connect

    Wang, H.; Peng, M; Chen , Y; Geng, J; Robinson, H; Houslay , M; Cai, J; Ke, H

    2007-01-01

    PDE4 (phosphodiesterase-4)-selective inhibitors have attracted much attention as potential therapeutics for the treatment of both depression and major inflammatory diseases, but their practical application has been compromised by side effects. A possible cause for the side effects is that current PDE4-selective inhibitors similarly inhibit isoforms from all four PDE4 subfamilies. The development of PDE4 subfamily-selective inhibitors has been hampered by a lack of structural information. In the present study, we rectify this by providing the crystal structures of the catalytic domains of PDE4A, PDE4B and PDE4D in complex with the PDE4 inhibitor NVP 4-[8-(3-nitrophenyl)-[1,7]naphthyridin-6-yl]benzoic acid as well as the unliganded PDE4C structure. NVP binds in the same conformation to the deep cAMP substrate pocket and interacts with the same residues in each instance. However, detailed structural comparison reveals significant conformational differences. Although the active sites of PDE4B and PDE4D are mostly comparable, PDE4A shows significant displacements of the residues next to the invariant glutamine residue that is critical for substrate and inhibitor binding. PDE4C appears to be more distal from other PDE4 subfamilies, with certain key residues being disordered. Our analyses provide the first structural basis for the development of PDE4 subfamily-selective inhibitors.

  6. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors.

    PubMed

    Wang, Huanchen; Peng, Ming-Sheng; Chen, Yi; Geng, Jie; Robinson, Howard; Houslay, Miles D; Cai, Jiwen; Ke, Hengming

    2007-12-01

    PDE4 (phosphodiesterase-4)-selective inhibitors have attracted much attention as potential therapeutics for the treatment of both depression and major inflammatory diseases, but their practical application has been compromised by side effects. A possible cause for the side effects is that current PDE4-selective inhibitors similarly inhibit isoforms from all four PDE4 subfamilies. The development of PDE4 subfamily-selective inhibitors has been hampered by a lack of structural information. In the present study, we rectify this by providing the crystal structures of the catalytic domains of PDE4A, PDE4B and PDE4D in complex with the PDE4 inhibitor NVP {4-[8-(3-nitrophenyl)-[1,7]naphthyridin-6-yl]benzoic acid} as well as the unliganded PDE4C structure. NVP binds in the same conformation to the deep cAMP substrate pocket and interacts with the same residues in each instance. However, detailed structural comparison reveals significant conformational differences. Although the active sites of PDE4B and PDE4D are mostly comparable, PDE4A shows significant displacements of the residues next to the invariant glutamine residue that is critical for substrate and inhibitor binding. PDE4C appears to be more distal from other PDE4 subfamilies, with certain key residues being disordered. Our analyses provide the first structural basis for the development of PDE4 subfamily-selective inhibitors.

  7. The Function of Vascular Smooth Muscle Phosphodiesterase III is Preserved in Healthy Human Aging

    PubMed Central

    Elvebak, Rachel L.; Eisenach, John H.; Joyner, Michael J.; Nicholson, Wayne T.

    2010-01-01

    Abstract Phosphodiesterase (PDE) III is an enzyme in vascular smooth muscle that metabolizes cyclic adenosine monophosphate (cAMP). Milrinone inhibits PDE III, increasing the availability of cAMP. Cyclic guanosine monophosphate (cGMP), which is regulated by nitric oxide (NO), also inhibits PDE III. The endothelial NO component of prostacyclin (PGI2)‐mediated vasodilation is reduced in aging. This study investigated if PGI2‐mediated vasodilation during concomitant inhibition of endothelial NO and smooth muscle PDE III is affected by healthy aging. PDE III was inhibited with milrinone in 10 older subjects and 10 young matched controls while simultaneously infusing NG‐monomethyl‐l‐arginine acetate (l‐NMMA) to remove the confounding inhibitory effects of cGMP on PDE III. Incremental doses of PGI2 and sodium nitroprusside (SNP) were administered to the brachial artery during separate trials. l‐NMMA decreased baseline blood flow similarly, and the addition of milrinone increased baseline blood flow similarly in both groups. The forearm blood flow responses to PGI2 were similar between groups (younger: 7.62 ± 0.72; older: 6.88 ± 0.81 mL•dL−1 FAV•min−1 at the highest dose of PGI2). SNP responses were also similar. This study suggests that the vasodilator pathway associated with PDE III function, the bioavailability of cAMP, and the interaction with cGMP may be preserved in healthy aging. Clin Trans Sci 2010; Volume 3: 239–242. PMID:21500398

  8. Effect of phosphodiesterase 4 inhibitors on NFAT-dependent cyclooxygenase-2 expression in human T lymphocytes.

    PubMed

    Jimenez, José L; Iñiguez, Miguel A; Muñoz-Fernández, M Angeles; Fresno, Manuel

    2004-12-01

    Transcriptional induction of cyclooxygenase-2 (COX-2) occurs early after T cell receptor triggering and has functional implications in inflammation. Here, we show that phosphodiesterase (PDE)-4 inhibitors block COX-2 induction and prostaglandin synthesis in activated T cells. COX-2 inhibition by PDE4 inhibitors occurs mainly at the transcriptional level. Two response elements for the nuclear factor of activated T cells (NFAT) in the COX-2 promoter were required for inhibition by these drugs. PDE4 inhibitors did not affect NFAT nuclear translocation upon T cell activation; rather they prevented NFAT binding to DNA and induction of the transactivation function of GAL4-NFAT. These effects seem to be cAMP/PKA independent as they were not mimicked by the permeable analog dBcAMP or by forskolin, neither can be reverted by the PKA inhibitors H89 or KT-5720. These results may explain some of the anti-inflammatory properties of PDE4 inhibitors through the blockade of NFAT-mediated transactivation of pro-inflammatory genes such as COX-2.

  9. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors

    PubMed Central

    Lee, Sang-Yong; Sarkar, Soumya; Bhattarai, Sanjay; Namasivayam, Vigneshwaran; De Jonghe, Steven; Stephan, Holger; Herdewijn, Piet; El-Tayeb, Ali; Müller, Christa E.

    2017-01-01

    Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP. PMID:28261095

  10. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor

    PubMed Central

    Titus, David J.; Wilson, Nicole M.; Freund, Julie E.; Carballosa, Melissa M.; Sikah, Kevin E.; Furones, Concepcion; Dietrich, W. Dalton; Gurney, Mark E.

    2016-01-01

    Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. SIGNIFICANCE STATEMENT Currently, there are an estimated 3.2–5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of

  11. Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor.

    PubMed

    Titus, David J; Wilson, Nicole M; Freund, Julie E; Carballosa, Melissa M; Sikah, Kevin E; Furones, Concepcion; Dietrich, W Dalton; Gurney, Mark E; Atkins, Coleen M

    2016-07-06

    Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. Currently, there are an estimated 3.2-5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of 10 of these individuals

  12. Phosphodiesterase 5 Inhibitors Enhance Chemotherapy Killing in Gastrointestinal/Genitourinary Cancer Cells

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Cruickshanks, Nichola; Conley, Adam; Durrant, David E.; Das, Anindita; Fisher, Paul B.; Kukreja, Rakesh C.; Grant, Steven; Poklepovic, Andrew

    2014-01-01

    The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with clinically relevant chemotherapies to kill gastrointestinal/genitourinary cancer cells. In bladder cancer cells, regardless of H-RAS mutational status, at clinically achievable doses, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/mitomycin C/gemcitabine/cisplatin/paclitaxel to cause cell death. In pancreatic tumor cells expressing mutant active K-RAS, PDE5 inhibitors interacted in a greater than additive fashion with doxorubicin/gemcitabine/paclitaxel to cause cell death. The most potent PDE5 inhibitor was sildenafil. Knock down of PDE5 expression recapitulated the combination effects of PDE5 inhibitor drugs with chemotherapy drugs. Expression of cellular FLICE-like inhibitory protein-short did not significantly inhibit chemotherapy lethality but did significantly reduce enhanced killing in combination with sildenafil. Overexpression of B-cell lymphoma–extra large suppressed individual and combination drug toxicities. Knock down of CD95 or Fas-associated death domain protein suppressed drug combination toxicity. Combination toxicity was also abolished by necrostatin or receptor interacting protein 1 knock down. Treatment with PDE5 inhibitors and chemotherapy drugs promoted autophagy, which was maximal at ∼24 hour posttreatment, and 3-methyl adenine or knock down of Beclin1 suppressed drug combination lethality by ∼50%. PDE5 inhibitors enhanced and prolonged the induction of DNA damage as judged by Comet assays and γhistone 2AX (γH2AX) and checkpoint kinase 2 (CHK2) phosphorylation. Knock down of ataxia telangiectasia mutated suppressed γH2AX and CHK2 phosphorylation and enhanced drug combination lethality. Collectively our data demonstrate that the combination of PDE5 inhibitors with standard of care chemotherapy agents for gastrointestinal/genitourinary cancers represents a novel modality. PMID:24353313

  13. Determination of phosphodiesterase-5 inhibitors and analogs using high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Nickum, Elisa A; Flurer, Cheryl L

    2015-01-01

    A considerable number of erectile dysfunction products, and dietary supplements suspected of containing phosphodiesterase-5 (PDE-5) inhibitors, have been analyzed by the US Food and Drug Administration. Often these samples are found to contain the approved active pharmaceutical ingredients (APIs) such as sildenafil, tadalafil or vardenafil. However, analogs of these APIs have also been identified in many samples and products containing multiple PDE-5 inhibitors have also been found. A single high-performance liquid chromatography with ultraviolet detection method has been developed for the determination of sildenafil, tadalafil, vardenafil and a number of commonly encountered analogs in pharmaceutical dosage forms and dietary supplement products, including tablets, capsules, bulk powders, troches and liquids. This method was designed as an alternative to methods developed for the determination of a single PDE-5 inhibitor. Using this protocol, 14 PDE-5 inhibitor compounds can be separated and determined in a single analysis. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: a review.

    PubMed

    Travadi, J N; Patole, S K

    2003-12-01

    Persistent pulmonary hypertension of the newborn (PPHN) is a complex syndrome with multiple causes, with an incidence of 0.43-6.8/1,000 live births and a mortality of 10-20%. Survivors have high morbidity in the forms of neurodevelopmental and audiological impairment, cognitive delays, hearing loss, and a high rate of rehospitalization. The optimal approach to the management of PPHN remains controversial. Inhaled nitric oxide (iNO) is currently regarded as the gold standard therapy, but with as many as 30% of cases failing to respond, has not proven to be the single magic bullet. Given the complex pathophysiology of the disease, any such magic bullet is unlikely. A number of recent studies have suggested a role for specific phosphodiesterase (PDE) inhibitors in the management of PPHN. Sildenafil, a specific PDE5 inhibitor, appears the most promising of such agents. We aim to review the current status and limitations of iNO and the potential of PDE inhibitors in the management of PPHN. The reasons why caution is warranted before specific PDE5 inhibitors like sildenafil are labelled as potential magic bullets for PPHN will be discussed. The need for randomized-controlled trials to determine the safety, efficacy, and long-term outcome following treatment with sildenafil in PPHN is emphasized.

  15. The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway.

    PubMed

    Pyriochou, Anastasia; Zhou, Zongmin; Koika, Vasiliki; Petrou, Christos; Cordopatis, Paul; Sessa, William C; Papapetropoulos, Andreas

    2007-04-01

    cGMP-degrading pathways have received little attention in the context of angiogenesis. In the present study we set out to determine whether cGMP-specific phosphodiesterase 5 (PDE5) inhibition affects new blood vessel growth. Incubation of chicken chorioallantoic membranes (CAMs) in vivo with sildenafil increased vascular length in a dose-dependent manner. Moreover, incubation of cultured endothelial cells (ECs) with the PDE5 inhibitor promoted proliferation, migration, and organization into tube-like structures. The effects of sildenafil on the angiogenesis-related properties of EC could be blocked by pre-treatment with the soluble guanylyl cyclase (sGC) inhibitor ODQ or the protein kinase G (PKG) I inhibitor DT-3. In addition, over-expression of sGC in EC led to an enhanced growth and migratory response to sildenafil. To study the signaling pathways implicated in the sildenafil-stimulated angiogenic responses we determined the phosphorylation status of mitogen-activated protein kinase (MAPK) members. Incubation of cells with sildenafil increased both extracellular signal regulated kinase 1/2 (ERK1/2) and p38 phosphorylation in a time-dependent manner. Inhibition of MEK by PD98059 and p38 with SB203580 blocked sildenafil-induced proliferation and migration, respectively, suggesting that these MAPK members are downstream of PDE5 and mediate the angiogenic effects of sildenafil. PDE5 inhibitors could, thus, be used in disease states where neo-vessel growth is desired. (c) 2007 Wiley-Liss, Inc.

  16. Pathophysiology of visual disorders induced by phosphodiesterase inhibitors in the treatment of erectile dysfunction

    PubMed Central

    Moschos, Marilita M; Nitoda, Eirini

    2016-01-01

    Aim The aim of this review was to summarize the ocular action of the most common phosphodiesterase (PDE) inhibitors used for the treatment of erectile dysfunction and the subsequent visual disorders. Method This is a literature review of several important articles focusing on the pathophysiology of visual disorders induced by PDE inhibitors. Results PDE inhibitors have been associated with ocular side effects, including changes in color vision and light perception, blurred vision, transient alterations in electroretinogram (ERG), conjunctival hyperemia, ocular pain, and photophobia. Sildenafil and tadalafil may induce reversible increase in intraocular pressure and be involved in the development of non-arteritic ischemic optic neuropathy. Reversible idiopathic serous macular detachment, central serous chorioretinopathy, and ERG disturbances have been related to the significant impact of sildenafil and tadalafil on retinal perfusion. Discussion So far, PDE inhibitors do not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors. However, physicians should write down any visual symptom observed during PDE treatment and refer the patients to ophthalmologists. PMID:27799745

  17. Usage and perceptions of phosphodiesterase type 5 inhibitors among the male partners of infertile couples.

    PubMed

    Song, Seung-Hun; Kim, Dong Suk; Shim, Sung Han; Lim, Jung Jin; Yang, Seung Choul

    2016-03-01

    We aimed to investigate the prevalence of erectile dysfunction (ED) and the usage of phosphodiesterase type 5 (PDE5) inhibitors for ED treatment in infertile couples. A total of 260 male partners in couples reporting infertility lasting at least 1 year were included in this study. In addition to an evaluation of infertility, all participants completed the International Index of Erectile Function (IIEF)-5 questionnaire to evaluate their sexual function. The participants were asked about their use of PDE5 inhibitors while trying to conceive during their partner's ovulatory period and about their concerns regarding the risks of PDE5 inhibitor use to any eventual pregnancy and/or the fetus. Based on the IIEF-5 questionnaire, 41.5% of the participants (108/260) were classified as having mild ED (an IIEF-5 score of 17-21), while 10.4% of the participants (27/260) had greater than mild ED (an IIEF-5 score of 16 or less). The majority (74.2%, 193/260) of male partners of infertile couples had a negative perception of the safety of using a PDE5 inhibitor while trying to conceive. Only 11.1% of men (15/135) with ED in infertile couples had used a PDE5 inhibitor when attempting conception. ED was found to be common in the male partners of infertile couples, but the use of PDE5 inhibitors among these men was found to be very low. The majority of male partners were concerned about the risks of using PDE5 inhibitors when attempting to conceive. Appropriate counseling about this topic and treatment when necessary would likely be beneficial to infertile couples in which the male partner has ED.

  18. Effectiveness and safety of phosphodiesterase 5 inhibitors in patients with cardiovascular disease and hypertension.

    PubMed

    Chrysant, Steven G

    2013-10-01

    Phosphodiesterase 5 (PDE 5) inhibitors are selective inhibitors of the enzyme PDE 5, which catalyzes the hydrolysis of cyclic guanosine monophosphate (cGMP), a potent vasodilator and nitric oxide (NO) donor, to its corresponding metabolites (monophosphates). The enzyme PDE 5 is widely distributed in the body, including the heart and blood vessels. Because of its distribution, it was hypothesized that its inhibition could lead to significant coronary vasodilation, which would benefit patients with coronary artery disease (CAD). This hypothesis led to the development of PDE 5 inhibitors with the first being sildenafil citrate. Subsequent studies with sildenafil in patients with CAD demonstrated a modest cardiovascular effect, but a potent action on penile erection in men, resulting in sildenafil becoming a first-line therapy of erectile dysfunction (ED). Subsequently, two more PDE 5 inhibitors (vardenafil and tadalafil) were developed and approved by the Food and Drug Administration (FDA) for the treatment of ED. Recent studies have shown several pleiotropic beneficial effects of PDE 5 inhibitors in patients with CAD, hypertension, heart failure, pulmonary arterial hypertension, diabetes mellitus and Raynaud's phenomenon. Side effects and interactions of PDE 5 inhibitors with other drugs have been minimal, with the exception of their coadministration with nitrates, which could lead to severe vasodilation and hypotension and therefore, their coadministration is prohibited. All these pleiotropic cardiovascular effects of PDE 5 inhibitors and their drug interactions will be discussed in this concise review in the context of the American College of Cardiology / American Heart Association guidelines and the recent developments in this field.

  19. Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors

    PubMed Central

    Schermuly, Ralph Theo; Inholte, Christiane; Ghofrani, Hossein Ardeschir; Gall, Henning; Weissmann, Norbert; Weidenbach, Andreas; Seeger, Werner; Grimminger, Friedrich

    2005-01-01

    Inhaled prostanoids and phosphodiesterase (PDE) inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor), motapizone (PDE3 inhibitor) or 8-Methoxymethyl-IBMX (PDE1 inhibitor) synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within <20 min, without significant changes in blood gases or systemic hemodynamics. Infusion of 8-Methoxymethyl-IBMX, motapizone and sildenafil caused each a dose-dependent decrease in pulmonary artery pressure, with sildenafil possessing the highest efficacy and at the same time selectivity for the pulmonary circulation. When combining a per se ineffective dose of each PDE inhibitor (200 μg/kg × min 8-Methoxymethyl-IBMX, 1 μg/kg × min sildenafil, 5 μg/kg × min motapizone) with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of PPA reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor. PMID:16033645

  20. Phosphodiesterase type 5 inhibitors and risk of melanoma: A meta-analysis.

    PubMed

    Tang, Huilin; Wu, Wenting; Fu, Shuangshuang; Zhai, Suodi; Song, Yiqing; Han, Jiali

    2017-09-01

    The association between phosphodiesterase type 5 (PDE5) inhibitors and melanoma risk is controversial. We quantify the association between use of PDE5 inhibitors and melanoma. We systematically searched PubMed, Embase, the Cochrane Central Register of Controlled Trials, Web of Science, and ClinicalTrials.gov for studies that were conducted up to July 13, 2016, and evaluated the association between PDE5 inhibitors and skin cancer. Random effects meta-analyses were used to calculate the adjusted odds ratio (OR) with the 95% confidence interval (CI). Five observational studies were included. Compared with PDE5 inhibitor nonuse, PDE5 inhibitor use was slightly but significantly associated with an increased risk for development of melanoma (OR, 1.12; 95% CI, 1.03-1.21) and basal cell carcinoma (OR, 1.14; 95% CI, 1.09-1.19) but not squamous cell carcinoma. For melanoma risk, none of the prespecified factors (dose of PDE5 inhibitor, study design, and study region) significantly affected the results (P > .05). Our sensitivity analysis confirmed the stability of the results. We included only observational studies, which had some heterogeneities and inconsistent controlling for potential confounders. Use of PDE5 inhibitors may be associated with a slightly increased risk for development of melanoma and basal cell carcinoma but not squamous cell carcinoma. However, further large well-conducted prospective studies with adequate adjustment for potential confounders are required for confirmation. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  1. T-1032, a novel phosphodiesterase type 5 inhibitor, increases the survival of cardiomyopathic hamsters.

    PubMed

    Inoue, Hirotaka; Yano, Koji; Noto, Tsunehisa; Takagi, Michino; Ikeo, Tomihiro; Kikkawa, Kohei

    2002-05-17

    To evaluate the influence of T-1032 (methyl2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridylmethoxy)-4-(3,4,5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate), a potent and relatively selective phosphodiesterase 5 inhibitor, on chronic heart failure, we examined the acute hemodynamic profile of T-1032 and its chronic effect on the survival of Bio 14.6 cardiomyopathic hamsters. In the acute study, T-1032 (1, 10, 100 microg/kg) was administered intravenously by means of a dose-escalating procedure in 55-week-old hamsters. T-1032 significantly reduced both the right and left ventricular end-diastolic pressure in a dose-dependent manner. T-1032 modestly reduced the systemic arterial pressure at the highest dose (100 microg/kg i.v.). T-1032 did not change the heart rate or left ventricular dp/dt(max). In the survival study, chronic administration of T-1032 (50 and 500 ppm in a diet) increased survival, and the survival rate was 24.2%, 45.4% and 48.5% in the control, 50 and 500 ppm-treated groups, respectively. The median survival was 55, 58 and 58 weeks in control, 50 and 500 ppm-treated groups, respectively. Analysis of the survival curves revealed that T-1032 (500 ppm) significantly increased the survival of these hamsters (P<0.05 vs. control). It was concluded that T-1032 had beneficial hemodynamic effects on heart failure in Bio 14.6 cardiomyopathic hamsters, and the favorable hemodynamic changes induced by T-1032 were partly related to the increase in the survival of these hamsters. Phosphodiesterase type 5 inhibitors may have therapeutic potential for the treatment of chronic heart failure.

  2. Sildenafil and Phosphodiesterase-5 Inhibitors to Reduce Cardiotoxicity and Enhance the Response of Breast Tumor Cells to Doxorubicin

    DTIC Science & Technology

    2010-07-01

    AD_________________ Award Number: W81XWH-06-1-0360 TITLE: Sildenafil and phosphodiesterase-5 inhibitors to reduce cardiotoxicity and enhance...and phosphodisterase-5 inhibitors to reduce cardiotoxicity and enhance the response of breast tumor cells to doxorubicin 5a. CONTRACT NUMBER...different experimental model system of adriamycin cardiotoxicity than the Fisher paper (1). Nevertheless, the H9c2 model is well accepted in the

  3. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury.

    PubMed

    Whitaker, Ryan M; Wills, Lauren P; Stallons, L Jay; Schnellmann, Rick G

    2013-12-01

    Recent studies demonstrate that mitochondrial dysfunction is a mediator of acute kidney injury (AKI). Consequently, restoration of mitochondrial function after AKI may be key to the recovery of renal function. Mitochondrial function can be restored through the generation of new, functional mitochondria in a process called mitochondrial biogenesis (MB). Despite its potential therapeutic significance, very few pharmacological agents have been identified to induce MB. To examine the efficacy of phosphodiesterase (PDE) inhibitors (PDE3: cAMP and cGMP activity; and PDE4: cAMP activity) in stimulating MB, primary cultures of renal proximal tubular cells (RPTCs) were treated with a panel of inhibitors for 24 hours. PDE3, but not PDE4, inhibitors increased the FCCP-uncoupled oxygen consumption rate (OCR), a marker of MB. Exposure of RPTCs to the PDE3 inhibitors, cilostamide and trequinsin, for 24 hours increased peroxisome proliferator-activated receptor γ coactivator-1α, and multiple mitochondrial electron transport chain genes. Cilostamide and trequinsin also increased mRNA expression of mitochondrial genes and mitochondrial DNA copy number in mice renal cortex. Consistent with these experiments, 8-Br-cGMP increased FCCP-uncoupled OCR and mitochondrial gene expression, whereas 8-Br-cAMP had no effect. The cGMP-specific PDE5 inhibitor sildenafil also induced MB in RPTCs and in vivo in mouse renal cortex. Treatment of mice with sildenafil after folic acid-induced AKI promoted restoration of MB and renal recovery. These data provide strong evidence that specific PDE inhibitors that increase cGMP are inducers of MB in vitro and in vivo, and suggest their potential efficacy in AKI and other diseases characterized by mitochondrial dysfunction and suppressed MB.

  4. Discovery of a Phosphodiesterase 9A Inhibitor as a Potential Hypoglycemic Agent

    PubMed Central

    2015-01-01

    Phosphodiesterase 9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of diabetes and Alzheimer’s disease. Here we report a potent PDE9 inhibitor 3r that has an IC50 of 0.6 nM and >150-fold selectivity over other PDEs. The HepG2 cell-based assay shows that 3r inhibits the mRNA expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase. These activities of 3r, together with the reasonable pharmacokinetic properties and no acute toxicity at 1200 mg/kg dosage, suggest its potential as a hypoglycemic agent. The crystal structure of PDE9-3r reveals significantly different conformation and hydrogen bonding pattern of 3r from those of previously published 28s. Both 3r and 28s form a hydrogen bond with Tyr424, a unique PDE9 residue (except for PDE8), but 3r shows an additional hydrogen bond with Ala452. This structure information might be useful for design of PDE9 inhibitors. PMID:25432025

  5. Adherence to Phosphodiesterase Type 5 Inhibitors in the Treatment of Erectile Dysfunction in Long-Term Users: How Do Men Use the Inhibitors?

    PubMed Central

    Carvalheira, Ana; Forjaz, Vera; Pereira, Nuno Monteiro

    2014-01-01

    Introduction The high effectiveness of phosphodiesterase type 5 inhibitors (PDE5-i) in the treatment of erectile dysfunction (ED) has been demonstrated. However, previous research shows that PDE5-i treatments have high discontinuation rates. Aim The main goals of this study were to (i) characterize the way men use PDE5-i and (ii) analyze the adherence to treatment, identifying the factors that influence PDE5-i use. Methods A total of 148 men with clinical diagnosis for ED who maintained the treatment with PDE5-i for over 3 years were interviewed. Interviews concerning their ongoing treatment were carried out using a standardized questionnaire with quantitative and qualitative items. Main Outcome Measures Physiological measures included the intracavernous alprostadil injection test, associated with penile rigidometry and penile Doppler ultrasound. The qualitative measure included two questions: “Do you use the drug in every sexual intercourse?” and “How do you use the inhibitor?” Results ED causes were classified as venogenic (31%), arteriogenic (23%), psychogenic (18%), iatrogenic (13%), neurogenic (8%), and diabetic (7%). Participation rate was 71.8%. Of the 148 patients studied, 75% claimed not to use PDE5-i in every intercourse. Most used tadalafil (66%), followed by sildenafil (20%), vardenafil (10%), and 4% alternated the type of medicine. Four main categories emerged concerning the factors that determine the intake of PDE5-i in some intercourse situations and not in others: (i) psychological factors; (ii) medication-related factors; (iii) circumstantial factors; and (iv) relational factors. Conclusion The analysis of men's narratives revealed a combination of factors that influence the adherence to PDE5-i. The psychological and medication-related factors were the most prevalent. This study highlighted the importance of taking these factors into account, both at the time of prescription and during the follow-up in order to improve adherence

  6. Sildenafil and T-1032, phosphodiesterase type 5 inhibitors, showed a different vasorelaxant property in the isolated rat aorta.

    PubMed

    Mochida, Hideki; Inoue, Hirotaka; Takagi, Michino; Noto, Tsunehisa; Yano, Koji; Kikkawa, Kohei

    2002-04-05

    The vasorelaxant effects of sildenafil and T-1032 [methyl-2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate], two phosphodiesterase type 5 inhibitors, were examined in the isolated rat aorta. Sildenafil and T-1032, both of which have almost the same potency and selectivity regarding phosphodiesterase type 5 inhibitory activity, produced a similar, moderate, relaxation at 10(-10) to 10(-7) M (sildenafil: 66.8 +/- 13.7%; T-1032: 77.9 +/- 10.8% at 10(-7) M). However, sildenafil, but not T-1032, produced further relaxation at the higher concentrations (sildenafil: 102.0 +/- 0.6%; T-1032: 81.0 +/- 7.2% at 10(-4) M, P < 0.05). Sildenafil also produced a more potent relaxation than did T-1032 at the high concentrations (10(-5) and 10(-4) M) in endothelium-denuded aortic rings and in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (3 x 10(-4) M). Moreover, the high concentrations of sildenafil, but not of T-1032, caused a rightward shift of the concentration-response curve for calcium chloride in K(+)-depolarized endothelium-denuded preparations. In the ligand binding assay for the L-type Ca(2+) channels, the affinities of sildenafil at 10(-5) M for binding sites of nitrendipine and (--)-desmethoxyverapamil [(--)- D888] (35.2 +/- 3.3% and 35.8 +/- 1.9%, respectively) were higher than those of T-1032 (11.8 +/- 4.0% and -13.1 +/- 1.3%, respectively, P < 0.05). Regarding cyclic nucleotide levels, both phosphodiesterase type 5 inhibitors increased cGMP levels at 10(-6) M. However, sildenafil, but not T-1032, further increased cGMP levels at the higher concentrations (sildenafil: 15.7 +/- 2.7 pmol/mg protein; T-1032: 5.6 +/- 0.6 pmol/mg protein at 10(-4) M, P < 0.05). These results suggested that high concentrations of sildenafil had additional vasorelaxant properties through mechanisms other than phosphodiesterase type 5 inhibition. Sildenafil

  7. Molecular Docking Study Based on Pharmacophore Modeling for Novel PhosphodiesteraseIV Inhibitors.

    PubMed

    Çifci, Gülşah; Aviyente, Viktorya; Akten, E Demet

    2012-07-01

    In this study, pharmacophore modelling was carried out for novel PhosphodiesteraseIV (PDEIV) inhibitors. A pharmacophore-based virtual screening, which resulted in 1959 hit compounds was performed with six chemical databases. The pharmacophore screening was proven to be successful in discriminating active and inactive inhibitors using a set of compounds with known activity obtained from ChEMBL database. Furthermore, the Lipinski's rule of five was applied for physicochemical filtering of the hit molecules and this yielded 1840 compounds. Three docking software tools, AutoDock 4.0, AutoDock Vina, and Gold v5.1 were used for the docking process. All 1840 compounds and the known selective inhibitor, rolipram, were docked into the active site of the target protein. A total of 234 compounds with all three scoring values higher than those of rolipram were determined with the three docking tools. The interaction maps of 14 potent inhibitors complexed with PDEIV B and D isoforms have been analyzed and seven key residues (Asn 395, Gln 443, Tyr 233, Ile 410, Phe 446, Asp 392, Thr 407) were found to interact with more than 80 % of the potent inhibitors. For each one of the 234 hit compounds, using the bound conformation with the highest AutoDock score, the interacting residues were determined. 117 out of 234 compounds are found to interact with at least five of the seven key residues and these were selected for further evaluation. The conformation with the highest AutoDock score for each 117 compounds were rescored using the DSX scoring function. This yielded a total of 101 compounds with better score values than the natural ligand rolipram. For ADME/TOX calculations, the FAF-Drugs2 server was used and 32 out of 101 compounds were found to be non-toxic.

  8. Phosphodiesterase 10A inhibitor MP-10 effects in primates: Comparison with risperidone and mechanistic implications

    PubMed Central

    Uthayathas, Subramaniam; Masilamoni, Gunasingh J.; Shaffer, Christopher L.; Schmidt, Christopher J.; Menniti, Frank S.; Papa, Stella M.

    2013-01-01

    Phosphodiesterase 10A (PDE10A) is highly expressed in striatal medium spiny neurons of both the direct and indirect output pathways. Similar to dopamine D2 receptor antagonists acting on indirect pathway neurons, PDE10A inhibitors have shown behavioral effects in rodent models that predict antipsychotic efficacy. These findings have supported the clinical investigation of PDE10A inhibitors as a new treatment for schizophrenia. However, PDE10A inhibitors and D2 antagonists differ in effects on direct pathway and other neurons of the basal ganglia, indicating that these two drug classes may have divergent antipsychotic efficacy and side effect profile. In the present study, we compare the behavioral effects of the selective PDE10A inhibitor MP-10 to those of the clinical standard D2 antagonist risperidone in rhesus monkeys using a standardized motor disability scale for parkinsonian primates and a newly designed “Drug Effects on Nervous System” scale to assess non-motor effects. Behavioral effects of MP-10 correlated with its plasma levels and its regulation of metabolic activity in striatal and cortical regions as measured by FDG-PET imaging. While MP-10 and risperidone broadly impacted similar behavioral domains in the primate, their effects had a different underlying basis. MP-10-treated animals retained the ability to respond but did not engage tasks, whereas risperidone-treated animals retained the motivation to respond but were unable to perform the intended actions. These findings are discussed in light of what is currently known about the modulation of striatal circuitry by these two classes of compounds, and provide insight into interpreting emerging clinical data with PDE10A inhibitors for the treatment of psychotic symptoms. PMID:24490227

  9. Characterization of Binding and Inhibitory Properties of TAK-063, a Novel Phosphodiesterase 10A Inhibitor

    PubMed Central

    Harada, Akina; Suzuki, Kazunori; Kamiguchi, Naomi; Miyamoto, Maki; Tohyama, Kimio; Nakashima, Kosuke; Taniguchi, Takahiko; Kimura, Haruhide

    2015-01-01

    Phosphodiesterase 10A (PDE10A) inhibition is a novel and promising approach for the treatment of central nervous system disorders such as schizophrenia and Huntington’s disease. A novel PDE10A inhibitor, TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-4(1H)-one] has shown high inhibitory activity and selectivity for human recombinant PDE10A2 in vitro; the half-maximal inhibitory concentration was 0.30 nM, and selectivity over other phosphodiesterases (PDEs) was more than 15000-fold. TAK-063 at 10 µM did not show more than 50% inhibition or stimulation of 91 enzymes or receptors except for PDEs. In vitro autoradiography (ARG) studies using rat brain sections revealed that [3H]TAK-063 selectively accumulated in the caudate putamen (CPu), nucleus accumbens (NAc), globus pallidus, substantia nigra, and striatonigral projection, where PDE10A is highly expressed. This [3H]TAK-063 accumulation was almost entirely blocked by an excess amount of MP-10, a PDE10A selective inhibitor, and the accumulation was not observed in brain slices of Pde10a-knockout mice. In rat brain sections, [3H]TAK-063 bound to a single high-affinity site with mean ± SEM dissociation constants of 7.2 ± 1.2 and 2.6 ± 0.5 nM for the CPu and NAc shell, respectively. Orally administered [14C]TAK-063 selectively accumulated in PDE10A expressing brain regions in an in vivo ARG study in rats. Striatal PDE10A occupancy by TAK-063 in vivo was measured using T-773 as a tracer and a dose of 0.88 mg/kg (p.o.) was calculated to produce 50% occupancy in rats. Translational studies with TAK-063 and other PDE10A inhibitors such as those presented here will help us better understand the pharmacological profile of this class of potential central nervous system drugs. PMID:25815469

  10. Discovery of pyrazolopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia.

    PubMed

    Raheem, Izzat T; Schreier, John D; Fuerst, Joy; Gantert, Liza; Hostetler, Eric D; Huszar, Sarah; Joshi, Aniket; Kandebo, Monika; Kim, Somang H; Li, Jing; Ma, Bennett; McGaughey, Georgia; Sharma, Sujata; Shipe, William D; Uslaner, Jason; Vandeveer, George H; Yan, Youwei; Renger, John J; Smith, Sean M; Coleman, Paul J; Cox, Christopher D

    2016-01-01

    Herein, we present the identification of a novel class of pyrazolopyrimidine phosphodiesterase 10A (PDE10A) inhibitors. Beginning with a lead molecule (1) identified through a fragment-based drug discovery (FBDD) effort, lead optimization was enabled by rational design, X-ray crystallography, metabolic and off-target profiling, and fragment scaffold-hopping. We highlight the discovery of PyP-1, a potent, highly selective, and orally bioavailable pyrazolopyrimidine inhibitor of PDE10A. PyP-1 exhibits sub-nanomolar potency (PDE10A Ki=0.23nM), excellent pharmacokinetic (PK) and physicochemical properties, and a clean off-target profile. It displays dose-dependent efficacy in numerous pharmacodynamic (PD) assays that measure potential for anti-psychotic activity and cognitive improvement. PyP-1 also has a clean preclinical profile with respect to cataleptic potential in rats, prolactin secretion, and weight gain, common adverse events associated with currently marketed therapeutics. Further, PyP-1 displays in vivo preclinical target engagement as measured by PET enzyme occupancy in concert with [(11)C]MK-8193, a novel PDE10A PET tracer.

  11. Structural Basis for the Design of Selective Phosphodiesterase 4B Inhibitors

    PubMed Central

    Fox, David; Burgin, Alex B.; Gurney, Mark E.

    2014-01-01

    Phosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor –Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70-80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs. PMID:24361374

  12. A tyrosine kinase inhibitor-induced myocardial degeneration in rats through off-target phosphodiesterase inhibition.

    PubMed

    Hu, Wenyue; Hirakawa, Brad; Jessen, Bart; Lee, Michelle; Aguirre, Shirley

    2012-12-01

    PF-04254644 is a selective kinase inhibitor of mesenchymal epithelial transition factor/hepatocyte growth factor receptor with known off-target inhibitory activity against the phosphodiesterase (PDE) family. Rats given repeated oral doses of PF-04254644 developed a mild to moderate myocardial degeneration accompanied by sustained increase in heart rate and contractility. Investigative studies were conducted to delineate the mechanisms of toxicity. Microarray analysis of Sprague-Dawley rat hearts in a 6 day repeat dose study with PF-04254644 or milrinone, a selective PDE3 inhibitor, revealed similar perturbation of the cyclic adenosine monophosphate (c-AMP) pathway. PDE inhibition and activation of c-AMP were further substantiated using PDE3B immunofluorescence staining and through a c-AMP response element reporter gene assay. The intracellular calcium and oxidative stress signaling pathways were more perturbed by treatment with PF-04254644 than milrinone. The rat cardiomyocytes calcium assay found a dose-dependent increase in intracellular calcium with PF-04254644 treatment. These data suggest that cardiotoxicity of PF-04254644 was probably due to activation of c-AMP signaling, and possibly subsequent disruption of intracellular calcium and oxidative stress signaling pathways. The greater response with PF-04254644 as compared with milrinone in gene expression and micro- and ultrastructural changes is probably due to the broader panel of PDEs inhibition. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Structural basis for the design of selective phosphodiesterase 4B inhibitors.

    PubMed

    Fox, David; Burgin, Alex B; Gurney, Mark E

    2014-03-01

    Phosphodiesterase-4B (PDE4B) regulates the pro-inflammatory Toll Receptor -Tumor Necrosis Factor α (TNFα) pathway in monocytes, macrophages and microglial cells. As such, it is an important, although under-exploited molecular target for anti-inflammatory drugs. This is due in part to the difficulty of developing selective PDE4B inhibitors as the amino acid sequence of the PDE4 active site is identical in all PDE4 subtypes (PDE4A-D). We show that highly selective PDE4B inhibitors can be designed by exploiting sequence differences outside the active site. Specifically, PDE4B selectivity can be achieved by capture of a C-terminal regulatory helix, now termed CR3 (Control Region 3), across the active site in a conformation that closes access by cAMP. PDE4B selectivity is driven by a single amino acid polymorphism in CR3 (Leu674 in PDE4B1 versus Gln594 in PDE4D). The reciprocal mutations in PDE4B and PDE4D cause a 70-80 fold shift in selectivity. Our structural studies show that CR3 is flexible and can adopt multiple orientations and multiple registries in the closed conformation. The new co-crystal structure with bound ligand provides a guide map for the design of PDE4B selective anti-inflammatory drugs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Kinetic and Structural Studies of Phosphodiesterase-8A and Implication on the Inhibitor Selectivity

    SciTech Connect

    Wang, H.; Yan, Z; Yang, S; Cai, J; Robinson, H; Ke, H

    2008-01-01

    Cyclic nucleotide phosphodiesterase-8 (PDE8) is a family of cAMP-specific enzymes and plays important roles in many biological processes, including T-cell activation, testosterone production, adrenocortical hyperplasia, and thyroid function. However, no PDE8 selective inhibitors are available for trial treatment of human diseases. Here we report kinetic properties of the highly active PDE8A1 catalytic domain prepared from refolding and its crystal structures in the unliganded and 3-isobutyl-1-methylxanthine (IBMX) bound forms at 1.9 and 2.1 Angstroms resolutions, respectively. The PDE8A1 catalytic domain has a KM of 1.8 eM, Vmax of 6.1 emol/min/mg, a kcat of 4.0 s-1 for cAMP, and a KM of 1.6 mM, Vmax of 2.5 emol/min/mg, a kcat of 1.6 s-1 for cGMP, thus indicating that the substrate specificity of PDE8 is dominated by KM. The structure of the PDE8A1 catalytic domain has similar topology as those of other PDE families but contains two extra helices around Asn685-Thr710. Since this fragment is distant from the active site of the enzyme, its impact on the catalysis is unclear. The PDE8A1 catalytic domain is insensitive to the IBMX inhibition (IC50 = 700 eM). The unfavorable interaction of IBMX in the PDE8A1-IBMX structure suggests an important role of Tyr748 in the inhibitor binding. Indeed, the mutation of Tyr748 to phenylalanine increases the PDE8A1 sensitivity to several nonselective or family selective PDE inhibitors. Thus, the structural and mutagenesis studies provide not only insight into the enzymatic properties but also guidelines for design of PDE8 selective inhibitors.

  15. Efficacy and tolerability of tadalafil, a novel phosphodiesterase 5 inhibitor, in treatment of erectile dysfunction.

    PubMed

    Padma-Nathan, Harin

    2003-11-06

    Advances in molecular biology and protein chemistry, along with increasing understanding of the mechanisms of penile erection, have spurred development of pharmacologic approaches to the treatment of erectile dysfunction (ED). The next generation of oral agents includes tadalafil, a potent, highly selective phosphodiesterase 5 inhibitor. In vitro studies have shown that tadalafil enhances relaxation of trabecular smooth muscle, and clinical trials have supported its efficacy and tolerability in a broad population of men with ED. The effect of tadalafil in enhancing the erectile response to sexual stimulation is relatively rapid in onset and lasts for >or=24 hours. The ability of patients with ED treated with tadalafil to achieve improved erectile function is demonstrated by significantly increased subjective measures of penetration ability, successful intercourse, and sexual satisfaction. Partners have expressed similar or higher levels of satisfaction with the results of treatment. Men with ED of psychogenic, organic, or mixed etiology and in a range from mild to severe have experienced significant improvment with tadalafil treatment. Response to treatment in men with diabetes has been robust and not affected by disease severity. Tadalafil has been well tolerated. Adverse events have generally been mild or moderate and have abated with continued treatment. Headache and dyspepsia have been most frequently reported. Changes in color vision have been rare (<0.1%) with tadalafil across all clinical trials. Tadalafil appears to be a safe and effective treatment for men with ED.

  16. Topical therapy for psoriasis: a promising future. Focus on JAK and phosphodiesterase-4 inhibitors.

    PubMed

    Rafael, Adilia; Torres, Tiago

    2016-01-01

    Psoriasis is a common, chronic and disabling skin disorder affecting approximately 2% of the population, associated with significant negative impact on the patient's quality of life. Approximately 80% of those affected with psoriasis have mild-to-moderate forms and are usually treated with topical therapy, whereas phototherapy and systemic therapies are used for those with severe disease. In the past three decades, the major advances in psoriasis therapy have been in systemic agents for the treatment of moderate-to-severe psoriasis, particularly new immunomodulatory and biological molecules, while topical therapies have remained relatively unchanged over the past decades. Indeed, topical corticosteroids and vitamin D3 analogs are still the gold standard of therapy for mild-to-moderate psoriasis. Thus, there is a need to develop new and more effective topical agents in the short and long term, with a better efficacy and safety profile than corticosteroids and vitamin D3 analogs. Over the past five years, investigation into topical therapy has expanded, with exciting new drugs being developed. Preliminary results of these emerging agents that selectively target disease-defining pathogenic pathways seem to be promising, although long-term and large-scale studies assessing safety and efficacy are still lacking. The aim of this article was to review the clinical and research data of some emerging topical agents, focusing on Janus kinase-signal transducer and activator of transcription and phosphodiesterase type 4 inhibitors, which are currently being investigated.

  17. Inhibition of Chlorine-Induced Lung Injury by the Type 4 Phosphodiesterase Inhibitor Rolipram

    PubMed Central

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-01-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. PMID:22763362

  18. [Counterfeit phosphodiesterase type 5 inhibitors--growing safety risks for public health].

    PubMed

    Fijałek, Zbigniew; Sarna, Katarzyna; Błazewicz, Agata; Marin, Jan

    2010-01-01

    Counterfeit drugs, medical devises and dietary supplements are inherently dangerous and a growing problem. In Europe the growth of the counterfeit medication market is attributable in part to registration of phosphodiesterase type 5 inhibitors (PDE-5) used for the erectile dysfunction. "Viagra, Levitra and Cialis belong to this group. It has been estimated that up to 2.5 million men in Europe are exposed to an illicit sildenafil, suggesting that there may be as many illegal as legal users of sildenafil. In Europe a strong trend is observed towards increasingly professional counterfeits and imitations of Viagra, Cialis and Levitra, with regard to the appearance of tablets, capsules and packaging. The professional presentation will deceive potential consumers into assuming these products are legal, efficacious and safe. Globally, increased obstacles for counterfeiters are necessary to combat pharmaceutical counterfeiting, including fines and penalties. The worldwide nature of the counterfeit problem requires proper coordination between countries to ensure an adequate enforcement. We described the usefulness of the time-of-flight mass spectrometry with the electrospray ionization (LC-ESI-MS-TOF) and the X-ray powder diffraction method (XRPD) for PDE-5 counterfeit screening from the Polish illegal market.

  19. Use of sildenafil or other phosphodiesterase inhibitors and risk of melanoma

    PubMed Central

    Pottegård, Anton; Schmidt, Sigrún Alba Johannesdottir; Olesen, Anne Braae; Achacoso, Ninah; Van Den Eeden, Stephen K; Hallas, Jesper; Sørensen, Henrik Toft; Friis, Søren; Habel, Laurel A

    2016-01-01

    Background: Phosphodiesterase 5A inhibitors (PDEIs), a common treatment for erectile dysfunction, were recently linked to an increased risk of melanoma. Methods: We conducted two parallel case–control studies, using the Danish Nationwide Health Registries (DNHR) and the Kaiser Permanente Northern California (KPNC) electronic health records. Identifying men with histologically verified melanoma (cases) matched on birth year to 10 cancer-free controls, we estimated odds ratios (OR) for melanoma associated with high use of PDEIs (⩾100 tablets filled), adjusting for available confounders. Results: We identified 7045 DNHR and 2972 KPNC cases with invasive melanoma. The adjusted OR for invasive melanoma associated with high PDEI use was 1.22 (95% confidence interval (CI), 0.99–1.49) in DNHR and 0.95 (95% CI, 0.78–1.14) in KPNC. Odds ratios were highest for localised invasive melanoma in DNHR (OR, 1.21) and melanoma in situ in KPNC (OR, 1.15), and lowest for non-localised disease in both populations (ORs 0.75 and 0.61, respectively). The increased ORs were slightly attenuated upon adjustment for markers of health-care utilisation. Conclusions: We found little evidence for a causal association between PDEI use and risk of melanoma. The marginally increased risk of early stage disease likely resulted from more frequent health-care contacts among PDEI users. PMID:27529513

  20. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram.

    PubMed

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F; Rando, Roy J; Pathak, Yashwant V; Hoyle, Gary W

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228-270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Phosphodiesterase 5 inhibitors prevent 3,4-methylenedioxymethamphetamine-induced 5-HT deficits in the rat.

    PubMed

    Puerta, Elena; Hervias, Isabel; Goñi-Allo, Beatriz; Lasheras, Berta; Jordan, Joaquin; Aguirre, Norberto

    2009-02-01

    Phosphodiesterase 5 (PDE5) inhibitors are often used in combination with club drugs such as 3,4-methylenedioxymethamphetamine (MDMA or ecstasy). We investigated the consequences of such combination in the serotonergic system of the rat. Oral administration of sildenafil citrate (1.5 or 8 mg/kg) increased brain cGMP levels and protected in a dose-dependent manner against 5-hydroxytryptamine depletions caused by MDMA (3 x 5 mg/kg, i.p., every 2 h) in the striatum, frontal cortex and hippocampus without altering the acute hyperthermic response to MDMA. Intrastriatal administration of the protein kinase G (PKG) inhibitor, KT5823 [(9S, 10R, 12R)-2,3,9,10,11,12-Hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, methyl ester)], suppressed sildenafil-mediated protection. By contrast, the cell permeable cGMP analogue, 8-bromoguanosine cyclic 3',5'-monophosphate, mimicked sildenafil effects further suggesting the involvement of the PKG pathway in mediating sildenafil protection. Because mitochondrial ATP-sensitive K(+) channels are a target for PKG, we next administered the specific mitochondrial ATP-sensitive K(+) channel blocker, 5-hydroxydecanoic acid, 30 min before sildenafil. 5-hydroxydecanoic acid completely reversed the protection afforded by sildenafil, thereby implicating the involvement of mitochondrial ATP-sensitive K(+) channels. Sildenafil also increased Akt phosphorylation, and so the possible involvement of the Akt/endothelial nitric oxide synthase (eNOS)/sGC signalling pathway was analysed. Neither the phosphatidylinositol 3-kinase inhibitor, wortmannin, nor the selective eNOS inhibitor, L-N5-(1-iminoethyl)-L-ornithine dihydrochloride, reversed the protection afforded by sildenafil, suggesting that Akt/eNOS/sGC cascade does not participate in the protective mechanisms. Our data also show that the protective effect of sildenafil can be extended to vardenafil, another PDE5

  2. Modulation of eotaxin formation and eosinophil migration by selective inhibitors of phosphodiesterase type 4 isoenzyme

    PubMed Central

    Silva, Patrícia M R; Alves, Alessandra C; Serra, Magda F; Pires, Ana Lucia A; Silva, Juliane P; Barreto, Emiliano O; Cordeiro, Renato S B; Jose, Peter J; Teixeira, Mauro M; Lagente, Vincent; Martins, Marco A

    2001-01-01

    This study was undertaken to investigate the possible contribution of the blockade of eotaxin generation to the anti-eosinophilotactic effect of phosphodiesterase (PDE) type 4 inhibitors. In some experiments, the putative synergistic interaction between PDE type 4 inhibitors and the β2-agonist salbutamol was also assessed.Sensitized guinea-pigs aerosolized with antigen (5% ovalbumin, OVA) responded with a significant increase in eotaxin and eosinophil levels in the bronchoalveolar lavage fluid (BALF) at 6 h. Eosinophil recruitment was inhibited by both PDE type 4 inhibitors rolipram (5 mg kg−1, i.p.) and RP 73401 (5 mg kg−1, i.p.) treatments. In contrast, only rolipram inhibited eotaxin production.Sensitized rats intrapleurally challenged (i.pl.) with antigen (OVA, 12 μg cavity−1) showed a marked eosinophil infiltration at 24 h, preceded by eotaxin generation at 6 h. Intravenous administration of a rabbit anti-mouse eotaxin antibody (0.5 mg kg−1) significantly reduced allergen-evoked eosinophilia in this model.Local pretreatment with rolipram (40 μg cavity−1) or RP 73401 (40 μg cavity−1) 1 h before challenge reduced eosinophil accumulation evaluated in the rat pleural effluent, but only the former was active against eotaxin generation. The inhibitors of PDE type 3 (SK&F 94836) and type 5 (zaprinast) failed to alter allergen-evoked eosinophil recruitment in rats.Local injection of β2-agonist salbutamol (20 μg cavity−1) inhibited both eosinophil accumulation and eotaxin production following pleurisy. The former was better inhibited when salbutamol and rolipram were administered in combination.Treatment with rolipram and RP 73401 dose-dependently inhibited eosinophil adhesion and migration in vitro. These effects were clearly potentiated by salbutamol at concentrations that had no effect alone.Our findings indicate that although rolipram and RP 73401 are equally effective in inhibiting allergen-induced eosinophil

  3. Altered gene expression in rat mesenteric tissue following in vivo exposure to a phosphodiesterase 4 inhibitor

    SciTech Connect

    Dagues, Nicolas . E-mail: nicolas.dagues@pfizer.com; Pawlowski, Valerie; Guigon, Ghislaine; Ledieu, David; Sobry, Cecile; Hanton, Gilles; Freslon, Jean-Louis; Chevalier, Stephan

    2007-01-01

    Vascular injury is a relatively common finding during the pre-clinical toxicity testing of drugs. The mechanisms of the injury are poorly understood and in turn, sensitive and specific biomarkers for pre-clinical and clinical monitoring do not exist. The present study was undertaken to investigate the molecular mechanisms of drug-induced vascular injury in mesenteric tissue of rats treated with the selective phosphodiesterase 4 (PDE4) inhibitor CI-1044. In a time-course study, male Sprague Dawley rats were given daily doses of 40 or 80 mg/kg for 1, 2 or 3 successive days and were euthanized the following day. Gene expression profiles in mesenteric tissue were determined using Affymetrix RG{sub U}34A microarrays and fibrinogen and cytokine measurements were performed in blood samples. Hierarchical clustering analysis produced a clear pattern separation of the animals with inflammation, animal with inflammation and necrosis and animals without any lesion. Genes associated with inflammation, procoagulation, extracellular matrix remodeling were up-regulated. An altered expression of genes involved in vascular tone regulation, lipid and glucose metabolism was also observed. Selected genes expression changes were confirmed by TaqMan real-time RT-PCR. The inflammatory process was also detected in the bloodstream at the protein level since fibrinogen, IL6 and IL1{beta} concentrations were increased in treated animals. Overall, the present study reveals several molecular changes supporting the hypothesis by which PDE4 inhibitor-induced vascular lesions in rats are triggered by an inflammatory mechanism and/or a vascular tone dysregulation.

  4. Clinical and preclinical treatment of urologic diseases with phosphodiesterase isoenzymes 5 inhibitors: an update

    PubMed Central

    Zhang, Wen-Hao; Zhang, Xin-Hua

    2016-01-01

    Phosphodiesterase isoenzymes 5 inhibitors (PDE5-Is) are the first-line therapy for erectile dysfunction (ED). The constant discoveries of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) cell-signaling pathway for smooth muscle (SM) control in other urogenital tracts (UGTs) make PDE5-Is promising pharmacologic agents against other benign urological diseases. This article reviews the literature and contains some previously unpublished data about characterizations and activities of PDE5 and its inhibitors in treating urological disorders. Scientific discoveries have improved our understanding of cell-signaling pathway in NO/cGMP-mediated SM relaxation in UGTs. Moreover, the clinical applications of PDE5-Is have been widely recognized. On-demand PDE5-Is are efficacious for most cases of ED, while daily-dosing and combination with testosterone are recommended for refractory cases. Soluble guanylate cyclase (sGC) stimulators also have promising role in the management of severe ED conditions. PDE5-Is are also the first rehabilitation strategy for postoperation or postradiotherapy ED for prostate cancer patients. PDE5-Is, especially combined with α-adrenoceptor antagonists, are very effective for benign prostatic hyperplasia (BPH) except on maximum urinary flow rate (Qmax) with tadalafil recently proved for BPH with/without ED. Furthermore, PDE5-Is are currently under various phases of clinical or preclinical researches with promising potential for other urinary and genital illnesses, such as priapism, premature ejaculation, urinary tract calculi, overactive bladder, Peyronie's disease, and female sexual dysfunction. Inhibition of PDE5 is expected to be an effective strategy in treating benign urological diseases. However, further clinical studies and basic researches investigating mechanisms of PDE5-Is in disorders of UGTs are required. PMID:26620458

  5. Synthesis, Pharmacological Profile and Docking Studies of New Sulfonamides Designed as Phosphodiesterase-4 Inhibitors

    PubMed Central

    Cardozo, Suzana Vanessa S.; Carvalho, Vinicius de Frias; Romeiro, Nelilma Correia; Silva, Patrícia Machado Rodrigues e; Martins, Marco Aurélio; Barreiro, Eliezer J.; Lima, Lídia Moreira

    2016-01-01

    Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma. PMID:27695125

  6. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury.

    PubMed

    Mokra, Daniela; Drgova, Anna; Pullmann, Rudolf; Calkovska, Andrea

    2012-06-01

    Since inflammation and oxidation play a key role in the pathophysiology of neonatal meconium aspiration syndrome, various anti-inflammatory drugs have been tested in the treatment. This study evaluated whether the phosphodiesterase (PDE) 3 inhibitor olprinone can alleviate meconium-induced inflammation and oxidative lung injury. Oxygen-ventilated rabbits intratracheally received 4 ml/kg of meconium (25 mg/ml) or saline. Thirty minutes after meconium/saline instillation, meconium-instilled animals were treated by intravenous olprinone (0.2 mg/kg) or were left without treatment. All animals were oxygen-ventilated for an additional 5 h. A bronchoalveolar lavage (BAL) of the left lungs was performed and differential leukocyte count in the sediment was estimated. The right lungs were used to determine lung edema by wet/dry weight ratio, as well as to detect oxidative damage to the lungs. In the lung tissue homogenate, total antioxidant status (TAS) was determined. In isolated lung mitochondria, the thiol group content, conjugated dienes, thiobarbituric acid-reactive substances (TBARS), dityrosine, lysine-lipid peroxidation products, and activity of cytochrome c oxidase (COX) were estimated. To evaluate the effects of meconium instillation and olprinone treatment on the systemic level, TBARS and TAS were determined in the blood plasma, as well. Meconium instillation increased the relative numbers of neutrophils and eosinophils in the BAL fluid, increased edema formation and concentrations of oxidation markers, and decreased TAS. Treatment with olprinone reduced the numbers of polymorphonuclears in the BAL fluid, decreased the formation of most oxidation markers in the lungs, reduced lung edema and prevented a decrease in TAS in the lung homogenate compared to non-treated animals. In the blood plasma, olprinone decreased TBARS and increased TAS compared to the non-treated group. Conclusion, the selective PDE3 inhibitor olprinone has shown potent antioxidative and anti

  7. Vascular dysfunction induced by hypochlorite is improved by the selective phosphodiesterase-5-inhibitor vardenafil.

    PubMed

    Radovits, Tamás; Arif, Rawa; Bömicke, Timo; Korkmaz, Sevil; Barnucz, Enikő; Karck, Matthias; Merkely, Béla; Szabó, Gábor

    2013-06-15

    Reactive oxygen species, such as hypochlorite induce oxidative stress, which impairs nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling and leads to vascular dysfunction. It has been proposed, that elevated cGMP-levels may contribute to an effective cytoprotection against oxidative stress. We investigated the effects of vardenafil, a selective inhibitor of the cGMP-degrading phosphodiesterase-5 enzyme on vascular dysfunction induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitroprusside (SNP). Vascular dysfunction was induced by exposing rings to hypochlorite (100-400 µM). In the treatment groups, rats were pretreated with vardenafil (30 and 300 µg/kg i.v.). Immunohistochemical analysis was performed for the oxidative stress markers nitrotyrosine, poly(ADP-ribose) and for apoptosis inducing factor (AIF). Exposure to hypochlorite resulted in a marked impairment of acetylcholine-induced endothelium-dependent vasorelaxation of aortic rings. Pretreatment with vardenafil led to improved endothelial function as reflected by the higher maximal vasorelaxation (Rmax) to acetylcholine. Regarding endothelium-independent vasorelaxation, hypochlorite exposure led to a left-shift of SNP concentration-response curves in the vardenafil groups without any alterations of the Rmax. In the hypochlorite groups immunohistochemical analysis showed enhanced poly(ADP-ribose)-formation and nuclear translocation of AIF, which were prevented by vardenafil-pretreatment. Our results support the view that cytoprotective effects of PDE-5-inhibitors on the endothelium may underlie the improved endothelial function, however, a slight sensitisation of vascular smooth muscle to NO was also confirmed. PDE-5-inhibition may represent a potential therapy approach for treating vascular

  8. Combination therapy with selective serotonin reuptake inhibitors and phosphodiesterase-5 inhibitors in the treatment of premature ejaculation.

    PubMed

    Polat, E C; Ozbek, E; Otunctemur, A; Ozcan, L; Simsek, A

    2015-06-01

    We aimed to evaluate the effectiveness of paroxetine and tadalafil combination in the treatment of premature ejaculation (PE). A total of 150 primary (lifelong)PE patients were randomly distributed into three groups of 50 patients each. Group 1 received 20 mg paroxetine every day for 1 month, Group 2 received 20 mg tadalafil on demand 2 h before intercourse, and Group 3 received paroxetine and tadalafil on demand 2 h before intercourse. Intravaginal ejaculatory latency times (IELT) scores were evaluated at baseline, at the end of the first month of therapy and 1 month after discontinuation of the treatment, while International Index of Erectile Function (IIEF) questionnaire scores were evaluated both prior to and after the treatment. At the end of the first month of therapy, IELT scores were compared with the basal values and statistically significant changes were detected (60.6 ± 30.2-117.3 ± 67.3, 68.5 ± 21.4-110.2 ± 37.3, 71.56 ± 40.23-175.2 ± 60.2)(P < 0.01). IELT scores after discontinuation of treatment were found to be close to the baseline IELT scores (P > 0.05). IIEF scores were evaluated both prior to and after the treatment, and no statistically significant difference was detected (P > 0.05). It is concluded that utilisation of selective serotonin reuptake inhibitors (SSRI) and phosphodiesterase-5 inhibitors (PDE5i) combination before intercourse seems to provide significantly longer ejaculatory latency times as compared with SSRI alone for a long time in patients with PE.

  9. First-generation phosphodiesterase type 5 inhibitors dropout: a comprehensive review and meta-analysis.

    PubMed

    Corona, G; Rastrelli, G; Burri, A; Serra, E; Gianfrilli, D; Mannucci, E; Jannini, E A; Maggi, M

    2016-11-01

    The discontinuation rate with phosphodiesterase type 5 inhibitors (PDE5i) remains very high. The aim of this study was to review and meta-analyze currently available data regarding dropout of the first-generation of PDE5i including sildenafil, vardenafil, and tadalafil. An extensive Medline Embase and Cochrane search was performed including the following words: 'PDE5i', 'discontinuation'. All observational studies reporting the dropout rate of PDE5i and its specific causes without any arbitrary restrictions were included. Out of 103 retrieved articles, 22 were included in the study. Retrieved trials included a total of 162,936 patients with a mean age of 58.8 ± 7.9 years. Prevalence of reported comorbid diabetes and hypertension were 27.7% and 36.9%, respectively. PDE5i were associated with a mean discontinuation rate of 4% per month (almost 50% after one year). This rate was higher in younger subjects and in those reporting a higher prevalence of associated morbidities. Six main reasons of PDE5i dropout were identified in the evaluated trials. Partner-related problems and lack of efficacy represented the most important reasons for PDE5i discontinuation, although no significant difference among factors was detected. In conclusion, despite their high efficacy and easy administration, the discontinuation rate and dissatisfaction with PDE5i are still very high. Our data showed that no single factor plays a major role in PDE5i dropout, suggesting that the discontinuation rate is usually because of a combination of both medical problems and psychosocial and relational factors. © 2016 American Society of Andrology and European Academy of Andrology.

  10. Simultaneous quantification of endothelin receptor antagonists and phosphodiesterase 5 inhibitors currently used in pulmonary arterial hypertension.

    PubMed

    Enderle, Yeliz; Witt, Lukas; Wilkens, Heinrike; Grünig, Ekkehard; Haefeli, Walter E; Burhenne, Jürgen

    2017-09-05

    Combination treatment with endothelin receptor antagonists (ERA) and phosphodiesterase 5 inhibitors (PDE5I) improved efficacy of pulmonary arterial hypertension (PAH) therapy. However, drug-drug interactions, variable exposure, non-adherence can influence plasma levels. For these reasons, drug quantification may be advantageous particularly in patients with poor treatment responses. We developed, validated, and applied an assay for the simultaneous quantification of ambrisentan, bosentan, macitentan, sildenafil, and tadalafil as well as their main (and partly active) metabolites in human plasma. This method is based on LC-MS/MS separation for a rapid and sensitive quantification with stable isotopically labelled analogues as internal standards for each drug and metabolite. Sample preparation was carried out using a solid phase extraction protocol based on Oasis HLB material. The separation was achieved on a Kinetex C18 column and multiple reaction monitoring in negative ionization mode was used for sensitive detection. The calibrations were linear for all analytes with correlation coefficients >0.99 within the concentration range observed under a therapeutic PAH dosing scheme with lower limits of quantification between 0.34ng/mL (OH-ambrisentan) and 10ng/mL (despropyl-macitentan). Intra- and inter-day precision at LLOQ and QC levels ranged between 2.03% and 19.8%, and 0.65% and 14.0%, respectively. The sample turnover time was 12min. The applicability of this versatile LC/MS/MS assay was verified by the successful analysis of clinical routine samples of patients on PAH medication. This new method allows for the first time to assess trough drug and metabolite levels of the currently approved PDE5I and ERAs in PAH patients, thus enabling for measurement of samples in clinical routine. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    SciTech Connect

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  12. Adjunctive Phosphodiesterase-4 Inhibitor Therapy Improves Antibiotic Response to Pulmonary Tuberculosis in a Rabbit Model

    PubMed Central

    Subbian, Selvakumar; Tsenova, Liana; Holloway, Jennifer; Peixoto, Blas; O'Brien, Paul; Dartois, Véronique; Khetani, Vikram; Zeldis, Jerome B.; Kaplan, Gilla

    2016-01-01

    Objectives Adjunctive host-directed therapy is emerging as a new potential approach to improve the outcome of conventional antimicrobial treatment for tuberculosis (TB). We tested the ability of a phosphodiesterase-4 inhibitor (PDE4i) CC-11050, co-administered with the first-line anti-TB drug isoniazid (INH), to accelerate bacillary killing and reduce chronic inflammation in the lungs of rabbits with experimental Mycobacterium tuberculosis (Mtb) infection. Methods A rabbit model of pulmonary TB that recapitulates the pathologic manifestations seen in humans was used. Rabbits were infected with virulent Mtb by aerosol exposure and treated for eight weeks with INH with or without CC-11050, starting at four weeks post infection. The effect of CC-11050 treatment on disease severity, pathology, bacillary load, T cell proliferation and global lung transcriptome profiles were analyzed. Results Significant improvement in bacillary clearance and reduced lung pathology and fibrosis were noted in the rabbits treated for eight weeks with INH + CC-11050, compared to those treated with INH or CC-11050 only. In addition, expression of host genes associated with tissue remodeling, tumor necrosis factor alpha (TNF-α) regulation, macrophage activation and lung inflammation networks was dampened in CC-11050-treated, compared to the untreated rabbits. Conclusions Adjunctive CC-11050 therapy significantly improves the response of rabbits with experimental pulmonary TB to INH treatment. We propose that CC-11050 may be a promising candidate for host directed therapy of patients with pulmonary TB, reducing the duration and improving clinical outcome of antibiotic treatment. PMID:26981575

  13. Virtual Screening for the Development of Dual-Inhibitors Targeting Topoisomerase IB and Tyrosyl-DNA Phosphodiesterase 1.

    PubMed

    Cardamone, Francesca; Pizzi, Simone; Iacovelli, Federico; Falconi, Mattia; Desideri, Alessandro

    2017-01-01

    Human topoisomerase IB is an important target in cancer therapy and drugs selectively stabilizing the topoisomerase IB-DNA covalent complex are in clinical use for several cancer types. Tyrosyl- DNA phosphodiesterase 1 is involved in the DNA repair resolving the topoisomerase IB-DNA covalent complex that is extremely dangerous for the survival of the cells since it produces an irreversible DNA damage. Given the close biological relationship between these two enzymes, the development of synergistic inhibitors, called dual-inhibitors, is an important challenge in cancer therapy and computer-aided drug design may help in the identification of the best compounds. In this review, an overview of the compounds inhibiting one of the two enzymes or acting as dual inhibitors is provided. Moreover, the general procedures of the virtual screening approach, providing a description of two widely used opensource programs, namely AutoDock4 and AutoDock Vina, are described. Finally, an application of the two programs on a selected number of dual inhibitors for tyrosyl-DNA phosphodiesterase 1 and topoisomerase IB and their performance is briefly discussed.

  14. Efficacy of type-5 phosphodiesterase inhibitors in the drug treatment of premature ejaculation: a systematic review.

    PubMed

    McMahon, Chris G; McMahon, Chelsea N; Leow, Liang Joo; Winestock, Christopher G

    2006-08-01

    This review examines the role of nitric oxide (NO) as a neurotransmitter involved in the central and peripheral control of ejaculation, the methods of phosphodiesterase type 5 inhibitor (PDE5I) drug treatment studies for premature ejaculation (PE), the adherence of methods to the contemporary consensus of ideal PE drug trial design, the impact of methods on treatment outcomes and the role of PDE5Is in the treatment of PE. NO/cGMP transduction is involved in both the central and peripheral control of emission, but evidence for a direct central or peripheral effect of PDE5Is on ejaculation is speculative. Thirteen of the 14 studies reviewed failed to fulfil the evidence-based medicine criteria for ideal PE drug trial design. Limitations of the studies include inadequately defined study populations, the lack of a double-blind placebo-controlled study design, and the absence of consistent objective physiological measures or sensitive, validated outcome assessment instruments as study endpoints. The broad range of intravaginal ejaculatory latency time (IELT) fold-increases reported with PDE5Is, on-demand selective serotonin re-uptake inhibitor (SSRI) drugs, and combined PDE5I/on-demand SSRIs is testament to the unreliability of data and conclusions from methodologically flawed studies. The one study that fulfilled the evidence-based medicine criteria of an ideal clinical trial design reported that treatment with sildenafil failed to significantly increase baseline IELT, supporting our conclusion that there is no convincing evidence to support any role for PDE5Is in the treatment of men with lifelong PE and normal erectile function. However, there is limited evidence to support a potential role for PDE5Is alone or combined with daily or on-demand SSRIs in the treatment of acquired PE in men with comorbid erectile dysfunction. Further controlled studies adhering to the contemporary consensus of ideal clinical trial design are required to clarify the role of PDE5Is in this

  15. Phosphodiesterase-5 inhibitors for premature ejaculation: a systematic review and meta-analysis

    PubMed Central

    Cooper, Katy; Ren, Shijie; Kaltenthaler, Eva; Dickinson, K; Cantrell, A; Wylie, Kevan; Frodsham, Leila; Hood, Catherine

    2016-01-01

    Context Phosphodiesterase-5 inhibitors (PDE5is) are prescribed off-label for the treatment of premature ejaculation (PE). Objective To systematically review the evidence from randomised controlled trials (RCTs) for PDE5is in the management of PE. Evidence acquisition MEDLINE and other databases were searched to September 2015. Quality of RCTs was assessed. Intra-vaginal ejaculatory latency time (IELT) data were pooled in a meta-analysis. Heterogeneity was assessed. Evidence synthesis Fifteen RCTs were included. The majority were of unclear methodological quality. Pooled IELT evidence suggests: PDE5is are significantly more effective than placebo (231 participants, p<0.00001); there is no difference between PDE5is and selective serotonin reuptake inhibitors (SSRIs) (405 participants, p=0.50); and that PDE5is combined with an SSRI are significantly more effective than SSRIs alone (521 participants, p=0.001). However, high levels of statistical heterogeneity are evident (I2≥40%). Single RCT evidence suggests that sildenafil is significantly more effective than the squeeze technique; but both lidocaine gel and tramadol are significantly more effective than sildenafil. Sildenafil combined with behavioural therapy is significantly more effective than behavioural therapy alone. Sexual satisfaction and ejaculatory control appear better with PDE5is compared with placebo and with PDE5is combined with an SSRI compared with an SSRI alone. Adverse events are reported with both PDE5is and other agents. Conclusions PDE5is are significantly more effective than placebo and PDE5is combined with an SSRI are significantly more effective than SSRIs alone at increasing IELT and improvement in other effectiveness outcomes. However, heterogeneity is evident across RCTs. The methodological quality of the majority of RCTs is unclear. Patient summary We reviewed PDE5is for treating premature ejaculation. We found evidence to suggest that PDE5is are effective compared with placebo and that

  16. The Association Between Phosphodiesterase Type-5 Inhibitors and Prostate Cancer: Results from the REDUCE Study

    PubMed Central

    Jamnagerwalla, Juzar; Howard, Lauren E.; Vidal, Adriana C.; Moreira, Daniel M.; Castro-Santamaria, Ramiro; Andriole, Gerald L.; Freedland, Stephen J.

    2016-01-01

    Purpose Despite the routine use of phosphodiesterase type-5 inhibitors (PDE-5i) for treatment of erectile dysfunction, their role in prostate cancer (PC) chemoprevention remains unclear with only a few studies exploring the link between PDE-5i use and PC. We tested the association between PDE-5i use and PC risk in the REDUCE study. Materials & Methods REDUCE was a four-year multi-center study testing the effect of daily dutasteride on PC risk in men with a PSA of 2.5 to 10.0 ng/mL and a negative biopsy, with men undergoing study-mandated biopsies at 2- and 4-years. The association between PDE-5i use and overall PC risk and disease grade (Gleason 2–6 and 7–10) was examined using adjusted logistic and multinomial regression analysis. Secondary analysis was performed exploring the association between PDE-5i use and PC risk in North American men given the significantly higher use of PDE-5i among these subjects. Results PDE-5i inhibitor use was not associated with PC diagnosis (OR=0.90, 95%CI 0.68–1.20, p=0.476) or low- (OR=0.93, 95%CI 0.67–1.27, p=0.632) or high-grade disease (OR=0.85, 95%CI 0.51–1.39, p=0.508). An inverse trend was seen between PDE-5i use and PC diagnosis in North American men, but was not statistically significant (OR=0.67, 95%CI 0.42–1.07, p=0.091). Conclusions PDE-5i use was not associated with decreased PC diagnosis in post-hoc analysis of the REDUCE study. In North American men, who had a much higher baseline use of PDE-5i, use was associated with an inverse trend of PC diagnosis that approached, but did not reach, statistical significance. PMID:27060053

  17. Pharmacological profile of T-1032, a novel specific phosphodiesterase type 5 inhibitor, in isolated rat aorta and rabbit corpus cavernosum.

    PubMed

    Takagi, M; Mochida, H; Noto, T; Yano, K; Inoue, H; Ikeo, T; Kikkawa, K

    2001-01-05

    This study was designed to examine the pharmacological properties of T-1032 (methyl-2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate), a novel phosphodiesterase type 5 inhibitor, in isolated rat aorta and rabbit corpus cavernosum. T-1032 (3x10(-11) to 3x10(-7) M) caused an endothelium-dependent relaxation in the isolated rat aorta precontracted with phenylephrine, and the relaxation was accompanied by an increase in cGMP but not cAMP levels. The T-1032-induced relaxation was attenuated by N(G)-nitro-L-arginine methyl ester (L-NAME) (10(-3) M), a nitric oxide (NO) synthase inhibitor, or 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) (10(-5) M), a guanylyl cyclase inhibitor. T-1032 (10(-9), 10(-8) M) produced a potentiation of the relaxation induced by sodium nitroprusside, but not of the relaxation induced by isoproterenol. In the isolated rabbit corpus cavernosum precontracted with phenylephrine, the electrical field stimulation-induced relaxation was attenuated by treatment with tetrodotoxin (10(-6) M) as well as L-NAME (10(-4) M). The L-NAME-inhibited relaxation was restored by treatment with L-arginine (5x10(-4) M). T-1032 (10(-9) to 10(-6) M) and sildenafil (10(-9) to 10(-6) M) produced a potentiation of the electrical field stimulation-induced relaxation as well as a decrease in basal tension in a concentration-dependent manner. It was concluded that T-1032 had potentiating effects on the NO/cGMP signaling pathway in isolated tissues, probably through specific blockade of phosphodiesterase type 5. T-1032 would be a useful compound to examine the physiologic functions of phosphodiesterase type 5 in mammalian tissues.

  18. 1-(2-(2,2,2-trifluoroethoxy)ethyl-1H-pyrazolo[4,3-d]pyrimidines as potent phosphodiesterase 5 (PDE5) inhibitors.

    PubMed

    Tollefson, Michael B; Acker, Brad A; Jacobsen, E J; Hughes, Robert O; Walker, John K; Fox, David N A; Palmer, Michael J; Freeman, Sandra K; Yu, Ying; Bond, Brian R

    2010-05-15

    1H-Pyrazolo[4,3-d]pyrimidines were previously disclosed as a potent second generation class of phosphodiesterase 5 (PDE5) inhibitors. This work explores the advancement of more selective and potent PDE5 inhibitors resulting from the substitution of 2-(2,2,2-trifluoroethoxy)ethyl at the 1 position in the so-called alkoxy pocket.

  19. 1-(2-Ethoxyethyl)-1H-pyrazolo[4,3-d]pyrimidines as potent phosphodiesterase 5 (PDE5) inhibitors.

    PubMed

    Tollefson, Michael B; Acker, Brad A; Jacobsen, E J; Hughes, Robert O; Walker, John K; Fox, David N A; Palmer, Michael J; Freeman, Sandra K; Yu, Ying; Bond, Brian R

    2010-05-15

    1H-Pyrazolo[4,3-d]pyrimidines are a class of potent and selective second generation phosphodiesterase 5 (PDE5) inhibitors. This work explores the potency, selectivity and efficacy of 1-(2-ethoxyethyl)-1H-pyrazolo[4,5-d]pyrimidines as PDE5 inhibitors resulting in the advancement of a clinical candidate.

  20. Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a ‘low-affinity' phosphodiesterase 4 conformer

    PubMed Central

    Souness, John E; Houghton, Clare; Sardar, Nughat; Withnall, Michael T

    1997-01-01

    We have investigated the suppressive effects of rolipram, RP 73401 (piclamilast) and other structurally diverse inhibitors of cyclic AMP-specific phosphodiesterase 4 (PDE4) on interleukin (IL)-2 generation from Balb/c mouse splenocytes exposed to the superantigen, Staphylococcocal enterotoxin-A (Staph. A). The purpose was to determine whether their potencies are more closely correlated with inhibition of PDE4 from CTLL cells, against which rolipram displays weak potency (low-affinity PDE4), or displacement of [3H]-(±)-rolipram from its high-affinity binding site (HARBS) in mouse brain cytosol. RP 73401 (IC50 0.46±0.07 nM, n=4) was a very potent inhibitor of Staph. A-induced IL-2 release from Balb/c mouse splenocytes, being >1100 fold more potent than (±)-rolipram (IC50 540±67 nM, n=3). A close correlation (r=0.95) was observed between suppression of IL-2 release by PDE inhibitors and inhibition of PDE4. In contrast, little correlation (r=0.39) was observed between suppression of IL-2 release and their affinities for the high-affinity rolipram binding site (HARBS). RP 73401 only inhibited partially (30–40%) Staph. A-induced incorporation of [3H]-thymidine into splenocyte DNA. The PDE3 inhibitor, siguazodan (10 μM), had little or no effect on IL-2 release or DNA synthesis. This concentration of siguazodan did not enhance the inhibitory action of RP 73401 on IL-2 release but potentiated its effect on DNA synthesis, increasing potency and efficacy. Staph. A-induced DNA synthesis was only partially inhibited by anti-IL-2 neutralizing antibody, whereas dexamethazone (100 nM) and cyclosporine A (100 nM) completely blocked the response. RP 73401 (IC50 6.3±1.9 nM, n=4) was 140 fold more potent than rolipram (IC50 900±300 nM, n=3) in inhibiting Staph. A-induced [3H]-thymidine incorporation into splenocyte DNA. The results implicate a low-affinity form of PDE4 in the suppression of Staph. A-induced IL-2 release from murine splenocytes by PDE inhibitors

  1. Synthesis of Novel Tadalafil Analogues and their Evaluation as Phosphodiesterase Inhibitors and Anticancer Agents

    PubMed Central

    Abadi, Ashraf H.; Abouel-Ella, Dalal A.; Ahmed, Nermin S.; Gary, Bernard D.; Thaiparambil, Jose T.; Tinsley, Heather N.; Keeton, Adam B.; Piazza, Gary A.

    2016-01-01

    Two closely related series of novel β-carboline derivatives, electronically similar to tadalafil (CAS 171596-29-5), were synthesized and evaluated for their inhibitory effects upon phosphodiesterase 5 (PDE5) and phosphodiesterase 11 (PDE11) and their in vitro tumor cell growth inhibitory activity versus HT29 colorectal carcinoma cell line. Interestingly, some of the synthesized compounds showed growth inhibitory properties that appear to be associated with their ability to inhibit PDE5. Moreover, the PDE5 inhibition seems relevant to the stereochemical aspects of the compounds. PMID:19813465

  2. Discovery of selective inhibitors of tyrosyl-DNA phosphodiesterase 2 by targeting the enzyme DNA-binding cleft.

    PubMed

    Kossmann, Bradley R; Abdelmalak, Monica; Lopez, Sophia; Tender, Gabrielle; Yan, Chunli; Pommier, Yves; Marchand, Christophe; Ivanov, Ivaylo

    2016-07-15

    Tyrosyl-DNA phosphodiesterase 2 (TDP2) processes protein/DNA adducts resulting from abortive DNA topoisomerase II (Top2) activity. TDP2 inhibition could provide synergism with the Top2 poison class of chemotherapeutics. By virtual screening of the NCI diversity small molecule database, we identified selective TDP2 inhibitors and experimentally verified their selective inhibitory activity. Three inhibitors exhibited low-micromolar IC50 values. Molecular dynamics simulations revealed a common binding mode for these inhibitors, involving association to the TDP2 DNA-binding cleft. MM-PBSA per-residue energy decomposition identified important interactions of the compounds with specific TDP2 residues. These interactions could provide new avenues for synthetic optimization of these scaffolds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Statin, testosterone and phosphodiesterase 5-inhibitor treatments and age related mortality in diabetes

    PubMed Central

    Hackett, Geoffrey; Jones, Peter W; Strange, Richard C; Ramachandran, Sudarshan

    2017-01-01

    AIM To determine how statins, testosterone (T) replacement therapy (TRT) and phosphodiesterase 5-inhibitors (PDE5I) influence age related mortality in diabetic men. METHODS We studied 857 diabetic men screened for the BLAST study, stratifying them (mean follow-up = 3.8 years) into: (1) Normal T levels/untreated (total T > 12 nmol/L and free T > 0.25 nmol/L), Low T/untreated and Low T/treated; (2) PDE5I/untreated and PDE5I/treated; and (3) statin/untreated and statin/treated groups. The relationship between age and mortality, alone and with T/TRT, statin and PDE5I treatment was studied using logistic regression. Mortality probability and 95%CI were calculated from the above models for each individual. RESULTS Age was associated with mortality (logistic regression, OR = 1.10, 95%CI: 1.08-1.13, P < 0.001). With all factors included, age (OR = 1.08, 95%CI: 1.06-1.11, P < 0.001), Low T/treated (OR = 0.38, 95%CI: 0.15-0.92, P = 0.033), PDE5I/treated (OR = 0.17, 95%CI: 0.053-0.56, P = 0.004) and statin/treated (OR = 0.59, 95%CI: 0.36-0.97, P = 0.038) were associated with lower mortality. Age related mortality was as described by Gompertz, r2 = 0.881 when Ln (mortality) was plotted against age. The probability of mortality and 95%CI (from logistic regression) of individuals, treated/untreated with the drugs, alone and in combination was plotted against age. Overlap of 95%CI lines was evident with statins and TRT. No overlap was evident with PDE5I alone and with statins and TRT, this suggesting a change in the relationship between age and mortality. CONCLUSION We show that statins, PDE5I and TRT reduce mortality in diabetes. PDE5I, alone and with the other treatments significantly alter age related mortality in diabetic men. PMID:28344753

  4. Psychotherapy and phosphodiesterase-5 inhibitor in early rehabilitation after radical prostatectomy: a prospective randomised controlled trial.

    PubMed

    Naccarato, A M E P; Reis, L O; Ferreira, U; Denardi, F

    2016-12-01

    The aim of this study was to evaluate the impact of group psychotherapy and the use of a phosphodiesterase-5 inhibitor (PDE-5i) in the early rehabilitation stage of patients with prostate cancer undergoing radical prostatectomy (RP). Fifty-six patients undergoing RP for prostate cancer were randomised into four groups, and 53 completed the protocol: Group 1 - control (n = 11), Group 2 - group psychotherapy (n = 16), Group 3 - lodenafil 80 mg/one tablet per week (n = 12) and Group 4 - group psychotherapy + lodenafil 80 mg/one tablet per week (n = 14). The groups were individually evaluated for erectile function (IIEF-5) and quality of life - QoL (SF-36) weekly, with two meetings held a week apart before the RP and 12 weekly meetings after surgery. The ages ranged from 39 to 76 years, average 61.84. There were no significant medication side effects. Only Group 4 showed improvement in intimacy with a partner and satisfaction with their sex life (P = 0.045 and P = 0.013 respectively), and with no significant worsening of the IIEF-5 (P = 0.250) reported. All groups showed worsening in the final result of the role limitations caused by physical problems (P = 0.009) and role limitations caused by emotional problems (P = 0.002) of the SF-36, but Group 4 had a significantly higher score for the role limitations caused by physical problems (P = 0.009) than the other groups. In conclusion, precocious integral treatment involving group psychotherapy and PDE-5i before and after RP led to less deterioration of erectile function and other domains related to physical aspects (SF-36), with improvement in intimacy with their partner and satisfaction in their sex life, being superior to single treatments. © 2016 Blackwell Verlag GmbH.

  5. Effect of DMPPO, a phosphodiesterase type 5 inhibitor, on hypoxic pulmonary hypertension in rats

    PubMed Central

    Eddahibi, Saadia; Raffestin, Bernadette; Le Monnier de Gouville, Anne-Charlotte; Adnot, Serge

    1998-01-01

    Cyclic guanosine 3′–5′-monophosphate (cyclic GMP) is the second messenger of important physiologically active mediators controlling the pulmonary vascular tone. To potentiate the effects of cyclic GMP on the pulmonary vasculature, we used DMPPO, a new selective PDE-5 inhibitor, and examined its action in a rat model of hypoxic pulmonary hypertension.Levels of cyclic GMP measured during baseline conditions at 5 and 60 min of perfusion were similar in the perfusate of isolated lungs from normoxic and chronically hypoxic rats and did not differ with time. Pretreatment with DMPPO (1 μM) induced a larger increase in cyclic GMP concentration in the perfusate from chronically hypoxic rat lungs (319±36 at 5 min to 1821±83 pmol ml−1 at 60 min) than in normoxic rat lungs (329±20 to 1281±127 pmol ml−1, P<0.05).In isolated lungs preconstricted with U-46619, pretreatment with DMPPO (1 μM) potentiated the vasodilator effects of atrial natriuretic peptide (100 pM–10 nM) and sodium nitroprusside (1 pM–10 nM), but did not alter vasodilation to isoproterenol.In conscious rats previously exposed to 15 days hypoxia and studied under 10% O2, DMPPO (0.01, 0.05 and 0.1 mg kg−1, i.v. bolus) caused a dose-dependent decrease in pulmonary arterial pressure (Pap) with no change in systemic artery pressure (Sap) and cardiac output.Continuous infusion of DMPPO (0.1 mg kg−1 h−1 i.v. by osmotic pumps) in rats exposed to 10% O2 during 2-weeks reduced the Pap (P<0.05) and the degree of muscularization of pulmonary vessels at the alveolar wall (P<0.01) and alveolar duct levels (P<0.05) despite no significant change in right ventricular hypertrophy.These results suggest that cyclic GMP phosphodiesterase inhibition may selectively dilate pulmonary circulation during chronic hypoxia. PMID:9831902

  6. Sildenafil and analogous phosphodiesterase type 5 (PDE-5) inhibitors in herbal food supplements sampled on the Dutch market.

    PubMed

    Reeuwijk, N M; Venhuis, B J; de Kaste, D; Hoogenboom, L A P; Rietjens, I M C M; Martena, M J

    2013-01-01

    Herbal food supplements, claiming to enhance sexual potency, may contain deliberately added active pharmacological ingredients (APIs) that can be used for the treatment of erectile dysfunction (ED). The aim of this study was to determine whether herbal food supplements on the Dutch market indeed contain APIs that inhibit phosphodiesterase type 5 (PDE-5) inhibitors, such as sildenafil and analogous PDE-5 inhibitors. Herbal food supplements intended to enhance sexual potency (n = 71), and two soft drinks, were sampled from 2003 up to and including 2012. In 23 herbal supplements, nine different PDE-5 inhibitors were identified; in a few cases (n = 3), more than one inhibitor was indentified. The presence of these APIs was however not stated on the label. The concentrations of PDE-5 inhibitors per dose unit were analysed. Furthermore, the potential pharmacologically active properties of the detected PDE-5 inhibitors were estimated by using data from the scientific and patent literature regarding (1) in vitro PDE-5 activity, (2) reported effective doses of registered drugs with PDE-5 inhibitor activity and (3) similarity to other structural analogues. It was concluded that 18 of the 23 herbal food supplements, when used as recommended, would have significant pharmacological effects due to added APIs. Adequate use of existing regulation and control measures seems necessary to protect consumers against the adverse effects of these products.

  7. Perceptions of erectile dysfunction and phosphodiesterase type 5 inhibitor therapy in a qualitative study of men and women in affected relationships.

    PubMed

    McGraw, Sarah A; Rosen, Raymond C; Althof, Stanley E; Dunn, Marian; Cameron, Ann; Wong, David

    2015-01-01

    Erectile dysfunction negatively affects men and women in relationships; however, the subjective experience of erectile dysfunction and phosphodiesterase-type 5 inhibitor therapy remains poorly understood. The authors therefore characterized participants' subjective understanding of erectile dysfunction and phosphodiesterase-type 5 inhibitor therapy using individual interviews with affected heterosexual men (n = 58) and women (n = 65). Responses were characterized by 6 psychosocial domains: explanation of the experience, emotional responses, socially expected responses, value of sex, communication with the partner, and treatment expectations. The findings may aid clinicians in relating to men with erectile dysfunction and thus potentially improve effectiveness of therapy.

  8. Selective type IV phosphodiesterase inhibitors as antiasthmatic agents. The syntheses and biological activities of 3-(cyclopentyloxy)-4-methoxybenzamides and analogues.

    PubMed

    Ashton, M J; Cook, D C; Fenton, G; Karlsson, J A; Palfreyman, M N; Raeburn, D; Ratcliffe, A J; Souness, J E; Thurairatnam, S; Vicker, N

    1994-05-27

    The syntheses and biological activities of a number of benzamide derivatives, designed from rolipram, which are selective inhibitors of cyclic AMP-specific phosphodiesterase (PDE IV), are described. The effects of changes to the alkoxy groups, amide linkage, and benzamide N-phenyl ring on the inhibition of the cytosolic PDE IV from pig aorta have been investigated. As a result, some highly potent and selective PDE IV inhibitors have been identified. The most potent compounds have been further evaluated for their inhibitory potencies against PDE IV obtained from and superoxide O2- generation from guinea pig eosinophils in vitro. Selected compounds have also been examined for their activities in inhibiting histamine-induced bronchospasm in anaesthetized guinea pigs. 3-(Cyclopentyloxy)-N-(3,5-dichloro-4-pyridyl)-4-methoxybenzamide (15j) showed exceptional potency in all tests and may have therapeutic potential in the treatment of asthma.

  9. Conformational Variations of Both Phosphodiesterase-5 and Inhibitors Provide the Structural Basis for the Physiological Effects of Vardenafil and Sildenafil

    SciTech Connect

    Wang, H.; Ye, M; Robinson, H; Fransis, S; Ke, H

    2007-01-01

    Vardenafil has higher affinity to phosphodiesterase-5 (PDE5) than sildenafil and lower administered dosage for the treatment of erectile dysfunction. However, the molecular basis for these differences is puzzling because two drugs have similar chemical structures. Reported here is a crystal structure of the fully active and nonmutated PDE5A1 catalytic domain in complex with vardenafil. The structure shows that the conformation of the H-loop in the PDE5A1-vardenafil complex is different from those of any known structures of the unliganded PDE5 and its complexes with the inhibitors. In addition, the molecular configuration of vardenafil differs from that of sildenafil when bound to PDE5. It is noteworthy that the binding of vardenafil causes loss of the divalent metal ions that have been observed in all the previously published PDE structures. The conformational variation of both PDE5 and the inhibitors provides structural insight into the different potencies of the drugs.

  10. Conformational Variations of Both Phosphodiesterase-5 and Inhibitors Provide the Structural Basis for the Physiological Effects of Verdenafil and Sildenafil

    SciTech Connect

    Wang,H.; Ye, M.; Robinson, H.; Francis, S.; Ke, H.

    2008-01-01

    Vardenafil has higher affinity to phosphodiesterase-5 (PDE5) than sildenafil and lower administered dosage for the treatment of erectile dysfunction. However, the molecular basis for these differences is puzzling because two drugs have similar chemical structures. Reported here is a crystal structure of the fully active and nonmutated PDE5A1 catalytic domain in complex with vardenafil. The structure shows that the conformation of the H-loop in the PDE5A1-vardenafil complex is different from those of any known structures of the unliganded PDE5 and its complexes with the inhibitors. In addition, the molecular configuration of vardenafil differs from that of sildenafil when bound to PDE5. It is noteworthy that the binding of vardenafil causes loss of the divalent metal ions that have been observed in all the previously published PDE structures. The conformational variation of both PDE5 and the inhibitors provides structural insight into the different potencies of the drugs.

  11. Identification in Silico and Experimental Validation of Novel Phosphodiesterase 7 Inhibitors with Efficacy in Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    2012-01-01

    A neural network model has been developed to predict the inhibitory capacity of any chemical structure to be a phosphodiesterase 7 (PDE7) inhibitor, a new promising kind of drugs for the treatment of neurological disorders. The numerical definition of the structures was achieved using CODES program. Through the validation of this neural network model, a novel family of 5-imino-1,2,4-thiadiazoles (ITDZs) has been identified as inhibitors of PDE7. Experimental extensive biological studies have demonstrated the ability of ITDZs to inhibit PDE7 and to increase intracellular levels of cAMP. Among them, the derivative 15 showed a high in vitro potency with desirable pharmacokinetic profile (safe genotoxicity and blood brain barrier penetration). Administration of ITDZ 15 in an experimental autoimmune encephalomyelitis (EAE) mouse model results in a significant attenuation of clinical symptoms, showing the potential of ITDZs, especially compound 15, for the effective treatment of multiple sclerosis. PMID:23077723

  12. The pleiotropic effects of phosphodiesterase 5 inhibitors on function and safety in patients with cardiovascular disease and hypertension.

    PubMed

    Chrysant, Steven G; Chrysant, George S

    2012-09-01

    Phosphodiesterase 5 (PDE-5) inhibitors are selective blockers of PDE-5, which catalyzes the hydrolysis of cyclic guanosine monophosphate (cGMP) to its corresponding monophosphates. cGMP is a potent vasodilator and nitric oxide donor. Since PDE-5 is widely distributed in the body, it was hypothesized that inhibition of its actions could lead to significant vasodilation, which could benefit patients with coronary artery disease. This hypothesis led to the development of PDE-5 inhibitors, the first being sildenafil citrate. Studies of sildenafil in patients with coronary artery disease demonstrated a modest cardiovascular effect but a potent action on penile erection in men, resulting in sildenafil becoming first-line treatment of erectile dysfunction. Two more PDE-5 inhibitors are now US Food and Drug Administration-approved (vardenafil and tadalafil) for the treatment of erectile dysfunction. Recent studies have demonstrated several beneficial pleiotropic cardiovascular effects of PDE-5 inhibitors in patients with erectile dysfunction and multiple comorbidities, including coronary artery disease, heart failure, hypertension, and diabetes mellitus. Treatment of these conditions with PDE-5 inhibitors has been very effective, safe, and well tolerated. Drug interactions have been minimal with the exception of nitrates, where coadministration may result in severe vasodilation and hypotension. These beneficial pleiotropic and safe cardiovascular effects of PDE-5 inhibitors will be discussed in this concise review. © 2012 Wiley Periodicals, Inc.

  13. Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity

    PubMed Central

    Tardif, Steve; Madamidola, Oladipo A.; Brown, Sean G.; Frame, Lorna; Lefièvre, Linda; Wyatt, Paul G.; Barratt, Christopher L.R.; Martins Da Silva, Sarah J.

    2014-01-01

    STUDY QUESTION Can we identify compound(s) with reported phosphodiesterase inhibitor (PDEI) activity that could be added to human spermatozoa in vitro to enhance their motility without compromising other sperm functions? SUMMARY ANSWER We have identified several compounds that produce robust and effective stimulation of sperm motility and, importantly, have a positive response on patient samples. WHAT IS KNOWN ALREADY For >20 years, the use of non-selective PDEIs, such as pentoxifylline, has been known to influence the motility of human spermatozoa; however, conflicting results have been obtained. It is now clear that human sperm express several different phosphodiesterases and these are compartmentalized at different regions of the cells. By using type-specific PDEIs, differential modulation of sperm motility may be achieved without adversely affecting other functions such as the acrosome reaction (AR). STUDY DESIGN, SIZE, DURATION This was a basic medical research study examining sperm samples from normozoospermic donors and subfertile patients attending the Assisted Conception Unit (ACU), Ninewells Hospital Dundee for diagnostic semen analysis, IVF and ICSI. Phase 1 screened 43 commercially available compounds with reported PDEI activity to identify lead compounds that stimulate sperm motility. Samples were exposed (20 min) to three concentrations (1, 10 and 100 µM) of compound, and selected candidates (n = 6) progressed to Phase 2, which provided a more comprehensive assessment using a battery of in vitro sperm function tests. PARTICIPANTS/MATERIALS, SETTING, METHODS All healthy donors and subfertile patients were recruited at the Medical Research Institute, University of Dundee and ACU, Ninewells Hospital Dundee (ethical approval 08/S1402/6). In Phase 1, poor motility cells recovered from the 40% interface of the discontinuous density gradient were used as surrogates for patient samples. Pooled samples from three to four different donors were utilized in

  14. Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor.

    PubMed Central

    Genain, C P; Roberts, T; Davis, R L; Nguyen, M H; Uccelli, A; Faulds, D; Li, Y; Hedgpeth, J; Hauser, S L

    1995-01-01

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system that serves as a model for the human disease multiple sclerosis. We evaluated rolipram, a type IV phosphodiesterase inhibitor, for its efficacy in preventing EAE in the common marmoset Callithrix jacchus. In a blinded experimental design, clinical signs of EAE developed within 17 days of immunization with human white matter in two placebo-treated animals but in none of three monkeys that received rolipram (10 mg/kg s.c. every other day) beginning 1 week after immunization. In controls, signs of EAE were associated with development of cerebrospinal fluid pleocytosis and cerebral MRI abnormalities. In the treatment group, there was sustained protection from clinical EAE, transient cerebrospinal fluid pleocytosis in only one of three animals, no MRI abnormality, and marked reduction in histopathologic findings. Rolipram-treated and control animals equally developed circulating antibodies to myelin basic protein. Thus, inhibition of type IV phosphodiesterase, initiated after sensitization to central nervous system antigens, protected against autoimmune demyelinating disease. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7536938

  15. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a 'low-affinity' phosphodiesterase 4 conformer.

    PubMed Central

    Souness, J. E.; Griffin, M.; Maslen, C.; Ebsworth, K.; Scott, L. C.; Pollock, K.; Palfreyman, M. N.; Karlsson, J. A.

    1996-01-01

    1. We have investigated the inhibitory effects of RP 73401 (piclamilast) and rolipram against human monocyte cyclic AMP-specific phosphodiesterase (PDE4) in relation to their effects on prostaglandin (PG)E2-induced cyclic AMP accumulation and lipopolysaccharide (LPS)-induced TNF alpha production and TNF alpha mRNA expression. 2. PDE4 was found to be the predominant PDE isoenzyme in the cytosolic fraction of human monocytes. Cyclic GMP-inhibited PDE (PDE3) was also detected in the cytosolic and particulate fractions. Reverse transcription polymerase chain reaction (RT-PCR) of human monocyte poly (A+) mRNA revealed amplified products corresponding to PDE4 subtypes A and B of which the former was most highly expressed. A faint band corresponding in size to PDE4D was also observed. 3. RP 73401 was a potent inhibitor of cytosolic PDE4 (IC50: 1.5 +/- 0.6 nM, n = 3). (+/-)-Rolipram (IC50: 313 +/- 6.7 nM, n = 3) was at least 200 fold less potent than RP 73401. R-(-)-rolipram was approximately 3 fold more potent than S-(+)-rolipram against cytosolic PDE4. 4. RP 73401 (IC50: 9.2 +/- 2.1 nM, n = 6) was over 50 fold more potent than (+/-)-rolipram (IC50: 503 +/- 134 nM, n = 6) ) in potentiating PGE2-induced cyclic AMP accumulation. R-(-)-rolipram (IC50: 289 +/- 121 nM, n = 5) was 4.7 fold more potent than its S-(+)-enantiomer (IC50: 1356 +/- 314 nM, n = 5). A strong and highly-significant, linear correlation (r = 0.95, P < 0.01, n = 13) was observed between the inhibitory potencies of a range of structurally distinct PDE4 inhibitors against monocyte PDE4 and their ED50 values in enhancing monocyte cyclic AMP accumulation. A poorer, though still significant, linear correlation (r = 0.67, P < 0.01, n = 13) was observed between the potencies of the same compounds in potentiating PGE2-induced monocyte cyclic AMP accumulation and their abilities to displace [3H]-rolipram binding to brain membranes. 5. RP 73401 (IC50: 6.9 +/- 3.3 nM, n = 5) was 71 fold more potent than

  16. Administration of the Phosphodiesterase Type 4 Inhibitor Rolipram into the Amygdala at a Specific Time Interval after Learning Increases Recognition Memory Persistence

    ERIC Educational Resources Information Center

    Werenicz, Aline; Christoff, Raissa R.; Blank, Martina; Jobim, Paulo F. C.; Pedroso, Thiago R.; Reolon, Gustavo K.; Schroder, Nadja; Roesler, Rafael

    2012-01-01

    Here we show that administration of the phosphodiesterase type 4 (PDE4) inhibitor rolipram into the basolateral complex of the amygdala (BLA) at a specific time interval after training enhances memory consolidation and induces memory persistence for novel object recognition (NOR) in rats. Intra-BLA infusion of rolipram immediately, 1.5 h, or 6 h…

  17. Administration of the Phosphodiesterase Type 4 Inhibitor Rolipram into the Amygdala at a Specific Time Interval after Learning Increases Recognition Memory Persistence

    ERIC Educational Resources Information Center

    Werenicz, Aline; Christoff, Raissa R.; Blank, Martina; Jobim, Paulo F. C.; Pedroso, Thiago R.; Reolon, Gustavo K.; Schroder, Nadja; Roesler, Rafael

    2012-01-01

    Here we show that administration of the phosphodiesterase type 4 (PDE4) inhibitor rolipram into the basolateral complex of the amygdala (BLA) at a specific time interval after training enhances memory consolidation and induces memory persistence for novel object recognition (NOR) in rats. Intra-BLA infusion of rolipram immediately, 1.5 h, or 6 h…

  18. Selaginpulvilins A-D, new phosphodiesterase-4 inhibitors with an unprecedented skeleton from Selaginella pulvinata.

    PubMed

    Liu, Xin; Luo, Hai-Bin; Huang, Yi-You; Bao, Jing-Mei; Tang, Gui-Hua; Chen, Yun-Yun; Wang, Jun; Yin, Sheng

    2014-01-03

    Selaginpulvilins A-D (1-4), four new phenols with an unprecedented 9,9-diphenyl-1-(phenylethynyl)-9H-fluorene skeleton, together with four known selaginellins (5-8) were isolated from Selaginella pulvinata. Their structures were elucidated by spectroscopic analysis and chemical correlation. The structure of 1 was confirmed by single-crystal X-ray diffraction. Compounds 1-8 exhibited remarkable inhibitory activities (IC50 values in the range of 0.11-5.13 μM) against phosphodiesterase-4 (PDE4), a drug target for the treatment of asthma and chronic obstructive pulmonary disease.

  19. Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression.

    PubMed

    Liebenberg, Nico; Harvey, Brian H; Brand, Linda; Brink, Christiaan B

    2010-09-01

    We explored the antidepressant-like properties of two phosphodiesterase type 5 (PDE5) inhibitors in a genetic animal model of depression, namely Flinders sensitive line rats. We investigated the dose-dependency of the antidepressant-like action of sildenafil, and its interaction with the cholinergic system and behavioural correlates of monoaminergic neurotransmission, in the forced swim test. Antidepressant-like properties of tadalafil (a structurally distinct PDE5 inhibitor) were also evaluated. Flinders sensitive line rats were treated for 14 days with vehicle, fluoxetine, atropine or PDE5 inhibitors+/-atropine. Immobility, swimming and climbing behaviours were assessed in the forced swim test. In combination with atropine (1 mg/kg), both sildenafil (10, 20 mg/kg) and tadalafil (10 mg/kg) decreased immobility while increasing swimming (serotonergic) and climbing (noradrenergic) behaviours. Interestingly, sildenafil (3 mg/kg) decreased immobility while selectively increasing climbing behaviour in the absence of atropine. These results suggest that the antidepressant-like activity of PDE5 inhibitors involve alterations in monoaminergic neurotransmission, but involve a dependence on inherent cholinergic tone so that the final response is determined by the relative extent of activation of these systems. Furthermore, the behavioural profile of sildenafil alone, and its observed antidepressant-like properties, shows strict dose-dependency, with only higher doses showing an interaction with the cholinergic system.

  20. The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice.

    PubMed

    Liddie, Shervin; Anderson, Karen L; Paz, Andres; Itzhak, Yossef

    2012-10-01

    Several phosphodiesterase inhibitors (PDEis) improve cognition, suggesting that an increase in brain cAMP and cGMP facilitates learning and memory. Since extinction of drug-seeking behavior requires associative learning, consolidation and formation of new memory, the present study investigated the efficacy of three different PDEis in the extinction of cocaine-induced conditioned place preference (CPP) in B6129S mice. Mice were conditioned by escalating doses of cocaine which was resistant to extinction by free exploration. Immediately following each extinction session mice received (a) saline/vehicle, (b) rolipram (PDE4 inhibitor), (c) BAY-73-6691 (PDE9 inhibitor) or (d) papaverine (PDE10A inhibitor). Mice that received saline/vehicle during extinction training showed no reduction in CPP for >10 days. BAY-73-6691 (a) dose-dependently increased cGMP in hippocampus and amygdala, (b) significantly facilitated extinction and (c) diminished the reinstatement of cocaine CPP. Rolipram, which selectively increased brain cAMP levels, and papaverine which caused increases in both cAMP and cGMP levels, had no significant effect on the extinction of cocaine CPP. The results suggest that increase in hippocampal and amygdalar cGMP levels via blockade of PDE9 has a prominent role in the consolidation of extinction learning.

  1. Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric Inhibitor

    PubMed Central

    Huang, Manna; Shao, Yongxian; Hou, Jianying; Cui, Wenjun; Liang, Beibei; Huang, Yingchun; Li, Zhe; Wu, Yinuo; Zhu, Xinhai; Liu, Peiqing

    2015-01-01

    Phosphodiesterase-9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of central nervous system diseases and diabetes. Here, we report the discovery of a new category of PDE9 inhibitors by rational design on the basis of the crystal structures. The best compound, (S)-6-((1-(4-chlorophenyl)ethyl)amino)-1-cyclopentyl-1,5,6,7-tetrahydro-4H-pyrazolo[3,4-day]pyrimidin-4-one [(S)-C33], has an IC50 value of 11 nM against PDE9 and the racemic C33 has bioavailability of 56.5% in the rat pharmacokinetic model. The crystal structures of PDE9 in the complex with racemic C33, (R)-C33, and (S)-C33 reveal subtle conformational asymmetry of two M-loops in the PDE9 dimer and different conformations of two C33 enantiomers. The structures also identified a small hydrophobic pocket that interacts with the tyrosyl tail of (S)-C33 but not with (R)-C33, and is thus possibly useful for improvement of selectivity of PDE9 inhibitors. The asymmetry of the M-loop and the different interactions of the C33 enantiomers imply the necessity to consider the whole PDE9 dimer in the design of inhibitors. PMID:26316540

  2. Synthesis of Quinoline Derivatives: Discovery of a Potent and Selective Phosphodiesterase 5 Inhibitor for the Treatment of Alzheimer's disease

    PubMed Central

    Fiorito, Jole; Saeed, Faisal; Zhang, Hong; Staniszewski, Agnieszka; Feng, Yan; Francis, Yitshak I.; Rao, Sudha; Thakkar, Devarshi M.; Deng, Shi-Xian; Landry, Donald W.; Arancio, Ottavio

    2012-01-01

    Phosphodiesterase type 5 (PDE5) mediates the degradation of cGMP in a variety of tissues including brain. Recent studies have demonstrated the importance of the nitric oxide/cGMP/cAMP-responsive element-binding protein (CREB) pathway to the process of learning and memory. Thus, PDE5 inhibitors (PDE5Is) are thought to be promising new therapeutic agents for the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by memory loss. To explore this possibility, a series of quinoline derivatives were synthesized and evaluated. We found that compound 7a selectively inhibits PDE5 with an IC50 of 0.27 nM and readily crosses the blood brain barrier. In an in vivo mouse model of AD, compound 7a rescues synaptic and memory defects. Quinoline-based, CNS-permeant PDE5Is have potential for AD therapeutic development. PMID:23313637

  3. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension.

    PubMed

    Bowles, Elizabeth A; Moody, Gina N; Yeragunta, Yashaswini; Stephenson, Alan H; Ellsworth, Mary L; Sprague, Randy S

    2015-01-01

    Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.

  4. The effect of SK&F 95654, a novel phosphodiesterase inhibitor, on cardiovascular, respiratory and platelet function.

    PubMed Central

    Murray, K. J.; Eden, R. J.; Dolan, J. S.; Grimsditch, D. C.; Stutchbury, C. A.; Patel, B.; Knowles, A.; Worby, A.; Lynham, J. A.; Coates, W. J.

    1992-01-01

    1. SK&F 95654 inhibited the guanosine 3':5'-cyclic monophosphate (cyclic GMP)-inhibited phosphodiesterase (cGI-PDE) with an IC50 value of 0.7 microM. The IC50 values were greater than 100 microM for the other four phosphodiesterase isoenzymes tested. The R-enantiomer of SK&F 95654 (IC50 = 0.35 microM) was a more potent inhibitor of cGI-PDE than was the S-enantiomer (IC50 = 5.3 microM). 2. In the guinea-pig working heart, SK&F 95654 produced a positive inotropic response without altering heart rate. 3. Oral administration of SK&F 95654 to conscious dogs caused dose-dependent increases in left ventricular dp/dtmax in the range 10-50 micrograms kg-1. These positive inotropic responses were maintained for 3 h without simultaneous changes in heart rate or blood pressure. The peak effects on left ventricular dp/dtmax were similar for orally and intravenously administered compound, indicating good oral bioavailability. 4. SK&F 95654 caused a potent inhibition of U46619-induced aggregation in both a human washed platelet suspension (WPS) (IC50 = 70 nM) and in human platelet-rich plasma (PRP) (IC50 = 60 nM), indicating that the compound shows negligible plasma binding. 5. The R-enantiomer of SK&F 95654 was twenty fold more potent as an inhibitor of platelet aggregation than was the S-enantiomer. The similarity of this ratio to that obtained on the cGI-PDE suggests that SK&F 95654 inhibits platelet aggregation via its effects on cGI-PDE. This was also indicated by studies which showed that SK&F 95654 increased adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels and activated cyclic AMP-dependent protein kinase in human platelets.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422592

  5. Potentiation of penile tumescence by T-1032, a new potent and specific phosphodiesterase type V inhibitor, in dogs.

    PubMed

    Noto, T; Inoue, H; Ikeo, T; Kikkawa, K

    2000-09-01

    We examined the mechanism underlying the potentiation of penile tumescence by methyl 2-(4-aminophenyl)-1, 2dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4, 5-trimethoxyphenyl)3-isoquinoline carboxylate sulfate (T-1032), a new potent and selective phosphodiesterase type V inhibitor. In vivo, pelvic nerve stimulation induced a penile tumescence together with increase of total nitric oxide metabolite levels within the corpus cavernosa of anesthetized dogs. Intravenous (1-100 microg/kg) and intraduodenal (3, 30, 300 microg/kg) treatment with T-1032 dose dependently potentiated the tumescence. The potency of T-1032 was equivalent to that of sildenafil. T-1032 did not influence the intracavernous pressure when the pelvic nerve stimulation was absent. The potentiation of tumescence was more pronounced by intracavernous than i.v. injection. Intracavernous N(G)-nitro-L-arginine, a nitric-oxide synthase inhibitor, but not N(G)-nitro-D-arginine diminished the effects of T-1032 on the tumescence. Furthermore, i.v. T-1032 augmented the tumescence induced by sodium nitroprusside (SNP) but not by vasoactive intestinal polypeptide (VIP). In vitro, in isolated preparations of canine corpus cavernosum precontracted with phenylephrine, SNP (0. 01-100 microM) and VIP (0.01-1 microM) produced a dose-dependent relaxation accompanied by an increase in cGMP and cAMP levels, respectively. T-1032 augmented the relaxation induced by SNP but not by VIP. These data suggest that oral treatment with T-1032 has potential to improve erectile dysfunction through the inhibition of phosphodiesterase type V in the smooth muscles of corpus cavernosa.

  6. [Type V phosphodiesterase inhibitor erection-provoking test with audio-visual sexual stimulation for the diagnosis of erectile dysfunction].

    PubMed

    Zhu, Xuan-Wen; Guo, Jun-Ping; Zhang, Feng-Bin; Zhong, Da-Chuan; Fang, Jia-Jie; Li, Fang-Yin

    2008-05-01

    To evaluate the type V phosphodiesterase (PDE-5) inhibitor erection-provoking test with audio-visual sexual stimulation in the diagnosis of erectile dysfunction. A total of 853 out-patients diagnosed with erectile dysfunction were divided into an injury and a non-injury group. After scored on IIEF-5 questionnaires, all the patients received oral administration of PDE-5 inhibitors and, 30 minutes later, audio-visual sexual stimulation. The data on penile erection were recorded with Rigiscan Plus. The patients with mild, moderate and severe ED accounted for 18.8, 31.9 and 49.3% in the injury group, and 50.6, 39.8 and 9.6% in the non-injury group, with statistic differences between the two groups in the mild and severe parts (P < 0.05). The rates of conspicuous effectiveness, effectiveness, ineffectiveness and total effectiveness of the combined method were 13.0, 14.5, 72.5 and 27.5% in the injury group, but 55.7, 20.7, 23.6 and 76.4% in the non-injury group, with significant differences (P < 0.05). The PDE-5 inhibitor erection-provoking test with audio-visual sexual stimulation is a simple, practical, safe and effective method for the differentiation of organic from psychological erectile dysfunction.

  7. The phosphodiesterase 3 inhibitor ORG 9935 inhibits oocyte maturation in the naturally selected dominant follicle in Rhesus macaques

    PubMed Central

    Jensen, Jeffrey T.; Zelinski, Mary B.; Stanley, Jessica E.; Fanton, John W.; Stouffer, Richard L.

    2008-01-01

    Background The study was conducted to determine whether the phosphodiesterase (PDE) 3 inhibitor ORG 9935 prevents the resumption of meiosis in primate oocytes during natural menstrual cycles. Study design Regularly-cycling adult female macaques (n=8) were followed during the follicular phase and then started on a 2-day treatment regimen of human recombinant gonadotropins to control the timing of ovulation. Monkeys received no further treatment (controls), or ORG 9935. Oocytes were recovered by laparoscopic follicle aspiration 27 hours after an ovulatory stimulus, cultured in vitro in the absence of inhibitor, and inseminated. The primary outcome was the meiotic stage of the oocyte. Results In 6 ORG 9935 cycles; 5 of the recovered oocytes were germinal vesicle (GV)-intact, and 1 exhibited GV-breakdown (GVBD). In contrast, all 3 oocytes recovered during control cycles were GVBD (p < 0.05). None of the ORG 9935-treated oocytes underwent fertilization compared with 2/3 (67%) from controls. Conclusions These results demonstrate that ORG 9935 blocks resumption of meiosis in the naturally-selected dominant follicle in primates, and suggest that PDE 3 inhibitors have potential clinical use as contraceptives in women. PMID:18342656

  8. Impact on monoclonal antibody production in murine hybridoma cell cultures of adenosine receptor antagonists and phosphodiesterase inhibitors.

    PubMed

    Kelso, Geoffrey F; Kazi, Shahid A; Harris, Simon J; Boysen, Reinhard I; Chowdhury, Jamil; Hearn, Milton T W

    2016-01-15

    The effects of different adenosine receptor antagonists and cyclic nucleotide phosphodiesterase (PDE) inhibitors on monoclonal antibody (mAb) titer and cell viability of murine hybridoma cells in culture were measured as part of our investigations to discover additives that enhance mAb production. Specific adenosine receptor antagonists and PDE inhibitors were found to enhance or decrease the titer of immunoglobulin G1 (IgG1) mAbs relative to negative controls, depending on the specific compound and cell line employed. The observed enhancements or decreases in IgG1 mAb titer appeared to be mainly due to an increase or decrease in specific productivity rates (ngmAb/cell), respectively. The different effects of the selective adenosine antagonists suggest that antagonism at the level of the adenosine A2A and A1 or the adenosine A3 receptors result in either enhancement or suppression of IgG1 mAb production by hybridoma cells. Overall, these studies have identified hitherto unknown activities of specific adenosine antagonists and PDE inhibitors which indicate they may have valuable roles as cell culture additives in industrial biomanufacturing processes designed to enhance the yields of mAbs or other recombinant proteins produced by mammalian cell culture procedures.

  9. Synthetic phosphodiesterase-5-inhibitors use/abuse and interest of hair testing: reporting of a rape case.

    PubMed

    Duez, Mathieu; Etter, Matthieu; Klinger, Nadine; Cirimele, Vincent

    2014-06-01

    If classic phosphodiesterase-5 (PDE-5) inhibitors are well known, new synthetic PDE-5 analogues are of more recent introduction. Some of them have already been tested in dietary supplements. We describe here a rape case following the consumption of pills bought on the Internet and containing new synthetic PDE-5 inhibitors. The assailant declared that he lost control after ingesting these pills for the first time. Analyses of conventional matrices (blood, urine) don't allow us to highlight the intake of any substances in relation to this offence due to late sampling (5 days after the offence). Therefore, we have developed an analytical approach to test for PDE-5 inhibitors in hair including the two new synthetic PDE-5 inhibitors analogues - thiosildenafil and hydroxythiohomosildenafil - previously identified in the pills. This new method was validated and applied to the hair samples of the victim and the suspect. Analyses were conducted using a liquid/liquid extraction followed by liquid chromatography coupled with a mass spectrometer in multiple reaction monitoring mode detection. The 2-centimetre proximal hair section of the suspect revealed the presence of thiosildenafil (48 pg/mg), hydroxythiohomosildenafil (24 pg/mg), and sildenafil (7.5 pg/mg). To our knowledge, it is the first time that these two new synthetic PDE-5 inhibitors were detected in biological samples and especially in hair. Complementary investigations showed that a single pill taken by a volunteer provided similar levels in thiosildenafil (35 pg/mg), hydroxythiohomosildenafil (17 pg/mg), and sildenafil (8 pg/mg) to those found in the previous case described here.

  10. A phosphodiesterase type-5 inhibitor, sildenafil, induces sperm capacitation and penetration into porcine oocytes in a chemically defined medium.

    PubMed

    Ioki, Sumire; Wu, Qing-Shan; Takayama, Osamu; Motohashi, Hideyuki H; Wakai, Takuya; Funahashi, Hiroaki

    2016-02-01

    The present study was undertaken to determine the effect of a phosphodiesterase (PDE) type-5 (cyclic guanosine monophosphate-specific) inhibitor, sildenafil, on capacitation and penetration of boar spermatozoa in a basic chemically defined medium (adenosine- and theophylline-free PGM-tac4). When ejaculated spermatozoa were cultured for 90 minutes in the absence or presence of sildenafil at 2.5 mM, the inhibitor significantly increased the percentage of capacitated/acrosome-reacted spermatozoa, as a result of the chlortetracycline assay. When fresh spermatozoa were co-cultured with oocytes in the presence of sildenafil at a different concentration (0, 2.5, 25, or 250 μM), higher sildenafil concentrations (25 and 250 μM) significantly resulted in higher sperm penetration rates. When oocytes matured in vitro were co-cultured with spermatozoa in the presence of 25 μM sildenafil or 25 mM caffeine benzoate for 8 hours, the incidence of penetrated oocytes did not differ between two groups, whereas the incidence of monospermic oocytes in penetrated one was significantly higher in the presence of sildenafil. Immunocytochemical analysis reported the presence of PDE type-5 on the acrosome region of boar spermatozoa. These results report that regulation of cyclic guanosine monophosphate-specific PDE type-5 by sildenafil somehow can increase the penetrability of boar spermatozoa in vitro.

  11. Effects of RP 73401, a novel, potent and selective phosphodiesterase type 4 inhibitor, on contractility of human, isolated bronchial muscle.

    PubMed Central

    Naline, E.; Qian, Y.; Advenier, C.; Raeburn, D.; Karlsson, J. A.

    1996-01-01

    1. The aim of this study was to investigate the smooth muscle relaxant effects of the novel, selective phosphodiesterase (PDE) type 4 inhibitor, RP 73401 in comparison with the classical PDE 4 inhibitor, rolipram, the non-selective PDE inhibitor, theophylline and the beta-adrenoceptor agonist, isoprenaline on the human, isolated bronchus. 2. At resting tone, the rank order of potency (pD2) for the relaxants was RP 73401 > or = rolipram > or = isoprenaline >> theophylline. In terms of maximum relaxation produced (Emax) the PDE 4-selective inhibitors were similar, but the maximal effects (70-75% of theophylline, 3 mM) were lower than that observed with isoprenaline (98% of theophylline, 3 mM) or theophylline itself (100%). 3. On the human isolated bronchus pre-contracted with acetylcholine (ACh, 0.1 or 1.0 mM), the rank order of potency remained the same. The maximal responses to RP 73401 and rolipram were however markedly reduced (Emax 39.9-46.6%) compared with isoprenaline (Emax 79-85%). 4. In tissues pre-contracted with ACh (0.1 mM), RP 73401 and rolipram (10(-9)-10(-7) M) significantly and concentration-dependently increased tissue sensitivity to isoprenaline. RP 73401 and rolipram were similar in potency. Both selective PDE 4 inhibitors also significantly increased the maximal relaxant effects of isoprenaline. These effects were not observed with the PDE 3 inhibitor, siguazodan. 5. In terms of retention by tissues (an index of duration of action), the onset of action of RP 73401 (2.11 +/- 0.53 min) and rolipram (1.70 +/- 0.45 min) was significantly slower than that of isoprenaline (0.33 +/- 0.06 min) or theophylline (1.17 +/- 0.25 min). The retention of RP 73401 (89.0 +/- 21.9 min) on the human isolated bronchial tissues after washing was however dramatically longer than that of rolipram (18.3 +/- 4.5 min), theophylline (3.43 +/- 0.58 min) or isoprenaline (2.81 +/- 0.31 min). 6. These data indicate that RP 73401 is a potent and long acting relaxant of human

  12. The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism.

    PubMed

    Rossello, Jessica; Lima, Analía; Gil, Magdalena; Rodríguez Duarte, Jorge; Correa, Agustín; Carvalho, Paulo C; Kierbel, Arlinet; Durán, Rosario

    2017-08-31

    The second messenger c-di-GMP regulates the switch between motile and sessile bacterial lifestyles. A general feature of c-di-GMP metabolism is the presence of a surprisingly large number of genes coding for diguanylate cyclases and phosphodiesterases, the enzymes responsible for its synthesis and degradation respectively. However, the physiological relevance of this apparent redundancy is not clear, emphasizing the need for investigating the functions of each of these enzymes. Here we focused on the phosphodiesterase PA2133 from Pseudomonas aeruginosa, an important opportunistic pathogen. We phenotypically characterized P. aeruginosa strain K overexpressing PA2133 or its inactive mutant. We showed that biofilm formation and motility are severely impaired by overexpression of PA2133. Our quantitative proteomic approach applied to the membrane and exoprotein fractions revealed that proteins involved in three processes were mostly affected: flagellar motility, type III secretion system and chemotaxis. While inhibition of biofilm formation can be ascribed to the phosphodiesterase activity of PA2133, down-regulation of flagellar, chemotaxis, and type III secretion system proteins is independent of this enzymatic activity. Based on these unexpected effects of PA2133, we propose to rename this gene product FcsR, for Flagellar, chemotaxis and type III secretion system Regulator.

  13. Phosphodiesterase type 5 inhibitors for treating erectile dysfunction and lower urinary tract symptoms secondary to benign prostatic hyperplasia: A comprehensive review

    PubMed Central

    Haddad, Albert; Jabbour, Michel; Bulbul, Muhammad

    2015-01-01

    Many men have coexistent erectile dysfunction (ED) and lower urinary tract symptoms secondary to benign prostatic hyperplasia (LUTS/BPH). Phosphodiesterase type 5 (PDE5) inhibitors are effective for treating both of these conditions independently. In this review we summarise the evidence supporting a link between ED and LUTS/BPH, and the results from key clinical studies related to the use of PDE5 inhibitors for treating both conditions. The results from these studies suggest that men who have both ED and LUTS/BPH, and are concerned about their sexual dysfunction, might benefit from single-agent, holistic treatment with a PDE5 inhibitor. PMID:26413339

  14. Differential regulation of TNF-α and IL-1β production from endotoxin stimulated human monocytes by phosphodiesterase inhibitors

    PubMed Central

    Yonno, L.; Heaslip, R. J.; Weichman, B. M.

    1992-01-01

    The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-α and IL-1β production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-α production, but only partially inhibited IL-1β at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-α, but had no effect on IL-1β production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-α and IL-1β production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man. PMID:18475493

  15. Insight into Binding of Phosphodiesterase-9A Selective Inhibitors by Crystal Structures and Mutagenesis

    SciTech Connect

    Wang, H.; Luo, X; Ye, M; Hou, J; Robinson, H; Ke, H

    2010-01-01

    PDE9 inhibitors have been studied as therapeutics for treatment of cardiovascular diseases, diabetes, and neurodegenerative disorders. To illustrate the inhibitor selectivity, the crystal structures of the PDE9A catalytic domain in complex with the enantiomers of PDE9 inhibitor 1-(2-chlorophenyl)-6-(3,3,3-trifluoro-2-methylpropyl)-1H-pyrazolo[3,4-d]pyrimidine-4(5H)-one ((R)-BAY73-6691 or (S)-BAY73-6691, 1r or 1s) were determined and mutagenesis was performed. The structures showed that the fluoromethyl groups of 1r and 1s had different orientations while the other parts of the inhibitors commonly interacted with PDE9A. These differences may explain the slightly different affinity of 1r (IC{sub 50} = 22 nM) and 1s (IC{sub 50} = 88 nM). The mutagenesis experiments revealed that contribution of the binding residues to the inhibitor sensitivity varies dramatically, from few-fold to 3 orders of magnitude. On the basis of the crystal structures, a hypothesized compound that simulates the recently published PDE9 inhibitors was modeled to provide insight into the inhibitor selectivity.

  16. The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse.

    PubMed

    Beardsley, Patrick M; Shelton, Keith L; Hendrick, Elizabeth; Johnson, Kirk W

    2010-07-10

    Stress and renewed contact with drug (a "slip") have been linked to persisting relapse of methamphetamine abuse. Human brain microglial activation has been linked with methamphetamine abuse, and inhibitors of glial cell activation, certain phosphodiesterase (PDE) inhibitors, and glial cell derived neurotrophic factor (GDNF) have been reported to modulate drug abuse effects. Our objective was to determine whether the glial cell attenuator, 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine (AV411, ibudilast), a non-selective PDE inhibitor and promoter of GDNF, could reduce stress- and methamphetamine prime-induced reinstatement of methamphetamine-seeking behavior. Male Long-Evans hooded rats were trained to lever press reinforced with 0.1 mg/kg i.v. methamphetamine infusion according to fixed-ratio 1 (FR1) reinforcement schedules during daily, 2-hour experimental sessions. After performance had stabilized, lever pressing was extinguished for 12 consecutive sessions and doses of 0 (vehicle), 2.5 and 7.5 mg/kg AV411 were then administered intraperitoneally b.i.d. on the last 2 days of extinction and then once on the testday to separate groups of 12 rats. During testing, the rats were given 15 min of intermittent footshock or a 1 mg/kg i.p. methamphetamine prime followed by a 2-hour reinstatement test session. AV411 significantly reduced response levels of footshock-induced (2.5 and 7.5 mg/kg) and prime-induced (7.5 mg/kg) reinstatement of extinguished methamphetamine-maintained responding. AV411 has properties consistent with the ability to attenuate relapse precipitated by stress and methamphetamine "slips" during abstinence. These results thus reinforce interest in atypical neurobiological mechanisms which could be exploited for developing novel medications for treating drug abuse disorders.

  17. Testosterone and phosphodiesterase type-5 inhibitors: new strategy for preventing endothelial damage in internal and sexual medicine?

    PubMed Central

    Aversa, Antonio; Bruzziches, Roberto; Francomano, Davide; Natali, Marco; Lenzi, Andrea

    2009-01-01

    Normal vascular endothelium is essential for the synthesis and release of substances affecting vascular tone (e.g. nitric oxide; NO), cell adhesion (e.g. endothelins, interleukins), and the homeostasis of clotting and fibrinolysis (e.g. plasminogen inhibitors, von Willebrand factor). The degeneration of endothelial integrity promotes adverse events (AEs) leading to increased atherogenesis and to the development of vascular systemic and penile end-organ disease. Testosterone (T) is an important player in the regulation of vascular tone through non-genomic actions exerted via blockade of extracellular-calcium entry or activation of potassium channels; also, adequate T concentrations are paramount for the regulation of phosphodiesterase type-5 (PDE5) expression and finally, for the actions exerted by hydrogen sulphide, a gas involved in the alternative pathway controlling vasodilator responses in penile tissue. It is known that an age-related decline of serum T is reported in approximately 20 to 30% of men whereas T deficiency is reported in up to 50% of men with metabolic syndrome or diabetes. A number of laboratory and human studies have shown the combination of T and other treatments for erectile dysfunction (ED), such as PDE5 inhibitors, to be more beneficial in patients with ED and hypogonadism, who fail monotherapy for sexual disturbances. The aim of this review is to show evidence on the role of T and PDE5 inhibitors, alone or in combination, as potential boosters of endothelial function in internal medicine diseases associated with reduced T or NO bioavailability, i.e. metabolic syndrome, obesity, diabetes, coronary artery disease, hyperhomocysteinemia, that share common risk factors with ED. Furthermore, the possibility of such a strategy to prevent endothelial dysfunction in men at increased cardiovascular risk is discussed. PMID:21789066

  18. The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse

    PubMed Central

    Beardsley, Patrick M.; Shelton, Keith L.; Hendrick, Elizabeth; Johnson, Kirk W.

    2010-01-01

    Stress and renewed contact with drug (a “slip”) have been linked to persisting relapse of methamphetamine abuse. Human brain microglial activation has been linked with methamphetamine abuse, and inhibitors of glial cell activation, certain phosphodiesterase (PDE) inhibitors, and glial cell derived neurotrophic factor (GDNF) have been reported to modulate drug abuse effects. Our objective was to determine whether the glial cell attenuator, 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine (AV411, ibudilast), a non-selective PDE inhibitor and promoter of GDNF, could reduce stress- and methamphetamine prime-induced reinstatement of methamphetamine-seeking behavior. Male Long-Evans hooded rats were trained to lever press reinforced with 0.1 mg/kg i.v. methamphetamine infusion according to fixed-ratio 1 (FR1) reinforcement schedules during daily, 2-h experimental sessions. After performance had stabilized, lever pressing was extinguished for 12 consecutive sessions and doses of 0 (vehicle), 2.5 and 7.5 mg/kg AV411 were then administered intraperitoneally b.i.d. on the last two days of extinction and then once on the testday to separate groups of 12 rats. During testing, the rats were given 15 min of intermittent footshock or a 1 mg/kg i.p. methamphetamine prime followed by a 2-h reinstatement test session. AV411 significantly reduced response levels of footshock-induced (2.5 and 7.5 mg/kg) and prime-induced (7.5 mg/kg) reinstatement of extinguished methamphetamine-maintained responding. AV411 has properties consistent with the ability to attenuate relapse precipitated by stress and methamphetamine “slips” during abstinence. These results thus reinforce interest in atypical neurobiological mechanisms which could be exploited for developing novel medications for treating drug abuse disorders. PMID:20399770

  19. Adulteration of purported herbal and natural sexual performance enhancement dietary supplements with synthetic phosphodiesterase type 5 inhibitors.

    PubMed

    Campbell, Neil; Clark, John P; Stecher, Vera J; Thomas, John W; Callanan, Amy C; Donnelly, Brian F; Goldstein, Irwin; Kaminetsky, Jed C

    2013-07-01

    Many products labeled "herbal" or "all natural" (herbal/natural) that claim to enhance sexual performance and imply use for the treatment of erectile dysfunction (ED) are marketed as over-the-counter (OTC) dietary supplements. However, adulteration with undeclared phosphodiesterase type 5 (PDE5) inhibitors appears widespread. To assess the availability, cost, origin, categorical content, and adulteration with PDE5 inhibitors of purported herbal/natural OTC dietary supplements claiming to naturally enhance sexual performance. Pfizer Global Security coordinated sample collection (all from convenience stores and filling stations in two U.S. metropolitan areas except for seven from U.S. Customs seizures) and liquid chromatography/mass spectrometry examination. Adulteration with synthetic PDE5 inhibitors. Ninety-one samples labeled as 58 distinct products and priced from $2.99 to $17.99 were evaluated. Origin/manufacture was claimed as United States (n = 62), apparently Asian (n = 15), and not clearly identified (n = 14). Although no sample claimed to include synthetic substances, 74 (81%) contained PDE5-inhibitor pharmaceutical ingredients, including tadalafil and/or sildenafil (n = 40, of which 18 contained >110% of the highest approved drug product strength) or PDE5-inhibitor analogs (n = 34). Pronounced heterogeneity of contents between samples within individual products indicated minimal quality control during manufacture. Labeling was inadequate (e.g., lacking lot number and/or expiry date) for 17 products (23 samples) and inconsistent between samples within a given product (e.g., in manufacturer, lot number, and/or expiry date) for seven of 17 products having multiple samples. Only 14 samples warned against concomitant nitrate use. Ethical pharmaceutical companies are concerned for an unsuspecting public when their products are counterfeited, mislabeled, and illegally offered for sale in an unsafe manner. Because of the dangers of adulteration with synthetic PDE5

  20. Phosphodiesterase Type 4 Inhibitor Rolipram Improves Survival of Spiral Ganglion Neurons In Vitro

    PubMed Central

    Kranz, Katharina; Warnecke, Athanasia; Lenarz, Thomas; Durisin, Martin; Scheper, Verena

    2014-01-01

    Sensorineural deafness is caused by damage of hair cells followed by degeneration of the spiral ganglion neurons and can be moderated by cochlear implants. However, the benefit of the cochlear implant depends on the excitability of the spiral ganglion neurons. Therefore, current research focuses on the identification of agents that will preserve their degeneration. In this project we investigated the neuroprotective effect of Rolipram as a promising agent to improve the viability of the auditory neurons. It is a pharmaceutical agent that acts by selective inhibition of the phosphodiesterase 4 leading to an increase in cyclic AMP. Different studies reported a neuroprotective effect of Rolipram. However, its significance for the survival of SGN has not been reported so far. Thus, we isolated spiral ganglion cells of neonatal rats for cultivation with different Rolipram concentrations and determined the neuronal survival rate. Furthermore, we examined immunocytologically distinct proteins that might be involved in the neuroprotective signalling pathway of Rolipram and determined endogenous BDNF by ELISA. When applied at a concentration of 0.1 nM, Rolipram improved the survival of SGN in vitro. According to previous studies, our immunocytological data showed that Rolipram application induces the phosphorylation and thereby activation of the transcription factor CREB. This activation can be mediated by the cAMP-PKA-signalling pathway as well as via ERK as a part of the MAP-kinase pathway. However, only in cultures pre-treated with BDNF, an endogenous increase of BDNF was detected. We conclude that Rolipram has the potential to improve the vitality of neonatal auditory nerve cells in vitro. Further investigations are necessary to prove the effect of Rolipram in vivo in the adult organism after lesion of the hair cells and insertion of cochlear implants. PMID:24642701

  1. Relation of phosphodiesterase type 5 inhibitors and malignant melanoma: a meta-analysis and systematic review

    PubMed Central

    Wang, Jiaoni; Xue, Yangjing; Liao, Lianming; Thapa, Saroj; Ji, Kangting

    2017-01-01

    Data on the association between using PDE5 inhibitors and malignant melanoma are conflicting. To estimate the relation of using PDE5 inhibitors with risk of malignant melanoma, Medline (Ovid) and Embase (Ovid) databases were searched up to February 2017, and a random effects model was used to calculate the summary risk estimates. Five observational studies were included. Five studies reports encompassed a total of 15,979 melanoma cases occurring among 1, 188,414 participants. The pooled multivariable-adjusted RR of melanoma in patients with using PDE5 inhibitors was 1.12 (95% CI: 1.03–1.21, I2 = 0.48). Findings from this systematic review support that PDE5 inhibitor use is associated with increased risk of melanoma in ED patients, the result remains inclusive and warrants further study in the future. PMID:28515348

  2. Synthesis, Structural Analysis, and Biological Evaluation of Thioxoquinazoline Derivatives as Phosphodiesterase 7 Inhibitors

    SciTech Connect

    Castano, T.; Wang, H; Campillo, N; Ballester, S; Gonzalez-Garcia, C; Hernandez, J; Perez, C; Cuenca, J; Perez-Castillo, A; et. al.

    2009-01-01

    PDE7 inhibitors regulate pro-inflammatory and immune T-cell functions, and are a potentially novel class of drugs particularly useful for treatment of a wide variety of immune and inflammatory disorders. Structural optimization of thioxoquinazoline derivatives led to new compounds with very interesting profiles as PDE7 or PDE7/PDE4 dual inhibitors, which may be further developed as new drugs for inflammatory and neurological diseases.

  3. Design, synthesis and biological evaluation of dual acetylcholinesterase and phosphodiesterase 5A inhibitors in treatment for Alzheimer's disease.

    PubMed

    Zhou, Li-Yun; Zhu, Yao; Jiang, Yu-Ren; Zhao, Xiong-Jie; Guo, Dong

    2017-09-01

    With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer's disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67-169.80nM (donepezil IC50 50.12nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50μM (sildenafil IC50 12.59μM), and some of these compounds showed low cell toxicity to A549 cells in vitro. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. K-134, a Phosphodiesterase 3 Inhibitor, Prevents Brain Damage by Inhibiting Thrombus Formation in a Rat Cerebral Infarction Model

    PubMed Central

    Yoshida, Hideo; Ashikawa, Yuka; Itoh, Shinsuke; Nakagawa, Takashi; Asanuma, Akimune; Tanabe, Sohei; Inoue, Yoshihiro; Hidaka, Hiroyoshi

    2012-01-01

    Background K-134 is a more potent antiplatelet drug with a selective inhibitory effect on phosphodiesterase 3 (PDE3) compared with its analogue, cilostazol. Objectives This study was performed to compare the ameliorating effects of K-134 and cilostazol on brain damage in an experimental photothrombotic cerebral infarction model. Methods and Results We investigated the effects of oral preadministration of PDE3 inhibitors in a rat stroke model established by photothrombotic middle cerebral artery (MCA) occlusion. K-134 significantly prolonged MCA occlusion time at doses >10 mg/kg, and reduced cerebral infarct size at 30 mg/kg in the stroke model (n = 12, 87.5±5.6 vs. 126.8±7.5 mm3, P<0.01), indicating its potent antithrombotic effect. On the other hand, the effects of cilostazol on MCA occlusion time and cerebral infarct size are relatively weak even at the high dosage of 300 mg/kg. Furthermore, K-134 blocked rat platelet aggregation more potently than cilostazol in vitro. Also in an arteriovenous shunt thrombosis model, K-134 showed an antithrombotic effect greater than cilostazol. Conclusions These findings suggest that K-134, which has strong antithrombotic activity, is a promising drug for prevention of cerebral infarction associated with platelet hyperaggregability. PMID:23110051

  5. K-134, a phosphodiesterase 3 inhibitor, prevents brain damage by inhibiting thrombus formation in a rat cerebral infarction model.

    PubMed

    Yoshida, Hideo; Ashikawa, Yuka; Itoh, Shinsuke; Nakagawa, Takashi; Asanuma, Akimune; Tanabe, Sohei; Inoue, Yoshihiro; Hidaka, Hiroyoshi

    2012-01-01

    K-134 is a more potent antiplatelet drug with a selective inhibitory effect on phosphodiesterase 3 (PDE3) compared with its analogue, cilostazol. This study was performed to compare the ameliorating effects of K-134 and cilostazol on brain damage in an experimental photothrombotic cerebral infarction model. We investigated the effects of oral preadministration of PDE3 inhibitors in a rat stroke model established by photothrombotic middle cerebral artery (MCA) occlusion. K-134 significantly prolonged MCA occlusion time at doses >10 mg/kg, and reduced cerebral infarct size at 30 mg/kg in the stroke model (n = 12, 87.5±5.6 vs. 126.8±7.5 mm(3), P<0.01), indicating its potent antithrombotic effect. On the other hand, the effects of cilostazol on MCA occlusion time and cerebral infarct size are relatively weak even at the high dosage of 300 mg/kg. Furthermore, K-134 blocked rat platelet aggregation more potently than cilostazol in vitro. Also in an arteriovenous shunt thrombosis model, K-134 showed an antithrombotic effect greater than cilostazol. These findings suggest that K-134, which has strong antithrombotic activity, is a promising drug for prevention of cerebral infarction associated with platelet hyperaggregability.

  6. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor.

    PubMed

    Makled, Shaimaa; Nafee, Noha; Boraie, Nabila

    2017-01-30

    Phosphodiesterase type 5 (PDE-5) inhibitors - among which sildenafil citrate (SC) - play a primary role in the treatment of pulmonary hypertension (PH). Yet, SC can be only administered orally or parenterally with lot of risks. Targeted delivery of SC to the lungs via inhalation/nebulization is mandatory. In this study, solid lipid nanoparticles (SLNs) loaded with SC were prepared and characterized in terms of colloidal, morphological and thermal properties. The amount of drug loaded and its release behavior were estimated as a function of formulation variables. The potential of lipid nanocarriers to retain their properties following nebulization and autoclaving was investigated. In addition, toxicity aspects of plain and loaded SLNs on A549 cells were studied with respect to concentration. Spherical SLNs in the size range (100-250nm) were obtained. Particles ensured high encapsulation efficiency (88-100%) and sustained release of the payload over 24h. Cell-based viability experiments revealed a concentration-dependant toxicity for both plain and loaded SLNs recording an IC50 of 516 and 384μg/mL, respectively. Nebulization with jet nebulizer and sterilization via autoclaving affected neither the colloidal stability of SLNs nor the drug entrapment, proving their potential as pulmonary delivery system. Interaction of SLNs with mucin was a function of the emulsifier coating layer. Results yet seeking clinical evidence - might give promises of new therapy for PH of higher safety, better performance and higher patient compliance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of DA-8159, a Selective Phosphodiesterase Type 5 Inhibitor, on Electroretinogram and Retinal Histology in Rabbits

    PubMed Central

    Kang, Kyung Koo; Ahn, Gook Jun; Shim, Hyun Joo; Kim, Won Bae

    2004-01-01

    DA-8159, a selective inhibitor of phosphodiesterase type 5, was developed as a new drug for erectile dysfunction. The effect of DA-8159 on the electroretinogram (ERG) and the retinal histopathology were evaluated in rabbits. The ERG was performed prior to, and 1 and 5 hr after DA-8159 (5 to 30 mg/kg) administration. The plasma concentration of DA-8159 was determined at each time point, and retinal microscopic examination was also performed. There was no statistically significant ERG change at any dose or at any time. Though the 30 Hz flicker showed a prolongation of the implicit time at 5 hr after the administration of either DA-8159 15 mg or 30 mg/kg (p<0.05), but concurrent amplitude decreases were not statistically significant. At a dose of 5 mg/kg, no test drug was detected in the blood after either 1 or 5 hr. At either 15 mg/kg or 30 mg/kg, there was a dose-dependent increase in the blood concentration after 1 hr of drug administration, which decreased with time. In light and electron microscopic examinations of the retina, there was no remarkable change at any dose. These results suggest DA-8159 has a low risk potential to the retina, but further evaluation on the visual functions in human is needed. PMID:15308852

  8. Discover natural compounds as potential phosphodiesterase-4B inhibitors via computational approaches.

    PubMed

    Li, Jing; Zhou, Nan; Liu, Wen; Li, Jianzong; Feng, Yu; Wang, Xiaoyun; Wu, Chuanfang; Bao, Jinku

    2016-05-01

    cAMP, intracellular cyclic adenosine monophosphate, is a ubiquitous second messenger that plays a key role in many physiological processes. PDE4B which can reduce the cAMP level by hydrolyzing cAMP to 5'-AMP has become a therapeutic target for the treatment of human diseases such as respiratory disorders, inflammation diseases, neurological and psychiatric disorders. However, the use of currently available PDE4B inhibitors is restricted due to serious side effects caused by targeting PDE4D. Hence, we are attempting to find out subfamily-selective PDE4B inhibitors from natural products, using computer-aided approaches such as virtual screening, docking, and molecular dynamics simulation. Finally, four potential PDE4B-selective inhibitors (ZINC67912770, ZINC67912780, ZINC72320169, and ZINC28882432) were found. Compared to the reference drug (roflumilast), they scored better during the virtual screening process. Binding free energy for them was -317.51, -239.44, -215.52, and -165.77 kJ/mol, better than -129.05 kJ/mol of roflumilast. The pharmacophore model of the four candidate inhibitors comprised six features, including one hydrogen bond donor, four hydrogen bond acceptors, and one aromatic ring feature. It is expected that our study will pave the way for the design of potent PDE4B-selective inhibitors of new drugs to treat a wide variety of diseases such as asthma, COPD, psoriasis, depression, etc.

  9. The phosphodiesterase-4 inhibitor rolipram attenuates heroin-seeking behavior induced by cues or heroin priming in rats.

    PubMed

    Lai, Miaojun; Zhu, Huaqiang; Sun, Anna; Zhuang, Dingding; Fu, Dan; Chen, Weisheng; Zhang, Han-Ting; Zhou, Wenhua

    2014-09-01

    Inhibition of phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes cyclic adenosine monophosphate (cAMP) increases intracellular cAMP/cAMP-response element binding protein (CREB) signaling. Activation of this signaling is considered as an important compensatory response that decreases motivational properties of drugs of abuse. However, it is not known whether PDE4 is involved in heroin seeking. Self-administration of heroin (50 μg/kg/infusion) was performed under the fixed ratio 1 (FR1) schedule for 14 d and then drug seeking was extinguished for 10 d. The progressive ratio schedule was used to evaluate the relative motivational value of heroin reinforcement. After training, the conditioned cue or heroin priming (250 μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment (i.p.) with rolipram (0.03-0.3 mg/kg), a prototypical, selective PDE4 inhibitor, failed to inhibit heroin self-administration under the FR1 schedule, but decreased the reward values under the progressive ratio schedule in a dose-dependent manner. In addition, rolipram decreased the reinstatement of heroin seeking induced by cues or heroin priming even at the lowest dose (0.03 mg/kg); in contrast, the highest dose (0.3 mg/kg) of rolipram was required to decrease sucrose reinforcement. Finally, the effects of rolipram on heroin-seeking behavior were correlated with the increases in expression of phosphorylated CREB in the nucleus accumbens. The study demonstrated that rolipram inhibited heroin reward and heroin-seeking behavior. The results suggest that PDE4 plays an essential role in mediating heroin seeking and that PDE4 inhibitors may be used as a potential pharmacotherapeutic approach for heroin addiction.

  10. Effect of the phosphodiesterase type 5 inhibitor tadalafil on pulmonary hemodynamics in a canine model of pulmonary hypertension.

    PubMed

    Hori, Yasutomo; Kondo, Chigusa; Matsui, Maho; Yamagishi, Maki; Okano, Shozo; Chikazawa, Seishiro; Kanai, Kazutaka; Hoshi, Fumio; Itoh, Naoyuki

    2014-11-01

    Phosphodiesterase type 5 (PDE5) inhibitors are used for treating pulmonary arterial hypertension (PAH) in dogs. The long-acting PDE5 inhibitor tadalafil was recently approved for treatment of PAH in humans. Basic information related to the pharmacological and hemodynamic effects of tadalafil in dogs is scarce. In this study, the hemodynamic effects of tadalafil after intravenous (IV) and oral administration were investigated in a healthy vasoconstrictive PAH Beagle dog model induced by U46619, a thromboxane A2 mimetic. Six healthy Beagle dogs were anesthetized with propofol and maintained with isoflurane. Fluid-filled catheters were placed into the descending aorta to measure systemic arterial pressure and in the pulmonary artery to measure pulmonary arterial pressure (PAP). U46619 was infused via the cephalic vein to induce PAH. IV infusion of U46619 significantly elevated PAP from baseline in a dose-dependent manner. U46619-elevated PAP and pulmonary vascular resistance was significantly attenuated by the simultaneous infusion of tadalafil at 100 and 200 µg/kg/h. Likewise, oral administration of tadalafil at 1.0, 2.0, and 4.0 mg/kg significantly attenuated U46619-elevated PAP in a dose-dependent manner. U46619-elevated systolic and mean PAP decreased significantly 1 h after oral tadalafil administration at 4.0 mg/kg, and this effect was maintained for 6 h. In conclusion, tadalafil had a pharmacological effect in dogs and IV infusion of tadalafil induced pulmonary arterial relaxation, while oral administration of tadalafil decreased PAP. These results suggest that tadalafil may offer a new therapeutic option for treating dogs with PAH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. AB023. Penile rehabilitation with phosphodiesterase type 5 inhibitors in men after nerve-sparing radical prostatectomy

    PubMed Central

    Jiann, Bang-Ping

    2016-01-01

    Post-radical prostatectomy (RP) erectile dysfunction (ED) remains a challenge for the urologist. Despite the improvements in surgical technique, ED occurs between 20% and 90% in patients treated with bilateral nerve-sparing RP. Patient factors, cancer selection, type of surgery, surgical techniques, and surgeon factors represent the key significant contributors to erectile function recovery. The aim of a penile rehabilitation program is to preserve the functional smooth-muscle content of the corpus cavernosum during the neuropraxia period. Phosphodiesterase type 5 (PDE5) inhibitors are commonly used in rehabilitation programs. In animal models, such an approach could promote erectile function recovery, improve smooth muscle-to-collagen penile ration, reduce penile apoptotic index, preserve penile endothelial function and promote neuroprotection during nerve damage. Despite the strong basic science support from animal studies, discordant results have been reached in humans. The previous randomized trials comparing chronic versus on-demand PDE-5 inhibitors use after RP may be affected by improper patients’ selection in that only men at low risk of postoperative ED were included. These patients would recover erectile function regardless of the type of PDE5 inhibitor administration because of their excellent baseline profile. Prospective, randomized trials have shown a significant benefit of daily PDE5-I administration as compared with placebo in terms of postoperative EF recovery. Patients with intermediate risk of ED after surgery are the best candidates for daily treatment with PDE5 inhibitor after bilateral nerve-sparing RP. The maximal effect of penile rehabilitation may be found in those men with a certain (but not high) degree of systemic and erectile impairment preoperatively. In conclusion, penile rehabilitation could achieve faster and better natural erectile function after RP and should be started as early as possible. Chronic use of PDE5-I may confer the

  12. Selective phosphodiesterase type-5 inhibitor treatment of serotonergic reuptake inhibitor antidepressant-associated sexual dysfunction: a review of diagnosis, treatment, and relevance.

    PubMed

    Nurnberg, H George; Hensley, Paula L

    2003-03-01

    Sexual dysfunction related to antidepressants, particularly serotonin reuptake inhibitors is a major cause of premature treatment discontinuation. This places patients at increased risk for recurrence, relapse, chronicity, and mortality (eg, suicide). The clinical assessment requires a comprehensive evaluation of sexual function, including libido, arousal, orgasm, and resolution prior to affective disorder, disturbances associated with the emergence of depression, and changes or dysfunctions associated with antidepressant treatment. Other factors to be included for evaluating sexual dysfunction include inquiry for concurrent medical conditions, somatic treatments, lifestyle risk factors, and response to antidepressants. Current treatment approaches to antidepressant-associated sexual dysfunction have relied on open-label reports, literature reviews, and clinical wisdom. Without double-blind, placebo-controlled studies to support them, too much non-evidence-based treatment may be offered to patients. Advances into nonadrenergic-noncholinergic novel signal transduction, specifically phosphodiesterase type-5 inhibitors, offer new opportunities for developing evidence-based treatments for this side effect and improving depression disease management outcomes.

  13. Efficacy and safety of phosphodiesterase type 5 inhibitors on primary premature ejaculation in men receiving selective serotonin reuptake inhibitors therapy: a systematic review and meta-analysis.

    PubMed

    Men, C; Yu, L; Yuan, H; Cui, Y

    2016-11-01

    We performed a systematic review and meta-analysis to assess whether selective serotonin reuptake inhibitors (SSRIs) and phosphodiesterase type 5 inhibitors (PDE5-Is) may have an additive therapeutic effect. A literature review was performed to identify all published randomised controlled trials (RCT) that used SSRIs combined with PDE5-Is therapy for the treatment of primary PE. The search included the following databases: EMBASE, MEDLINE and the Cochrane Controlled Trials Register. The reference lists of the retrieved studies were also investigated. Five publications involving a total of 419 patients were used in the analysis, including 5 RCTs that compared PDE5-Is plus SSRIs with SSRIs treating primary PE. Primary efficacy endpoints: IELT (the standardised mean difference (SMD) = 1.07, 95% confidence interval (CI) = 1.00 to 1.14, P < 0.00001) indicated that utilisation of PDE5-Is and SSRIs was more effective than the SSRIs alone for a long time in patients with primary PE. Safety assessments included headache (odds ratio (OR) = 3.16, 95% CI = 1.63 to 6.11, P = 0.0006), and flushing indicated that PDE5-Is plus SSRIs were well tolerated. This meta-analysis indicates that PDE5-Is combined with SSRIs seem to provide significantly better ejaculatory latency time as compared with SSRIs alone in patients with primary PE.

  14. Synthesis, Structural Analysis, and Biological Evaluation of Thioxoquinazoline Derivatives as Phosphodiesterase 7 Inhibitors

    PubMed Central

    Castaño, Tania; Wang, Huanchen; Campillo, Nuria E.; Ballester, Sara; González-García, Coral; Hernández, Javier; Pérez, Concepción; Cuenca, Jimena; Pérez-Castillo, Ana; Martínez, Ana; Huertas, Oscar; Gelpí, José Luis; Luque, F. Javier; Ke, Hengming; Gil, Carmen

    2010-01-01

    PDE7 inhibitors regulate pro-inflammatory and immune T-cell functions, and are a potentially novel class of drugs especially useful in the treatment of a wide variety of immune and inflammatory disorders. Starting from our lead family of thioxoquinazolines, we designed, synthesized, and characterized a novel series of thioxoquinazoline derivatives. Many of these compounds showed inhibitory potencies at sub-micromolar levels against the catalytic domain of PDE7A1 and at the micromolar level against PDE4D2. Cell-based studies showed that these compounds not only increased intracellular cAMP levels, but also had interesting anti-inflammatory properties within a therapeutic window. The in silico data predict that these compounds are capable of the crossing the blood–brain barrier. The X-ray crystal structure of the PDE7A1 catalytic domain in complex with compound 15 at a resolution of 2.4 Å demonstrated that hydrophobic interactions at the active site pocket are a key feature. This structure, together with molecular modeling, provides insight into the selectivity of the PDE inhibitors and a template for the discovery of new PDE7 or PDE7/PDE4 dual inhibitors. PMID:19350606

  15. Exercise training improves erectile dysfunction (ED) in patients with metabolic syndrome on phosphodiesterase-5 (PDE-5) inhibitors.

    PubMed

    Maresca, Luigi; D'Agostino, Mariantonietta; Castaldo, Luigi; Vitelli, Alessandra; Mancini, Maria; Torella, Giorgio; Lucci, Rosa; Albano, Giovanna; Del Forno, Domenico; Ferro, Matteo; Altieri, Vincenzo; Giallauria, Francesco; Vigorito, Carlo

    2013-12-01

    Erectile dysfunction (ED) affects about 50% of males aged 40-70 years old. ED shares with atherosclerotic disease several common risk factors; therefore, it may be considered a surrogate marker of atherosclerosis. Since phosphodiesterase-5 inhibitors are well known pharmacologic agents capable of significant improvement in ED, we designed this study to evaluate whether exercise training is of added value in patients with ED who are already on PDE-5 inhibitors. We recruited 20 male patients affected by ED with metabolic syndrome. At baseline, all patients underwent Cardio-Pulmonary Exercise Testing (CPET) and the International Index of Erectile Function (IIEF) test. After the initial evaluation, patients were subdivided into two groups: tadalafil group (group T, n = 10), who were maintained only on tadalafil therapy, and a tadalafil/exercise training group (T/E group, n = 10) who continued tadalafil but in addition underwent a2-month structured exercise training program. Basal anthropometric characteristics of study population showed no significant differences. Although both-groups showed at 2 months an improvement of the IIEF score, this was more evident in the T/E group (T group: 11.2 vs 14.2, P = 0.02; T/E group: 10.8 vs 20.1, P < 0.001). There was an improvement of oxygen consumption at peak exercise (VO(2peak)) only in the T/E group patients (T group: 13.63 +/- 2.03 vs 14.24 +/- 2.98 mL/kg/min; P = 0.521; T/E group: 13.41 +/- 2.97 vs 16.58 +/- 3.17 mL/kg/min; P = 0.006). A significant correlation was found between the changes in VO(2peak) and the modifications in IIEF score (r = 0.575; P = 0.001). Exercise training in ED patients treated with PDE-5 inhibitors is of added value since further improves ED, as evaluated by IIEF score, and increases functional capacity.

  16. Modulation of high affinity ATP-dependent cyclic nucleotide transporters by specific and non-specific cyclic nucleotide phosphodiesterase inhibitors.

    PubMed

    Aronsen, Lena; Orvoll, Elin; Lysaa, Roy; Ravna, Aina W; Sager, Georg

    2014-12-15

    Intracellular cyclic nucleotides are eliminated by phosphodiesterases (PDEs) and by ATP Binding cassette transporters such as ABCC4 and ABCC5. PDE5 and ABCC5 have similar affinity for cGMP whereas ABCC5 has much higher affinity for cGMP compared with cAMP. Since the substrate (cGMP) is identical for these two eliminatory processes it is conceivable that various PDE inhibitors also modulate ABCC5-transport. Cyclic GMP is also transported by ABBC4 but the affinity is much lower with a Km 50-100 times higher than for that of ABBCC5. The present study aimed to determine Ki-values for specific or relative specific PDE5 inhibitors (vardenafil, tadalafil, zaprinast and dipyridamole) and the non-specific PDE inhibitors (IBMX, caffeine and theophylline) for ABCC5 and ABCC4 transport. The transport of [(3)H]-cGMP (2 µM) was concentration-dependently inhibited with the following Ki-values: vardenafil (0.62 µM), tadalafil (14.1 µM), zaprinast (0.68 µM) and dipyridamole (1.2 µM), IBMX (10 µM), caffeine (48 µM) and theophylline (69 µM). The Ki-values for the inhibition of the [(3)H]-cAMP (2 µM) transport were: vardenafil (3.4 µM), tadalafil (194 µM), zaprinast (2.8 µM), dipyridamole (5.5 µM), IBMX (16 µM), caffeine (41 µM) and theophylline (85 µM). The specificity for ABCC5 we defined as ratio between Ki-values for inhibition of [(3)H]-cGMP and [(3)H]-cAMP transport. Tadalafil showed the highest specificity (Ki-ratio: 0.073) and caffeine the lowest (Ki-ratio: 1.2). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Determination of phosphodiesterase type V inhibitors in wastewater by direct injection followed by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Causanilles, Ana; Emke, Erik; de Voogt, Pim

    2016-09-15

    A simple, fast and reliable analytical method for the determination of phosphodiesterase type V inhibitors in wastewater was developed and validated. The method was based on direct injection followed by liquid chromatography coupled to tandem mass spectrometry with triple quadrupole as mass analyzer. Transformation products and analogues were included in the target list besides the three active pharmaceutical ingredients (sildenafil, vardenafil and tadalafil). The method performance was thoroughly investigated, including the analyte stability in wastewater and matrix effect. All target compounds presented linear fits between their LOD and 500ng/L. The quantification limits ranged from 1.6 to 30ng/L for all compounds except for n-octylnortadalafil (LOQ: 100ng/L); precision calculated as intraday repeatability was lower than 30%; accuracy calculated as procedural recovery ranged successfully between 85 and 105% in all cases. The method was applied to samples collected during three week-long monitoring campaigns performed in 2013, 2014 and 2015 in three Dutch cities. Only sildenafil and its two metabolites, desmethyl- and desethylsildenafil, were present with normalized loads ranging from LOQ to 8.3, 11.8 and 21.6mg/day/1000 inh, respectively. Two additional week-long sets of samples were collected in Amsterdam at the time that a festival event took place, bringing around 350,000 visitors to the city. The difference in drug usage patterns was statistically studied: "weekday" versus "weekend", "normal" versus "atypical" week; and results discussed. The metabolite to parent drug concentration ratio evolution during consecutive years was discussed, leading to several possible explanations that should be further investigated. Finally, wastewater-based epidemiology approach was applied to back-calculate sildenafil consumption.

  18. The Phosphodiesterase 10A Selective Inhibitor TAK-063 Improves Cognitive Functions Associated with Schizophrenia in Rodent Models.

    PubMed

    Shiraishi, Eri; Suzuki, Kazunori; Harada, Akina; Suzuki, Noriko; Kimura, Haruhide

    2016-03-01

    Cognitive deficits in various domains, including recognition memory, attention, impulsivity, working memory, and executive function, substantially affect functional outcomes in patients with schizophrenia. TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one] is a potent and selective phosphodiesterase 10A inhibitor that produces antipsychotic-like effects in rodent models of schizophrenia. We evaluated the effects of TAK-063 on multiple cognitive functions associated with schizophrenia using naïve and drug-perturbed rodents. TAK-063 at 0.1 and 0.3 mg/kg p.o. improved time-dependent memory decay in object recognition in naïve rats. TAK-063 at 0.1 and 0.3 mg/kg p.o. increased accuracy rate, and TAK-063 at 0.3 mg/kg p.o. reduced impulsivity in a five-choice serial reaction time task in naïve rats. N-methyl-d-aspartate receptor antagonists, such as phencyclidine and MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], were used to induce working memory deficits relevant to schizophrenia in animals. TAK-063 at 0.3 mg/kg p.o. attenuated both phencyclidine-induced working memory deficits in a Y-maze test in mice and MK-801-induced working memory deficits in an eight-arm radial maze task in rats. An attentional set-shifting task using subchronic phencyclidine-treated rats was used to assess the executive function. TAK-063 at 0.3 mg/kg p.o. reversed cognitive deficits in extradimensional shifts. These findings suggest that TAK-063 has a potential to ameliorate deficits in multiple cognitive domains impaired in schizophrenia.

  19. Etazolate, a phosphodiesterase 4 inhibitor reverses chronic unpredictable mild stress-induced depression-like behavior and brain oxidative damage.

    PubMed

    Jindal, Ankur; Mahesh, Radhakrishnan; Bhatt, Shvetank

    2013-04-01

    Etazolate, a pyrazolopyridine class compound is selective inhibitor of type 4 phosphodiesterase (PDE4). Previous study in our laboratory has demonstrated that etazolate produced antidepressant-like effect in rodent models of behavioral despair. The present study was designed to investigate whether etazolate could affect the chronic unpredictable mild stress (CUMS)-induced depression in mice. The effect of etazolate on CUMS-induced depression was examined by measuring behavioral parameters and oxidant/antioxidant status of brain tissue. Mice were subjected to different stress paradigms daily for a period of 28days to induce depressive-like behavior. The results showed that CUMS caused depression-like behavior in mice, as indicated by significant (p<0.05) decrease in sucrose consumption and increase in duration of immobility. Moreover, CUMS also significantly (p<0.05) increased the oxidative stress markers and decreased the antioxidant enzymes activity. Chronic administration of etazolate (0.5 and 1mg/kg., p.o.) and fluoxetine (20mg/kg., p.o.) significantly (p<0.05) inhibited the CUMS-induced behavioral (decreased sucrose consumption and increased duration of immobility) and biochemical (increased lipid peroxidation and nitrite level; decreased glutathione, superoxide dismutase and catalase activity) changes. No alteration was observed in locomotor activity. Additionally, in the present study, the efficacy of etazolate (1mg/kg., p.o.) on the behavioral and biochemical paradigms was found comparable to that of fluoxetine, used as standard antidepressant. In conclusion, the results of the present study suggested that etazolate alleviated the CUMS-induced depression in mice, which is at least in part mediated by modulating oxidative-nitrosative stress status in mice brain.

  20. Phosphodiesterase 5 inhibitors for the treatment of erectile dysfunction: a trade-off network meta-analysis.

    PubMed

    Chen, Liang; Staubli, Sergej E L; Schneider, Marc P; Kessels, Alfons G; Ivic, Sandra; Bachmann, Lucas M; Kessler, Thomas M

    2015-10-01

    Erectile dysfunction (ED) is a major health care problem worldwide and phosphodiesterase 5 inhibitors (PDE5Is) are the pharmacological treatment of choice. However, the optimal PDE5I for ED treatment is not known. To investigate trade-offs between efficacy and adverse events for various PDE5Is in treating ED. A review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. Medline, Scopus, reference lists of relevant articles, and systematic reviews were searched. Eligible studies were randomized controlled trials comparing at least one PDE5I for treating ED with placebo or another PDE5I. We included 82 trials (47 626 patients) for efficacy analysis and 72 trials (20 325 patients) for adverse event analysis. In the trade-off analysis of starting dosages, sildenafil 50mg had the greatest efficacy but also had the highest rate of overall adverse events. Tadalafil 10mg had intermediate efficacy but had the lowest overall rate of all adverse events. Vardenafil 10mg and avanafil 100mg had similar overall adverse events than sildenafil 50mg but a markedly lower global efficacy. Udenafil 100mg had similar global efficacy to that of tadalafil 10mg but its overall adverse event rates were higher. This is the first trade-off analysis of the different PDE5Is currently available. For individuals who prioritize high efficacy, sildenafil 50mg appears to be the treatment of choice. Men wishing to optimize tolerability should take tadalafil 10mg or switch to udenafil 100mg in the case of insufficient efficacy. For patients with erectile dysfunction who wish to prioritize high efficacy, sildenafil 50mg appears to be the treatment of choice. Men who wish to optimize tolerability should take tadalafil 10mg or switch to udenafil 100mg in the case of insufficient efficacy. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. Sildenafil, a phosphodiesterase type 5 inhibitor, reduces antidepressant-like activity of paroxetine in the forced swim test in mice.

    PubMed

    Socała, Katarzyna; Nieoczym, Dorota; Wyska, Elżbieta; Poleszak, Ewa; Wlaź, Piotr

    2012-01-01

    Sildenafil, a selective phosphodiesterase 5 (PDE5) inhibitor, has recently been reported to influence the antidepressant activity of some antidepressant drugs. The present study was undertaken to investigate the involvement of the nitric oxide/cyclic guanosine 3',5'-monophosphate/PDE5 (NO/cGMP/PDE5) signaling pathway in the antidepressant activity of paroxetine and to assess the interaction between paroxetine and sildenafil, in the forced swim test in mice. Swim trials were conducted by placing mice in glass cylinders filled with water for 6 min. Total behavioral immobility was measured during the last 4 min of the test. Changes in locomotor activity were measured with photoresistor actimeters. Serum and brain paroxetine concentrations were assayed by the HPLC method. Paroxetine at a dose of 1 mg/kg significantly decreased immobility time in the forced swim test, while sildenafil (5, 10 and 20 mg/kg) in a dose-dependent manner reduced the antidepressant activity of paroxetine. Pharmacokinetic studies did not show any significant changes in paroxetine concentration in serum and brain tissue as compared to paroxetine treatment alone. The results suggest that paroxetine may exert its antidepressant action by decreasing cGMP levels and sildenafil, as a drug which has the opposite effect on the processes mediated via the NO/cGMP/PDE5 signaling pathway, may decrease the efficacy of paroxetine. However, the co-administration of paroxetine with sildenafil resulted in a potent reduction (80%) of locomotor activity, which suggests that the reversal of antidepressant action of paroxetine may have been a result of locomotor deficits. Further studies are required to explain the mechanism underlying this phenomenon.

  2. Risk-benefit assessment of oral phosphodiesterase type 5 inhibitors for treatment of erectile dysfunction: a multiple criteria decision analysis.

    PubMed

    Hsu, J C; Tang, D H; Lu, C Y

    2015-04-01

    Erectile dysfunction (ED) is a common male sexual disorder worldwide. Three oral phosphodiesterase type 5 inhibitors (PDE5Is) - sildenafil, tadalafil and vardenafil - are available for treatment of ED. This study quantitatively evaluated the therapeutic efficacy and safety of these medications to assist treatment decision making. We used multiple criteria decision analysis (MCDA) to assess the totality of risk-benefit of PDE5Is. We created two models: (i) the overall model included 'overall improvement in erections' and 'any adverse events' and (ii) the detailed model included 'erectile function domain', 'ability for sexual intercourse', 'duration of erection last', 'serious adverse events', 'headache', 'flushing' and 'dyspepsia'. We calculated a synthetic utility for each drug accounting for all of its benefits and risks. Considering the overall risk-benefit, vardenafil had the highest synthetic utility among three medications; in the order of synthetic utilities: vardenafil (0.568), tadalafil (0.478) and sildenafil (0.437). However, when specific risk and benefit criteria were assessed, tadalafil had the highest synthetic utility (0.602) according to the conjoint evaluation (synthetic utility for vardenafil is 0.491 and sildenafil is 0.442, respectively). The sensitivity analysis based on the uncertainties of weight on risks of any adverse events (including serious adverse events and headache) suggested our results were robust. This study provides a useful approach that comprehensively and systematically assesses and compares the risk-benefit of several treatment alternatives. Our study not only rank treatment alternatives by synthetic utilities based on the risk-benefit balance but also compare specific risk and benefit criteria between these medicines. Our results provide valuable evidence that can guide clinicians and patients in making treatment decisions. © 2014 John Wiley & Sons Ltd.

  3. Efficacy of phosphodiesterase type 5 inhibitors for the treatment of distal ureteral calculi: A systematic review and meta-analysis

    PubMed Central

    García-Perdomo, Herney Andrés

    2017-01-01

    Purpose To determine the efficacy of phosphodiesterase type 5 inhibitors (PDE5i) as medical expulsive therapy (MET) for the treatment of distal ureteral calculi. Materials and Methods A search strategy was conducted in the MEDLINE, CENTRAL, and Embase databases. Searches were also conducted in other databases and unpublished literature. Clinical trials were included without language restrictions. The risk of bias was evaluated with the Cochrane Collaboration's tool. An analysis of random effects due to statistical heterogeneity was conducted. The primary outcome was the expulsion rate of the distal ureteral calculus in 28 days. The secondary outcomes were the time to expulsion, side effects of treatment, and amount (mg) of nonopioid analgesia. The measure of the effect was the risk difference (RD) with a 95% confidence interval (CI). The planned interventions were PDE5i vs. placebo, tadalafil vs. placebo, and tadalafil vs. tamsulosin. Results Four articles were included in the qualitative and quantitative analysis. Records of 580 patients were found among the four studies. A low risk of bias was shown for the majority of the study items. The calculi expulsion rate had an RD of 0.26 (95% CI, 0.15–0.37) and a less prolonged expulsion as a secondary outcome with a mean difference of -4.39 days (95% CI, -6.69 to -2.09) in favor of PDE5i compared with the placebo. No significant difference was found for these outcomes when comparing tadalafil with tamsulosin. Conclusions Compared with a placebo, PDE5i could be effective as MET for the treatment of distal ureter calculi. PMID:28261676

  4. Characterization of phosphodiesterase 4 in guinea-pig macrophages: multiple activities, association states and sensitivity to selective inhibitors

    PubMed Central

    Kelly, John J; Barnes, Peter J; Giembycz, Mark A

    1998-01-01

    The cyclic AMP phosphodiesterases (PDE) in guinea-pig peritoneal macrophages were isolated, partially characterized and their role in regulating the cyclic AMP content in intact cells evaluated.Differential centrifugation of macrophage lysates revealed that ∼90% of the PDE activity was membrane-bound and exclusively hydrolyzed cyclic AMP. This activity was not removed by KCl (200 mM) but was readily solubilized by the non-ionic detergent, Triton X-100 (1% v/v). Greater than 80% of the hydrolytic activity was suppressed by the PDE4 inhibitors, R-rolipram and nitraquazone with IC50s of 240 and 540 nM, respectively.Anion-exchange chromatography of the total protein extracted from macrophages resolved two major peaks of cyclic AMP PDE activity that were insensitive to cyclic GMP (10 μM), calmodulin (50 units plus 2 mM CaCl2) and a PDE3 inhibitor, SK&F 95654 (10 μM), but were markedly suppressed by RS-rolipram (10 μM). The two peaks of PDE activity were arbitrarily designated CPPDE4α and CPPDE4β with respect to the order from which they were eluted from the column where the prefix, CP, refers to the species, Cavia porcellus.The hydrolysis of cyclic AMP catalyzed by CPPDE4α and CPPDE4β conformed to Michaelis-Menten kinetic behaviour with similar Kms (13.4 and 6.4 μM, respectively).Thermal denaturation of membrane-bound PDE4 at 50°C followed bi-exponential kinetics with t1/2 values of 1.5 and 54.7 min for the first and second components, respectively. In contrast, CPPDE4α and CPPDE4β each decayed mono-exponentially with significantly different thermostabilities (t1/2=2.77 and 1.15 min, respectively).Gel filtration of CPPDE4β separated two peaks of rolipram-sensitive PDE activity. The main peak eluted at a volume indicative of a ∼180 kDa protein but was preceded by a much larger form of the enzyme that had an estimated weight of 750 kDa. Size exclusion chromatography of CPPDE4α resolved a broad peak of activity with molecular weights

  5. Validated UPLC-MS/MS assay for the determination of synthetic phosphodiesterase type-5 inhibitors in postmortem blood samples.

    PubMed

    Proença, Paula; Mustra, Carla; Marcos, Mariana; Franco, João Miguel; Corte-Real, Francisco; Vieira, Duarte Nuno

    2013-08-01

    The use of synthetic phosphodiesterase type 5 (PDE-5) inhibitors for the treatment of erectile dysfunction: sildenafil citrate (Viagra(®)), tadalafil (Cialis(®)) and vardenafil hydrochloride (Levitra(®)) has increased dramatically over the past 2 years. These substances are prescription drugs and must be used under medical supervision. However, they can easily be obtained over the internet from illegal sites, being a potential for a threat to public health. The development of an electrospray ionisation (ESI) ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) procedure for the simultaneous identification and quantification of three PDE5 inhibitors in blood samples was desired. Samples were prepared using Oasis(®) HLB solid-phase cartridges (3 cc, 60 mg) and chromatographic separation was achieved on an Acquity UPLC(®) HSS T3 (100 × 2.1 mm i.d., 1.8 μm particles) column with a gradient mobile phase of 0.1% formic acid and acetonitrile at a 0.5 mL/min flow rate. Quantification was achieved by multiple reaction monitoring (MRM) of two transitions per compound: m/z 475.1 > 58 e m/z 475.1 > 311.1 for sildenafil; m/z 389.9 > 267.9 e m/z 389.9 > 134.8 for tadalafil and m/z 489 > 71.9 e m/z 489 > 150.9 for vardenafil. Zolpidem-d6 (m/z 314.5 > 235.3) was used as the internal standard. Calibration curves were linear over the concentration range of 5-1000 ng/mL, with a coefficient of determination better than 0.997. The lower limits of detection and quantification for these substances were ≤ 3 ng/mL and ≤ 8 ng/mL, respectively. The method showed a satisfactory sensitivity, precision, accuracy, recovery and selectivity. A rapid, selective and sensitive UPLC-MS/MS method using solid-phase extraction was developed for the simultaneous determination and quantification of sildenafil, vardenafil and tadalafil in blood samples. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Application of Structure-Based Design and Parallel Chemistry to Identify a Potent, Selective, and Brain Penetrant Phosphodiesterase 2A Inhibitor.

    PubMed

    Helal, Christopher J; Arnold, Eric P; Boyden, Tracey L; Chang, Cheng; Chappie, Thomas A; Fennell, Kimberly F; Forman, Michael D; Hajos, Mihaly; Harms, John F; Hoffman, William E; Humphrey, John M; Kang, Zhijun; Kleiman, Robin J; Kormos, Bethany L; Lee, Che-Wah; Lu, Jiemin; Maklad, Noha; McDowell, Laura; Mente, Scot; O'Connor, Rebecca E; Pandit, Jayvardhan; Piotrowski, Mary; Schmidt, Anne W; Schmidt, Christopher J; Ueno, Hirokazu; Verhoest, Patrick R; Yang, Edward X

    2017-07-13

    Phosphodiesterase 2A (PDE2A) inhibitors have been reported to demonstrate in vivo activity in preclinical models of cognition. To more fully explore the biology of PDE2A inhibition, we sought to identify potent PDE2A inhibitors with improved brain penetration as compared to current literature compounds. Applying estimated human dose calculations while simultaneously leveraging synthetically enabled chemistry and structure-based drug design has resulted in a highly potent, selective, brain penetrant compound 71 (PF-05085727) that effects in vivo biochemical changes commensurate with PDE2A inhibition along with behavioral and electrophysiological reversal of the effects of NMDA antagonists in rodents. This data supports the ability of PDE2A inhibitors to potentiate NMDA signaling and their further development for clinical cognition indications.

  7. Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: exploiting the benefit of enzymes that are highly conserved between host and parasite

    PubMed Central

    Seebeck, Thomas; Sterk, Geert Jan; Ke, Hengming

    2011-01-01

    Protozoan infections remain a major unsolved medical problem in many parts of our world. A major obstacle to their treatment is the blatant lack of medication that is affordable, effective, safe and easy to administer. For some of these diseases, including human sleeping sickness, very few compounds are available, many of them old and all of them fraught with toxic side effects. We explore a new concept for developing new-generation antiprotozoan drugs that are based on phosphodiesterase (PDE) inhibitors. Such inhibitors are already used extensively in human pharmacology. Given the high degree of structural similarity between the human and the protozoan PDEs, the vast expertise available in the human field can now be applied to developing disease-specific PDE inhibitors as new antiprotozoan drugs. PMID:21859303

  8. Potency and mechanism of action of E4021, a type 5 phosphodiesterase isozyme-selective inhibitor, on the photoreceptor phosphodiesterase depend on the state of activation of the enzyme.

    PubMed

    D'Amours, M R; Granovsky, A E; Artemyev, N O; Cote, R H

    1999-03-01

    The ability of inhibitors selective for the type 5 phosphodiesterase isozyme (PDE5) to act on the photoreceptor PDE isozyme (PDE6, the central effector enzyme for visual transduction) is poorly understood. Because PDE5 inhibitors are currently used as therapeutic agents, it is important to assess the potency and mechanism of action of this class of PDE inhibitor on PDE6. We show that E4021 (sodium 1-[6-chloro-4-(3, 4-methylenedioxybenzyl)-aminoquinazolin-2-yl]piperidine-4-ca rboxylate sesquihydrate) inhibits activated PDE6 (KI = 1.7 nM) as potently as PDE5. This makes E4021 the most potent inhibitor of PDE6 discovered to date. The effectiveness of E4021 to inhibit nonactivated PDE6 (with bound inhibitory gamma subunits) is reduced 40-fold compared with the activated enzyme. Furthermore, at intermediate E4021 concentrations and high cGMP concentrations, nonactivated PDE undergoes activation of cGMP hydrolysis rather than inhibition. We demonstrate direct competition of E4021 and the gamma subunits for binding to the catalytic site. Measurements of cGMP binding to noncatalytic regulatory sites on the catalytic subunits of PDE6 rule out an allosteric effect of E4021 by direct binding to these noncatalytic sites. We conclude that E4021 is a competitive inhibitor of cGMP hydrolysis and that the gamma subunit also competes with both E4021 and substrate for catalytic site binding. An understanding of the effects of PDE5-targeted drugs on retinal PDE6 requires a knowledge of the complex interactions among substrate, drug, and inhibitory gamma subunit at the catalytic site of both nonactivated and activated forms of PDE6.

  9. Treating erectile dysfunction and central neurological diseases with oral phosphodiesterase type 5 inhibitors. Review of the literature.

    PubMed

    Lombardi, Giuseppe; Nelli, Federico; Celso, Maria; Mencarini, Marco; Del Popolo, Giulio

    2012-04-01

    Erectile dysfunction (ED) is reported in a high percentage of patients with central neurological disorders (CND).   An up-to-date review on oral phosphodiesterase 5 inhibitors (PDE5): sildenafil, tadalafil, and vardenafil for individuals with CND and ED. Various questionnaires on ED, such as the International Index of Erectile Function composed of 15 questions. Internationally published clinical studies evaluating the efficacy and safety of PDE5 on subjects with CND and ED were selected. Overall, 28 articles on PDE5 used to treat patients with CND and ED were included. With each of the three PDE5 compared to placebo or erectile baseline, literature reported significant statistical improvement (P < 0.01; P < 0.05) only in patients with spinal cord injury (SCI). PDE5 efficacy was documented for SCI patients up to 10 years. The most frequent predicable factor for PDE5 success was the presence of upper motoneuron lesion. Each of the three clinical sildenafil studies documented statistically significant improvement on erectile function in Parkinson's patients (P < 0.01; P < 0.05). Two studies reported discordant results about sildenafil's effectiveness on multiple sclerosis (MS) patients; one on tadalafil showed significant statistical efficacy on erection versus baseline (P < 0.01; P < 0.05). The only spina bifida article determined that sildenafil remarkably improved erectile function. Overall, drawbacks were mostly slight-moderate, except in subjects with multiple system atrophy where sildenafil caused severe hypotension. PDE5 represent first line ED therapy only for SCI patients, though treatment results through meta-analysis were not possible. Encouraging results are reported for Parkinson's and MS patients. PDE5 use for other CND patients is limited for various reasons, such as ED and concomitant libido impairment caused by depression and/or sexual endocrinology dysfunctions, and because PDE5 may cause a worsening of neurological illness

  10. Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality

    PubMed Central

    Anderson, Simon G; Hutchings, David C; Woodward, Mark; Rahimi, Kazem; Rutter, Martin K; Kirby, Mike; Hackett, Geoff; Trafford, Andrew W; Heald, Adrian H

    2016-01-01

    Objective Experimental evidence has shown potential cardioprotective actions of phosphodiesterase type-5 inhibitors (PDE5is). We investigated whether PDE5i use in patients with type 2 diabetes, with high-attendant cardiovascular risk, was associated with altered mortality in a retrospective cohort study. Research design and methods Between January 2007 and May 2015, 5956 men aged 40–89 years diagnosed with type 2 diabetes before 2007 were identified from anonymised electronic health records of 42 general practices in Cheshire, UK, and were followed for 7.5 years. HRs from multivariable survival (accelerated failure time, Weibull) models were used to describe the association between on-demand PDE5i use and all-cause mortality. 10.1136/heartjnl-2015-309223.supp1 Supplementary appendix Results Compared with non-users, men who are prescribed PDE5is (n=1359) experienced lower percentage of deaths during follow-up (19.1% vs 23.8%) and lower risk of all-cause mortality (unadjusted HR=0.69 (95% CI: 0.64 to 0.79); p<0.001)). The reduction in risk of mortality (HR=0.54 (0.36 to 0.80); p=0.002) remained after adjusting for age, estimated glomerular filtration rate, smoking status, prior cerebrovascular accident (CVA) hypertension, prior myocardial infarction (MI), systolic blood pressure, use of statin, metformin, aspirin and β-blocker medication. PDE5i users had lower rates of incident MI (incidence rate ratio (0.62 (0.49 to 0.80), p<0.0001) with lower mortality (25.7% vs 40.1% deaths; age-adjusted HR=0.60 (0.54 to 0.69); p=0.001) compared with non-users within this subgroup. Conclusion In a population of men with type 2 diabetes, use of PDE5is was associated with lower risk of overall mortality and mortality in those with a history of acute MI. PMID:27465053

  11. Phosphodiesterase-5 Inhibitor, Tadalafil, Protects against Myocardial Ischemia/Reperfusion through Protein-Kinase G Dependent Generation of Hydrogen Sulfide

    PubMed Central

    Salloum, Fadi N.; Chau, Vinh Q.; Hoke, Nicholas N.; Abbate, Antonio; Varma, Amit; Ockaili, Ramzi A.; Toldo, Stefano; Kukreja, Rakesh C.

    2014-01-01

    Background Tadalafil is a novel long acting inhibitor of phosphodiesterase-5. Since cGMP-dependent protein kinase (PKG) signaling plays a key role in cardioprotection, we hypothesized that PKG activation with tadalafil would limit myocardial ischemia/reperfusion (I/R) injury and dysfunction. Additionally, we contemplated that cardioprotection with tadalafil is mediated by hydrogen sulfide (H2S) signaling in a PKG-dependent fashion. Methods and Results After baseline transthoracic echocardiography (TTE), adult ICR mice were injected i.p. with vehicle (10% DMSO) or tadalafil (1 mg/kg) with or without KT5823 (KT, PKG blocker, 1 mg/kg) or dl-propargylglycine [PAG, Cystathionine-γ-lyase (CSE, H2S-producing enzyme) blocker; 50 mg/kg] 1 h prior to coronary artery ligation for 30 min and reperfusion for 24 h, whereas C57BL-wild type and CSE-knockout mice were treated with either vehicle or tadalafil. After reperfusion, TTE was performed and hearts were collected for infarct size (IS) measurement using TTC staining. Survival was increased with tadalafil (95%) compared with control (65%, P<0.05). Infarct size was reduced with tadalafil (13.2±1.7%) compared to vehicle (40.6±2.5%; P<0.05). KT and PAG abolished tadalafil-induced protection (IS: 39.2±1% and 51.2±2.4%, respectively) similar to genetic deletion of CSE (47.2±5.1%). Moreover, tadalafil preserved fractional shortening (FS: 31±1.5%) compared to control (FS: 22±4.8%, P<0.05). Baseline FS was 44±1.7%. KT and PAG abrogated the preservation of LV function with tadalafil by a decline in FS to 17±1% and 23±3%, respectively. Compared to vehicle, myocardial H2S production was significantly increased with tadalafil and was abolished with KT. Conclusion PKG activation with tadalafil limits myocardial infarction and preserves LV function through H2S signaling. PMID:19752383

  12. Economic analysis of use of counterfeit drugs: health impairment risk of counterfeit phosphodiesterase type 5 inhibitor taken as an example.

    PubMed

    Sugita, Minoru; Miyakawa, Michiko

    2010-07-01

    The size of the market for counterfeit drugs throughout the world is considerable. Many cases of health impairment due to counterfeits have been reported. The market share of counterfeits in drug markets in developed countries is smaller than that in developing countries. However, the size of the market for counterfeits of phosphodiesterase type 5 inhibitors (PDE5Is) used as anti-erectile-dysfunction drugs is not small. The purpose of the present study was to analyze the health impairment risk of taking the counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, using an economic methodology in order to work out countermeasures for reducing the health impairment risk. Information was obtained by interviewing employees of pharmaceutical and chemical corporations in Japan. The size of the market for counterfeit PDE5Is in Japan was recently estimated to be about 2.5 times larger than that of genuine PDE5Is. The price of the counterfeits in their market is reported to be nearly equal to that of the genuine PDE5Is. An outbreak of severe hypoglycemia among users of counterfeit PDE5Is containing an antidiabetic drug in Singapore was reported in 2008, and seven patients remained comatose as a result of prolonged neuroglycopenia. Four of them subsequently died, so the health impairment risk due to counterfeit PDE5Is should not be ignored. In order to obtain a genuine PDE5I in Japan, a patient must be examined and have a prescription written at a medical institution, and buy it at a dispensing pharmacy. Focusing on the health impairment risk due to counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, we analyzed the effects on the prices and quantities of PDE5Is in the market from demand and supply curves, using an economic methodology. From the analysis, it was shown that the health impairment risk due to the counterfeits is underestimated in the market in Japan. Physicians should warn their patients not to buy counterfeit

  13. Chronic administration of phosphodiesterase type 5 inhibitor suppresses renal production of endothelin-1 in dogs with congestive heart failure.

    PubMed

    Yamamoto, Takashi; Wada, Atsuyuki; Ohnishi, Masato; Tsutamoto, Takayoshi; Fujii, Masanori; Matsumoto, Takehiro; Takayama, Tomoyuki; Wang, Xinwen; Kurokawa, Kiyoshi; Kinoshita, Masahiko

    2002-08-01

    Endothelin-1 (ET-1) and atrial natriuretic peptide (ANP) play important roles in the regulation of body fluid balance in congestive heart failure (CHF). Renal production of ET-1 increases in CHF and it is a significant independent predictor of sodium excretion. ANP inhibits the ET system through cGMP, a second messenger of ANP. However, in severe CHF, plasma cGMP levels reached a plateau despite the activation of ANP secretion. Thus, ANP does not seem to sufficiently oppose exaggerated ET-1 actions in severe CHF, partially due to the accelerated degradation of cGMP, through phosphodiesterase type 5 (PDE5). We examined the chronic effects of a PDE5 inhibitor, T-1032 (1 mg/kg per day, n=5), on renal function and renal production of ET-1 in dogs with CHF induced by rapid ventricular pacing (270 beats/min). Vehicle dogs were given a placebo (n=5) and normal dogs (n=5) served as normal controls without pacing. In this experimentally produced CHF, plasma levels of ET-1, ANP and cGMP were elevated and renal production of cGMP was increased compared with the normal group, associated with increases in renal expression of preproET-1 mRNA and the number of ET-1-positive cells in glomeruli. In the T-1032 group, systemic and renal production of cGMP were further increased compared with the vehicle group despite no significant difference in plasma ANP levels between the two groups. Subsequently, the agent significantly improved urine flow rate, sodium excretion rate and glomerular filtration rate (GFR) associated with reductions in renal expression of preproET-1 mRNA and the number of ET-1-positive cells compared with the vehicle group. Moreover, there was a significant negative correlation between the number of ET-1-positive cells and GFR (r=-0.802 and P<0.001 respectively). Our results indicate that chronic PDE5 inhibition ameliorates the antagonistic relationship between renal ANP and ET-1 through the cGMP pathway, subsequently preventing renal dysfunction during the

  14. Effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin

    SciTech Connect

    Sugio, K.; Daly, J.W.

    1984-01-09

    The effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin were investigated using (/sup 125/I) bovine serum albumin (/sup 125/I-BSA). Forskolin, forskolin 7-ethyl carbonate and 7-desacetylforskolin, which are potent activators of adenylate cyclase, greatly potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E/sub 1/-induced response. The phosphodiesterase inhibitors, ZK 627ll, dipyridamole, HL 725, and 3-isobutyl-1-methylxanthine potentiated the bradykinin-induced plasma exudation and inhibited and prostaglandin E/sub 1/-induced response. 8-Bromo cyclic AMP in the doses of 0.01 to 1 ..mu..g potentiated the bradykinin-induced plasma exudation, but had no effect at doses of 10 and 100 ..mu..g. 8-bromo cyclic AMP at all doses significantly inhibited the prostaglandin E/sub 1/-induced response. The results suggest that the effects of forskolin and its analogs on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin derive from activation of cyclic AMP-generating systems.

  15. Recreational Use of Phosphodiesterase 5 Inhibitors and Its Associated Factors among Undergraduate Male Students in an Ethiopian University: A Cross-Sectional Study

    PubMed Central

    Bhagavathula, Akshaya Srikanth; Gebresillassie, Begashaw Melaku; Tefera, Yonas Getaye; Belachew, Sewunet Admasu; Erku, Daniel Asfaw

    2016-01-01

    Purpose To assess the prevalence of phosphodiesterase 5 (PDE5) inhibitor use and associated factors among University of Gondar undergraduate students. Materials and Methods An institution-based, cross-sectional study, using a survey questionnaire, was conducted from October to December 2015 to assess PDE5 inhibitor use and associated factors among male students at the University of Gondar. A Self-Esteem and Relationship questionnaire (14 items), an International Index of Erectile Function questionnaire (15 items) and a questionnaire on PDE5 inhibitor use (14 items) were included in the survey. Results Across all respondents (age, 21.9±1.88 years), more than half (55.7%, n=233) had heard about PDE5 inhibitors, but only 23 men (5.5%) reported trying a PDE5 inhibitor drug at least once. Older students were more likely to use PDE5 inhibitors compared to younger students (adjusted odds ratio [AOR], 1.40; 95% confidence interval [CI], 1.109~1.768). Those students who were smokers were 5.15 times more likely to use PDE5 inhibitors as compared to their non-smoking counterparts (AOR, 5.15; 95% CI, 2.096~12.687). In addition, multivariate logistic regression showed that being in a relationship, alcohol use, greater number of cigarettes smoked per day, and more sexual partners were significantly associated with PDE5 inhibitor use. Conclusions The prevalence of PDE5 inhibitor use among undergraduate students was 5.5%. Cigarette smoking and other substance use, older age, and greater number of sexual partners were significantly associated factors for PDE5 inhibitor use. These findings suggest that restricting access to PDE5 inhibitor drugs is essential to curtailing misuse among university students. PMID:28053948

  16. Anti-inflammatory and bronchodilator properties of RP 73401, a novel and selective phosphodiesterase type IV inhibitor

    PubMed Central

    Raeburn, David; Underwood, Stephen L.; Lewis, Susan A.; Woodman, Valerie R.; Battram, Cliff H.; Tomkinson, Adrian; Sharma, Steven; Jordan, Roy; Souness, John E.; Webber, Stephen E.; Karlsson, Jan-Anders

    1994-01-01

    1 We have investigated the effects of RP 73401, a novel, potent and highly selective cyclic nucleotide phosphodiesterase (PDE) type IV inhibitor, in guinea-pig and rat models of bronchoconstriction and allergic inflammation. In some models, the effects of RP 73401 have been compared with those of the standard PDE type IV inhibitor, rolipram. 2 RP 73401 (0.4-400 μg kg-1, intratracheally (i.t.) on lactose) inhibited antigen-induced bronchospasm in previously sensitized conscious guinea-pigs (ID50: 7±1 μg kg-1) and in anaesthetized rats (ID50: 100±25 μg kg-1). Rolipram inhibited the antigen-induced bronchospasm in guinea-pigs with an ID50 of 5±1 μg kg-1. In guinea-pig bronchoalveolar lavage (BAL) fluid, total inflammatory cell and eosinophil numbers were reduced by RP 73401 (ID50S: 3.9±0.8 μg kg-1 and 3.2±0.7 μg kg-1, respectively). In the rat, inflammatory cell numbers are less affected. Only the highest dose of RP 73401 (400 μg kg-1) significantly inhibited eosinophil influx (41±16% inhibition). 3 RP 73401 (0.02-100 μg kg-1, i.v.) inhibited PAF-induced bronchial hyperreactivity to bombesin in the anaesthetized guinea-pig (ID50: 0.09±0.03 μg kg-1) and inhibited (0.4-40 μg kg-1, i.t.) histamine-induced airway microvascular leakage in the anaesthetized guinea-pig by approximately 60% at all doses. 4 RP 73401 relaxed guinea-pig isolated trachea under basal tone (EC50: 9 nM) and when precontracted with histamine (IC50: 2 nM), methacholine (IC50: 29 nM) or leukotriene D4 (LTD4, IC50: 4 nM). 5 RP 73401 (0.4-100 μg kg-1, i.t.) inhibited bronchospasm induced by histamine (ID50: 34±6 μg kg-1), methacholine (ID50: 66±12 μg kg-1) and LTD4 (ID50: <4 μg kg-1) in the anaesthetized guinea-pig. Against these same bronchoconstrictors, rolipram (i.t.) had ID50 values of 44±4, 72±18 and <4 μg kg-1 respectively. RP 73401 (4 and 40 μg kg-1, i.t.) increased the magnitude and duration of bronchodilatation produced by salbutamol in the anaesthetized guinea-pig. At

  17. T-1032, a cyclic GMP phosphodiesterase-5 inhibitor, acutely blocks physiologic insulin-mediated muscle haemodynamic effects and glucose uptake in vivo.

    PubMed

    Mahajan, Hema; Richards, Stephen M; Rattigan, Stephen; Clark, Michael G

    2003-12-01

    1. Cyclic GMP phosphodiesterase-5 inhibitors have been shown to alter blood flow in specific tissues by potentiating local NO-dependent vasodilatory mechanisms. Since the haemodynamic effects of physiologic insulin, particularly capillary recruitment, may be critical for muscle glucose uptake in vivo and are blocked by inhibitors of nitric oxide synthase, we have explored the acute effects of the specific cGMP phosphodiesterase-5 inhibitor T-1032 on physiologic insulin action in anaesthetized healthy rats in vivo. 2. Whole-body glucose infusion (GIR), femoral blood flow (FBF), hind leg vascular resistance (VR), hind leg glucose uptake (HGU), 2-deoxyglucose uptake into muscles of the lower leg (R'g), hind leg metabolism of infused 1-methylxanthine (1-MX), a measure of capillary recruitment, and muscle cGMP were determined. The experimental groups were T-1032 (10 microg min-1 kg-1) infused for 1 h before and during a euglycaemic insulin clamp (3 mU min-1 kg-1 x 2 h), T-1032 infused for 3 h with saline, T-1032 during a 2 h clamp, T-1032 with saline for 2 h, and a 2 h saline control. 3. Insulin increased GIR from zero to 13 mg min-1 kg-1, HGU from 0.1+/-0.01 to 0.43+/-0.05 micromol min-1, R'g and 1-MX, marginally increased FBF, and had no effect on blood pressure or heart rate. T-1032 alone had no effect on blood pressure, heart rate, FBF, VR, HGU, R'g or 1-MX, but increased muscle cGMP. T-1032 1 h before and during insulin completely blocked GIR (1 h), HGU (2 h), R'g (2 h), and 1-MX (2 h). T-1032 commenced with insulin had only partial blocking activity against insulin. 4. We conclude that T-1032 is a potent acutely acting inhibitor of the muscle effects of physiologic insulin on capillary recruitment and glucose uptake in vivo. These, together with inhibition of whole-body glucose infusion during insulin, may caution against the use of isoenzyme-5-specific cyclic GMP phosphodiesterase inhibitors as therapeutic agents.

  18. Inhibitors of phosphodiesterases PDE2, PDE3, and PDE4 do not increase the sinoatrial tachycardia of noradrenaline and prostaglandin PGE₁ in mice.

    PubMed

    Galindo-Tovar, Alejandro; Vargas, María Luisa; Kaumann, Alberto J

    2016-02-01

    Phosphodiesterases PDE2, PDE3, and PDE4 are expressed in murine sinoatrial cells. PDE3 and/or PDE4 reduce heart rate but apparently do not influence the tachycardia mediated through sinoatrial β1- and β2-adrenoceptors despite the high content of sinoatrial cAMP. The function of PDE2 is, however, uncertain. Prostaglandin PGE1 elicits sinoatrial tachycardia through EP receptors, but the control by phosphodiesterases is unknown. We investigated on spontaneously beating right atria of mice the effects of the PDE2 inhibitors Bay 60-7550 and EHNA on basal beating and the tachycardia produced by noradrenaline (3 nM) and PGE1 (1 μM). Bay 60-7550 (1 μM), but not EHNA (10 μM), increased basal sinoatrial beating. EHNA also failed to produce tachycardia in the presence of the adenosine deaminase inhibitor 2'-deoxycoformycin (10 μM), remaining inconclusive whether PDE2 reduces basal sinoatrial beating. Rolipram (10 μM) and cilostamide (300 nM) caused moderate tachycardia. The tachycardia evoked by Bay 60-7550 was similar in the absence and presence of rolipram. Noradrenaline elicited stable tachycardia that was not increased by Bay 60-7550. A stable tachycardia caused by PGE1 was not increased by the inhibitors of PDE2, PDE3, and PDE4. Unlike PDE3 and PDE4 which reduce murine basal sinoatrial beating, a possible effect of PDE2 needs further research. The stable tachycardia produced by noradrenaline and PGE1, together with the lack potentiation by the inhibitors of PDE2, PDE3, and PDE4, suggests that cAMP generated at the receptor compartments is hardly hydrolyzed by these phophodiesterases. Evidence from human volunteers is consistent with this proposal.

  19. Post-marketing surveillance of ischaemic optic neuropathy in male veterans co-prescribed phosphodiesterase-5 inhibitors with organic nitrates or alpha-blockers.

    PubMed

    French, Dustin D; Margo, Curtis E

    2008-01-01

    The cause of nonarteritic anterior ischaemic optic neuropathy (ION) is unknown, although assumed to be related to transient vascular insufficiency of the optic nerve head. Because the interaction of phosphodiesterase-5 (PDE-5) inhibitors with either an organic nitrate or alpha-blocker may theoretically increase the risk of ION, we conducted a screening study to determine if such a risk might exist. Retrospective cohort study of male veterans with ION and possible ION. The national Veterans Health Administration (VHA) clinical database was cross-referenced (linked) with the VHA pharmacy database looking for specific drug combinations. Compared with no use, the relative risk (RR) of ION and possible ION for men prescribed both PDE-5 inhibitor and organic nitrate was 1.41 (95% CI 0.85, 2.33). Similarly, the RR of ION and possible ION with concurrent prescription of PDE-5 inhibitor and alpha-blocker was 1.21 (95% CI 1.01, 1.44). When risk was measured against use of a PDE-5 inhibitor alone, the RR was 1.29 (95% CI 0.78, 2.16) for PDE-5 inhibitor and organic nitrate and 1.12 (95% CI 0.92, 1.35) for PDE-5 inhibitor and alpha-blocker. We linked two large national databases to screen for a potentially important drug-drug-disease interaction. There was no increase in risk of ION and possible ION in men dispensed a PDE-5 inhibitor with either organic nitrates or an alpha-blocker compared with men dispensed PDE-5 inhibitor alone. An incidental observation that a substantial number of men were prescribed both an organic nitrate and a PDE-5 inhibitor within a single dispensing period raises concerns over non-ocular safety issues. The wisdom of co-dispensing medications that are contraindicated may deserve a broader audience.

  20. 4-Pregnen-21-ol-3,20-dione-21-(4-bromobenzenesulfonate) (NSC 88915) and related novel steroid derivatives as tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors.

    PubMed

    Dexheimer, Thomas S; Gediya, Lalji K; Stephen, Andrew G; Weidlich, Iwona; Antony, Smitha; Marchand, Christophe; Interthal, Heidrun; Nicklaus, Marc; Fisher, Robert J; Njar, Vincent C; Pommier, Yves

    2009-11-26

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo when topoisomerase I (Top1) processes DNA. For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes. Tdp1 inhibitors have been regarded as potential therapeutics in combination with Top1 inhibitors, such as the camptothecin derivatives, topotecan, and irinotecan, which are used to treat human cancers. Using a novel high-throughput screening assay, we have identified the C21-substituted progesterone derivative, NSC 88915 (1), as a potential Tdp1 inhibitor. Secondary screening and cross-reactivity studies with related DNA processing enzymes confirmed that compound 1 possesses specific Tdp1 inhibitory activity. Deconstruction of compound 1 into discrete functional groups reveals that both components are required for inhibition of Tdp1 activity. Moreover, the synthesis of analogues of compound 1 has provided insight into the structural requirements for the inhibition of Tdp1. Surface plasmon resonance shows that compound 1 binds to Tdp1, whereas an inactive analogue fails to interact with the enzyme. On the basis of molecular docking and mechanistic studies, we propose that these compounds are competitive inhibitors, which mimics the oligonucleotide-peptide Tdp1 substrate. These steroid derivatives represent a novel chemotype and provide a new scaffold for developing small molecule inhibitors of Tdp1.

  1. 4-Pregnen-21-ol-3,20-dione-21-(4-bromobenzenesufonate) (NSC 88915) and Related Novel Steroid Derivatives as Tyrosyl-DNA Phosphodiesterase (Tdp1) Inhibitors

    PubMed Central

    Dexheimer, Thomas S.; Gediya, Lalji K.; Stephen, Andrew G.; Weidlich, Iwona; Antony, Smitha; Marchand, Christophe; Interthal, Heidrun; Nicklaus, Marc; Fisher, Robert J.; Njar, Vincent C.; Pommier, Yves

    2009-01-01

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo when topoisomerase I (Top1) processes DNA. For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes. Tdp1 inhibitors have been regarded as potential therapeutics in combination with Top1 inhibitors, such as the camptothecin derivatives, topotecan and irinotecan, which are used to treat human cancers. Using a novel high-throughput screening assay, we have identified the C21-substituted progesterone derivative, NSC 88915 (1), as a potential Tdp1 inhibitor. Secondary screening and cross-reactivity studies with related DNA processing enzymes confirmed that compound 1 possesses specific Tdp1 inhibitory activity. Deconstruction of compound 1 into discrete functional groups reveals that both components are required for inhibition of Tdp1 activity. Moreover, the synthesis of analogues of compound 1 has provided insight into the structural requirements for the inhibition of Tdp1. Surface plasmon resonance shows that compound 1 binds to Tdp1, whereas an inactive analogue fails to interact with the enzyme. Based on molecular docking and mechanistic studies, we propose that these compounds are competitive inhibitors, which mimics the oligonucleotide-peptide Tdp1 substrate. These steroid derivatives represent a novel chemotype and provide a new scaffold for developing small molecule inhibitors of Tdp1. PMID:19883083

  2. Rapid Screening of Potential Phosphodiesterase Inhibitors from the Roots of Ilex pubescens Hook. et Arn. Using a Combination of Ultrafiltration and LC-MS.

    PubMed

    Liu, Zichen; Lin, Zongtao; Chen, Shizhong; Wang, Lingjun; Xian, Shaoxiang

    2017-01-01

    The cyclic nucleotide phosphodiesterase (PDE) plays an important role in regulating the levels of second messenger molecules cAMP and cGMP. Various PDE inhibitors have been successfully developed into drugs for targeted diseases. In addition, PDE inhibitors can also be found in different foods and natural medicines. In this study, ultrafiltration liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry (ultrafiltration LC-DAD-ESI-IT-TOF-MS) was applied to screen PDE inhibitors from the roots of Ilex pubescens Hook. et Arn. As a result, 11 major compounds were identified in I. pubescens roots, with nine compounds as potential PDE inhibitors, among which five were further confirmed to be active against PDEI and PDE5A dose-dependently in vitro, with ilexsaponin A1 and ilexsaponin B2 being the strongest. HPLC quantification of these bioactive compounds suggested that they are major components in the plant. The results demonstrate that ultrafiltration LC-DAD-ESI-IT-TOF-MS is an efficient method for rapid screening of PDE inhibitors from natural medicines.

  3. Crystal Structure of the Leishmania Major Phosphodiesterase LmjPDEB1 and Insight into the Design of hte Parasite-Selective Inhibitors

    SciTech Connect

    Wang,H.; Yan, Z.; Geng, J.; Kunz, S.; Seebeck, T.; Ke, H.

    2007-01-01

    Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Angstroms resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.

  4. Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite selective inhibitors

    PubMed Central

    Wang, Huanchen; Yan, Zier; Geng, Jie; Kunz, Stefan; Seebeck, Thomas; Ke, Hengming

    2010-01-01

    Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Å resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis. PMID:17944832

  5. Regulation of intestinal hPepT1 (SLC15A1) activity by phosphodiesterase inhibitors is via inhibition of NHE3 (SLC9A3)

    PubMed Central

    Anderson, Catriona M.H.; Thwaites, David T.

    2007-01-01

    The H+-coupled transporter hPepT1 (SLC15A1) mediates the transport of di/tripeptides and many orally-active drugs across the brush-border membrane of the small intestinal epithelium. Incubation of Caco-2 cell monolayers (15 min) with the dietary phosphodiesterase inhibitors caffeine and theophylline inhibited Gly–Sar uptake across the apical membrane. Pentoxifylline, a phosphodiesterase inhibitor given orally to treat intermittent claudication, also decreased Gly–Sar uptake through a reduction in capacity (Vmax) without any effect on affinity (Km). The reduction in dipeptide transport was dependent upon both extracellular Na+ and apical pH but was not observed in the presence of the selective Na+/H+ exchanger NHE3 (SLC9A3) inhibitor S1611. Measurement of intracellular pH confirmed that caffeine was not directly inhibiting hPepT1 but rather having an indirect effect through inhibition of NHE3 activity. NHE3 maintains the H+-electrochemical gradient which, in turn, acts as the driving force for H+-coupled solute transport. Uptake of β-alanine, a substrate for the H+-coupled amino acid transporter hPAT1 (SLC36A1), was also inhibited by caffeine. The regulation of NHE3 by non-nutrient components of diet or orally-delivered drugs may alter the function of any solute carrier dependent upon the H+-electrochemical gradient and may, therefore, be a site for both nutrient–drug and drug–drug interactions in the small intestine. PMID:17498647

  6. Latest Evidence on the Use of Phosphodiesterase Type 5 Inhibitors for the Treatment of Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia.

    PubMed

    Gacci, Mauro; Andersson, Karl-Erik; Chapple, Christopher; Maggi, Mario; Mirone, Vincenzo; Oelke, Matthias; Porst, Hartmut; Roehrborn, Claus; Stief, Christian; Giuliano, François

    2016-07-01

    Several preclinical reports, randomized controlled trials, systematic reviews, and posthoc analyses corroborate the role of phosphodiesterase type 5 inhibitors (PDE5-Is) in the treatment of men with lower urinary tract symptoms (LUTS) associated with benign prostatic enlargement (BPE). Update of the latest evidence on the mechanisms of action, evaluate the current meta-analyses, and emphasize the results of pooled data analyses of PDE5-Is in LUTS/BPE. Literature analysis of basic researches on PDE5-Is, systematic literature search in PubMed and Scopus until May 2015 on reviews of trials on PDE5-Is, and collection of pooled data available on tadalafil 5mg. Latest evidences on the pathophysiology of LUTS/BPE has provided the rationale for use of PDE5-Is: (1) improvement of LUT oxygenation, (2) smooth muscle relaxation, (3) negative regulation of proliferation and transdifferentiation of LUT stroma, (4) reduction of bladder afferent nerve activity, and (5) down-regulation of prostate inflammation are the proven mechanisms of action of PDE5-Is. Data from eight systematic reviews demonstrated that PDE5-Is allow to improve LUTS (International Prostate Symptom Score mean difference vs placebo: 2.35-4.21) and erectile function (International Index of Erectile Function mean difference vs placebo: 2.25-5.66), with negligible change in flow rate (Qmax mean difference vs placebo: 0.01-1.43). Pooled data analyses revealed that tadalafil 5mg once daily allows the clinically-meaningful improvement of LUTS and nocturnal voiding frequency independent of both erectile dysfunction severity and improvement. PDE5-Is are safe and effective in improving both LUTS and erectile function in appropriately selected men with LUTS/BPE. Data on the reduction of disease progression, long-term outcomes, and cost-effectiveness analyses are still lacking. We reviewed recent literature on phosphodiesterase type 5 inhibitors in men with lower urinary tract symptoms associated with prostatic

  7. New 2-(2-Phenylethyl)chromone Derivatives and Inhibitors of Phosphodiesterase (PDE) 3A from Agarwood.

    PubMed

    Sugiyama, Takuji; Narukawa, Yuji; Shibata, Shunsuke; Masui, Ryo; Kiuchia, Fumiyuki

    2016-06-01

    The MeOH extract of agarwood showed inhibitory activity against phosphodiesterase (PDE) 3A. Fractionation of the extract led to the isolation of two new 2-(2-phenylethyl)chromones, 6,8-dihydroxy-2-[2-(4'-methoxyphenyl)ethyl]chromone (6), and 6,7-dihydroxy-2-(2-phenylethyl)chromone (8), together with six known compounds. All isolated compounds were tested for their PDE 3A inhibitory activity using fluorescence polarization method. Compound 7 showed PDE 3A inhibitory activity with IC50 of 4.83 μM.

  8. Attenuated proliferation and trans-differentiation of prostatic stromal cells indicate suitability of phosphodiesterase type 5 inhibitors for prevention and treatment of benign prostatic hyperplasia.

    PubMed

    Zenzmaier, Christoph; Sampson, Natalie; Pernkopf, Dominik; Plas, Eugen; Untergasser, Gerold; Berger, Peter

    2010-08-01

    Benign prostatic hyperplasia (BPH) is characterized by tissue overgrowth and stromal reorganization primarily due to cellular proliferation and fibroblast-to-myofibroblast trans-differentiation. To evaluate the potential of phosphodiesterase type 5 (PDE5) inhibitors like tadalafil for prevention and treatment of BPH, we analyzed the role of the nitric oxide/cyclic GMP (cGMP)/PDE5 pathway for cellular proliferation and TGFbeta1-induced fibroblast-to-myofibroblast trans-differentiation in primary prostate stromal cells. Inhibition by tadalafil of PDE5, which is mainly expressed in the stromal compartment of the prostate, reduced proliferation of primary prostate stromal cells and to a lesser extent of primary prostate basal epithelial cells. Attenuated proliferation due to elevated intracellular cGMP levels was confirmed by inhibition of the cGMP-dependent protein kinase G by its inhibitor KT2358. Moreover, tadalafil strongly attenuated TGFbeta1-induced fibroblast-to-myofibroblast trans-differentiation. The inhibitory effect on trans-differentiation was also observed after small interfering RNA-mediated PDE5 knockdown. As confirmed by the MAPK kinase 1 inhibitor PD98059, this effect was mediated via MAPK kinase 1 signaling. We conclude that BPH patients might benefit from adjuvant therapies with PDE5 inhibitors that inhibit stromal enlargement due to cell proliferation, as well as TGFbeta1-induced trans-differentiation processes.

  9. Discovery of benzo[d]imidazo[5,1-b]thiazole as a new class of phosphodiesterase 10A inhibitors.

    PubMed

    Banerjee, Abhisek; Narayana, Lakshminarayana; Raje, Firoj A; Pisal, Dnyandeo V; Kadam, Pradip A; Gullapalli, Srinivas; Kumar, Hemant; More, Sandeep V; Bajpai, Malini; Sangana, Ramachandra Rao; Jadhav, Satyawan; Gudi, Girish S; Khairatkar-Joshi, Neelima; Merugu, Ravi R T; Voleti, Sreedhara R; Gharat, Laxmikant A

    2013-12-15

    The design, synthesis and structure activity relationship studies of a series of compounds from benzo[d]imidazo[5,1-b]thiazole scaffold as phosphodiesterase 10A (PDE10A) inhibitors are discussed. Several potent analogs with heteroaromatic substitutions (9a-d) were identified. The anticipated binding mode of these analogs was confirmed by performing the in silico docking experiments. Later, the heteroaromatics were substituted with saturated heteroalkyl groups which provided a tool compound 9e with excellent PDE10A activity, PDE selectivity, CNS penetrability and with favorable pharmacokinetic profile in rats. Furthermore, the compound 9e was shown to be efficacious in the MK-801 induced psychosis model and in the CAR model of psychosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Screening for multiple phosphodiesterase type 5 inhibitor drugs in dietary supplement materials by flow injection mass spectrometry and their quantification by liquid chromatography tandem mass spectrometry.

    PubMed

    Song, Fenhong; El-Demerdash, Aref; Lee, Shwn-Ji Susie H

    2012-11-01

    A flow injection tandem mass spectrometry method (FI-MS/MS) has been developed to detect enzyme phosphodiesterase type 5 inhibitors, including tadalafil, sildenafil, and vardenafil. Multiple reaction monitoring (MRM) was used to detect the drugs and product ion ratios were used for identification. FI-MS/MS was used for semi-quantification and liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for further confirmation and quantification. One of 13 samples has been found to be adulterated with prescription levels of tadalafil and also low level of sildenafil. The method can be used for screening large numbers of herbal products for adulteration since it takes less than 1 min without chromatographic separation on a column.

  11. Successful Shortening of Tuberculosis Treatment Using Adjuvant Host-Directed Therapy with FDA-Approved Phosphodiesterase Inhibitors in the Mouse Model

    PubMed Central

    Ammerman, Nicole C.; Gupta, Radhika; Guo, Haidan; Maiga, Marama C.; Lun, Shichun; Bishai, William R.

    2012-01-01

    Global control of tuberculosis (TB), an infectious disease that claims nearly 2 million lives annually, is hindered by the long duration of chemotherapy required for curative treatment. Lack of adherence to this intense treatment regimen leads to poor patient outcomes, development of new or additional drug resistance, and continued spread of M.tb. within communities. Hence, shortening the duration of TB therapy could increase drug adherence and cure in TB patients. Here, we report that addition of the United Stated Food and Drug Administration-approved phosphodiesterase inhibitors (PDE-Is) cilostazol and sildenafil to the standard TB treatment regimen reduces tissue pathology, leads to faster bacterial clearance and shortens the time to lung sterilization by one month, compared to standard treatment alone, in a murine model of TB. Our data suggest that these PDE-Is could be repurposed for use as adjunctive drugs to shorten TB treatment in humans. PMID:22319585

  12. Structural characterization of Spinacia oleracea trypsin inhibitor III (SOTI-III).

    PubMed

    Glotzbach, Bernhard; Schmelz, Stefan; Reinwarth, Michael; Christmann, Andreas; Heinz, Dirk W; Kolmar, Harald

    2013-01-01

    In recent decades, several canonical serine protease inhibitor families have been classified and characterized. In contrast to most trypsin inhibitors, those from garden four o'clock (Mirabilis jalapa) and spinach (Spinacia oleracea) do not share sequence similarity and have been proposed to form the new Mirabilis serine protease inhibitor family. These 30-40-amino-acid inhibitors possess a defined disulfide-bridge topology and belong to the cystine-knot miniproteins (knottins). To date, no atomic structure of this inhibitor family has been solved. Here, the first structure of S. oleracea trypsin inhibitor III (SOTI-III), in complex with bovine pancreatic trypsin, is reported. The inhibitor was synthesized by solid-phase peptide synthesis on a multi-milligram scale and was assayed to test its inhibitory activity and binding properties. The structure confirmed the proposed cystine-bridge topology. The structural features of SOTI-III suggest that it belongs to a new canonical serine protease inhibitor family with promising properties for use in protein-engineering and medical applications.

  13. Analysis of undeclared synthetic phosphodiesterase-5 inhibitors in dietary supplements and herbal matrices by LC-ESI-MS and LC-UV.

    PubMed

    Gratz, Samuel R; Flurer, Cheryl L; Wolnik, Karen A

    2004-11-15

    A liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) method was developed to screen for the presence of synthetic phosphodiesterase type 5 (PDE-5) inhibitors including sildenafil, tadalafil and vardenafil. The method was applied to the analysis of dietary supplements and bulk herbal materials. Bulk powders or composites of tablets, capsules or liquids were prepared and an extraction of PDE-5 inhibitors was performed using a mixture of acetonitrile and water with sonication. Identification of sildenafil, vardenafil or tadalafil was accomplished using a single quadrupole mass spectrometer coupled to a liquid chromatograph with an electrospray interface. Positive ion detection in the full scan mode was used while in-source collision induced dissociation (CID) provided several structurally significant fragment ions to aid in the mass spectral identification. Approximately half of the 40 botanical products analyzed were found to contain undeclared synthetic PDE-5 inhibitors. For products found to contain one of these three compounds by LC-MS, HPLC with UV detection was used for quantitation.

  14. Long-term treatment with a phosphodiesterase type 5 inhibitor improves pulmonary hypertension secondary to heart failure through enhancing the natriuretic peptides-cGMP pathway.

    PubMed

    Yamamoto, Takashi; Wada, Atsuyuki; Tsutamoto, Takayoshi; Ohnishi, Masato; Horie, Minoru

    2004-11-01

    In advanced heart failure (HF), the compensatory pulmonary vasodilation is attenuated due to the relative insufficiency of cGMP despite increased secretion of natriuretic peptides (NPs). Phosphodiesterase type 5 (PDE5) inhibitors prevent cGMP degradation, and thus may potentiate the effect of the NPs-cGMP pathway. We orally administered a specific PDE5 inhibitor, T-1032 (1 mg/kg; twice a day, n = 7) or placebo (n = 7) for 2 weeks in dogs with HF induced by rapid pacing (270 bpm, 3 weeks) and examined the plasma levels of atrial natriuretic peptide (ANP), cGMP, and hemodynamic parameters. We also examined the hemodynamic changes after injection of a specific NPs receptor antagonist, HS-142-1 (3 mg/kg), under treatment with T-1032. T-1032 significantly increased plasma cGMP levels compared with the vehicle group despite low plasma ANP levels associated with improvement in cardiopulmonary hemodynamics. HS-142-1 significantly decreased plasma cGMP levels in both groups, whereas it did not change all hemodynamic parameters in the vehicle group. In contrast, in the T-1032 group, HS-142-1 significantly increased pulmonary arterial pressure and pulmonary vascular resistance. These results indicated that long-term treatment with a PDE5 inhibitor improved pulmonary hypertension secondary to HF and the NPs-cGMP pathway contributed to this therapeutic effect.

  15. Synthesis and enzymic activity of various substituted pyrazolo[1,5-a]-1,3,5-triazines as adenosine cyclic 3',5'-phosphate phosphodiesterase inhibitors.

    PubMed

    Senga, K; O'Brien, D E; Scholten, M B; Novinson, T; Miller, J P; Robins, R K

    1982-03-01

    A series of various pyrazolo[1,5-a]-1,3,5-triazines have been prepared and studied as inhibitors of cAMP phosphodiesterase isolated from bovine brain, bovine heart, and rabbit lung. A number of compounds were found to be superior to theophylline. 2-Ethyl-7-phenylpyrazolo[1,5-a]-1,3,5-triazine (35) was found to be 97 times more potent than theophylline as an inhibitor of bovine brain PDE. 8-Bromo-2,4-dimethyl-7-phenylpyrazolo[1,5-a]-1,3,5-triazine (52) showed alpha lung = 40 compared to alpha heart = 3.0. Thus, various substituents could increase or decrease the inhibition relative to the type and source of tissue from which the PDE was isolated. The most active compound was 8-bromo-4-(diethylamino)-7-phenylpyrazolo[1,3-a]-1,3,5-triazine (25), which was 185 times more potent than theophylline as an inhibitor of PDE isolated from rabbit lung. The stepwise synthesis via ring-closure procedures of requisite pyrazole intermediates, followed by electrophilic substitution in the pyrazole ring and/or nucleophilic substitution in the 1,3,5-triazine moiety, resulted in the various pyrazolo[1,5-a]1,3,5-triazines listed in Tables I and II. Structure-activity relationships are reviewed.

  16. Phosphodiesterase-5 inhibitors and their analogues as adulterants of herbal and food products: analysis of the Malaysian market, 2014-16.

    PubMed

    Bujang, Nur Baizura; Chee, Chin Fei; Heh, Choon Han; Rahman, Noorsaadah Abd; Buckle, Michael J C

    2017-07-01

    Adulteration of herbal health supplements with phosphodiesterase-5 (PDE-5) inhibitors and their analogues is becoming a worldwide problem. The aim of this study was to investigate herbal and food products sold in the Malaysian market for the presence of these adulterants. Sixty-two products that claim to enhance men's sexual health were sampled between April 2014 and April 2016. These products included unregistered products seized by the Pharmacy Enforcement Division of the Ministry of Health (n = 39), products sent to the National Pharmaceutical Regulatory Agency for pre-registration testing (n = 9) and products investigated under the post-registration market surveillance programme (n = 14). The products were tested against an in-house spectral library consisting of 61 PDE-5 inhibitors and analogues using a validated liquid chromatography-mass spectrometry ion-trap-time-of-flight (LC-MS IT-TOF) method. Thirty-two (82%) of the unregistered products and two (14%) of the registered products were found to be adulterated with at least one PDE-5 inhibitor or analogue, while none of the pre-registration products contained adulterants. A total of 16 different adulterants were detected and 36% of the adulterated products contained a mixture of two or more adulterants. This study has demonstrated that the adulteration of unregistered herbal products in the Malaysian market is an alarming issue that needs to be urgently addressed by the relevant authorities.

  17. One step N-glycosylation by filamentous fungi biofilm in bioreactor of a new phosphodiesterase-3 inhibitor tetrazole.

    PubMed

    de Melo Souza, Paula L; Arruda, Evilanna L; Pazini, Francine; Menegatti, Ricardo; Vaz, Boniek G; Lião, Luciano M; de Oliveira, Valéria

    2016-07-01

    An efficient and rapid process for N-glycosylation of 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole-LQFM 021 (1), a new synthetic derivative of pyrazole with phosphodiesterase-3 (PDE-3) inhibitory action, vasorelaxant activity and low toxicity catalyzed by filamentous fungi biofilm in bioreactor was successfully developed. A maximum N-glycosyl yield of 68% was obtained with Cunninghamella echinulata ATCC 9244 biofilm in bioreactor with conditions of 25mgml(-1) of 1 in PDSM medium at 28°C for 96h. After extraction with ethyl acetate, the derivative was identified by Ultrahigh Resolution Mass Spectrometry and (1)H-(13)C HSQC/HMBC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Psiguajadials A-K: Unusual Psidium Meroterpenoids as Phosphodiesterase-4 Inhibitors from the Leaves of Psidium guajava.

    PubMed

    Tang, Gui-Hua; Dong, Zhen; Guo, Yan-Qiong; Cheng, Zhong-Bin; Zhou, Chu-Jun; Yin, Sheng

    2017-04-21

    Bioassay-guided fractionation of the ethanolic extract of the leaves of Psidium guajava led to the isolation of 11 new Psidium meroterpenoids, psiguajadials A-K (1-11), along with 17 known ones (12-28). Their structures and absolute configurations were elucidated by spectroscopic methods and comparison of experimental and calculated ECD. Compounds 1 and 2 represent two unprecedented skeletons of 3,5-diformyl-benzyl phloroglucinol-coupled sesquiterpenoid, while 3 is the first example of Psidium meroterpenoids coupling via an oxepane ring. Putative biosynthetic pathways towards 1 and 2 are proposed. Compounds 1-13 and 16-26 exhibited moderate inhibitory activities against phosphodiesterase-4 (PDE4), a drug target for asthma and chronic obstructive pulmonary disease, with IC50 values in the range of 1.34-7.26 μM.

  19. Antenatal Maternally-Administered Phosphodiesterase Type 5 Inhibitors Normalize eNOS Expression in the Fetal Lamb Model of Congenital Diaphragmatic Hernia

    PubMed Central

    Shue, Eveline H; Schecter, Samuel C.; Gong, Wenhui; Etemadi, Mozziyar; Johengen, Michael; Iqbal, Corey; Derderian, S. Christopher; Oishi, Peter; Fineman, Jeffrey R.; Miniati, Doug

    2013-01-01

    Purpose Pulmonary hypertension (pHTN), a main determinant of survival in congenital diaphragmatic hernia (CDH), results from in utero vascular remodeling. Phosphodiesterase type 5 (PDE5) inhibitors have never been used antenatally to treat pHTN. The purpose of this study is to determine if antenatal PDE5 inhibitors can prevent pHTN in the fetal lamb model of CDH. Methods CDH were created in pregnant ewes. Postoperatively, pregnant ewes received oral placebo or tadalafil, a PDE5 inhibitor, until delivery. Near term gestation, lambs underwent resuscitations, and lung tissue was snap frozen for protein analysis. Results Mean cGMP levels were 0.53±0.11 in placebo-treated fetal lambs and 1.73±0.21 in tadalafil-treated fetal lambs (p=0.002). Normalized expression of eNOS was 82±12% in Normal-Placebo, 61±5% in CDH-Placebo, 116±6% in Normal-Tadalafil, and 86±8% in CDH-Tadalafil lambs. Normalized expression of β-sGC was 105±15% in Normal-Placebo, 82±3% in CDH-Placebo, 158±16% in Normal-Tadalafil, and 86±8% in CDH-Tadalafil lambs. Endothelial NOS and β-sGC were significantly decreased in CDH (p = 0.0007 and 0.01 for eNOS and β-sGC, respectively), and tadalafil significantly increased eNOS expression (p = 0.0002). Conclusions PDE5 inhibitors can cross the placental barrier. β-sGC and eNOS are downregulated in fetal lambs with CDH. Antenatal PDE5 inhibitors normalize eNOS and may prevent in utero vascular remodeling in CDH. PMID:24439578

  20. Phosphodiesterase-5 inhibitors for erectile dysfunction in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Balhara, Yatan Pal Singh; Sarkar, Siddharth; Gupta, Rishab

    2015-01-01

    Background and Aims: Patients with diabetes mellitus frequently experience erectile dysfunction. This systematic review and meta-analysis were conducted to find efficacy and tolerability of phosphodiesterase 5 (PDE5) inhibitors in patients with diabetes mellitus experiencing erectile dysfunction. Methodology: Electronic searches were carried out to identify English language peer-reviewed randomized controlled trials (RCTs), which reported clinical efficacy of any PDE5 inhibitor in patients with diabetes mellitus having erectile dysfunction. Effect sizes were computed using Cohen's d, and I2-test was used to assess heterogeneity. Pooled mean effect sizes were computed using random-effects model. Number needed to treat (NNT), and the adverse event rates were computed. Results: The systematic review included a total of 17 studies yielding 25 comparisons. Three studies were open RCTs while others were double-blind RCTs. The pooled mean effect size of any PDE5 inhibitor over placebo was 0.926 (95% confidence intervals [CI]: 0.864-0.987; I2 =26.3). The pooled mean effect size for sildenafil was 1.198 (CI: 1.039-1.357; I2 =0), for tadalafil was 0.910 (CI: 0.838-0.981; I2 =33.6), and for vardenafil was 0.678 (CI: 0.627-0.729; I2 =0). In pooled analysis, the NNT for sildenafil, tadalafil, vardenafil and any PDE5 inhibitor was 2.4, 2.6, 4.1 and 3.0 respectively. The most common side effects were headache, flushing, and nasal congestion. Conclusions: PDE5 inhibitors are effective and safe medications for the treatment of sexual dysfunction in patients with diabetes mellitus experiencing erectile dysfunction. PMID:26180759

  1. Suppression of eosinophil function by RP 73401, a potent and selective inhibitor of cyclic AMP-specific phosphodiesterase: comparison with rolipram.

    PubMed Central

    Souness, J. E.; Maslen, C.; Webber, S.; Foster, M.; Raeburn, D.; Palfreyman, M. N.; Ashton, M. J.; Karlsson, J. A.

    1995-01-01

    1. We have investigated the inhibitory potency of RP 73401, a novel, highly selective and potent inhibitor of cyclic AMP-specific phosphodiesterase (PDE IV), against partially-purified PDE isoenzymes from smooth muscle and the particulate PDE IV from guinea-pig eosinophils. The inhibitory effects of RP 73401 on the generation of superoxide (.O2-), major basic protein (MBP) and eosinophil cationic protein (ECP) from guinea-pig eosinophils have also been studied. 2. RP 73401 potently inhibited partially-purified cyclic AMP-specific phosphodiesterase (PDE IV) from pig aortic smooth muscle (IC50 = 1.2 nM); it was similarly potent against the particulate PDE IV from guinea-pig peritoneal eosinophils (IC50 = 0.7 nM). It displayed at least a 19000 fold selectivity for PDE IV compared to its potencies against other PDE isoenzymes. Rolipram was approximately 2600 fold less potent than RP 73401 against pig aortic smooth muscle PDE IV (IC50 = 3162 nM) and about 250 times less potent against eosinophil PDE IV (IC50 = 186 nM). 3. Solubilization of the eosinophil particulate PDE IV increased the potency of rolipram 10 fold but did not markedly affect the potency of RP 73401. A similar (10 fold) increase in the PDE IV inhibitory potency of rolipram, but not RP 73401, was observed when eosinophil membranes were exposed to vanadate/glutathione complex (V/GSH). 4. Reverse transcription polymerase chain reaction (RT-PCR), using primer pairs designed against specific sequences in four distinct rat PDE IV subtype cDNA clones (PDE IVA-D), showed only mRNA for PDE IVD in guinea-pig eosinophils. PDE IVD was also the predominant subtype expressed in pig aortic smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 PMID:7647982

  2. Application of structure-based drug design and parallel chemistry to identify selective, brain penetrant, in vivo active phosphodiesterase 9A inhibitors.

    PubMed

    Claffey, Michelle M; Helal, Christopher J; Verhoest, Patrick R; Kang, Zhijun; Fors, Kristina S; Jung, Stanley; Zhong, Jiaying; Bundesmann, Mark W; Hou, Xinjun; Lui, Shenping; Kleiman, Robin J; Vanase-Frawley, Michelle; Schmidt, Anne W; Menniti, Frank; Schmidt, Christopher J; Hoffman, William E; Hajos, Mihaly; McDowell, Laura; O'Connor, Rebecca E; Macdougall-Murphy, Mary; Fonseca, Kari R; Becker, Stacey L; Nelson, Frederick R; Liras, Spiros

    2012-11-08

    Phosphodiesterase 9A inhibitors have shown activity in preclinical models of cognition with potential application as novel therapies for treating Alzheimer's disease. Our clinical candidate, PF-04447943 (2), demonstrated acceptable CNS permeability in rats with modest asymmetry between central and peripheral compartments (free brain/free plasma = 0.32; CSF/free plasma = 0.19) yet had physicochemical properties outside the range associated with traditional CNS drugs. To address the potential risk of restricted CNS penetration with 2 in human clinical trials, we sought to identify a preclinical candidate with no asymmetry in rat brain penetration and that could advance into development. Merging the medicinal chemistry strategies of structure-based design with parallel chemistry, a novel series of PDE9A inhibitors was identified that showed improved selectivity over PDE1C. Optimization afforded preclinical candidate 19 that demonstrated free brain/free plasma ≥ 1 in rat and reduced microsomal clearance along with the ability to increase cyclic guanosine monophosphosphate levels in rat CSF.

  3. A novel phosphodiesterase-5 Inhibitor: Yonkenafil modulates neurogenesis, gliosis to improve cognitive function and ameliorates amyloid burden in an APP/PS1 transgenic mice model.

    PubMed

    Zhu, Lei; Yang, Jing-yu; Xue, Xue; Dong, Ying-xu; Liu, Yang; Miao, Feng-rong; Wang, Yong-feng; Xue, Hong; Wu, Chun-fu

    2015-09-01

    In Alzheimer's disease (AD), activated microglia invade and surround β-amyloid plaques, possibly contributing to the aggregation of amyloid β (Aβ), which affect the survival of neurons and lead to memory loss. Phosphodiesterase-5 (PDE-5) inhibitors have recently been shown a potential therapeutic effect on AD. In this study, the effects of yonkenafil (yonk), a novel PDE-5 inhibitor, on cognitive behaviors as well as the pathological features in transgenic AD mice were investigated. Seven-month-old APP/PS1 transgenic mice were treated with yonk (2, 6, or 18 mg/kg, intraperitoneal injection (i.p.)) or sildenafil (sild) (6 mg/kg, i.p.) daily for 3 months and then behavioral tests were performed. The results demonstrated that yonk improved nesting-building ability, ameliorated working memory deficits in the Y-maze tasks, and significantly improved learning and memory function in the Morris water maze (MWM) tasks. In addition, yonk reduced the area of Aβ plaques, and inhibited over-activation of microglia and astrocytes. Furthermore, yonk increased neurogenesis in the dentate granule brain region of APP/PS1 mice, indicated by increased BrdU(+)/NeuN(+) and BrdU(+)/DCX(+) cells compared to vehicle-treated transgenic mice. These results suggest that yonk could rescue cognitive deficits by ameliorated amyloid burden through regulating APP processing, inhibited the over-activation of microglia and astrocytes as well as restored neurogenesis.

  4. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors.

    PubMed

    al-Rashida, Mariya; Iqbal, Jamshed

    2014-07-01

    The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.

  5. Phosphodiesterase type 5 inhibitor treatment for erectile dysfunction in patients with end-stage renal disease receiving dialysis or after renal transplantation.

    PubMed

    Lasaponara, Fedele; Sedigh, Omid; Pasquale, Giovanni; Bosio, Andrea; Rolle, Luigi; Ceruti, Carlo; Timpano, Massimiliano; Negro, Carlo Luigi Augusto; Paradiso, Matteo; Abbona, Annamaria; Segoloni, Giuseppe Paolo; Fontana, Dario

    2013-11-01

    The phosphodiesterase type 5 (PDE5) inhibitors are generally well tolerated and effective for treating erectile dysfunction (ED), including in patients with significant comorbidity. Because of this benign safety profile, investigators have used PDE5 inhibitors to treat patients with ED and severe renal disease or those who have received renal transplants. To assess safety and efficacy of PDE5 inhibitors in patients receiving dialysis or renal transplants. Erectile function as assessed by the International Index of Erectile Function (IIEF) and Global Assessment Questions; adverse events (AEs). We reviewed published studies of PDE5 inhibitors in patients receiving dialysis or renal transplants. In double-blind, placebo-controlled studies in patients receiving dialysis or renal transplants, sildenafil significantly improved erectile function as assessed by the IIEF, and 75-85% of patients reported improved erectile function on Global Assessment Questions; efficacy was more variable in less well-controlled studies. In >260 patients undergoing dialysis who received sildenafil in clinical studies, there were only six reported discontinuations because of AEs (headache [N=3], headache and nausea [N=1], gastrointestinal [N=1], and symptomatic blood pressure decrease [N=1]). In approximately 400 patients with renal transplants who received sildenafil, only three patients discontinued because of AEs. Vardenafil improved IIEF scores of up to 82% of renal transplant recipients in randomized, controlled studies (N=59, total), with no reported discontinuations because of AEs. Limited data also suggest benefit with tadalafil. ED is common in patients undergoing renal dialysis or postrenal transplant and substantially affects patient quality of life. Sildenafil and vardenafil appear to be efficacious and well tolerated in patients receiving renal dialysis or transplant. © 2013 International Society for Sexual Medicine.

  6. Phosphodiesterase 4 inhibitors augment the ability of formoterol to enhance glucocorticoid-dependent gene transcription in human airway epithelial cells: a novel mechanism for the clinical efficacy of roflumilast in severe chronic obstructive pulmonary disease.

    PubMed

    Moodley, Thunicia; Wilson, Sylvia M; Joshi, Taruna; Rider, Christopher F; Sharma, Pawan; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-04-01

    Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an "add-on" medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. Using a glucocorticoid response element (GRE) luciferase reporter transfected into human airway epithelial cells [both bronchial epithelium + adenovirus 12 - SV40 hybrid (BEAS-2B) cells and primary cultures], roflumilast enhanced fluticasone propionate-induced GRE-dependent transcription. Roflumilast also produced a sinistral displacement of the concentration-response curves that described the augmentation of GRE-dependent transcription by the LABA formoterol. In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD.

  7. Pharmacology of N-(3,5-dichloro-1-oxido-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide (SCH 351591), a novel, orally active phosphodiesterase 4 inhibitor.

    PubMed

    Billah, M Motasim; Cooper, Nicola; Minnicozzi, Michael; Warneck, Julie; Wang, Peng; Hey, John A; Kreutner, William; Rizzo, Charles A; Smith, Sidney R; Young, Simon; Chapman, Richard W; Dyke, Hazel; Shih, Nang-Yang; Piwinski, John J; Cuss, Francis M; Montana, John; Ganguly, Ashit K; Egan, Robert W

    2002-07-01

    N-(3,5-Dichloro-1-oxido-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide (SCH 351591) has been identified as a potent (IC(50) = 58 nM) and highly selective type 4 phosphodiesterase (PDE4) inhibitor with oral bioactivity in several animal models of lung inflammation. N-(3,5-Dichloro-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide (SCH 365351), the only significant in vivo metabolite, is also a potent and highly selective PDE4 inhibitor (IC(50) = 20 nM). Both SCH 351591 and SCH 365351 inhibited cytokine production in human blood mononuclear cell preparations. Oral SCH 351591 significantly attenuated allergen-induced eosinophilia and airway hyperreactivity in allergic guinea pigs at doses as low as 1 mg/kg. In this model, oral SCH 365351 showed similar potency. When SCH 351591 was administered orally to allergic cynomolgus monkeys at 3 mg/kg, Ascaris suum-induced lung eosinophilia was blocked. Hyperventilation-induced bronchospasm in nonallergic guinea pigs, a model for exercise-induced asthma, was also suppressed significantly by oral SCH 351591 at 0.3 mg/kg. Cilomilast (SB 207499; Ariflo), a PDE4 inhibitor currently being developed for asthma and chronic obstructive pulmonary disease (COPD), was 10- to 30-fold less potent than SCH 351591 at inhibiting guinea pig lung eosinophilia and hyperventilation-induced bronchospasm. In a ferret model of emesis, maximum nonemetic oral doses of SCH 351591 and cilomilast were 5 and 1 mg/kg, respectively. Comparison of plasma levels at these nonemetic doses in ferrets to those at doses inhibiting hyperventilation-induced bronchospasm in guinea pigs gave a therapeutic ratio of 16 for SCH 351591 and 4 for cilomilast. Thus, SCH 351591 exhibits a promising preclinical profile as a treatment for asthma and COPD.

  8. The Role of Phosphodiesterase 12 (PDE12) as a Negative Regulator of the Innate Immune Response and the Discovery of Antiviral Inhibitors*

    PubMed Central

    Wood, Edgar R.; Bledsoe, Randy; Chai, Jing; Daka, Philias; Deng, Hongfeng; Ding, Yun; Harris-Gurley, Sarah; Kryn, Luz Helena; Nartey, Eldridge; Nichols, James; Nolte, Robert T.; Prabhu, Ninad; Rise, Cecil; Sheahan, Timothy; Shotwell, J. Brad; Smith, Danielle; Tai, Vince; Taylor, J. David; Tomberlin, Ginger; Wang, Liping; Wisely, Bruce; You, Shihyun; Xia, Bing; Dickson, Hamilton

    2015-01-01

    2′,5′-Oligoadenylate synthetase (OAS) enzymes and RNase-L constitute a major effector arm of interferon (IFN)-mediated antiviral defense. OAS produces a unique oligonucleotide second messenger, 2′,5′-oligoadenylate (2–5A), that binds and activates RNase-L. This pathway is down-regulated by virus- and host-encoded enzymes that degrade 2–5A. Phosphodiesterase 12 (PDE12) was the first cellular 2–5A- degrading enzyme to be purified and described at a molecular level. Inhibition of PDE12 may up-regulate the OAS/RNase-L pathway in response to viral infection resulting in increased resistance to a variety of viral pathogens. We generated a PDE12-null cell line, HeLaΔPDE12, using transcription activator-like effector nuclease-mediated gene inactivation. This cell line has increased 2–5A levels in response to IFN and poly(I-C), a double-stranded RNA mimic compared with the parental cell line. Moreover, HeLaΔPDE12 cells were resistant to viral pathogens, including encephalomyocarditis virus, human rhinovirus, and respiratory syncytial virus. Based on these results, we used DNA-encoded chemical library screening to identify starting points for inhibitor lead optimization. Compounds derived from this effort raise 2–5A levels and exhibit antiviral activity comparable with the effects observed with PDE12 gene inactivation. The crystal structure of PDE12 complexed with an inhibitor was solved providing insights into the structure-activity relationships of inhibitor potency and selectivity. PMID:26055709

  9. Benefits and risks of testosterone treatment for hypoactive sexual desire disorder in women: a critical review of studies published in the decades preceding and succeeding the advent of phosphodiesterase type 5 inhibitors

    PubMed Central

    Reis, Sandra Léa Bonfim; Abdo, Carmita H. N.

    2014-01-01

    With advancing age, there is an increase in the complaints of a lack of a libido in women and erectile dysfunction in men. The efficacy of phosphodiesterase type 5 inhibitors, together with their minimal side effects and ease of administration, revolutionized the treatment of erectile dysfunction. For women, testosterone administration is the principal treatment for hypoactive sexual desire disorder. We sought to evaluate the use of androgens in the treatment of a lack of libido in women, comparing two periods, i.e., before and after the advent of the phosphodiesterase type 5 inhibitors. We also analyzed the risks and benefits of androgen administration. We searched the Latin-American and Caribbean Health Sciences Literature, Cochrane Library, Excerpta Medica, Scientific Electronic Library Online, and Medline (PubMed) databases using the search terms disfunção sexual feminina/female sexual dysfunction, desejo sexual hipoativo/female hypoactive sexual desire disorder, testosterona/testosterone, terapia androgênica em mulheres/androgen therapy in women, and sexualidade/sexuality as well as combinations thereof. We selected articles written in English, Portuguese, or Spanish. After the advent of phosphodiesterase type 5 inhibitors, there was a significant increase in the number of studies aimed at evaluating the use of testosterone in women with hypoactive sexual desire disorder. However, the risks and benefits of testosterone administration have yet to be clarified. PMID:24714838

  10. Benefits and risks of testosterone treatment for hypoactive sexual desire disorder in women: a critical review of studies published in the decades preceding and succeeding the advent of phosphodiesterase type 5 inhibitors.

    PubMed

    Reis, Sandra Léa Bonfim; Abdo, Carmita H N

    2014-01-01

    With advancing age, there is an increase in the complaints of a lack of a libido in women and erectile dysfunction in men. The efficacy of phosphodiesterase type 5 inhibitors, together with their minimal side effects and ease of administration, revolutionized the treatment of erectile dysfunction. For women, testosterone administration is the principal treatment for hypoactive sexual desire disorder. We sought to evaluate the use of androgens in the treatment of a lack of libido in women, comparing two periods, i.e., before and after the advent of the phosphodiesterase type 5 inhibitors. We also analyzed the risks and benefits of androgen administration. We searched the Latin-American and Caribbean Health Sciences Literature, Cochrane Library, Excerpta Medica, Scientific Electronic Library Online, and Medline (PubMed) databases using the search terms disfunção sexual feminina/female sexual dysfunction, desejo sexual hipoativo/female hypoactive sexual desire disorder, testosterona/testosterone, terapia androgênica em mulheres/androgen therapy in women, and sexualidade/sexuality as well as combinations thereof. We selected articles written in English, Portuguese, or Spanish. After the advent of phosphodiesterase type 5 inhibitors, there was a significant increase in the number of studies aimed at evaluating the use of testosterone in women with hypoactive sexual desire disorder. However, the risks and benefits of testosterone administration have yet to be clarified.

  11. Chronic Lymphocytic Leukemia and B and T Cells Differ in Their Response to Cyclic Nucleotide Phosphodiesterase Inhibitors1

    PubMed Central

    Meyers, John A.; Su, Derrick W.; Lerner, Adam

    2009-01-01

    PDE4 inhibitors, which activate cAMP signaling by reducing cAMP catabolism, are known to induce apoptosis in B lineage chronic lymphocytic leukemia (CLL) cells but not normal human T cells. The explanation for such differential sensitivity remains unknown. Here, we report studies contrasting the response to PDE4 inhibitor treatment in CLL cells and normal human T and B cells. Affymetrix gene chip analysis in the three cell populations following treatment with the PDE4 inhibitor rolipram identified a set of up-regulated transcripts with unusually high fold-changes in the CLL samples, several of which are likely part of compensatory negative feedback loops. The high fold-change were due to low basal transcript levels in CLL cells, suggesting that cAMP-mediated signaling may be unusually tightly regulated in this cell type. Rolipram treatment augmented cAMP levels and induced ATF-1/CREB serine 63/133 phosphorylation in both B lineage cell types but not T cells. As treatment with the broad-spectrum PDE inhibitor IBMX induced T cell CREB phosphorylation, we tested a series of family-specific PDE inhibitors for their ability to mimic IBMX-induced ATF-1/CREB phosphorylation. While PDE3 inhibitors alone had no effect, the combination of PDE3 and PDE4 inhibitors induced ATF-1/CREB Ser 63/133 phosphorylation in T cells. Consistent with this observation, PDE3B transcript and protein levels were low in CLL cells but easily detectable in T cells. Combined PDE3/4 inhibition did not induce T cell apoptosis, suggesting that cAMP-mediated signal transduction that leads to robust ATF-1/CREB Ser 63/133 phosphorylation is not sufficient to induce apoptosis in this lymphoid lineage. PMID:19380787

  12. Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment.

    PubMed

    Maiga, Mamoudou; Ammerman, Nicole C; Maiga, Mariama C; Tounkara, Anatole; Siddiqui, Sophia; Polis, Michael; Murphy, Robert; Bishai, William R

    2013-08-01

    Shortening tuberculosis treatment could significantly improve patient adherence and decrease the development of drug resistance. Phosphodiesterase inhibitors (PDE-Is) have been shown to be beneficial in animal models of tuberculosis. We assessed the impact of PDE-Is on the duration of treatment in tuberculous mice. We analyzed the time to death in Mycobacterium tuberculosis-infected mice receiving type 4 PDE-Is (rolipram and cilomilast) and the impact on bacterial burden, time to clearance, and relapse when types 3 and 5 PDE-Is (cilostazol and sildenafil, respectively) and rolipram were added to the standard treatment. We investigated pharmacokinetic interactions between PDE-Is (cilostazol and sildenafil) and rifampin. The type 4 PDE-Is rolipram and cilomilast accelerated the time to death in tuberculous mice. The addition of rolipram to standard tuberculosis treatment increased bacterial burden and did not decrease the time to bacterial clearance in the lung, while the addition of the cilostazol and sildenafil reduced the time to clearance by 1 month. Cilostazol and sildenafil did not have negative pharmacokinetic interactions with rifampin. Type 4 PDE-Is may increase the severity of tuberculosis and should be carefully investigated for use in patients with latent or active tuberculosis. Cilostazol and sildenafil may benefit tuberculosis patients by shortening the duration of therapy.

  13. Adjuvant Host-Directed Therapy with Types 3 and 5 but Not Type 4 Phosphodiesterase Inhibitors Shortens the Duration of Tuberculosis Treatment

    PubMed Central

    Maiga, Mamoudou; Ammerman, Nicole C.; Maiga, Mariama C.; Tounkara, Anatole; Siddiqui, Sophia; Polis, Michael; Murphy, Robert; Bishai, William R.

    2013-01-01

    Background. Shortening tuberculosis treatment could significantly improve patient adherence and decrease the development of drug resistance. Phosphodiesterase inhibitors (PDE-Is) have been shown to be beneficial in animal models of tuberculosis. We assessed the impact of PDE-Is on the duration of treatment in tuberculous mice. Methods. We analyzed the time to death in Mycobacterium tuberculosis–infected mice receiving type 4 PDE-Is (rolipram and cilomilast) and the impact on bacterial burden, time to clearance, and relapse when types 3 and 5 PDE-Is (cilostazol and sildenafil, respectively) and rolipram were added to the standard treatment. We investigated pharmacokinetic interactions between PDE-Is (cilostazol and sildenafil) and rifampin. Results. The type 4 PDE-Is rolipram and cilomilast accelerated the time to death in tuberculous mice. The addition of rolipram to standard tuberculosis treatment increased bacterial burden and did not decrease the time to bacterial clearance in the lung, while the addition of the cilostazol and sildenafil reduced the time to clearance by 1 month. Cilostazol and sildenafil did not have negative pharmacokinetic interactions with rifampin. Conclusions. Type 4 PDE-Is may increase the severity of tuberculosis and should be carefully investigated for use in patients with latent or active tuberculosis. Cilostazol and sildenafil may benefit tuberculosis patients by shortening the duration of therapy. PMID:23641020

  14. Design, Synthesis, and Structure-Activity Relationship, Molecular Modeling, and NMR Studies of a Series of a Phenyl Alkyl Ketones as Highly Potent and Selective Phosphodiesterase-4 Inhibitors

    SciTech Connect

    Zheng, S.; Kaur, G; Wang, H; Li, M; MacNaughtan, M; Yang, X; Reid, S; Prestegard, J; Wang, B; et. al.

    2008-01-01

    Phosphodiesterase 4 catalyzes the hydrolysis of cyclic AMP and is a target for the development of anti-inflammatory agents. We have designed and synthesized a series of phenyl alkyl ketones as PDE4 inhibitors. Among them, 13 compounds were identified as having submicromolar IC{sub 50} values. The most potent compounds have IC50 values of in the mid- to low-nanomolar range. Compound 5v also showed preference for PDE4 with selectivity of >2000-fold over PDE7, PDE9, PDE2, and PDE5. Docking of 5v, 5zf, and 5za into the binding pocket of the PDE4 catalytic domain revealed a similar binding profile to PDE4 with rolipram except that the fluorine atoms of the difluoromethyl groups of 5v, 5za, and 5zf are within a reasonable range for hydrogen bond formation with the amide hydrogen of Thr 333 and the long alkyl chain bears additional van der Waals interactions with His 160, Asp 318, and Tyr 159.

  15. Exploring pyrazolo[3,4-d]pyrimidine phosphodiesterase 1 (PDE1) inhibitors: a predictive approach combining comparative validated multiple molecular modelling techniques.

    PubMed

    Amin, Sk Abdul; Bhargava, Sonam; Adhikari, Nilanjan; Gayen, Shovanlal; Jha, Tarun

    2017-02-13

    Phosphodiesterase 1 (PDE1) is a potential target for a number of neurodegenerative disorders such as Schizophrenia, Parkinson's and Alzheimer's diseases. A number of pyrazolo[3,4-d]pyrimidine PDE1 inhibitors were subjected to different molecular modelling techniques [such as regression-based quantitative structure-activity relationship (QSAR): multiple linear regression, support vector machine and artificial neural network; classification-based QSAR: Bayesian modelling and Recursive partitioning; Monte Carlo based QSAR; Open3DQSAR; pharmacophore mapping and molecular docking analyses] to get a detailed knowledge about the physicochemical and structural requirements for higher inhibitory activity. The planarity of the pyrimidinone ring plays an important role for PDE1 inhibition. The N-methylated function at the 5th position of the pyrazolo[3,4-d]pyrimidine core is required for interacting with the PDE1 enzyme. The cyclopentyl ring fused with the parent scaffold is necessary for PDE1 binding potency. The phenylamino substitution at 3rd position is crucial for PDE1 inhibition. The N2-substitution at the pyrazole moiety is important for PDE1 inhibition compared to the N1-substituted analogues. Moreover, the p-substituted benzyl side chain at N2-position helps to enhance the PDE1 inhibitory profile. Depending on these observations, some new molecules are predicted that may possess better PDE1 inhibition.

  16. Rapid detection of six phosphodiesterase type 5 enzyme inhibitors in healthcare products using thin-layer chromatography and surface enhanced Raman spectroscopy combined with BP neural network.

    PubMed

    Hu, Xiaopeng; Fang, Guozhen; Han, Ailing; Fu, Yunpeng; Tong, Rui; Wang, Shuo

    2017-06-01

    A novel facile method for the detection of the phosphodiesterase type 5 enzyme inhibitors added illegally into health products was established using thin-layer chromatography and surface enhanced Raman spectroscopy combined with BP neural network. When the detection conditions were optimized in detail, a repetitive adding procedure of silver colloids with the total amount keeping constant was used to improve the enhancement effect of surface enhanced Raman spectroscopy. According to the main Raman peaks and the retention factor of analyte, the data predictive model was established. Under the optimized experimental conditions, this method was successful to apply to detect the artificially produced model samples, and the limit of detection less than 5 mg/kg was obtained. Based on the excellent sensitivity of this method, the real samples have been detected accurately and the detection results were confirmed by high-performance liquid chromatography. In addition, the developed method was suitable for the detection of other adulterants, especially those that have similar chromatographic or spectroscopic behaviors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Seminal vesicles of infertile patients with male accessory gland infection: ultrasound evaluation after prolonged treatment with tadalafil, a selective phosphodiesterase-5 inhibitor.

    PubMed

    La Vignera, S

    2013-12-01

    The aim of this study was to investigate possible ultrasound seminal vesicle (SV) changes in infertile patients with 'hypertrophic-congestive' (HCUF) or 'fibro-sclerotic' (FSUF) ultrasound form of male accessory gland infection (MAGI) after prolonged administration of tadalafil (TAD), a selective phosphodiesterase-5 inhibitor. Forty infertile patients with HCUF and 40 patients with FSUF and erectile dysfunction were selected and arbitrarily divided into two groups, who were prescribed TAD 5 mg daily for 3 months, the first 20 consecutive patients with HCUF (group A1) or FSUF (group A2) or placebo, the second 20 consecutive patients with HCUF (group B1) or FSUF (group B2). All patients underwent scrotal and prostate-vesicular transrectal ultrasound evaluation and semen analysis (WHO, 2010) before and after treatment. Group A1 patients showed a significant reduction in fundus/body ratio and higher pre- and post-ejaculatory body SV antero-posterior diameter difference compared with the other three groups. These patients showed also a significant increase in SV ejection fraction and a significant improvement in the total sperm count, progressive motility, seminal levels of fructose and ejaculate volume. These results suggest that infertile patients with HCUF had an improvement in SV ultrasound features suggestive of chronic inflammation after daily treatment with low doses of TAD. © 2012 Blackwell Verlag GmbH.

  18. Phosphodiesterase type 5 inhibitor administered immediately after radical prostatectomy temporarily increases the need for incontinence pads, but improves final continence status

    PubMed Central

    Yamashita, Shinichi; Ito, Akihiro; Kawasaki, Yoshihide; Izumi, Hideaki; Kawamorita, Naoki; Adachi, Hisanobu; Mitsuzuka, Koji; Arai, Yoichi

    2016-01-01

    Purpose To evaluate the effects of phosphodiesterase type 5 inhibitor (PDE5i) on urinary continence recovery after bilateral nerve-sparing radical prostatectomy (BNSRP). Materials and Methods Between 2002 and 2012, 137 of 154 consecutive patients who underwent BNSRP in our institution retrospectively divided into 3 groups that included patients taking PDE5i immediately after surgery (immediate PDE5i group, n=41), patients starting PDE5i at an outpatient clinic after discharge (PDE5i group, n=56), and patients taking no medication (non-PDE5i group, n=40). Using self-administered questionnaires, the proportion of patients who did not require incontinence pads (pad-free patients) was calculated preoperatively and at 1, 3, 6, 12, 18, and 24 months after BNSRP. Severity of incontinence was determined based on the pad numbers and then compared among the 3 groups. Results Proportions of pad-free patients and severity of incontinence initially deteriorated in all of the groups to the lowest values soon after undergoing BNSRP, with gradual improvement noted thereafter. The deterioration was most prominent in the immediate PDE5i group. As compared to the non-PDE5i group, both the PDE5i and immediate PDE5i groups exhibited a better final continence status. Conclusions PDE5i improves final continence status. However, administration of PDE5i immediately after surgery causes a distinct temporary deterioration in urinary incontinence. PMID:27617318

  19. Development of highly potent phosphodiesterase 4 inhibitors with anti-neuroinflammation potential: Design, synthesis, and structure-activity relationship study of catecholamides bearing aromatic rings.

    PubMed

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Zhong, Qiu-Ping; Huang, Chang; Cheng, Yu-Fang; Yang, Xue-Mei; Wang, Hai-Tao; Xu, Jiang-Ping

    2016-11-29

    In this study, catecholamides (7a-l) bearing different aromatic rings (such as pyridine-2-yl, pyridine-3-yl, phenyl, and 2-chlorophenyl groups) were synthesized as potent phosphodiesterase (PDE) 4 inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4A4, PDE4B1, PDE4C1, and PDE4D7 enzymes, and other PDE family members. Eight of the synthesized compounds were identified as having submicromolar IC50 values in the mid-to low-nanomolar range. Careful analysis on the structure-activity relationship of compounds 7a-l revealed that the replacement of the 4-methoxy group with the difluoromethoxy group improved inhibitory activities. More interesting, 4-difluoromethoxybenzamides 7i and 7j exhibited preference for PDE4 with higher selectivities of about 3333 and 1111-fold over other PDEs, respectively. In addition, compound 7j with wonderful PDE4D7 inhibitory activities inhibited LPS-induced TNF-α production in microglia.

  20. Simultaneous Detection of Three Phosphodiesterase Type 5 Inhibitors and Eight of Their Analogs in Lifestyle Products and Screening for Adulterants by High-Performance Thin-Layer Chromatography.

    PubMed

    Do, Tiên T K; Theocharis, Grigorios; Reich, Eike

    2015-01-01

    An HPTLC method is proposed to permit effective screening for the presence of three phosphodiesterase type 5 inhibitors (PDE5-Is; sildenafil, vardenafil, and tadalafil) and eight of their analogs (hydroxyacetildenafil, homosildenafil, thiohomosildenafil, acetildenafil, acetaminotadalafil, propoxyphenyl hydroxyhomosildenafil, hydroxyhomosildenafil, and hydroxythiohomosildenafil) in finished products, including tablets, capsules, chocolate, instant coffee, syrup, and chewing gum. For all the finished products, the same simple sample preparation may be applied: ultrasound-assisted extraction in 10 mL methanol for 30 min followed by centrifugation. The Rf values of individual HPTLC bands afford preliminary identification of potential PDE5-Is. Scanning densitometry capabilities enable comparison of the unknown UV spectra with those of known standard compounds and allow further structural insight. Mass spectrometric analysis of the material derived from individual zones supplies an additional degree of confidence. Significantly, the proposed screening technique allows focus on the already known PDE5 Is and provides a platform for isolation and chemical categorization of the newly-synthesized analogs. Furthermore, the scope could be expanded to other therapeutic categories (e.g., analgesics, antidiabetics, and anorexiants) that are occasionally coadulterated along with the PDE5-Is. The method was successfully applied to screening of 45 commercial lifestyle products. Of those, 31 products tested positive for at least one illegal component (sildenafil, tadalafil, propoxyphenyl hydroxyhomosildenafil, or dimethylsildenafil).

  1. Design, Synthesis, and Structure–Activity Relationship, Molecular Modeling, and NMR Studies of a Series of Phenyl Alkyl Ketones as Highly Potent and Selective Phosphodiesterase-4 Inhibitors

    PubMed Central

    Zheng, Shilong; Kaur, Gurpreet; Wang, Huanchen; Li, Minyong; Macnaughtan, Megan; Yang, Xiaochuan; Reid, Suazette; Prestegard, James; Wang, Binghe; Ke, Hengming

    2010-01-01

    Phosphodiesterase 4 catalyzes the hydrolysis of cyclic AMP and is a target for the development of anti-inflammatory agents. We have designed and synthesized a series of phenyl alkyl ketones as PDE4 inhibitors. Among them, 13 compounds were identified as having submicromolar IC50 values. The most potent compounds have IC50 values of in the mid- to low-nanomolar range. Compound 5v also showed preference for PDE4 with selectivity of >2000-fold over PDE7, PDE9, PDE2, and PDE5. Docking of 5v, 5zf, and 5za into the binding pocket of the PDE4 catalytic domain revealed a similar binding profile to PDE4 with rolipram except that the fluorine atoms of the difluoromethyl groups of 5v, 5za, and 5zf are within a reasonable range for hydrogen bond formation with the amide hydrogen of Thr 333 and the long alkyl chain bears additional van der Waals interactions with His 160, Asp 318, and Tyr 159. PMID:19049349

  2. Selective tracheal relaxation and phosphodiesterase-IV inhibition by xanthine derivatives.

    PubMed

    Miyamoto, K; Kurita, M; Ohmae, S; Sakai, R; Sanae, F; Takagi, K

    1994-05-17

    The effects of substitutions in the xanthine nucleus on tracheal relaxant activity, atrium chronotropic activity, adenosine A1 affinity, and inhibitory activities on cyclic AMP-phosphodiesterase isoenzymes in guinea pigs were studied. Substitution with a long alkyl chain at the N1-position of xanthine nucleus increased the tracheal relaxant activity without leading to positive chronotropic action, and long alkyl chains at the N3-position increased both activities. N7-substitutions with n-propyl and 2'-oxopropyl groups, such as in denbufylline, increased bronchoselectivity. N7-substitution decreased the adenosine A1 affinity, but substitution at either the N1- or N3-position increased it. The bronchorelaxant activity of xanthine derivatives was closely correlated with their inhibition of phosphodiesterase-IV, but not with their adenosine A1 affinity; the positive chronotropic effects were related to their inhibition of phosphodiesterase-III. This study confirms that the bronchorelaxation of xanthine derivatives is mediated by inhibition of the isoenzyme phosphodiesterase-IV. The results of structure-activity analysis suggest that substitutions at the N1- and N7-positions should be tried in the development of xanthine derivatives that are selective bronchodilators and phosphodiesterase-IV inhibitors.

  3. The effects of three phosphodiesterase type 5 inhibitors on ejaculation latency time in lifelong premature ejaculators: a double-blind laboratory setting study.

    PubMed

    Gökçe, Ahmet; Halis, Fikret; Demirtas, Abdullah; Ekmekcioglu, Oguz

    2011-04-01

    Study Type--Therapy (RCT) Level of Evidence 1b. What's known on the subject? and What does the study add? Several authors have reported their experience with PDE5 inhibitors alone or in combination with selective serotonin re-uptake inhibitors for treating premature ejaculation. However, to our knowledge, this is the first laboratory design study to evaluate the effects of three PDE5 inhibitors throughout the ejaculation process in men with lifelong premature ejaculation. In this laboratory setting study PDE5 inhibitors seem to prolong ELT but the difference from placebo is significant only in vardenafil. The quality of penile rigidity is better with PDE5 inhibitors in the post-ejaculatory period but the difference is significant only in sildenafil and vardenafil. • To evaluate the effects of three phosphodiesterase type 5 (PDE5) inhibitors on the ejaculation process in men with lifelong premature ejaculation using a double-blind laboratory setting. • Eighty men with lifelong premature ejaculation, 20 in each group, received placebo, vardenafil (10 mg), sildenafil (50 mg) or tadalafil (20 mg) in a double-blind study design. Placebo or PDE5 inhibitor was ingested after at least 2 h fasting and non-smoking. The subjects were placed in a silent room immediately and real-time penile rigidity and tumescence was monitored. • Subjects read some magazines or newspapers without any sexually stimulating material for 1.5 h. At the end of this period audiovisual sexual stimulation began with a video film and after the 8th minute the subject began vibratory stimulation to the frenular area. • At the beginning of ejaculation the patient stopped stimulation. When the patient began and stopped stimulation, the light near the observer turned on and off and the observer calculated the ejaculation period with a chronometer. The elapsed time was the ejaculation latency time (ELT) in seconds. • There was no interaction between subjects and observer during the test. The ELT

  4. Phosphodiesterase Type 5 Inhibitors and Risk of Malignant Melanoma: Matched Cohort Study Using Primary Care Data from the UK Clinical Practice Research Datalink

    PubMed Central

    Langan, Sinéad M.; Douglas, Ian J.; Smeeth, Liam; Bhaskaran, Krishnan

    2016-01-01

    Background Laboratory evidence suggests that reduced phosphodiesterase type 5 (PDE5) expression increases the invasiveness of melanoma cells; hence, pharmacological inhibition of PDE5 could affect melanoma risk. Two major epidemiological studies have investigated this and come to differing conclusions. We therefore aimed to investigate whether PDE5 inhibitor use is associated with an increased risk of malignant melanoma, and whether any increase in risk is likely to represent a causal relationship. Methods and Findings We conducted a matched cohort study using primary care data from the UK Clinical Practice Research Datalink. All men initiating a PDE5 inhibitor and with no prior cancer diagnosis were identified and matched on age, diabetes status, and general practice to up to four unexposed controls. Ever use of a PDE5 inhibitor and time-updated cumulative number of PDE5 inhibitor prescriptions were investigated as exposures, and the primary outcome was malignant melanoma. Basal cell carcinoma, solar keratosis, and colorectal cancer were investigated as negative control outcomes to exclude bias. Hazard ratios (HRs) were estimated from Cox models stratified by matched set and adjusted for potential confounders. 145,104 men with ≥1 PDE5 inhibitor prescription, and 560,933 unexposed matched controls were included. In total, 1,315 incident malignant melanoma diagnoses were observed during 3.44 million person-years of follow-up (mean 4.9 y per person). After adjusting for potential confounders, there was weak evidence of a small positive association between PDE5 inhibitor use and melanoma risk (HR = 1.14, 95% CI 1.01–1.29, p = 0.04). A similar increase in risk was seen for the two negative control outcomes related to sun exposure (HR = 1.15, 95% CI 1.11–1.19, p < 0.001, for basal cell carcinoma; HR = 1.21, 95% CI 1.17–1.25, p < 0.001, for solar keratosis), but there was no increased risk for colorectal cancer (HR = 0.91, 95% CI 0.85–0.98, p = 0.01). There was

  5. Effects of repeated treatment with phosphodiesterase-4 inhibitors on cAMP signaling, hippocampal cell proliferation, and behavior in the forced-swim test.

    PubMed

    Xiao, Lan; O'Callaghan, James P; O'Donnell, James M

    2011-08-01

    The effects of repeated treatment with the phosphodiesterase-4 (PDE4) inhibitors rolipram, piclamilast, and 4-(2-(3-(cyclopentyloxy)-4-methoxyphenyl)-2-phenylethyl)pyridine (CDP840), which differ in their interactions with high- and low-affinity binding conformers of the enzyme, were contrasted to those of acute treatment on cAMP signaling, hippocampal cell proliferation, and immobility in the forced-swim test in rats. Repeated treatment with rolipram (1 and 3 mg/kg), piclamilast (0.3 and 1 mg/kg), or CDP840 (10 and 30 mg/kg) for 16 days increased cAMP and phosphorylation of cAMP response element binding protein (pCREB) in hippocampus and prefrontal cortex. In addition, repeated treatment with the PDE4 inhibitors increased proliferation and survival of newborn cells in the hippocampus and produced antidepressant-like effects on behavior, as evidenced by decreased immobility in the forced-swim test. Acute treatment with rolipram (3 mg/kg), piclamilast (1 mg/kg), or CDP840 (30 mg/kg) induced transient increases in cAMP and pCREB in hippocampus and prefrontal cortex, but the dose and time dependence of these effects did not parallel the behavioral effects. Compared with rolipram and piclamilast, repeated treatment with CDP840 exerted lesser effects on neural and behavioral measures, probably because of its weak interaction with the high-affinity binding conformer of PDE4. This suggests the relative importance of the high-affinity binding conformer in the mediation of the long-term effects of PDE4 inhibition on cAMP/pCREB signaling, hippocampal cell proliferation, and antidepressant-like effects on behavior.

  6. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA.

    PubMed

    Gould, Matthew K; Bachmaier, Sabine; Ali, Juma A M; Alsford, Sam; Tagoe, Daniel N A; Munday, Jane C; Schnaufer, Achim C; Horn, David; Boshart, Michael; de Koning, Harry P

    2013-10-01

    One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodiesterase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance to CpdA upon knockdown. Validation by independent RNAi strategies confirmed resistance to CpdA and suggested a role for the identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cyclic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4 implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent components of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological development.

  7. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation

    PubMed Central

    Stokol, Tracy; Serpa, Priscila B. S.; Zahid, Muhammad N.; Brooks, Marjory B.

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo. We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1–0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation

  8. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation.

    PubMed

    Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B

    2016-01-01

    Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo. We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation

  9. The isozyme selective phosphodiesterase-4 inhibitor, ABI-4, attenuates the effects of lipopolysaccharide in human cells and rodent models of peripheral and CNS inflammation.

    PubMed

    Hedde, Joseph R; Hanks, Ashley N; Schmidt, Christopher J; Hughes, Zoë A

    2017-08-01

    Inhibitors of phosphodiesterase-4 (PDE4) have been approved for the treatment of inflammatory disorders, but are associated with dose-limiting nausea and vomiting. These side effects are hypothesized to be mediated by inhibition of the PDE4D isozyme. Here we demonstrate the anti-inflammatory effects of the novel brain penetrant PDE4D-sparing PDE4 inhibitor, ABI-4. ABI-4 was a potent (EC50∼14nM) inhibitor of lipopolysaccharide (LPS) induced TNF-α release from mouse microglia and human PBMCs. ABI-4 (0.32mg/kg) blocked LPS-induced release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in blood and brain of mice. In a rat model of endotoxin induced uveitis, ABI-4 (0.03-0.3mg/kg) demonstrated steroid-like efficacy in preventing leucocyte infiltration of the aqueous humor when administered 4h after LPS. LPS (0.32mg/kg×5days) caused a 30% upregulation of translocator protein (TSPO) binding which was prevented by co-administration of ABI-4 (0.32mg/kg). In a paradigm to assess motivation, LPS (0.32mg/kg) reduced the number of rewards received, whereas the effect was significantly blunted in mice dosed with ABI-4 (P<0.05) or in PDE4B-/- mice. PDE4B was also shown to modulate brain and plasma levels of TNF-α and IL-1β in aged mice. Aged mice dosed chronically with ABI-4 (0.32mg/kg) as well as aged PDE4B-/- mice, had significantly lower levels of TNF-α and IL-1β in brain and plasma relative to vehicle treated or PDE4+/+ mice. Together these data demonstrate that the PDE4D sparing, PDE4 inhibitor, ABI-4 retains potency and efficacy in exerting anti-inflammatory effects. This mechanism warrants further investigation in human disorders involving neuroinflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Design and Synthesis of Novel and Selective Phosphodiesterase 2 (PDE2a) Inhibitors for the Treatment of Memory Disorders.

    PubMed

    Gomez, Laurent; Massari, Mark Eben; Vickers, Troy; Freestone, Graeme; Vernier, William; Ly, Kiev; Xu, Rui; McCarrick, Margaret; Marrone, Tami; Metz, Markus; Yan, Yingzhou G; Yoder, Zachary W; Lemus, Robert; Broadbent, Nicola J; Barido, Richard; Warren, Noelle; Schmelzer, Kara; Neul, David; Lee, Dong; Andersen, Carsten B; Sebring, Kristen; Aertgeerts, Kathleen; Zhou, Xianbo; Tabatabaei, Ali; Peters, Marco; Breitenbucher, J Guy

    2017-03-09

    A series of potent and selective [1,2,4]triazolo[1,5-a]pyrimidine PDE2a inhibitors is reported. The design and improvement of the binding properties of this series was achieved using X-ray crystal structures in conjunction with careful analysis of electronic and structural requirements for the PDE2a enzyme. One of the lead compounds, compound 27 (DNS-8254), was identified as a potent and highly selective PDE2a enzyme inhibitor with favorable rat pharmacokinetic properties. Interestingly, the increased potency of compound 27 was facilitated by the formation of a halogen bond with the oxygen of Tyr827 present in the PDE2a active site. In vivo, compound 27 demonstrated significant memory enhancing effects in a rat model of novel object recognition. Taken together, these data suggest that compound 27 may be a useful tool to explore the pharmacology of selective PDE2a inhibition.

  11. Reversal of neurobehavioral social deficits in dystrophic mice using inhibitors of phosphodiesterases PDE5A and PDE9A.

    PubMed

    Alexander, M S; Gasperini, M J; Tsai, P T; Gibbs, D E; Spinazzola, J M; Marshall, J L; Feyder, M J; Pletcher, M T; Chekler, E L P; Morris, C A; Sahin, M; Harms, J F; Schmidt, C J; Kleiman, R J; Kunkel, L M

    2016-09-27

    Duchenne muscular dystrophy is caused by mutations in the DYSTROPHIN gene. Although primarily associated with muscle wasting, a significant portion of patients (approximately 25%) are also diagnosed with autism spectrum disorder. We describe social behavioral deficits in dystrophin-deficient mice and present evidence of cerebellar deficits in cGMP production. We demonstrate therapeutic potential for selective inhibitors of the cGMP-specific PDE5A and PDE9A enzymes to restore social behaviors in dystrophin-deficient mice.

  12. Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats.

    PubMed

    Jabaris, Sobhana George Sugin Lal; Sumathy, Haridass; Kumar, Ramadass Satiesh; Narayanan, Shridhar; Thanikachalam, Sadagopan; Babu, Chidambaram Saravana

    2015-01-05

    Hypertension (HT) is a prevailing risk factor for cognitive impairment, the most common cause of vascular dementia; yet, no possible mechanism underlying the cognitive impairment induced by hypertension has been identified so far. Inhibition of PDE-4 has been shown to increase phosphorylation of cAMP-response element binding protein in the hippocampus and enhance the memory performance. Here, we examined the effects of PDE-4 inhibitors, rolipram and roflumilast, on the impairment of learning and memory observed in hypertensive rats. We used 2k-1c hypertensive model to induce learning and memory defects. In addition, mRNA expression of PDE-4 sub-types A-D was also assessed in the hippocampus tissue. Systolic blood pressure (SBP) was measured by tail-cuff method was significantly increased in 2k-1c rats when compared to sham operated rats; this effect was reversed by clonidine, whereas, PDE-4 inhibitors did not. PDE-4 inhibitors significantly reversed time induced memory deficit in novel object recognition task (NORT). Further, the retention latency on the second day in the elevated plus maze model was significantly shortened after repeated administration of rolipram and roflumilast. Plasma and brain concentrations of rolipram, roflumilast and roflumilast N-oxide were also measured after the NORT and showed linear increase in plasma and brain concentrations. The PDE4B and PDE4D gene expression was significantly enhanced in hypertensive rats compared with sham operated however PDE4A and PDE4C remained unaltered. Repeated treatment with PDE-4 inhibitors caused down regulation of PDE4B and PDE4D in hypertensive rats. These results suggest that inhibition of PDE-4 ameliorates HT-induced impairment of learning and memory functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Cardiac Cyclic Nucleotide Phosphodiesterases: Function, Regulation, and Therapeutic Prospects

    PubMed Central

    Knight, W. E.; Yan, C.

    2014-01-01

    The second messengers cAMP and cGMP exist in multiple discrete compartments and regulate a variety of biological processes in the heart. The cyclic nucleotide phosphodiesterases, by catalyzing the hydrolysis of cAMP and cGMP, play crucial roles in controlling the amplitude, duration, and compartmentalization of cyclic nucleotide signaling. Over 60 phosphodiesterase isoforms, grouped into 11 families, have been discovered to date. In the heart, both cAMP- and cGMP-hydrolyzing phosphodiesterases play important roles in physiology and pathology. At least 7 of the 11 phosphodiesterase family members appear to be expressed in the myocardium, and evidence supports phosphodiesterase involvement in regulation of many processes important for normal cardiac function including pacemaking and contractility, as well as many pathological processes including remodeling and myocyte apoptosis. Pharmacological inhibitors for a number of phosphodiesterase families have also been used clinically or preclinically to treat several types of cardiovascular disease. In addition, phosphodiesterase inhibitors are also being considered for treatment of many forms of disease outside the cardiovascular system, raising the possibility of cardiovascular side effects of such agents. This review will discuss the roles of phosphodiesterases in the heart, in terms of expression patterns, regulation, and involvement in physiological and pathological functions. Additionally, the cardiac effects of various phosphodiesterase inhibitors, both potentially beneficial and detrimental, will be discussed. PMID:22951903

  14. Reversal of neurobehavioral social deficits in dystrophic mice using inhibitors of phosphodiesterases PDE5A and PDE9A

    PubMed Central

    Alexander, M S; Gasperini, M J; Tsai, P T; Gibbs, D E; Spinazzola, J M; Marshall, J L; Feyder, M J; Pletcher, M T; Chekler, E L P; Morris, C A; Sahin, M; Harms, J F; Schmidt, C J; Kleiman, R J; Kunkel, L M

    2016-01-01

    Duchenne muscular dystrophy is caused by mutations in the DYSTROPHIN gene. Although primarily associated with muscle wasting, a significant portion of patients (approximately 25%) are also diagnosed with autism spectrum disorder. We describe social behavioral deficits in dystrophin-deficient mice and present evidence of cerebellar deficits in cGMP production. We demonstrate therapeutic potential for selective inhibitors of the cGMP-specific PDE5A and PDE9A enzymes to restore social behaviors in dystrophin-deficient mice. PMID:27676442

  15. The penile erection efficacy of a new phosphodiesterase type 5 inhibitor, mirodenafil (SK3530), in rabbits with acute spinal cord injury.

    PubMed

    Jung, Ji-Youn; Kim, Sang-Ki; Kim, Byeong-Soo; Lee, Seung-Ho; Park, Young-Seok; Kim, So-Jung; Choi, Changsun; Yoon, Seong-Il; Kim, Jong-Suk; Cho, Sung-Dae; Im, Gwang-Jin; Lee, Soo-Min; Jung, Ji-Won; Lee, Yong-Soon

    2008-11-01

    Mirodenafil (SK3530) is a new potent and selective inhibitor of cGMP-specific phosphodiesterase type 5 (PDE5). Recent clinical trials have demonstrated that mirodenafil is an effective treatment for erectile dysfunction. Its mechanism of action is enhancement of nitric oxide (NO) induced cGMP formation resulting in significant relaxation of the corpus cavernosum (CC). The aim of this study was to investigate the oral efficacy of mirodenafil in an acute spinal cord-injured rabbit model. Mirodenafil or sildenafil citrate was given orally to male rabbits with a surgical transection of the spinal cord at the L2-L4 lumbar vertebra or ischemic-reperfusion spinal cord injury (SCI). Erections were evaluated in a time-course manner by measuring the length of the uncovered penile mucosa. In the transection SCI model, penile erections were induced at 0.3, 1 and 3 mg/kg of mirodenafil but sildenafil only showed an erectile response at 3 mg/kg. The effects of 1 and 3 mg/kg of mirodenafil were significantly increased by intravenous injection of sodium nitroprusside (SNP), a nitric oxide donor. In the ischemic-reperfusion injury model, 3 mg/kg of either mirodenafil or sildenafil produced a penile erection response. After injection of SNP, the lengths of immediate penile erections were significantly increased in the 1 and 3 mg/kg mirodenafil and 3 mg/kg sildenafil groups. The onset of erectile activity was faster with mirodenafil than with sildenafil citrate. These results demonstrate that mirodenafil may be useful for treating erectile dysfunction in patients with a spinal cord injury.

  16. Let’s rethinking about the safety of phosphodiesterase type 5 inhibitor in the patients with erectile dysfunction after radical prostatectomy

    PubMed Central

    Kim, Su Jin; Kim, Ju Ho; Chang, Hyun-Kyung; Kim, Khae Hawn

    2016-01-01

    As the radical prostatectomy (RP) for the patient diagnosed as localized prostate cancer has been increasing, erectile dysfunction (ED) associated with RP is increased and ED after RP is a significant risk factor to reduce the quality of life for the patient after RP. Therefore, the treatment concept called penile rehabilitation was introduced and phosphodiesterase type 5 inhibitor (PDE5I) is used widely for the prostate cancer patient after RP. Generally PDE5I is considered as safe and effective drug for the prostate cancer patient after RP. Recently, a report against the general opinion that PDE5I use is safe in the patient with prostate cancer was reported and the analysis of 5-yr biochemical recurrence-free survival after RP between the PDE5I users and non-PDE5I users after bilateral nerve sparing RP showed decreased 5-yr biochemical recurrence-free survival in the PDE5I users. In addition, a longitudinal cohort study reported that sildenafil, a kind of PDE5I, use might be associated with the development of melanoma and this result suggested the possibility of adverse effect of PDE5I on some kinds of cancers as well as prostate cancer. Moreover, the studies to evaluate the influence of nitric oxide (NO) and guanosine monophosphate (cGMP) signaling pathway associated with PDE5 showed both cancer reduction and cancer development. Therefore, the role of NO and cGMP signaling pathway in cancer was reviewed based on the previous studies and suggested the necessity of further clinical studies concerning about the safety of PDE5I in prostate cancer. PMID:27419107

  17. Phospholipid turnover and ultrastructural correlates during spontaneous germinal vesicle breakdown of the bovine oocyte: Effects of a cyclic AMP phosphodiesterase inhibitor

    SciTech Connect

    Homa, S.T.; Webster, S.D.; Russell, R.K. )

    1991-08-01

    The turnover of (32P)orthophosphate in bovine oocyte phospholipids was studied during the early stages of spontaneous meiotic maturation, and during inhibition of this process by the cAMP phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX). Radioactive lipids were separated by TLC and the meiotic stage was determined cytogenetically. Ultrastructure of the nuclear membrane was examined using transmission EM. During the commitment period to meiotic resumption, which precedes germinal vesicle breakdown (GVBD), small localized convolutions appeared in the intact nuclear membrane. This was accompanied by a decrease in (32P)phosphatidic acid (PA) and an increase in (32P)-phosphatidylcholine (PC). This was followed by extensive convolutions, and subsequent dissociation, of the nuclear membrane, concomitant with a tremendous surge in (32P)PC and (32P)phosphatidylethanolamine (PE). The cAMP-mediated maintenance of meiotic arrest involved retention of entire nuclear envelope integrity and total inhibition of the surge in (32P)PC and (32P)PE which accompanied GVBD. The increase in (32P)phosphatidylinositol (PI) associated with all stages of early meiotic resumption was unaffected by IBMX. Microinjection of heparin inhibited GVBD, and injection of inositol 1,4,5-trisphosphate (IP3) overrode IBMX-maintained meiotic arrest in almost 40% of the oocytes. The results suggest that there may be several functions for phospholipid turnover in the regulation of spontaneous meiotic resumption in the bovine oocyte. The first precedes the commitment period, and involves IP3 generation to serve as the primary signal for meiotic resumption. The second occurs concomitant with the commitment period, is unaffected by the level of intracellular cAMP, and is associated with the general turnover of phospholipid.

  18. The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity.

    PubMed

    Soares, Ligia Mendes; Meyer, Erika; Milani, Humberto; Steinbusch, Harry W M; Prickaerts, Jos; de Oliveira, Rúbia M Weffort

    2017-02-01

    Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60-7550, a selective phosphodiesterase type 2 inhibitor (PDE2-I), presents memory-enhancing and anxiolytic-like properties. The behavioral effects of BAY 60-7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2-I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60-7550 were evaluated on neuronal nuclei (NeuN), caspase-9, cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus-dependent cognitive function and induced despair-like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase-9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60-7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60-7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.

  19. Involvement of cyclic AMP systems in morphine physical dependence in mice: prevention of development of morphine dependence by rolipram, a phosphodiesterase 4 inhibitor

    PubMed Central

    Mamiya, Takayoshi; Noda, Yukihiro; Ren, Xiuhai; Hamdy, Moustafa; Furukawa, Shoei; Kameyama, Tsutomu; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2001-01-01

    In this study, we examined whether morphine dependence was inhibited by rolipram, a cyclic AMP selective phosphodiesterase inhibitor in mice, since a role for the cyclic AMP systems in the development of morphine dependence has been reported. Mice, which received morphine (10 mg kg−1 s.c.) twice a day for 5 days showed withdrawal syndromes such as jumping, rearing and forepaw tremor following naloxone challenge (5 mg kg−1 i.p.) on the 6th day. Such mice exhibited a significant elevation of cyclic AMP levels in the thalamus compared to control mice. However, co-administration of rolipram (1 mg kg−1 i.p.) with morphine for 5 days significantly attenuated the severity of the withdrawal syndrome and the increase in the cyclic AMP levels after the administration of naloxone. In naïve mice, acute morphine treatment (10 mg kg−1 s.c.) decreased cyclic AMP levels in the thalamus and cerebral cortex 10 min later. The decrease of cyclic AMP levels induced by acute morphine treatment was blocked by co-administration of rolipram (1 mg kg−1 i.p.). However, acute rolipram did not affect the naloxone-precipitated morphine withdrawal syndrome. These results suggest that the elevation of the cyclic AMP levels is involved in the development of morphine withdrawal syndrome and that blockade of the morphine-induced reduction of cyclic AMP levels by chronic rolipram inhibits the development of dependence and the behavioural and biochemical changes induced by naloxone. Furthermore, rolipram may be a useful drug for attenuating the development of morphine dependence. PMID:11226142

  20. Acute and chronic effects of T-1032, a novel selective phosphodiesterase type 5 inhibitor, on monocrotaline-induced pulmonary hypertension in rats.

    PubMed

    Inoue, Hirotaka; Yano, Koji; Noto, Tsunehisa; Takagi, Michino; Ikeo, Tomihiro; Kikkawa, Kohei

    2002-11-01

    We examined the hemodynamic property of T-1032 (methyl 2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridylmethoxy)-4-(3,4,5-trimethoxy-phenyl)-3-isoquinoline carboxylate sulfate), a novel selective phosphodiesterase type 5 (PDE5) inhibitor, and evaluated the chronic effect of T-1032 on cardiac remodeling and its related death in monocrotaline (MCT)-induced pulmonary hypertensive rats. T-1032 (1, 10, 100 micro g/kg, i.v.) significantly reduced mean arterial pressure (MAP) and right ventricular systolic pressure (RVSP) without a change in heart rate. The change in RVSP was more potent than that in MAP with 1 micro g/kg T-1032 treatment (RVSP: -8.2+/-1.2%, mean arterial pressure: -5.7+/-1.2%), and reductions in RVSP and MAP reached a peak at doses of 1 and 10 micro g/kg, respectively. In contrast, nitroglycerin (0.1, 1, 10 micro g/kg, i.v.) and beraprost (0.1, 1 micro g/kg, i.v.) did not cause a selective reduction in RVSP at any dose. When T-1032 (300 ppm in diet) was chronically administered, it delayed the death, and significantly suppressed right ventricular remodeling (T-1032-treated: 0.318+/-0.021 g, control: 0.401+/-0.013 g, p<0.05). Our present results suggest that T-1032 selectively reduces RVSP, and resulting in the suppression of right ventricular remodeling with a delay of the death in MCT-induced pulmonary hypertensive rats.

  1. The Efficacy of Medical Treatment of Peyronie's Disease: Potassium Para-Aminobenzoate Monotherapy vs. Combination Therapy with Tamoxifen, L-Carnitine, and Phosphodiesterase Type 5 Inhibitor

    PubMed Central

    Park, Tae Yong; Jeong, Hyeong Guk; Park, Jong Jin; Chae, Ji Yun; Kim, Jong Wook; Oh, Mi Mi; Park, Hong Seok; Kim, Je Jong

    2016-01-01

    Purpose This study was designed to evaluate the efficacy of medical treatment of Peyronie's disease. Materials and Methods A total of 109 patients with Peyronie's disease who had been treated from January 2011 to December 2014 were retrospectively reviewed in this study. Forty-four patients (Group 1) were treated with 12 mg of potassium para-aminobenzoate daily. Sixty-five patients (Group 2) were treated with combination therapy: tamoxifen (20 mg) and acetyl-L-carnitine (300 mg) twice daily in addition to a phosphodiesterase type 5 inhibitor. Ability to perform sexual intercourse, pain during erection, size of plaque, and penile curvature angle were assessed. Results In Group 1, 30 of 44 patients (68.2%) discontinued treatment within 12 weeks, while 5 patients (7.7%) in Group 2 discontinued treatment. Pain during erection and plaque size were improved in both groups but showed no statistical difference due to the high dropout rate in Group 1. In both groups, penile curvature was improved, but demonstrated no statistical difference between the treatment groups. However, combination therapy demonstrated a better response rate in patients whose penile curvature angle was less than 30° (44.4% vs. 79.1%, p=0.048). The rate of successful sexual intercourse was significantly higher in Group 2 (42.8% vs. 78.3%, p=0.034). The number of patients who underwent surgical correction despite medical treatment was significantly higher in Group 1 (35.7% vs. 13.3%, p=0.048). Conclusions Early medical combination therapy in Peyronie's disease may present better results in patients whose curvature angle is less than 30°. PMID:27169128

  2. Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the activity of two atypical antidepressant drugs, mianserin and tianeptine, in the forced swim test in mice.

    PubMed

    Socała, Katarzyna; Nieoczym, Dorota; Wyska, Elżbieta; Poleszak, Ewa; Wlaź, Piotr

    2012-08-07

    Sildenafil, a selective phosphodiesterase type 5 inhibitor, has recently been reported to abolish anti-immobility action of antidepressant drugs, i.e., bupropion, venlafaxine and S-citalopram, in the forced swim test in mice. The present study was designed to investigate the influence of sildenafil on the potential of two atypical antidepressants, namely mianserin and tianeptine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of the behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmocokinetic interaction, total brain concentrations of the studied antidepressants were determined by HPLC method. Sildenafil at a dose of 2.5 mg/kg did not affect the activity of mianserin (20 mg/kg) in the forced swim test. Interestingly, at higher doses (5 and 10 mg/kg), sildenafil significantly enhanced the anti-immobility action of mianserin. Likewise, sildenafil (5, 10 and 20 mg/kg) robustly augmented the antidepressant activity of tianeptine (30 mg/kg). Mianserin alone, as well as in a combination with sildenafil at the highest dose, caused a potent reduction in locomotor activity. However, the changes in motor activity did not interfere with the data obtained in the forced swim test. Sildenafil significantly increased the total brain tianeptine concentration. No alteration in mianserin level in the brain after sildenafil co-administration was observed. The present study suggests that sildenafil enhances the activity of mianserin and tianeptine in the forced swim test in mice. The changes in the antidepressant activity of mianserin evoked by sildenafil co-administration were related to pharmacodynamic interaction while the interaction between tianeptine and sildenafil was, at least in part, pharmacokinetic in nature.

  3. cAMP/PKA/CREB/GLT1 signaling involved in the antidepressant-like effects of phosphodiesterase 4D inhibitor (GEBR-7b) in rats

    PubMed Central

    Liu, Xu; Guo, Haibiao; Sayed, Mohammad Daud SOM; Lu, Yang; Yang, Ting; Zhou, Dongsheng; Chen, Zhongming; Wang, Haitao; Wang, Chuang; Xu, Jiangping

    2016-01-01

    Objectives GEBR-7b, a potential phosphodiesterase 4D inhibitor, has been shown to have memory-enhancing effects in rodents. However, it is still unknown whether GEBR-7b also has the antidepressant-like effects in rats. Herein, we examined the potential of GEBR-7b to attenuate depression-like behaviors in the rat model of depression induced by chronic unpredictable stress (CUS). Next, we also investigated the alterations of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) catalytic subunit (PKAca), cAMP response element-binding (CREB), and glutamate transporter 1 (GLT1) levels produced by GEBR-7b in the rats model of depression. Methods Effects of GEBR-7b on CUS (35 days)-induced depression-like behaviors were examined by measuring immobility time in the forced swimming test (FST). Hippocampal cAMP levels were examined by enzyme-linked immunosorbent assay, whereas PKAca, phosphorylation of CREB (pCREB), CREB, and GLT1 in the hippocampus of rats were subjected to Western blot analysis. Results CUS exposure caused a depression-like behavior evidenced by the increased immobility time in FST. Depression-like behavior induced by CUS was accompanied by a significant increased GLT, decreased cAMP, PKAca, pCREB activities in hippocampus. However, repeated GEBR-7b administration significantly reversed CUS-induced depression-like behavior and changes of cAMP/PKA/CREB/GLT1 signaling. No alteration was observed in locomotor activity in open field test. Conclusion These findings indicate that GEBR-7b reversed the depression-like behaviors induced by CUS in rats, which is at least in part mediated by modulating cAMP, PKAca, pCREB, and GLT1 levels in the hippocampus of rats, supporting its neuroprotective potential against behavioral and biochemical dysfunctions induced by CUS. PMID:26855578

  4. Effects of an alpha1A/D-adrenoceptor antagonist, naftopidil, and a phosphodiesterase type 5 inhibitor, tadalafil, on urinary bladder remodeling in rats with spinal cord injury.

    PubMed

    Kadekawa, Katsumi; Majima, Tsuyoshi; Kawamorita, Naoki; Okada, Hiroki; Yoshizawa, Tsuyoshi; Mori, Kenichi; Tyagi, Pradeep; Sugaya, Kimio; Yoshimura, Naoki

    2017-08-01

    In order to clarify whether an alpha1A/D-adrenoceptor (α1 A/D-AR) antagonist, naftopidil, or a phosphodiesterase type 5 (PDE5) inhibitor, tadalafil, prevents bladder wall remodeling after spinal cord injury (SCI), we examined the bladder and urethral activity as well as ischemic and fibrotic changes in the bladder using SCI rats with or without naftopidil or tadalafil treatment. Adult female Sprague-Dawley rats were divided into four groups: (1) normal (spinal cord intact); (2) vehicle SCI; (3) naftopidil SCI; and (4) tadalafil SCI groups. In SCI groups, rats underwent Th9-10 spinal cord transection followed by oral application of vehicle, naftopidil (20 mg/kg/day) or tadalafil (2 mg/kg/day) for 1, 2, 4, 8, and 12 weeks. Bladder and urethral pressures, mRNA levels of fibrosis-related molecules and ischemia markers and the composition of bladder collagen and elastin were evaluated. Naftopidil treatment reduced the upregulation of mRNA levels of ischemia and fibrosis markers at the early phase of SCI, and ameliorated the decrease of bladder compliance and voiding efficiency, and the increase of urethral pressure and collagen concentration in the bladder wall at the late phase of SCI. Tadalafil treatment reduced the upregulation of mRNA levels of fibrosis markers, the decrease of bladder compliance and the increase of collagen concentration at the late phase of SCI. These results suggest that naftopidil and tadalafil treatments improved the bladder remodeling shown by increased bladder collagen contents after SCI in a different time course. Thus, these treatments could be effective for reducing the SCI-related tissue remodeling in the bladder. Neurourol. Urodynam. 9999:XX-XX, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Influence of the phosphodiesterase type 5 inhibitor, sildenafil, on antidepressant-like activity of magnesium in the forced swim test in mice.

    PubMed

    Socała, Katarzyna; Nieoczym, Dorota; Poleszak, Ewa; Wlaź, Piotr

    2012-01-01

    Magnesium, which acts as an antagonist of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, exerts antidepressant-like activity in animal models of depression. The present study was undertaken to elucidate the influence of sildenafil, a phosphodiesterase type 5 inhibitor, on the anti-immobility action of magnesium in the forced swim test in mice. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of the behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. Serum and brain magnesium levels were assayed spectrophotometrically. Magnesium at a dose of 30 mg/kg, i.p. significantly decreased the immobility time while sildenafil (5, 10 and 20 mg/kg, i.p.) in a dose-dependent manner reduced the antidepressant-like activity of magnesium. The co-administration of magnesium with sildenafil at the highest dose entirely abolished the antidepressant-like effect of magnesium and caused a statistically significant increase in immobility duration as compared to the control group. Combination of magnesium with sildenafil resulted in a potent reduction (80%) of locomotor activity and pharmacokinetic studies showed a significant increase of magnesium concentration in serum (as compared to magnesium treatment alone) without changes within brain tissue in mice treated with magnesium and sildenafil. When given alone, sildenafil caused a significant increase in magnesium levels in both serum and brain. Our results indicate that a simultaneous treatment with magnesium and sildenafil results in hypermagnesemia in laboratory animals. However, the mechanism underlying this effect remains elusive.

  6. Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the antidepressant activity of amitriptyline but not desipramine, in the forced swim test in mice.

    PubMed

    Socała, Katarzyna; Nieoczym, Dorota; Wyska, Elżbieta; Poleszak, Ewa; Wlaź, Piotr

    2012-06-01

    The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25-20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity.

  7. Development of a plate-based optical biosensor fragment screening methodology to identify phosphodiesterase 10A inhibitors.

    PubMed

    Geschwindner, Stefan; Dekker, Niek; Horsefield, Rob; Tigerström, Anna; Johansson, Patrik; Scott, Clay W; Albert, Jeffrey S

    2013-04-25

    We describe the development of a novel fragment screening methodology employing a plate-based optical biosensor system that can operate in a 384-well format. The method is based on the "inhibition in solution assay" (ISA) approach using an immobilized target definition compound (TDC) that has been specifically designed for this purpose by making use of available structural information. We demonstrate that this method is robust and is sufficiently sensitive to detect fragment hits as weak as KD 500 μM when confirmed in a conventional surface plasmon resonance approach. The application of the plate-based screen, the identification of fragment inhibitors of PDE10A, and their structural characterization are all discussed in a forthcoming paper.

  8. Design of Novel β-Carboline Derivatives with Pendant 5-Bromothienyl and Their Evaluation as Phosphodiesterase-5 Inhibitors

    PubMed Central

    El-Gamil, Dalia S.; Ahmed, Nermin S.; Gary, Bernard D.; Piazza, Gary A.; Engel, Matthias; Hartmann, Rolf W.; Abadi, Ashraf H.

    2016-01-01

    New derivatives with the tetrahydro-β-carboline-imidazolidinedione and tetrahydro-β-carboline-piperazinedione scaffolds and a pendant bromothienyl moiety at C-5/C-6 were synthesized and tested for their ability to inhibit PDE5 in vitro. The following SAR can be concluded: The tetracyclic scaffold is essential for PDE5 inhibition; the ethyl group is the most suitable among the adopted N-substituents on the terminal ring (hydantoin/piperazinedione); the appropriate stereochemistry of C-5/C-6 derived from the aldehyde rather than C-11a/C-12a derived from tryptophan appears crucial for inhibition of PDE5; surprisingly, derivatives with the hydantoin terminal ring are more active than their analogs with the piperazinedione ring; the selectivity versus PDE5 relative to PDE11 with cGMP as a substrate is mainly a function of the substitution and stereochemistry pattern of the external ring, in other words of the interaction with the H-loop residues of the isozymes. Thirteen derivatives showed PDE5 inhibitory activity with IC50 values in the range of 0.16–5.4 μm. Compound 8 was the most potent PDE5 inhibitor and showed selectivity towards PDE5 versus other PDEs, with a selectivity index of 49 towards PDE5 rather than PDE11 with cGMP as the substrate. PMID:23307609

  9. Short-term or long-term treatments with a phosphodiesterase-4 (PDE4) inhibitor result in opposing agonist-induced Ca2+ responses in endothelial cells

    PubMed Central

    Campos-Toimil, M; Keravis, T; Orallo, F; Takeda, K; Lugnier, C

    2008-01-01

    Background and purpose: We previously reported that agonist-induced rises in cytoplasmic Ca2+ concentration ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC) were inhibited after a short-term (2 min) pre-treatment with cAMP-elevating agents. The aim of this work was to study the effects of longer term (8 h) pre-treatment with dibutyryl-cAMP (db-cAMP) or rolipram, a specific inhibitor of phosphodiesterase-4 (PDE4), on [Ca2+]i, cAMP levels and PDE activity and expression in HUVEC. Experimental approach: [Ca2+]i changes were measured in isolated HUVEC by Fura-2 imaging. Intracellular cAMP levels and PDE4 activity were assessed by enzyme-immunoassay and radio-enzymatic assay, respectively. PDE expression was measured by northern and western blot analysis. Key results: Long-term pre-treatment of HUVEC with rolipram or db-cAMP significantly increased ATP-, histamine- and thrombin-induced [Ca2+]i rises. Short-term pre-treatment with rolipram was associated with an increase in cAMP, whereas long-term pre-treatment was associated with a decrease in cAMP. Long-term pre-treatment with rolipram or db-cAMP induced a significant increase in PDE4 activity and the expression of 74 kDa-PDE4A and 73 kDa-PDE4B was specifically enhanced. All these effects were suppressed by cycloheximide. Conclusions and implications: Our data suggest that sustained inhibition of PDE4 by rolipram induced an increase in PDE4 activity, possibly as a compensatory mechanism to accelerate cAMP degradation and that PDE4A and PDE4B were implicated in the regulation of [Ca2+]i. Thus, isozyme-specific PDE4 inhibitors might be useful as therapeutic agents in diseases where [Ca2+]i handling is altered, such as atherosclerosis, hypertension and tolerance to β-adrenoceptor agonists. PMID:18311187

  10. Effect of bucladesine, Pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase and protein kinase A inhibitor on acute pain.

    PubMed

    Salehi, Forouz; Hosseini-Zare, Mahshid Sadat; Aghajani, Haleh; Seyedi, Yalda; Hosseini-Zare, Maryam Sadat; Sharifzadeh, Mohammad

    2017-03-07

    The aim of the present study was to determine the effects of Cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here we studied the effect of H-89 (protein kinase A inhibitor), Bucladesine (Db-cAMP) (membrane permeable analog of cAMP) and pentoxifylline (PTX) (non-specific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1 and 0.5 mg/100g), PTX (5, 10 and 20 mg/100g), and Db-cAMP (50, 100 and 300 nM/mouse) were administered intraperitoneally (I.p.) 15 minutes before a tail-flick test. In combination groups, we injected the first and the second compound 30 and 15 minutes before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Bucladesine, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100g) attenuated the anti-nociceptive effect of Db-cAMP in doses of 50 and 100 nM/mouse. Surprisingly, Db-cAMP decreased the anti-nociceptive effect of the lowest dose of H-89 (0.05mg/100g). All applied doses of PTX reduced the effect of 0.05mg/100g H-89 on pain sensation; however, the highest dose of H-89 compromised the anti-nociceptive effect of 20 mg/100g dose of PTX. Co-administration of Db-cAMP and PTX increased the anti-nociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases. This article is protected by copyright. All rights reserved.

  11. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration.

    PubMed

    Moretto, Nadia; Caruso, Paola; Bosco, Raffaella; Marchini, Gessica; Pastore, Fiorella; Armani, Elisabetta; Amari, Gabriele; Rizzi, Andrea; Ghidini, Eleonora; De Fanti, Renato; Capaldi, Carmelida; Carzaniga, Laura; Hirsch, Emilio; Buccellati, Carola; Sala, Angelo; Carnini, Chiara; Patacchini, Riccardo; Delcanale, Maurizio; Civelli, Maurizio; Villetti, Gino; Facchinetti, Fabrizio

    2015-03-01

    This study examined the pharmacologic characterization of CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide], a novel phosphodiesterase (PDE)4 inhibitor designed for treating pulmonary inflammatory diseases via inhaled administration. CHF6001 was 7- and 923-fold more potent than roflumilast and cilomilast, respectively, in inhibiting PDE4 enzymatic activity (IC50 = 0.026 ± 0.006 nM). CHF6001 inhibited PDE4 isoforms A-D with equal potency, showed an elevated ratio of high-affinity rolipram binding site versus low-affinity rolipram binding site (i.e., >40) and displayed >20,000-fold selectivity versus PDE4 compared with a panel of PDEs. CHF6001 effectively inhibited (subnanomolar IC50 values) the release of tumor necrosis factor-α from human peripheral blood mononuclear cells, human acute monocytic leukemia cell line macrophages (THP-1), and rodent macrophages (RAW264.7 and NR8383). Moreover, CHF6001 potently inhibited the activation of oxidative burst in neutrophils and eosinophils, neutrophil chemotaxis, and the release of interferon-γ from CD4(+) T cells. In all these functional assays, CHF6001 was more potent than previously described PDE4 inhibitors, including roflumilast, UK-500,001 [2-(3,4-difluorophenoxy)-5-fluoro-N-((1S,4S)-4-(2-hydroxy-5-methylbenzamido)cyclohexyl)nicotinamide], and cilomilast, and it was comparable to GSK256066 [6-((3-(dimethylcarbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide]. When administered intratracheally to rats as a micronized dry powder, CHF6001 inhibited liposaccharide-induced pulmonary neutrophilia (ED50 = 0.205 μmol/kg) and leukocyte infiltration (ED50 = 0.188 μmol/kg) with an efficacy comparable to a high dose of budesonide (1 μmol/kg i.p.). In sum, CHF6001 has the potential to be an effective topical treatment of conditions associated with pulmonary inflammation, including

  12. Long-term cognitive dysfunction in the rat following docetaxel treatment is ameliorated by the phosphodiesterase-4 inhibitor, rolipram.

    PubMed

    Callaghan, Charlotte K; O'Mara, Shane M

    2015-09-01

    Clinical studies report evidence of long-term cognitive and other deficits following adjunctive chemotherapy treatment, which is often termed "chemobrain" or "chemo-fog". The neurological bases of these impairments are poorly understood. Here, we hypothesize that systemic chemotherapy treatment causes long-term neurobehavioral deficits, and that these deficits are reversed by manipulation of cAMP by the PDE4 inhibitor, rolipram. Male han Wistar rats were treated with docetaxel (an adjunctive chemotherapeutic agent (1mg/kg i.v.)) or control solution (ethanol/Tween 20/0.9% Saline - 5/5/90) once per week for 4 weeks. They were allowed to recover for 4 weeks, administration of rolipram (0.5mg/kg po) or vehicle (maple syrup) then began and continued daily for 4 weeks. At the end of the treatment regime animals were tested for spatial and recognition memory deficits with the object exploration task and for depressive- and anxiety-like behavior in the forced swim test (FST) and open field exploration. We report docetaxel treatment impaired spatial memory but not object recognition memory, compared to control rats. Docetaxel-treated rats also spent significantly more time immobile than controls in the FST. Chronic rolipram treatment attenuated all of these docetaxel-associated changes, recovering spatial memory and reducing immobility. In conclusion, docetaxel-treated rats exhibit alterations in spatial memory and depressive-like behavior, which are reversed following chronic rolipram administration. These results detect long-term cognitive and mood changes following docetaxel treatment and identify PDE4 inhibition as a target treatment of neuropsychological changes associated with "chemobrain".

  13. Improvement in duration of erection following phosphodiesterase type 5 inhibitor therapy with vardenafil in men with erectile dysfunction: the ENDURANCE study

    PubMed Central

    Rosenberg, M T; Adams, P L; McBride, T A; Roberts, J N; McCallum, S W

    2009-01-01

    Objective: The ENDURANCE study evaluated the efficacy of vardenafil, a phosphodiesterase type 5 (PDE5) inhibitor, in men with erectile dysfunction (ED), by measuring the duration of erection leading to successful intercourse using a stopwatch as the assessment instrument. Methods: This was a randomised, multicentre, double-blind, placebo-controlled, crossover study consisting of a 4-week treatment-free run-in phase after which patients were randomised to either fixed-dose vardenafil 10 mg or placebo (to be administered 60 min prior to intercourse) and entered the first of the two 4-week double-blind treatment periods, separated by a 1-week washout. The primary efficacy end-point was the stopwatch-assessed duration of erection, which was defined as the time from erection perceived hard enough for penetration until withdrawal from the partner’s vagina leading to successful intercourse as measured by Sexual Encounter Profile Question 3 (SEP-3). Secondary efficacy end-points included SEP-2 and SEP-3 success rates, the erectile function domain of the International Index of Erectile Function, global assessment questionnaire, change from baseline in duration of erection and duration of erection not leading to successful intercourse. Safety was assessed by adverse events (AEs), laboratory samples, vital signs and ECGs. Results: Of the 191 men included in the safety population, 40% had moderate ED and 33% had severe ED at baseline. The duration of erection (least squares mean ± SE) leading to successful intercourse was longer with vardenafil than with placebo (12.81 ± 1.00 min vs. 5.45 ± 1.00 min; p < 0.001). The differences recorded for all secondary end-points were statistically significant in favour of vardenafil compared with placebo (p < 0.001), with the exception of duration of erection not leading to successful intercourse. Vardenafil was well tolerated in this study; the majority of AEs being mild-to-moderate in intensity. Conclusion: Vardenafil 10-mg therapy

  14. Stimulation of the hypothalamo-pituitary-adrenal axis in the rat by three selective type-4 phosphodiesterase inhibitors: in vitro and in vivo studies

    PubMed Central

    Kumari, Meena; Cover, Patricia O; Poyser, Robert H; Buckingham, Julia C

    1997-01-01

    Previous studies in our laboratory have shown that the synthetic xanthine analogue denbufylline, a selective type 4 phosphodiesterase (PDE-4) inhibitor, is a potent activator of the hypothalamo-pituitary-adrenal (HPA) axis when given orally or intraperitoneally (i.p.) to adult male rats. This paper describes the results of experiments in which well established in vivo and in vitro methods were used to compare the effects of denbufylline on HPA function with those of two other selective PDE-4 inhibitors, rolipram and BRL 61063 (1,3-dicyclopropylmethyl-8-amino-xanthine). For comparison, parallel measurements of the immunoreactive- (ir-) luteinising hormone (LH) were made where appropriate. When injected intraperitoneally, rolipram (40 and 200 μg kg−1, P<0.005), denbufylline (0.07–0.6 μg kg−1, P<0.05) and BRL 61063 (30 μg kg−1, P<0.005) each produced marked rises in the serum ir-corticosterone concentrations. However, lower doses of rolipram (1.6 and 8 μg kg−1) and BRL 61063 (0.25–6 μg kg−1) were without effect (P>0.05). By contrast, intracerebroventricular (i.c.v.) injection of rolipram (8 ng–1 μg kg−1) or denbufylline (50 ng–1 μg kg−1) failed to influence the serum ir-corticosterone concentration. BRL 61063 (8–120 ng kg−1, i.c.v.) was also ineffective in this regard although at a higher dose (1 μg kg−1, i.c.v.) it produced a small but significant (P<0.05) increase in ir-corticosterone release. Denbufylline also increased the serum ir-LH concentration when given peripherally (0.2–0.6 μg kg−1, i.p., P<0.05) or centrally (100 ng kg−1, i.c.v., P<0.05) but rolipram (1.6–200 μg kg−1, i.p. or 8 ng–1 μg kg−1, i.c.v.) and BRL 61063 (0.25–30 μg kg−1, i.p. or 1 ng–1 μg kg−1, i.c.v.) did not (P>0.05). In vitro rolipram (10 μM, P<0.01), denbufylline (1 mM, P<0.001) and BRL 61063 (1 and 10 μM, P<0.05) stimulated the release of corticotrophin

  15. Highly Potent and Selective Ectonucleotide Pyrophosphatase/Phosphodiesterase I Inhibitors Based on an Adenosine 5′-(α or γ)- Thio-(α,β- or β,γ)-methylenetriphosphate Scaffold

    PubMed Central

    Nadel, Yael; Lecka, Joanna; Gilad, Yocheved; Ben-David, Gal; Förster, Daniel; Reiser, Georg; Kenigsberg, Sarah; Camden, Jean; Weisman, Gary A.; Senderowitz, Hanoch; Sévigny, Jean; Fischer, Bilha

    2015-01-01

    Aberrant nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is associated with chondrocalcinosis, osteoarthritis, and type 2 diabetes. The potential of NPP1 inhibitors as therapeutic agents, and the scarceness of their structure–activity relationship, encouraged us to develop new NPP1 inhibitors. Specifically, we synthesized ATP-α-thio-β,γ- CH2 (1), ATP-α-thio-β,γ-CCl2 (2), ATP-α-CH2-γ-thio (3), and 8-SH-ATP (4) and established their resistance to hydrolysis by NPP1,3 and NTPDase1,2,3,8 (<5% hydrolysis) (NTPDase = ectonucleoside triphosphate diphosphohydrolase). Analogues 1–3 at 100 μM inhibited thymidine 5′-monophosphate p-nitrophenyl ester hydrolysis by NPP1 and NPP3 by >90% and 23–43%, respectively, and only slightly affected (0–40%) hydrolysis of ATP by NTPDase1,2,3,8. Analogue 3 is the most potent NPP1 inhibitor currently known, Ki = 20 nM and IC50 = 0.39 μM. Analogue 2a is a selective NPP1 inhibitor with Ki = 685 nM and IC50 = 0.57 μM. Analogues 1–3 were found mostly to be nonagonists of P2Y1/P2Y2/P2Y11 receptors. Docking analogues 1–3 into the NPP1 model suggested that activity correlates with the number of H-bonds with binding site residues. In conclusion, we propose analogues 2a and 3 as highly promising NPP1 inhibitors. PMID:24846781

  16. Identification of an Iridium(III)-Based Inhibitor of Tumor Necrosis Factor-α.

    PubMed

    Kang, Tian-Shu; Mao, Zhifeng; Ng, Chan-Tat; Wang, Modi; Wang, Wanhe; Wang, Chunming; Lee, Simon Ming-Yuen; Wang, Yitao; Leung, Chung-Hang; Ma, Dik-Lung

    2016-04-28

    The novel iridium(III) complex 1 was verified as a potent inhibitor of the TNF-α-TNFR protein-protein interaction in vitro and in cellulo. The iridium(III) center plays a critical role in organizing the structure of the bioactive metal complex, as the isolated ligands were found to be completely inactive. Both iridium enantiomers inhibited TNF-α-induced NF-κB activity and TNF-α-TNFR binding. 1 represents a promising scaffold for the further development of more potent organometallic TNF-α inhibitors.

  17. The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis.

    PubMed

    Kraft, Peter; Schwarz, Tobias; Göb, Eva; Heydenreich, Nadine; Brede, Marc; Meuth, Sven G; Kleinschnitz, Christoph

    2013-09-01

    Blood-brain-barrier (BBB) disruption, inflammation and thrombosis are important steps in the pathophysiology of acute ischemic stroke but are still inaccessible to therapeutic interventions. Rolipram specifically inhibits the enzyme phosphodiesterase (PDE) 4 thereby preventing the inactivation of the intracellular second messenger cyclic adenosine monophosphate (cAMP). Rolipram has been shown to relief inflammation and BBB damage in a variety of neurological disorders. We investigated the therapeutic potential of rolipram in a model of brain ischemia/reperfusion injury in mice. Treatment with 10mg/kg rolipram, but not 2 mg/kg rolipram, 2 h after 60 min of transient middle cerebral artery occlusion (tMCAO) reduced infarct volumes by 50% and significantly improved clinical scores on day 1 compared with vehicle-treated controls. Rolipram maintained BBB function upon stroke as indicated by preserved expression of the tight junction proteins occludin and claudin-5. Accordingly, the formation of vascular brain edema was strongly attenuated in mice receiving rolipram. Moreover, rolipram reduced the invasion of neutrophils as well as the expression of the proinflammatory cytokines IL-1β and TNFα but increased the levels of TGFβ-1. Finally, rolipram exerted antithrombotic effects upon stroke and fewer neurons in the rolipram group underwent apoptosis. Rolipram is a multifaceted antiinflammatory and antithrombotic compound that protects from ischemic neurodegeneration in clinically meaningful settings.

  18. Toward the identification of the cardiac cGMP inhibited-phosphodiesterase catalytic site

    NASA Astrophysics Data System (ADS)

    Fossa, Paola; Boggia, Raffaella; Mosti, Luisa

    1998-07-01

    Cyclic nucleotide phosphodiesterases (PDEs) comprise a complex group of enzymes; five major PDE families or classes with distinctive properties have been identified. Among these a great deal of interest has recently been focused on the so called cGMP-inhibited low Km cAMP phosphodiesterase (cGI PDE) or PDE III. A number of positive inotropic agents, including the well-known milrinone, display a specific inhibition of PDE III as primary mechanism of action. Recent studies have been carried out to develop a pharmacophore model of the PDE III active site. We therefore performed molecular modelling and 3D-SAR studies so as to better define structural requirements for potent and selective enzymatic inhibition. The DISCO (DIStance COmparison) strategy has been applied on a set of compounds taken from literature and a milrinone analogue previously synthesized by us, all of which are characterized by a marked inotropic effect but with varying degrees of enzyme selectivity. A common pharmacophoric model was derived, validated and considered as starting point to perform a 3D-SAR study using the GRID force field and PCA (Principal Component Analysis) with the aim of rationally designing more selective inhibitors. This paper presents the results of this theoretical approach.

  19. An open-label, multicenter, randomized, crossover study comparing sildenafil citrate and tadalafil for treating erectile dysfunction in Chinese men naïve to phosphodiesterase 5 inhibitor therapy.

    PubMed

    Bai, Wen-Jun; Li, Hong-Jun; Dai, Yu-Tian; He, Xue-You; Huang, Yi-Ran; Liu, Ji-Hong; Sorsaburu, Sebastian; Ji, Chen; Jin, Jian-Jun; Wang, Xiao-Feng

    2015-01-01

    The study was to compare treatment preference, efficacy, and tolerability of sildenafil citrate (sildenafil) and tadalafil for treating erectile dysfunction (ED) in Chinese men naοve to phosphodiesterase 5 (PDE5) inhibitor therapies. This multicenter, randomized, open-label, crossover study evaluated whether Chinese men with ED preferred 20-mg tadalafil or 100-mg sildenafil. After a 4 weeks baseline assessment, 383 eligible patients were randomized to sequential 20-mg tadalafil per 100-mg sildenafil or vice versa for 8 weeks respectively and then chose which treatment they preferred to take during the 8 weeks extension. Primary efficacy was measured by Question 1 of the PDE5 Inhibitor Treatment Preference Questionnaire (PITPQ). Secondary efficacy was analyzed by PITPQ Question 2, the International Index of Erectile Function (IIEF) erectile function (EF) domain, sexual encounter profile (SEP) Questions 2 and 3, and the Drug Attributes Questionnaire. Three hundred and fifty men (91%) completed the randomized treatment phase. Two hundred and forty-two per 350 (69.1%) patients preferred 20-mg tadalafil, and 108/350 (30.9%) preferred 100-mg sildenafil (P < 0.001) as their treatment in the 8 weeks extension. Ninety-two per 242 (38%) patients strongly preferred tadalafil and 37/108 (34.3%) strongly the preferred sildenafil. The SEP2 (penetration), SEP3 (successful intercourse), and IIEF-EF domain scores were improved in both tadalafil and sildenafil treatment groups. For patients who preferred tadalafil, getting an erection long after taking the medication was the most reported reason for tadalafil preference. The only treatment-emergent adverse event reported by > 2% of men was headache. After tadalafil and sildenafil treatments, more Chinese men with ED naοve to PDE5 inhibitor preferred tadalafil. Both sildenafil and tadalafil treatments were effective and safe.

  20. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.

    PubMed

    Crain, Stanley M; Shen, Ke-Fei

    2008-09-22

    Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related

  1. Identification of type II and III DDR2 inhibitors.

    PubMed

    Richters, André; Nguyen, Hoang D; Phan, Trang; Simard, Jeffrey R; Grütter, Christian; Engel, Julian; Rauh, Daniel

    2014-05-22

    Discoidin domain-containing receptors (DDRs) exhibit a unique mechanism of action among the receptor tyrosine kinases (RTKs) because their catalytic activity is induced by extracellular collagen binding. Moreover, they are essential components in the assimilation of extracellular signals. Recently, DDRs were reported to be significantly linked to tumor progression in breast cancer by facilitating the processes of invasion, migration, and metastasis. Here, we report the successful development of a fluorescence-based, direct binding assay for the detection of type II and III DFG-out binders for DDR2. Using sequence alignments and homology modeling, we designed a DDR2 construct appropriate for fluorescent labeling. Successful assay development was validated by sensitive detection of a reference DFG-out binder. Subsequent downscaling led to convenient application to high-throughput screening formats. Screening of a representative compound library identified high-affinity DDR2 ligands validated by orthogonal activity-based assays, and a subset of identified compounds was further investigated with respect to DDR1 inhibition.

  2. Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo[1,5-a]pyrido[3,2-e]pyrazines, inhibitors of phosphodiesterase 10A.

    PubMed

    Goodarzi, Mohammad; Saeys, Wouter; Deeb, Omar; Pieters, Sigrid; Vander Heyden, Yvan

    2013-12-01

    Quantitative structure-activity relationship (QSAR) modeling was performed for imidazo[1,5-a]pyrido[3,2-e]pyrazines, which constitute a class of phosphodiesterase 10A inhibitors. Particle swarm optimization (PSO) and genetic algorithm (GA) were used as feature selection techniques to find the most reliable molecular descriptors from a large pool. Modeling of the relationship between the selected descriptors and the pIC50 activity data was achieved by linear [multiple linear regression (MLR)] and non-linear [locally weighted regression (LWR) based on both Euclidean (E) and Mahalanobis (M) distances] methods. In addition, a stepwise MLR model was built using only a limited number of quantum chemical descriptors, selected because of their correlation with the pIC50 . The model was not found interesting. It was concluded that the LWR model, based on the Euclidean distance, applied on the descriptors selected by PSO has the best prediction ability. However, some other models behaved similarly. The root-mean-squared errors of prediction (RMSEP) for the test sets obtained by PSO/MLR, GA/MLR, PSO/LWRE, PSO/LWRM, GA/LWRE, and GA/LWRM models were 0.333, 0.394, 0.313, 0.333, 0.421, and 0.424, respectively. The PSO-selected descriptors resulted in the best prediction models, both linear and non-linear. © 2013 John Wiley & Sons A/S.

  3. Metabolic effects of newly synthesized phosphodiesterase-3 inhibitor 6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one on rat adipocytes.

    PubMed

    Alinejad, Bagher; Shafiee-Nick, Reza; Sadeghian, Hamid; Ghorbani, Ahmad

    2015-02-21

    Clinical use of selective PDE3 inhibitors as cardiotonic agents is limited because of their chronotropic and lipolytic side effects. In our previous work, we synthesized a new PDE3 inhibitor named MC2 (6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one) which produced a high positive inotropic action with a negative chronotropic effect. This work was done to evaluate the effects of MC2 on adipocytes and compare its effects with those of amrinone and cilostamide. Preadipocytes were isolated from rat adipose tissue and differentiated to adipocyte in the presence of cilostamide, amrinone or MC2. Lipolysis and adipogenesis was evaluated by measuring glycerol level and Oil Red O staining, respectively. Adipocyte proliferation and apoptosis were determined with MTT assay and Annexin V/PI staining, respectively. Differentiation to adipocyte was induced by amrinone but not by cilostamide or MC2. Basal and isoproterenol-stimulated lipolysis significantly increased by cilostamide (p<0.05). Similarly, amrinone enhanced the stimulated lipolysis (p<0.01). On the other hand, MC2 significantly decreased both adipogenesis (p<0.05) and stimulated lipolysis (p<0.001). Also, incubation of differentiated adipocytes with MC2 caused the loss of cell viability, which was associated with the elevation in apoptotic rate (p<0.05). Our data indicate that selective PDE3 inhibitors produce differential effects on adipogenesis and lipolysis. MC2 has proapoptotic and antilipolytic effects on adipocytes and does not stimulate adipogenesis. Therefore, in comparison with the clinically available selective PDE3 inhibitors, MC2 has lowest metabolic side effects and might be a good candidate for treatment of congestive heart failure.

  4. CoMFA and CoMSIA 3D-quantitative structure-activity relationship model on benzodiazepine derivatives, inhibitors of phosphodiesterase IV

    NASA Astrophysics Data System (ADS)

    Ducrot, Pierre; Andrianjara, Charles R.; Wrigglesworth, Roger

    2001-09-01

    Recently, we reported structurally novel PDE4 inhibitors based on 1,4-benzodiazepine derivatives. The main interest in developing bezodiazepine-based PDE4 inhibitors is in their lack of adverse effects of emesis with respect to rolipram-like compounds. A large effort has thus been made toward the structural optimization of this series. In the absence of structural information on the inhibitor binding mode into the PDE4 active site, 2D-QSAR (H-QSAR) and two 3D-QSAR (CoMFA and CoMSIA) methods were applied to improve our understanding of the molecular mechanism controlling the PDE4 affinity of the benzodiazepine derivatives. As expected, the CoMSIA 3D contour maps have provided more information on the benzodiazepine interaction mode with the PDE4 active site whereas CoMFA has built the best tool for activity prediction. The 2D pharmacophoric model derived from CoMSIA fields is consistent with the crystal structure of the PDE4 active site reported recently. The combination of the 2D and 3D-QSAR models was used not only to predict new compounds from the structural optimization process, but also to screen a large library of bezodiazepine derivatives.

  5. Detection and validated quantification of the phosphodiesterase type 5 inhibitors sildenafil, vardenafil, tadalafil, and 2 of their metabolites in human blood plasma by LC-MS/MS--application to forensic and therapeutic drug monitoring cases.

    PubMed

    Rust, Kristina Y; Wilkens, Heinrike; Kaiser, Ralf; Bregel, Dietmar; Wilske, Jochen; Kraemer, Thomas

    2012-12-01

    Phosphodiesterase type 5 inhibitors such as sildenafil, vardenafil, and tadalafil are a class of drugs used primarily in the treatment of erectile dysfunction. Sildenafil and tadalafil are also approved for the treatment of pulmonary hypertension. The aim of this study was to develop and validate a procedure for the detection and quantification of these 3 drugs and some of their metabolites in human blood plasma. After liquid-liquid extraction of 0.5 mL of blood plasma using diethyl ether-ethyl acetate (1:1), the analytes sildenafil, norsildenafil, vardenafil, norvardenafil, and tadalafil were separated using a Shimadzu Prominence High-Performance Liquid Chromatography System (C18 separation column, gradient elution, and a total flow of 0.5 mL/min). They were detected using an AB Sciex 3200 Q-Trap LC-MS-MS System (electrospray ionization and multiple reaction monitoring mode). The method was fully validated according to international guidelines. The assay was found to be selective for the tested compounds. It was linear from 5 to 1000 ng/mL for sildenafil, from 2 to 700 ng/mL for norsildenafil, from 0.5 to 350 ng/mL for vardenafil, from 0.5 to 200 ng/mL for norvardenafil, and from 5 to 1000 ng/mL for tadalafil. The recoveries were generally more than 50%. Matrix effects were not observed. Accuracy, repeatability, and intermediate precision were within the required limits (<15% or <20% near the limit of quantification). No instability was observed after repeated freezing and thawing or in processed samples. A liquid chromatography-tandem mass spectrometry assay for the determination of sildenafil, norsildenafil, vardenafil, norvardenafil, and tadalafil in human blood plasma was developed and validated. It has proven to be selective, linear, accurate, and precise for all studied drugs. The method has also proven to be applicable for forensic cases and for therapeutic drug monitoring.

  6. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice.

    PubMed

    Kangawa, Yumi; Yoshida, Toshinori; Abe, Hajime; Seto, Yoshiki; Miyashita, Taishi; Nakamura, Michi; Kihara, Tohru; Hayashi, Shim-Mo; Shibutani, Makoto

    2017-04-04

    Developing effective treatments and preventing inflammatory bowel disease (IBD) are urgent challenges in improving patients' health. It has been suggested that platelet activation and reactive oxidative species generation are involved in the pathogenesis of IBD. We examined the inhibitory effects of a selective phosphodiesterase-3 inhibitor, cilostazol (CZ), and two antioxidants, enzymatically modified isoquercitrin (EMIQ) and α-lipoic acid (ALA), against dextran sulphate sodium (DSS)-induced colitis. BALB/c mice were treated with 0.3% CZ, 1.5% EMIQ, and 0.2% ALA in their feed. Colitis was induced by administering 5% DSS in drinking water for 8days. The inhibitory effects of these substances were evaluated by measuring relevant clinical symptoms (faecal blood, diarrhoea, and body weight loss), colon length, plasma cytokine and chemokine levels, whole genome gene expression, and histopathology. Diarrhoea was suppressed by each treatment, while CZ prevented shortening of the colon length. All treatment groups exhibited decreased plasma levels of interleukin (IL)-6 and tumour necrosis factor (TNF)-α compared with the DSS group. Microarray analysis showed that cell adhesion, cytoskeleton regulation, cell proliferation, and apoptosis, which might be related to inflammatory cell infiltration and mucosal healing, were affected in all the groups. DSS-induced mucosal injuries such as mucosal loss, submucosal oedema, and inflammatory cell infiltration in the distal colon were prevented by CZ or antioxidant treatment. These results suggest that anti-inflammatory effects of these agents reduced DSS-induced mucosal injuries in mice and, therefore, may provide therapeutic benefits in IBD.

  7. The effect of vardenafil, a potent and highly selective phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction, on the cardiovascular response to exercise in patients with coronary artery disease.

    PubMed

    Thadani, Udho; Smith, William; Nash, Stephen; Bittar, Neville; Glasser, Stephen; Narayan, Puneet; Stein, Richard A; Larkin, Sharon; Mazzu, Arthur; Tota, Robert; Pomerantz, Kenneth; Sundaresan, Pavur

    2002-12-04

    The effect of vardenafil, a potent and highly selective phosphodiesterase-5 (PDE5) inhibitor, on symptom-limited exercise time, time to first awareness of angina, and time to ischemic threshold (ST-segment depression > or =1 mm from baseline) during exercise tolerance testing (ETT) was examined in patients with stable coronary artery disease (CAD). Erectile dysfunction (ED) is common among men with CAD. PDE5 inhibition is increasingly the preferred treatment option for ED. However, the effect of PDE5 inhibition on exercise-induced ischemia in CAD patients has received limited prospective evaluation. In this double-blind, crossover, single-dose multicenter study, 41 men with reproducible stable exertional angina due to ischemic CAD received vardenafil 10 mg or placebo, followed by ETT (5 to 10 metabolic equivalents [METS], Bruce protocol) 1 h postdose. Sublingual nitrate use was prohibited for > or =24 h pre- and postexercise study days. End points included symptom-limited treadmill exercise time, time to first awareness of angina, time to ischemic threshold, and safety. Relative to placebo, vardenafil 10 mg did not alter exercise treadmill time (427 +/- 105 s vs. 433 +/- 109 s, p = 0.39), or time to first awareness of angina (292 +/- 110 s vs. 291 +/- 123 s, p = 0.59), but significantly prolonged time to ischemic threshold (334 +/- 108 s vs. 381 +/- 108, p = 0.0004). At peak exercise, vardenafil 10 mg did not alter blood pressure, heart rate, or rate-pressure product relative to placebo. The most common adverse events (facial flushing and headache) were of mild or moderate intensity, and short-lived. Vardenafil 10 mg did not impair the ability of patients with stable CAD to exercise at levels equivalent or greater than that attained during sexual intercourse (average of 2.5 to 3.3 METS).

  8. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A).

    PubMed

    Hu, Essa; Kunz, Roxanne K; Chen, Ning; Rumfelt, Shannon; Siegmund, Aaron; Andrews, Kristin; Chmait, Samer; Zhao, Sharon; Davis, Carl; Chen, Hang; Lester-Zeiner, Dianna; Ma, Ji; Biorn, Christopher; Shi, Jianxia; Porter, Amy; Treanor, James; Allen, Jennifer R

    2013-11-14

    Our development of PDE10A inhibitors began with an HTS screening hit (1) that exhibited both high p-glycoprotein (P-gp) efflux ratios in rat and human and poor metabolic stability. On the basis of cocrystal structure of 1 in human PDE10A enzyme, we designed a novel keto-benzimidazole 26 with comparable PDE10A potency devoid of efflux liabilities. On target in vivo coverage of PDE10A in rat brain was assessed using our previously reported LC-MS/MS receptor occupancy (RO) technology. Compound 26 achieved 55% RO of PDE10A at 30 mg/kg po and covered PDE10A receptors in rat brain in a dose-dependent manner. Cocrystal structure of 26 in PDE10A confirmed the binding mode of the novel scaffold. Further optimization resulted in the identification of keto-benzimidazole 34, which showed an increased in vivo efficacy of 57% RO in rats at 10 mg/kg po and an improved in vivo rat clearance and oral bioavailability.

  9. The effect of pre-maturation culture using phosphodiesterase type 3 inhibitor and insulin, transferrin and selenium on nuclear and cytoplasmic maturation of bovine oocytes.

    PubMed

    Guimarães, A L S; Pereira, S A; Kussano, N R; Dode, M A N

    2016-04-01

    This study aims to evaluate if a pre-maturation culture (PMC) using cilostamide as a meiotic inhibitor in combination with insulin, transferrin and selenium (ITS) for 8 or 24 h increases in vitro embryo production. To evaluate the effects of PMC on embryo development, cleavage rate, blastocyst rate, embryo size and total cell number were determined. When cilostamide (20 μM) was used in PMC for 8 or 24 h, 98% of oocytes were maintained in germinal vesicles. Although the majority of oocytes resumed meiosis after meiotic arrest, the cleavage and blastocyst rates were lower than the control (P 0.05) to the control. The deleterious effect of 20 μM cilostamide treatment for 24 h on a PMC was confirmed by lower cumulus cell viability, determined by trypan blue staining, in that group compared with the other groups. A lower concentration (10 μM) and shorter exposure time (8 h) minimized that effect but did not improve embryo production. More studies should be performed to determine the best concentration and the arresting period to increase oocyte competence and embryo development.

  10. Addressing phototoxicity observed in a novel series of biaryl derivatives: discovery of potent, selective and orally active phosphodiesterase 10A inhibitor ASP9436.

    PubMed

    Hamaguchi, Wataru; Masuda, Naoyuki; Miyamoto, Satoshi; Kikuchi, Shigetoshi; Narazaki, Fumie; Shiina, Yasuhiro; Seo, Ryushi; Amano, Yasushi; Mihara, Takuma; Moriguchi, Hiroyuki; Hattori, Kouji

    2015-07-01

    We synthesized several biaryl derivatives as PDE10A inhibitors to prevent phototoxicity of 2-[4-({[1-methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl]oxy}methyl)phenyl]quinoline (1) and found that the energy difference between the energy-minimized conformation and the coplanar conformation of the biaryl moiety helped facilitate prediction of the phototoxic potential of biaryl compounds. Replacement of the quinoline ring of 1 with N-methyl benzimidazole increased this energy difference and prevented phototoxicity in the 3T3 NRU test. Further optimization identified 1-methyl-5-(1-methyl-3-{[4-(1-methyl-1H-benzimidazol-4-yl)phenoxy]methyl}-1H-pyrazol-4-yl)pyridin-2(1H)-one (38b). Compound 38b exhibited good selectivity against other PDEs, and oral administration of 38b improved visual-recognition memory deficit in mice at doses of 0.001 and 0.003mg/kg in the novel object recognition test. ASP9436 (sesquiphosphate of 38b) may therefore be used for the treatment of schizophrenia with a low risk of phototoxicity.

  11. Modulation of spasmogen-stimulated Ins(1,4,5)P3 generation and functional responses by selective inhibitors of types 3 and 4 phosphodiesterase in airways smooth muscle

    PubMed Central

    Challiss, R A John; Adams, David; Mistry, Rajendra; Nicholson, C David

    1998-01-01

    The effects of isoenzyme-selective inhibitors of phosphodiesterases PDE3 and PDE4 on cyclic AMP concentration, two indices of phosphoinositide hydrolysis, and contractile responses to spasmogens have been investigated in bovine tracheal smooth muscle (BTSM).Neither the PDE3-selective inhibitor ORG 9935, nor the PDE4-selective inhibitor rolipram increased cyclic AMP levels in BTSM. However, rolipram addition in the presence of PDE3 inhibition (ORG 9935; 1 μM) concentration-dependently (−log EC50 (M), 6.55±0.15; n=3) increased cyclic AMP levels to about 70% of the maximal response to the β-adrenoceptor agonist isoprenaline.Rolipram per se inhibited histamine-stimulated [3H]-inositol (poly)phosphate ([3H]-InsPX) accumulation by >80% (−log EC50 (M), 6.92±0.11; n=3). Although ORG 9935 (1 μM) had little effect on histamine-stimulated [3H]-InsPX accumulation alone it greatly facilitated the inhibitory action of rolipram (−log EC50 (M), 8.82±0.39; n=3). The effects of PDE3 and/or PDE4 inhibition on [3H]-InsPX accumulation stimulated by muscarinic acetylcholine (mACh) receptor activation were less marked. However, combined PDE3/4 inhibition significantly decreased this response at a submaximal concentration of mACh receptor agonist (carbachol; 1 μM).The greater-than-additive effect of combined PDE3/4 inhibition was also observed at the level of contractile responses to histamine and carbachol. In experiments designed to investigate the effects of PDE3 and/or 4 inhibitors on the carbachol-mediated phasic contraction, additions of rolipram (10 μM) or ORG 9935 (1 μM) were without effect, whereas added together the inhibitors caused a significant (P<0.01) 40% reduction in the peak phasic contractile response.The effect on contraction correlated with a substantial inhibitory effect of PDE3/4 inhibition on the initial increase in inositol 1,4,5-trisphosphate (InsP3) accumulation stimulated by spasmogen. Thus, in the presence of ORG 9935 (1 μM) rolipram

  12. Erectile dysfunction and phosphodiesterase type 5 inhibitor use: associations with sexual activities, function and satisfaction in a population sample of older men.

    PubMed

    Lee, D M; Nazroo, J; Pendleton, N

    2015-07-01

    The objective of this study was to examine the association between sexual activities, problems and satisfaction, and ED and PDE5 inhibitor (PDE5i) use. A nationally representative sample of men (n=2612) aged 51-87 years from the English Longitudinal Study of Ageing completed an in-depth Sexual Relationships and Activities Questionnaire. Associations between ED and/or PDE5i use and sexual outcomes were explored using logistic regression models adjusted for age, health and lifestyle factors. PDE5i use in the preceding 3 months was reported by a total of 191 (7%) men, whereas 542 (21%) reported ED but no PDE5i use (untreated ED). Compared with men without ED, PDE5i users were more likely to be sexually active and report more frequent sexual intercourse. Men with untreated ED reported the lowest frequency of sexual activities. Compared with men without ED, both PDE5i users and those with untreated ED were more likely to report being concerned about their level of sexual desire, frequency of sexual activities, erectile function, waking erections and orgasmic experience. PDE5i users were also more concerned about and dissatisfied with their overall sex life than men without ED. This population-based study shows that while PDE5i use is associated with improved sexual functioning, this is not equally reflected in decreased levels of concern and dissatisfaction with their overall sexual health. Clinicians should be aware of this disparity between functional gains and continuing sexual concerns and dissatisfaction, and, where appropriate, offer psychosexual counselling as an adjunct to PDE5i medication.

  13. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  14. Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications

    PubMed Central

    Heckman, Pim R. A.; van Duinen, Marlies A.; Bollen, Eva P. P.; Nishi, Akinori; Wennogle, Lawrence P.; Blokland, Arjan

    2016-01-01

    Background: The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson’s disease, Huntington’s disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette’s syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. Methods: Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. Results: Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. Conclusion: Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits. PMID:27037577

  15. Identification and Characterization of a Novel Phosphodiesterase from the Metagenome of an Indian Coalbed

    PubMed Central

    Singh, Durgesh Narain; Gupta, Ankush; Singh, Vijay Shankar; Mishra, Rajeev; Kateriya, Suneel; Tripathi, Anil Kumar

    2015-01-01

    Phosphoesterases are involved in the degradation of organophosphorus compounds. Although phosphomonoesterases and phosphotriesterases have been studied in detail, studies on phosphodiesterases are rather limited. In our search to find novel phosphodiesterases using metagenomic approach, we cloned a gene encoding a putative phosphodiesterase (PdeM) from the metagenome of the formation water collected from an Indian coal bed. Bioinformatic analysis showed that PdeM sequence possessed the characteristic signature motifs of the class III phosphodiesterases and phylogenetic study of PdeM enabled us to identify three distinct subclasses (A, B, and C) within class III phosphodiesterases, PdeM clustering in new subclass IIIB. Bioinformatic, biochemical and biophysical characterization of PdeM further revealed some of the characteristic features of the phosphodiesterases belonging to newly described subclass IIIB. PdeM is a monomer of 29.3 kDa, which exhibits optimum activity at 25°C and pH 8.5, but low affinity for bis(pNPP) as well as pNPPP. The recombinant PdeM possessed phosphodiesterase, phosphonate-ester hydrolase and nuclease activity. It lacked phosphomonoesterase, phosphotriesterase, and RNAse activities. Overexpression of PdeM in E.coli neither affected catabolite respression nor did the recombinant protein hydrolyzed cAMP in vitro, indicating its inability to hydrolyze cAMP. Although Mn2+ was required for the activity of PdeM, but addition of metals (Mn2+ or Fe3+) did not induce oligomerization. Further increase in concentration of Mn2+ upto 3 mM, increased α-helical content as well as the phosphodiesterase activity. Structural comparison of PdeM with its homologs showed that it lacked critical residues required for dimerization, cAMP hydrolysis, and for the high affinity binding of bis(pNPP). PdeM, thus, is a novel representative of new subclass of class III phosphodiesterases. PMID:25658120

  16. Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines.

    PubMed

    Miyamoto, K; Kurita, M; Sakai, R; Sanae, F; Wakusawa, S; Takagi, K

    1994-09-15

    In this study the phosphodiesterase (PDE) isoenzymes in guinea-pig trachealis smooth muscle were separated by DEAE-Sepharose anion exchange chromatography, identified, and characterized. Furthermore the effect of theophylline and 1-n-butyl-3-n-propylxanthine (BPX) on the isolated PDE isoenzymes and on their tracheal relaxant effect were investigated and compared with the nonxanthine PDE inhibitors amrinone and Ro 20-1724. We identified five distinct isoenzymes in guinea-pig tracheal muscle; calcium/calmodulin-stimulated cyclic AMP PDE (PDE I), cyclic GMP-stimulated cyclic AMP PDE (PDE II), cyclic GMP-inhibited and amrinone-sensitive cyclic AMP PDE (PDE III), cyclic AMP-specific and Ro 20-1724-sensitive PDE (PDE IV), and cyclic GMP-specific PDE (PDE V). BPX strongly inhibited the PDE IV isoenzyme with high selectivity, while the inhibitory effect of theophylline was weak. The PDE IV inhibitors BPX and Ro 20-1724 synergistically increased the relaxant effect of the beta 2-adrenoceptor agonist salbutamol in carbachol-contracted trachea much more strongly than theophylline. In contrast, amrinone, a PDE III inhibitor, hardly influenced the relaxant effect of salbutamol, suggesting that the PDE IV isoenzyme is functionally associated with beta 2-adrenoceptors in guinea-pig trachea and that inhibition of this enzyme potentiates the ability of salbutamol to increase the intracellular cyclic AMP content. These results indicate that the PDE IV isoenzyme plays a significant role in alkylxanthine-mediated relaxation of guinea-pig trachea.

  17. Erectile function recovery in men treated with phosphodiesterase type 5 inhibitor administration after bilateral nerve-sparing radical prostatectomy: a systematic review of placebo-controlled randomized trials with trial sequential analysis.

    PubMed

    Limoncin, E; Gravina, G L; Corona, G; Maggi, M; Ciocca, G; Lenzi, A; Jannini, E A

    2017-09-01

    The impact of phosphodiesterase type 5 inhibitor (PDE5I) treatment modality (on-demand vs. daily), PDE5I half-life and time from surgery to PDE5I prescription on the achievement of drug-assisted erectile function (EF) recovery is uncertain. We systematically reviewed published randomized clinical trials (RCTs). We performed meta-analyses of data on 2317 men treated with PDE5Is after nerve-sparing radical prostatectomy (NSRP). A PubMed and SCOPUS search was performed for trials published from 1 January 1969 to 30 June 2016. PDE5Is are effective in achieving drug-assisted recovery of erectile function (EF). From a statistical standpoint, these studies were subjected to Trial Sequential Analysis to determine whether the pooled data were adequately powered to verify the study outcomes. On-demand treatment with PDE5Is was significantly better than daily treatment in recovering drug-assisted EF. This effect was maintained even when the drugs were stratified according with half-life. Although not based on head-to-head trials, Avanafil used on-demand was the most effective PDE5I in recovering drug-assisted EF. Whereas tadalafil was equally effective when used both on-demand and daily, vardenafil significantly improved drug-assisted EF recovery only when used on-demand. The start of PDE5I treatment six months or more after surgery compared to treatment started earlier did not negatively affect the rate of drug-assisted EF recovery or the possibility to have successful intercourse based on the Sexual Encounter Profile question-3 (SEP-3). Current trials do not support the hypothesis that PDE5I use recovers drug-unassisted EF, although chronic low-dose tadalafil administration may help to preserve erectile tissue integrity. Potential shortcomings in the trials design may partially explain these disappointing results and several questions concerning the recovery of drug-unassisted EF remain unanswered. Thus, there is a need for well-designed new RCTs requiring changes in the

  18. Reduction of obstruction related bladder overactivity by the guanylyl cyclase modulators BAY 41-2272 and BAY 60-2770 alone or in combination with a phosphodiesterase type 5 inhibitor.

    PubMed

    Füllhase, C; Hennenberg, M; Sandner, P; Strittmatter, F; Niedworok, C; Bauer, R M; Gratzke, C; Soler, R; Stief, C; Andersson, K E

    2015-11-01

    To assess the urodynamic effects of soluble guanylyl cyclase (sGC) stimulator, BAY 41-2272, and activator, BAY 60-2770, (which both are able to induce cGMP synthesis even in the absence of nitric oxide (NO)) alone or in combination with a phosphodiesterase type 5 (PDE5) inhibitor, vardenafil, in a model of partial urethral obstruction (PUO) induced bladder overactivity (BO). Fifty-six male Sprague-Dawley rats were used, 31 of them underwent PUO. Fourteen rats were used for Western blots to assess PDE5 and sGC expression. For drug evaluation cystometry without anesthesia was performed three days following bladder catheterization. Obstructed rats showed higher micturition frequency and bladder pressures than non-obstructed animals (Intermicturition Interval, IMI, 2.28 ± 0.55 vs. 3.60 ± 0.60 min (± standard deviation, SD); maximum micturition pressure, MMP, 70.1 ± 8.0 vs. 48.8 ± 7.2 cmH2O; both P < 0.05). In obstructed rats vardenafil, BAY 41-2272, and BAY 60-2770 increased IMI (2.77 ± 1.12, 2.62 ± 0.52, and 3.22 ± 1.04 min; all P < 0.05) and decreased MMP (54.4 ± 2.8, 61.5 ± 11.3, and 51.2 ± 6.3 cmH2O; all P < 0.05). When vardenafil was given following BAY 41-2272 or BAY 60-2770 no further urodynamic effects were observed. PDE5 as well as sGC protein expression was reduced in obstructed bladder tissue. Targeting sGC via stimulators or activators, which increase the levels of cGMP independent of endogenous NO, is as effective as vardenafil to reduce urodynamic signs of BO. Targeting the NO/cGMP pathway via compounds acting on sGC might become a new approach to treat BO. © 2014 Wiley Periodicals, Inc.

  19. GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells.

    PubMed

    Joshi, Taruna; Yan, Dong; Hamed, Omar; Tannheimer, Stacey L; Phillips, Gary B; Wright, Clifford D; Kim, Musong; Salmon, Michael; Newton, Robert; Giembycz, Mark A

    2017-02-01

    (R)-6-[(3-{[4-(5-{[2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}pent-1-yn-1-yl)phenyl] carbamoyl}phenyl)sulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide trifluoroacetic acid (GS-5759) is a bifunctional ligand composed of a quinolinone-containing pharmacophore [β2-adrenoceptor agonist orthostere (β2A)] found in several β2-adrenoceptor agonists, including indacaterol, linked covalently to a phosphodiesterase 4 (PDE4) inhibitor related to 6-[3-(dimethylcarbamoyl)benzenesulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GSK 256066) by a pent-1-yn-1-ylbenzene spacer. GS-5759 had a similar affinity for PDE4B1 and the native β2-adrenoceptor expressed on BEAS-2B human airway epithelial cells. However, compared with the monofunctional parent compound, β2A, the KA of GS-5759 for the β2-adrenoceptor was 35-fold lower. Schild analysis determined that the affinities of the β-adrenoceptor antagonists, (2R,3R)-1-[(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl) amino]-2-butanol (ICI 118551) and propranolol, were agonist-dependent, being significantly lower for GS-5759 than β2A. Collectively, these data can be explained by "forced proximity," bivalent binding where the pharmacophore in GS-5759 responsible for PDE4 inhibition also interacts with a nonallosteric domain within the β2-adrenoceptor that enhances the affinity of β2A for the orthosteric site. Microarray analyses revealed that, after 2-hour exposure, GS-5759 increased the expression of >3500 genes in BEAS-2B cells that were highly rank-order correlated with gene expression changes produced by indacaterol and GSK 256066 in combination (Ind/GSK). Moreover, the line of regression began close to the origin with a slope of 0.88, indicating that the magnitude of most gene expression changes produced by Ind/GSK was quantitatively replicated by GS-5759. Thus, GS-5759 is a novel compound exhibiting dual β2-adrenoceptor agonism and PDE4 inhibition

  20. Lack of DNA binding in the rat nasal mucosa and other tissues of the nasal toxicants roflumilast, a phosphodiesterase 4 inhibitor, and a metabolite, 4-amino-3,5-dichloropyridine, in contrast to the nasal carcinogen 2,6-dimethylaniline.

    PubMed

    Jeffrey, Alan M; Luo, Feng-Qi; Amin, Shantilal; Krzeminski, Jacek; Zech, Karl; Williams, Gary M

    2002-02-01

    The phosphodiesterase 4 inhibitor Roflumilast (B9302-107) (RF) and its metabolite 4-amino-3,5-dichloropyridine (ADCP) produced nasal toxicity in preclinical safety studies with rats. The purpose of this study was to assess the possible formation of DNA adducts, by RF and ADCP, in the nasal mucosa, liver and testes of male rats using the 32P-postlabeling assay. For comparison, rats were exposed to the DNA-reactive carcinogens 2,6-dimethylaniline (DMA), also known as 2,6-xylidine, a nasal carcinogen, and the aromatic amine carcinogens 4,4'-methylene-bis(2-chloroaniline) (MOCA), which yields monocyclic DNA adducts, and 2-acetylaminofluorene (2-AAF). In the case of RF, possible sources of DNA adducts include the parent molecule and its ADCP moiety by enzymatic N-hydroxylation and sulfation, reactions typical of carcinogenic aromatic amines. 4-Acetoxylamino-3,5-dichloropyridine (N-acetoxy-ADCP), a chemically activated derivative of ADCP, was prepared and used to modify DNA which was then used to establish the chromatographic conditions with which to reliably detect whether or not such adducts were formed metabolically from RF and ADCP. Similarly, a standard N-hydroxy-DMA was prepared, but the corresponding N-acetoxy derivative was unstable and decomposed during synthesis. Both N-hydroxy-DMA and N-acetoxy-ADCP were mutagenic in the Salmonella typhimurium Ames assay using strain TA100 without an exogenous bioactivation system, with the former being more potent. N-hydroxy-ADCP was essentially inactive in this assay. For the 32P-postlabeling assay, male Wistar rats were exposed to the test substances and carrier control compounds by intragastric instillation at the selected dose levels for 7 days. Subsequently, the nasal mucosa, liver, and testes of the rats exposed to the test or control compounds were extirpated, the DNA extracted and the samples postlabeled. The patterns of adducts formed with the test compounds were compared to those formed in N-acetoxy-ADCP- and N

  1. Peripheral participation of the phosphodiesterase 3 on formalin-evoked nociception.

    PubMed

    Torres-López, Jorge E; Granados-Soto, Vinicio

    2005-09-05

    The local peripheral (subcutaneous) injection of phosphodiesterase 3 inhibitor trequinsin dose-dependently enhanced formalin-evoked flinching during late second phase of this test. Treatment with the nitric oxide synthase inhibitor N-L-nitro-arginine methyl ester or guanylyl cyclase inhibitor 1-H-[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one significantly reversed trequinsin-induced pronociceptive effect. Results suggest that the peripheral phosphodiesterase 3 may play an important physiologic role on inflammatory pain by controlling cyclic AMP levels and therefore the nociceptor threshold.

  2. Immunological identification of the major platelet low-Km cAMP phosphodiesterase: probable target for anti-thrombotic agents.

    PubMed Central

    Macphee, C H; Harrison, S A; Beavo, J A

    1986-01-01

    Immunoblot and enzyme-activity analyses, using specific immunological probes, indicated that more than 80% of the total low-Km cAMP phosphodiesterase activity present in bovine and human platelets resided in a single phosphodiesterase isozyme. In the presence of protease inhibitors, the platelet enzyme has an apparent subunit size of 110 kDa and appears immunologically and structurally indistinguishable from a recently purified bovine heart isozyme. When protease inhibitors were absent during homogenization and centrifugation, this platelet phosphodiesterase was susceptible to sequential proteolysis forming 80-kDa and 60-kDa peptides. As a previous report on the purification of the platelet low-Km cAMP phosphodiesterase described a 61-kDa protein, our data would suggest that this was a proteolytic fragment. Moreover, in our study a 40-70% increase in catalytic activity was associated with proteolysis. Further similarities between the platelet and heart phosphodiesterases were demonstrated by pharmacological studies that showed identical inhibitor profiles for both enzymes. Several known phosphodiesterase inhibitor compounds that have been found useful in inhibiting platelet aggregation also inhibited the platelet low-Km cAMP phosphodiesterase with potencies very similar to their antithrombotic effects. Cilostamide, Ro 15-2041, milrinone, papaverine, isobutylmethylxanthine, and theophylline inhibited the 110-kDa platelet enzyme with IC50 values of 0.04, 0.13, 0.46, 1.4, 2.6, and 110 microM, respectively. Images PMID:3018742

  3. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with psoriatic arthritis and current skin involvement: a phase III, randomised, controlled trial (PALACE 3)

    PubMed Central

    Edwards, Christopher J; Blanco, Francisco J; Crowley, Jeffrey; Birbara, Charles A; Jaworski, Janusz; Aelion, Jacob; Stevens, Randall M; Vessey, Adele; Zhan, Xiaojiang; Bird, Paul

    2016-01-01

    Objective To evaluate apremilast treatment in patients with active psoriatic arthritis, including current skin involvement, despite prior therapy with conventional disease-modifying antirheumatic drugs and/or biologic agents. Methods Patients (N=505) were randomised (1:1:1) to placebo, apremilast 20 mg twice daily, or apremilast 30 mg twice daily. Rescue therapy with apremilast was designated at week 16 for placebo patients not achieving 20% improvement in swollen and tender joint counts. At week 24, the remaining placebo patients were then randomised to apremilast 20 mg twice daily or 30 mg twice daily. The efficacy and safety of apremilast were assessed over 52 weeks. Results At week 16, significantly more patients receiving apremilast 20 mg twice daily (28%) and 30 mg twice daily (41%) achieved 20% improvement in American College of Rheumatology response criteria versus placebo (18%; p=0.0295 and p<0.0001, respectively), and mean decrease in the Health Assessment Questionnaire-Disability Index score was significantly greater with apremilast 30 mg twice daily (−0.20) versus placebo (−0.07; p=0.0073). In patients with baseline psoriasis body surface area involvement ≥3%, significantly more apremilast 30 mg twice daily patients achieved 50% reduction from baseline Psoriasis Area and Severity Index score (41%) versus placebo (24%; p=0.0098) at week 16. At week 52, observed improvements in these measures demonstrated sustained response with continued apremilast treatment. Most adverse events were mild to moderate in severity; the most common were diarrhoea, nausea, headache and upper respiratory tract infection. Conclusions Apremilast demonstrated clinically meaningful improvements in psoriatic arthritis and psoriasis at week 16; sustained improvements were seen with continued treatment through 52 weeks. Apremilast was generally well tolerated and demonstrated an acceptable safety profile. Trial registration number NCT01212770. PMID:26792812

  4. Sarcoplasmic reticulum-associated cyclic adenosine 5'-monophosphate phosphodiesterase activity in normal and failing human hearts.

    PubMed Central

    Movsesian, M A; Smith, C J; Krall, J; Bristow, M R; Manganiello, V C

    1991-01-01

    Sarcoplasmic reticulum-associated cAMP phosphodiesterase activity was examined in microsomes prepared from the left ventricular myocardium of eight heart transplant recipients with end-stage idiopathic dilated cardiomyopathy and six unmatched organ donors with normal cardiac function. At cAMP concentrations less than or equal to 1.0 microM, sarcoplasmic reticulum-associated cAMP phosphodiesterase activity was functionally homogeneous. cAMP phosphodiesterase activity was inhibited competitively by cGMP (Ki = 0.031 +/- 0.008 microM) and the cilostamide derivative OPC 3911 (Ki = 0.018 +/- 0.004 microM), but was essentially insensitive to rolipram. Vmax and Km were 781.7 +/- 109.2 nmol/mg per min and 0.188 +/- 0.031 microM, respectively, in microsomes prepared from nonfailing hearts and 793.9 +/- 68.9 nmol/mg per min and 0.150 +/- 0.027 microM in microsomes prepared from failing hearts. Microsomes prepared from nonfailing and failing hearts did not differ with respect to either the ratio of cAMP phosphodiesterase activity to ATP-dependent Ca2+ accumulation activity or the sensitivity of cAMP phosphodiesterase activity to inhibition by OPC 3911. These data suggest that the diminished inotropic efficacy of phosphodiesterase inhibitors in failing human hearts does not result from changes in the level, kinetic properties, or pharmacologic sensitivity of sarcoplasmic reticulum-associated cAMP phosphodiesterase activity. PMID:1647414

  5. A xanthine derivative denbufylline inhibits negative inotropic response to verapamil in guinea pig ventricular papillary muscles, independent of its phosphodiesterase inhibitory activity.

    PubMed

    Sanae, F; Ohmae, S; Takagi, K; Miyamoto, K

    1995-11-01

    A phosphodiesterase (PDE) III inhibitor, amrinone, inhibited both the negative inotropic actions of verapamil and nicardipine in guinea pig ventricular papillary muscle; this effect was canceled by the protein kinase A inhibitor H-89. The PDE IV inhibitor 1,3-di-n-butyl-7-(2'-oxopropyl)xanthine (denbufylline), which elicited a negative inotropic action by itself, attenuated the action of verapamil up to 10 microM, without any interaction with nicardipine. The attenuation by denbufylline was not influenced by H-89. This suggests that in the ventricular papillary muscle, denbufylline acts on some verapamil-sensitive site(s) in the membrane and interferes with the calcium channel function without involvement of its PDE inhibitory activity.

  6. Efficacy and gastrointestinal tolerability of ML3403, a selective inhibitor of p38 MAP kinase and CBS-3595, a dual inhibitor of p38 MAP kinase and phosphodiesterase 4 in CFA-induced arthritis in rats.

    PubMed

    Koch, Diana A; Silva, Rodrigo B M; de Souza, Alessandra H; Leite, Carlos E; Nicoletti, Natália F; Campos, Maria M; Laufer, Stefan; Morrone, Fernanda B

    2014-03-01

    Mitogen-activated protein kinase (MAPK) p38 inhibitors have entered the clinical phase, although many of them have failed due to high toxicity and lack of efficacy. In the present study we compared the effects of the selective p38 inhibitor ML3403 and the dual p38-PDE4 inhibitor CBS-3595, on inflammatory and nociceptive parameters in a model of polyarthritis in rats. Male Wistar rats (180-200 g) were used for the complete Freund's adjuvant (CFA)-induced arthritis model and they were evaluated at 14-21 days. We also analysed the effects of these pharmacological tools on liver and gastrointestinal toxicity and on cytokine levels. Repeated CBS-3595 (3 mg/kg) or ML3403 (10 mg/kg) administration produced significant anti-inflammatory actions in the chronic arthritis model induced by CFA. CBS-3595 and ML3403 treatment also markedly reduced the production of the proinflammatory cytokine IL-6 in the paw tissue, whereas it widely increased the levels of the anti-inflammatory cytokine IL-10. Moreover, CBS-3595 produced partial anti-allodynic effects in the CFA model at 4 and 8 days after treatment. Notably, ML3403 and CBS-3595 did not show marked signs of hepatoxicity, as supported by unaltered histological observations in the liver sections. Finally, both compounds were safe in the gastrointestinal tract, according to evaluation of intestinal biopsies. CBS-3595 displayed a superior profile regarding its anti-inflammatory effects. Thus p38 MAPK/PDE4 blocking might well constitute a relevant strategy for the treatment of RA.

  7. Efficacy and safety of short- and long-term, regular and on-demand regimens of phosphodiesterase type 5 inhibitors in treating erectile dysfunction after nerve-sparing radical prostatectomy: a systematic review and meta-analysis

    PubMed Central

    Tian, Daxue; Wang, Xiao-yan; Zong, Huan-tao; Zhang, Yong

    2017-01-01

    Background We performed a meta-analysis to evaluate the efficacy and safety of short-term (≤6 months) and long-term (>6 months), regular (OaD) and on-demand (PRN) regimens of phosphodiesterase type 5 inhibitors (PDE5-Is) in treating erectile dysfunction (ED) after nerve-sparing radical prostatectomy (NSRP). Methods We conducted a literature search in August 2016. Sources included PubMed, EMBASE, and MEDLINE databases. The main outcome was International Index of Erectile Function-Erectile Function (IIEF-EF) domain score, and the secondary outcome was treatment-emergent adverse events (TEAEs). Results Eight articles involving 13 randomized controlled trials (RCTs) were used in this analysis: they suggested that PDE5-Is can improve the IIEF-EF distinctly in comparison with placebo in short and long term (mean difference [MD]: 2.26, 95% confidence interval [CI]: 1.45–3.08, P<0.00001, and MD: 4.5, 95% CI: 3.6–5.4, P<0.00001), and long-term use of PDE5-Is (>6 months) can improve the IIEF-EF distinctly in comparison with short-term use of PDE5-Is (≤6 months) (MD: 3.9, 95% CI: 3.01–4.8, P<0.00001). OaD of PDE5-Is significantly improved the IIEF-EF compared to placebo in short and long term (MD: 4.08, 95% CI: 3.2–4.97, P<0.00001, and MD: 4.74, 95% CI: 3.79–5.69, P<0.00001). No significant differences were found in IIEF-EF changes between PRN and placebo (≤6 months) (MD: 2.64, 95% CI: −0.87 to 6.14, P=0.14), and between PRN and OaD group (>6 months) (MD: −0.58, 95% CI: −9.86 to 8.74, P=0.91). There were more TEAEs in PDE5-Is group in comparison with placebo (odds ratio [OR]: 1.55, 95% CI: 1.26–1.91, P<0.0001), and TEAEs in OaD group were not significantly different from those seen in PRN group (OR: 1.05, 95% CI: 0.78–1.4, P=0.77). Conclusion Our meta-analysis suggests that PDE5-Is are efficient and safe for treatment of ED after NSRP, and we should choose the regular regimen for short term and regular or on-demand regimen for long term. Further high

  8. Structure-activity relationships for analogues of the phenazine-based dual topoisomerase I/II inhibitor XR11576.

    PubMed

    Wang, Shouming; Miller, Warren; Milton, John; Vicker, Nigel; Stewart, Alistair; Charlton, Peter; Mistry, Prakash; Hardick, David; Denny, William A

    2002-02-11

    As part of a programme to identify further analogues of the dual topo I/II inhibitor XR11576, we describe here the syntheses and SAR studies of various 'minimal' and 3,4-benzofused phenazine chromophores of the phenazine template of XR11576.

  9. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

    PubMed

    O'Brien, P J; Herschlag, D

    2001-05-15

    Escherichia coli alkaline phosphatase (AP) is a proficient phosphomonoesterase with two Zn(2+) ions in its active site. Sequence homology suggests a distant evolutionary relationship between AP and alkaline phosphodiesterase/nucleotide pyrophosphatase, with conservation of the catalytic metal ions. Furthermore, many other phosphodiesterases, although not evolutionarily related, have a similar active site configuration of divalent metal ions in their active sites. These observations led us to test whether AP could also catalyze the hydrolysis of phosphate diesters. The results described herein demonstrate that AP does have phosphodiesterase activity: the phosphatase and phosphodiesterase activities copurify over several steps; inorganic phosphate, a strong competitive inhibitor of AP, inhibits the phosphodiesterase and phosphatase activities with the same inhibition constant; a point mutation that weakens phosphate binding to AP correspondingly weakens phosphate inhibition of the phosphodiesterase activity; and mutation of active site residues substantially reduces both the mono- and diesterase activities. AP accelerates the rate of phosphate diester hydrolysis by 10(11)-fold relative to the rate of the uncatalyzed reaction [(k(cat)/K(m))/k(w)]. Although this rate enhancement is substantial, it is at least 10(6)-fold less than the rate enhancement for AP-catalyzed phosphate monoester hydrolysis. Mutational analysis suggests that common active site features contribute to hydrolysis of both phosphate monoesters and phosphate diesters. However, mutation of the active site arginine to serine, R166S, decreases the monoesterase activity but not the diesterase activity, suggesting that the interaction of this arginine with the nonbridging oxygen(s) of the phosphate monoester substrate provides a substantial amount of the preferential hydrolysis of phosphate monoesters. The observation of phosphodiesterase activity extends the previous observation that AP has a low level of

  10. Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease

    PubMed Central

    Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2011-01-01

    Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306

  11. Synthesis of N-diisopropyl phosphoryl benzyltetrahydroisoquinoline, a new class of mitochondrial complexes I and III inhibitors.

    PubMed

    Andreu, I; Cabedo, N; Tormo, J R; Bermejo, A; Mello, R; Cortes, D

    2000-07-03

    The synthesis of N-(O,O-diisopropylphosphoryl)-benzyltetrahydroisoquinoline (3) has been achieved in a 'one pot' procedure from imine (2) and diisopropyl-phosphorochloridate (1) generated in situ (POCl3 + iPrOH). Compound 3 is the first benzyltetrahydroisoquinoline derivative found to be a potent inhibitor of mitochondrial complexes I and III, and therefore it opens a new perspective with this series of compounds as they can be considered as new class of antitumor agents.

  12. A phase I/II study of the protease inhibitor indinavir in children with HIV infection.

    PubMed

    Mueller, B U; Sleasman, J; Nelson, R P; Smith, S; Deutsch, P J; Ju, W; Steinberg, S M; Balis, F M; Jarosinski, P F; Brouwers, P; Mistry, G; Winchell, G; Zwerski, S; Sei, S; Wood, L V; Zeichner, S; Pizzo, P A

    1998-07-01

    Indinavir, an inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease, is approved for the treatment of HIV infection in adults when antiretroviral therapy is indicated. We evaluated the safety and pharmacokinetic profile of the indinavir free-base liquid suspension and the sulfate salt dry-filled capsules in HIV-infected children, and studied its preliminary antiviral and clinical activity in this patient population. In addition, we evaluated the pharmacokinetic profile of a jet-milled suspension after a single dose. Previously untreated children or patients with progressive HIV disease despite antiretroviral therapy or with treatment-associated toxicity were eligible for this phase I/II study. Three dose levels (250 mg/m2, 350 mg/m2, and 500 mg/m2 per dose given orally every 8 h) were evaluated in 2 age groups (<12 years and >/=12 years). Indinavir was initially administered as monotherapy and then in combination with zidovudine and lamivudine after 16 weeks. Fifty-four HIV-infected children (ages 3.1 to 18.9 years) were enrolled. The indinavir free-base suspension was less bioavailable than the dry-filled capsule formulation, and therapy was changed to capsules in all children. Hematuria was the most common side effect, occurring in 7 (13%) children, and associated with nephrolithiasis in 1 patient. The combination of indinavir, lamivudine, and zidovudine was well tolerated. The median CD4 cell count increased after 2 weeks of indinavir monotherapy by 64 cells/mm3, and this was sustained at all dose levels. Plasma ribonucleic acid levels decreased rapidly in a dose-dependent way, but increased toward baseline after a few weeks of indinavir monotherapy. Indinavir dry-filled capsules are relatively well tolerated by children with HIV infection, although hematuria occurs at higher doses. Future studies need to evaluate the efficacy of indinavir when combined de novo with zidovudine and lamivudine.

  13. Identification of Small Molecule Inhibitors of Human As(III) S-Adenosylmethionine Methyltransferase (AS3MT)

    PubMed Central

    2015-01-01

    Arsenic is the most ubiquitous environmental toxin and carcinogen. Long-term exposure to arsenic is associated with human diseases including cancer, cardiovascular disease, and diabetes. Human As(III) S-adenosylmethionine (SAM) methyltransferases (hAS3MT) methylates As(III) to trivalent mono- and dimethyl species that are more toxic and potentially more carcinogenic than inorganic arsenic. Modulators of hAS3MT activity may be useful for the prevention or treatment of arsenic-related diseases. Using a newly developed high-throughput assay for hAS3MT activity, we identified 10 novel noncompetitive small molecule inhibitors. In silico docking analysis with the crystal structure of an AS3MT orthologue suggests that the inhibitors bind in a cleft between domains that is distant from either the As(III) or SAM binding sites. This suggests the presence of a possible allosteric and regulatory site in the enzyme. These inhibitors may be useful tools for future research in arsenic metabolism and are the starting-point for the development of drugs against hAS3MT. PMID:26577531

  14. Pulmonary effects of type V cyclic GMP specific phosphodiesterase inhibition in the anaesthetized guinea-pig.

    PubMed Central

    Turner, N. C.; Dolan, J. S.; Grimsditch, D.; Lamb, J.; Worby, A.; Murray, K. J.; Coates, W. J.; Warrington, B. H.

    1994-01-01

    1. We have investigated the bronchodilator potential of type V phosphodiesterase (PDE V) inhibitors in anaesthetized ventilated guinea-pigs using the potent and selective PDE V inhibitor, SK&F 96231. We have compared its activity to that of salbutamol, the PDE III inhibitors, siguazodan and SK&F 95654 and to the PDE IV inhibitor rolipram. 2. Administered as an i.v. infusion SK&F 96231 (0.6 and 1 mg kg-1 min-1, i.v.) caused a slowly developing inhibition of histamine (100 nmol kg-1, i.v.)-induced bronchoconstriction and elevated tracheal cyclic GMP levels in the anaesthetized guinea-pig. SK&F 96231 (0.1 and 0.3 mg kg-1 min-1, i.v.) was without effect on histamine-induced bronchoconstriction. In the presence of a sub-threshold infusion of SNP (0.1 mumol kg-1 min-1, i.v.) there was a marked enhancement of SK&F 96231-induced inhibition of histamine responses such that at infusion rates that were ineffective alone, SK&F 96231 caused a > 50% inhibition of histamine responses. The stimulation of tracheal cyclic GMP accumulation by SK&F 96231 was also potentiated. 3. Administered directly into the airway, SK&F 96231 (300 micrograms in 5 mg lactose carrier) was largely without effect on histamine-induced bronchoconstriction (4.9 +/- 1.9% inhibition). In the presence of SNP (0.1 mumol kg-1 min-1, i.v.) or isosorbide dinitrate (200 micrograms administered by insufflation into the trachea) there was a marked potentiation of the inhibitory activity of SK&F 96231 (40 +/- 4% and 62 +/- 1.8% respectively).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8032606

  15. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.

    PubMed

    Moscetti, Ilaria; Tundo, Silvio; Janni, Michela; Sella, Luca; Gazzetti, Katia; Tauzin, Alexandra; Giardina, Thierry; Masci, Stefania; Favaron, Francesco; D'Ovidio, Renato

    2013-12-01

    Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.

  16. Relationship between angiotensinogen, alpha 1-protease inhibitor elastase complex, antithrombin III and C-reactive protein in septic ARDS.

    PubMed

    Hilgenfeldt, U; Kellermann, W; Kienapfel, G; Jochum, M

    1990-01-01

    The time-course of plasma angiotensinogen (Ao), elastase-alpha 1-protease inhibitor complex (EL alpha 1PI), antithrombin III (AT III) and C-reactive protein (CRP) have been investigated of six patients suffering from adult respiratory distress syndrome (ARDS). The total plasma Ao level (active and inactive Ao) varied in individuals but was increased up to five-fold. An increasing amount of inactive Ao is found. From the beginning of their stay in the intensive care unit up to five days half of the patients displayed a positive correlation between the plasma CRP and Ao level. The CRP and Ao values were either not or were negatively correlated with the AT III values. In contrast plasma Ao and AT III levels in all patients were positively correlated during a particular period in the subsequent phase of the disease, where there was no or a negative correlation with CRP. The two acute phase reactants CRP and EL alpha 1PI were only correlated in two patients at the beginning of the disease. The markedly increased plasma level at the beginning of the inflammatory disease indicates that Ao is an acute phase reactant, and this is supported by the parallel changes in plasma CRP and Ao levels during the early days of ARDS. The relationship between the plasma levels of Ao and AT III for more than fourteen days suggests similar regulation of these members of the serpin family after termination of the acute-phase.

  17. DETERMINATION OF CORROSION INHIBITOR CRITERIA FOR TYPE III/IIIA TANKS DURING SALT DISSOLUTION OPERATIONS SUMMARY DOCUMENT

    SciTech Connect

    Mickalonis, J.; Wiersma, B.; Garcia-Diaz, B.

    2009-10-01

    Dissolution of salt from Type III/IIIA waste tanks at the Savannah River Site may create solutions with inhibitor concentrations below those currently required (0.6M OH{sup -} and 1.1M OH{sup -} + NO{sub 2}{sup -}) per the Corrosion Control Program for high nitrate salt solutions (5.5 to 8.5M NO{sub 3}{sup -}). An experimental program was conducted to evaluate the corrosion susceptibility of grade A537 carbon steel for waste simulants containing 4.5-8.5M NaNO{sub 3} with maximum inhibitor concentrations of 0.6M NaOH and 0.2M NaNO{sub 2}. These maximum inhibitor concentrations used in this program are at a reduced level from those currently required. Current requirements were initially established for the Types I, II and IV tanks made of A285 carbon steel. The experimental program involved corrosion testing to evaluate the pitting and stress corrosion stress corrosion cracking (SCC) susceptibility of the Type III/IIIA waste tank materials. The program was conducted in two phases; the results of the first phase were reported previously (WSRC-STI-2006-00029). In this second phase, the corrosion specimens were modified to represent the 'as-fabricated' condition of the tank wall, and included specimens with mill scale, ground welds and stress-relief heat treatments. The complete description of the corrosion testing and the results are reported herein. The collective corrosion test results for A537 carbon steel in high nitrate waste simulants (4.5 - 8.5M) with the maximum inhibitor concentrations of 0.6M NaOH and 0.2M NaNO{sub 2} were as follows: (1) In long-term non-polarized U-bend testing, heat treatment, similar to the waste tank stress relief regime, reduced the incidence of cracking over the 18-month test period. Vapor space SCC was found to initiate on non-heat treated U-bend coupons. (2) In polarized U-bend testing, cracking occurred on U-bend coupons that had welds prepared similar to those in the waste tanks, i.e. ground and heat treated. (3) In electrochemical

  18. Cyclic nucleotide specific phosphodiesterases of Leishmania major

    PubMed Central

    Johner, Andrea; Kunz, Stefan; Linder, Markus; Shakur, Yasmin; Seebeck, Thomas

    2006-01-01

    Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs) from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range. Several PDE inhibitors were

  19. Efficacy and selectivity of phosphodiesterase-targeted drugs to inhibit photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors*

    PubMed Central

    Zhang, Xiujun; Feng, Qing; Cote, Rick H.

    2005-01-01

    Purpose: Phosphodiesterase (PDE) inhibitors are important therapeutic agents, but their effects on photoreceptor PDE (PDE6) and photoreceptor cells are poorly understood. We characterized the potency and selectivity of various classes of PDE inhibitors on purified rod and cone PDE6 and on intact rod outer segments (ROS). Methods: The inhibition constant (KI) of isozyme-selective PDE inhibitors was determined for purified rod and cone PDE6. Perturbations of cGMP levels in isolated ROS suspensions by PDE inhibitors were quantitated by a cGMP enzyme-linked immunoassay. Results: Most PDE5-selective inhibitors are excellent PDE6 inhibitors. Vardenafil, a potent PDE5 inhibitor (KI = 0.2 nM), is the most potent PDE6 inhibitor tested (KI = 0.7 nM). Zaprinast is the only drug that inhibits PDE6 more potently than PDE5. PDE1-selective inhibitors were equally effective in inhibiting PDE6. In intact ROS, PDE inhibitors elevated cGMP levels but none fully inhibited PDE6. Their potency to elevate cGMP levels in ROS was much lower than their ability to inhibit the purified enzyme. Competition between PDE5/6-selective drugs and the inhibitory γ subunit for the active site of PDE6 is proposed to reduce the effectiveness of drugs at the enzyme active site. Conclusions: Several classes of PDE inhibitors equally well inhibit PDE6 as the PDE family to which they are targeted. In intact ROS, high PDE6 concentrations, binding of the γ subunit to the active site, and calcium feedback mechanisms attenuate the effectiveness of PDE inhibitors to inhibit PDE6 and disrupt the cGMP signaling pathway during visual transduction. PMID:16123402

  20. Characterization and effects of methyl-2- (4-aminophenyl)-1, 2-dihydro-1-oxo-7- (2-pyridinylmethoxy)-4-(3,4, 5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032), a novel potent inhibitor of cGMP-binding cGMP-specific phosphodiesterase (PDE5).

    PubMed

    Kotera, J; Fujishige, K; Michibata, H; Yuasa, K; Kubo, A; Nakamura, Y; Omori, K

    2000-11-01

    An isoquinolone derivative, methyl-2-(4-aminophenyl)-1, 2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4, 5-trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032), was found to be a novel potent inhibitor of cyclic GMP (cGMP)-binding cGMP-specific phosphodiesterase (PDE5). We investigated the inhibitory effects of T-1032 on six PDE isozymes isolated from canine tissues. T-1032 specifically inhibited the hydrolysis of cGMP by PDE5 partially purified from canine lung, at a low concentration (IC(50) = 1.0 nM, K(i) = 1.2 nM), in a competitive manner. In contrast, the IC(50) values of T-1032 for PDE1, PDE2, PDE3, and PDE4 were more than 1 microM. T-1032 also inhibited PDE6 from canine retina with an IC(50) of 28 nM, which is of the same order of magnitude as the IC(50) of sildenafil. cGMP hydrolytic activities of two alternative splice variants of canine PDE5 expressed in COS-7 cells were inhibited by this compound to a similar extent. T-1032 increased the intracellular concentration of cGMP in cultured rat vascular smooth muscle cells in the presence and absence of C-type natriuretic peptide, an activator of membrane-bound guanylate cyclase, whereas the compound did not change cyclic AMP levels. These data indicated that T-1032, which belongs to a new structural class of PDE5 inhibitors, is a potent and selective PDE5 inhibitor. This compound may be useful in pharmacological studies to examine the role of a cGMP/PDE5 pathway in tissues.

  1. Glycycoumarin from Glycyrrhizae Radix acts as a potent antispasmodic through inhibition of phosphodiesterase 3.

    PubMed

    Sato, Yuji; Akao, Teruaki; He, Ju-Xiu; Nojima, Hiroshi; Kuraishi, Yasushi; Morota, Takashi; Asano, Takayuki; Tani, Tadato

    2006-05-24

    Glycyrrhizae Radix is used to treat abdominal pain as a component of Shakuyaku-kanzo-to, a traditional Chinese medicine formulation. We aim at clarifying the antispasmodic principles of Glycyrrhizae Radix, and consequently isolated glycycoumarin as a potent relaxant on the carbamylcholine (CCh)-induced contraction of mouse jejunum. In this paper we investigated the effects and the action mechanism of glycycoumarin on the contraction of mouse jejunum. Glycycoumarin inhibited the contraction induced by various types of stimulants, such as CCh, KCl, BaCl(2), and A23187 (calcium ionophore III) with IC(50) values of 2.93+/-0.94 micromol/l (1.08+/-0.35 microg/ml), 2.59+/-0.58 micromol/l (0.95+/-0.29 microg/ml), 4.09+/-1.82 micromol/l (1.51+/-0.67 microg/ml) and 7.39+/-5.19 micromol/l (2.72+/-1.91 microg/ml), respectively, with a potency similar to that of papaverine (a representative antispasmodic for smooth muscle). Furthermore, pretreatment with glycycoumarin enhanced the relaxation induced by forskolin on CCh-evoked contraction, similar to that by pretreatment with IBMX, a non-specific inhibitor of phosphodiesterases (PDEs). Pretreatment with glycycoumarin also enhanced the relaxation effect of rolipram, a specific inhibitor of PDE isozyme 4, as pretreatment with milrinone, a specific inhibitor of isozyme 3, did. Moreover, the effect of glycycoumarin was associated with dose-dependent accumulation of cAMP, but not cGMP, in mouse jejunum. These results indicate that glycycoumarin has an inhibitory effect on smooth muscle contraction induced by various types of stimulants through the inhibition of PDEs, especially isozyme 3, followed by the accumulation of intracellular cAMP.

  2. DETERMINATION OF CORROSION INHIBITOR CRITERIA FOR TYPE III IIIA TANKS DURING SALT DISSOLUTION OPERATIONS

    SciTech Connect

    Wiersma, B

    2008-01-04

    Preparation of high level waste for vitrification involves in part the dissolution of salt cake from the carbon steel storage tanks. The salt crystals composing this cake are high in nitrate concentration with the interstitial liquid being high in hydroxide and nitrite concentration. During the salt dissolution process, a stage is reached in which the inhibitors, hydroxide and nitrite, are insufficient to prevent nitrate stress corrosion cracking (SCC) and fall outside the requirements of the corrosion control program. Additional inhibitors, which are necessary to meet the requirements, may be counterproductive to the efficiency of the process and waste minimization. Corrosion testing was initiated to better characterize the necessary inhibitor concentration for high nitrate waste during salt dissolution processing. A four-phase test program is being conducted: (1) electrochemical characterization, (2) accelerated or polarized U-bend testing, (3) long-term (non-polarized) U-bend testing and (4) vapor space U-bend tests. Electrochemical testing, which included cyclic potentiodynamic polarization (CPP), linear polarization resistance (LPR) and open-circuit potential (OCP) measurements, was performed to identify stress corrosion cracking susceptibility, to characterize pitting resistance and to determine the general corrosion rate. Polarized U-bend tests were utilized to assess the effect of minimum inhibitor concentrations and heat treatment on SCC and to determine test parameters for future long-term U-bend testing. Results from CPP, LPR and OCP tests demonstrated that carbon steel formed a protective oxide film and the potential became electropositive during exposure to the waste at all inhibitor concentrations. The tenacity of this film improved as the inhibitor concentration level was increased and the temperature was decreased. This passive film increased the resistance to localized corrosion significantly. Therefore if any of these inhibitor levels are selected

  3. Gold(III) Macrocycles: Nucleotide-Specific Unconventional Catalytic Inhibitors of Human Topoisomerase I

    PubMed Central

    2015-01-01

    Topoisomerase IB (Top1) is a key eukaryotic nuclear enzyme that regulates the topology of DNA during replication and gene transcription. Anticancer drugs that block Top1 are either well-characterized interfacial poisons or lesser-known catalytic inhibitor compounds. Here we describe a new class of cytotoxic redox-stable cationic Au3+ macrocycles which, through hierarchical cluster analysis of cytotoxicity data for the lead compound, 3, were identified as either poisons or inhibitors of Top1. Two pivotal enzyme inhibition assays prove that the compounds are true catalytic inhibitors of Top1. Inhibition of human topoisomerase IIα (Top2α) by 3 was 2 orders of magnitude weaker than its inhibition of Top1, confirming that 3 is a type I-specific catalytic inhibitor. Importantly, Au3+ is essential for both DNA intercalation and enzyme inhibition. Macromolecular simulations show that 3 intercalates directly at the 5′-TA-3′ dinucleotide sequence targeted by Top1 via crucial electrostatic interactions, which include π–π stacking and an Au···O contact involving a thymine carbonyl group, resolving the ambiguity of conventional (drug binds protein) vs unconventional (drug binds substrate) catalytic inhibition of the enzyme. Surface plasmon resonance studies confirm the molecular mechanism of action elucidated by the simulations. PMID:24694294

  4. 8-Methoxyquinolines as PDE4 inhibitors.

    PubMed

    Billah, Motasim; Buckley, George M; Cooper, Nicola; Dyke, Hazel J; Egan, Robert; Ganguly, Ashit; Gowers, Lewis; Haughan, Alan F; Kendall, Hannah J; Lowe, Christopher; Minnicozzi, Michael; Montana, John G; Oxford, Janet; Peake, Joanna C; Picken, C Louise; Piwinski, John J; Naylor, Robert; Sabin, Verity; Shih, Neng-Yang; Warneck, Julie B H

    2002-06-17

    The synthesis and pharmacological profile of a novel series of 2-substituted 8-methoxyquinolines is described. The 2-trifluoromethyl compound was found to be a potent inhibitor of phosphodiesterase type 4 (PDE4).

  5. beta-Adrenoceptor stimulation up-regulates phosphodiesterase 4 activity and reduces prostaglandin E2-inhibitory effects in human neutrophils.

    PubMed

    Ortiz, J L; Dasí, F J; Cortijo, J; Morcillo, E J

    2000-04-01

    Human neutrophils were treated for 4 h with a combination of salbutamol (1 microM), a beta2-adrenoceptor agonist, and rolipram (30 microM), a selective phosphodiesterase 4 inhibitor, to investigate whether this treatment produces up-regulation of phosphodiesterase activity with functional consequences. Anion-exchange chromatography coupled with the use of selective activators and inhibitors demonstrated that a phosphodiesterase activity with characteristics of the isoenzyme type 4 was increased in drug-treated cells. Kinetic analysis showed a approximately 1.5-fold increase in Vmax without alteration of Km values. The augmented phosphodiesterase activity in drug-treated cells was abolished by actinomycin D. Cyclic AMP content in drug-treated cells was higher than resting values (27.28+/-2.79 pmol/10(6) cells vs. 0.34+/-0.03 pmol/10(6) cells). Reverse transcriptase-polymerase chain reaction showed increased expression of mRNA transcripts for PDE4B and PDE4A in drug-treated cells. Functionally, up-regulation of phosphodiesterase 4 reduced the inhibition by prostaglandin E2 of zymosan-induced superoxide generation.

  6. Clinical effects of phosphodiesterase 3A mutations in inherited hypertension with brachydactyly.

    PubMed

    Toka, Okan; Tank, Jens; Schächterle, Carolin; Aydin, Atakan; Maass, Philipp G; Elitok, Saban; Bartels-Klein, Eireen; Hollfinger, Irene; Lindschau, Carsten; Mai, Knut; Boschmann, Michael; Rahn, Gabriele; Movsesian, Matthew A; Müller, Thomas; Doescher, Andrea; Gnoth, Simone; Mühl, Astrid; Toka, Hakan R; Wefeld-Neuenfeld, Yvette; Utz, Wolfgang; Töpper, Agnieszka; Jordan, Jens; Schulz-Menger, Jeanette; Klussmann, Enno; Bähring, Sylvia; Luft, Friedrich C

    2015-10-01

    Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population. © 2015 American Heart Association, Inc.

  7. Effects of selective phosphodiesterase inhibition on cyclic AMP hydrolysis in rat cerebral cortical slices.

    PubMed Central

    Challiss, R. A.; Nicholson, C. D.

    1990-01-01

    1. The effects of selective inhibition of phosphodiesterase activities on the concentration and rate of hydrolysis of adenosine 3':5' cyclic-monophosphate (cyclic AMP) in rat cerebral cortical slices has been studied. 2. Isoprenaline caused a rapid, concentration-dependent increase in cyclic AMP concentration to new steady-state levels (basal: 7.1 +/- 0.7; 10 microM isoprenaline: 14.3 +/- 1.4 pmol mg-1 protein). Addition of a beta-adrenoceptor antagonist to isoprenaline-stimulated cerebral cortical slices caused a rapid decrease in cyclic AMP concentration to basal levels (t1/2: 58 +/- 18 s). 3. Preincubation of slices for 30 min with the phosphodiesterase inhibitors 1-methyl-3-isobutylxanthine, denbufylline, rolipram or Ro20,1724 caused concentration-dependent increases in basal and isoprenaline-stimulated cyclic AMP concentrations and decreased the rate of cyclic AMP hydrolysis measured after addition of a beta-adrenoceptor antagonist. However, SKF 94120 and zaprinast had none of these effects. 4. The results are discussed with respect to previous studies of phosphodiesterase isozymic activities isolated from cerebrum and it is suggested that the Ca2+/calmodulin-independent, low Km cyclic AMP phosphodiesterase isozyme, which is selectively inhibited by denbufylline, rolipram and Ro20,1724, and is present in cerebrum is of critical importance to the regulation of cyclic AMP concentration in this tissue. PMID:2158837

  8. Octahedral rhodium(III) complexes as kinase inhibitors: Control of the relative stereochemistry with acyclic tridentate ligands.

    PubMed

    Mollin, Stefan; Riedel, Radostan; Harms, Klaus; Meggers, Eric

    2015-07-01

    Octahedral metal complexes are attractive structural templates for the design of enzyme inhibitors as has been demonstrated, for example, with the development of metallo-pyridocarbazoles as protein kinase inhibitors. The octahedral coordination sphere provides untapped structural opportunities but at the same time poses the drawback of dealing with a large number of stereoisomers. In order to address this challenge of controlling the relative metal-centered configuration, the synthesis of rhodium(III) pyridocarbazole complexes with facially coordinating acyclic tridentate ligands was investigated. A strategy for the rapid synthesis of such complexes is reported, the diastereoselectivities of these reactions were investigated, the structure of several complexes were determined by X-ray crystallography, the high kinetic stability of such complexes in thiol-containing solutions was demonstrated in (1)H-NMR experiments, and the protein kinase inhibition ability of this class of complexes was confirmed. It can be concluded that the use of multidentate ligands is currently maybe the most practical strategy to avoid a large number of possible stereoisomers in the course of exploiting octahedral coordination spheres as structural templates for the design of bioactive molecules.

  9. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site.

    PubMed Central

    Nicholson, C. D.; Jackman, S. A.; Wilke, R.

    1989-01-01

    1. Denbufylline has been examined for its ability to inhibit cyclic nucleotide phosphodiesterase isoenzymes from rat cardiac ventricle and cerebrum, as well as for its affinity for adenosine A1 and A2 receptors and the re-uptake site. For comparison, SK&F 94120, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX) were examined as phosphodiesterase inhibitors whilst N6-cyclohexyladenosine, R(-)-N6-(2-phenylisopropyl)-adenosine, 5'-N-ethylcarboxamido-adenosine, 2-nitrobenzylthioinosine, theophylline and IBMX were examined for their affinity for adenosine binding sites. 2. This investigation confirmed the presence of four phosphodiesterase activities in rat cardiac ventricle; in rat cerebrum only three were present. 3. Denbufylline selective inhibited one form of Ca2+-independent, low Km cyclic AMP phosphodiesterase. The form inhibited was one of two present in cardiac ventricle and the sole one in cerebrum. This form was not inhibited by cyclic GMP. The inotropic agent SK&F 94120 selectively inhibited the form of cyclic AMP phosphodiesterase which was inhibited by cyclic GMP present in cardiac ventricle. Theophylline and IBMX were relatively non-selective phosphodiesterase inhibitors. 4. Denbufylline was a less potent inhibitor of ligand binding to adenosine receptors than of cyclic AMP phosphodiesterase. This contrasted with theophylline, which had a higher affinity for adenosine receptors, and IBMX which showed no marked selectivity. Denbufylline, theophylline and IBMX all had a low affinity for the adenosine re-uptake site. 5. Denbufylline is being developed as an agent for the therapy of multi-infarct dementia. The selective inhibition of a particular low Km cyclic AMP phosphodiesterase may account for the activity of this compound. PMID:2474352

  10. Identification, characterization and subcellular localization of TcPDE1, a novel cAMP-specific phosphodiesterase from Trypanosoma cruzi.

    PubMed Central

    D'Angelo, Maximiliano A; Sanguineti, Santiago; Reece, Jeffrey M; Birnbaumer, Lutz; Torres, Héctor N; Flawiá, Mirtha M

    2004-01-01

    Compartmentalization of cAMP phosphodiesterases plays a key role in the regulation of cAMP signalling in mammals. In the present paper, we report the characterization and subcellular localization of TcPDE1, the first cAMP-specific phosphodiesterase to be identified from Trypanosoma cruzi. TcPDE1 is part of a small gene family and encodes a 929-amino-acid protein that can complement a heat-shock-sensitive yeast mutant deficient in phospho-diesterase genes. Recombinant TcPDE1 strongly associates with membranes and cannot be released with NaCl or sodium cholate, suggesting that it is an integral membrane protein. This enzyme is specific for cAMP and its activity is not affected by cGMP, Ca2+, calmodulin or fenotiazinic inhibitors. TcPDE1 is sensitive to the phosphodiesterase inhibitor dipyridamole but is resistant to 3-isobutyl-1-methylxanthine, theophylline, rolipram and zaprinast. Papaverine, erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride, and vinpocetine are poor inhibitors of this enzyme. Confocal laser scanning of T. cruzi epimastigotes showed that TcPDE1 is associated with the plasma membrane and concentrated in the flagellum of the parasite. The association of TcPDE1 with this organelle was confirmed by subcellular fractionation and cell-disruption treatments. The localization of this enzyme is a unique feature that distinguishes it from all the trypanosomatid phosphodiesterases described so far and indicates that compartmentalization of cAMP phosphodiesterases could also be important in these parasites. PMID:14556647

  11. PHOTOREGULATION OF BIOLOGICAL ACTIVITY BY PHOTOCHROMIC REAGENTS, III. PHOTOREGULATION OF BIOELECTRICITY BY ACETYLCHOLINE RECEPTOR INHIBITORS*

    PubMed Central

    Deal, Walter J.; Erlanger, Bernard F.; Nachmansohn, David

    1969-01-01

    The photochromic compounds N-p-phenylazophenyl-N-phenylcarbamylcholine chloride and p-phenylazophenyltrimethylammonium chloride inhibit the carbamylcholine-produced depolarization of the excitable membrane of the monocellular electroplax preparation of Electrophorus. The trans isomer of each predominates in the light of a photoflood (420 mμ) lamp; they are stronger inhibitors than the cis isomers, which predominate under ultraviolet (320 mμ) irradiation. The potential difference across the excitable membrane may be photoregulated by exposing an electroplax in the presence of a solution of carbamylcholine and either of the two compounds to light of appropriate wavelengths, since light shifts the cis-trans equilibrium. The system may be considered as a model illustrating how one may link a cis-trans isomerization, the first step in the initiation of a visual impulse, with substantial changes (20-30 mv) in the potential difference across an excitable membrane. PMID:5271749

  12. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants.

    PubMed

    Moscetti, Ilaria; Faoro, Franco; Moro, Stefano; Sabbadin, Davide; Sella, Luca; Favaron, Francesco; D'Ovidio, Renato

    2015-08-01

    The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  13. Mangostanaxanthones III and IV: advanced glycation end-product inhibitors from the pericarp of Garcinia mangostana.

    PubMed

    Abdallah, Hossam M; El-Bassossy, Hany M; Mohamed, Gamal A; El-Halawany, Ali M; Alshali, Khalid Z; Banjar, Zainy M

    2017-01-01

    Advanced glycation end-products (AGEs) are associated with a non-enzymatic reaction between the amino group of a protein and the carbonyl group of a sugar during hyperglycemia. The precipitation of AGEs in different tissues leads to many complications, such as endothelial dysfunction, cardiovascular complications, atherosclerosis, retinopathy, neuropathy, and Alzheimer's disease. Garcinia mangostana L. (Clusiaceae) (GM) was selected owing to the ability of its polar and non-polar fractions to inhibit AGE formation. For the first time, the bioguided fractionation of its pericarp MeOH extract (GMT) gave rise to two new xanthones, namely, mangostanaxanthones III (1) and IV (3), in addition to six known compounds, β-mangostin (2), garcinone E (4), rubraxanthone (5), α-mangostin (6), garcinone C (7), and 9-hydroxycalabaxanthone (8), from the non-polar faction. Their structures were verified by various spectroscopic methods, including 1D and 2D NMR studies and high-resolution MS data. All of the isolated xanthones significantly inhibited both sugar (ribose) and dicarbonyl compound (methylglyoxal)-induced protein glycation in a dose-dependent manner. This is explained by the ability of the isolated xanthones to inhibit protein oxidation, as indicated by the decreases in dityrosine and N'-formylkynurenine formation.

  14. The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung.

    PubMed Central

    Burns, F; Rodger, I W; Pyne, N J

    1992-01-01

    The type V cyclic GMP phosphodiesterase was partially purified from the high-speed supernatant of guinea-pig lung. The isoenzyme displayed linear kinetics for cyclic GMP hydrolysis, with Km = 2.2 +/- 0.2 microM and Vmax. = 1.2 +/- 0.08 nmol/min per mg. The selective type V phosphodiesterase inhibitor Zaprinast inhibited cyclic GMP hydrolysis with IC50 (concn. giving 50% inhibition) = 0.45 +/- 0.08 microM. Isobutylmethylxanthine promoted a 3-fold increase in the binding of cyclic GMP to the isoenzyme. The addition of the catalytic subunit of protein kinase A to an activation cocktail containing the partially purified type V phosphodiesterase resulted in a marked increase in Vmax. for cyclic GMP hydrolysis (approximately 10-fold at 40 units of protein kinase A). We have suggested that protein kinase A triggers phosphorylation of the phosphodiesterase, which results in activation of phosphodiesterase activity. In addition, the sensitivity to inhibition by Zaprinast is severely decreased (the IC50 for inhibition is 7.5 +/- 1.1 microM), suggesting that the potency of phosphodiesterase inhibitors is effected by phosphorylation of the enzyme. PMID:1315515

  15. Synthesis of Fluorine-Containing Phosphodiesterase 10A (PDE10A) Inhibitors and the In Vivo Evaluation of F-18 Labeled PDE10A PET Tracers in Rodent and Nonhuman Primate

    PubMed Central

    Li, Junfeng; Zhang, Xiang; Jin, Hongjun; Fan, Jinda; Flores, Hubert; Perlmutter, Joel S.; Tu, Zhude

    2015-01-01

    A series of fluorine-containing PDE10A inhibitors were designed and synthesized to improve the metabolic stability of [11C]MP-10. Twenty of the 22 new analogues had high potency and selectivity for PDE10A: 18a–j, 19d–j, 20a–b, and 21b had IC50 values <5 nM for PDE10A. Seven F-18 labeled compounds [18F]18a–e, [18F]18g, and [18F]20a were radiosynthesized by 18F-introduction onto the quinoline rather than the pyrazole moiety of the MP-10 pharmacophore and performed in vivo evaluation. Biodistribution studies in rats showed ~2-fold higher activity in the PDE10A-enriched striatum than nontarget brain regions; this ratio increased from 5 to 30 min postinjection, particularly for [18F]18a–d and [18F]20a. Micro-PET studies of [18F]18d and [18F]20a in nonhuman primates provided clear visualization of striatum with suitable equilibrium kinetics and favorable metabolic stability. These results suggest this strategy may identify a 18F-labeled PET tracer for quantifying the levels of PDE10A in patients with CNS disorders including Huntington’s disease and schizophrenia. PMID:26430878

  16. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily

    PubMed Central

    Gandin, Valentina; Ferrarese, Alessandro; Dalla Via, Martina; Marzano, Cristina; Chilin, Adriana; Marzaro, Giovanni

    2015-01-01

    Kinase inhibitors are attractive drugs/drug candidates for the treatment of cancer. The most recent literature has highlighted the importance of multi target kinase inhibitors, although a correct balance between specificity and non-specificity is required. In this view, the discovery of multi-tyrosine kinase inhibitors with subfamily selectivity is a challenging goal. Herein we present the synthesis and the preliminary kinase profiling of a set of novel 4-anilinopyrimidines. Among the synthesized compounds, the N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives selectively targeted some members of class III receptor tyrosine kinase family. Starting from the structure of hit compound 19 we synthesized a further compound with an improved affinity toward the class III receptor tyrosine kinase members and endowed with a promising antitumor activity both in vitro and in vivo in a murine solid tumor model. Molecular modeling simulations were used in order to rationalize the behavior of the title compounds. PMID:26568452

  17. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  18. Identification and functional study of phosphodiesterases in rat urinary bladder.

    PubMed

    Qiu, Y; Kraft, P; Craig, E C; Liu, X; Haynes-Johnson, D

    2001-12-01

    Abstract Cyclic nucleotides are important secondary messengers involved in modulating the contractility of various smooth muscles. Phosphodiesterases (PDE) play important roles in this process by modulating the levels of cyclic nucleotides and their duration of action. This study was designed to identify and characterize the PDE isoenzymes in rat urinary bladder and to evaluate their roles in regulating bladder smooth muscle tone. The involvement of cAMP and cGMP pathways in this process was also assessed. The studies were carried out with tissues from male and female rats and no significant sex-related difference was found in the results. Utilizing the unique pharmacological properties of different isoenzymes, PDE1, 2, 3, 4, and 5 were identified in rat bladder. Organ bath experiments showed that forskolin was most potent in relaxing pre-contracted rat bladder strips while sodium nitroprusside was moderately effective, suggesting the relaxation was mainly mediated by the cAMP pathway and that the cGMP pathway is moderately involved. For PDE inhibitors, the non-specific inhibitor papaverine was most effective in relaxing pre-contracted bladder strips. Among isoenzyme-selective inhibitors, vinpocetine, EHNA, and sildenafil induced more relaxation than milrinone and rolipram.

  19. Identification of Small-Molecule Inhibitors of Yersinia pestis Type III Secretion System YscN ATPase

    PubMed Central

    Swietnicki, Wieslaw; Carmany, Daniel; Retford, Michael; Guelta, Mark; Dorsey, Russell; Bozue, Joel; Lee, Michael S.; Olson, Mark A.

    2011-01-01

    Yersinia pestis is a Gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC50 values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species. PMID:21611119

  20. Characterization of the insulin-sensitive low Km cAMP phosphodiesterase from rat adipose tissue

    SciTech Connect

    Degerman, E.; Belfrage, P.; Manganiello, V.C.

    1986-05-01

    Particulate, but not soluble, low K/sub m/ cAMP phosphodiesterase (PDE) activity of rat adipocytes was increased 50-100% during incubation (10 min) of intact cells with 1-3 nM insulin; activation was less with higher or lower insulin concentrations. Activation was maintained during solubilization with an alkyl polyoxyethylene non-ionic detergent C/sub 13/, E/sub 12/ and NaBr and chromatography on DEAE. Enzyme from DEAE was further purified by chromatography on Sepahadex G-200 and Blue-Sepharose. Activity (with 0.5 ..mu..M (/sup 3/H)cAMP) was rather sensitive to inhibition by p-chloromercuribenzoate (IC/sub 50/, 1 ..mu..M) and less so by 2,2'-dithiobis-(5-nitropyridine) (160 ..mu..M), N-ethylmaleimide (525 ..mu..M) and iodoacetamide (750 ..mu..M). PDE activity was also rather sensitive to inhibition by cilostamide (IC/sub 50/, approx.40 nM) and the cardiotonic drugs CI 930 (450 nM) and milrinone (630 nM) but rather insensitive to RO 20-1724 (190 ..mu..M). Based on effects of these inhibitors, the hormone-sensitive low K/sub m/ particulate cAMP PDE from rat adipocytes seems to be analogous to the insulin-activated particulate PDE from 3T3-L1 adipocytes and the cilostamide-sensitive soluble low K/sub m/ cAMP PDE from bovine liver (designated as III-C), platelets, heart, and other tissues.

  1. Is zucchini a phosphodiesterase or a ribonuclease?

    PubMed

    Nureki, Osamu

    2014-01-01

    Zucchini (Zuc), a member of the phospholipase D (PLD) superfamily, is essential for the primary PIWI-interacting RNA (piRNA) biogenesis and the suppression of transposon expression, which are crucial for the genome integrity of germline cells. However, it has been ambiguous whether Zuc acts as a phosphodiesterase to produce phosphatidic acid (PA), the lipid signaling molecule, or as a nuclease. The recent three papers describing the crystal structures and functional analyses of fly and mouse Zuc proteins have elucidated that Zuc is a PLD family single-strand ribonuclease, not a phosphodiesterase, and functions in the maturation of primary piRNAs. This review will discuss in detail how the crystal structures clearly predict the function of Zuc, which is subsequently demonstrated by biochemical analysis to conclude the previous controversial discussion on the real function of Zuc.

  2. Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice.

    PubMed

    Shi, Lei; Yu, Bin; Cai, Chun-Hui; Huang, Jian-Dong

    2016-12-01

    Despite of a growing number of bacterial species that apparently exhibit intrinsic tumor-targeting properties, no bacterium is able to inhibit tumor growth completely in the immunocompetent hosts, due to its poor dissemination inside the tumors. Oxygen and inflammatory reaction form two barriers and restrain the spread of the bacteria inside the tumors. Here, we engineered a Salmonella typhimurium strain named ST8 which is safe and has limited ability to spread beyond the anaerobic regions of tumors. When injected systemically to tumor-bearing immunocompetent mice, ST8 accumulated in tumors at levels at least 100-fold greater than parental obligate anaerobic strain ST4. ST8/pSEndo harboring therapeutic plasmids encoding Endostatin fused with a secreted protein SopA could target vasculature at the tumor periphery, can stably maintain and safely deliver a therapeutic vector, release angiogenic inhibitors through a type III secretion system (T3SS) to interfere with the pro-angiogenic action of growth factors in tumors. Mice with murine CT26 colon cancer that had been injected with ST8/pSEndo showed efficient tumor suppression by inducing more severe necrosis and inhibiting blooding vessel density within tumors. Our findings provide a therapeutic platform for indirectly acting therapeutic strategies such as anti-angiogenesis and immune therapy.

  3. Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretion.

    PubMed

    Ur-Rehman, Tofeeq; Slepenkin, Anatoly; Chu, Hencelyn; Blomgren, Anders; Dahlgren, Markus K; Zetterström, Caroline E; Peterson, Ellena M; Elofsson, Mikael; Gylfe, Asa

    2012-08-01

    Salicylidene acylhydrazides belong to a class of compounds shown to inhibit bacterial type III secretion (T3S) in pathogenic Gram-negative bacteria. This class of compounds also inhibits growth and replication of Chlamydiae, strict intracellular bacteria that possess a T3S system. In this study a library of 58 salicylidene acylhydrazides was screened to identify inhibitors of Chlamydia growth. Compounds inhibiting growth of both Chlamydia trachomatis and Chlamydophila pneumoniae were tested for cell toxicity and seven compounds were selected for preliminary pharmacokinetic analysis in mice using cassette dosing. Two compounds, ME0177 and ME0192, were further investigated by individual pharmacokinetic analysis. Compound ME0177 had a relatively high peak plasma concentration (C(max)) and area under curve and therefore may be considered for systemic treatment of Chlamydia infections. The other compound, ME0192, had poor pharmacokinetic properties but the highest anti-chlamydial activity in vitro and therefore was tested for topical treatment in a mouse vaginal infection model. ME0192 administered vaginally significantly reduced the infectious burden of C. trachomatis and the number of infected mice.

  4. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora.

    PubMed

    Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu

    2014-01-01

    The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.

  5. Overview of phosphodiesterase 5 inhibition in erectile dysfunction.

    PubMed

    Rosen, Raymond C; Kostis, John B

    2003-11-06

    Since the early 1980s, research on the mechanisms of penile erection has done much to clarify erectile physiology and pathophysiology. More recent studies have identified the importance of neurochemical mediators in erection. These include the nitric oxide-cyclic guanosine monophosphate (cGMP) cell-signaling system-a complex molecular pathway that mediates smooth muscle relaxation in the corpus cavernosum. Phosphodiesterase 5 (PDE5) inactivates cGMP, which terminates nitric oxide-cGMP-mediated smooth muscle relaxation. Inhibition of PDE5 is expected to enhance penile erection by preventing cGMP degradation. Development of pharmacologic agents with this effect has closely paralleled the emerging science. The prototype of this new therapeutic class of PDE5 inhibitors is sildenafil, which was approved for treatment of erectile dysfunction in 1998. Tadalafil and vardenafil are new agents in this class. These agents have demonstrated improvement in erectile function and have been shown to be well tolerated in diverse populations comprising thousands of men worldwide. Profiles of these 3 PDE5 inhibitors are reviewed herein.

  6. Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat.

    PubMed

    Tundo, Silvio; Moscetti, Ilaria; Faoro, Franco; Lafond, Mickaël; Giardina, Thierry; Favaron, Francesco; Sella, Luca; D'Ovidio, Renato

    2015-11-01

    To shed light on the role of Xylanase Inhibitors (XIs) during Fusarium graminearum infection, we first demonstrated that three out of four F. graminearum xylanases, in addition to their xylan degrading activity, have also the capacity to cause host cell death both in cell suspensions and wheat spike tissue. Subsequently, we demonstrated that TAXI-III and XIP-I prevented both the enzyme and host cell death activities of F. graminearum xylanases. In particular, we showed that the enzymatic inhibition by TAXI-III and XIP-I was competitive and only FGSG_11487 escaped inhibition. The finding that TAXI-III and XIP-I prevented cell death activity of heat inactivated xylanases and that XIP-I precluded the cell death activity of FGSG_11487 - even if XIP-I does not inhibit its enzyme activity - suggests that the catalytic and the cell death activities are separated features of these xylanases. Finally, the efficacy of TAXI-III or XIP-I to prevent host cell death caused by xylanases was confirmed in transgenic plants expressing separately these inhibitors, suggesting that the XIs could limit F. graminearum infection via direct inhibition of xylanase activity and/or by preventing host cell death. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. An anti-prostate cancer benzofuran-conjugated iridium(III) complex as a dual inhibitor of STAT3 and NF-κB.

    PubMed

    Kang, Tian-Shu; Wang, Wanhe; Zhong, Hai-Jing; Dong, Zhen-Zhen; Huang, Qi; Mok, Simon Wing Fai; Leung, Chung-Hang; Wong, Vincent Kam Wai; Ma, Dik-Lung

    2017-06-28

    Four benzofuran-conjugated iridium(III) or rhodium (III)-based metal complexes are synthesized to screen as an inhibitor of STAT3 activity in prostate cancer cells. All complexes show the high stability and solubility in the biological system. In this study, an iridium(III) complex engages STAT3 and NF-κB to inhibit their translocation and transcriptional activities. Moreover, complex 1 shows more potential antiproliferative activity against DU145 cells and suppresses tumor growth in a prostate cancer xenograft mouse without observable adverse effects. Complex 1 may provide the basis for developing new therapeutic strategy in vivo and in vitro for the treatment of advanced prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Defining the role of a FYVE domain in the localization and activity of a cAMP phosphodiesterase implicated in osmoregulation in Trypanosoma cruzi

    PubMed Central

    Schoijet, Alejandra C.; Miranda, Kildare; Medeiros, Lia Carolina Soares; de Souza, Wanderley; Flawiá, Mirtha M.; Torres, Héctor N.; Pignataro, Omar P.; Docampo, Roberto; Alonso, Guillermo D.

    2010-01-01

    Summary Intracellular levels of cyclic nucleotide second messengers are regulated predominantly by a large superfamily of phosphodiesterases. Trypanosoma cruzi, the causative agent of Chagas disease, encodes four different phosphodiesterase (PDE) families. One of these PDEs, T. cruzi phosphodiesterase C2 (TcrPDEC2) has been characterized as a FYVE-domain containing protein. Here, we report a novel role for TcrPDEC2 in osmoregulation in T. cruzi and reveal the relevance of its FYVE domain. Our data show that treatment of epimastigotes with TcrPDEC2 inhibitors improves their regulatory volume decrease, whereas cells overexpressing this enzyme are unaffected by the same inhibitors. Consistent with these results, TcrPDEC2 localizes to the contractile vacuole complex, showing strong labeling in the region corresponding to the spongiome. Furthermore, transgenic parasites overexpressing a truncated version of TcrPDEC2 without the FYVE domain show a failure in its targeting to the contractile vacuole complex and a marked decrease in phosphodiesterase activity, supporting the importance of this domain to the localization and activity of TcrPDEC2. Taking together, the results here presented are consistent with the importance of the cyclic AMP signaling pathway in regulatory volume decrease and implicate TcrPDEC2 as a specifically localized phosphodiesterase involved in osmoregulation in T. cruzi. PMID:21166893

  9. Phosphodiesterase-5 inhibition suppresses colonic inflammation-induced tumorigenesis via blocking the recruitment of MDSC

    PubMed Central

    Lin, Shiyong; Wang, Jing; Wang, Lihui; Wen, Jing; Guo, Yandong; Qiao, Weiguang; Zhou, Jieqiong; Xu, Guoliang; Zhi, Fachao

    2017-01-01

    Phosphodiesterase 5 (PDE-5) is a major isoform of cGMP phosphodiesterase in diverse tissues and plays a critical role in regulating intracellular cGMP concentrations. However, the distribution and expression of PDE-5 in colitis-related colon cancer was still unclear, not even the function and mechanism. Western blotting and ELISA were performed to detect colonic PDE-5 expression in AOM/DSS-induced tumorigenesis model. Sildenafil, a specific PDE-5 inhibitor, was used to treat AOM/DSS-induced and AOM-induced colonic tumorigenesis model and DSS-induced colitis model. The leukocyte infiltration in colonic tissue was examined by flow cytometry and immunofluorescence staining. Further matrigel-based invasion assay was employed to determine the effects of Sildenafil on myeloid-derived suppressor cell (MDSC) in vitro. We first demonstrated the upregulation of colonic PDE-5 expression and the prevention role of PDE-5 inhibition in AOM/DSS-induced tumorigenesis model. More importantly, PDE-5 inhibitor Sildenafil inhibited colonic tumorigenesis dependent on inflammation and suppressed DSS-induced colitis. Molecular mechanism investigation indicated that Sildenafil regulated inflammation microenvironment via directly inhibiting MDSC infiltration in colonic tissue. The study provides solid evidence for the use of PDE-5 inhibitor in preventing and treating colonic inflammation-related tumorigenesis. PMID:28123846

  10. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Bales, Kelly R.; Plath, Niels; Svenstrup, Niels; Menniti, Frank S.

    Alzheimer's Disease (AD) is a disease of synaptic dysfunction that ultimately proceeds to neuronal death. There is a wealth of evidence that indicates the final common mediator of this neurotoxic process is the formation and actions on synaptotoxic b-amyloid (Aβ). The premise in this review is that synaptic dysfunction may also be an initiating factor in for AD and promote synaptotoxic Aβ formation. This latter hypothesis is consistent with the fact that the most common risk factors for AD, apolipoprotein E (ApoE) allele status, age, education, and fitness, encompass suboptimal synaptic function. Thus, the synaptic dysfunction in AD may be both cause and effect, and remediating synaptic dysfunction in AD may have acute effects on the symptoms present at the initiation of therapy and also slow disease progression. The cyclic nucleotide (cAMP and cGMP) signaling systems are intimately involved in the regulation of synaptic homeostasis. The phosphodiesterases (PDEs) are a superfamily of enzymes that critically regulate spatial and temporal aspects of cyclic nucleotide signaling through metabolic inactivation of cAMP and cGMP. Thus, targeting the PDEs to promote improved synaptic function, or 'synaptic resilience', may be an effective and facile approach to new symptomatic and disease modifying therapies for AD. There continues to be a significant drug discovery effort aimed at discovering PDE inhibitors to treat a variety of neuropsychiatric disorders. Here we review the current status of those efforts as they relate to potential new therapies for AD.

  11. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells.

    PubMed

    Höllerhage, Matthias; Moebius, Claudia; Melms, Johannes; Chiu, Wei-Hua; Goebel, Joachim N; Chakroun, Tasnim; Koeglsperger, Thomas; Oertel, Wolfgang H; Rösler, Thomas W; Bickle, Marc; Höglinger, Günter U

    2017-09-13

    α-synuclein-induced neurotoxicity is a core pathogenic event in neurodegenerative synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. There is currently no disease-modifying therapy available for these diseases. We screened 1,600 FDA-approved drugs for their efficacy to protect LUHMES cells from degeneration induced by wild-type α-synuclein and identified dipyridamole, a non-selective phosphodiesterase inhibitor, as top hit. Systematic analysis of other phosphodiesterase inhibitors identified a specific phosphodiesterase 1 inhibitor as most potent to rescue from α-synuclein toxicity. Protection was mediated by an increase of cGMP and associated with the reduction of a specific α-synuclein oligomeric species. RNA interference experiments confirmed PDE1A and to a smaller extent PDE1C as molecular targets accounting for the protective efficacy. PDE1 inhibition also rescued dopaminergic neurons from wild-type α-synuclein induced degeneration in the substantia nigra of mice. In conclusion, this work identifies inhibition of PDE1A in particular as promising target for neuroprotective treatment of synucleinopathies.

  12. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    NASA Astrophysics Data System (ADS)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  13. Effects of alkyl substituents of xanthine on phosphodiesterase isoenzymes.

    PubMed

    Miyamoto, K; Sakai, R; Kurita, M; Ohmae, S; Sanae, F; Sawanishi, H; Hasegawa, T; Takagi, K

    1995-03-01

    The structure-activity relationships of a series of alkylxanthine derivatives were investigated. The partition coefficient of alkylxanthines enlarged with an elongation of the alkyl chain at the 1-, 3-, or 7-position of xanthine. There was a mild correlation between the apparent partition coefficient and the tracheal relaxant activity or the inhibitory activity on phosphodiesterase (PDE) IV isoenzyme, while the tracheal relaxant activity closely correlated with the PDE IV inhibitory activity. Regarding substituents at different positions, the alkylation at the 3-position increased the inhibitory activity on every PDE isoenzyme. The alkylation at the 1-position potentiated the inhibitory activity on PDE IV with the alkyl chain length, but decreased the activities on other PDE isoenzymes. The alkylation at the 7-position was characteristic in its decrease in inhibitory activity on PDE III. These results suggested that the potency of the inhibitory activity of xanthine derivatives on PDE isoenzymes is not dependent simply upon their hydrophobicity but upon change in the affinity for the active sites on PDE isoenzymes by the introduction of the alkyl group at particular positions of the xanthine skeleton.

  14. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    PubMed

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  15. Inhibition of phosphodiesterase-1 attenuates cold-induced pulmonary hypertension.

    PubMed

    Crosswhite, Patrick; Sun, Zhongjie

    2013-03-01

    Chronic exposure to cold caused pulmonary arterial hypertension (cold-induced pulmonary hypertension [CIPH]) and increased phosphodiesterase-1C (PDE-1C) expression in pulmonary arteries (PAs) in rats. The purpose of this study is to investigate a hypothesis that inhibition of PDE-1 would decrease inflammatory infiltrates and superoxide production leading to attenuation of CIPH. Three groups of male rats were exposed to moderate cold (5±1°C) continuously, whereas 3 groups were maintained at room temperature (23.5±1°C, warm; 6 rats/group). After 8-week exposure to cold, 3 groups in each temperature condition received continuous intravenous infusion of 8-isobutyl-methylxanthine (8-IBMX) (PDE-1 inhibitor), apocynin (NADPH oxidase inhibitor) or vehicle, respectively, for 1 week. Cold exposure significantly increased right-ventricular systolic pressure compared with warm groups (33.8±3.2 versus 18.6±0.3 mm Hg), indicating that animals developed CIPH. Notably, treatment with 8-IBMX significantly attenuated the cold-induced increase in right ventricular pressure (23.5±1.8 mm Hg). Cold exposure also caused right-ventricular hypertrophy, whereas 8-IBMX reversed cold-induced right ventricular hypertrophy. Cold exposure increased PDE-1C protein expression, macrophage infiltration, NADPH oxidase activity, and superoxide production in PAs and resulted in PA remodeling. 8-IBMX abolished cold-induced upregulation of PDE-1C in PAs. Interestingly, inhibition of PDE-1 eliminated cold-induced macrophage infiltration, NADPH oxidase activation, and superoxide production in PAs and reversed PA remodeling. Inhibition of NADPH oxidase by apocynin abolished cold-induced superoxide production and attenuated CIPH and PA remodeling. In conclusion, inhibition of PDE-1 attenuated CIPH and reversed cold-induced PA remodeling by suppressing macrophage infiltration and superoxide production, suggesting that upregulation of PDE-1C expression may be involved in the pathogenesis of CIPH.

  16. Effects of pH and inhibitors on the absorption spectrum of cobalt(II)-substituted carbonic anhydrase III from bovine skeletal muscle.

    PubMed

    Engberg, P; Lindskog, S

    1984-05-21

    Bovine apocarbonic anhydrase III has been prepared by incubation with 2-carboxy-1,10-phenanthroline at pH 5.5. The Co(II)-substituted enzyme has been prepared and its absorption spectrum has been studied. The spectrum is nearly pH-independent above pH 6. It is very similar to the high pH spectral forms of Co(II)-carbonic anhydrases I and II. The spectra of complexes with the sulfonamide inhibitor, acetazolamide, and with CN- and NCO - are virtually identical to the spectra of the corresponding complexes with Co(II)-isoenzymes I and II. The spectrum of the N-3 complex indicates that this anion is bound somewhat differently in Co(II) isoenzyme III than in the other Co(II)-substituted isoenzymes.

  17. Phosphodiesterases in endocrine physiology and disease.

    PubMed

    Vezzosi, Delphine; Bertherat, Jérôme

    2011-08-01

    The cAMP-protein kinase A pathway plays a central role in the development and physiology of endocrine tissues. cAMP mediates the intracellular effects of numerous peptide hormones. Various cellular and molecular alterations of the cAMP-signaling pathway have been observed in endocrine diseases. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP levels. Indeed, PDEs are the only known mechanism for inactivation of cAMP by catalysis to 5'-AMP. It has been suggested that disruption of PDEs could also have a role in the pathogenesis of many endocrine diseases. This review summarizes the most recent advances concerning the role of the PDEs in the physiopathology of endocrine diseases. The potential significance of this knowledge can be easily envisaged by the development of drugs targeting specific PDEs.

  18. Antithrombin III, but not C1 esterase inhibitor reduces inflammatory response in lipopolysaccharide-stimulated human monocytes in an ex-vivo whole blood setting.

    PubMed

    Kellner, Patrick; Nestler, Frank; Leimert, Anja; Bucher, Michael; Czeslick, Elke; Sablotzki, Armin; Raspè, Christoph

    2014-12-01

    In order to examine the immunomodulatory effects of antithrombin III (AT-III) and C1 esterase inhibitor (C1-INH) in human monocytes, we investigated the intracellular expression of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α in an ex-vivo laboratory study in a whole blood setting. Heparinized whole blood samples from 23 healthy male and female volunteers (mean age: 27±7years) were pre-incubated with clinically relevant concentrations of AT-III (n=11) and C1-INH (n=12), then stimulated with 0.2 ng/mL lipopolysaccharide (LPS) for 3h. After phenotyping CD14⁺ monocytes, intracellular expression of IL-6, IL-8, and TNF-α was assessed using flow cytometry. In addition, 12 whole blood samples (AT-III and C1-INH, n=6 each) were examined using hirudin for anticoagulation; all samples were processed in the same way. To exclude cytotoxicity effects, 7-amino-actinomycin D and Nonidet P40 staining were used to investigate probes. This study is the first to demonstrate the influence of C1-INH and AT-III on the monocytic inflammatory response in a whole blood setting, which mimics the optimal physiological setting. Cells treated with AT-III exhibited significant downregulation of the proportion of gated CD14⁺ monocytes for IL-6 and IL-8, in a dose-dependent manner; downregulation for TNF-α did not reach statistical significance. There were no significant effects on mean fluorescence intensity (MFI). In contrast, C1-INH did not significantly reduce the proportion of gated CD14⁺ monocytes or the MFI regarding IL-6, TNF-α, and IL-8. When using hirudin for anticoagulation, no difference in the anti-inflammatory properties of AT-III and C1-INH in monocytes occurs. Taken together, in contrast to TNF-α, IL-6 and IL-8 were significantly downregulated in monocytes in an ex-vivo setting of human whole blood when treated with AT-III. This finding implicates monocytes as an important point of action regarding the anti-inflammatory properties of AT-III in sepsis. C1

  19. Cross-talk between glucagon- and adenosine-mediated signalling systems in rat hepatocytes: effects on cyclic AMP-phosphodiesterase activity.

    PubMed Central

    Robles-Flores, M; Allende, G; Piña, E; García-Sáinz, J A

    1995-01-01

    The effect of adenosine analogues on glucagon-stimulated cyclic AMP accumulation in rat hepatocytes was explored. N6-Cyclopentyladenosine (CPA), 5'-N-ethylcarboxamidoadenosine and N6-(R-phenylisopropyl)adenosine inhibited in a dose-dependent manner the cyclic AMP accumulation induced by glucagon. This effect seems to be mediated through A1 adenosine receptors. Pertussis toxin completely abolished the effect of CPA on glucagon-stimulated cyclic AMP accumulation in whole cells which suggested that a pertussis-toxin-sensitive G-protein was involved. On the other hand, this action of adenosine analogues on glucagon-induced cyclic AMP accumulation was reverted by the selective low-Km cyclic AMP-phosphodiesterase inhibitor Ro 20-1724. Analysis of cyclic AMP-phosphodiesterase activity in purified hepatocyte plasma membranes showed that glucagon in the presence of GTP inhibited basal PDE activity by 45% and that CPA reverted this inhibition in dose-dependent manner. In membranes derived from pertussis-toxin-treated rats, we observed no inhibition of cyclic AMP-phosphodiesterase activity by glucagon in the absence or presence of CPA. Our results indicate that in hepatocyte plasma membranes, stimulation of adenylate cyclase activity and inhibition of a low-Km cyclic AMP phosphodiesterase activity are co-ordinately regulated by glucagon, and that A1 adenosine receptors can inhibit glucagon-stimulated cyclic AMP accumulation by blocking glucagon's effect on phosphodiesterase activity. Images Figure 2 PMID:8554517

  20. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice.

    PubMed

    Tavares, Luciana P; Garcia, Cristiana C; Vago, Juliana P; Queiroz-Junior, Celso M; Galvão, Izabela; David, Bruna A; Rachid, Milene A; Silva, Patrícia M R; Russo, Remo C; Teixeira, Mauro M; Sousa, Lirlândia P

    2016-07-01

    Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases.

  1. Burkholderia pseudomallei Type III Secretion System Cluster 3 ATPase BsaS, a Chemotherapeutic Target for Small-Molecule ATPase Inhibitors

    PubMed Central

    Gong, Lan; Lai, Shu-Chin; Treerat, Puthayalai; Prescott, Mark; Adler, Ben

    2015-01-01

    Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis. PMID:25605762

  2. The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei

    PubMed Central

    Zoraghi, Roya; Seebeck, Thomas

    2002-01-01

    Chemotherapy of human sleeping sickness, a fatal disease caused by the protozoan parasite Trypanosoma brucei, is in a dismal state, and the identification and characterization of new drug targets is an urgent prerequisite for an improvement of the dramatic situation in the field. Over the last several years, inhibitors of cyclic nucleotide-specific phosphodiesterases have proven to be highly successful drug candidates for an assortment of clinical conditions. Their potential as antiparasitic drugs has not been explored so far. This study reports the characterization of a cAMP-specific phosphodiesterase from T. brucei, TbPDE2C. This enzyme is a class I phosphodiesterase, and it is a member of a small enzyme family in T. brucei, TbPDE2. Inhibitors of this enzyme block the proliferation of bloodstream form trypanosomes in culture. RNA interference experiments demonstrated that the TbPDE2 family, and in particular TbPDE2C, are essential for maintaining intracellular cAMP concentrations within a physiological range. Bloodstream form trypanosomes are exquisitely sensitive to elevated concentrations of intracellular cAMP, and a disruption of TbPDE2C function quickly leads to the disruption of nuclear and cellular cell division, and to cell death. TbPDE2C might represent a novel drug target for the development of new and effective trypanocidal drugs. PMID:11930001

  3. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.

    PubMed

    Ekinci, Derya; Karagoz, Lutfi; Ekinci, Deniz; Senturk, Murat; Supuran, Claudiu T

    2013-04-01

    A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with K(I)-s in the range of 2.2-12.8 μM, hCA II with K(I)-s in the range of 0.74-6.2 μM, bCA III with K(I)-s in the range of 2.2-21.3 μM, and hCA IV with inhibition constants in the range of 4.4-15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.

  4. Characterization of nineteen antimony(III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase.

    PubMed

    Karacan, Mehmet Sayım; Rodionova, Margarita V; Tunç, Turgay; Venedik, Kübra Begüm; Mamaş, Serhat; Shitov, Alexandr V; Zharmukhamedov, Sergei K; Klimov, Vyacheslav V; Karacan, Nurcan; Allakhverdiev, Suleyman I

    2016-12-01

    Nineteen antimony(III) complexes were obtained and examined as possible herbicides. Six of these were synthesized for the first time, and their structures were identified using elemental analyses, (1)H-NMR, (13)C-NMR, FTIR, LCMS, magnetic susceptibility, and conductivity measurement techniques. For the nineteen examined antimony(III) complexes their most-stable forms were determined by DFT/B3LYP/LanL2DZ calculation method. These compounds were examined for effects on photosynthetic electron transfer and carbonic anhydrase activity of photosystem II, and glutathione reductase from chloroplast as well were investigated. Our results indicated that all antimony(III) complexes inhibited glutathione reductase activity of chloroplast. A number of these also exhibited good inhibitory efficiency of the photosynthetic and carbonic anhydrase activity of Photosystem II.

  5. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal.

    PubMed

    Barraud, Nicolas; Schleheck, David; Klebensberger, Janosch; Webb, Jeremy S; Hassett, Daniel J; Rice, Scott A; Kjelleberg, Staffan

    2009-12-01

    Bacteria in biofilms often undergo active dispersal events and revert to a free-swimming, planktonic state to complete the biofilm life cycle. The signaling molecule nitric oxide (NO) was previously found to trigger biofilm dispersal in the opportunistic pathogen Pseudomonas aeruginosa at low, nontoxic concentrations (N. Barraud, D. J. Hassett, S. H. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188:7344-7353, 2006). NO was further shown to increase cell motility and susceptibility to antimicrobials. Recently, numerous studies revealed that increased degradation of the secondary messenger cyclic di-GMP (c-di-GMP) by specific phosphodiesterases (PDEs) triggers a planktonic mode of growth in eubacteria. In this study, the potential link between NO and c-di-GMP signaling was investigated by performing (i) PDE inhibitor studies, (ii) enzymatic assays to measure PDE activity, and (iii) direct quantification of intracellular c-di-GMP levels. The results suggest a role for c-di-GMP signaling in triggering the biofilm dispersal event induced by NO, as dispersal requires PDE activity and addition of NO stimulates PDE and induces the concomitant decrease in intracellular c-di-GMP levels in P. aeruginosa. Furthermore, gene expression studies indicated global responses to low, nontoxic levels of NO in P. aeruginosa biofilms, including upregulation of genes involved in motility and energy metabolism and downregulation of adhesins and virulence factors. Finally, site-directed mutagenesis of candidate genes and physiological characterization of the corresponding mutant strains uncovered that the chemotaxis transducer BdlA is involved in the biofilm dispersal response induced by NO.

  6. Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders.

    PubMed

    Sharma, Sorabh; Kumar, Kushal; Deshmukh, Rahul; Sharma, Pyare Lal

    2013-08-15

    Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.

  7. ABCD of the phosphodiesterase family: interaction and differential activity in COPD

    PubMed Central

    Halpin, David MG

    2008-01-01

    Phosphodiesterases (PDEs) are important enzymes that hydrolyze the cyclic nucleotides adenosine 3′5′-cyclic monophosphate (cAMP) and guanosine 3′5′-cyclic mono-phosphate (cGMP) to their inactive 5′ monophosphates. They are highly conserved across species and as well as their role in signal termination, they also have a vital role in intracellular localization of cyclic nucleotide signaling and integration of the cyclic nucleotide pathways with other signaling pathways. Because of their pivotal role in intracellular signaling, they are now of considerable interest as therapeutic targets in a wide variety diseases, including COPD where PDE inhibitors may have bronchodilator, anti-inflammatory and pulmonary vasodilator actions. This review examines the diversity and cellular localization of the isoforms of PDE, the known and speculative relevance of this to the treatment of COPD, and the range of PDE inhibitors in development together with a discussion of their possible role in treating COPD. PMID:19281073

  8. Regulation of Adrenal Steroidogenesis by the High-affinity Phosphodiesterase 8 Family

    PubMed Central

    Tsai, L-C. L.; Beavo, J. A.

    2014-01-01

    The main function of cyclic AMP phosphodiesterases (PDEs) is to degrade cAMP, a ubiquitous second messenger. Therefore, PDEs can function as prime regulators of cAMP/PKA-dependent processes such as steroidogenesis. Until recently, the roles of the PDE8 family have been largely unexplored, presumably due to the lack of a selective inhibitor. This review focuses on recent reports about the regulatory roles of the PDE8 family in adrenal steroidogenesis, as well as the inhibitory properties and specificity of a new PDE8-selective inhibitor, PF-04957325. We also describe a method of measuring urinary corticosterone levels in vivo as a minimally invasive way of monitoring the stress level in a mouse. PMID:22903278

  9. Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the group-III autoinducing peptide.

    PubMed

    Tal-Gan, Yftah; Stacy, Danielle M; Foegen, Mary K; Koenig, David W; Blackwell, Helen E

    2013-05-29

    Methods to intercept bacterial quorum sensing (QS) have attracted significant attention as potential anti-infective therapies. Staphylococcus aureus is a major human pathogen that utilizes autoinducing peptide (AIP) signals to mediate QS and thereby regulate virulence. S. aureus strains are categorized into four groups (I-IV) according to their AIP signal and cognate extracellular receptor, AgrC. Each group is associated with a certain disease profile, and S. aureus group-III strains are responsible for toxic shock syndrome and have been underestimated in other infections to date. A limited set of non-native AIP analogs have been shown to inhibit AgrC receptors; such compounds represent promising tools to study QS pathways in S. aureus . We seek to expand this set of chemical probes and report herein the first design, synthesis, and biological testing of AIP-III mimetics. A set of non-native peptides was identified that can inhibit all four of the AgrC receptors (I-IV) with picomolar IC50 values in reporter strains. These analogs also blocked hemolysis by wild-type S. aureus group I-IV strains-a virulence trait under the control of QS-at picomolar concentrations. Moreover, four of the lead AgrC inhibitors were capable of attenuating the production of toxic shock syndrome toxin-1 (also under the control of QS) by over 80% at nanomolar concentrations in a wild-type S. aureus group-III strain. These peptides represent, to our knowledge, the most potent synthetic inhibitors of QS in S. aureus known, and constitute new and readily accessible chemical tools for the study of the AgrC system and virulence in this deadly pathogen.

  10. Discovery of Plant Phenolic Compounds That Act as Type III Secretion System Inhibitors or Inducers of the Fire Blight Pathogen, Erwinia amylovora

    PubMed Central

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan

    2013-01-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens. PMID:23770912

  11. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    PubMed

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  12. Plasminogen activator inhibitor-1 polymorphisms (-844 G>A and HindIII C>G) in systemic lupus erythematosus: association with clinical variables.

    PubMed

    Padilla-Gutiérrez, Jorge Ramón; Palafox-Sánchez, Claudia Azucena; Valle, Yeminia; Orozco-Barocio, Gerardo; Oregón-Romero, Edith; Vázquez-Del Mercado, Mónica; Rangel-Villalobos, Héctor; Llamas-Covarrubias, Mara Anaís; Muñoz-Valle, José Francisco

    2011-03-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the presence of autoantibodies against nuclear autoantigens as well as cytoplasmic and circulating proteins. Recent studies have demonstrated mechanisms responsible for modulation of the immune response by the plasminogen activator inhibitor-1 (PAI-1). Furthermore, the endogenous PAI-1 has shown to promote a Th2 immune response. We assessed the -844 G>A and HindIII C>G PAI-1 polymorphisms in SLE. In a case-control study of 71 SLE patients classified according to ACR criteria and 71 healthy subjects (HS). The A allele of -844 PAI-1 polymorphism showed a significant difference in SLE patients (41%) when compared with HS (27%) [P = 0.01; OR = 1.8, 95%, CI = 1.1-3.0]. In addition, the -844 G>A PAI-1 polymorphism was associated with increased risk for SLE in a dominant genetic model (G/G vs. G/A + A/A; OR = 2.3, 95% CI = 1.14-4.44). Also, anti-RNP positive antibodies in SLE were associated with G/G -844 PAI-1 genotype. The HindIII polymorphism did not show any differences. The haplotype analysis showed that the AC haplotype confers susceptibility to SLE (OR = 3.1, 95% CI, 1.45-6.52; P = 0.003). The AC haplotype of the -844 and HindIII PAI-1 polymorphism might be an additional susceptibility factor to SLE in Mexicans.

  13. Upregulation of Phosphodiesterase type 5 in the Hyperplastic Prostate

    PubMed Central

    Zhang, Wenhao; Zang, Ning; Jiang, Yaoming; Chen, Ping; Wang, Xinghuan; Zhang, Xinhua

    2015-01-01

    Both erectile dysfunction (ED) and lower urinary tract symptoms (LUTS)/benign prostatic hyperplasia (BPH) are common in the aging male. Numerous clinical trials have demonstrated the efficacy and safety of phosphodiesterase type 5 inhibitors (PDE5-Is) for treating LUTS/BPH with/without ED. However, the influence of BPH on prostatic PDE5 expression has never been studied. A testosterone-induced rat model of BPH was developed and human hyperplastic prostate specimens were harvested during cystoprostatectomy. PDE5, nNOS, eNOS and α1-adrenoreceptor subtypes (α1aARs, α1bARs and α1dARs) were determined with real-time RT-PCR for rat tissues whilst PDE5 and α1-adrenoreceptor subtypes were determined in human samples. PDE5 was further analyzed with Western-blot and histological examination. Serum testosterone was measured with ELISA. The rat BPH model was validated as having a significantly enlarged prostate. PDE5 localized mainly in fibromuscular stroma in prostate. Our data showed a significant and previously undocumented upregulation of PDE5 in both rat and human BPH, along with increased expression of nNOS and α1dARs for rat tissues and α1aARs for human BPH. The upregulation of PDE5 in the hyperplastic prostate could explain the mechanism and contribute to the high effectiveness of PDE5-Is for treating LUTS/BPH. Fibromuscular stroma could be the main target for PDE5-Is within prostate. PMID:26657792

  14. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    PubMed

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  15. Detergents stabilize the conformation of phosphodiesterase 6.

    PubMed

    Baker, Bo Y; Palczewski, Krzysztof

    2011-11-08

    Membrane-bound phosphodiesterase 6 (PDE6) plays an important role in visual signal transduction by regulating cGMP levels in rod photoreceptor cells. Our understanding of PDE6 catalysis and structure suffers from inadequate characterization of the α and β subunit catalytic core, interactions of the core with two intrinsically disordered, proteolysis-prone inhibitory PDEγ (Pγ) subunits, and binding of two types of isoprenyl-binding protein δ, called PrBP/δ, to the isoprenylated C-termini of the catalytic core. Structural studies of native PDE6 have been also been hampered by the lack of a heterologous expression system for the holoenzyme. In this work, we purified PDE6 in the presence of PrBP/δ and screened for additives and detergents that selectively suppress PDE6 basal activity while sparing that of the trypsin-activated enzyme. Some detergents removed PrBP/δ from the PDE complex, separating it from the holoenzyme after PDE6 purification. Additionally, selected detergents also significantly reduced the level of dissociation of PDE6 subunits, increasing their homogeneity and stabilizing the holoenzyme by substituting for its native membrane environment.

  16. Alterations of Phosphodiesterases in Adrenocortical Tumors

    PubMed Central

    Hannah-Shmouni, Fady; Faucz, Fabio R.; Stratakis, Constantine A.

    2016-01-01

    Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs. PMID:27625633

  17. Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition.

    PubMed

    McGirr, Alexander; Lipina, Tatiana V; Mun, Ho-Suk; Georgiou, John; Al-Amri, Ahmed H; Ng, Enoch; Zhai, Dongxu; Elliott, Christina; Cameron, Ryan T; Mullins, Jonathan G L; Liu, Fang; Baillie, George S; Clapcote, Steven J; Roder, John C

    2016-03-01

    Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modeling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4B(Y358C) mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioral assays, PDE4B(Y358C) mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4B(Y358C) mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 h, was decreased at 7 days in PDE4B(Y358C) mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signaling by PDE4B in a very late phase of consolidation. No effect of the PDE4B(Y358C) mutation was observed in the prepulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory.

  18. DETERMINATION OF CORROSION INHIBITOR CRITERIA FOR TYPE III/IIIA TANKS DURING SALT DISSOLUTION OPERATIONS INTERIM REPORT

    SciTech Connect

    Counts, K; Bruce Wiersma, B; John Mickalonis, J

    2007-12-31

    Preparation of high level waste for vitrification involves in part the dissolution of salt cake from the carbon steel storage tanks. During dissolution, a point is reached in which the corrosion inhibitors, hydroxide and nitrite, are diluted below established guidelines, and nitrate stress corrosion cracking (SCC) is possible. Because the addition of inhibitors may be counterproductive to process efficiency and waste minimization, corrosion testing was initiated to revisit and possibly revise the guidelines for inhibitor limits. The bases for the work summarized in this status report are results from previously-completed phases of study. In the first two phases of study, several reduced-inhibitor levels were tested in HLW simulants with nitrate concentrations ranging from 4.5 M to 8.5 M. The first two phases of work determined, among other things, the reduced-inhibitor levels and solution chemistries in which heat-treated and non-heat-treated A537 carbon steel is susceptible to SCC, crevice corrosion, and pitting. The work covered in this current task both builds on and verifies the conclusions of the previous work. The current work involves testing of low levels of inhibitors in HLW simulants with 5.5 M to 8.5 M nitrate concentrations. Stressed U-bend specimens, both polarized and non-polarized, were tested. Non-polarized U-bend testing is ongoing, with the U-bends currently in test for 100 days. The purpose of the testing is to determine SCC susceptibility in the vapor space (VS) and liquid air interface (LAI) regions of the HLW tanks under conditions expected during salt dissolution, and also to verify previous accelerated testing. The simulated wastes being tested have nitrate concentrations of 5.5 M and 8.5 M and inhibitor levels of 0.01 M/0.01 M hydroxide/nitrite and 0.1 M/ 0.1 M hydroxide/nitrite. The open circuit potential measurements being monitored and the corrosion morphology of the U-bends are in agreement with results and observations of previous

  19. Stimulation of Neural Stem Cell Proliferation by Inhibition of Phosphodiesterase 5

    PubMed Central

    Santos, Ana I.; Carreira, Bruno P.; Nobre, Rui J.; Carvalho, Caetana M.; Araújo, Inês M.

    2014-01-01

    The involvement of nitric oxide (NO) and cyclic GMP (cGMP) in neurogenesis has been progressively unmasked over the last decade. Phosphodiesterase 5 (PDE5) specifically degrades cGMP and is highly abundant in the mammalian brain. Inhibition of cGMP hydrolysis by blocking PDE5 is a possible strategy to enhance the first step of neurogenesis, proliferation of neural stem cells (NSC). In this work, we have studied the effect on cell proliferation of 3 inhibitors with different selectivity and potency for PDE5, T0156, sildenafil, and zaprinast, using subventricular zone-(SVZ-) derived NSC cultures. We observed that a short- (6 h) or a long-term (24 h) treatment with PDE5 inhibitors increased SVZ-derived NSC proliferation. Cell proliferation induced by PDE5 inhibitors was dependent on the activation of the mitogen-activated protein kinase (MAPK) and was abolished by inhibitors of MAPK signaling, soluble guanylyl cyclase, and protein kinase G. Moreover, sildenafil neither activated ERK1/2 nor altered p27Kip1 levels, suggesting the involvement of pathways different from those activated by T0156 or zaprinast. In agreement with the present results, PDE5 inhibitors may be an interesting therapeutic approach for enhancing the proliferation stage of adult neurogenesis. PMID:24550991

  20. Lower urinary tract symptoms/benign prostatic hypertrophy and vascular function: Role of the nitric oxide-phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate pathway.

    PubMed

    Higashi, Yukihito

    2017-03-22

    It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the

  1. Phosphodiesterases as Therapeutic Targets for Alzheimer's Disease

    PubMed Central

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia among the elderly. In AD patients, memory loss is accompanied by the formation of beta-amyloid plaques and the appearance of tau in a pathological form. Given the lack of effective treatments for AD, the development of new management strategies for these patients is critical. The continued failure to find effective therapies using molecules aimed at addressing the anti-beta amyloid pathology has led researchers to focus on other non-amyloid-based approaches to restore memory function. Promising non-amyloid related candidate targets include phosphosdiesterases (PDEs), and indeed, Rolipram, a specific PDE4 inhibitor, was the first compound found to effectively restore cognitive deficits in animal models of AD. More recently, PDE5 inhibitors have also been shown to effectively restore memory function. Accordingly, inhibitors of other members of the PDE family may also improve memory performance in AD and non-AD animal models. Hence, in this review, we will summarize the data supporting the use of PDE inhibitors as cognitive enhancers and we will discuss the possible mechanisms of action underlying these effects. We shall also adopt a medicinal chemistry perspective that leads us to propose the most promising PDE candidates on the basis of inhibitor selectivity, brain distribution, and mechanism of action. PMID:23173065

  2. Enantiomer Discrimintation Illustrated by the High Resolution Crystal Structures of Type 4 Phosphodiesterase

    SciTech Connect

    Huai,Q.; Sun, Y.; Wang, H.; MacDonald, D.; Aspiotis, R.; Robinson, H.; Huang, Z.; Ke, H.

    2006-01-01

    Type 4 phosphodiesterase (PDE4) inhibitors are emerging as new treatments for a number of disorders including asthma and chronic obstructive pulmonary disease. Here we report the biochemical characterization on the second generation inhibitor (+)-1 (L-869298, IC50 = 0.4 nM) and its enantiomer (-)-1 (L-869299, IC50 = 43 nM) and their cocrystal structures with PDE4D at 2.0 Angstroms resolution. Despite the 107-fold affinity difference, both enantiomers interact with the same sets of residues in the rigid active site. The weaker (-)-1 adopts an unfavorable conformation to preserve the pivotal interactions between the Mg-bound waters and the N-oxide of pyridine. These structures support a model in which inhibitors are anchored by the invariant glutamine at one end and the metal-pocket residues at another end. This model provides explanations for most of the observed structure-activity relationship and the metal ion dependency of the catechol-ether based inhibitors and should facilitate their further design.

  3. Enantiomer discrimination illustrated by high resolution crystal structures of type 4 phosphodiesterase

    PubMed Central

    Huai, Qing; Sun, Yingjie; Wang, Huanchen; Macdonald, Dwight; Aspiotis, Renée; Robinson, Howard; Huang, Zheng; Ke, Hengming

    2008-01-01

    Type 4 phosphodiesterase (PDE4) inhibitors are emerging new treatment for a number of disorders including asthma and chronic obstructive pulmonary disease. Here we report the biochemical characterization on the second generation inhibitor (+)-1 (L-869298, IC50 = 0.4 nM) and its enantiomer (−)-1 (L-869299, IC50 = 43 nM), and their co-crystal structures with PDE4D at 2.0 Å resolution. In spite of the 107-fold affinity difference, both enantiomers interact with the same sets of residues in the rigid active site. The weaker (−)-1 adopts an unfavorable conformation in order to preserve the pivotal interactions between the Mg-bound waters and N-oxide of pyridine. These structures support a model in which inhibitors are anchored by the invariant glutamine at one end and the metal-pocket residues at another end. This model provides explanation for most of the observed structure-activity relationship and the metal ion dependency of the catechol-ether based inhibitors and should facilitate their further design. PMID:16539372

  4. Synthesis of potent inhibitors of β-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents.

    PubMed

    Liu, Yan; Zhong, Wu; Li, Rui-Juan; Li, Song

    2012-04-25

    Mycobacterium tuberculosis FabH, an essential enzyme in the mycolic acid biosynthetic pathway, is an attractive target for novel anti-tubercolosis agents. Structure-based design and synthesis of 1-(4-carboxybutyl)-4-(4-(substituted benzyloxy)phenyl)-1H-pyrrole-2-carboxylic acid derivatives 7a-h, a subset of eight potential FabH inhibitors, is described in this paper. The Vilsmeier-Haack reaction was employed as a key step. The structures of all the newly synthesized compounds were identified by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and HRMS. The alamarBlue™ microassay was employed to evaluate the compounds 7a-h against Mycobacterium tuberculosis H₃₇Rv. The results demonstrate that the compound 7d possesses good in vitro antimycobacterial activity against Mycobacterium tuberculosis H₃₇Rv (Minimum Inhibitory Concentration value [MIC], 12.5 µg/mL).These compounds may prove useful in the discovery and development of new anti-tuberculosis drugs.

  5. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice.

    PubMed

    Seimetz, Michael; Parajuli, Nirmal; Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.

  6. Multiple Conformations of Phosphodiesterase-5: Implications for Enzyme Function and Drug Developement

    SciTech Connect

    Wang,H.; Liu, Y.; Huai, Q.; Cai, J.; Zoraghi, R.; Francis, S.; Corbin, J.; Robinson, H.; Xin, Z.; et al.

    2006-01-01

    Phosphodiesterase-5 (PDE5) is the target for sildenafil, vardenafil, and tadalafil, which are drugs for treatment of erectile dysfunction and pulmonary hypertension. We report here the crystal structures of a fully active catalytic domain of unliganded PDE5A1 and its complexes with sildenafil or icarisid II. These structures together with the PDE5A1-isobutyl-1-methylxanthine complex show that the H-loop (residues 660-683) at the active site of PDE5A1 has four different conformations and migrates 7 to 35 Angstroms upon inhibitor binding. In addition, the conformation of sildenafil reported herein differs significantly from those in the previous structures of chimerically hybridized or almost inactive PDE5. Mutagenesis and kinetic analyses confirm that the H-loop is particularly important for substrate recognition and that invariant Gly659 which immediately precedes the H-loop is critical for optimal substrate affinity and catalytic activity.

  7. Intrinsic sex-specific differences in microvascular endothelial cell phosphodiesterases.

    PubMed

    Wang, Jianjie; Bingaman, Susan; Huxley, Virginia H

    2010-04-01

    The importance of gonadal hormones in the regulation of vascular function has been documented. An alternate and essential contribution of the sex chromosomes to sex differences in vascular function is poorly understood. We reported previously sex differences in microvessel permeability (P(s)) responses to adenosine that were mediated by the cAMP signaling pathway (Wang J, PhD thesis, 2005; Wang J and Huxley V, Proceedings of the VIII World Congress of Microcirculation, 2007; Wang J and Huxley VH, Am J Physiol Heart Circ Physiol 291: H3094-H3105, 2006). The two cyclic nucleotides, cAMP and cGMP, central to the regulation of vascular barrier integrity, are hydrolyzed by phosphodiesterases (PDE). We hypothesized that microvascular endothelial cells (EC) would retain intrinsic and inheritable sexually dimorphic genes with respect to the PDEs modulating EC barrier function. Primary cultured microvascular EC from skeletal muscles isolated from male and female rats, respectively, were used. SRY (a sex-determining region Y gene) mRNA expression was observed exclusively in male, not female, cells. The predominant isoform among PDE1-5, present in both XY and XX EC, was PDE4. Expression mRNA levels of PDE1A (male > female) and PDE3B (male < female) were sex dependent; PDE2A, PDE4D, and PDE5A were sex independent. Barrier function, P(s), was determined from measures of albumin flux across confluent primary cultured microvessel XY and XX EC monolayers. Consistent with intact in situ microvessels, basal monolayer P(s) did not differ between XY (1.7 +/- 0.2 x 10(-6) cm/s; n = 8) and XX (1.8 +/- 0.1 x 10(-6) cm/s; n = 10) EC. Cilostazol, a PDE3 inhibitor, reduced (11%, P < 0.05) P(s) in XX, not XY, cells. These findings demonstrate the presence and maintenance of intrinsic sex-related differences in gene expression and cellular phenotype by microvascular EC in a gonadal-hormone-free environment. Furthermore, intrinsic cell-sex likely contributes significantly to sexual dimorphism

  8. Intrinsic sex-specific differences in microvascular endothelial cell phosphodiesterases

    PubMed Central

    Bingaman, Susan; Huxley, Virginia H.

    2010-01-01

    The importance of gonadal hormones in the regulation of vascular function has been documented. An alternate and essential contribution of the sex chromosomes to sex differences in vascular function is poorly understood. We reported previously sex differences in microvessel permeability (Ps) responses to adenosine that were mediated by the cAMP signaling pathway (Wang J, PhD thesis, 2005; Wang J and Huxley V, Proceedings of the VIII World Congress of Microcirculation, 2007; Wang J and Huxley VH, Am J Physiol Heart Circ Physiol 291: H3094–H3105, 2006). The two cyclic nucleotides, cAMP and cGMP, central to the regulation of vascular barrier integrity, are hydrolyzed by phosphodiesterases (PDE). We hypothesized that microvascular endothelial cells (EC) would retain intrinsic and inheritable sexually dimorphic genes with respect to the PDEs modulating EC barrier function. Primary cultured microvascular EC from skeletal muscles isolated from male and female rats, respectively, were used. SRY (a sex-determining region Y gene) mRNA expression was observed exclusively in male, not female, cells. The predominant isoform among PDE1–5, present in both XY and XX EC, was PDE4. Expression mRNA levels of PDE1A (male > female) and PDE3B (male < female) were sex dependent; PDE2A, PDE4D, and PDE5A were sex independent. Barrier function, Ps, was determined from measures of albumin flux across confluent primary cultured microvessel XY and XX EC monolayers. Consistent with intact in situ microvessels, basal monolayer Ps did not differ between XY (1.7 ± 0.2 × 10−6 cm/s; n = 8) and XX (1.8 ± 0.1 × 10−6 cm/s; n = 10) EC. Cilostazol, a PDE3 inhibitor, reduced (11%, P < 0.05) Ps in XX, not XY, cells. These findings demonstrate the presence and maintenance of intrinsic sex-related differences in gene expression and cellular phenotype by microvascular EC in a gonadal-hormone-free environment. Furthermore, intrinsic cell-sex likely contributes significantly to sexual dimorphism in

  9. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1).

    PubMed

    Kakkar, R; Raju, R V; Sharma, R K

    1999-07-01

    Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1) is one of the key enzymes involved in the complex interactions between the cyclic nucleotide and Ca2+ second messenger systems. Currently, three genes encode PDE1, and alternate splicing of these genes gives rise to functionally different isozymes which exhibit distinct catalytic and regulatory properties. Some isozymes have similar kinetic and immunological properties but are differentially regulated by Ca2+ and calmodulin. These isozymes also differ in their mechanism of regulation by phosphorylation. Analysis of various regulatory reactions involving Ca2+ and cyclic adenosine monophosphate (cAMP) has revealed the importance of the time dependence of these reactions during cell activation; however, no measurement is available for the time of occurrence of specific regulatory reactions. cAMP-signalling systems provide a pivotal centre for achieving crosstalk regulation by various signalling pathways. It has been proposed that polypeptide sequences enriched in proline (P), glutamate (E), serine (S) and threonine (T), known as PEST motifs, serve as putative intramolecular signals for rapid proteolytic degradation by calpains. Calpains are Ca(2+)-dependent cysteine proteases that regulate various enzymes, transcription factors and structural proteins through limited proteolysis. Isozyme PDE1A2 has a PEST motif and acts as a substrate for m-calpain. In this paper, we have described PDE1A2 regulation by calpains and its physiological implications. cAMP is an important component of the signal transduction pathway and plays an integral role in various physiological processes such as gene transcription, various neuronal functions, cardiac muscle contraction, vascular relaxation, cell proliferation and a host of other functions. It is important to identify the cellular processes where PDE isoform(s) and cAMP response are altered. This will lead to better understanding of the pathology of disease states

  10. Bacterial Cyclic AMP-Phosphodiesterase Activity Coordinates Biofilm Formation

    PubMed Central

    Kalivoda, Eric J.; Brothers, Kimberly M.; Stella, Nicholas A.; Schmitt, Matthew J.; Shanks, Robert M. Q.

    2013-01-01

    Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3′,5′-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation. PMID:23923059

  11. Alkaline ribonuclease and phosphodiesterase activity in rat liver plasma membranes

    PubMed Central

    Prospero, Terence D.; Burge, Malcolm L. E.; Norris, Kenneth A.; Hinton, Richard H.; Reid, Eric

    1973-01-01

    The ribonuclease and phosphodiesterase activities of rat liver plasma membranes, purified from the crude nuclear fraction by centrifugation in an A-XII zonal rotor and flotation, were examined and compared. The plasma membrane is responsible for between 65 and 90% of the phosphodiesterase activity of the cell and between 25 and 30% of the particulate ribonuclease activity measured at pH8.7 in the presence of 7.5mm-MgCl2. Both enzymes were most active between pH8.5 and 8.9. Close to the pH optimum, both enzymes were more active in Tris buffer than in Bicine or glycine buffer. Both plasma-membrane phosphodiesterase and ribonuclease were strongly activated by Mg2+, there being at least a 12-fold difference between the activity in the presence of Mg2+ and of EDTA. There is, however, a difference in the response of the enzymes to Mg2+ and EDTA in that the phosphodiesterase is fully activated by 1.0mm-MgCl2 and fully inhibited by 1.0mm-EDTA, whereas the ribonuclease requires 7.5mm-MgCl2 for full activation and 5mm-EDTA for full inhibition. Density-gradient centrifugation has indicated that on solubilization in Triton X-100 most of the ribonuclease activity is released into a small fragment of the same size as that containing the phosphodiesterase activity. The relationship between the two activities is discussed in view of these results. PMID:4353377

  12. Repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities in Neurospora crassa.

    PubMed Central

    Hasunuma, K

    1983-01-01

    Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media. Images PMID:6311798

  13. Modulation of cardiac Ca(V)1.2 channels by dihydropyridine and phosphatase inhibitor requires Ser-1142 in the domain III pore loop.

    PubMed

    Erxleben, Christian; Gomez-Alegria, Claudio; Darden, Thomas; Mori, Yasuo; Birnbaumer, Lutz; Armstrong, David L

    2003-03-04

    Dihydropyridine-sensitive, voltage-activated calcium channels respond to membrane depolarization with two distinct modes of activity: short bursts of very short openings (mode 1) or repetitive openings of much longer duration (mode 2). Here we show that both the dihydropyridine, BayK8644 (BayK), and the inhibitor of SerThr protein phosphatases, okadaic acid, have identical effects on the gating of the recombinant cardiac calcium channel, Ca(V)1.2 (alpha(1)C). Each produced identical mode 2 gating in cell-attached patches, and each prevented rundown of channel activity when the membrane patch was excised into ATP-free solutions. These effects required Ser or Thr at position 1142 in the domain III pore loop between transmembrane segments S5 and S6, where dihydropyridines bind to the channel. Mutation of Ser-1142 to Ala or Cys produced channels with very low activity that could not be modulated by either BayK or okadaic acid. A molecular model of Ca(V)1.2 indicates that Ser-1142 is unlikely to be phosphorylated, and thus we conclude that BayK binding stabilizes mode 2 gating allosterically by either protecting a phospho Ser/Thr on the alpha(1)C subunit or mimicking phosphorylation at that site.

  14. In Vivo Anti-HIV Activity of the Heparin-Activated Serine Protease Inhibitor Antithrombin III Encapsulated in Lymph-Targeting Immunoliposomes

    PubMed Central

    Asmal, Mohammed; Whitney, James B.; Luedemann, Corinne; Carville, Angela; Steen, Robert; Letvin, Norman L.; Geiben-Lynn, Ralf

    2012-01-01

    Endogenous serine protease inhibitors (serpins) are anti-inflammatory mediators with multiple biologic functions. Several serpins have been reported to modulate HIV pathogenesis, or exhibit potent anti-HIV activity in vitro, but the efficacy of serpins as therapeutic agents for HIV in vivo has not yet been demonstrated. In the present study, we show that heparin-activated antithrombin III (hep-ATIII), a member of the serpin family, significantly inhibits lentiviral replication in a non-human primate model. We further demonstrate greater than one log10 reduction in plasma viremia in the nonhuman primate system by loading of hep-ATIII into anti-HLA-DR immunoliposomes, which target tissue reservoirs of viral replication. We also demonstrate the utility of hep-ATIIII as a potential salvage agent for HIV strains resistant to standard anti-retroviral treatment. Finally, we applied gene-expression arrays to analyze hep-ATIII-induced host cell interactomes and found that downstream of hep-ATIII, two independent gene networks were modulated by host factors prostaglandin synthetase-2, ERK1/2 and NFκB. Ultimately, understanding how serpins, such as hep-ATIII, regulate host responses during HIV infection may reveal new avenues for therapeutic intervention. PMID:23133620

  15. A phase I/II study of the pan Bcl-2 inhibitor obatoclax mesylate plus bortezomib for relapsed or refractory mantle cell lymphoma.

    PubMed

    Goy, André; Hernandez-Ilzaliturri, Francisco J; Kahl, Brad; Ford, Peggy; Protomastro, Ewelina; Berger, Mark

    2014-12-01

    Obatoclax, a BH3 mimetic inhibitor of anti-apoptotic Bcl-2 proteins, demonstrates synergy with bortezomib in preclinical models of mantle cell lymphoma (MCL). This phase I/II study assessed obatoclax plus bortezomib in patients with relapsed/refractory MCL. Twenty-three patients received obatoclax 30 or 45 mg plus bortezomib 1.0 or 1.3 mg/m(2), administered intravenously on days 1, 4, 8 and 11 of a 21-day cycle. In phase I, the combination was feasible at all doses. Obatoclax 45 mg plus bortezomib 1.3 mg/m(2) was selected for phase II study. Common adverse events were somnolence (87%), fatigue (61%) and euphoric mood (57%), all primarily grade 1/2. Grade 3/4 events included thrombocytopenia (21%), anemia (13%) and fatigue (13%). Objective responses occurred in 4/13 (31%) evaluable patients (three complete and one partial response). Six patients (46%) had stable disease lasting ≥ 8 weeks. Obatoclax plus bortezomib was feasible, but the synergy demonstrated in preclinical models was not confirmed.

  16. Valproic Acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid Cancer: Results of a Multicenter Randomized Controlled Phase II/III Trial

    PubMed Central

    Pugliese, Mariateresa; Gallo, Marco; Brignardello, Enrico; Milla, Paola; Orlandi, Fabio; Limone, Paolo Piero; Arvat, Emanuela; Boccuzzi, Giuseppe; Piovesan, Alessandro

    2016-01-01

    Anaplastic thyroid cancer (ATC) has a median survival less than 5 months and, to date, no effective therapy exists. Taxanes have recently been stated as the main drug treatment for ATC, and the histone deacetylase inhibitor valproic acid efficiently potentiates the effects of paclitaxel in vitro. Based on these data, this trial assessed the efficacy and safety of the combination of paclitaxel and valproic acid for the treatment of ATC. This was a randomized, controlled phase II/III trial, performed on 25 ATC patients across 5 centers in northwest Italy. The experimental arm received the combination of paclitaxel (80 mg/m2/weekly) and valproic acid (1,000 mg/day); the control arm received paclitaxel alone. Overall survival and disease progression, evaluated in terms of progression-free survival, were the primary outcomes. The secondary outcome was the pharmacokinetics of paclitaxel. The coadministration of valproic acid did not influence the pharmacokinetics of paclitaxel. Neither median survival nor median time to progression was statistically different in the two arms. Median survival of operated-on patients was significantly better than that of patients who were not operated on. The present trial demonstrates that the addition of valproic acid to paclitaxel has no effect on overall survival and disease progression of ATC patients. This trial is registered with EudraCT 2008-005221-11. PMID:27766105

  17. Competition studies in horse spleen ferritin probed by a kinetically inert inhibitor, [Cr(TREN)(H(2)O)(OH)](2+), and a highly luminescent Tb(III) reagent.

    PubMed

    Barnés, Carmen M; Petoud, Stéphane; Cohen, Seth M; Raymond, Kenneth N

    2003-01-01

    The ability of ferritin as an Fe(II) detoxifier and Fe(III) storage protein is limited by its ability to recognize and incorporate Fe(II), which is then oxidized and mineralized at internal protein sites. The Cr(III) amine complex [Cr(N(CH(2)CH(2)NH(2))(3)(H(2)O)(OH)](2+) [abbreviated as Cr(TREN)] is a kinetically inert inhibitor of iron incorporation and mineralization in ferritin. Unlike other inhibitors, Cr(TREN) can only exchange its two aqua/hydroxy ligands. Competition studies between Cr(TREN) and Tb(III) binding have been performed in horse spleen ferritin (HoSF) to probe uptake of Fe(II). From these studies, we propose that Cr(TREN) inhibits Fe(II) uptake by obstructing the routes of metal uptake and by disrupting the early recognition events at the protein surface that precede metal ion uptake. Using an improved luminescence approach to quantify Tb(III) binding to the protein, we demonstrate that Tb(III) cannot interfere with Cr(TREN) binding to ferritin, but that Cr(TREN) dramatically inhibits Tb(III) binding. We show that bound Tb(III) serves as a reliable reporter for Cr(TREN) binding, as the latter efficiently quenches the Tb(III) luminescence via inter-ion energy transfer. Two types of Cr(TREN) binding sites were successfully distinguished from these competition experiments. A common Tb(III)/Cr(TREN) site was identified with stoichiometry of approximately 0.6 equivalents of metal cation per ferritin subunit. We propose that the sites along the three-fold channels and the ferroxidase sites are common binding sites for Tb(III) and Cr(TREN). The remaining Cr(TREN) (2.4 equivalents of metal ions/subunit) does not compete with Tb(III) but rather blocks Tb(III) access into the cavity and decreases the protein's affinity for Tb(III).

  18. Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate.

    PubMed Central

    Rezende, A A; Pizauro, J M; Ciancaglini, P; Leone, F A

    1994-01-01

    Phosphodiesterase activity is a novel property of the still-enigmatic alkaline phosphatase from osseous plate. Bis-(p-nitrophenyl) phosphate was hydrolysed at both pH 7.5 and 9.4 with an apparent dissociation constant (K0.5) of 1.9 mM and 3.9 mM respectively. The hydrolysis of p-nitrophenyl-5'-thymidine phosphate followed hyberbolic kinetics with a K0.5 of 500 microM. For p-nitrophenyl phenylphosphonate, site-site interactions [Hill coefficient (h) = 1.3] were observed in the range between 0.2 and 100 microM, and K0.5 was 32.8 mM. The hydrolysis of cyclic AMP by the enzyme followed more complex kinetics, showing site-site interactions (h = 1.7) and K0.5 = 300 microM for high-affinity sites. The low-affinity sites, representing 85% of total activity, also showed site-site interactions (h = 3.8) and a K0.5 of about 22 mM. ATP and cyclic AMP were competitive inhibitors of bis-(p-nitrophenyl) phosphatase activity of the enzyme and Ki values (25 mM and 0.6 mM for cyclic AMP and ATP respectively) very close to those of the K0.5 (22 mM and 0.7 mM for cyclic AMP and ATP respectively), determined by direct assay, indicated that a single catalytic site was responsible for the hydrolysis of both substrates. Non-denaturing PAGE of detergent-solubilized enzyme showed coincident bands on the gel for phosphomonohydrolase and phosphodiesterase activities. Additional evidence for a single catalytic site was the similar pKa values (8.5 and 9.7) found for the two ionizing groups participating in the hydrolysis of bis-(p-nitrophenyl) phosphate and p-nitrophenyl phosphate. The alkaline apparent pH optima, the requirement for bivalent metal ions and the inhibition by methylxanthines, amrinone and amiloride demonstrated that rat osseous-plate alkaline phosphatase was a type I phosphodiesterase. Considering that there is still confusion as to which is the physiological substrate for the enzyme, the present results describing a novel property for this enzyme could be of relevance in

  19. NMR studies of internal dynamics of serine proteinase protein inhibitors: Binding region mobilities of intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor (CMTI)-III of the squash family and comparison with those of counterparts of CMTI-V of the potato I family.

    PubMed Central

    Liu, J.; Gong, Y.; Prakash, O.; Wen, L.; Lee, I.; Huang, J. K.; Krishnamoorthi, R.

    1998-01-01

    Serine proteinase protein inhibitors follow the standard mechanism of inhibition (Laskowski M Jr, Kato I, 1980, Annu Rev Biochem 49:593-626), whereby an enzyme-catalyzed equilibrium between intact (I) and reactive-site hydrolyzed inhibitor (I*) is reached. The hydrolysis constant, Khyd, is defined as [I*]/[I]. Here, we explore the role of internal dynamics in the resynthesis of the scissile bond by comparing the internal mobility data of intact and cleaved inhibitors belonging to two different families. The inhibitors studied are recombinant Cucurbita maxima trypsin inhibitor III (rCMTI-III; Mr 3 kDa) of the squash family and rCMTI-V (Mr approximately 7 kDa) of the potato I family. These two inhibitors have different binding loop-scaffold interactions and different Khyd values--2.4 (CMTI-III) and 9 (CMTI-V)--at 25 degrees C. The reactive-site peptide bond (P1-P1') is that between Arg5 and Ile6 in CMTI-III, and that between Lys44 and Asp45 in CMTI-V. The order parameters (S2) of backbone NHs of uniformly 15N-labeled rCMTI-III and rCMTI-III* were determined from measurements of 15N spin-lattice and spin-spin relaxation rates, and [1H]-15N steady-state heteronuclear Overhauser effects, using the model-free formalism, and compared with the data reported previously for rCMTI-V and rCMTI-V*. The backbones of rCMTI-III [(S2) = 0.71] and rCMTI-III* [(S2) = 0.63] are more flexible than those of rCMTI-V [(S2) = 0.83] and rCMTI-V* [(S2) = 0.85]. The binding loop residues, P4-P1, in the two proteins show the following average order parameters: 0.57 (rCMTI-III) and 0.44 (rCMTI-III*); 0.70 (rCMTI-V) and 0.40 (rCMTI-V*). The P1'-P4' residues, on the other hand, are associated with (S2) values of 0.56 (rCMTI-III) and 0.47 (rCMTI-III*); and 0.73 (rCMTI-V) and 0.83 (rCMTI-V*). The newly formed C-terminal (Pn residues) gains a smaller magnitude of flexibility in rCMTI-III* due to the Cys3-Cys20 crosslink. In contrast, the newly formed N-terminal (Pn' residues) becomes more flexible

  20. Phosphodiesterase isozymes involved in regulating acid secretion in the isolated mouse stomach.

    PubMed

    Okuda, S; Honda, M; Ito, Y; Aihara, E; Kato, S; Mitsufuji, S; Yoshikawa, T; Takeuchi, K

    2009-12-01

    The effect of subtype-selective phosphodiesterase (PDE) inhibitors on acid secretion was examined in mouse stomachs to investigate which PDE isozymes are involved in the local regulation of this secretion. Male DDY mice were used after 18 h fasting. An isolated stomach was incubated in an organ bath containing buffered solution gassed with 95% O(2)/5% CO(2), while the lumen was perfused with unbuffered solution gassed with 100% O(2). Acid secretion was measured at pH 5.4 using a pH-stat method. Histamine or pituitary adenylate cyclase activating polypeptide (PACAP) was added to the serosal solution. PDE inhibitors were added to the serosal solution 30 min before histamine or PACAP. The secretion of acid in the isolated stomach was increased by histamine or PACAP, and these responses were totally inhibited by famotidine. IBMX alone increased basal acid secretion and significantly enhanced the acid responses to histamine and PACAP. Among the PDE inhibitors tested, only rolipram (PDE4 inhibitor) significantly increased basal acid secretion and potentiated the acid responses to histamine and PACAP. The latter peptide increased histamine release into the medium, and this response was also enhanced by rolipram. Furthermore, rolipram significantly increased cAMP production induced in the isolated stomach by histamine and PACAP. These results suggest that PDE4 is involved in the local regulation of gastric acid secretion via the degradation of cAMP and that the PDE4 inhibitor rolipram increases the secretion of acid by potentiating acid production in parietal cells and enhancing histamine release from enterochromaffin-like cells.

  1. Phosphodiesterase7 Inhibition Activates Adult Neurogenesis in Hippocampus and Subventricular Zone In Vitro and In Vivo.

    PubMed

    Morales-Garcia, Jose A; Echeverry-Alzate, Victor; Alonso-Gil, Sandra; Sanz-SanCristobal, Marina; Lopez-Moreno, Jose A; Gil, Carmen; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2017-02-01

    The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472. © 2016 AlphaMed Press.

  2. Biochemical evidence for an ecto alkaline phosphodiesterase I in human airways.

    PubMed

    Picher, M; Boucher, R C

    2000-08-01

    Because dinucleotides are signaling molecules that can interact with cell surface receptors and regulate the rate of mucociliary clearance in lungs, we studied their metabolism by using human airway epithelial cells. A membrane-bound enzyme was detected on the mucosal surface of polarized epithelia that metabolized dinucleotides with a broad substrate specificity (diadenosine polyphosphates and diuridine polyphosphates [Up(n)U], n = 2 to 6). The enzymatic reaction yielded nucleoside monophosphates (NMP) and Np(n)(-)(1) (N = A or U), and was inhibited by nucleoside 5'-triphosphates (alpha,betamet adenosine triphosphate [ATP] > ATP >/= uridine triphosphate > guanidine triphosphate > cytidine triphosphate). The apparent Michaelis constant (K(m,app)) and apparent maximal velocity (V(max,app)) for [(3)H]Up(4)U were 22 +/- 4 microM and 0.24 +/- 0.05 nmoles. min(-)(1). cm(-)(2), respectively. Thymidine 5'-monophosphate p-nitrophenyl ester and adenosine diphosphate (ADP)- ribose, substrates of ecto alkaline phosphodiesterase I (PDE I) activities, were also hydrolyzed by the apical surface of airway epithelia. ADP-ribose competed with [(3)H]Up(4)U, with a K(i) of 23 +/- 3 microM. The metabolism of ADP-ribose and Ap(4)A was not affected by inhibitors of cyclic nucleotide phosphodiesterases (3-isobutyl-1-methylxanthine, Ro 20-1724, and 1,3-dipropyl-8-p-sulfophenylxanthine), but similarly inhibited by fluoride and N-ethylmaleimide. These results suggest that a PDE I is responsible for the hydrolysis of extracellular dinucleotides in human airways. The wide substrate specificity of PDE I suggests that it may be involved in several signaling events on the luminal surface of airway epithelia, including purinoceptor activation and cell surface protein ribosylation.

  3. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol

    SciTech Connect

    Srisomsap, C.; Richardson, K.L.; Jay, J.C.; Marchase, R.B. )

    1989-12-05

    UDP-glucose:glycoprotein glucose-1-phosphotransferase (Glc-phosphotransferase) catalyzes the transfer of alpha-Glc-1-P from UDP-Glc to mannose residues on acceptor glycoproteins. The predominant acceptor for this transfer in both mammalian cells and Paramecium is a cytoplasmic glycoprotein of 62-63 kDa. When cytoplasmic proteins from rat liver were fractionated by preparative isoelectric focusing following incubation of a liver homogenate with the 35S-labeled phosphorothioate analogue of UDP-Glc ((beta-35S)UDP-Glc), the acceptor was found to have a pI of about 6.0. This fraction, when not labeled prior to the focusing, became very heavily labeled when mixed with (beta-35S). UDP-Glc and intact liver microsomes, a rich source of the Glc-phosphotransferase. In addition, it was observed that the isoelectric fractions of the cytosol having pI values of 2-3.2 contained a degradative activity, alpha-Glc-1-P phosphodiesterase, that was capable of removing alpha-Glc-1-P, monitored through radioactive labeling both in the sugar and the phosphate, as an intact unit from the 62-kDa acceptor. Identification of the product of this cleavage was substantiated by its partial transformation to UDP-Glc in the presence of UTP and UDP-Glc pyrophosphorylase. The alpha-Glc-1-P phosphodiesterase had a pH optimum of 7.5 and was not effectively inhibited by any of the potential biochemical inhibitors that were tested. Specificity for the Glc-alpha-1-P-6-Man diester was suggested by the diesterase's inability to degrade UDP-Glc or glucosylphosphoryldolichol. This enzyme may be important in the regulation of secretion since the alpha-Glc-1-P present on the 62-kDa phosphoglycoprotein appears to be removed and then rapidly replaced in response to secretagogue.

  4. Population Pharmacokinetic Analysis of Ixazomib, an Oral Proteasome Inhibitor, Including Data from the Phase III TOURMALINE-MM1 Study to Inform Labelling.

    PubMed

    Gupta, Neeraj; Diderichsen, Paul M; Hanley, Michael J; Berg, Deborah; van de Velde, Helgi; Harvey, R Donald; Venkatakrishnan, Karthik

    2017-03-13

    Ixazomib is an oral proteasome inhibitor, approved in USA, Canada, Australia and Europe in combination with lenalidomide and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy. We report a population pharmacokinetic model-based analysis for ixazomib that was pivotal in describing the clinical pharmacokinetics of ixazomib, to inform product labelling. Plasma concentration-time data were collected from 755 patients who received oral or intravenous ixazomib in once- or twice-weekly schedules in ten trials, including the global phase III TOURMALINE-MM1 study. Data were analysed using nonlinear mixed-effects modelling (NONMEM software version 7.2, ICON Development Solutions, Hanover, MD, USA). Ixazomib plasma concentrations from intravenous and oral studies were described by a three-compartment model with linear distribution and elimination kinetics, including first-order linear absorption with a lag time describing the oral dose data. Body surface area on the volume of the second peripheral compartment was the only covariate included in the final model. None of the additional covariates tested including body surface area (1.2-2.7 m(2)), sex, age (23-91 years), race, mild/moderate renal impairment and mild hepatic impairment were found to impact systemic clearance, suggesting that no dose adjustment is required based on these covariates. The geometric mean terminal disposition phase half-life was 9.5 days, steady-state volume of distribution was 543 L and systemic clearance was 1.86 L/h. The absolute bioavailability of an oral dose was estimated to be 58%.

  5. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2)

    PubMed Central

    Pommier, Yves; Huang, Shar-yin N.; Gao, Rui; Das, Benu Brata; Murai, Junko; Marchand, Christophe

    2014-01-01

    TDP1 and TDP2 were discovered and named based on the fact they process 3′- and 5′-DNA ends by excising irreversible protein tyrosyl-DNA complexes involving topoisomerases I and II, respectively. Yet, both enzymes have an extended spectrum of activities. TDP1 not only excises trapped topoisomerases I (Top1 in the nucleus and Top1mt in mitochondria), but also repairs oxidative damage-induced 3′-phosphoglycolates and alkylation damage-induced DNA breaks, and excises chain terminating anticancer and antiviral nucleosides in the nucleus and mitochondria. The repair function of TDP2 is devoted to the excision of topoisomerase II- and potentially topoisomerases III-DNA adducts. TDP2 is also essential for the life cycle of picornaviruses (important human and bovine pathogens) as it unlinks VPg proteins from the 5′-end of the viral RNA genome. Moreover, TDP2 has been involved in signal transduction (under the former names of TTRAP or EAPII). The DNA repair partners of TDP1 include PARP1, XRCC1, ligase III and PNKP from the base excision repair (BER) pathway. By contrast, TDP2 repair functions are coordinated with Ku and ligase IV in the non-homologous end joining pathway (NHEJ). This article summarizes and compares the biochemistry, functions, and post-translational regulation of TDP1 and TDP2, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents. We discuss the rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors (topotecan, irinotecan, doxorubicin, etoposide, mitoxantrone) and DNA damaging agents (temozolomide, bleomycin, cytarabine, and ionizing radiation), and as novel antiviral agents. PMID:24856239

  6. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity

    PubMed Central

    Brescia, Marcella; Zaccolo, Manuela

    2016-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are the only enzymes that degrade the cyclic nucleotides cAMP and cGMP, and play a key role in modulating the amplitude and duration of the signal delivered by these two key intracellular second messengers. Defects in cyclic nucleotide signalling are known to be involved in several pathologies. As a consequence, PDEs have long been recognized as potential drug targets, and they have been the focus of intense research for the development of therapeutic agents. A number of PDE inhibitors are currently available for the treatment of disease, including obstructive pulmonary disease, erectile dysfunction, and heart failure. However, the performance of these drugs is not always satisfactory, due to a lack of PDE-isoform specificity and their consequent adverse side effects. Recent advances in our understanding of compartmentalised cyclic nucleotide signalling and the role of PDEs in local regulation of cAMP and cGMP signals offers the opportunity for the development of novel strategies for therapeutic intervention that may overcome the current limitation of conventional PDE inhibitors. PMID:27706091

  7. Phosphodiesterase Inhibition Rescues Chronic Cognitive Deficits Induced by Traumatic Brain Injury

    PubMed Central

    Titus, David J.; Sakurai, Atsushi; Kang, Yuan; Furones, Concepcion; Jergova, Stanislava; Santos, Rosmery; Sick, Thomas J.; Atkins, Coleen M.

    2013-01-01

    Traumatic brain injury (TBI) modulates several cell signaling pathways in the hippocampus critical for memory formation. Previous studies have found that the cAMP-protein kinase A signaling pathway is downregulated after TBI and that treatment with a phosphodiesterase (PDE) 4 inhibitor rolipram rescues the decrease in cAMP. In the present study, we examined the effect of rolipram on TBI-induced cognitive impairments. At 2 weeks after moderate fluid-percussion brain injury or sham surgery, adult male Sprague Dawley rats received vehicle or rolipram (0.03 mg/kg) 30 min before water maze acquisition or cue and contextual fear conditioning. TBI animals treated with rolipram showed a significant improvement in water maze acquisition and retention of both cue and contextual fear conditioning compared with vehicle-treated TBI animals. Cue and contextual fear conditioning significantly increased phosphorylated CREB levels in the hippocampus of sham animals, but not in TBI animals. This deficit in CREB activation during learning was rescued in TBI animals treated with rolipram. Hippocampal long-term potentiation was reduced in TBI animals, and this was also rescued with rolipram treatment. These results indicate that the PDE4 inhibitor rolipram rescues cognitive impairments after TBI, and this may be mediated through increased CREB activation during learning. PMID:23516287

  8. Phosphodiesterase inhibition rescues chronic cognitive deficits induced by traumatic brain injury.

    PubMed

    Titus, David J; Sakurai, Atsushi; Kang, Yuan; Furones, Concepcion; Jergova, Stanislava; Santos, Rosmery; Sick, Thomas J; Atkins, Coleen M

    2013-03-20

    Traumatic brain injury (TBI) modulates several cell signaling pathways in the hippocampus critical for memory formation. Previous studies have found that the cAMP-protein kinase A signaling pathway is downregulated after TBI and that treatment with a phosphodiesterase (PDE) 4 inhibitor rolipram rescues the decrease in cAMP. In the present study, we examined the effect of rolipram on TBI-induced cognitive impairments. At 2 weeks after moderate fluid-percussion brain injury or sham surgery, adult male Sprague Dawley rats received vehicle or rolipram (0.03 mg/kg) 30 min before water maze acquisition or cue and contextual fear conditioning. TBI animals treated with rolipram showed a significant improvement in water maze acquisition and retention of both cue and contextual fear conditioning compared with vehicle-treated TBI animals. Cue and contextual fear conditioning significantly increased phosphorylated CREB levels in the hippocampus of sham animals, but not in TBI animals. This deficit in CREB activation during learning was rescued in TBI animals treated with rolipram. Hippocampal long-term potentiation was reduced in TBI animals, and this was also rescued with rolipram treatment. These results indicate that the PDE4 inhibitor rolipram rescues cognitive impairments after TBI, and this may be mediated through increased CREB activation during learning.

  9. Profiling of functional phosphodiesterase in mesangial cells using a CRE-SEAP-based reporting system.

    PubMed

    Zhu, Ying; Yao, Jian; Meng, Yiman; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Miida, Takashi; Takeda, Masayuki; Okada, Masahiko; Kitamura, Masanori

    2006-07-01

    1. Phosphodiesterases (PDEs) are critically implicated in the regulation of mesangial cell function, but profile of functional PDEs in mesangial cells is still unclear. In this study, we investigated roles of individual PDEs in the regulation of mesangial cell behavior by the cAMP pathway. 2. Reporter mesangial cells that express secreted alkaline phosphatase (SEAP) under the control of the cAMP response element (CRE) were exposed to selective PDE inhibitors in the presence or absence of cAMP, and activity of CRE, expression of CRE-regulated protein, mitogenesis and cell survival were examined. 3. Exposure of reporter cells to cAMP-elevating agents resulted in time- and concentration-dependent activation of CRE. Treatment of the cells with any PDE inhibitors alone did not induce CRE activation. Under stimulation with 8-bromo-cAMP or 8-bromo-cGMP, however, inhibitors of PDE2, PDE3, PDE4 and PDE5 enhanced activation of CRE. Inhibition of PDE1 or PDE6 did not affect the CRE activation. 4. Among different combinations tested, only inhibitors of PDE3 and PDE4 cooperatively increased the level of intracellular cAMP, activity of protein kinase A, activation of CRE, and CRE-regulated protein, connexin43. 5. Concomitant inhibition of PDE3 and PDE4 attenuated mitogen-induced activation of extracellular signal-regulated kinases and cell proliferation. Under serum deprivation, combinational inhibition of PDE3 and PDE4 exclusively caused activation of caspase-3 and apoptosis. 6. The present data elucidated that PDE3 and PDE4 play critical roles in the regulation of mesangial cell function. PDE3 and PDE4 were identified as the novel, antiapoptotic machinery that supports survival of mesangial cells.

  10. Profiling of functional phosphodiesterase in mesangial cells using a CRE-SEAP-based reporting system

    PubMed Central

    Zhu, Ying; Yao, Jian; Meng, Yiman; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Miida, Takashi; Takeda, Masayuki; Okada, Masahiko; Kitamura, Masanori

    2006-01-01

    Phosphodiesterases (PDEs) are critically implicated in the regulation of mesangial cell function, but profile of functional PDEs in mesangial cells is still unclear. In this study, we investigated roles of individual PDEs in the regulation of mesangial cell behavior by the cAMP pathway. Reporter mesangial cells that express secreted alkaline phosphatase (SEAP) under the control of the cAMP response element (CRE) were exposed to selective PDE inhibitors in the presence or absence of cAMP, and activity of CRE, expression of CRE-regulated protein, mitogenesis and cell survival were examined. Exposure of reporter cells to cAMP-elevating agents resulted in time- and concentration-dependent activation of CRE. Treatment of the cells with any PDE inhibitors alone did not induce CRE activation. Under stimulation with 8-bromo-cAMP or 8-bromo-cGMP, however, inhibitors of PDE2, PDE3, PDE4 and PDE5 enhanced activation of CRE. Inhibition of PDE1 or PDE6 did not affect the CRE activation. Among different combinations tested, only inhibitors of PDE3 and PDE4 cooperatively increased the level of intracellular cAMP, activity of protein kinase A, activation of CRE, and CRE-regulated protein, connexin43. Concomitant inhibition of PDE3 and PDE4 attenuated mitogen-induced activation of extracellular signal-regulated kinases and cell proliferation. Under serum deprivation, combinational inhibition of PDE3 and PDE4 exclusively caused activation of caspase-3 and apoptosis. The present data elucidated that PDE3 and PDE4 play critical roles in the regulation of mesangial cell function. PDE3 and PDE4 were identified as the novel, antiapoptotic machinery that supports survival of mesangial cells. PMID:16751794

  11. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system

    PubMed Central

    Kasahara, Masahiro; Suetsugu, Noriyuki; Urano, Yuki; Yamamoto, Chiaki; Ohmori, Mikiya; Takada, Yuki; Okuda, Shujiro; Nishiyama, Tomoaki; Sakayama, Hidetoshi; Kohchi, Takayuki; Takahashi, Fumio

    2016-01-01

    Adenylyl cyclase (AC), which produces the signalling molecule cAMP, has numerous important cellular functions in diverse organisms from prokaryotes to eukaryotes. Here we report the identification and characterization of an AC gene from the liverwort Marchantia polymorpha. The encoded protein has both a C-terminal AC catalytic domain similar to those of class III ACs and an N-terminal cyclic nucleotide phosphodiesterase (PDE) domain that degrades cyclic nucleotides, thus we designated the gene MpCAPE (COMBINED AC with PDE). Biochemical analyses of recombinant proteins showed that MpCAPE has both AC and PDE activities. In MpCAPE-promoter-GUS lines, GUS activity was specifically detected in the male sexual organ, the antheridium, suggesting MpCAPE and thus cAMP signalling may be involved in the male reproductive process. CAPE orthologues are distributed only in basal land plants and charophytes that use motile sperm as the male gamete. CAPE is a subclass of class III AC and may be important in male organ and cell development in basal plants. PMID:27982074

  12. Discovery of imidazo[1,5-a]pyrido[3,2-e]pyrazines as a new class of phosphodiesterase 10A inhibitiors.

    PubMed

    Höfgen, Norbert; Stange, Hans; Schindler, Rudolf; Lankau, Hans-Joachim; Grunwald, Christian; Langen, Barbara; Egerland, Ute; Tremmel, Peter; Pangalos, Menelas N; Marquis, Karen L; Hage, Thorsten; Harrison, Boyd L; Malamas, Michael S; Brandon, Nicholas J; Kronbach, Thomas

    2010-06-10

    Novel imidazo[1,5-a]pyrido[3,2-e]pyrazines have been synthesized and characterized as both potent and selective phosphodiesterase 10A (PDE10A) inhibitors. For in vitro characterization, inhibition of PDE10A mediated cAMP hydrolysis was used and a QSAR model was established to analyze substitution effects. The outcome of this analysis was complemented by the crystal structure of PDE10A in complex with compound 49. Qualitatively new interactions between inhibitor and binding site were found, contrasting with previously published crystal structures of papaverine-like inhibitors. In accordance with the known antipsychotic potential of PDE10A inhibitors, MK-801 induced stereotypy and hyperactivity in rats were reversed by selected compounds. Thus, a promising compound class has been identified for the treatment of schizophrenia that could circumvent side effects connected with current therapies.

  13. Synthesis and Biological Evaluation of Indenoisoquinolines that Inhibit both Tyrosyl-DNA-Phosphodiesterase I (Tdp1) and Topoisomerase I (Top1)

    PubMed Central

    Conda-Sheridan, Martin; Narasimha Reddy, P. V.; Morrell, Andrew; Cobb, Brooklyn T.; Marchand, Christophe; Agama, Keli; Chergui, Adel; Renaud, Amélie; Stephen, Andrew G.; Pommier, Yves; Cushman, Mark

    2013-01-01

    Tyrosyl-DNA-phosphodiesterase I (Tdp1) plays a key role in the repair of damaged DNA resulting from the topoisomerase I (Top1) inhibitor camptothecin and a variety of other DNA-damaging anticancer agents. This report documents the design, synthesis, and evaluation of new indenoisoquinolines that are dual inhibitors of both Tdp1 and Top1. Enzyme inhibitory data and cytotoxicity data from human cancer cell cultures were used to establish structure-activity relationship. The potencies of the indenoisoquinolines against Tdp1 ranged from 5 μM to 111 μM, which places the more active compounds among the most potent known inhibitors of this target. The cytotoxicity mean-graph midpoints ranged from 0.02 to 2.34 μM. Dual Tdp1-Top1 inhibitors are of interest because the Top1 and Tdp1 inhibitory activities could theoretically work synergistically to create more effective anticancer agents. PMID:23259865

  14. Phosphodiesterase-7 inhibition affects accumbal and hypothalamic thyrotropin-releasing hormone expression, feeding and anxiety behavior of rats.

    PubMed

    Valdés-Moreno, M I; Alcántara-Alonso, V; Estrada-Camarena, E; Mengod, G; Amaya, M I; Matamoros-Trejo, G; de Gortari, P

    2017-02-15

    Thyrotropin-releasing hormone (TRH) has anorexigenic and anxiolytic functions when injected intraventricularly. Nucleus accumbens (NAcc) is a possible brain region involved, since it expresses proTRH. TRH from hypothalamic paraventricular nucleus (PVN) has a food intake-regulating role. TRHergic pathways of NAcc and PVN are implicated in anxiety and feeding. Both behaviors depend on cAMP and phosphorylated-cAMP response element binding protein (pCREB) intracellular levels. Intracellular levels of cAMP are controlled by the degrading activity of phosphodiesterases (PDEs). Since TRH transcription is activated by pCREB, a specific inhibitor of PDE7B may regulate TRH-induced effects on anxiety and feeding. We evaluated the effectiveness of an intra-accumbal and intraperitoneal (i.p.) administration of a PDE7 inhibitor (BRL-50481) on rats' anxiety-like behavior and food intake; also on TRH mRNA and protein expression in NAcc and PVN to define its mediating role on the PDE7 inhibitor-induced behavioral changes. Accumbal injection of 4μg/0.3μL of PDE7 inhibitor decreased rats' anxiety. The i.p. injection of 0.2mg/kg of the inhibitor was able to increase the PVN TRH mRNA expression and to decrease feeding but did not change animals' anxiety levels; in contrast, 2mg/kg b.w inhibitor enhanced accumbal TRH mRNA, induced anxiolysis with no change in food intake. PDE7 inhibitor induced anxiolytic and anorexigenic like behavior depending on the dose used. Results supported hypothalamic TRH mediated feeding-reduction effects, and accumbal TRH mediation of inhibitor-induced anxiolysis. Thus, an i.p dose of this inhibitor might be reducing anxiety with no change in feeding, which could be useful for obese patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [Effect of red light on activity of cAMP phosphodiesterases in photoperiodically different cereals and vernalized winter wheat].

    PubMed

    Fedenko, E P; Koksharova, T A

    2007-01-01

    Red light illumination of seedlings of photoperiodically different cereals had a different effect on the activity of multiple cyclic adenosine monophosphate phosphodiesterases. The response of all phosphodiesterase forms was reversed in fully vernalized winter wheat Triticum aestivum L.

  16. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo-controlled, phase III trials.

    PubMed

    Papp, K A; Menter, M A; Abe, M; Elewski, B; Feldman, S R; Gottlieb, A B; Langley, R; Luger, T; Thaci, D; Buonanno, M; Gupta, P; Proulx, J; Lan, S; Wolk, R

    2015-10-01

    Tofacitinib is an oral Janus kinase inhibitor being investigated for psoriasis. To determine the 16-week efficacy and safety of two oral tofacitinib doses vs. placebo in patients with moderate-to-severe chronic plaque psoriasis. Patients in two similarly designed phase III studies (OPT Pivotal 1, NCT01276639, n = 901; OPT Pivotal 2, NCT01309737, n = 960) were initially randomized 2 : 2 : 1 to tofacitinib 10 or 5 mg or placebo, twice daily. Coprimary efficacy end points (week 16) included the proportion of patients achieving Physician's Global Assessment (PGA) of 'clear' or 'almost clear' (PGA response) and the proportion achieving ≥ 75% reduction in Psoriasis Area and Severity Index (PASI 75). Across OPT Pivotal 1 and OPT Pivotal 2, 745 patients received tofacitinib 5 mg, 741 received tofacitinib 10 mg and 373 received placebo. At week 16, a greater proportion of patients achieved PGA responses with tofacitinib 5 and 10 mg twice daily vs. placebo (OPT Pivotal 1, 41·9% and 59·2% vs. 9·0%; OPT Pivotal 2, 46·0% and 59·1% vs. 10·9%; all P < 0·001). Higher PASI 75 rates were observed with tofacitinib vs. placebo (OPT Pivotal 1, 39·9%, 59·2% and 6·2%, respectively, for tofacitinib 5 and 10 mg twice daily and placebo; OPT Pivotal 2, 46·0%, 59·6% and 11·4%; all P < 0·001 vs. placebo). Adverse event (AE) rates appeared generally similar across groups; rates of serious AEs, infections, malignancies and discontinuations due to AEs were low. Twelve patients reported herpes zoster across the tofacitinib treatment groups in both studies vs. none in the respective placebo groups. The most common AE across groups was nasopharyngitis. Oral tofacitinib demonstrated significant efficacy vs. placebo during the initial 16 weeks of treatment in patients with moderate-to-severe psoriasis. Safety findings were consistent with prior studies. © 2015 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of

  17. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice

    PubMed Central

    Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert

    2015-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice. PMID:26058042

  18. Structural and biochemical characterization of a novel Mn2+-dependent phosphodiesterase encoded by the yfcE gene

    PubMed Central

    Miller, Darcie J.; Shuvalova, Ludmilla; Evdokimova, Elena; Savchenko, Alexei; Yakunin, Alexander F.; Anderson, Wayne F.

    2007-01-01

    Escherichia coli YfcE belongs to a conserved protein family within the calcineurin-like phosphoesterase superfamily (Pfam00149) that is widely distributed in bacteria and archaea. Superfamily members are metallophosphatases that include monoesterases and diesterases involved in a variety of cellular functions. YfcE exhibited catalytic activity against bis-p-nitrophenyl phosphate, a general substrate for phosphodiesterases, and had an absolute requirement for Mn2+. However, no activity was observed with phosphodiesters and over 50 naturally occurring phosphomonoesters. The crystal structure of the YfcE phosphodiesterase has been determined to 2.25 Å resolution. YfcE has a β-sandwich architecture similar to metallophosphatases of common ancestral origin. Unlike its more complex homologs that have added structural elements for regulation and substrate recognition, the relatively small 184-amino-acid protein has retained its ancestral simplicity. The tetrameric protein carries two zinc ions per active site from the E. coli extract that reflect the conserved di-Mn2+ active site geometry. A cocrystallized sulfate inhibitor mimics the binding of phosphate moeities in known ligand/phosphatase complexes. Thus, YfcE has a similar active site and biochemical mechanism as well-characterized superfamily members, while the YfcE phosphodiester-containing substrate is unique. PMID:17586769

  19. The association between EGFR variant III, HPV, p16, c-MET, EGFR gene copy number and response to EGFR inhibitors in patients with recurrent or metastatic squamous cell carcinoma of the head and neck

    PubMed Central

    2011-01-01

    Background We examine the potential prognostic and predictive roles of EGFR variant III mutation, EGFR gene copy number (GCN), human papillomavirus (HPV) infection, c-MET and p16INK4A protein expression in recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Methods We analyzed the archival tumor specimens of 53 patients who were treated in 4 phase II trials for R/M SCCHN. Two trials involved the EGFR inhibitor erlotinib, and 2 trials involved non-EGFR targeted agents. EGFRvIII mutation was determined by quantitative RT-PCR, HPV DNA by Linear Array Genotyping, p16 and c-MET protein expression by immunohistochemistry, and EGFR GCN by FISH. Results EGFRvIII mutation, detected in 22 patients (42%), was associated with better disease control, but no difference was seen between erlotinib-treated versus non-erlotinib treated patients. EGFRvIII was not associated with TTP or OS. The presence of HPV DNA (38%), p16 immunostaining (32%), c-MET high expression (58%) and EGFR amplification (27%), were not associated with response, TTP or OS. Conclusion EGFRvIII mutation, present in about 40% of SCCHN, appears to be an unexpected prognostic biomarker associated with better disease control in R/M SCCHN regardless of treatment with erlotinib. Larger prospective studies are required to validate its significance. PMID:21352589

  20. ElaC encodes a novel binuclear zinc phosphodiesterase.

    PubMed

    Vogel, Andreas; Schilling, Oliver; Niecke, Manfred; Bettmer, Jorg; Meyer-Klaucke, Wolfram

    2002-08-09

    ElaC is a widespread gene found in eubacteria, archaebacteria, and mammals with a highly conserved sequence. Two human ElaC variants were recently associated with cancer (Tavtigian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J., and Cannon-Albright, L. A. (2001) Nat. Genet. 27, 172-180; Yanaihara, N., Kohno, T., Takakura, S., Takei, K., Otsuka, A., Sunaga, N., Takahashi, M., Yamazaki, M., Tashiro, H., Fukuzumi, Y., Fujimori, Y., Hagiwara, K., Tanaka, T., and Yokota, J. (2001) Genomics 72, 169-179). Analysis of the primary sequence indicates homology to an arylsulfatase and predicts a metallo-beta-lactamase fold. At present, no ElaC gene product has been investigated. We cloned the Escherichia coli ElaC gene and purified the recombinant gene product. An enzymatic analysis showed that ElaC does not encode an arylsulfatase but rather encodes a phosphodiesterase that hydrolyzes bis(p-nitrophenyl)phosphate with a k(cat) of 59 s(-1) and K' of 4 mm. Kinetic analysis of the dimeric enzyme revealed positive cooperativity for the substrate bis(p-nitrophenyl)phosphate with a Hill coefficient of 1.6, whereas hydrolysis of the substrate thymidine-5'-p-nitrophenyl phosphate followed Michaelis-Menten kinetics. Furthermore, the enzyme is capable of binding two zinc or two iron ions. However, it displays phosphodiesterase activity only in the zinc form. The metal environment characterized by zinc K-edge x-ray absorption spectroscopy was modeled with two histidine residues, one

  1. Phosphodiesterases Regulate BAY 41-2272-Induced VASP Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Adderley, Shaquria P.; Joshi, Chintamani N.; Martin, Danielle N.; Tulis, David Anthony

    2012-01-01

    BAY 41-2272 (BAY), a stimulator of soluble guanylyl cyclase, increases cyclic nucleotides and inhibits proliferation of vascular smooth muscle cells (VSMCs). In this study, we elucidated mechanisms of action of BAY in its regulation of vasodilator-stimulated phosphoprotein (VASP) with an emphasis on VSMC phosphodiesterases (PDEs). BAY alone increased phosphorylation of VASPSer239 and VASPSer157, respective indicators of PKG and PKA signaling. IBMX, a non-selective inhibitor of PDEs, had no effect on BAY-induced phosphorylation at VASPSer239 but inhibited phosphorylation at VASPSer157. Selective inhibitors of PDE3 or PDE4 attenuated BAY-mediated increases at VASPSer239 and VASPSer157, whereas PDE5 inhibition potentiated BAY-mediated increases only at VASPSer157. In comparison, 8Br-cGMP increased phosphorylation at VASPSer239 and VASPSer157 which were not affected by selective PDE inhibitors. In the presence of 8Br-cAMP, inhibition of either PDE4 or PDE5 decreased VASPSer239 phosphorylation and inhibition of PDE3 increased phosphorylation at VASPSer239, while inhibition of PDE3 or PDE4 increased and PDE5 inhibition had no effect on VASPSer157 phosphorylation. These findings demonstrate that BAY operates via cAMP and cGMP along with regulation by PDEs to phosphorylate VASP in VSMCs and that the mechanism of action of BAY in VSMCs is different from that of direct cyclic nucleotide analogs with respect to VASP phosphorylation and the involvement of PDEs. Given a role for VASP as a critical cytoskeletal protein, these findings provide evidence for BAY as a regulator of VSMC growth and a potential therapeutic agent against vasculoproliferative disorders. PMID:22347188

  2. Atrazine Acts as an Endocrine Disrupter by Inhibiting cAMP-specific Phosphodiesterase-4

    PubMed Central

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2014-01-01

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. PMID:23022511

  3. Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity.

    PubMed

    Rouse, Michael; Younès, Antoine; Egan, Josephine M

    2014-11-01

    Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against β-cell dysfunction, we studied their mechanism(s) of action in β-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic β-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic β-cells. In our current study, we found that both RES (0.1-10 μmol/l) and CUR (1-100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating β-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in β-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic β-cell function. © 2014 The authors.

  4. Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages

    PubMed Central

    Yang, Jing-Xing; Hsieh, Kou-Chou; Chen, Yi-Ling; Lee, Chien-Kuo; Conti, Marco; Chuang, Tsung-Hsien; Wu, Chin-Pyng; Jin, S.-L. Catherine

    2017-01-01

    Activation of TLR4 by lipopolysaccharide (LPS) induces both pro-inflammatory and anti-inflammatory cytokine production in macrophages. Type 4 phosphodiesterases (PDE4) are key cAMP-hydrolyzing enzymes, and PDE4 inhibitors are considered as immunosuppressors to various inflammatory responses. We demonstrate here that PDE4 inhibitors enhance the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) secretion in LPS-activated mouse peritoneal macrophages, and this response was regulated at the transcriptional level rather than an increased IL-1Ra mRNA stability. Studies with PDE4-deficient macrophages revealed that the IL-1Ra upregulation elicited by LPS alone is PKA-independent, whereas the rolipram-enhanced response was mediated by inhibition of only PDE4B, one of the three PDE4 isoforms expressed in macrophages, and it requires PKA but not Epac activity. However, both pathways activate CREB to induce IL-1Ra expression. PDE4B ablation also promoted STAT3 phosphorylation (Tyr705) to LPS stimulation, but this STAT3 activation is not entirely responsible for the IL-1Ra upregulation in PDE4B-deficient macrophages. In a model of LPS-induced sepsis, only PDE4B-deficient mice displayed an increased circulating IL-1Ra, suggesting a protective role of PDE4B inactivation in vivo. These findings demonstrate that PDE4B negatively modulates anti-inflammatory cytokine expression in innate immune cells, and selectively targeting PDE4B should retain the therapeutic benefits of nonselective PDE4 inhibitors. PMID:28383060

  5. [Thermostable extracellular cyclic nucleotide phosphodiesterase from Physarum polycephalum plasmodium].

    PubMed

    Nezvetskiĭ, A R; Orlova, T G; Beĭlina, S I; Orlov, N Ia

    2006-01-01

    The cyclic nucleotide phosphodiesterase secreted by Physarum polycephalum plasmodium into extracellular medium has been partially purified by DEAE cellulose chromatography, ultrafiltration, and HPLC. The results obtained by gel filtration, HPLC, electrophoresis, and isoelectric focusing suggest that, the native enzyme in solution is a monomer with a molecular mass of about 90 kDa and pI in the range 3.6 - 4.0. The Km values were estimated to be about 0.9 mM and 7.7 mM, respectively, and Vm for both substrates were similar (up to several thousand micromoles of cAMP hydrolyzed/hour per mg of enzyme). The partially purified enzyme was shown to be extremely stable. It did not lose the activity after heat treatment at 100 degrees C during 30 min. The enzyme was active in the presence of 1% SDS, but it was fully inactivated under the same conditions in the presence of beta-mercaptoethanol. The properties of the phosphodiesterase from Physarum polycephalum are discussed.

  6. Phosphodiesterases and Adrenal Cushing in Mice and Humans

    PubMed Central

    Szarek, E.; Stratakis, C. A.

    2016-01-01

    The majority of benign adrenal cortex lesions leading to Cushing syndrome are associated to one or another abnormality of the cAMP/cGMP-phosphodiesterase signaling pathway. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP/cGMP levels. These second messengers play important regulatory roles in controlling steroidogenesis in the adrenal. Disruption of PDEs has been associated with a number of adrenal diseases. Specifically, genetic mutations have been associated with benign adrenal lesions, leading to Cushing syndrome and/or related adrenal hyperplasias. A Genome Wide Association study, in 2006, led to the identification of mutations in 2 PDE genes: PDE8B and PDE11A; mutations in these 2 genes modulate steroidogenesis. Further human studies have identified PDE2 as also directly regulating steroidogenesis. PDE2 decreases aldosterone production. This review focuses on the most recent knowledge we have gained on PDEs and their association with adrenal steroidogenesis and altered function, through analysis of patient cohorts and what we have learned from mouse studies. PMID:25232906

  7. Determination of phosphodiesterase I activity in human blood serum.

    PubMed

    Hynie, I; Meuffels, M; Poznanski, W J

    1975-09-01

    Phosphodiesterase I (EC 3.1.4.1) activity was detected in normal human blood serum. The enzyme is stable at laboratory temperature for three days, but is inactivated at pH less than 7. The pH for optimum activity increases with the substrate concentration (under the conditions used, from pH 9.0 to 10.2) and, conversely, the Km increases with pH and buffer concentration. The enzyme is inhibited by ethylenediaminetetraacetate but not by phosphate (0.1 mol/liter). We developed a simple quantitative method for its determination, based on hydrolysis of the p-nitrophenyl ester of thymidine 5'-monophosphate and subsequent measurement of the liberated p-nitrophenol at 400 nm in NaOH (0.1 mol/liter). Normal values (mean +/- 2 SD) were determined to be 33 +/- 6.4 U/liter. Preliminary studies indicate that phosphodiesterase I activity is greater than normal in serum of patients with necrotic changes in the liver or kidney or in cases of breast cancer, but not in that of patients with myocardial infarction, bone cancer, lung cancer, or chronic liver cirrhosis.

  8. Purification and characterization of phosphodiesterase from Crotalus venom.

    PubMed

    Philipps, G R

    1975-07-01

    A procedure for the purification of phosphodiesterase from Crotalus venom on DEAE-cellulose at alkaline pH is described. The enzyme gives a single band in polyacrylamide gels and is free of contaminating nucleolytic enzymes. The molecular weight is about 115000. Concentration in an Amicon ultrafiltrator gave a highly concentrated active enzyme. Phosphodiesterase is relatively stable and can be stored at 4 degrees C in the presence of Mg2 and serum albumin for years. For the detection of contaminating endonuclease, an assay was used in which tRNA was the substrate and possible internal breaks were detected in polyacrylamide gel after denaturation. With bis(p-nitrophenyl) phosphate as substrate, 15mM Mg2 was necessary for optimal activity. The reaction remained linear for at least 15 min at 22 degrees C. At 45 degrees C, the liberation of p-nitrophenol was highest within 25 min of incubation. At 75 degrees C, inactivation of the enzyme occurred after 4 min.

  9. Studies on the soluble phosphodiesterases of chicken gizzard smooth muscle.

    PubMed Central

    Birnbaum, R J; Head, J F

    1983-01-01

    In this study we describe the identification of four soluble forms of cyclic nucleotide phosphodiesterase from chicken gizzard smooth muscle. These isoenzymes were separated from one another by ion-exchange chromatography on DEAE-cellulose and by calmodulin-Sepharose affinity chromatography. Each form migrates as a single discrete band when it is electrophoresed on non-denaturing polyacrylamide gels and stained for phosphodiesterase activity. Each form is also eluted as a single peak on gel-permeation chromatography, giving apparent Mr values of 114 000, 116 000, 122 000 and 59 000. All four enzymes have apparent Km values in the 0-20 microM range, although their relative specificities for cyclic AMP and cyclic GMP differ. Two of the forms bind to calmodulin in a Ca2+-dependent manner; however, only one is activated by calmodulin. The interaction of the second calmodulin-binding form with calmodulin is disrupted by the papaverine derivative verapamil without significantly altering the hydrolytic activity of the enzyme. Images Fig. 2. Fig. 4. Fig. 5. PMID:6318728

  10. Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli

    PubMed Central

    Reinders, Alberto; Hee, Chee-Seng; Ozaki, Shogo; Mazur, Adam; Boehm, Alex; Schirmer, Tilman

    2015-01-01

    ABSTRACT Intracellular levels of the bacterial second messenger cyclic di-GMP (c-di-GMP) are controlled by antagonistic activities of diguanylate cyclases and phosphodiesterases. The phosphodiesterase PdeH was identified as a key regulator of motility in Escherichia coli, while deletions of any of the other 12 genes encoding potential phosphodiesterases did not interfere with motility. To analyze the roles of E. coli phosphodiesterases, we demonstrated that most of these proteins are expressed under laboratory conditions. We next isolated suppressor mutations in six phosphodiesterase genes, which reinstate motility in the absence of PdeH by reducing cellular levels of c-di-GMP. Expression of all mutant alleles also led to a reduction of biofilm formation. Thus, all of these proteins are bona fide phosphodiesterases that are capable of interfering with different c-di-GMP-responsive output systems by affecting the global c-di-GMP pool. This argues that E. coli possesses several phosphodiesterases that are inactive under laboratory conditions because they lack appropriate input signals. Finally, one of these phosphodiesterases, PdeL, was studied in more detail. We demonstrated that this protein acts as a transcription factor to control its own expression. Motile suppressor alleles led to a strong increase of PdeL activity and elevated pdeL transcription, suggesting that enzymatic activity and transcriptional control are coupled. In agreement with this, we showed that overall cellular levels of c-di-GMP control pdeL transcription and that this control depends on PdeL itself. We thus propose that PdeL acts both as an enzyme and as a c-di-GMP sensor to couple transcriptional activity to the c-di-GMP status of the cell. IMPORTANCE Most bacteria possess multiple diguanylate cyclases and phosphodiesterases. Genetic studies have proposed that these enzymes show signaling specificity by contributing to distinct cellular processes without much cross talk. Thus, spatial

  11. Overactive Bladder Syndrome and the Potential Role of Prostaglandins and Phosphodiesterases: An Introduction

    PubMed Central

    Rahnama'i, Mohammad Sajjad; Van Koeveringe, Gommert A.; Van Kerrebroeck, Philip E.

    2013-01-01

    In this paper, a general introduction is given, presenting the overactive bladder syndrome (OAB) and its impact on the quality of life and economical burden in patients affected. Moreover, the anatomy, physiology and histology of the lower urinary tract are discussed, followed by a brief overview on the possible role of prostaglandin (PG) and phosphodiesterase type 5 (PDE5) in the urinary bladder. The current literature on the role and distribution of PGE2 and its receptors in the urinary bladder is discussed. In both animal models and in human studies, high levels of signaling molecules such as PG and cGMP have been implicated, in decreased functional bladder capacity and micturition volume, as well as in increased voiding contraction amplitude. As a consequence, inhibition of prostanoid production, the use of prostanoid receptor antagonists, or PDE inhibitors might be a rational way to treat patients with detrusor overactivity. Similarly, prostanoid receptor agonists, or agents that stimulate their production, might have a function in treating bladder underactivity. PMID:24350100

  12. Immunochemical characterization of the distinct monocyte cyclic AMP-phosphodiesterase from patients with atopic dermatitis.

    PubMed

    Chan, S C; Reifsnyder, D; Beavo, J A; Hanifin, J M

    1993-06-01

    Previous findings have suggested that the immunopathology of patients with atopic dermatitis (AD) results from altered cellular responses caused by cyclic nucleotide regulatory abnormalities. One such defect is the increased degradation of the second messenger, cyclic adenosine monophosphate (cAMP), by elevated cAMP-phosphodiesterase (PDE) activity in patients with AD. We used two monoclonal antibodies to identify the major PDE isoform in AD blood monocytes. We have also characterized the abnormal PDE activity by means of chromatofocusing and sucrose gradient centrifugation. The chromatofocusing technique allowed the separation of a PDE-containing fraction (isoelectric point = 6.1) from AD monocytes but not from normal cells. This monocyte fraction accounted for most of the elevated leukocyte-PDE activity and was a cytosolic, cAMP-specific, low Michaelis constant, calcium-calmodulin-dependent enzyme, inhibited by the cAMP-PDE inhibitor, Ro 20-1724. The majority of the PDE activity in this chromatofocused fraction was immunoadsorbed by the solid-phase immobilized antibodies against calcium-calmodulin-dependent PDE. The increased degradation of cAMP by a unique form of PDE may cause defective regulation of intracellular functions of AD monocytes, leading to the characteristic hyperreactive immune and inflammatory events. Characterization of PDE isoenzymes from different leukocyte subpopulations may allow further expansion of cell-directed therapy for inflammatory disease.

  13. Pharmacologic Inhibition of Host Phosphodiesterase-4 Improves Isoniazid-Mediated Clearance of Mycobacterium tuberculosis

    PubMed Central

    Subbian, Selvakumar; Koo, Mi-Sun; Tsenova, Liana; Khetani, Vikram; Zeldis, Jerome B.; Fallows, Dorothy; Kaplan, Gilla

    2016-01-01

    The lengthy duration of multidrug therapy needed to cure tuberculosis (TB) poses significant challenges for global control of the disease. Moreover, chronic inflammation associated with TB leads to pulmonary damage that can remain even after successful cure. Thus, there is a great need for the development of effective shorter drug regimens to improve clinical outcome and strengthen TB control. Host-directed therapy (HDT) is emerging as a novel adjunctive strategy to enhance the efficacy and shorten the duration of TB treatment. Previously, we showed that the administration of CC-3052, a phosphodiesterase-4 inhibitor (PDE4i), reduced the host inflammatory response during Mycobacterium tuberculosis (Mtb) infection and improved the antimicrobial efficacy of isoniazid (INH) in both the mouse and rabbit models. In the present study, we evaluated the pharmacokinetics and explored the mechanism underlying the efficacy of a more potent PDE4i, CC-11050, as adjunct to INH treatment in a mouse model of pulmonary Mtb infection. Genome-wide lung transcriptome analysis confirmed the dampening of inflammation and associated network genes that we previously reported with CC-3052. Consistent with the reduction in inflammation, a significant improvement in Mtb control and pathology was observed in the lungs of mice treated with CC-11050 plus INH, compared to INH alone. This important confirmatory study will be used to help design upcoming human clinical trials with CC-11050 as an HDT for TB treatment. PMID:27379099

  14. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    PubMed

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Phosphodiesterase 10A regulates alcohol and saccharin self-administration in rats.

    PubMed

    Logrip, Marian L; Vendruscolo, Leandro F; Schlosburg, Joel E; Koob, George F; Zorrilla, Eric P

    2014-06-01

    A history of stress produces increases in rodent relapse-like alcohol self-administration behavior and regional brain gene expression of phosphodiesterase 10A (PDE10A), a dual-specificity cyclic adenosine monophosphate/cyclic guanosine monophosphate-inhibiting enzyme. Here, we tested the hypothesis that administration of TP-10, a specific PDE10A inhibitor, would reduce alcohol self-administration in conditions predisposing to elevated self-administration. TP-10 administration dose-dependently (0.562, 1.0 mg/kg; subcutaneously) reduced relapse-like alcohol self-administration regardless of stress history enhancement of relapse-like behavior. TP-10 also reduced alcohol self-administration in genetically alcohol-preferring rats, as well as in alcohol-non-dependent and -dependent rats. Effective systemic TP-10 doses did not alter alcohol pharmacokinetics, significantly reduce motor activity or intrabout operant response speed, or promote a conditioned place aversion. TP-10 also reduced saccharin self-administration, suggesting a general role for PDE10A in the self-administration of reinforcing substances. PDE10A inhibition in the dorsolateral striatum, but not the nucleus accumbens, reduced alcohol self-administration. Taken together, the results implicate dorsolateral striatum PDE10A in facilitating alcohol intake and support further investigation of PDE10A systems in the pathophysiology and potential treatment of substance use disorders.

  16. Phosphodiesterase: an interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases.

    PubMed

    Wang, Zhen-Zhen; Zhang, Yi; Zhang, Han-Ting; Li, Yun-Feng

    2015-01-01

    Phosphodiesterases (PDEs) are the only known enzymes to degrade intracellular cyclic AMP and/or cyclic GMP. The PDE superfamily consists of 11 families (PDE1- PDE11), each of which has 1 to 4 subtypes. Some of the subtypes may have multiple splice variants (e.g. PDE4D1-PDE4D11), leading to a total of more than 100 known proteins to date. Growing attention has been paid to the potential of PDEs as therapeutic targets for mood disorders and/or diseases affecting cognitive activity by controlling the rate of hydrolysis of the two aforementioned second messengers in recent years. The loss of cognitive functions is one of the major complaints most patients with CNS diseases face; it has an even more prominent negative impact on the quality of daily life. Cognitive dysfunction is usually a prognosis in patients suffering from neuropsychiatric and neurodegenerative diseases, including depression, schizophrenia, and Alzheimer's disease. This review will focus on the contributions of PDEs to the interface between cognitive deficits and neuropsychiatric and neurodegenerative disorders. It is expected to make for the understanding and discovery that selective PDE inhibitors have the therapeutic potential for cognitive dysfunctions associated with neuropsychiatric and neurodegenerative disorders.

  17. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants

    PubMed Central

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Marín, María Pilar; Lahoz, Agustin; Millán, José María

    2016-01-01

    Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions. PMID:27861632

  18. Pharmacologic Inhibition of Host Phosphodiesterase-4 Improves Isoniazid-Mediated Clearance of Mycobacterium tuberculosis.

    PubMed

    Subbian, Selvakumar; Koo, Mi-Sun; Tsenova, Liana; Khetani, Vikram; Zeldis, Jerome B; Fallows, Dorothy; Kaplan, Gilla

    2016-01-01

    The lengthy duration of multidrug therapy needed to cure tuberculosis (TB) poses significant challenges for global control of the disease. Moreover, chronic inflammation associated with TB leads to pulmonary damage that can remain even after successful cure. Thus, there is a great need for the development of effective shorter drug regimens to improve clinical outcome and strengthen TB control. Host-directed therapy (HDT) is emerging as a novel adjunctive strategy to enhance the efficacy and shorten the duration of TB treatment. Previously, we showed that the administration of CC-3052, a phosphodiesterase-4 inhibitor (PDE4i), reduced the host inflammatory response during Mycobacterium tuberculosis (Mtb) infection and improved the antimicrobial efficacy of isoniazid (INH) in both the mouse and rabbit models. In the present study, we evaluated the pharmacokinetics and explored the mechanism underlying the efficacy of a more potent PDE4i, CC-11050, as adjunct to INH treatment in a mouse model of pulmonary Mtb infection. Genome-wide lung transcriptome analysis confirmed the dampening of inflammation and associated network genes that we previously reported with CC-3052. Consistent with the reduction in inflammation, a significant improvement in Mtb control and pathology was observed in the lungs of mice treated with CC-11050 plus INH, compared to INH alone. This important confirmatory study will be used to help design upcoming human clinical trials with CC-11050 as an HDT for TB treatment.

  19. The roles of phosphodiesterase 2 in the central nervous and peripheral systems.

    PubMed

    Zhang, Chong; Yu, Yingcong; Ruan, Lina; Wang, Chuang; Pan, Jianchun; Klabnik, Jonathan; Lueptow, Lindsay; Zhang, Han-Ting; O'Donnell, James M; Xu, Ying

    2015-01-01

    Phosphodiesterase 2 (PDE2) is a ubiquitous enzyme whose major role is to hydrolyze the important second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). In the central nervous system, pharmacological inhibition of PDE2 results in boosted cAMP and/or cGMP signaling, which is responsible for series of changes in protein expression relevant to psychiatric and learning and memory disorders, such as depression, anxiety, and cognition deficits in Alzheimer's disease. In the periphery, inhibition of PDE2 exhibits beneficial effects in the diseased cardiovascular system, the respiratory system, skeletal muscles and Candida albicans-caused systemic infections. Even though blood-brain barrier penetration properties and selectivity of currently available PDE2 inhibitors have hindered them from entering clinical trials, PDE2 is still of great potential therapeutic values in different categories of diseases, and there is demand for development of new generation drugs targeting PDE2 for treatment of diseases in central nervous and peripheral systems.

  20. Design and synthesis of fluorescent substrates for human tyrosyl-DNA phosphodiesterase I

    PubMed Central

    Rideout, Marc C.; Raymond, Amy C.; Burgin, Alex B.

    2004-01-01

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein–DNA covalent complexes. Tdp1 hydrolyzes 3′-phosphotyrosyl bonds to generate 3′-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds. Tdp1 has been shown to be involved in double-strand break repair in yeast, and Tdp1 has also been implicated in single-strand break repair in mammalian cells. Despite the biological importance of this enzyme and the possibility that Tdp1 may be a molecular target for new anti-cancer drugs, there are very few assays available for screening inhibitor libraries or for characterizing Tdp1 function, especially under pre-steady-state conditions. Here, we report the design and synthesis of a fluorescence-based assay using oligonucleotide and nucleotide substrates containing 3′-(4-methylumbelliferone)-phosphate. These substrates are efficiently cleaved by Tdp1, generating the fluorescent 4-methylumbelliferone reporter molecule. The kinetic characteristics determined for Tdp1 using this assay are in agreement with the previously published values, and this fluorescence-based assay is validated using the standard gel-based methods. This sensitive assay is ideal for kinetic analysis of Tdp1 function and for high-throughput screening of Tdp1 inhibitory molecules. PMID:15333697

  1. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.

    PubMed

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Marín, María Pilar; Lahoz, Agustin; Millán, José María; Rodrigo, Regina

    2016-01-01

    Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

  2. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases

    PubMed Central

    Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L.; Kim, Myung K.; Beaven, Michael A.; Burgin, Alex B.; Manganiello, Vincent; Chung, Jay H.

    2012-01-01

    SUMMARY Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca2+ levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca2+-release channel. As a consequence, resveratrol increases NAD+ and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging. PMID:22304913

  3. Effects of selective phosphodiesterase-5-inhibition on myocardial contractility and reperfusion injury after heart transplantation.

    PubMed

    Loganathan, Sivakkanan; Radovits, Tamás; Hirschberg, Kristóf; Korkmaz, Sevil; Barnucz, Eniko; Karck, Matthias; Szabó, Gábor

    2008-11-27

    Recently, the infarct reducing and cardioprotective effects of phosphodiesterase-5-inhibitors were described. In this study, we investigated these effects on ischemia/reperfusion injury in a rat model of heart transplantation. Three groups were assigned for our study: a vardenafil preconditioning group, an ischemic control, and a nonischemic control. Hemodynamic parameters were significantly increased in the vardenafil group (Pmax: 82+/-4 vs. 110+/-12 vs. 127+/-13 mm Hg; dP/dtmax: 1740+/-116 vs. 3197+/-599 vs. 4397+/-602 mm Hg/sec; ischemic control vs. vardenafil vs. nonischemic control; P<0.05 vs. ischemic control). Furthermore, we recorded increased ATP levels and significantly less apoptosis in the treatment group after terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (apoptosis index: 27.23%+/-1.54% vs. 16.77%+/-1.42% vs. 18.86%+/-1.07%; ischemic control vs. vardenafil vs. nonischemic control; P<0.05 vs. ischemic control). Our current results support the concept that the cGMP-PKG-pathway plays an important role in ischemia/reperfusion injury. We could show that up-regulating this pathway has a preconditioning-like effect and can effectively reduce ischemia/reperfusion injury.

  4. Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice.

    PubMed

    Wang, L; Chopp, M; Szalad, A; Liu, Z; Bolz, M; Alvarez, F M; Lu, M; Zhang, L; Cui, Y; Zhang, R L; Zhang, Z G

    2011-10-13

    Peripheral neuropathy is a common and major complication of diabetes, the underlying mechanisms of which are not fully understood. Using a mouse model of type II diabetes, the present study investigated the role of phosphodiesterase-5 (PDE5) in peripheral neuropathy. BKS.Cg-m+/+Leprdb/J (db/db) mice were treated with sildenafil, a specific inhibitor of PDE5, at doses of 2 and 10 mg/kg or saline. Levels of PDE5 and morphometric parameters in sciatic nerve tissue as well as the motor and sensory function were measured in these mice. In diabetic mice, PDE5 expression in sciatic nerve tissue was significantly upregulated, whereas the myelin sheath thickness, myelin basic protein (MBP), and subcutaneous nerve fibers were significantly reduced. Treatment with sildenafil significantly improved neurological function, assayed by motor and sensory conducting velocities and thermal and mechanical noxious stimuli, concomitantly with increases in myelin sheath thickness, MBP levels, and subcutaneous nerve fibers. In vitro, hyperglycemia upregulated PDE5 in Schwann cells and reduced Schwann cell proliferation, migration, and expression of brain-derived neurotrophic factor (BDNF). Blockage of PDE5 with sildenafil increased cyclic guanosine monophosphate (cGMP) and completely abolished the effect of hyperglycemia on Schwann cells. Sildenafil upregulated cGMP-dependent protein kinase G I (PKGI), whereas inhibition of PKGI with a PKG inhibitor, KT5823, suppressed the inhibitory effect of sildenafil on Schwann cells. These data indicate that hyperglycemia substantially upregulates PDE5 expression and that the cGMP/PKG signaling pathway activated by sildenafil mediates the beneficial effects of sildenafil on diabetic peripheral neuropathy.

  5. Blockade of phosphodiesterase Type 5 enhances rat neurohypophysial excitability and electrically evoked oxytocin release

    PubMed Central

    Zhang, Zhenjie; Klyachko, Vitaly; Jackson, Meyer B

    2007-01-01

    Phosphodiesterase type 5 (PDE5) acts specifically on cyclic guanosine monophosphate (cGMP) and terminates cGMP-mediated signalling. PDE5 has a well established role in vascular smooth muscle, where specific inhibitors of PDE5 such as sildenafil correct erectile dysfunction by augmenting cGMP-mediated vascular relaxation. However, the role of PDE5 outside of the vasculature has received little attention. The present study tested PDE5 inhibitors on the cGMP-mediated modulation of K+ channels in the neurohypophysis (posterior pituitary). Photolysis of caged-cGMP enhanced current through Ca2+-activated K+ channels, and this enhancement recovered in about 2 min. Sildenafil essentially eliminated this recovery, suggesting that the reversal of K+ current enhancement depends on cGMP breakdown. Activation of nitric oxide synthase during trains of activity in pituitary nerve terminals enhances excitability. When trains of stimulation were applied at regular intervals, sildenafil enhanced the excitability of neurohypophysial nerve terminals and increased the action potential firing probability. T-1032, a compound with high specificity for PDE5 over PDE6, had a similar action. Voltage imaging in intact neurohypophysis with a voltage sensitive absorbance dye showed that T-1032 reduced the failure of propagating action potentials during trains of activity. This indicates that PDE5 activity limits action potential propagation in neurohypophysial axons. Immunoassay of oxytocin, a neuropeptide hormone secreted by the posterior pituitary, demonstrated that sildenafil increased electrically evoked release. Thus, PDE5 plays an important role in the regulation of neurohypophysial function, and blockade of this enzyme can enhance the use-dependent facilitation of neurohypophysial secretion. PMID:17690141

  6. Blockade of phosphodiesterase Type 5 enhances rat neurohypophysial excitability and electrically evoked oxytocin release.

    PubMed

    Zhang, Zhenjie; Klyachko, Vitaly; Jackson, Meyer B

    2007-10-01

    Phosphodiesterase type 5 (PDE5) acts specifically on cyclic guanosine monophosphate (cGMP) and terminates cGMP-mediated signalling. PDE5 has a well established role in vascular smooth muscle, where specific inhibitors of PDE5 such as sildenafil correct erectile dysfunction by augmenting cGMP-mediated vascular relaxation. However, the role of PDE5 outside of the vasculature has received little attention. The present study tested PDE5 inhibitors on the cGMP-mediated modulation of K(+) channels in the neurohypophysis (posterior pituitary). Photolysis of caged-cGMP enhanced current through Ca(2+)-activated K(+) channels, and this enhancement recovered in about 2 min. Sildenafil essentially eliminated this recovery, suggesting that the reversal of K(+) current enhancement depends on cGMP breakdown. Activation of nitric oxide synthase during trains of activity in pituitary nerve terminals enhances excitability. When trains of stimulation were applied at regular intervals, sildenafil enhanced the excitability of neurohypophysial nerve terminals and increased the action potential firing probability. T-1032, a compound with high specificity for PDE5 over PDE6, had a similar action. Voltage imaging in intact neurohypophysis with a voltage sensitive absorbance dye showed that T-1032 reduced the failure of propagating action potentials during trains of activity. This indicates that PDE5 activity limits action potential propagation in neurohypophysial axons. Immunoassay of oxytocin, a neuropeptide hormone secreted by the posterior pituitary, demonstrated that sildenafil increased electrically evoked release. Thus, PDE5 plays an important role in the regulation of neurohypophysial function, and blockade of this enzyme can enhance the use-dependent facilitation of neurohypophysial secretion.

  7. cGMP phosphodiesterase inhibition improves the vascular and metabolic actions of insulin in skeletal muscle.

    PubMed

    Genders, A J; Bradley, E A; Rattigan, S; Richards, S M

    2011-08-01

    There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min(-1)·kg(-1)) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.

  8. Inhibition of Uterine Contractility by Thalidomide Analogs via Phosphodiesterase-4 Inhibition and Calcium Entry Blockade.

    PubMed

    Fernández-Martínez, Eduardo; Ponce-Monter, Héctor; Soria-Jasso, Luis E; Ortiz, Mario I; Arias-Montaño, José-Antonio; Barragán-Ramírez, Guillermo; Mayén-García, Cynthia

    2016-10-07

    Uterine relaxation is crucial during preterm labor. Phosphodiesterase-4 (PDE-4) inhibitors have been proposed as tocolytics. Some thalidomide analogs are PDE-4 inhibitors. The aim of this study was to assess the uterus-relaxant properties of two thalidomide analogs, methyl 3-(4-nitrophthalimido)-3-(3,4-dimethoxyphenyl)-propanoate (4NO2PDPMe) and methyl 3-(4-aminophthalimido)-3-(3,4-dimethoxyphenyl)-propanoate (4APDPMe) and were compared to rolipram in functional studies of spontaneous phasic, K⁺-induced tonic, and Ca(2+)-induced contractions in isolated pregnant human myometrial tissues. The accumulation of cAMP was quantified in HeLa cells. The presence of PDE-4B2 and phosphorylated myosin light-chain (pMLC), in addition to the effect of thalidomide analogs on oxytocin-induced pMLC, were assessed in human uterine myometrial cells (UtSMCs). Thalidomide analogs had concentration-dependent inhibitory effects on spontaneous and tonic contractions and inhibited Ca(2+)-induced responses. Tonic contraction was equipotently inhibited by 4APDPMe and rolipram (IC50 = 125 ± 13.72 and 98.45 ± 8.86 µM, respectively). Rolipram and the thalidomide analogs inhibited spontaneous and tonic contractions equieffectively. Both analogs increased cAMP accumulation in a concentration-dependent manner (p < 0.05) and induced changes in the subcellular localization of oxytocin-induced pMLC in UtSMCs. The inhibitory effects of thalidomide analogs on the contractions of pregnant human myometrium tissue may be due to their PDE-4 inhibitory effect and novel mechanism as calcium-channel blockers.

  9. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    SciTech Connect

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward c

  10. Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle.

    PubMed Central

    Murthy, K S

    2001-01-01

    The regulation of cGMP-specific phosphodiesterase (PDE) 5 and soluble guanylate cyclase (GC) by cGMP- and cAMP-dependent protein kinases (PKG and PKA respectively) was examined in gastric smooth muscle. The NO donor, sodium nitroprusside (SNP), stimulated PDE5 phosphorylation and activity, which was blocked by the selective PKG inhibitor, KT5823, resulting in an elevation of cGMP levels. Activation of PKA either directly by Sp-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole 3',5'-cyclic monophosphothioate, or via isoproterenol- and forskolin-dependent increase in cAMP, also caused an increase in PDE5 phosphorylation and activity, but only in the presence of cGMP; consistent with the dependence of PDE5 phosphorylation and activity on cGMP binding to allosteric sites in the regulatory domain of PDE5. The selective PKA inhibitors, myristoylated protein kinase inhibitor and H-89, blocked the increase in PDE5 phosphorylation and activity induced by PKA. SNP also stimulated soluble GC phosphorylation and activity. KT5823 abolished phosphorylation and augmented soluble GC activity, implying feedback inhibition of soluble GC by PKG-dependent phosphorylation. Phosphorylation by PKG was direct and could be induced in vitro. Activation of PKA had no effect on soluble GC. Thus cGMP levels are regulated by PKG- and PKA-dependent activation of PDE5 and PKG-specific inhibition of soluble GC. PMID:11696008

  11. Myocardial cyclic AMP augmentation with high-dose PDEIII inhibitor in terminal warm blood cardioplegia.

    PubMed

    Ko, Yoshihiro; Morita, Kiyozo; Nagahori, Ryuichi; Kinouchi, Katsushi; Shinohara, Gen; Kagawa, Hiroshi; Hashimoto, Kazuhiro

    2009-10-01

    Phosphodiesterase (PDE) III inhibitors have been reported in various cellular protective activities via the cyclic adenosine monophosphate (cAMP) pathway. We investigated the effects of amrinone on ischemia/reperfusion injury and intracellular calcium (Ca2+) handling if utilized as a component of terminal warm blood cardioplegia (TWBCP). Anesthetized pig hearts were subjected to 90-min global ischemia with single-dose crystalloid cardioplegia, followed by 30-min reperfusion under cardiopulmonary bypass. The animals were divided into three groups according to the contents of TWBCP (n = 5 each): Control, no TWBCP; TWBCP, no additive; Amrinone, TWBCP with amrinone. The time course of cardiac function and biochemical samples were measured. Further, coronary perfusion and