Phosphodiesterase 4 Inhibitor Therapies for Atopic Dermatitis: Progress and Outlook.
Ahluwalia, Jusleen; Udkoff, Jeremy; Waldman, Andrea; Borok, Jenna; Eichenfield, Lawrence F
2017-09-01
Phosphodiesterase 4 (PDE4) is a cyclic AMP degrading enzyme in leukocytes. Several decades ago, increased PDE activity was demonstrated in patients with atopic dermatitis (AD). Currently, several PDE4 inhibitors in both topical and oral formulation have been developed to target the inflammatory cascade of AD. This review shows the pathogenic rationale behind these inhibitors, and discusses multiple PDE4 inhibitors that are under evaluation or in the market. PDE4 inhibitors may be considered as favorable agents in the repertoire of current interventions for AD.
Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center.
Freund, Yvonne R; Akama, Tsutomu; Alley, M R K; Antunes, Joana; Dong, Chen; Jarnagin, Kurt; Kimura, Richard; Nieman, James A; Maples, Kirk R; Plattner, Jacob J; Rock, Fernando; Sharma, Rashmi; Singh, Rajeshwar; Sanders, Virginia; Zhou, Yasheen
2012-09-21
We have used boron-based molecules to create novel, competitive, reversible inhibitors of phosphodiesterase 4 (PDE4). The co-crystal structure reveals a binding configuration which is unique compared to classical catechol PDE4 inhibitors, with boron binding to the activated water in the bimetal center. These phenoxybenzoxaboroles can be optimized to generate submicromolar potency enzyme inhibitors, which inhibit TNF-α, IL-2, IFN-γ, IL-5 and IL-10 activities in vitro and show safety and efficacy for topical treatment of human psoriasis. They provide a valuable new route for creating novel potent anti-PDE4 inhibitors. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs.
Zhang, Han-Ting
2009-01-01
Phosphodiesterase-4 (PDE4), one of eleven PDE enzyme families, specifically catalyzes hydrolysis of cyclic AMP (cAMP); it has four subtypes (PDE4A-D) with at least 25 splice variants. PDE4 plays a critical role in the control of intracellular cAMP concentrations. PDE4 inhibitors produce antidepressant actions in both animals and humans via enhancement of cAMP signaling in the brain. However, their clinical utility has been hampered by side effects, in particular nausea and emesis. While there is still a long way to go before PDE4 inhibitors with high therapeutic indices are available for treatment of depressive disorders, important advances have been made in the development of PDE4 inhibitors as antidepressants. First, limited, but significant studies point to PDE4D as the major PDE4 subtype responsible for antidepressant-like effects of PDE4 inhibitors, although the role of PDE4A cannot be excluded. Second, PDE4D may contribute to emesis, the major side effect of PDE4 inhibitors. For this reason, identification of roles of PDE4D splice variants in mediating antidepressant activity is particularly important. Recent studies using small interfering RNAs (siRNAs) have demonstrated the feasibility to identify cellular functions of individual PDE4 variants. Third, mixed inhibitors of PDE4 and PDE7 or PDE4 and serotonin reuptake have been developed and may be potential antidepressants with minimized side effects. Finally, relatively selective inhibitors of one or two PDE4 subtypes have been synthesized using structure- and scaffold-based design. This review also discusses the relationship between PDE4 and antidepressant activity based on structures, brain distributions, and pharmacological properties of PDE4 and its isoforms.
Peng, Sheng; Sun, Haiyan; Zhang, Xiaoqing; Liu, Gongjian; Wang, Guanglei
2014-09-01
Phosphodiesterase-4 (PDE-4) regulates the intracellular level of cyclic adenosine monophosphate. Recent studies demonstrated that PDE-4 inhibitors can counteract deficits in long-term memory caused by aging or increased expression of mutant forms of human amyloid precursor proteins, and can influence the process of memory function and cognitive enhancement. Therapeutics, such as ketamine, a drug used in clinical anesthesia, can also cause memory deficits as adverse effects. Targeting PDE-4 with selective inhibitors may offer a novel therapeutic strategy to prevent, slow the progress, and, eventually, treat memory deficits.
Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping
2015-11-15
In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phosphodiesterase 4 inhibitors.
Zebda, Rema; Paller, Amy S
2018-03-01
Historically, drugs available for treating atopic dermatitis (AD) have been limited to topical corticosteroids and topical calcineurin inhibitors, with systemic immunosuppressants and phototherapy reserved for severe AD. Despite their efficacy and infrequent adverse events, phobia about the use of topical steroids and calcineurin inhibitors has limited their use. More targeted options with fewer systemic and cutaneous side effects are needed for treating AD. Phosphodiesterase 4 (PDE4) is involved in the regulation of proinflammatory cytokines via the degradation of cyclic adenosine monophosphate. PDE4 activity is increased in the inflammatory cells of patients with AD, leading to increased production of proinflammatory cytokines and chemokines. Targeting PDE4 reduces the production of these proinflammatory mediators in AD. Both topical and oral PDE4 inhibitors have a favorable safety profile. Crisaborole 2% ointment, a topical PDE4, is now US Food and Drug Administration-approved for children older than 2 years and adults in the treatment of AD. Crisaborole 2% ointment shows early and sustained improvement in disease severity and pruritus and other AD symptoms, with burning and/or stinging upon application as the only related adverse event. Other PDE4 inhibitors are currently in trials with promising efficacy and safety. Copyright © 2017. Published by Elsevier Inc.
Phosphodiesterase 4 regulates the migration of B16-F10 melanoma cells.
Watanabe, Yoshihiro; Murata, Taku; Shimizu, Kasumi; Morita, Hiroshi; Inui, Madoka; Tagawa, Toshiro
2012-08-01
Phosphodiesterases (PDEs) are important regulators of signal transduction processes. Eleven PDE gene families (PDE1-11) have been identified and several PDE isoforms are selectively expressed in various cell types. PDE4 family members specifically hydrolyze cyclic AMP (cAMP). Four genes (PDE4A-D) are known to encode PDE4 enzymes, with additional diversity generated by the use of alternative mRNA splicing and the use of different promoters. While PDE4 selective inhibitors show therapeutic potential for treating major diseases such as asthma and chronic obstructive pulmonary disease, little is known concerning the role of PDE4 in malignant melanoma. In this study, we examined the role of PDE4 in mouse B16-F10 melanoma cells. In these cells, PDE4 activity was found to be ∼60% of total PDE activity. RT-PCR detected only PDE4B and PDE4D mRNA. Cell growth was inhibited by the cAMP analog, 8-bromo-cAMP, but not by the specific PDE4 inhibitors, rolipram and denbufylline, which increased intracellular cAMP concentrations. Finally, migration of the B16-F10 cells was inhibited by the PDE4 inhibitors and 8-bromo-cAMP, while migration was increased by a protein kinase A (PKA) inhibitor, PKI(14-22), and was not affected by 8-pCPT-2'-O-Me-cAMP, which is an analog of exchange protein activated by cAMP (Epac). The inhibitory effect of rolipram on migration was reversed by PKI(14-22). Based on these results, PDE4 appears to play an important role in the migration of B16-F10 cells, and therefore may be a novel target for the treatment of malignant melanoma.
Treatment of psoriasis with crisaborole.
Lee, Erica B; Lebwohl, Mark G; Wu, Jashin J
2018-06-08
Crisaborole, a topical phosphodiesterase-4 (PDE4) inhibitor, is effective in patients with atopic dermatitis. As systemic PDE4 inhibition has also been used with success in psoriasis, clinical trials are underway to determine the utility of topical PDE4 inhibitors in these patients. However, there is no current literature documenting use of crisaborole for psoriasis. Here, we present two cases in which patients with psoriasis were treated successfully with crisaborole.
Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori
2017-12-01
Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.
Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P
2015-09-15
Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors.
Crisaborole: Phosphodiesterase inhibitor for treatment of atopic dermatitis.
Paton, D M
2017-04-01
Atopic dermatitis (AD) is an extremely common condition affecting as many as 10-20% of children and 2-10% of adults. A particularly distressing symptom of AD is pruritus. One of the important aspects of AD is inflammation associated with increased activity of phosphodiesterase 4 (PDE4), resulting in decreased intracellular levels of cyclic adenosine monophosphate, which in turn causes increased production of inflammatory cytokines. Crisaborole was developed as a small-molecule, boron-based, selective PDE4 inhibitor that can be used topically. Clinical trials have demonstrated its efficacy in treating patients with mild to moderate AD, resulting in significant relief of pruritus. Unlike PDE4 inhibitors that act systemically, crisaborole does not cause significant gastrointestinal adverse effects. The most common adverse effect has been temporary stinging and burning in about 4% of patients upon application of the 2% ointment. To date there is no evidence of atrophy, telangiectasia or hypopigmentation resulting from its use. Crisaborole is the first topically applied PDE4 inhibitor to be approved by the FDA for use in AD. Copyright 2017 Clarivate Analytics.
Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors
Gaurav, Anand; Gautam, Vertika
2017-01-01
Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma and chronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known to reduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. To achieve this goal, ligand based pharmacophore modeling approach is employed. Separate pharmacophore hypotheses for PDE4B and PDE4D inhibitors were generated using HypoGen algorithm and 106 PDE4 inhibitors from literature having thiopyrano [3,2-d] Pyrimidines, 2-arylpyrimidines, and triazines skeleton. Suitable training and test sets were created using the molecules as per the guidelines available for HypoGen program. Training set was used for hypothesis development while test set was used for validation purpose. Fisher validation was also used to test the significance of the developed hypothesis. The validated pharmacophore hypotheses for PDE4B and PDE4D inhibitors were used in sequential virtual screening of zinc database of drug like molecules to identify selective PDE4B inhibitors. The hits were screened for their estimated activity and fit value. The top hit was subjected to docking into the active sites of PDE4B and PDE4D to confirm its selectivity for PDE4B. The hits are proposed to be evaluated further using in-vitro assays. PMID:29201082
Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.
Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali
2017-04-27
A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.
Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice
Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Harris, R. Adron
2014-01-01
Some anti-inflammatory medications reduce alcohol consumption in rodent models. Inhibition of phosphodiesterases (PDE) increases cAMP and reduces inflammatory signaling. Rolipram, an inhibitor of PDE4, markedly reduced ethanol intake and preference in mice and reduced ethanol seeking and consumption in alcohol-preferring fawn-hooded rats (Hu et al., 2011; Wen et al., 2012). To determine if these effects were specific for PDE4, we compared nine PDE inhibitors with different subtype selectivity: propentofylline (nonspecific), vinpocetine (PDE1), olprinone, milrinone (PDE3), zaprinast (PDE5), rolipram, mesopram, piclamilast, and CDP840 (PDE4). Alcohol intake was measured in C57BL/6J male mice using 24-h two-bottle choice and two-bottle choice with limited (3-h) access to alcohol. Only the selective PDE4 inhibitors reduced ethanol intake and preference in the 24-h two-bottle choice test. For rolipram, piclamilast, and CDP840, this effect was observed after the first 6 h but not after the next 18 h. Mesopram, however, produced a long-lasting reduction of ethanol intake and preference. In the limited access test, rolipram, piclamilast, and mesopram reduced ethanol consumption and total fluid intake and did not change preference for ethanol, whereas CDP840 reduced both consumption and preference without altering total fluid intake. Our results provide novel evidence for a selective role of PDE4 in regulating ethanol drinking in mice. We suggest that inhibition of PDE4 may be an unexplored target for medication development to reduce excessive alcohol consumption. PMID:24904269
Agis-Torres, Ángel; Recio, Paz; López-Oliva, María Elvira; Martínez, María Pilar; Barahona, María Victoria; Benedito, Sara; Bustamante, Salvador; Jiménez-Cidre, Miguel Ángel; García-Sacristán, Albino; Prieto, Dolores; Fernandes, Vítor S; Hernández, Medardo
2018-03-16
Nitric oxide (NO) and hydrogen sulfide (H 2 S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H 2 S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H 2 S generation was diminished by H 2 S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H 2 S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H 2 S-mediated inhibitory neurotransmission.
Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Bebenek, Katarzyna; Kaźmierczak, Agata
2017-11-01
The rapid progress of genetic engineering furthermore opens up new prospects in the therapy of this difficult-to-treat disease. IL-23 inhibitors, phosphodiesterase 4 (PDE4) inhibitors, and Janus kinase (JAK) inhibitors are currently encouraging further research. Two drugs which are IL-23 inhibitors are now in phase III of clinical trials. The aim of the action of both drugs is selective IL-23 inhibition by targeting the p19 subunit. Guselkumab is a fully human monoclonal antibody. Tildrakizumab is a humanized monoclonal antibody, which also belongs to IgG class and is targeted to subunit p19 of interleukin 23 (IL-23). Phosphodiesterase inhibitors exert an anti-inflammatory action and their most common group is the PDE4 family. PDE4 inhibits cAMP, which reduces the inflammatory response of the pathway of Th helper lymphocytes, Th17, and type 1 interferon which modulates the production of anti-inflammatory cytokines such as IL-10 interleukins. The Janus kinase (JAK) signaling pathway plays an important role in the immunopathogenesis of psoriasis. Tofacitinib suppresses the expression of IL-23, IL-17A, IL-17F, and IL-22 receptors during the stimulation of lymphocytes. Ruxolitinib is a selective inhibitor of JAK1 and JAK2 kinases and the JAK-STAT signaling pathway. This article is a review of the aforementioned drugs as described in the latest available literature. © 2017 Wiley Periodicals, Inc.
Kojima, Akihiko; Takita, Satoshi; Sumiya, Tatsunobu; Ochiai, Koji; Iwase, Kazuhiko; Kishi, Tetsuya; Ohinata, Akira; Yageta, Yuichi; Yasue, Tokutaro; Kohno, Yasushi
2013-10-01
We previously identified KCA-1490 [(-)-6-(7-methoxy-2-trifluoromethyl-pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone], a dual PDE3/4 inhibitor. In the present study, we found highly potent selective PDE4 inhibitors derived from the structure of KCA-1490. Among them, N-(3,5-dichloropyridin-4-yl)-7-methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridine-4-carboxamide (2a) had good anti-inflammatory effects in an animal model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lefebvre, Romain A; Van Colen, Inge; Pauwelyn, Vicky; De Maeyer, Joris H
2016-06-15
5-HT4 receptor agonists have a gastroprokinetic effect by facilitating acetylcholine release from cholinergic nerves innervating gastrointestinal smooth muscle. The role of phosphodiesterase (PDE) 4 in the signal transduction pathway of the 5-HT4 receptors located on the cholinergic neurons towards the circular muscle layer in pig stomach was investigated by analysis of acetylcholine release. Circular muscle strips were prepared from pig proximal stomach and tritium outflow, induced by electrical field stimulation, was studied as a marker for acetylcholine release after incubation with [(3)H]-choline. The PDE4-inhibitor roflumilast concentration-dependently (0.1-1µM) enhanced the facilitating effect of a submaximally effective concentration of the 5-HT4 receptor agonist prucalopride (0.01µM) on electrically induced acetylcholine release. Roflumilast (0.3µM) enhanced acetylcholine release per se but in the combined presence of roflumilast and prucalopride, acetylcholine release was enhanced more than the sum of the effect of the 2 compounds alone. The 5-HT4 receptor agonist velusetrag concentration-dependently (0.01-0.1µM) enhanced acetylcholine release; the effect of the minimally effective concentration (0.01µM) was significantly enhanced by 1µM of the PDE4-inhibitor rolipram, again to a level higher than the sum of the effect of the 2 compounds alone. The synergistic effect between 5-HT4 receptor agonists and PDE4-inhibitors demonstrates that the intracellular pathway of the 5-HT4 receptors located on cholinergic neurons towards pig gastric circular muscle is controlled by PDE4. Combining a 5-HT4 receptor agonist with a PDE4-inhibitor might thus enhance its gastroprokinetic effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Ribeiro, Ana S F; Fernandes, Vítor S; Martínez-Sáenz, Ana; Martínez, Pilar; Barahona, María Victoria; Orensanz, Luis M; Blaha, Igor; Serrano-Margüello, Daniel; Bustamante, Salvador; Carballido, Joaquín; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo
2014-04-01
Phosphodiesterase type 5 (PDE5) inhibitors act as effective drugs for the treatment of lower urinary tract symptom (LUTS). There is a poor information, however, about the role of the PDE4 inhibitors on the bladder outflow region contractility. To investigate PDE4 expression and the relaxation induced by the PDE4 inhibitor rolipram versus that induced by the PDE5 blockers sildenafil and vardenafil, in the pig and human bladder neck. Immunohistochemistry for PDE4 expression, myographs for isometric force recordings and fura-2 fluorescence for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i ) and tension for rolipram in bladder neck samples were used. PDE4 expression and relaxations to PDE4 and PDE5 inhibitors and simultaneous measurements of [Ca2+]i and tension. PDE4 expression was observed widely distributed in the smooth muscle layer of the pig and human bladder neck. On urothelium-denuded phenylephrine (PhE)-precontracted strips of pig and human, rolipram, sildenafil and vardenafil produced concentration-dependent relaxations with the following order of potency: rolipram> > sildenafil>vardenafil. In pig, the adenylyl cyclase activator forskolin potentiated rolipram-elicited relaxation, whereas protein kinase A (PKA) blockade reduced such effect. On potassium-enriched physiological saline solution (KPSS)-precontracted strips, rolipram evoked a lower relaxation than that obtained on PhE-stimulated preparations. Inhibition of large (BKCa ) and intermediate (IKCa ) conductance Ca2+ -activated K+ channels, neuronal voltage-gated Ca2+ channels, nitric oxide (NO) and hydrogen sulfide (H2 S) synthases reduced rolipram responses. Rolipram inhibited the contractions induced by PhE without reducing the PhE-evoked [Ca2+]i increase. PDE4 is present in the pig and human bladder neck smooth muscle, where rolipram exerts a much more potent relaxation than that elicited by PDE5 inhibitors. In pig, rolipram-induced response is produced through the PKA pathway involving BKCa and IKCa channel activation and [Ca2+]i desensitization-dependent mechanisms, this relaxation also being due to neuronal NO and H2S release. © 2014 International Society for Sexual Medicine.
Cardozo, Suzana Vanessa S.; Carvalho, Vinicius de Frias; Romeiro, Nelilma Correia; Silva, Patrícia Machado Rodrigues e; Martins, Marco Aurélio; Barreiro, Eliezer J.; Lima, Lídia Moreira
2016-01-01
Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma. PMID:27695125
ERIC Educational Resources Information Center
Werenicz, Aline; Christoff, Raissa R.; Blank, Martina; Jobim, Paulo F. C.; Pedroso, Thiago R.; Reolon, Gustavo K.; Schroder, Nadja; Roesler, Rafael
2012-01-01
Here we show that administration of the phosphodiesterase type 4 (PDE4) inhibitor rolipram into the basolateral complex of the amygdala (BLA) at a specific time interval after training enhances memory consolidation and induces memory persistence for novel object recognition (NOR) in rats. Intra-BLA infusion of rolipram immediately, 1.5 h, or 6 h…
Banner, K H; Page, C P
1995-01-01
1. The aims of this study were to determine which phosphodiesterase (PDE) isoenzymes are involved in the control of eosinophil accumulation in the airways of ovalbumin (OVA)-immunized guinea-pigs by the use of isoenzyme selective inhibitors and to compare the effects of acute versus chronic administration of PDE isozyme inhibitors on pulmonary cell influx in ovalbumin-immunized guinea-pigs. 2. Guinea-pigs were sensitized and subsequently challenged with aerosolized OVA. Twenty four hours later bronchoalveolar lavage (BAL) was performed to permit assessment of inflammatory cell accumulation. A significant increase in the number of eosinophils was observed in the lavage fluid from OVA-immunized (13.6 +/- 1.4 x 10(4) ml-1 in acute experiments and 10.1 +/- 1.4 x 10(4) ml-1 in chronic experiments) animals compared with sham-treated controls (5.6 +/- 0.6 x 10(4) ml-1 in acute experiments and 5.1 +/- 0.6 x 10(4) ml-1 in chronic experiments). There was no difference in neutrophil, mononuclear cell or total cell numbers between the two groups. 3. Acute administration of a high dose of selective and non-selective PDE inhibitors by the i.p. route had no significant effect on eosinophil accumulation in the airways. 4. Chronic administration of a low dose (3 mg kg-1, i.p., twice daily for 7 days) of the type IV PDE inhibitor, RO 20-1724, and the PDE III/IV inhibitor, zardaverine, produced a significant inhibition of eosinophil accumulation (46% and 59% respectively).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7536098
Cortijo, J.; Bou, J.; Beleta, J.; Cardelús, I.; Llenas, J.; Morcillo, E.; Gristwood, R. W.
1993-01-01
1. We have investigated the role of cyclic nucleotide phosphodiesterase IV (PDE IV) in the relaxation of human bronchus and guinea-pig trachea in vitro and in guinea-pigs in vivo. 2. Functional studies showed that the selective PDE IV inhibitors, rolipram and denbufylline, relaxed human and guinea-pig preparations in vitro. 3. Two clinically used xanthine non-selective PDE inhibitors, theophylline and pentoxifylline, were also effective in these preparations, but were much less potent than the selective agents used. 4. The rank order of potency for the four PDE inhibitors in both species was similar. 5. Biochemical studies indicated that PDE IV was the major PDE isoform present in the human bronchial tissue. PDEs I, II and V were also identified. 6. Theophylline and pentoxifylline were, as expected, non-selective inhibitors of the human enzymes, but there was a good correlation between PDE IV inhibitory and bronchorelaxation potencies, suggesting that PDE IV inhibition is important for the clinical bronchodilator activities of the two xanthine compounds. 7. We have confirmed the ability of selective PDE IV inhibitors to cause bronchodilatation in guinea-pigs in vivo. 8. We conclude that our study has provided further evidence that selective PDE IV inhibitors could act as bronchodilators in the clinic. PMID:8383567
Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets
Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent
2014-01-01
By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711
Eskandari, Nahid; Mirmosayyeb, Omid; Bordbari, Gazaleh; Bastan, Reza; Yousefi, Zahra; Andalib, Alireza
2015-01-01
Cyclic nucleotide phosphodiesterases (PDEs) are known as a super-family of enzymes which catalyze the metabolism of the intracellular cyclic nucleotides, cyclic-3',5'-adenosine monophosphate (cAMP), and cyclic-3',5'-guanosine monophosphate that are expressed in a variety of cell types that can exert various functions based on their cells distribution. The PDE4 family has been the focus of vast research efforts over recent years because this family is considered as a prime target for therapeutic intervention in a number of inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, and it should be used and researched by pharmacists. This is because the major isoform of PDE that regulates inflammatory cell activity is the cAMP-specific PDE, PDE4. This review discusses the relationship between PDE4 and its inhibitor drugs based on structures, cells distribution, and pharmacological properties of PDE4 which can be informative for all pharmacy specialists.
Diaz-Granados, Natalia; Howe, Kathryn; Lu, Jun; McKay, Derek M.
2000-01-01
Inhibition of phosphodiesterase (PDE) activity is beneficial in models of arthritis and airway inflammation. Here we assessed the ability of PDE inhibitors to modulate colitis by exposing mice to 4% (w/v) dextran sulfate sodium (DSS) drinking water for 5 days with or without rolipram, an inhibitor of PDE type 4, or the nonselective PDE inhibitor, pentoxifylline (both at 5 mg/kg, i.p., twice daily). Controls received saline, vehicle, or drug only. Colonic histology, myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) levels, and epithelial ion transport (baseline and stimulated by electrical nerve stimulation, carbachol, and forskolin) were examined. DSS-treated mice displayed a variable diarrhea, significant histopathology in the mid-distal colon, elevated MPO activity, and reduced (>50%) responses to all three pro-secretory stimuli. Treatment with rolipram, and to a lesser extent pentoxifylline, significantly reduced the severity of the colonic histopathology and MPO levels. Neither PDE inhibitor had any affect on the diminished ion transport events caused by DSS-induced colitis. However, although stimulated ion transport events were still reduced 3 days after DSS treatment, colonic segments from DSS + rolipram-treated mice displayed enhanced recovery in their secretory responsiveness, particularly to carbachol. These findings indicate that specific PDE4 inhibition can significantly reduce the tissue damage that accompanies colitis and enhance recovery of normal colonic function. PMID:10854237
Inhibition of phosphodiesterase-4 decreases ethanol intake in mice.
Hu, Wei; Lu, Tina; Chen, Alan; Huang, Ying; Hansen, Rolf; Chandler, L Judson; Zhang, Han-Ting
2011-11-01
Cyclic AMP (cAMP)-protein kinase A signaling has been implicated in the regulation of ethanol consumption. Phosphodiesterase-4 (PDE4) specifically hydrolyzes cAMP and plays a critical role in controlling intracellular cAMP levels in the brain. However, the role of PDE4 in ethanol consumption remains unknown. The objective of this study is to examine whether PDE4 was involved in regulating ethanol intake. The two-bottle choice paradigm was used to assess intake of ethanol, sucrose, and quinine in C57BL/6J mice treated with the selective PDE4 inhibitor rolipram or Ro 20-1724; locomotor activity was also monitored using the open-field test in mice treated with rolipram. Administration (i.p.) of either rolipram (0.25 and 0.5 mg/kg) or Ro 20-1724 (10 mg/kg) reduced ethanol intake and preference by 60-80%, but did not alter total fluid intake. In contrast, rolipram even at the higher dose of 0.5 mg/kg was not able to affect intake of sucrose or quinine, alcohol-induced sedation, or blood ethanol elimination. At 0.5 mg/kg, rolipram did decrease locomotor activity, but the effect only lasted for approximately 40 min, which did not likely affect behavior of ethanol drinking. These results suggest that PDE4 is a novel target for drugs that reduce ethanol intake; PDE4 inhibitors may be used for treatment of alcohol dependence.
Sutcliffe, Jane S.; Beaumont, Vahri; Watson, James M.; Chew, Chang Sing; Beconi, Maria; Hutcheson, Daniel M.; Dominguez, Celia; Munoz-Sanjuan, Ignacio
2014-01-01
Cyclic adenosine monophosphate (cAMP) signalling plays an important role in synaptic plasticity and information processing in the hippocampal and basal ganglia systems. The augmentation of cAMP signalling through the selective inhibition of phosphodiesterases represents a viable strategy to treat disorders associated with dysfunction of these circuits. The phosphodiesterase (PDE) type 4 inhibitor rolipram has shown significant pro-cognitive effects in neurological disease models, both in rodents and primates. However, competitive non-isoform selective PDE4 inhibitors have a low therapeutic index which has stalled their clinical development. Here, we demonstrate the pro-cognitive effects of selective negative allosteric modulators (NAMs) of PDE4D, D159687 and D159797 in female Cynomolgous macaques, in the object retrieval detour task. The efficacy displayed by these NAMs in a primate cognitive task which engages the corticostriatal circuitry, together with their suitable pharmacokinetic properties and safety profiles, suggests that clinical development of these allosteric modulators should be considered for the treatment of a variety of brain disorders associated with cognitive decline. PMID:25050979
PDE4 as a target for cognition enhancement
Richter, Wito; Menniti, Frank S.; Zhang, Han-Ting; Conti, Marco
2014-01-01
Introduction The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. Areas covered PDE4 is the largest of the eleven mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. Expert opinion PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors. PMID:23883342
Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages.
Erdely, Aaron; Kepka-Lenhart, Diane; Clark, Melissa; Zeidler-Erdely, Patti; Poljakovic, Mirjana; Calhoun, William J; Morris, Sidney M
2006-03-01
Arginase is greatly elevated in asthma and is thought to play a role in the pathophysiology of this disease. As inhibitors of phosphodiesterase 4 (PDE4), the predominant PDE in macrophages, elevate cAMP levels and reduce inflammation, they have been proposed for use in treatment of asthma and chronic obstructive pulmonary disease. As cAMP is an inducer of arginase, we tested the hypothesis that a PDE4 inhibitor would enhance macrophage arginase induction by key cytokines implicated in asthma and other pulmonary diseases. RAW 264.7 cells were stimulated with IL-4 or transforming growth factor (TGF)-beta, with and without the PDE4 inhibitor rolipram. IL-4 and TGF-beta increased arginase activity 16- and 5-fold, respectively. Rolipram alone had no effect but when combined with IL-4 and TGF-beta synergistically enhanced arginase activity by an additional 15- and 5-fold, respectively. The increases in arginase I protein and mRNA levels mirrored increases in arginase activity. Induction of arginase II mRNA was also enhanced by rolipram but to a much lesser extent than arginase I. Unlike its effect in RAW 264.7 cells, IL-4 alone did not increase arginase activity in human alveolar macrophages (AM) from healthy volunteers. However, combining IL-4 with agents to induce cAMP levels induced arginase activity in human AM significantly above the level obtained with cAMP-inducing agents alone. In conclusion, agents that elevate cAMP significantly enhance induction of arginase by cytokines. Therefore, consequences of increased arginase expression should be evaluated whenever PDE inhibitors are proposed for treatment of inflammatory disorders in which IL-4 and/or TGF-beta predominate.
Yamamoto, Satoshi; Sugahara, Shingo; Naito, Ryo; Ichikawa, Atsushi; Ikeda, Ken; Yamada, Toshimitsu; Shimizu, Yasuaki
2006-07-10
YM-393059, (+/-)-N-(4,6-dimethylpyrimidin-2-yl)-4-[2-(4-methoxy-3-methylphenyl)-5-(4-methylpiperazin-1-yl)-4,5,6,7-tetrahydro-1H-indol-1-yl]benzenesulfonamide difumarate, is a novel phosphodiesterase (PDE) inhibitor that inhibited the PDE7A isoenzyme with a high potency (IC50=14 nM) and PDE4 with a moderate potency (IC50=630 nM). In a cell-based assay, YM-393059 was found to inhibit anti-CD3 antibody, Staphylococcal enterotoxin B, and phytohaemagglutinin-induced interleukin (IL)-2 production in mouse splenocytes with IC50 values ranging from 0.48 to 1.1 microM. It also inhibited anti-CD3 antibody-induced interferon (IFN)-gamma and IL-4 production in splenocytes with IC50 values of 1.8 and 2.8 microM, respectively. YM-393059's inhibition of anti-CD3 antibody-stimulated cytokine (IL-2, IFN-gamma, and IL-4) production was 20- to 31-fold weaker than that of YM976, a selective PDE4 inhibitor. However, orally administered YM-393059 and YM976 inhibited anti-CD3 antibody-induced IL-2 production equipotently in mice. In addition, YM-393059 inhibited lipopolysaccharide-induced tumor necrosis factor-alpha production in vivo more potently than IL-2 (ED50 values of 2.1 mg/kg and 74 mg/kg). In contrast to YM976, YM-393059 did not shorten the duration of alpha2-adrenoceptor agonist-induced sleep in mice, which is a model for the assessment of the typical side effects caused by PDE4 inhibitors, nausea and emesis. YM-393059 is a novel and attractive compound for the treatment of a wide variety of T-cell-mediated diseases.
Ohba, Fuminori; Matsuki, Shunji; Imayama, Shuhei; Matsuguma, Kyoko; Hojo, Seiichiro; Nomoto, Maiko; Akama, Hideto
2016-10-01
Phosphodiesterase type 4 (PDE4) inhibition is a well-known anti-inflammatory mechanism. However, the clinical use of PDE4 inhibitors has been compromised by the occurrence of mechanism-associated adverse reactions, which often limit the maximum tolerated dose. To minimize systemic exposure, a topically active PDE4 inhibitor with low transdermal bioavailability could be clinically useful. The purpose of this study was to evaluate the efficacy of a novel topical PDE4 inhibitor, E6005, in patients with atopic dermatitis. This randomized, investigator-blinded, vehicle-controlled, multiple ascending dose study included 40 adult male patients with atopic dermatitis, who were randomly assigned to 10 days of treatment with either E6005 ointment (0.01, 0.03, 0.1 or 0.2%) or vehicle ointment. Of 81 patients screened, 40 who had typical lesions on their posterior trunk were randomized into the study. One patient receiving 0.03% E6005 treatment discontinued because of acute gout and one receiving vehicle treatment discontinued because of progression of atopic dermatitis. The targeted lesion severity scores decreased in a concentration-dependent manner in patients treated with E6005. This drop was significant in the 0.2% E6005 ointment treatment group (mean percent change: -54.30%, p = 0.007). E6005 ointment showed anti-inflammatory efficacy in adult patients with atopic dermatitis.
Bland, Nicholas D; Wang, Cuihua; Tallman, Craig; Gustafson, Alden E; Wang, Zhouxi; Ashton, Trent D; Ochiana, Stefan O; McAllister, Gregory; Cotter, Kristina; Fang, Anna P; Gechijian, Lara; Garceau, Norman; Gangurde, Rajiv; Ortenberg, Ron; Ondrechen, Mary Jo; Campbell, Robert K; Pollastri, Michael P
2011-12-08
Neglected tropical disease drug discovery requires application of pragmatic and efficient methods for development of new therapeutic agents. In this report, we describe our target repurposing efforts for the essential phosphodiesterase (PDE) enzymes TbrPDEB1 and TbrPDEB2 of Trypanosoma brucei , the causative agent for human African trypanosomiasis (HAT). We describe protein expression and purification, assay development, and benchmark screening of a collection of 20 established human PDE inhibitors. We disclose that the human PDE4 inhibitor piclamilast, and some of its analogues, show modest inhibition of TbrPDEB1 and B2 and quickly kill the bloodstream form of the subspecies T. brucei brucei . We also report the development of a homology model of TbrPDEB1 that is useful for understanding the compound-enzyme interactions and for comparing the parasitic and human enzymes. Our profiling and early medicinal chemistry results strongly suggest that human PDE4 chemotypes represent a better starting point for optimization of TbrPDEB inhibitors than those that target any other human PDEs.
Genome-wide Association Analysis Identifies PDE4D as an Asthma-Susceptibility Gene
Himes, Blanca E.; Hunninghake, Gary M.; Baurley, James W.; Rafaels, Nicholas M.; Sleiman, Patrick; Strachan, David P.; Wilk, Jemma B.; Willis-Owen, Saffron A.G.; Klanderman, Barbara; Lasky-Su, Jessica; Lazarus, Ross; Murphy, Amy J.; Soto-Quiros, Manuel E.; Avila, Lydiana; Beaty, Terri; Mathias, Rasika A.; Ruczinski, Ingo; Barnes, Kathleen C.; Celedón, Juan C.; Cookson, William O.C.; Gauderman, W. James; Gilliland, Frank D.; Hakonarson, Hakon; Lange, Christoph; Moffatt, Miriam F.; O'Connor, George T.; Raby, Benjamin A.; Silverman, Edwin K.; Weiss, Scott T.
2009-01-01
Asthma, a chronic airway disease with known heritability, affects more than 300 million people around the world. A genome-wide association (GWA) study of asthma with 359 cases from the Childhood Asthma Management Program (CAMP) and 846 genetically matched controls from the Illumina ICONdb public resource was performed. The strongest region of association seen was on chromosome 5q12 in PDE4D. The phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) gene (PDE4D) is a regulator of airway smooth-muscle contractility, and PDE4 inhibitors have been developed as medications for asthma. Allelic p values for top SNPs in this region were 4.3 × 10−07 for rs1588265 and 9.7 × 10−07 for rs1544791. Replications were investigated in ten independent populations with different ethnicities, study designs, and definitions of asthma. In seven white and Hispanic replication populations, two PDE4D SNPs had significant results with p values less than 0.05, and five had results in the same direction as the original population but had p values greater than 0.05. Combined p values for 18,891 white and Hispanic individuals (4,342 cases) in our replication populations were 4.1 × 10−04 for rs1588265 and 9.2 × 10−04 for rs1544791. In three black replication populations, which had different linkage disequilibrium patterns than the other populations, original findings were not replicated. Further study of PDE4D variants might lead to improved understanding of the role of PDE4D in asthma pathophysiology and the efficacy of PDE4 inhibitor medications. PMID:19426955
Röhrig, Teresa; Liesenfeld, David; Richling, Elke
2017-05-17
Recent reports that coffee can significantly inhibit cAMP phosphodiesterases (PDEs) in vitro, as well as in vivo, have described another beneficial effect of coffee consumption. However, the PDE-inhibiting substances remain mostly unknown. We chose activity-guided fractionation and an in vitro test system to identify the coffee components that are responsible for PDE inhibition. This approach indicated that a fraction of melanoidins reveals strong PDE-inhibiting potential (IC 50 = 130 ± 42 μg/mL). These melanoidins were characterized as water-soluble, low-molecular weight melanoidins (<3 kDa) with a nitrogen content of 4.2% and a carbohydrate content lower than those of other melanoidins. Fractions containing known PDE inhibitors such as chlorogenic acids, alkylpyrazines, or trigonelline as well as N-caffeoyl-tryptophan and N-p-coumaroyl-tryptophan did not exert PDE-inhibiting activity. We also observed that the known PDE inhibitor caffeine does not contribute to the PDE-inhibiting effects of coffee.
Perez-Gonzalez, Rocio; Pascual, Consuelo; Antequera, Desiree; Bolos, Marta; Redondo, Miriam; Perez, Daniel I; Pérez-Grijalba, Virginia; Krzyzanowska, Agnieszka; Sarasa, Manuel; Gil, Carmen; Ferrer, Isidro; Martinez, Ana; Carro, Eva
2013-09-01
Elevated levels of amyloid beta (Aβ) peptide, hyperphosphorylation of tau protein, and inflammation are pathological hallmarks in Alzheimer's disease (AD). Phosphodiesterase 7 (PDE7) regulates the inflammatory response through the cyclic adenosine monophosphate signaling cascade, and thus plays a central role in AD. The aim of this study was to evaluate the efficacy of an inhibitor of PDE7, named S14, in a mouse model of AD. We report that APP/Ps1 mice treated daily for 4 weeks with S14 show: (1) significant attenuation in behavioral impairment; (2) decreased brain Aβ deposition; (3) enhanced astrocyte-mediated Aβ degradation; and (4) decreased tau phosphorylation. These effects are mediated via the cyclic adenosine monophosphate/cyclic adenosine monophosphate response element-binding protein signaling pathway, and inactivation of glycogen synthase kinase (GSK)3. Our data support the use of PDE7 inhibitors, and specifically S14, as effective therapeutic agents for the prevention and treatment of AD. Copyright © 2013 Elsevier Inc. All rights reserved.
Cichero, Elena; D'Ursi, Pasqualina; Moscatelli, Marco; Bruno, Olga; Orro, Alessandro; Rotolo, Chiara; Milanesi, Luciano; Fossa, Paola
2013-12-01
Phosphodiesterase 11 (PDE11) is the latest isoform of the PDEs family to be identified, acting on both cyclic adenosine monophosphate and cyclic guanosine monophosphate. The initial reports of PDE11 found evidence for PDE11 expression in skeletal muscle, prostate, testis, and salivary glands; however, the tissue distribution of PDE11 still remains a topic of active study and some controversy. Given the sequence similarity between PDE11 and PDE5, several PDE5 inhibitors have been shown to cross-react with PDE11. Accordingly, many non-selective inhibitors, such as IBMX, zaprinast, sildenafil, and dipyridamole, have been documented to inhibit PDE11. Only recently, a series of dihydrothieno[3,2-d]pyrimidin-4(3H)-one derivatives proved to be selective toward the PDE11 isoform. In the absence of experimental data about PDE11 X-ray structures, we found interesting to gain a better understanding of the enzyme-inhibitor interactions using in silico simulations. In this work, we describe a computational approach based on homology modeling, docking, and molecular dynamics simulation to derive a predictive 3D model of PDE11. Using a Graphical Processing Unit architecture, it is possible to perform long simulations, find stable interactions involved in the complex, and finally to suggest guideline for the identification and synthesis of potent and selective inhibitors. © 2013 John Wiley & Sons A/S.
Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert
2015-01-01
Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice. PMID:26058042
Kaneda, Takeharu; Kido, Yuuki; Tajima, Tsuyoshi; Urakawa, Norimoto; Shimizu, Kazumasa
2015-01-01
The effects of various selective phosphodiesterase (PDE) inhibitors on carbachol (CCh)-induced contraction in the bovine abomasum were investigated. Various selective PDE inhibitors, vinpocetine (type 1), erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, type 2), milrinone (type 3), Ro20-1724 (type 4), vardenafil (type 5), BRL-50481 (type 7) and BAY73-6691 (type 9), inhibited CCh-induced contractions in a concentration-dependent manner. Among the PDE inhibitors, Ro20-1724 and vardenafil induced more relaxation than the other inhibitors based on the data for the IC50 or maximum relaxation. In smooth muscle of the bovine abomasum, we showed the expression of PDE4B, 4C, 4D and 5 by RT-PCR analysis. In the presence of CCh, Ro20-1724 increased the cAMP content, but not the cGMP content. By contrast, vardenafil increased the cGMP content, but not the cAMP content. These results suggest that Ro20-1724-induced relaxation was correlated with cAMP and that vardenafil-induced relaxation was correlated with cGMP in the bovine abomasum. In conclusion, PDE4 and PDE5 are the enzymes involved in regulation of the relaxation associated with cAMP and cGMP, respectively, in the bovine abomasum.
Pauwelyn, Vicky; Lefebvre, Romain A.
2018-01-01
Background: As the signal transduction of 5-HT4 receptors on cholinergic neurons innervating smooth muscle is controlled by phosphodiesterase (PDE) 4 in porcine stomach and colon, and human large intestine, the in vivo gastroprokinetic effects of a 5-HT4 receptor agonist might be enhanced by combination with a selective PDE4 inhibitor. The presence of 5-HT4 receptors on cholinergic neurons towards murine gastrointestinal circular muscle was recently shown. If the control of this receptor pathway by PDE4 is also present in mice, this might be a good model for in vivo testing of the combination therapy. Therefore this study investigates the role of cAMP catalyzing PDEs in smooth muscle cell activity and in the intraneuronal signal transduction of the 5-HT4 receptors in the gastrointestinal tract of C57Bl/6J mice. Methods: In circular smooth muscle strips from murine fundus, jejunum, and colon, submaximal cholinergic contractions were induced by either electrical field stimulation (EFS) or by carbachol (muscarinic receptor agonist). The influence of the PDE inhibitors IBMX (non-selective), vinpocetine (PDE1), EHNA (PDE2), cilostamide (PDE3), and rolipram (PDE4) was tested on these contractions and on the facilitating effect of a submaximal concentration of prucalopride (5-HT4 receptor agonist) on EFS-induced contractions. Results: In the three gastrointestinal regions, IBMX and cilostamide concentration-dependently decreased carbachol- as well as EFS-induced contractions. Some inhibitory effect was also observed with rolipram. In the fundus a non-significant trend for an enhancement of the facilitating effect of prucalopride on EFS-induced contractions was observed with IBMX, but none of the selective PDE inhibitors enhanced the facilitating effect of prucalopride in fundus, jejunum or colon. Conclusion: In analogy with the porcine gastrointestinal tract, in murine fundus, jejunum, and colon circular smooth muscle PDE3 is the main regulator of the cAMP turnover, with some contribution of PDE4. In contrast to the porcine gastrointestinal tract, the in vitro facilitation of electrically induced cholinergic contractions by 5-HT4 receptor stimulation could not be enhanced by specific PDE inhibition. The C57Bl/6J murine model is thus not suitable for in vivo testing of a 5-HT4 receptor agonist combined with a selective PDE4 inhibitor. PMID:29568269
Tian, G; Rocque, W J; Wiseman, J S; Thompson, I Z; Holmes, W D; Domanico, P L; Stafford, J A; Feldman, P L; Luther, M A
1998-05-12
Purified recombinant human type 4 phosphodiesterase B2B (HSPDE4B2B) exists in both a low- and a high-affinity state that bind (R)-rolipram with Kd's of ca. 500 and 1 nM, respectively [Rocque, W. J., Tian, G., Wiseman, J. S., Holmes, W. D., Thompson, I. Z., Willard, D. H., Patel, I. R., Wisely, G. B., Clay, W. C., Kadwell, S. H., Hoffman, C. R., and Luther, M. A. (1997) Biochemistry 36, 14250-14261]. Since the tissue distribution of the two isostates may be significantly different, development of inhibitors that effectively inhibit both forms may be advantageous pharmacologically. In this study, enzyme inhibition and binding of HSPDE4B2B by (R, R)-(+/-)-methyl 3-acetyl-4-[3-(cyclopentyloxy)-4-methoxyphenyl]-3-methyl-1-pyrrolidin ecarboxylate (1), a novel inhibitor of phosphodiesterase 4 (PDE 4), were investigated. Binding experiments demonstrated high-affinity binding of 1 to HSPDE4B2B with a stoichiometry of 1:1. Inhibition of PDE activity showed only a single transition with an observed Ki similar to the apparent Kd determined by the binding experiments. Deletional mutants of HSPDE4B2B, which have been shown to bind (R)-rolipram with low affinity, were shown to interact with 1 with high affinity, indistinguishable from the results obtained with the full-length enzyme. Bound 1 was completely displaced by (R)-rolipram, and the displacement showed a biphasic transition that resembles the biphasic inhibition of HSPDE4B2B by (R)-rolipram. Theoretical analysis of the two transitions exemplified in the interaction of (R)-rolipram with HSPDE4B2B indicated that the two isostates were nonexchangeable. Phosphorylation at serines 487 and 489 on HSPDE4B2B had no effect on the stoichiometry of binding, the affinity for binding, or the inhibition of the enzyme by 1. These data further illustrate the presence of two isostates in PDE 4 as shown previously for (R)-rolipram binding and inhibition. In contrast to (R)-rolipram, where only one of the two isostates of PDE 4 binds with high affinity, 1 is a potent, dual inhibitor of both of the isostates of PDE 4. Kinetic and thermodynamic models describing the interactions between the nonexchangeable isostates of PDE 4 and its ligands are discussed.
Chen, Gong; Wang, Huanchen; Robinson, Howard; Cai, Jiwen; Wan, Yiqian; Ke, Hengming
2008-01-01
Selective inhibitors of cyclic nucleotide phosphodiesterase-5 (PDE5) have been used as drugs for treatment of male erectile dysfunction and pulmonary hypertension. An insight into the pharmacophores of PDE5 inhibitors is essential for development of second generation of PDE5 inhibitors, but has not been completely illustrated. Here we report the synthesis of a new class of the sildenafil derivatives and a crystal structure of the PDE5 catalytic domain in complex with 5-(2-ethoxy-5-(sulfamoyl)-3-thienyl)-1-methyl-3-propyl-1,6-dihydro-7H-pyrazolo[4,3-d] pyrimidin-7-one (12). Inhibitor 12 induces conformational change of the H-loop (residues 660–683), which is different from any of the known PDE5 structures. The pyrazolopyrimidinone groups of 12 and sildenafil are well superimposed, but their sulfonamide groups show a positional difference of as much as 1.5 Å. The structure-activity analysis suggests that a small hydrophobic pocket and the H-loop of PDE5 are important for the inhibitor affinity, in addition to two common elements for binding of almost all the PDE inhibitors: the stack against the phenylalanine and the hydrogen bond with the invariant glutamine. However, the PDE5-12 structure does not provide a full explanation to affinity changes of the inhibitors. Thus alternatives such as conformational change of the M-loop are open and further structural study is required. PMID:18346713
Effect of phosphodiesterase inhibitors in the bladder.
Chughtai, Bilal; Ali, Aizaz; Dunphy, Claire; Kaplan, Steven A
2015-01-01
Many aging men will experience lower urinary tract symptoms (LUTS). Phosphodiesterase type 5 (PDE5) inhibitors have shown promise in treating LUTS in these patients. PDE5 inhibitors mediate their effects through several pathways including cAMP, NO/cGMP, K-channel modulated pathways, and the l -cysteine/H 2 S pathway. PDE5 inhibitors exert their effect in muscle cells, nerve fibers, and interstitial cells (ICs). The use of PDE5 inhibitors led to improvement in LUTS. This included urodynamic parameters. PDE5 inhibitors may play a significant role in LUTS due to their effect on the bladder rather than the prostate.
Chen, Chunyan; Liu, Miaomiao; Wu, Jing; Yang, Xiaolan; Hu, Xiaolei; Pu, Jun; Long, Gaobo; Xie, Yanling; Jiang, Hairong; Yuan, Yonghua; Liao, Fei
2014-12-01
The feasibility for microplate-based screening of inhibitors of isozymes of cyclic nucleotide phosphodiesterase (PDE) was tested via the coupled action of a phosphatase on adenosine-5'-monophosphate and an improved malachite green assay of phosphate. Human full-length PDE4B2 and truncated mutant (152-528aa) were expressed in Escherichia coli via fusion to SUMO, which after purification through Ni-NTA column exhibited specific activities >0.017 U mg(-1). In the presence of proteins <30 mg L(-1), absorbance for 10 µΜ phosphate was measurable; a PDE isozyme of specific activity over 0.008 U mg(-1) after reaction for 20 min thus suited for microplate-based screening of inhibitors. By using Biotek ELX 800 microplate reader, affinities of two forms of PEDE4B2 for cAMP, rolipram and papaverine varied over three magnitudes and were consistent with those by routine assay, respectively. Hence, the proposed method was promising for high-throughput-screening of inhibitors of phosphate-releasing enzymes bearing specific activities over 0.008 U mg(-1).
García-Perdomo, Herney Andrés; Echeverría-García, Fernando; Tobías, Aurelio
2017-01-01
To determine the effectiveness of the Phosphodiesterase 5 (PDE5) Inhibitors for the treatment of erectile dysfunction in patients with spinal trauma. A systematic review and meta-analysis comparing PDE5 inhibitors versus placebo were carried out for clinical trials conducted between 1980 and 2014 that evaluated male patients older than 18 years, diagnosed with spinal cord trauma and erectile dysfunction. We designed a search strategy for Medline, CENTRAL, EMBASE and other electronic sources. Two investigators independently and blindly screened the studies for inclusion. A random effect meta-analysis was performed. Six studies involving 963 patients were included. Male patients over 18 years with ED attributable or subsequent to traumatic spinal cord injury (SCI) were included from these studies. In 4 of these studies, patients were randomized to the treatment group receiving sildenafil and the comparison group was placebo. Out of the remaining 2 trials, one compared tadalafil against the placebo and the other vardenafil versus placebo. The improvement on SCIs with PDE5 inhibitors was found to be large (standardized mean difference 0.71; 95% CI 0.39-1.03), with a high heterogeneity (I2 = 74.4%). PDE5 inhibitors are effective for the treatment of erectile dysfunction secondary to SCI. © 2016 S. Karger AG, Basel.
Jarnagin, Kurt; Chanda, Sanjay; Coronado, Dina; Ciaravino, Vic; Zane, Lee T; Guttman-Yassky, Emma; Lebwohl, Mark G
2016-04-01
Crisaborole topical ointment, 2% (formerly known as AN2728) is a benzoxaborole, nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 (PDE4) inhibitor investigational compound that recently completed phase 3 studies for the treatment of mild to moderate atopic dermatitis (AD). The unique configuration of boron within the crisaborole molecule enables selective targeting and inhibition of PDE4, an enzyme that converts the intracellular second messenger 3'5'-cyclic adenosine monophosphate (cAMP) into the active metabolite adenosine monophosphate (AMP). By inhibiting PDE4 and thus increasing levels of cAMP, crisaborole controls inflammation. The use of boron chemistry enabled synthesis of a low-molecular-weight compound (251 daltons), thereby facilitating effective penetration of crisaborole through human skin. In vitro experiments showed that crisaborole inhibits cytokine production from peripheral blood mononuclear cells in a pattern similar to other PDE4 inhibitors and distinct from corticosteroids. Crisaborole also displayed topical anti-inflammatory activity in a skin inflammation model. Once crisaborole reaches systemic circulation after topical application, it is metabolized to inactive metabolites. This limits systemic exposure to crisaborole and systemic PDE4 inhibition. In phase 1 and 2 clinical studies, crisaborole ointment, 2% was generally well tolerated and improved AD disease severity scores, pruritus, and all other AD signs and symptoms. Two large, randomized, controlled, phase 3, pivotal clinical trials assessing the efficacy and safety of crisaborole topical ointment, 2% in children, adolescents, and adults with mild to moderate AD were recently completed with positive results.
Guo, Yan-Qiong; Tang, Gui-Hua; Lou, Lan-Lan; Li, Wei; Zhang, Bei; Liu, Bo; Yin, Sheng
2018-01-20
The bioassay-guided phytochemical study of a traditional Chinese medicine Morus alba led to the isolation of 18 prenylated flavonoids (1-18), of which (±)-cyclomorusin (1/2), a pair of enantiomers, and 14-methoxy-dihydromorusin (3) are the new ones. Subsequent structural modification of the selected components by methylation, esterification, hydrogenation, and oxidative cyclization led to 14 more derivatives (19-32). The small library was screened for its inhibition against phosphodiesterase-4 (PDE4), which is a drug target for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Among them, nine compounds (1-5, 8, 10, 16, and 17) exhibited remarkable activities with IC 50 values ranging from 0.0054 to 0.40 μM, being more active than the positive control rolipram (IC 50 = 0.62 μM). (+)-Cyclomorusin (1), the most active natural PDE4 inhibitor reported so far, also showed a high selectivity across other PDE members with the selective fold greater than 55. The SAR study revealed that the presence of prenyls at C-3 and/or C-8, 2H-pyran ring D, and the phenolic hydroxyl groups were important to the activity, which was further supported by the recognition mechanism study of the inhibitors with PDE4 by using molecular modeling. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kwak, Hyun Jeong; Nam, Ji Yeon; Song, Jin Sook; No, Zaesung; Yang, Sung Don; Cheon, Hyae Gyeong
2012-06-15
Phosphodiesterase-4 (PDE-4) is responsible for metabolizing adenosine 3',5'-cyclic monophosphate that reduces the activation of a wide range of inflammatory cells including eosinophils. PDE-4 inhibitors are under development for the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. Herein, we report a novel PDE-4 inhibitor, PDE-423 (3-[1-(3-cyclopropylmethoxy-4-difluoromethoxybenzyl)-1H-pyrazol-3-yl]-benzoic acid), which shows good in vitro and in vivo oral activities. PDE-423 exhibited in vitro IC(50)s of 140 nM and 550 nM in enzyme assay and cell-based assay, respectively. In vivo study using ovalbumin-induced asthmatic mice revealed that PDE-423 reduced methacholine-stimulated airway hyperreactivity in a dose-dependent manner by once daily oral administration (ED(50)=18.3 mg/kg), in parallel with decreased eosinophil peroxidase activity and improved lung histology. In addition, PDE-423 was effective in diminishing lipopolysaccharide-induced neutrophilia in vivo as well as in vitro. Oral administration of PDE-423 (100 mg/kg) had no effect on the duration of xylazine/ketamine-induced anesthesia and did not induce vomiting incidence in ferrets up to the dose of 1000 mg/kg. The present study indicates that a novel PDE-4 inhibitor, PDE-423, has good pharmacological profiles implicating this as a potential candidate for the development of a new anti-asthmatic drug. Copyright © 2012 Elsevier B.V. All rights reserved.
Discovery of novel pyrazolopyrimidinone analogs as potent inhibitors of phosphodiesterase type-5.
Sawant, Sanghapal D; Lakshma Reddy, G; Dar, Mohd Ishaq; Srinivas, M; Gupta, Gourav; Sahu, Promod Kumar; Mahajan, Priya; Nargotra, Amit; Singh, Surjeet; Sharma, Subhash C; Tikoo, Manoj; Singh, Gurdarshan; Vishwakarma, Ram A; Syed, Sajad Hussain
2015-05-01
Cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type-5 (PDE5), a clinically proven target to treat erectile dysfunction and diseases associated with lower cGMP levels in humans, is present in corpus cavernosum, heart, lung, platelets, prostate, urethra, bladder, liver, brain, and stomach. Sildenafil, vardenafil, tadalafil and avanafil are FDA approved drugs in market as PDE5 inhibitors for treating erectile dysfunction. In the present study a lead molecule 4-ethoxy-N-(6-hydroxyhexyl)-3-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)benzenesulfonamide, that is, compound-4a, an analog of pyrazolopyrimidinone scaffold has been identified as selective PDE5 inhibitor. A series of compounds was synthesized by replacing N-methylpiperazine moiety (ring-C) of sildenafil structure with different N-substitutions towards sulfonamide end. Compound-4a showed lower IC₅₀ value (1.5 nM) against PDE5 than parent sildenafil (5.6 nM) in in vitro enzyme assay. The isoform selectivity of the compound-4a against other PDE isoforms was similar to that of the Sildenafil. In corroboration with the in vitro data, this molecule showed better efficacy in in vivo studies using the conscious rabbit model. Also compound-4a exhibited good physicochemical properties like solubility, caco-2 permeability, cLogP along with optimal PK profile having no significant CYP enzyme inhibitory liabilities. Discovery of these novel bioactive compounds may open a new alternative for developing novel preclinical candidates based on this drugable scaffold. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phosphodiesterases regulate airway smooth muscle function in health and disease.
Krymskaya, Vera P; Panettieri, Reynold A
2007-01-01
On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.
Sharma, Manju; Levenson, Corey; Browning, John C; Becker, Emily M; Clements, Ian; Castella, Paul; Cox, Michael E
2018-01-01
Cyclic adenosine monophosphate phosphodiesterases (PDEs) regulate pro-inflammatory cytokine production. One isoform, PDE4, is overactive in chronic relapsing inflammatory skin diseases: psoriasis and eczema/atopic dermatitis, and in several cancers. East Indian sandalwood oil (EISO) has significant anti-inflammatory properties. Here, we report that 75% of pediatric eczema/atopic dermatitis patients treated with topical EISO formulations achieved a >50% reduction in their Eczema Area and Severity Index score. EISO treatment of a psoriasis model reduced PDE4 expression and reversed histopathology. EISO directly inhibited PDE enzymatic activity in vitro . In lipopolysaccharide-stimulated human dermal fibroblast, BEAS-2B, A549, and THP-1 cells, EISO suppressed total cellular PDE activity, PDE4, and 7 transcript levels, nuclear factor kappa B (NF-κB) activation, and pro-inflammatory cytokines/chemokine production. These results suggest that EISO anti-inflammatory activity is mediated through suppressing PDE activity, thus facilitating cAMP-regulated inhibition of NF-κB and indicate EISO as an attractive natural therapeutic for chronic and acute inflammatory disorders.
Sharma, Manju; Levenson, Corey; Browning, John C.; Becker, Emily M.; Clements, Ian; Castella, Paul; Cox, Michael E.
2018-01-01
Cyclic adenosine monophosphate phosphodiesterases (PDEs) regulate pro-inflammatory cytokine production. One isoform, PDE4, is overactive in chronic relapsing inflammatory skin diseases: psoriasis and eczema/atopic dermatitis, and in several cancers. East Indian sandalwood oil (EISO) has significant anti-inflammatory properties. Here, we report that 75% of pediatric eczema/atopic dermatitis patients treated with topical EISO formulations achieved a >50% reduction in their Eczema Area and Severity Index score. EISO treatment of a psoriasis model reduced PDE4 expression and reversed histopathology. EISO directly inhibited PDE enzymatic activity in vitro. In lipopolysaccharide-stimulated human dermal fibroblast, BEAS-2B, A549, and THP-1 cells, EISO suppressed total cellular PDE activity, PDE4, and 7 transcript levels, nuclear factor kappa B (NF-κB) activation, and pro-inflammatory cytokines/chemokine production. These results suggest that EISO anti-inflammatory activity is mediated through suppressing PDE activity, thus facilitating cAMP-regulated inhibition of NF-κB and indicate EISO as an attractive natural therapeutic for chronic and acute inflammatory disorders. PMID:29593534
Suhasini, Avvaru N.; Lin, An-Ping; Bhatnagar, Harshita; Kim, Sang-Woo; Moritz, August W.; Aguiar, Ricardo C. T.
2015-01-01
Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL. PMID:26503641
NASA Astrophysics Data System (ADS)
Lawrenz, Morgan E.; Salter, E. A.; Wierzbicki, Andrzej; Thompson, W. J.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that hydrolyze the second messengers adenosine and guanosine 3',5'-cyclic monophosphate (cAMP and cGMP) to their noncyclic nucleotides (5'-AMP and 5'-GMP). Selective inhibitors of all 11 gene families of PDEs are being sought based on the different biochemical properties of the different isoforms, including their substrate specificities. The PDE4 gene family consists of cAMP-specific isoforms; selective PDE4 inhibitors such as rolipram have been developed, and related agents are used clinically as anti-inflammatory agents for asthma and COPD. The known crystal structures of PDE4 bound with rolipram and IBMX have allowed us to define plausible binding orientations for a novel class of benzylpyridazinone-based PDE4 inhibitors represented by EMD 94360 and EMD 95832 that are structurally distinct from rolipram. Molecular mechanics modeling with autodocking is used to explore energetically favorable binding orientations within the PDE4 catalytic site. We present two putative orientations for EMD 94360/95832 inhibitor binding. Our estimated interaction energies for rolipram, IBMX, EMD 94360, and EMD 95832 are consistent with the experimental data for their IC50 values. Key binding residues and interactions in these orientations are identified and compared with known binding motifs proposed for rolipram. The experimentally observed improved strength of inhibition exhibited by this novel class of PDE4 inhibitors is explained by the molecular modeling reported here.
Zhang, Chong; Xu, Ying; Zhang, Han-Ting; Gurney, Mark E.; O’Donnell, James M.
2017-01-01
Inhibition of cyclic AMP (cAMP)-specific phosphodiesterase 4 (PDE4) has been proposed as a potential treatment for a series of neuropsychological conditions such as depression, anxiety and memory loss. However, the specific involvement of each of the PDE4 subtypes (PDE4A, 4B and 4C) in different categories of behavior has yet to be elucidated. In the present study, we compared the possible pharmacological effects of PDE4B and PDE4D selective inhibitors, A-33 and D159687, in mediating neurological function in mice. Both compounds were equally potent in stimulating cAMP signaling in the mouse hippocampal cell line HT-22 leading to an increase in CREB phosphorylation. In contrast, A-33 and D159687 displayed distinct neuropharmacological effects in mouse behavioral tests. A-33 has an antidepressant-like profile as indicated by reduced immobility time in the forced swim and tail suspension tasks, as well as reduced latency to feed in the novelty suppressed feeding test. D159687, on the other hand, had a procognitive profile as it improved memory in the novel object recognition test but had no antidepressant or anxiolytic benefit. The present data suggests that inhibitors targeting specific subtypes of PDE4 may exhibit differential pharmacological effects and aid a more efficient pharmacotherapy towards neuropsychological conditions. PMID:28054669
Paplinska, M; Chazan, R; Grubek-Jaworska, H
2011-06-01
The increasing number of eosinophils into bronchoaelvolar space is observed during noninfectious inflammatory lung diseases. Eotaxins (eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26) are the strongest chemotactic agents for eosinophils. Inhibitors of phosphodiesterase 4 (PDE4), the enzyme decomposing cAMP, are anti-inflammatory agents which act through cAMP elevation and inhibit numerous steps of allergic inflammation. The effect of PDE4 inhibitors on eotaxin expression is not known in details. The aim of our study was to evaluate the influence of PDE4 inhibitors: rolipram and RO-20-1724 on expression of eotaxins in bronchial epithelial cell line BEAS-2B. Cells were preincubated with PDE4 inhibitors or dexamethasone for 1 hour and then stimulated with IL-4 or IL-13 alone or in combination with TNF-α. After 48 hours eotaxin protein level was measured by ELISA and mRNA level by real time PCR. PDE4 inhibitors decreased CCL11 and CCL26 expression only in cultures co-stimulated with TNF-α. In cultures stimulated with IL-4 and TNF-α rolipram and RO-20-1724 diminished CCL11 mRNA expression by 34 and 37%, respectively, and CCL26 by 43 and 47%. In cultures stimulated with IL-13 and TNF-α rolipram and RO-20-1724 decreased expression of both eotaxins by about 50%. These results were confirmed at the protein level. The effect of PDE4 inhibitors on eotaxin expression in BEAS-2B cells, in our experimental conditions, depends on TNF-α contribution.
Richter, Wito; Conti, Marco
2004-07-16
PDE4 splice variants are classified into long and short forms depending on the presence or absence of two unique N-terminal domains termed upstream conserved regions 1 and 2 (UCR1 and -2). We have shown previously that the UCR module mediates dimerization of PDE4 long forms, whereas short forms, which lack UCR1, behave as monomers. In the present study, we demonstrate that dimerization is an essential structural element that determines the regulatory properties and inhibitor sensitivities of PDE4 enzymes. Comparing the properties of the dimeric wild type PDE4D3 with several monomeric mutant PDE4D3 constructs revealed that disruption of dimerization ablates the activation of PDE4 long forms by either protein kinase A phosphorylation or phosphatidic acid binding. Moreover, the analysis of heterodimers consisting of a catalytically active and a catalytically inactive PDE4D3 subunit indicates that protein kinase A phosphorylation of both subunits is essential to fully activate PDE4 enzymes. In addition to affecting enzyme regulation, disruption of dimerization reduces the sensitivity of the enzymes toward the prototypical PDE4 inhibitor rolipram. Parallel binding assays indicated that this shift in rolipram sensitivity is likely mediated by a decrease in the number of inhibitor binding sites in the high affinity rolipram binding state. Thus, although dimerization is not a requirement for high affinity rolipram binding, it functions to stabilize PDE4 long forms in their high affinity rolipram binding conformation. Taken together, our data indicate that dimerization defines the properties of PDE4 enzymes and suggest a common structural and functional organization for all PDEs.
Bourtchouladze, Rusiko; Lidge, Regina; Catapano, Ray; Stanley, Jennifer; Gossweiler, Scott; Romashko, Darlene; Scott, Rod; Tully, Tim
2003-01-01
Mice carrying a truncated form of cAMP-responsive element binding protein (CREB)-binding protein (CBP) show several developmental abnormalities similar to patients with Rubinstein-Taybi syndrome (RTS). RTS patients suffer from mental retardation, whereas long-term memory formation is defective in mutant CBP mice. A critical role for cAMP signaling during CREB-dependent long-term memory formation appears to be evolutionarily conserved. From this observation, we reasoned that drugs that modulate CREB function by enhancing cAMP signaling might yield an effective treatment for the memory defect(s) of CBP+/− mice. To this end, we designed a cell-based drug screen and discovered inhibitors of phosphodiesterase 4 (PDE4) to be particularly effective enhancers of CREB function. We extend previous behavioral observations by showing that CBP+/− mutants have impaired long-term memory but normal learning and short-term memory in an object recognition task. We demonstrate that the prototypical PDE4 inhibitor, rolipram, and a novel one (HT0712) abolish the long-term memory defect of CBP+/− mice. Importantly, the genetic lesion in CBP acts specifically to shift the dose sensitivity for HT0712 to enhance memory formation, which conveys molecular specificity on the drug's mechanism of action. Our results suggest that PDE4 inhibitors may be used to treat the cognitive dysfunction of RTS patients. PMID:12930888
Toque, Haroldo A; Teixeira, Cleber E; Lorenzetti, Raquel; Okuyama, Cristina E; Antunes, Edson; De Nucci, Gilberto
2008-09-04
Nitrergic nerves and endothelial cells release nitric oxide (NO) in the corpus cavernosum, a key mediator that stimulates soluble guanylyl cyclase to increase cGMP levels causing penile erection. Phosphodiesterase 5 (PDE5) inhibitors, such as sildenafil, prolong the NO effects by inhibiting cGMP breakdown. Here, we report a novel PDE5 inhibitor, lodenafil carbonate, (Bis-(2-{4-[4-ethoxy-3-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-benzenesulfonyl]piperazin-1-yl}-ethyl)carbonate) that is a dimer of lodenafil. We therefore aimed to compare the effects of sildenafil, lodenafil and lodenafil carbonate on in vitro human and rabbit cavernosal relaxations, activity of crude PDE extracts from human platelets, as well as stability and metabolic studies in rat, dog and human plasma. Pharmacokinetic evaluations after intravenous and oral administration were performed in male beagles. Functional experiments were conducted using organ bath techniques. Pharmacokinetics was studied in beagles by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), following oral or intravascular administration. All PDE5 inhibitors tested concentration-dependently relaxed (0.001-100 microM) phenylephrine-precontracted rabbit and human corpus cavernosum. The cavernosal relaxations evoked by either acetylcholine (0.01-100 microM) or electrical field stimulation (EFS, 1-20 Hz) were markedly potentiated by sildenafil, lodenafil and lodenafil carbonate. Lodenafil carbonate was more potent to inhibit the cGMP hydrolysis in PDE extracts compared with lodenafil and sildenafil. Following intravascular and single oral administration of lodenafil carbonate, only lodenafil and norlodenafil were detected in vivo. These results indicate that lodenafil carbonate works as a prodrug, being lodenafil the active moiety of lodenafil carbonate.
Santillo, Michael F; Mapa, Mapa S T
2018-02-28
Products marketed as dietary supplements for sexual enhancement are frequently adulterated with phosphodiesterase-5 (PDE5) inhibitors, which are erectile dysfunction drugs or their analogs that can cause adverse health effects. Due to widespread adulteration, a rapid screening assay was developed to detect PDE5 inhibitors in adulterated products. The assay employs fluorescence detection and is based on measuring inhibition of PDE5 activity, the pharmacological mechanism shared among the adulterants. Initially, the assay reaction scheme was established and characterized, followed by analysis of 9 representative PDE5 inhibitors (IC 50 , 0.4-4.0 ng mL -1 ), demonstrating sensitive detection in matrix-free solutions. Next, dietary supplements serving as matrix blanks (n = 25) were analyzed to determine matrix interference and establish a threshold value; there were no false positives. Finally, matrix blanks were spiked with 9 individual PDE5 inhibitors, along with several mixtures. All 9 adulterants were successfully detected (≤ 5 % false negative rate; n = 20) at a concentration of 1.00 mg g -1 , which is over 5 times lower than concentrations commonly encountered in adulterated products. A major distinction of the PDE5 inhibition assay is the ability to detect adulterants without prior knowledge of their chemical structures, demonstrating a broad-based detection capability that can address a continuously evolving threat of new adulterants. The PDE5 inhibition assay can analyze over 40 samples simultaneously within 15 minutes and involves a single incubation step and simple data analysis, all of which are advantageous for combating the widespread adulteration of sex-enhancement products. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
D'Angelo, Maximiliano A; Sanguineti, Santiago; Reece, Jeffrey M; Birnbaumer, Lutz; Torres, Héctor N; Flawiá, Mirtha M
2004-01-01
Compartmentalization of cAMP phosphodiesterases plays a key role in the regulation of cAMP signalling in mammals. In the present paper, we report the characterization and subcellular localization of TcPDE1, the first cAMP-specific phosphodiesterase to be identified from Trypanosoma cruzi. TcPDE1 is part of a small gene family and encodes a 929-amino-acid protein that can complement a heat-shock-sensitive yeast mutant deficient in phospho-diesterase genes. Recombinant TcPDE1 strongly associates with membranes and cannot be released with NaCl or sodium cholate, suggesting that it is an integral membrane protein. This enzyme is specific for cAMP and its activity is not affected by cGMP, Ca2+, calmodulin or fenotiazinic inhibitors. TcPDE1 is sensitive to the phosphodiesterase inhibitor dipyridamole but is resistant to 3-isobutyl-1-methylxanthine, theophylline, rolipram and zaprinast. Papaverine, erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride, and vinpocetine are poor inhibitors of this enzyme. Confocal laser scanning of T. cruzi epimastigotes showed that TcPDE1 is associated with the plasma membrane and concentrated in the flagellum of the parasite. The association of TcPDE1 with this organelle was confirmed by subcellular fractionation and cell-disruption treatments. The localization of this enzyme is a unique feature that distinguishes it from all the trypanosomatid phosphodiesterases described so far and indicates that compartmentalization of cAMP phosphodiesterases could also be important in these parasites. PMID:14556647
Kim, Hyoung-June; Lee, Eunyoung; Lee, Moonyoung; Ahn, Sungjin; Kim, Jungmin; Liu, Jingjing; Jin, Sun Hee; Ha, Jaehyoun; Bae, Il Hong; Lee, Tae Ryong; Noh, Minsoo
2018-01-01
Benzophenone-3 (BP-3), which is extensively used in organic sunscreen, has phototoxic potential in human skin. Phosphodiesterase 4B (PDE4B) has a well-established role in inflammatory responses in immune cells. Currently, it is unknown if PDE4B is associated with BP-3-induced phototoxicity in normal human keratinocytes (NHKs). We found that BP-3 significantly increased PDE4B expression in ultraviolet B (UVB)-irradiated NHKs. Notably, BP-8, a sunscreen agent that shares the 2-hydroxy-4-methoxyphenyl methanone moiety with BP-3, also upregulated PDE4B expression in NHKs. Upon UVB irradiation, BP-3 upregulated the expression of pro-inflammatory factors, such as prostaglandin endoperoxide synthase 2, tumor necrosis factor α, interleukin 8, and S100A7, and downregulated the level of cornified envelope associated proteins, which are important in the development of the epidermal permeability barrier. The additive effects of UVB-activated BP-3 on the expression of both pro-inflammatory mediators and cornified envelope associated proteins were antagonized by treatment with the PDE4 inhibitor rolipram. The BP-3 and UVB co-stimulation-induced PDE4B upregulation and its association with the upregulation of pro-inflammatory mediators and the downregulation of epidermal differentiation markers were confirmed in a reconstituted three dimensional human epidermis model. Therefore, PDE4B has a role in the mechanism of BP-3-induced phototoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Emala, Charles W.
2013-01-01
Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists. PMID:23873842
Otezla, Warts and All, Racks Up Sales and Eyes Blockbuster Status.
Reinke, Thomas
2017-10-01
Otezla-the generic name is apremilast-also exploited a new mechanism of action as the first inhibitor of phosphodiesterase 4 (PDE4) that results in increased expression of both anti-inflammatory proteins and reduced expression of their pro-inflammatory counterparts.
Matsuzawa, S; Hoshina, K; Sueyoshi, S; Miyata, Y; Manita, S; Ooie, T; Yasue, T; Sasahara, T
2012-12-01
A combination of low-dose aspirin (ASA) and a phosphodiesterase inhibitor has been clinically tried for the secondary prevention of atherothrombotic diseases. The in vivo antithrombotic property of ibudilast (CAS 50847-11-5), a phosphodiesterase 4 (PDE4) inhibitor, was evaluated in a photochemically-induced guinea pig carotid artery thrombosis model in combination with low-dose ASA. The time required to decrease the carotid artery blood flow to the reading "zero" was defined as the time to occlusion (TTO) of the artery through thrombogenesis. Each independent use of ASA (300 mg/kg, p.o.) and ibudilast (3 and 10 mg/kg, p.o.) significantly prolonged the TTO, and ASA (300 mg/kg) significantly increased bleeding time (BT) and gastric mucosal injury. A selective PDE4 inhibitor rolipram (1 and 5 mg/kg, p.o.) tended to prolong the TTO without extending BT. ASA (100 mg/kg) plus ibudilast (3 mg/kg) and ASA (100 mg/kg) plus rolipram (5 mg/kg) markedly prolonged the TTO compared with each agent alone. Interestingly, ASA (100 mg/kg) plus ibudilast (3 mg/kg) caused a longer TTO than ASA (300 mg/kg) alone, without significant extension of BT and gastric mucosal injury as observed in ASA (300 mg/kg). These results indicate that the combination of low-dose ASA and ibudilast has a more potent antithrombotic effect than ASA alone without increasing bleeding tendency and gastric mucosal injury. The potent in vivo antithrombotic effect of this combination may be brought about by an action that is associated with PDE4 inhibition of ibudilast. © Georg Thieme Verlag KG Stuttgart · New York.
Identification of cancer cytotoxic modulators of PDE3A by predictive chemogenomics
de Waal, Luc; Lewis, Timothy A.; Rees, Matthew G.; Tsherniak, Aviad; Wu, Xiaoyun; Choi, Peter S.; Gechijian, Lara; Hartigan, Christina; Faloon, Patrick W.; Hickey, Mark J.; Tolliday, Nicola; Carr, Steven A.; Clemons, Paul A.; Munoz, Benito; Wagner, Bridget K.; Shamji, Alykhan F.; Koehler, Angela N.; Schenone, Monica; Burgin, Alex B.; Schreiber, Stuart L.; Greulich, Heidi; Meyerson, Matthew
2015-01-01
High cancer death rates indicate the need for new anti-cancer therapeutic agents. Approaches to discover new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds by phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the phosphodiesterase 3A gene, PDE3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells while others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggesting a neomorphic activity. Co-expression of SLFN12 with PDE3A correlates with DNMDP sensitivity, while depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery. PMID:26656089
Goto, Taiji; Shiina, Akiko; Yoshino, Toshiharu; Mizukami, Kiyoshi; Hirahara, Kazuki; Suzuki, Osamu; Sogawa, Yoshitaka; Takahashi, Tomoko; Mikkaichi, Tsuyoshi; Nakao, Naoki; Takahashi, Mizuki; Hasegawa, Masashi; Sasaki, Shigeki
2013-11-15
5-Carbamoyl-2-phenylpyrimidine derivative 2 has been identified as a phosphodiesterase 4 (PDE4) inhibitor with moderate PDE4B inhibitory activity (IC50=200 nM). Modification of the carboxylic acid moiety of 2 gave N-neopentylacetamide derivative 10f, which had high in vitro PDE4B inhibitory activity (IC50=8.3 nM) and in vivo efficacy against lipopolysaccharide (LPS)-induced pulmonary neutrophilia in mice (ID50=16 mg/kg, ip). Furthermore, based on the X-ray crystallography of 10f bound to the human PDE4B catalytic domain, we designed 7,8-dihydro-6H-pyrido[4,3-d]pyrimidin-5-one derivative 39 which has a fused bicyclic lactam scaffold. Compound 39 exhibited excellent inhibitory activity against LPS-induced tumor necrosis factor alpha (TNF-α) production in mouse splenocytes (IC50=0.21 nM) and in vivo anti-inflammatory activity against LPS-induced pulmonary neutrophilia in mice (41% inhibition at a dose of 1.0 mg/kg, i.t.). Copyright © 2013 Elsevier Ltd. All rights reserved.
Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD
Komatsu, Kensei; Lee, Ji-Yun; Miyata, Masanori; Hyang Lim, Jae; Jono, Hirofumi; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Kai, Hirofumi; Li, Jian-Dong
2013-01-01
The deubiquitinase CYLD acts as a key negative regulator to tightly control overactive inflammation. Most anti-inflammatory strategies have focused on directly targeting the positive regulator, which often results in significant side effects such as suppression of the host defence response. Here, we show that inhibition of phosphodiesterase 4B (PDE4B) markedly enhances upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acts as a negative regulator for CYLD. Interestingly, in Cyld-deficient mice, inhibition of PDE4B no longer suppresses inflammation. Moreover, PDE4B negatively regulates CYLD via specific activation of JNK2 but not JNK1. Importantly, ototopical post-inoculation administration of a PDE4 inhibitor suppresses inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4. These studies provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that upregulate CYLD expression. PMID:23575688
Tetomilast: new promise for phosphodiesterase-4 inhibitors?
Bickston, Stephen J; Snider, Kenneth R; Kappus, Matthew R
2012-12-01
Tetomilast is a novel thiazole phosphodiesterase-4 (PDE-4) inhibitor, which may prove useful in both the treatment of inflammatory bowel disease (IBD) and chronic obstructive pulmonary disease (COPD). Here, the authors review the pharmacology of the drug, and offer critical review of the available data for use of tetomilast in the treatment of IBD. Peer-reviewed publications, including Phase I and II clinical trials, all other formats included. Tetomilast may be beneficial in IBD. Small differences in molecules and in recombinant proteins can translate into substantial differences in clinical effects and toxicity in IBD. This is a reasonable approach when exploring new options like tetomilast.
Gulisano, Walter; Tropea, Maria Rosaria; Arancio, Ottavio; Palmeri, Agostino; Puzzo, Daniela
2018-06-06
Cyclic nucleotides cAMP and cGMP cooperate to ensure memory acquisition and consolidation. Increasing their levels by phosphodiesterase inhibitors (PDE-Is) enhanced cognitive functions and rescued memory loss in different models of aging and Alzheimer's disease (AD). However, side effects due to the high doses used limited their application in humans. Based on previous studies suggesting that combinations of sub-efficacious doses of cAMP- and cGMP-specific PDE-Is improved synaptic plasticity and memory in physiological conditions, here we aimed to study whether this treatment was effective to counteract the AD phenotype in APPswe mice. We found that a 3-week chronic treatment with a combination of sub-efficacious doses of the cAMP-specific PDE4-I roflumilast (0.01 mg/kg) and the cGMP-specific PDE5-I vardenafil (0.1 mg/kg) improved recognition, spatial and contextual fear memory. Importantly, the cognitive enhancement persisted for 2 months beyond administration. This long-lasting action, and the possibility to minimize side effects due to the low doses used, might open feasible therapeutic strategies against AD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dong, Chen; Virtucio, Charlotte; Zemska, Olga; Baltazar, Grober; Zhou, Yasheen; Baia, Diogo; Jones-Iatauro, Shannon; Sexton, Holly; Martin, Shamra; Dee, Joshua; Mak, Yvonne; Meewan, Maliwan; Rock, Fernando; Akama, Tsutomu; Jarnagin, Kurt
2016-09-01
Psoriasis and atopic dermatitis are skin diseases affecting millions of patients. Here, we characterize benzoxaborole phosphodiesterase (PDE)-4 inhibitors, a new topical class that has demonstrated therapeutic benefit for psoriasis and atopic dermatitis in phase 2 or phase 3 studies. Crisaborole [AN2728, 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile], compd2 [2-ethoxy-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)nicotinonitrile], compd3 [6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-(2-isopropoxyethoxy)nicotinonitrile], and compd4 [5-chloro-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-((4-oxopentyl)oxy)nicotinonitrile] are potent PDE4 inhibitors with similar affinity for PDE4 isoforms and equivalent inhibition on the catalytic domain and the full-length enzyme. These benzoxaboroles are less active on other PDE isozymes. Compd4 binds to the catalytic domain of PDE4B2 with the oxaborole group chelating the catalytic bimetal and overlapping with the phosphate in cAMP during substrate hydrolysis, and the interaction extends into the adenine pocket. In cell culture, benzoxaborole PDE4 inhibitors suppress the release of tumor necrosis factor-α, interleukin (IL)-23, IL-17, interferon-γ, IL-4, IL-5, IL-13, and IL-22, and these cytokines contribute to the pathologic changes in skin structure and barrier functions as well as immune dysregulation in atopic dermatitis and psoriasis. Treatment with compd3 or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate increases cAMP response element binding protein phosphorylation in human monocytes and decreases extracellular signal-regulated kinase phosphorylation in human T cells; these changes lead to reduced cytokine production and are among the mechanisms by which compd3 blocks cytokine release. Topical compd3 penetrates the skin and suppresses phorbol myristate acetate-induced IL-13, IL-22, IL-17F, and IL-23 transcription and calcipotriol-induced thymic stromal lymphopoietin expression in mouse skin. Skin thinning is a major dose-limiting side effect of glucocorticoids. By contrast, repeated application of compd3 did not thin mouse skin. These findings show the potential benefits and safety of benzoxaborole PDE4 inhibitors for the treatment of psoriasis and atopic dermatitis. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei
Rascón, Ana; Soderling, Scott H.; Schaefer, Jonathan B.; Beavo, Joseph A.
2002-01-01
Here we report the cloning, expression, and characterization of a cAMP-specific phosphodiesterase (PDE) from Trypanosoma brucei (TbPDE2B). Using a bioinformatic approach, two different expressed sequence tag clones were identified and used to isolate the complete sequence of two identical PDE genes arranged in tandem. Each gene consists of 2,793 bases that predict a protein of 930 aa with a molecular mass of 103.2 kDa. Two GAF (for cGMP binding and stimulated PDEs, Anabaena adenylyl cyclases, and Escherichia coli FhlA) domains, similar to those contained in many signaling molecules including mammalian PDE2, PDE5, PDE6, PDE10, and PDE11, were located N-terminal to a consensus PDE catalytic domain. The catalytic domain is homologous to the catalytic domain of all 11 mammalian PDEs, the Dictyostelium discoideum RegA, and a probable PDE from Caenorhabditis elegans. It is most similar to the T. brucei PDE2A (89% identity). TbPDE2B has substrate specificity for cAMP with a Km of 2.4 μM. cGMP is not hydrolyzed by TbPDE2B nor does this cyclic nucleotide modulate cAMP PDE activity. The nonselective PDE inhibitors 3-isobutyl-1-methylxanthine, papaverine and pentoxifyline are poor inhibitors of TbPDE2B. Similarly, PDE inhibitors selective for the mammalian PDE families 2, 3, 5, and 6 (erythro-9-[3-(2-hydroxynonyl)]-adenine, enoximone, zaprinast, and sildenafil) were also unable to inhibit this enzyme. However, dipyridamole was a reasonably good inhibitor of this enzyme with an IC50 of 27 μM. cAMP plays key roles in cell growth and differentiation in this parasite, and PDEs are responsible for the hydrolysis of this important second messenger. Therefore, parasite PDEs, including this one, have the potential to be attractive targets for selective drug design. PMID:11930017
Carvalheira, Ana; Forjaz, Vera; Pereira, Nuno Monteiro
2014-01-01
Introduction The high effectiveness of phosphodiesterase type 5 inhibitors (PDE5-i) in the treatment of erectile dysfunction (ED) has been demonstrated. However, previous research shows that PDE5-i treatments have high discontinuation rates. Aim The main goals of this study were to (i) characterize the way men use PDE5-i and (ii) analyze the adherence to treatment, identifying the factors that influence PDE5-i use. Methods A total of 148 men with clinical diagnosis for ED who maintained the treatment with PDE5-i for over 3 years were interviewed. Interviews concerning their ongoing treatment were carried out using a standardized questionnaire with quantitative and qualitative items. Main Outcome Measures Physiological measures included the intracavernous alprostadil injection test, associated with penile rigidometry and penile Doppler ultrasound. The qualitative measure included two questions: “Do you use the drug in every sexual intercourse?” and “How do you use the inhibitor?” Results ED causes were classified as venogenic (31%), arteriogenic (23%), psychogenic (18%), iatrogenic (13%), neurogenic (8%), and diabetic (7%). Participation rate was 71.8%. Of the 148 patients studied, 75% claimed not to use PDE5-i in every intercourse. Most used tadalafil (66%), followed by sildenafil (20%), vardenafil (10%), and 4% alternated the type of medicine. Four main categories emerged concerning the factors that determine the intake of PDE5-i in some intercourse situations and not in others: (i) psychological factors; (ii) medication-related factors; (iii) circumstantial factors; and (iv) relational factors. Conclusion The analysis of men's narratives revealed a combination of factors that influence the adherence to PDE5-i. The psychological and medication-related factors were the most prevalent. This study highlighted the importance of taking these factors into account, both at the time of prescription and during the follow-up in order to improve adherence. Carvalheira A, Forjaz V, and Pereira NM. Adherence to phosphodiesterase type 5 inhibitors in the treatment of erectile dysfunction in long-term users: How do men use the inhibitors? Sex Med 2014;2:96–102. PMID:25356304
Liddie, Shervin; Anderson, Karen L; Paz, Andres; Itzhak, Yossef
2012-10-01
Several phosphodiesterase inhibitors (PDEis) improve cognition, suggesting that an increase in brain cAMP and cGMP facilitates learning and memory. Since extinction of drug-seeking behavior requires associative learning, consolidation and formation of new memory, the present study investigated the efficacy of three different PDEis in the extinction of cocaine-induced conditioned place preference (CPP) in B6129S mice. Mice were conditioned by escalating doses of cocaine which was resistant to extinction by free exploration. Immediately following each extinction session mice received (a) saline/vehicle, (b) rolipram (PDE4 inhibitor), (c) BAY-73-6691 (PDE9 inhibitor) or (d) papaverine (PDE10A inhibitor). Mice that received saline/vehicle during extinction training showed no reduction in CPP for >10 days. BAY-73-6691 (a) dose-dependently increased cGMP in hippocampus and amygdala, (b) significantly facilitated extinction and (c) diminished the reinstatement of cocaine CPP. Rolipram, which selectively increased brain cAMP levels, and papaverine which caused increases in both cAMP and cGMP levels, had no significant effect on the extinction of cocaine CPP. The results suggest that increase in hippocampal and amygdalar cGMP levels via blockade of PDE9 has a prominent role in the consolidation of extinction learning.
Sakimura, Shotaro; Yoshino, Jun; Izumi, Kaoru; Jimi, Nobuo; Sumiyoshi, Rieko; Mizuno, Keiichiro
2013-05-01
Clinical characteristics of phosphodiesterase (PDE) III inhibitors, milrinone and olprinone, is not fully understood in infants. We therefore retrospectively examined the hemodynamics, metabolism, and oxygenation of two different PDE III inhibitors in infants undergoing radical correction of ventricular septal defect with pulmonary hypertension. Twenty-six infants with pulmonary hypertension undergoing ventricular septum defect repair were retrospectively allocated to milrinone group (n= 13)and olprinone group(n=13). Hemodynamic parameters, acid-base balance, oxygenation and postoperative mechanical ventilation period were compared between the two groups at induction of anesthesia, weaning from cardiopulmonary bypass and the end of the surgery. The patients' mean age was 4.4 +/- 2.5 months. Demographic data were almost similar between the two groups. Milrinone and olprinone were administered at the rates of 0.5 and 0.3 microg x kg-1 x min-1 at the end of surgery, respectively. Hemodynamic variables, acid-base balance, Pao2 /FIo2 ratio and mechanical ventilation period were not significantly different between the two groups. No adverse side effects were observed during the study period. The effects of the PDE III inhibitors, milrinone and olprinone, on hemodynamic parameters, acid-base balance and oxygenation were similar in these infants. Both milrinone and olprinone could be used safely in infant cardiac surgery.
AKAP3 Selectively Binds PDE4A Isoforms in Bovine Spermatozoa1
Bajpai, Malini; Fiedler, Sarah E.; Huang, Zaohua; Vijayaraghavan, Srinivasan; Olson, Gary E.; Livera, Gabriel; Conti, Marco; Carr, Daniel W.
2006-01-01
Cyclic AMP plays an important role in regulating sperm motility and acrosome reaction through activation of cAMP-dependent protein kinase A (PKA). Phosphodiesterases (PDEs) modulate the levels of cyclic nucleotides by catalyzing their degradation. Although PDE inhibitors specific to PDE1 and PDE4 are known to alter sperm motility and capacitation in humans, little is known about the role or subcellular distribution of PDEs in spermatozoa. The localization of PKA is regulated by A-kinase anchoring proteins (AKAPs), which may also control the intracellular distribution of PDE. The present study was undertaken to investigate the role and localization of PDE4 during sperm capacitation. Addition of Rolipram or RS25344, PDE4-specific inhibitors significantly increased the progressive motility of bovine spermatozoa. Immunolocalization techniques detected both PDE4A and AKAP3 (formerly known as AKAP110) in the principal piece of bovine spermatozoa. The PDE4A5 isoform was detected primarily in the Triton X-100-soluble fraction of caudal epididymal spermatozoa. However, in ejaculated spermatozoa it was seen primarily in the SDS-soluble fraction, indicating a shift in PDE4A5 localization into insoluble organelles during sperm capacitation. AKAP3 was detected only in the SDS-soluble fraction of both caudal and ejaculated sperm. Immunoprecipitation experiments using COS cells cotransfected with AKAP3 and either Pde4a5 or Pde4d provide evidence that PDE4A5 but not PDE4D interacts with AKAP3. Pulldown assays using sperm cell lysates confirm this interaction in vitro. These data suggest that AKAP3 binds both PKA and PDE4A and functions as a scaffolding protein in spermatozoa to regulate local cAMP concentrations and modulate sperm functions. PMID:16177223
Tang, K M; Jang, E K; Haslam, R J
1994-06-15
Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact platelets. Whereas trequinsin (EC50 = 19 +/- 3 nM), lixazinone (EC50 = 122 +/- 8 nM), milrinone (EC50 = 5320 +/- 970 nM) and siguazodan (EC50 = 18880 +/- 3110 nM) all increased platelet cAMP to the same maximum extent, cilostamide and IBMX increased cAMP further, indicating that they inhibited a PDE isozyme in addition to PDE III.
Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling.
Masood, Anbrin; Huang, Ying; Hajjhussein, Hassan; Xiao, Lan; Li, Hao; Wang, Wei; Hamza, Adel; Zhan, Chang-Guo; O'Donnell, James M
2009-11-01
Phosphodiesterase (PDE)-2 is a component of the nitric-oxide synthase (NOS)/guanylyl cyclase signaling pathway in the brain. Given recent evidence that pharmacologically induced changes in NO-cGMP signaling can affect anxiety-related behaviors, the effects of the PDE2 inhibitors (2-(3,4-dimethoxybenzyl)-7-det-5-methylimidazo-[5,1-f][1,2,4]triazin-4(3H)-one) (Bay 60-7550) and 3-(8-methoxy-1-methyl-2-oxo-7-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)benzamide (ND7001), as well as modulators of NO, were assessed on cGMP signaling in neurons and on the behavior of mice in the elevated plus-maze, hole-board, and open-field tests, well established procedures for the evaluation of anxiolytics. Bay 60-7550 (1 microM) and ND7001 (10 microM) increased basal and N-methyl-d-aspartate- or detanonoate-stimulated cGMP in primary cultures of rat cerebral cortical neurons; Bay 60-7550, but not ND7001, also increased cAMP. Increased cGMP signaling, either by administration of the PDE2 inhibitors Bay 60-7550 (0.5, 1, and 3 mg/kg) or ND7001 (1 mg/kg), or the NO donor detanonoate (0.5 mg/kg), antagonized the anxiogenic effects of restraint stress on behavior in the three tests. These drugs also produced anxiolytic effects on behavior in nonstressed mice in the elevated plus-maze and hole-board tests; these effects were antagonized by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (20 mg/kg). By contrast, the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (50 mg/kg), which reduces cGMP signaling, produced anxiogenic effects similar to restraint stress. Overall, the present behavioral and neurochemical data suggest that PDE2 may be a novel pharmacological target for the development of drugs for the treatment of anxiety disorders.
Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro
2007-01-01
A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation. PMID:18274640
Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro
2007-01-01
A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1beta, TNF-alpha, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-alpha and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.
Brullo, Chiara; Ricciarelli, Roberta; Prickaerts, Jos; Arancio, Ottavio; Massa, Matteo; Rotolo, Chiara; Romussi, Alessia; Rebosio, Claudia; Marengo, Barbara; Pronzato, Maria Adelaide; van Hagen, Britt T J; van Goethem, Nick P; D'Ursi, Pasqualina; Orro, Alessandro; Milanesi, Luciano; Guariento, Sara; Cichero, Elena; Fossa, Paola; Fedele, Ernesto; Bruno, Olga
2016-11-29
Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Methylxanthine reversal of opioid-evoked inspiratory depression via phosphodiesterase-4 blockade.
Ruangkittisakul, Araya; Ballanyi, Klaus
2010-07-31
Hypothetic mechanisms for respirogenic methylxanthine actions include blockade of adenosine receptors or phosphodiesterase-4 (PDE4) in inspiratory pre-Bötzinger complex (preBötC) networks. Here, we studied this by analyzing stimulating caffeine and theophylline actions on mu-opioid-depressed inspiratory-related rhythm in the ventrolateral aspect of rat brainstem slices. The methylxanthines restored DAMGO (0.5-1 microM) depressed rhythm only at >1mM, which is approximately 10-fold higher than selective for adenosine receptors. Adenosine receptor blockers did neither counter DAMGO inhibition nor change control rhythm, similar to adenosine (0.1-2.5 mM). The specific PDE4 blocker rolipram (5 microM) restored DAMGO-depressed rhythm incompletely, but effectively reversed similar inhibition by clinical mu-agonist (fentanyl, 0.1 microM). At 0.25 microM, rolipram boosted incomplete recovery by 1 mM theophylline of DAMGO-depressed rhythm. Findings indicate that methylxanthines excite rhythmogenic preBötC networks via blockade of cAMP dependent PDE4 and suggest that specific PDE4 inhibitors (plus low methylxanthine doses) stimulate breathing effectively. We discuss why methylxanthine doses for preBötC stimulation need to be higher than those for respirogenic effects in vivo. Copyright 2010 Elsevier B.V. All rights reserved.
Chino, Ayaka; Masuda, Naoyuki; Amano, Yasushi; Honbou, Kazuya; Mihara, Takuma; Yamazaki, Mayako; Tomishima, Masaki
2014-07-01
In this study, we report the identification of potent benzimidazoles as PDE10A inhibitors. We first identified imidazopyridine 1 as a high-throughput screening hit compound from an in-house library. Next, optimization of the imidazopyridine moiety to improve inhibitory activity gave imidazopyridinone 10b. Following further structure-activity relationship development by reducing lipophilicity and introducing substituents, we acquired 35, which exhibited both improved metabolic stability and reduced CYP3A4 time-dependent inhibition. Copyright © 2014. Published by Elsevier Ltd.
Fujita, Masahiro; Hines, Christina S.; Zoghbi, Sami S.; Mallinger, Alan G.; Dickstein, Leah P.; Liow, Jeih-San; Zhang, Yi; Pike, Victor W.; Drevets, Wayne C.; Innis, Robert B.; Zarate, Carlos A.
2012-01-01
Background Phosphodiesterase type IV (PDE4), an important component of the cyclic adenosine monophosphate (cAMP) cascade, selectively metabolizes cAMP in the brain to the inactive monophosphate. Basic studies suggest that PDE4 mediates the effects of several antidepressants. This study sought to quantify the binding of 11C-(R)-rolipram, a PDE4 inhibitor, as an indirect measure of this enzyme’s activity in the brain of individuals with major depressive disorder (MDD) compared with healthy control subjects. Methods 11C-(R)-Rolipram brain positron emission tomography scans were performed in 28 unmedicated MDD subjects and 25 age- and gender-matched healthy control subjects. Patients were moderately depressed and about one half were treatment-naive. 11C-(R)-Rolipram binding in the brain was measured using arterial 11C-(R)-rolipram levels to correct for the influence of cerebral blood flow. Results Major depressive disorder subjects showed a widespread, approximately 20% reduction in 11C-(R)-rolipram binding (p = .002), which was not caused by different volumes of gray matter. Decreased rolipram binding of similar magnitudes was observed in most brain areas. Rolipram binding did not correlate with the severity of depressive or anxiety symptoms. Conclusions This study is the first to demonstrate that brain levels of PDE4, a critical enzyme that regulates cAMP, are decreased in unmedicated individuals with MDD in vivo. These results are in line with human postmortem and rodent studies demonstrating downregulation of the cAMP cascade in MDD and support the hypothesis that agents such as PDE4 inhibitors, which increase activity within the cAMP cascade, may have antidepressant effects. PMID:22677471
Lueptow, Lindsay M; Zhan, Chang-Guo; O'Donnell, James M
2016-02-01
Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.
Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M.; Xu, Ying
2016-01-01
Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. PMID:26980711
Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5.
Schankin, Christoph J; Kruse, Lars S; Reinisch, Veronika M; Jungmann, Steffen; Kristensen, Julie C; Grau, Stefan; Ferrari, Uta; Sinicina, Inga; Goldbrunner, Roland; Straube, Andreas; Kruuse, Christina
2010-03-01
To investigate nitric oxide (NO)-mediated changes in expression of cyclic nucleotide degrading phosphodiesterases 2A (PDE2A), PDE3B, and PDE5A in human endothelial cells. Nitric oxide induces production of cyclic guanosine monophosphate (cGMP), which along with cyclic adenosine monophosphate (cAMP) is degraded by PDEs. NO donors and selective inhibitors of PDE3 and PDE5 induce migraine-like headache and play a role in endothelial dysfunction during stroke. The current study investigates possible NO modulation of cGMP-related PDEs relevant to headache induction in a cell line containing such PDEs. Real time polymerase chain reaction and Western blots were used to show expression of PDE2A, PDE3B, and PDE5A in a stable cell line of human brain microvascular endothelial cells. Effects of NO on PDE expression were analyzed at specific time intervals after continued DETA NONOate administration. This study shows the expression of PDE2A, PDE3B, and PDE5A mRNA and PDE3B and PDE5A protein in human cerebral endothelial cells. Long-term DETA NONOate administration induced an immediate mRNA up-regulation of PDE5A (1.9-fold, 0.5 hour), an early peak of PDE2A (1.4-fold, 1 and 2 hours) and later up-regulation of both PDE3B (1.6-fold, 4 hours) and PDE2A (1.7-fold, 8 hours and 1.2-fold after 24 hours). Such changes were, however, not translated into significant changes in protein expression indicating few, if any, functional effects. Long-term NO stimulation modulated PDE3 and PDE5 mRNA expression in endothelial cells. However, PDE3 and PDE5 protein levels were unaffected by NO. The presence of PDE3 or PDE5 in endothelial cells indicates that selective inhibitors may have functional effects in such cells. A complex interaction of cGMP and cAMP in response to NO administration may take place if the mRNA translates into active protein. Whether or not this plays a role in the headache mechanisms remains to be investigated.
Molecular Bases of PDE4D Inhibition by Memory-Enhancing GEBR Library Compounds.
Prosdocimi, Tommaso; Mollica, Luca; Donini, Stefano; Semrau, Marta S; Lucarelli, Anna Paola; Aiolfi, Egidio; Cavalli, Andrea; Storici, Paola; Alfei, Silvana; Brullo, Chiara; Bruno, Olga; Parisini, Emilio
2018-05-01
Selected members of the large rolipram-related GEBR family of type 4 phosphodiesterase (PDE4) inhibitors have been shown to facilitate long-term potentiation and to improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, few if any structure-activity relationship studies have been performed to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone. Furthermore, we assessed the stability of the observed ligand conformations in the context of the intact enzyme using molecular dynamics simulations. The longer and more flexible ligands appear to be capable of forming contacts with the regulatory portion of the enzyme, thus possibly allowing some degree of selectivity between the different PDE4 isoforms.
Effects of PDE4 Pathway Inhibition in Rat Experimental Stroke
Yang, Fan; Sumbria, Rachita K.; Xue, Dong; Yu, Chuanhui; He, Dan; Liu, Shuo; Paganini-Hill, Annlia; Fisher, Mark J.
2015-01-01
PURPOSE The first genomewide association study indicated that variations in the phosphodiesterase 4D (PDE4D) gene confer risk for ischemic stroke. However, inconsistencies among the studies designed to replicate the findings indicated the need for further investigation to elucidate the role of the PDE4 pathway in stroke pathogenesis. Hence, we studied the effect of global inhibition of the PDE4 pathway in two rat experimental stroke models, using the PDE4 inhibitor rolipram. Further, the specific role of the PDE4D isoform in ischemic stroke pathogenesis was studied using PDE4D knockout rats in experimental stroke. METHODS Rats were subjected to either the ligation or embolic stroke model and treated with rolipram (3mg/kg; i.p.) prior to the ischemic insult. Similarly, the PDE4D knockout rats were subjected to experimental stroke using the embolic model. RESULTS Global inhibition of the PDE4 pathway using rolipram produced infarcts that were 225% (p<0.01) and 138% (p<0.05) of control in the ligation and embolic models, respectively. PDE4D knockout rats subjected to embolic stroke showed no change in infarct size compared to wild-type control. CONCLUSIONS Despite increase in infarct size after global inhibition of the PDE4 pathway with rolipram, specific inhibition of the PDE4D isoform had no effect on experimental stroke. These findings support a role for the PDE4 pathway, independent of the PDE4D isoform, in ischemic stroke pathogenesis. PMID:25224348
El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H
2013-03-22
Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.
The phosphodiesterase-4 inhibitor roflumilast decreases ethanol consumption in C57BL/6J mice.
Liu, Xin; Hao, Pi-Da; Yang, Ming-Feng; Sun, Jing-Yi; Mao, Lei-Lei; Fan, Cun-Dong; Zhang, Zong-Yong; Li, Da-Wei; Yang, Xiao-Yi; Sun, Bao-Liang; Zhang, Han-Ting
2017-08-01
Alcohol use disorders have become one of the most damaging psychiatric disorders in the world; however, there are no ideal treatments in clinic. Phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes intracellular cyclic AMP (cAMP), has been involved in alcohol use disorders. Roflumilast is the first PDE4 inhibitor approved for treatment of chronic obstructive pulmonary diseases in clinic. It was of particular interest to researchers to determine whether roflumilast altered ethanol consumption. The present study tried to determine the effects of roflumilast on ethanol intake and preference. We used the two-bottle choice paradigm to assess ethanol intake and preference in C57BL/6J mice treated with roflumilast (1, 3, or 10 mg/kg) or rolipram (0.5 mg/kg; positive control). The effect of roflumilast was verified using the ethanol drinking-in-dark (DID) test. Locomotor activity was examined using the open-field test. Intake of sucrose or quinine was also tested to determine whether natural reward preference and aversive stimuli were involved in the effect of PDE4 inhibitors. Similar to rolipram, roflumilast decreased ethanol intake and preference in two-bottle choice and DID tests in a dose-dependent manner, with significant changes at the dose of 10 mg/kg; in contrast, roflumilast did not affect sucrose or quinine drinking, although it decreased locomotor activity at the high dose within 3 h of treatment. These data provide novel demonstration for the effect of roflumilast on ethanol consumption and suggest that roflumilast may be beneficial for treatment of alcoholism.
Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4
Cedervall, Peder; Aulabaugh, Ann; Geoghegan, Kieran F.; ...
2015-03-09
Phosphodiesterase 4 (PDE4) is an essential contributor to intracellular signaling and an important drug target. The four members of this enzyme family (PDE4A to -D) are functional dimers in which each subunit contains two upstream conserved regions (UCR), UCR1 and -2, which precede the C-terminal catalytic domain. Alternative promoters, transcriptional start sites, and mRNA splicing lead to the existence of over 25 variants of PDE4, broadly classified as long, short, and supershort forms. We report the X-ray crystal structure of long form PDE4B containing UCR1, UCR2, and the catalytic domain, crystallized as a dimer in which a disulfide bond cross-linksmore » cysteines engineered into UCR2 and the catalytic domain. Biochemical and mass spectrometric analyses showed that the UCR2-catalytic domain interaction occurs in trans, and established that this interaction regulates the catalytic activity of PDE4. By elucidating the key structural determinants of dimerization, we show that only long forms of PDE4 can be regulated by this mechanism. The results also provide a structural basis for the long-standing observation of high- and low-affinity binding sites for the prototypic inhibitor rolipram.« less
NASA Astrophysics Data System (ADS)
Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.
2011-08-01
The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.
Li, Zhe; Wu, Yinuo; Feng, Ling-Jun; Wu, Ruibo; Luo, Hai-Bin
2014-12-09
Phosphodiesterases (PDEs) are the sole enzymes hydrolyzing the important second messengers cGMP and cAMP and have been identified as therapeutic targets for several diseases. The most successful examples are PDE5 inhibitors (i.e., sildenafil and tadalafil), which have been approved for the treatment of male erectile dysfunction and pulmonary hypertension. However, the side effects mostly due to nonselective inhibition toward other PDE isoforms, set back the clinical usage of PDE5 inhibitors. Until now, the exact catalytic mechanism of the substrate cGMP by PDE5 is still unclear. Herein, the first computational study on the catalytic hydrolysis mechanism of cGMP for PDE5 (catalytic domain) is performed by employing the state-of-the-art ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. Our simulations show a SN2 type reaction procedure via a highly dissociated transition state with a reaction barrier of 8.88 kcal/mol, which is quite different from the previously suggested hydrolysis mechanism of cAMP for PDE4. Furthermore, the subsequent ligand exchange and the release of the product GMP have also been investigated by binding energy analysis and MD simulations. It is deduced that ligand exchange would be the rate-determining step of the whole reaction, which is consistent with many previous experimental results. The obtained mechanistic insights should be valuable for not only the rational design of more specific inhibitors toward PDE5 but also understanding the general hydrolysis mechanism of cGMP-specific PDEs.
Discovery of a Phosphodiesterase 9A Inhibitor as a Potential Hypoglycemic Agent
2015-01-01
Phosphodiesterase 9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of diabetes and Alzheimer’s disease. Here we report a potent PDE9 inhibitor 3r that has an IC50 of 0.6 nM and >150-fold selectivity over other PDEs. The HepG2 cell-based assay shows that 3r inhibits the mRNA expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase. These activities of 3r, together with the reasonable pharmacokinetic properties and no acute toxicity at 1200 mg/kg dosage, suggest its potential as a hypoglycemic agent. The crystal structure of PDE9-3r reveals significantly different conformation and hydrogen bonding pattern of 3r from those of previously published 28s. Both 3r and 28s form a hydrogen bond with Tyr424, a unique PDE9 residue (except for PDE8), but 3r shows an additional hydrogen bond with Ala452. This structure information might be useful for design of PDE9 inhibitors. PMID:25432025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livi, G.P.; McHale, M.J.; Sathe, G.M.
1990-06-01
The authors have isolated cDNA clones representing cyclic AMP (cAMP)-specific phosphodiesterases (PDEases) from a human monocyte cDNA library. One cDNA clone (hPDE-1) defines a large open reading frame of ca. 2.1 kilobases, predicting a 686-amino-acid, ca. 77-kilodalton protein which contains significant homology to both rat brain and {ital Drosophila} cAMP PDEases, especially within an internal conserved domain of ca. 270 residues. Amino acid sequence divergence exists at the NH{sub 2} terminus and also within a 40- to 100-residue domain near the COOH-terminal end. hPDE-1 hybridizes to a major 4.8-kilobase mRNA transcript from both human monocytes and placenta. The coding regionmore » of hPDE-1 was engineered for expression in COS-1 cells, resulting in the overproduction of cAMP PDEase activity. The hPDE-1 recombinant gene product was identified as a low-{ital K{sub m}} cAMP phosphodiesterase on the basis of several biochemical properties including selective inhibition by the antidepressant drug rolipram. Known inhibitors of other PDEases (cGMP-specific PDEase, cGMP-inhibited PDEase) had little or no effect on the hPDE-1 recombinant gene product.« less
Atopic dermatitis: a review of topical nonsteroid therapy
Papier, Ariana
2018-01-01
Background Atopic dermatitis is a chronic inflammatory skin condition that affects up to 20% of children and 3% of adults globally. Although topical corticosteroids are considered to be the first-line agents, they can be associated with cutaneous and systemic adverse effects. Since the early 2000s, two new classes of nonsteroid topical therapies, topical calcineurin inhibitors and phosphodiesterase 4 (PDE4) inhibitors, have been introduced and provide a safe treatment alternative. Method We performed a search and review of clinical trials that examined the safety and efficacy of topical calcineurin inhibitors and PDE4 inhibitors. The search was conducted using the PubMed database as well as preselected keywords and filters. This review focuses on the safety and efficacy of each therapy. Results Sixty-nine clinical trials identified in this study have demonstrated the efficacy and safety of topical calcineurin and a single novel PDE4 inhibitor in the treatment of atopic dermatitis. Topical calcineurin inhibitors have been shown to be effective in both achieving lesion clearance as well as reducing relapse when used long-term and proactively. Similarly, in clinical trials the PDE4 inhibitor showed success in lesion clearance and symptom management. All three therapies (pimecrolimus, tacrolimus, crisaborole) are associated with low systemic absorption. No clinical trials to date have shown an increased risk of systemic adverse events or malignancy such as lymphoma. The most commonly reported treatment-related adverse event across all three therapies was application-site discomfort, pain or pruritus. It is important to note that long-term studies are not yet available for the novel PDE4 inhibitor. Discussion Topical calcineurin inhibitors provide a safe and effective alternative to topical corticosteroid use in the treatment of atopic dermatitis. Although the US Food and Drug Administration (FDA) black box warning for topical calcineurin inhibitors remains, studies have not shown an increased risk of malignancy. These warnings have caused a decline in use in favor of topical steroids. A novel PDE4 inhibitor has shown efficacy and safety in studies up to one year. Further long-term safety data is needed. PMID:29632548
Atopic dermatitis: a review of topical nonsteroid therapy.
Papier, Ariana; Strowd, Lindsay C
2018-01-01
Atopic dermatitis is a chronic inflammatory skin condition that affects up to 20% of children and 3% of adults globally. Although topical corticosteroids are considered to be the first-line agents, they can be associated with cutaneous and systemic adverse effects. Since the early 2000s, two new classes of nonsteroid topical therapies, topical calcineurin inhibitors and phosphodiesterase 4 (PDE4) inhibitors, have been introduced and provide a safe treatment alternative. We performed a search and review of clinical trials that examined the safety and efficacy of topical calcineurin inhibitors and PDE4 inhibitors. The search was conducted using the PubMed database as well as preselected keywords and filters. This review focuses on the safety and efficacy of each therapy. Sixty-nine clinical trials identified in this study have demonstrated the efficacy and safety of topical calcineurin and a single novel PDE4 inhibitor in the treatment of atopic dermatitis. Topical calcineurin inhibitors have been shown to be effective in both achieving lesion clearance as well as reducing relapse when used long-term and proactively. Similarly, in clinical trials the PDE4 inhibitor showed success in lesion clearance and symptom management. All three therapies (pimecrolimus, tacrolimus, crisaborole) are associated with low systemic absorption. No clinical trials to date have shown an increased risk of systemic adverse events or malignancy such as lymphoma. The most commonly reported treatment-related adverse event across all three therapies was application-site discomfort, pain or pruritus. It is important to note that long-term studies are not yet available for the novel PDE4 inhibitor. Topical calcineurin inhibitors provide a safe and effective alternative to topical corticosteroid use in the treatment of atopic dermatitis. Although the US Food and Drug Administration (FDA) black box warning for topical calcineurin inhibitors remains, studies have not shown an increased risk of malignancy. These warnings have caused a decline in use in favor of topical steroids. A novel PDE4 inhibitor has shown efficacy and safety in studies up to one year. Further long-term safety data is needed.
Gong, Mei-Fang; Wen, Rui-Ting; Xu, Ying; Pan, Jian-Chun; Fei, Ning; Zhou, Yan-Meng; Xu, Jiang-Ping; Liang, Jian-Hui; Zhang, Han-Ting
2017-10-01
Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. These results provide the first demonstration for that PDE4 plays a role in modulating the development of negative emotional reactions associated with ethanol abstinence, including anxiety and depression. PDE4 inhibitors may be a novel class of drugs for treatment of alcoholism.
Deibert, Peter; Lazaro, Adhara; Stankovic, Zoran; Schaffner, Denise; Rössle, Martin; Kreisel, Wolfgang
2018-01-21
Non-selective beta-blockers are the mainstay of medical therapy for portal hypertension in liver cirrhosis. Inhibitors of phosphodiesterase-5 (PDE-5-inhibitors) reduce portal pressure in the acute setting by > 10% which may suggest a long-term beneficial effect. Currently, there is no available data on long-term treatment of portal hypertension with PDE-5-inhibitors. This case of a patient with liver cirrhosis secondary to autoimmune liver disease with episodes of bleeding from esophageal varices is the first documented case in which a treatment with a PDE-5-inhibitor for eight years was monitored. In the acute setting, the PDE-5-inhibitor Vardenafil lowered portal pressure by 13%. The portal blood flow increased by 28% based on Doppler sonography and by 16% using MRI technique. As maintenance medication the PDE-5-inhibitor Tadalafil was used for eight consecutive years with comparable effects on portal pressure and portal blood flow. There were no recurrence of bleeding and no formation of new varices. Influencing the NO-pathway by the use of PDE-5 inhibitors may have long-term beneficial effects in compensated cirrhosis.
Phosphodiesterase inhibitors in clinical urology.
Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias
2013-05-01
To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.
Wie, Jinhong; Jeong, SeungJoo; Kwak, Misun; Myeong, Jongyun; Chae, MeeRee; Park, Jong Kwan; Lee, Sung Won; So, Insuk
2017-06-01
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.
Inhibitors of cyclic nucleotide phosphodiesterase 3 and 5 as therapeutic agents in heart failure.
Stehlik, Josef; Movsesian, Matthew A
2006-07-01
Cyclic nucleotide phosphodiesterases (PDE) 3 and 5 regulate cAMP and cGMP signalling in cardiac and smooth muscle myocytes. Important advances in the understanding of the roles of these enzymes have recently been made. PDE3 inhibitors have inotropic and vasodilatory properties, and although they acutely improve haemodynamics in patients with heart failure, they do not improve long-term morbidity and mortality. Although combination therapy with beta-adrenergic receptor antagonists or selective inhibition of specific PDE3 isoforms might result in a more favourable long-term outcome, more clinical data are needed to test this proposition. The role of PDE5 inhibitors in the treatment of cardiac disease is evolving. PDE5 inhibitors cause pulmonary and systemic vasodilation. How these drugs will compare with other vasodilators in terms of long-term outcomes in patients with heart failure is unknown. Recent studies also suggest that PDE5 inhibitors may have antihypertropic effects, exerted through increased myocardial cGMP signalling, that could be of additional benefit in patients with heart failure.
Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro
2017-06-01
Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kimura, Satoko; Ohi, Yoshiaki; Haji, Akira
2015-04-15
Ventilatory disturbance is a fatal side-effect of opioid analgesics. Separation of analgesia from ventilatory depression is important for therapeutic use of opioids. It has been suggested that opioid-induced ventilatory depression results from a decrease in adenosine 3',5'-cyclic monophosphate content in the respiratory-related neurons. Therefore, we examined the effects of caffeine, a methylxanthine non-selective phosphodiesterase (PDE) inhibitor with adenosine antagonistic activity, and rolipram, a racetam selective PDE4 inhibitor, on ventilatory depression induced by morphine. Spontaneous ventilation and paw withdrawal responses to nociceptive thermal stimulation were measured in anesthetized rats simultaneously. The efferent discharge of the phrenic nerve was recorded in anesthetized, vagotomized, paralyzed and artificially ventilated rats. Rolipram (0.1 and 0.3 mg/kg, i.v.) and caffeine (3.0 and 10.0 mg/kg, i.v.) relieved morphine (1.0 mg/kg, i.v.)-induced ventilatory depression but had no discernible effect on its analgesic action. Rolipram (0.3 and 1.0 mg/kg, i.v.) and caffeine (10.0 and 20.0 mg/kg, i.v.) recovered morphine (3.0 mg/kg, i.v.)-induced prolongation and flattening of inspiratory discharge in the phrenic nerve. Inhibition of PDE4 may be a possible approach for overcoming morphine-induced ventilatory depression without loss of analgesia. Copyright © 2015 Elsevier Inc. All rights reserved.
Gebreyohannes, Eyob Alemayehu; Bhagavathula, Akshaya Srikanth; Gebresillassie, Begashaw Melaku; Tefera, Yonas Getaye; Belachew, Sewunet Admasu; Erku, Daniel Asfaw
2016-12-01
To assess the prevalence of phosphodiesterase 5 (PDE5) inhibitor use and associated factors among University of Gondar undergraduate students. An institution-based, cross-sectional study, using a survey questionnaire, was conducted from October to December 2015 to assess PDE5 inhibitor use and associated factors among male students at the University of Gondar. A Self-Esteem and Relationship questionnaire (14 items), an International Index of Erectile Function questionnaire (15 items) and a questionnaire on PDE5 inhibitor use (14 items) were included in the survey. Across all respondents (age, 21.9±1.88 years), more than half (55.7%, n=233) had heard about PDE5 inhibitors, but only 23 men (5.5%) reported trying a PDE5 inhibitor drug at least once. Older students were more likely to use PDE5 inhibitors compared to younger students (adjusted odds ratio [AOR], 1.40; 95% confidence interval [CI], 1.109~1.768). Those students who were smokers were 5.15 times more likely to use PDE5 inhibitors as compared to their non-smoking counterparts (AOR, 5.15; 95% CI, 2.096~12.687). In addition, multivariate logistic regression showed that being in a relationship, alcohol use, greater number of cigarettes smoked per day, and more sexual partners were significantly associated with PDE5 inhibitor use. The prevalence of PDE5 inhibitor use among undergraduate students was 5.5%. Cigarette smoking and other substance use, older age, and greater number of sexual partners were significantly associated factors for PDE5 inhibitor use. These findings suggest that restricting access to PDE5 inhibitor drugs is essential to curtailing misuse among university students.
Bhagavathula, Akshaya Srikanth; Gebresillassie, Begashaw Melaku; Tefera, Yonas Getaye; Belachew, Sewunet Admasu; Erku, Daniel Asfaw
2016-01-01
Purpose To assess the prevalence of phosphodiesterase 5 (PDE5) inhibitor use and associated factors among University of Gondar undergraduate students. Materials and Methods An institution-based, cross-sectional study, using a survey questionnaire, was conducted from October to December 2015 to assess PDE5 inhibitor use and associated factors among male students at the University of Gondar. A Self-Esteem and Relationship questionnaire (14 items), an International Index of Erectile Function questionnaire (15 items) and a questionnaire on PDE5 inhibitor use (14 items) were included in the survey. Results Across all respondents (age, 21.9±1.88 years), more than half (55.7%, n=233) had heard about PDE5 inhibitors, but only 23 men (5.5%) reported trying a PDE5 inhibitor drug at least once. Older students were more likely to use PDE5 inhibitors compared to younger students (adjusted odds ratio [AOR], 1.40; 95% confidence interval [CI], 1.109~1.768). Those students who were smokers were 5.15 times more likely to use PDE5 inhibitors as compared to their non-smoking counterparts (AOR, 5.15; 95% CI, 2.096~12.687). In addition, multivariate logistic regression showed that being in a relationship, alcohol use, greater number of cigarettes smoked per day, and more sexual partners were significantly associated with PDE5 inhibitor use. Conclusions The prevalence of PDE5 inhibitor use among undergraduate students was 5.5%. Cigarette smoking and other substance use, older age, and greater number of sexual partners were significantly associated factors for PDE5 inhibitor use. These findings suggest that restricting access to PDE5 inhibitor drugs is essential to curtailing misuse among university students. PMID:28053948
Novel PDE4 Inhibitors Derived from Chinese Medicine Forsythia
Coon, Tiffany A.; McKelvey, Alison C.; Weathington, Nate M.; Birru, Rahel L.; Lear, Travis; Leikauf, George D.; Chen, Bill B.
2014-01-01
Cyclic adenosine monophosphate (cAMP) is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE) subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms. Using structural-functional analysis we found its major lignin, Forsynthin, acted as an immunosuppressant by inhibiting PDE4 in inflammatory and immune cell. Moreover, several novel, selective small molecule derivatives of Forsythin were tested in vitro and in murine models of viral and bacterial pneumonia, sepsis and cytokine-driven systemic inflammation. Thus, pharmacological targeting of PDE4 may be a promising strategy for immune-related disorders characterized by amplified host inflammatory response. PMID:25549252
Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells.
Jiang, X; Li, J; Paskind, M; Epstein, P M
1996-01-01
Cytosolic extracts from a human lymphoblastoid B-cell line, RPMI-8392, established from a patient with acute lymphocytic leukemia, contain two major forms of cyclic nucleotide phosphodiesterase (PDE): Ca2+-calmodulin dependent PDE (PDE1) and cAMP-specific PDE (PDE4). In contrast, normal quiescent human peripheral blood lymphocytes (HPBL) are devoid of PDE1 activity [Epstein, P. M., Moraski, S., Jr., and Hachisu, R. (1987) Biochem. J. 243, 533-539]. Using reverse transcription-polymerase chain reaction (RT-PCR), we show that the mRNA encoding the 63-kDa form of PDE1 (PDE1B1) is expressed in RPMI-8392 cells, but not in normal, resting HPBL. This mRNA is, however, induced in HPBL following mitogenic stimulation by phytohemagglutinin (PHA). Also using RT-PCR, the full open reading frame for human PDE1B1 cDNA was cloned from RPMI-8392 cells and it encodes a protein of 536 amino acids with 96% identity to bovine, rat, and mouse species. RT-PCR also identifies the presence of PDE1B1 in other human lymphoblastoid and leukemic cell lines of B- (RPMI-1788, Daudi) and T-(MOLT-4, NA, Jurkat) cell origin. Inhibition of PDE1 or PDE4 activity by selective inhibitors induced RPMI-8392 cells, as well as the other cell lines, to undergo apoptosis. Culture of RPMI-8392 cells with an 18-bp phosphorothioate antisense oligodeoxynucleotide, targeted against the translation initiation region of the RPMI-8392 mRNA, led to a specific reduction in the amount of PDE1B1 mRNA after 1 day, and its disappearance after 2 days, and induced apoptosis in these cells in a sequence specific manner. This suggests that PDEs, particularly PDE1B1, because its expression is selective, may be useful targets for inducing the death of leukemic cells. Images Fig. 1 Fig. 3 Fig. 5 Fig. 6 PMID:8855339
Dallas, Constantin; Gerbi, Alain; Tenca, Guillaume; Juchaux, Franck; Bernard, François-Xavier
2008-10-01
The present study investigated the lipolytic (break of fat stored) effect of a citrus-based polyphenolic dietary supplement (SINETROL) at human adipocytes (ex vivo), body fat (clinical) and biochemical levels (inhibition of phosphodiesterase). Free fatty acids (FFA) release was used as indicator of human adipocyte lipolysis and SINETROL activity has been compared with known lipolytic products (isoproterenol, theopylline and caffeine). SINETROL stimulated significantly the lipolytic activity in a range of 6 fold greater than the control. Moreover, SINETROL has 2.1 greater activity than guarana 12% caffeine while its content in caffeine is 3 times lower. Clinically, two groups of 10 volunteers with BMI relevant of overweight were compared during 4 and 12 weeks with 1.4 g/day SINETROL and placebo supplementation. In the SINETROL Group the body fat (%) decreased with a significant difference of 5.53% and 15.6% after 4 and 12 weeks, respectively, while the body weight (kg) decreased with a significant difference of 2.2 and 5.2 kg after 4 and 12 weeks, respectively. These observed effects are linked to SINETROL polyphenolic composition and its resulting synergistic activity. SINETROL is a potent inhibitor of cAMP-phosphodiesterase (PDE) (97%) compared to other purified compounds (cyanidin-3 glycoside, narangin, caffeine). These results suggest that SINETROL has a strong lipolytic effect mediated by cAMP-PDE inhibition. SINETROL may serve to prevent obesity by decreasing BMI.
Early Alcohol Exposure Disrupts Visual Cortex Plasticity in Mice
Lantz, Crystal L.; Wang, Weili; Medina, Alexandre E.
2012-01-01
There is growing evidence that deficits in neuronal plasticity underlie the cognitive problems seen in fetal alcohol spectrum disorders (FASD). However, the mechanisms behind these deficits are not clear. Here we test the effects of early alcohol exposure on ocular dominance plasticity (ODP) in mice and the reversibility of these effects by phosphodiesterase (PDE) inhibitors. Mouse pups were exposed to 5 g/kg of 25% ethanol i.p. on postnatal days (P) 5, 7 and 9. This type of alcohol exposure mimics binge drinking during the third trimester equivalent of human gestation. To assess ocular dominance plasticity animals were monocularly deprived at P21 for 10 days, and tested using optical imaging of intrinsic signals. During the period of monocular deprivation animals were treated with vinpocetine (20mg/kg; PDE1 inhibitor), rolipram (1.25 mg/Kg; PDE4 inhibitor), vardenafil (3 mg/Kg; PDE5 inhibitor) or vehicle solution. Monocular deprivation resulted in the expected shift in ocular dominance of the binocular zone in saline controls but not in the ethanol group. While vinpocetine successfully restored ODP in the ethanol group, rolipram and vardenafil did not. However, when rolipram and vardenafil were given simultaneously ODP was restored. PDE4 and PDE5 are specific to cAMP and cGMP respectively, while PDE1 acts on both of these nucleotides. Our findings suggest that the combined activation of the cAMP and cGMP cascades may be a good approach to improve neuronal plasticity in FASD models. PMID:22617459
DISC1, PDE4B, and NDE1 at the centrosome and synapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, Nicholas J.; Ogawa, Fumiaki; Antolin-Fontes, Beatriz
Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependantmore » Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.« less
French, Dustin D; Margo, Curtis E
2010-02-01
The purpose of this study was to determine if there is an increased risk of central serous chorioretinopathy (CSC) associated with prescription exposure to phosphodiesterase-5 (PDE-5) inhibitors. A case-control study linking 2 National Veterans Health Administration databases (clinical and pharmacy) for fiscal years 2004 to 2005. The likelihood of past exposure to PDE-5 inhibitors among newly diagnosed patients with CSC, identified through International Classification of Diseases, 9th Edition, Clinical Modification codes, was compared with 2 age-matched control groups after excluding subjects with risk factors for CSC. Among 577 men, aged 59 years and younger with newly diagnosed CSC during the study year, 111 were prescribed a PDE-5 inhibitor (19.2%). The proportions of age-matched controls prescribed a PDE-5 inhibitor in the 2 groups were 18.5% and 21.5%. The odds ratio of exposure was 1.05 (95% confidence limit: 0.74-1.22) and 0.87 (95% confidence limit: 0.68-1.12). Patients with CSC had no increase in prescription exposure to PDE-5 inhibitors than did age-matched control subjects. Although the findings in this study do not support an association between CSC and PDE-5 inhibitors, postmarketing surveillance methods for drug-related side effects have acknowledged limitations.
Preclinical Characterization of the Phosphodiesterase 10A PET Tracer [(11)C]MK-8193.
Hostetler, Eric D; Fan, Hong; Joshi, Aniket D; Zeng, Zhizhen; Eng, Waisi; Gantert, Liza; Holahan, Marie; Meng, Xianjun; Miller, Patricia; O'Malley, Stacey; Purcell, Mona; Riffel, Kerry; Salinas, Cristian; Williams, Mangay; Ma, Bennett; Buist, Nicole; Smith, Sean M; Coleman, Paul J; Cox, Christopher D; Flores, Brock A; Raheem, Izzat T; Cook, Jacquelynn J; Evelhoch, Jeffrey L
2016-08-01
A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described. In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue. PET studies with [(11)C]MK-8193 were conducted in rats and rhesus monkeys at baseline and following administration of a PDE10A inhibitor. [(3)H]MK-8193 is a high-affinity, selective PDE10A radioligand in rat, monkey, and human brain tissue. In vivo, [(11)C]MK-8193 displays rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally diverse PDE10A inhibitor, enabling the determination of pharmacokinetic/enzyme occupancy relationships. [(11)C]MK-8193 is a useful PET tracer for the preclinical characterization of PDE10A therapeutic candidates in rat and monkey. Further evaluation of [(11)C]MK-8193 in humans is warranted.
Phosphodiesterase Type 5 Inhibitors, Sport and Doping.
Di Luigi, Luigi; Sansone, Massimiliano; Sansone, Andrea; Ceci, Roberta; Duranti, Guglielmo; Borrione, Paolo; Crescioli, Clara; Sgrò, Paolo; Sabatini, Stefania
Phosphodiesterase type 5 inhibitors (PDE5i) (e.g., sildenafil, tadalafil, vardenafil, and avanafil) are drugs commonly used to treat erectile dysfunction, pulmonary arterial hypertension, and benign prostatic hyperplasia. PDE5i are not prohibited by the World Anti-Doping Agency (WADA) but are alleged to be frequently misused by healthy athletes to improve sporting performance. In vitro and in vivo studies have reported various effects of PDE5i on cardiovascular, muscular, metabolic, and neuroendocrine systems and the potential, therefore, to enhance performance of healthy athletes during training and competition. This suggests well-controlled research studies to examine the ergogenic effects of PDE5i on performance during activities that simulate real sporting situations are warranted to determine if PDE5i should be included on the prohibited WADA list. In the meantime, there is concern that some otherwise healthy athletes will continue to misuse PDE5i to gain an unfair competitive advantage over their competitors.
Liu, Juan; Chen, Zhengju; Ye, Liping; Liu, Huixia; Dou, Dou; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng
2014-10-01
Soluble guanylyl cyclase (sGC), phosphodiesterase type 5 (PDE5), and guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) are all dimeric. The present study was to determine the role of their dimeric status in nitric oxide-induced vasodilatation. In isolated porcine coronary arteries, after 20 h incubation with serum-free medium, serum-containing medium, or phosphate-buffered saline solution, the protein levels of the dimers of sGC, PDE5, and PKG were diminished while the monomer levels remained unchanged, associated with reduced cGMP elevation in response to DETA NONOate and decreased PDE5 activity; the activity of PKG was not significantly altered. DETA NONOate caused a greater relaxation in arteries incubated for 20 vs. 2 h. The relaxant response was largely abolished by 1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, an sGC inhibitor. Zaprinast, a PDE5 inhibitor, had no effect on relaxation caused by DETA NONOate of arteries incubated for 20 h but augmented the response incubated for 2 h. A greater relaxation to 8-bromo-guanosine 3'5'-cyclic monophosphate occurred in arteries incubated for 20 than for 2 h. The protein level of the dimers but not monomers of PDE5 was reduced by dithiothreitol and unaffected by hydrogen peroxide, accompanied with decreased PDE5 activity and reduced response to DETA NONOate. These results demonstrate that the dimeric but not monomeric status of sGC and PDE5 of coronary arteries are closely related to their activities. The preserved vasodilator response after 20 h incubation may result in part from a synchronous reduction of the dimer levels of sGC and PDE5 as well as an augmented response to cGMP.
Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana
2012-11-15
Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazinemore » did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward cAMP-specific PDEs was indicated by no changes in cGMP. ► Rolipram, a specific PDE4 inhibitor, also prevents stimulatory effects of atrazine. ► Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific PDE4.« less
cAMP-specific PDE4 Phosphodiesterases and AIP in the Pathogenesis of Pituitary Tumors
Bolger, Graeme B.; Bizzi, Mariana Ferreira; Brant Pinheiro, Sergio Veloso; Trivellin, Giampaolo; Smoot, Lisa; Accavitti, Mary-Ann; Korbonits, Márta; Ribeiro-Oliveira, Antonio
2016-01-01
PDE4 cyclic nucleotide phosphodiesterases regulate cAMP abundance in cells and thereby regulate numerous processes, including cell growth and differentiation. The rat PDE4A5 isoform (human homologue PDE4A4) interacts with the AIP protein (also called XAP2 or ARA-9). Germline mutations in AIP occur in approximately 20% of patients with Familial Isolated Pituitary Adenoma (FIPA) and 20% of childhood-onset simplex somatotroph adenomas. We therefore examined the protein expression of PDE4A4 and the closely-related isoform PDE4A8 in normal human pituitary tissue and in pituitary adenomas. PDE4A4 had low expression in normal pituitary, but was significantly over-expressed in somatotroph, lactotroph, corticotroph and clinically non-functioning gonadotroph adenomas (P<0.0001 for all subtypes). Likewise, PDE4A8 was expressed in normal pituitary and was also significantly over-expressed in the adenoma subtypes (P<0.0001 for all). Among the different adenoma subtypes, corticotroph and lactotroph adenomas were the highest and lowest expressed for PDE4A4, respectively, whereas the opposite was observed for PDE4A8. Naturally occurring oncogenic variants in AIP were shown by a two-hybrid assay to disrupt the ability of AIP to interact with PDE4A5. A reverse-two-hybrid screen identified numerous additional variants in the TPR region of AIP that also disrupted its ability to interact with PDE4A5. The expression of PDE4A4 and PDE4A8 in normal pituitary, their increased expression in adenomatous pituitary cells where AIP is meant to participate, and the disruption of the PDE4A4-AIP interaction by AIP mutants may play a role in pituitary tumorigenesis. PMID:27267386
Corona, G; Rastrelli, G; Burri, A; Serra, E; Gianfrilli, D; Mannucci, E; Jannini, E A; Maggi, M
2016-11-01
The discontinuation rate with phosphodiesterase type 5 inhibitors (PDE5i) remains very high. The aim of this study was to review and meta-analyze currently available data regarding dropout of the first-generation of PDE5i including sildenafil, vardenafil, and tadalafil. An extensive Medline Embase and Cochrane search was performed including the following words: 'PDE5i', 'discontinuation'. All observational studies reporting the dropout rate of PDE5i and its specific causes without any arbitrary restrictions were included. Out of 103 retrieved articles, 22 were included in the study. Retrieved trials included a total of 162,936 patients with a mean age of 58.8 ± 7.9 years. Prevalence of reported comorbid diabetes and hypertension were 27.7% and 36.9%, respectively. PDE5i were associated with a mean discontinuation rate of 4% per month (almost 50% after one year). This rate was higher in younger subjects and in those reporting a higher prevalence of associated morbidities. Six main reasons of PDE5i dropout were identified in the evaluated trials. Partner-related problems and lack of efficacy represented the most important reasons for PDE5i discontinuation, although no significant difference among factors was detected. In conclusion, despite their high efficacy and easy administration, the discontinuation rate and dissatisfaction with PDE5i are still very high. Our data showed that no single factor plays a major role in PDE5i dropout, suggesting that the discontinuation rate is usually because of a combination of both medical problems and psychosocial and relational factors. © 2016 American Society of Andrology and European Academy of Andrology.
Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior.
Hansen, Rolf T; Conti, Marco; Zhang, Han-Ting
2014-08-01
Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. The purpose of this study was to characterize the functional role of PDE4A in behavior. The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.
Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.
Chong, Jimmy; Leung, Bonnie; Poole, Phillippa
2017-09-19
Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE 4 ) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This is an update of a Cochrane review first published in 2011 and updated in 2013. To evaluate the efficacy and safety of oral PDE 4 inhibitors in the management of stable COPD. We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search October 2016). We found other trials from web-based clinical trials registers. We included RCTs if they compared oral PDE 4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. One review author extracted data and a second review author checked the data. We reported pooled data in Review Manager as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). We converted the odds ratios into absolute treatment effects in a 'Summary of findings' table. Thirty-four separate RCTs studying roflumilast (20 trials with 17,627 participants) or cilomilast (14 trials with 6457 participants) met the inclusion criteria, with a duration of between six weeks and one year. These included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II-IV), with a mean age of 64 years.We considered that the methodological quality of the 34 published and unpublished trials was acceptable overall. Treatment with a PDE 4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV 1 ) over the trial period compared with placebo (MD 51.53 mL, 95% confidence interval (CI) 43.17 to 59.90, 27 trials with 20,585 participants, moderate-quality evidence due to moderate levels of heterogeneity and risk of reporting bias). There were small improvements in quality of life (St George's Respiratory Questionnaire (SGRQ), MD -1.06 units, 95% CI -1.68 to -0.43, 11 trials with 7645 participants, moderate-quality evidence due to moderate levels of heterogeneity and risk of reporting bias) and COPD-related symptoms, but no significant change in exercise tolerance. Treatment with a PDE 4 inhibitor was associated with a reduced likelihood of COPD exacerbation (OR 0.78, 95% CI 0.73 to 0.83; 23 trials with 19,948 participants, high-quality evidence). For every 100 people treated with PDE 4 inhibitors, five more remained exacerbation-free during the study period compared with placebo (number needed to treat for an additional beneficial outcome (NNTB) 20, 95% CI 16 to 26). More participants in the treatment groups experienced non-serious adverse events compared with controls, particularly a range of gastrointestinal symptoms such as diarrhoea, nausea, vomiting or dyspepsia. For every 100 people treated with PDE 4 inhibitors, seven more suffered from diarrhoea during the study period compared with placebo (number needed to treat for an additional harmful outcome (NNTH) 15, 95% CI 13 to 17). Roflumilast in particular was associated with weight loss during the trial period and an increase in insomnia and depressive mood symptoms. There was no significant effect of treatment on non-fatal serious adverse events (OR 0.99, 95% CI 0.91 to 1.07) or mortality (OR 0.97, 95% CI 0.76 to 1.23), although mortality was a rare event during the trials. Participants treated with PDE 4 inhibitors were more likely to withdraw from the trials because of adverse effects; on average 14% in the treatment groups withdrew compared with 8% in the control groups. In people with COPD, PDE 4 inhibitors offered benefit over placebo in improving lung function and reducing the likelihood of exacerbations; however, they had little impact on quality of life or symptoms. Gastrointestinal adverse effects and weight loss were common, and safety data submitted to the US Food and Drug Administration (FDA) have raised concerns over psychiatric adverse events with roflumilast. The findings of this review give cautious support to the use of PDE 4 inhibitors in COPD. They may be best used as add-on therapy in a subgroup of people with persistent symptoms or exacerbations despite optimal COPD management. This is in accordance with the GOLD 2017 guidelines. Longer-term trials are needed to determine whether or not PDE 4 inhibitors modify FEV 1 decline, hospitalisation or mortality in COPD.
ERIC Educational Resources Information Center
Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos
2016-01-01
In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when…
Current and emerging topical therapies for atopic dermatitis.
Udkoff, Jeremy; Waldman, Andrea; Ahluwalia, Jusleen; Borok, Jenna; Eichenfield, Lawrence F
The pathogenesis of atopic dermatitis (AD) involves epidermal barrier dysfunction and T helper cell type 2 (T h 2) lymphocyte-driven inflammation. Cytokines, such as interleukin 4 (IL-4) and IL-13, are important in this reaction. They stimulate B cells to produce immunoglobulin E, causing atopic disease. This process has been well characterized, and new therapies for AD, such as phosphodiesterase 4 (PDE-4) inhibitors, T h 2-expressed chemoattractant receptor-homologous molecule antagonists, and Janus kinase inhibitors, work by antagonizing this cellular pathway. Recently, there have been many advances in treatment strategies and novel therapies for AD. This review summarizes the clinical evidence supporting the use of current and emerging topical treatments for AD, as well as their safety and efficacy profiles. Crisaborole, a novel PDE-4 inhibitor, is of particular note because phase III clinical trials were recently completed, as summarized here. It is prudent for dermatologists to be current with updates in the field because therapies are constantly changing. In addition to the academic interest, this results in improvement of patient care and advancement of the field. Copyright © 2017 Elsevier Inc. All rights reserved.
Kelly, Michy P.
2017-01-01
The most recently discovered 3′,5′-cyclic nucleotide phosphodiesterase family is the Phosphodiesterase 11 (PDE11) family, which is encoded by a single gene PDE11A. PDE11A is a dual-specific PDE, breaking down both cAMP and cGMP. There are four PDE11A splice variants (PDE11A1–4) with distinct tissue expression profiles and unique N-terminal regulatory regions, suggesting that each isoform could be individually targeted with a small molecule or biologic. PDE11A4 is the PDE11A isoform expressed in brain and is found in the hippocampal formation of humans and rodents. Studies in rodents show that PDE11A4 mRNA expression in brain is, in fact, restricted to the hippocampal formation (CA1, possibly CA2, subiculum, and the adjacently connected amygdalohippocampal area). Within the hippocampal formation of rodents, PDE11A4 protein is expressed in neurons but not astrocytes, with a distribution across nuclear, cytoplasmic, and membrane compartments. This subcellular localization of PDE11A4 is altered in response to social experience in mouse, and in vitro studies show the compartmentalization of PDE11A4 is controlled, at least in part, by homodimerization and N-terminal phosphorylation. PDE11A4 expression dramatically increases in the hippocampus with age in the rodent hippocampus, from early postnatal life to late aging, suggesting PDE11A4 function may evolve across the lifespan. Interestingly, PDE11A4 protein shows a 3–10-fold enrichment in the rodent ventral hippocampal formation (VHIPP; a.k.a. anterior in primates) versus dorsal hippocampal formation (DHIPP). Consistent with this enrichment in VHIPP, studies in knockout mice show that PDE11A regulates the formation of social memories and the stabilization of mood and is a critical mechanism by which social experience feeds back to modify the brain and subsequent social behaviors. PDE11A4 likely controls behavior by regulating hippocampal glutamatergic, oxytocin, and cytokine signaling, as well as protein translation. Given its unique tissue distribution and relatively selective effects on behavior, PDE11A may represent a novel therapeutic target for neuropsychiatric, neurodevelopmental, or age-related disorders. Therapeutically targeting PDE11A4 may be a way to selectively restore aberrant cyclic nucleotide signaling in the hippocampal formation while leaving the rest of the brain and periphery untouched, thus, relieving deficits while avoiding unwanted side effects. PMID:28956334
Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.
Park, Sung-Jun; Ahmad, Faiyaz; Philp, Andrew; Baar, Keith; Williams, Tishan; Luo, Haibin; Ke, Hengming; Rehmann, Holger; Taussig, Ronald; Brown, Alexandra L; Kim, Myung K; Beaven, Michael A; Burgin, Alex B; Manganiello, Vincent; Chung, Jay H
2012-02-03
Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging. Copyright © 2012 Elsevier Inc. All rights reserved.
Salmasi, Amirali; Lee, Geun Taek; Patel, Neal; Goyal, Ritu; Dinizo, Michael; Kwon, Young Suk; Modi, Part K; Faiena, Izak; Kim, Hee-Jin; Lee, Nara; Hannan, Johanna L; Kohn, Joachim; Kim, Isaac Yi
2016-12-01
There is no consensus on the best oral phosphodiesterase type 5 inhibitor (PDE5I) for patients undergoing penile rehabilitation after surgical nerve injury. To determine the mechanism of PDE5I on cultured neuronal cells and the effectiveness of local drug delivery using nanospheres (NSPs) to sites of nerve injury in a rat model of bilateral cavernous nerve injury (BCNI). The effects of sildenafil, tadalafil, and vardenafil on cyclic adenosine monophosphate, cyclic guanosine monophosphate, and cell survival after exposure to hypoxia and H 2 O 2 were measured in PC12, SH-SY5Y, and NTERA-2 (NT2) cell cultures. The effects of phosphodiesterase type 4 inhibitor (PDE4I) and PDE5I on neuronal cell survival were evaluated. Male rats underwent BCNI and were untreated (BCNI), immediately treated with application of empty NSPs (BCNI + NSP), NSPs containing sildenafil (Sild + NSP), or NSPs containing rolipram (Rol + NSP). Viability of neuronal cells was measured. Intracavernous pressure changes after cavernous nerve electrostimulation and expression of neurofilament, nitric oxide synthase, and actin in mid-shaft of penis were analyzed 14 days after injury. Sildenafil and rolipram significantly decreased cell death after exposure to H 2 O 2 and hypoxia in PC12, SH-SY5Y, and NT2 cells. PC12 cells did not express PDE5 and knockdown of PDE4 significantly increased cell viability in PC12, SH-SY5Y, and NT2 cells exposed to hypoxia. The ratio of intracavernous pressure to mean arterial pressure and expression of penile neurofilament, nitric oxide synthase, and actin were significantly higher in the Sild + NSP and Rol + NSP groups than in the BCNI and BCNI + NSP groups. Limitations included analysis in only two PDE families using only a single dose. Sildenafil showed the most profound neuroprotective effect compared with tadalafil and vardenafil. Sildenafil- or rolipram-loaded NSP delivery to the site of nerve injury prevented erectile dysfunction and led to increased neurofilament, nitric oxide synthase, smooth muscle content in rat penile tissue after BCNI. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Fan, Han-Tian; Guo, Jun-Fang; Zhang, Yu-Xin; Gu, Yu-Xi; Ning, Zhong-Qi; Qiao, Yan-Jiang; Wang, Xing
2018-01-01
Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.
Identification of cytosolic phosphodiesterases in the erythrocyte: A possible role for PDE5
Adderley, Shaquria P.; Thuet, Kelly M.; Sridharan, Meera; Bowles, Elizabeth A.; Stephenson, Alan H.; Ellsworth, Mary L.; Sprague, Randy S.
2011-01-01
Summary Background Within erythrocytes (RBCs), cAMP levels are regulated by phosphodiesterases (PDEs). Increases in cAMP and ATP release associated with activation of β-adrenergic receptors (βARs) and prostacyclin receptors (IPRs) are regulated by PDEs 2, 4 and PDE 3, respectively. Here we establish the presence of cytosolic PDEs in RBCs and determine a role for PDE5 in regulating levels of cGMP. Material/Methods Purified cytosolic proteins were obtained from isolated human RBCs and western analysis was performed using antibodies against PDEs 3A, 4 and 5. Rabbit RBCs were incubated with dbcGMP, a cGMP analog, to determine the effect of cGMP on cAMP levels. To determine if cGMP affects receptor-mediated increases in cAMP, rabbit RBCs were incubated with dbcGMP prior to addition of isoproterenol (ISO), a βAR receptor agonist. To demonstrate that endogenous cGMP produces the same effect, rabbit and human RBCs were incubated with SpNONOate (SpNO), a nitric oxide donor, and YC1, a direct activator of soluble guanylyl cyclase (sGC), in the absence and presence of a selective PDE5 inhibitor, zaprinast (ZAP). Results Western analysis identified PDEs 3A, 4D and 5A. dbcGMP produced a concentration dependent increase in cAMP and ISO-induced increases in cAMP were potentiated by dbcGMP. In addition, incubation with YC1 and SpNO in the presence of ZAP potentiated βAR-induced increases in cAMP. Conclusions PDEs 2, 3A and 5 are present in the cytosol of human RBCs. PDE5 activity in RBCs regulates cGMP levels. Increases in intracellular cGMP augment cAMP levels. These studies suggest a novel role for PDE5 in erythrocytes. PMID:21525805
Therapeutic pipeline for atopic dermatitis: End of the drought?
Paller, Amy S; Kabashima, Kenji; Bieber, Thomas
2017-09-01
Until the past year, our therapeutic armamentarium for treating atopic dermatitis (AD) was still primarily topical corticosteroids and, for more severe disease, systemic immunosuppressants. The pipeline of more targeted topical and systemic therapies is expanding based on our growing understanding of the mechanism for AD and is particularly focused on suppressing the skewed immune activation. Most agents are in phase 2 clinical trials. Crisaborole, a topical phosphodiesterase 4 (PDE4) inhibitor, became available in late 2016 in the United States for mild-to-moderate AD, with other PDE4 inhibitors, an agonist of the aryl hydrocarbon receptor, Janus kinase inhibitors, and commensal organisms also in trials for topical application. The first highly effective mAb for AD, dupilumab, targets the IL-4/IL-13 receptor and was approved in early 2017 in the United States for moderate-to-severe adult AD. Other biologics similarly inhibit T H 2 cytokines (thymic stromal lymphopoietin, IL-4, IL-5, IL-13, and the itch-specific cytokine IL-31 and their receptors) or T H 22/T H 17 cytokines, levels of which are increased in lesional skin. Orally administered small-molecule inhibitors that suppress inflammation (targeting chemoattractant receptor-homologous molecules expressed on T H 2 lymphocytes, PDE4, the histamine 4 receptor, and Janus kinase) or specifically itching (eg, NK1R inhibitors) are also being studied. Comparing biomarkers with individual responses to experimental agents will help to determine subphenotypes within AD that predict prognosis and treatment responses. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
The mediating role of phosphodiesterase type 4 in the dopaminergic modulation of motor impulsivity.
Heckman, P R A; Blokland, A; Van Goethem, N P; Van Hagen, B T J; Prickaerts, J
2018-09-17
The current study investigated the mediating role of phosphodiesterase type 4 (PDE4) regulated cAMP in the dopaminergic modulation of premature responding (action restraint) in rats. Response inhibition, which includes action restraint, finds its neurobiological origin in cortico-striatal-thalamic circuitry and can be modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cAMP/PKA signaling cascade. Areas in the prefrontal cortex are very sensitive to their neurochemical environment, including catecholamine levels. As a result, we investigated the effects of intracellular modulation of the dopamine cascade by means of PDE4 inhibition by roflumilast on premature responding in a hypo, normal and hyper dopaminergic state of the brain. As a hypo dopaminergic model we induced a 6-OHDA lesion in the (rat) prefrontal cortex, more specifically the infralimbic cortex. For the hyper dopaminergic state we also turned to a well-established model of impaired action restraint, namely the systemic administration of d-amphetamine. In line with the notion of a U-shaped relation between dopamine and impulsive responding, we found that both increasing and decreasing dopamine levels resulted in an increase in premature responding in the choice serial reaction time task (CSRTT). The PDE4 inhibitor roflumilast increased premature responses in combination with d-amphetamine, whereas a decrease in premature responding after roflumilast treatment was found in the 6-OHDA lesioned animals. As a result, it would be interesting to test the effects of PDE4 inhibition in disorders affected by disrupted impulse control related to cortico-striatal-thalamic hypodopaminergia including attention deficit hyperactivity disorder (ADHD). Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Sierksma, A S R; van den Hove, D L A; Pfau, F; Philippens, M; Bruno, O; Fedele, E; Ricciarelli, R; Steinbusch, H W M; Vanmierlo, T; Prickaerts, J
2014-02-01
Phosphodiesterase type 4 inhibitors (PDE4-Is) have received increasing attention as cognition-enhancers and putative treatment strategies for Alzheimer's disease (AD). By preventing cAMP breakdown, PDE4-Is can enhance intracellular signal transduction and increase the phosphorylation of cAMP response element-binding protein (CREB) and transcription of proteins related to synaptic plasticity and associated memory formation. Unfortunately, clinical development of PDE4-Is has been seriously hampered by emetic side effects. The new isoform-specific PDE4D-I, GEBR-7b, has shown to have beneficial effects on memory at non-emetic doses. The aim of the current study was to investigate chronic cognition-enhancing effects of GEBR-7b in a mouse model of AD. To this extent, 5-month-old (5M) APPswe/PS1dE9 mice received daily subcutaneous injections with GEBR-7b (0.001 mg/kg) or vehicle for a period of 3 weeks, and were tested on affective and cognitive behavior at 7M. We demonstrated a cognition-enhancing potential in APPswe/PS1dE9 mice as their spatial memory function at 7M in the object location test was improved by prior GEBR-7b treatment. APPswe/PS1dE9 mice displayed lower levels of CREB phosphorylation, which remained unaltered after chronic GEBR-7b treatment, and higher levels of tau in the hippocampus. Hippocampal brain-derived neurotrophic factor levels and synaptic densities were not different between experimental groups and no effects were observed on hippocampal GSK3β and tau phosphorylation or Aβ levels. In conclusion, GEBR-7b can enhance spatial memory function in the APPswe/PS1dE9 mouse model of AD. Although the underlying mechanisms of its cognition-enhancing potential remain to be elucidated, PDE4D inhibition appears an interesting novel therapeutic option for cognitive deficits in AD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Li; Burmeister, Brian T; Johnson, Keven R; Baillie, George S; Karginov, Andrei V; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K
2015-05-01
Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3',5'-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity. Published by Elsevier Inc.
PDE and cognitive processing: beyond the memory domain.
Heckman, P R A; Blokland, A; Ramaekers, J; Prickaerts, J
2015-03-01
Phosphodiesterase inhibitors (PDE-Is) enhance cAMP and/or cGMP signaling via reducing the degradation of these cyclic nucleotides. Both cAMP and cGMP signaling are essential for a variety of cellular functions and exert their effects both pre- and post-synaptically. Either of these second messengers relays and amplifies incoming signals at receptors on the cell surface making them important elements in signal transduction cascades and essential in cellular signaling in a variety of cell functions including neurotransmitter release and neuroprotection. Consequently, these processes can be influenced by PDE-Is as they increase cAMP and/or cGMP concentrations. PDE-Is have been considered as possible therapeutic agents to treat impaired memory function linked to several brain disorders, including depression, schizophrenia and Alzheimer's disease (AD). This review will, however, focus on the possible role of phosphodiesterases (PDEs) in cognitive decline beyond the memory domain. Here we will discuss the involvement of PDEs on three related domains: attention, information filtering (sensory- and sensorimotor gating) and response inhibition (drug-induced hyperlocomotion). Currently, these are emerging cognitive domains in the field of PDE research. Here we discuss experimental studies and the potential beneficial effects of PDE-I drugs on these cognitive domains, as effects of PDE-Is on these domains could potentially influence effects on memory performance. Overall, PDE4 seems to be the most promising target for all domains discussed in this review. Copyright © 2014 Elsevier Inc. All rights reserved.
Anchored PDE4 regulates chloride conductance in wild-type and ΔF508-CFTR human airway epithelia
Blanchard, Elise; Zlock, Lorna; Lao, Anna; Mika, Delphine; Namkung, Wan; Xie, Moses; Scheitrum, Colleen; Gruenert, Dieter C.; Verkman, Alan S.; Finkbeiner, Walter E.; Conti, Marco; Richter, Wito
2014-01-01
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 μA/cm2) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 μA/cm2) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.—Blanchard, E., Zlock, L., Lao, A., Mika, D., Namkung, W., Xie, M., Scheitrum, C., Gruenert, D.C., Verkman, A.S., Finkbeiner, W.E., Conti, M., Richter, W. Anchored PDE4 regulates chloride conductance in wild type and ΔF508-CFTR human airway epithelia. PMID:24200884
Phosphodiesterase type 5 inhibitor abuse: a critical review.
Lowe, Gregory; Costabile, Raymond
2011-06-01
Abuse of sildenafil has been reported since its introduction in 1999 and commonly documented in combination with illicit drugs among men and women of all ages. Increased risks of sexually transmissible diseases including HIV have been associated with sildenafil use in men who have sex with men. Recognizing the abuse potential of phosphodiesterase type 5 inhibitors (PDE5), we aim to summarize the current knowledge of this abuse. An investigation of EMBASE, PubMed, the Food and Drug Administration (FDA) website, MedWatch, and search engines was performed to evaluate information regarding sildenafil, tadalafil, and vardenafil abuse. The EMBASE search provided 46 articles fitting the search criteria and evaluation led to 21 separate publications with specific information regarding PDE5 abuse. A PubMed search found 10 additional publications. MedWatch reported 44 separate warnings since 2000, most of which reported contamination of herbal products with active drug components. Few reports of abuse were among the 14,818 reports in the FDA AERS for sildenafil. A search for "internet drug store" revealed 6.4 million hits and of 7000 internet pharmacies identified by the Verified Internet Pharmacy Practice Sites Program (VIPPS) only 4% were in proper compliance. The role internet pharmacies play in counterfeit PDE5 or abuse is not well documented; however based on easy access, direct patient marketing, and low advertised cost it is likely this role is underreported. Currently the best recommendation for providers is to recognize the possibility of abuse and to educate patients on risks of this behavior.
Guo, Haibiao; Cheng, Yufang; Wang, Canmao; Wu, Jingang; Zou, Zhengqiang; Niu, Bo; Yu, Hui; Wang, Haitao; Xu, Jiangping
2017-04-01
Thus far, phosphodiesterase-4 (PDE4) inhibitors have not been approved for application in Alzheimer's disease (AD) in a clinical setting due to severe side effects, such as nausea and vomiting. In this study, we investigated the effect of FFPM, a novel PDE4 inhibitor, on learning and memory abilities, as well as the underlying mechanism in the APP/PS1 mouse model of AD. Pharmacokinetic studies have revealed that FFPM efficiently permeates into the brain, and reached peak values in plasma 2 h after orally dosing. A 3-week treatment with FFPM, at doses of 0.25 mg/kg and 0.5 mg/kg, significantly improved the learning and memory abilities of APP/PS1 transgenic mice in the Morris water maze and the Step-down passive avoidance task. Interestingly, we found that while rolipram (0.5 mg/kg) reduced the duration of the α2 adrenergic receptor-mediated anesthesia induced by xylazine/ketamine, FFPM (0.5 mg/kg) or the vehicle did not have an evident effect. FFPM increased the cAMP, PKA and CREB phosphorylation and BDNF levels, and reduced the NF-κB p65, iNOS, TNF-α and IL-1β levels in the hippocampi of APP/PS1 trangenic mice, as observed by ELISA and Western blot analysis. Taken together, our data demonstrated that the reversal effect of FFPM on cognitive deficits in APP/PS1 transgenic mice might be related to stimulation of the cAMP/PKA/CREB/BDNF pathway and anti-inflammatory effects. Moreover, FFPM appears to have potential as an effective PDE4 inhibitor in AD treatment with little emetic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zane, L T; Chanda, S; Jarnagin, K; Nelson, D B; Spelman, L; Gold, Lf Stein
2016-07-01
Atopic dermatitis (AD), a chronic, relapsing, inflammatory skin disease that is characterized by intense pruritus and eczematous lesions with up to 90% of patients presenting with mild to moderate disease. Current topical treatments for AD have not changed in over 15 years and are associated with safety concerns. In AD, overactivity of phosphodiesterase 4 (PDE4), leads to inflammation and disease exacerbation. Crisaborole Topical Ointment, 2%, is a novel, nonsteroidal, topical anti-inflammatory PDE4 inhibitor currently being investigated for the treatment of mild to moderate AD. Preliminary studies in children and adults demonstrated favorable efficacy and safety profiles. Crisaborole may represent an anti-inflammatory option that safely minimizes the symptoms and severity of AD and that can be used for both acute and long-term management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagues, Nicolas; Pawlowski, Valerie; Guigon, Ghislaine
Vascular injury is a relatively common finding during the pre-clinical toxicity testing of drugs. The mechanisms of the injury are poorly understood and in turn, sensitive and specific biomarkers for pre-clinical and clinical monitoring do not exist. The present study was undertaken to investigate the molecular mechanisms of drug-induced vascular injury in mesenteric tissue of rats treated with the selective phosphodiesterase 4 (PDE4) inhibitor CI-1044. In a time-course study, male Sprague Dawley rats were given daily doses of 40 or 80 mg/kg for 1, 2 or 3 successive days and were euthanized the following day. Gene expression profiles in mesentericmore » tissue were determined using Affymetrix RG{sub U}34A microarrays and fibrinogen and cytokine measurements were performed in blood samples. Hierarchical clustering analysis produced a clear pattern separation of the animals with inflammation, animal with inflammation and necrosis and animals without any lesion. Genes associated with inflammation, procoagulation, extracellular matrix remodeling were up-regulated. An altered expression of genes involved in vascular tone regulation, lipid and glucose metabolism was also observed. Selected genes expression changes were confirmed by TaqMan real-time RT-PCR. The inflammatory process was also detected in the bloodstream at the protein level since fibrinogen, IL6 and IL1{beta} concentrations were increased in treated animals. Overall, the present study reveals several molecular changes supporting the hypothesis by which PDE4 inhibitor-induced vascular lesions in rats are triggered by an inflammatory mechanism and/or a vascular tone dysregulation.« less
[Phosphodiesterase-5 inhibitors for the treatment of pulmonary arterial hypertension].
Beltrán-Gámez, Miguel E; Sandoval-Zárate, Julio; Pulido, Tomás
2015-01-01
In experimental and clinical cardiology, phosphodiesterase type 5 (PDE-5) inhibitors have brought scientific interest as a therapeutic tool in pulmonary arterial hypertension (PAH) management in recent years. Phosphodiesterases are a superfamily of enzymes that inactivate cyclic adenosine monophosphate and cyclic guanosine monophosphate, the second messengers of prostacyclin and nitric oxide. The rationale for the use of PDE-5 inhibitors in PAH is based on their capacity to overexpresss the nitric oxide pathway pursued inhibition of cyclic guanosine monophosphate hydrolysis. By increasing cyclic guanosine monophosphate levels it promotes vasodilation, antiproliferative and pro-apoptotic effects that may reverse pulmonary vascular remodeling. There is also evidence that these drugs may directly enhance right ventricular contractility through an increase in cyclic adenosine monophosphate mediated by the inhibition of the cyclic guanosine monophosphate -sensitive PDE-3. Sildenafil, tadalafil and vardenafil are 3 specific PDE-5 inhibitors in current clinical use, which share similar mechanisms of action but present some significant differences regarding potency, selectivity for PDE-5 and pharmacokinetic properties. Sildenafil received approval in 2005 by the Food and Drug Administration and the European Medicines Agency and tadalafil in 2009 by the Food and Drug Administration and the European Medicines Agency for the treatment of PAH in patients classified as NYHA/WHO functional class II and III. In Mexico, sildenafil and tadalafil were approved by Comisión Federal de Protección contra Riesgos Sanitarios for this indication in 2010 and 2011, respectively. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Rajanbabu, Venugopal; Pan, Chieh-Yu; Lee, Shang-Chun; Lin, Wei-Ju; Lin, Ching-Chun; Li, Chung-Leung; Chen, Jyh-Yih
2010-01-01
The antimicrobial peptide, tilapia hepcidin (TH) 2-3, belongs to the hepcidin family, and its antibacterial function has been reported. Here, we examined the TH2-3-mediated regulation of proinflammatory cytokines in bacterial endotoxin lipopolysaccharide (LPS)-stimulated mouse macrophages. The presence of TH2-3 in LPS-stimulated cells reduced the amount of tumor necrosis factor (TNF)-α secretion. From a microarray, real-time polymerase chain reaction (PCR), and cytokine array studies, we showed down-regulation of the proinflammatory cytokines TNF-α, interleukin (IL)-1α, IL-1β, IL-6, and the prostaglandin synthesis gene, cyclooxygenase (COX)-2, by TH2-3. Studies with the COX-2-specific inhibitor, melaxicam, and with COX-2-overexpressing cells demonstrated the positive regulation of TNF-α and negative regulation of cAMP degradation-specific phosphodiesterase (PDE) 4D by COX-2. In LPS-stimulated cells, TH2-3 acts like melaxicam and down-regulates COX-2 and up-regulates PDE4D. The reduction in intracellular cAMP by TH2-3 or melaxicam in LPS-stimulated cells supports the negative regulation of PDE4D by COX-2 and TH2-3. This demonstrates that the inhibition of COX-2 is among the mechanisms through which TH2-3 controls TNF-α release. At 1 h after treatment, the presence of TH2-3 in LPS-stimulated cells had suppressed the induction of pERK1/2 and prevented the LPS-stimulated nuclear accumulation of NF-κB family proteins of p65, NF-κB2, and c-Rel. In conclusion, TH2-3 inhibits TNF-α and other proinflammatory cytokines through COX-2-, PDE4D-, and pERK1/2-dependent mechanisms. PMID:20675368
Crain, Stanley M; Shen, Ke-Fei
2008-09-22
Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related agents.
PDE5 Inhibitors Enhance Celecoxib Killing in Multiple Tumor Types
BOOTH, LAURENCE; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; TAVALLAI, SEYEDMEHRAD; WEBB, TIMOTHY; SAMUEL, PETER; CONLEY, ADAM; BINION, BRITTANY; YOUNG, HAROLD F.; POKLEPOVIC, ANDREW; SPIEGEL, SARAH; DENT, PAUL
2015-01-01
The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer. PMID:25303541
Addressing the immunopathogenesis of atopic dermatitis: advances in topical and systemic treatment.
Eichenfield, Lawrence F; Stein Gold, Linda F
2017-03-01
Several immunologic mediators-phosphodiesterase (PDE), interleukin (IL), small molecules, and Janus kinase-have been implicated in the pathogenesis of atopic dermatitis, and evidence has shown that blocking these mediators can help modify the disease process. Several new topical medications have been developed that target the enzyme PDE; crisaborole was recently approved by the US Food and Drug Administration (FDA) for the treatment of atopic dermatitis, and phase II studies have been completed on OPA-15406. The phase III clinical trial results of the systemic medication dupilumab, an inhibitor of the IL-4 receptor α subunit (which inhibits both IL-4 and IL-13 signaling), are currently being reviewed by the FDA. ©2017 Frontline Medical Communications.
The safety of phosphodiesterase type 5 inhibitors for erectile dysfunction.
Ventimiglia, Eugenio; Capogrosso, Paolo; Montorsi, Francesco; Salonia, Andrea
2016-01-01
Phosphodiesterase type 5 inhibitors (PDE5Is) are the leading drugs for the treatment of erectile dysfunction (ED), being recommended as a first line treatment by both the European and US urological guidelines. PDE5Is are highly effective as compared to placebo, well tolerated and have a very low, though not negligible, rate of severe treatment-related adverse events. This paper reviews the safety profile of currently available PDE5Is, comparing them in a broad spectrum ED population and outlining a number of real-life aspects of importance in the real-life everyday clinical setting. Guidelines unanimously agree in considering PDE5Is as first line treatments for ED when well-tolerated and not contraindicated. Despite the fact that no high-grade evidence comparing the efficacy and the safety for PDE5Is is currently available, published data seem to suggest that there are no major differences in their safety profiles. Moreover, although oral PDE5Is were shown to cause more AEs than placebo, they were generally mild and well tolerated.
Pakhomov, Nikolai; Pustovit, Ksenia; Potekhina, Victoria; Filatova, Tatiana; Kuzmin, Vladislav; Abramochkin, Denis
2018-02-05
Extracellular diadenosine polyphosphates (Ap n A) are recently considered as an endogenous signaling compounds with transmitter-like activity which present in numerous tissues, including heart. It has been demonstrated previously that extracellular Ap n A cause alteration of the heart functioning via purine receptors in different mammalian species. Nevertheless, principal intracellular pathways which underlie Ap n A action in the heart remain unknown. In the present study the role of the P2Y-associated intracellular regulatory pathway in the mediation of diadenosine tetraphosphate (Ap 4 A) effects in the rat heart has been investigated for the first time. Extracellular Ap 4 A caused significant decreasing of the ventricular inotropy. Ap 4 A evoked reduction of the left ventricle contractility in the isolated Langendorff-perfused rat hearts, decreasing of the Ca 2+ transients in the enzymatically isolated ventricular cardiomyocytes and induced shortening of action potentials in the ventricle multicellular preparations. The inhibitory effects of Ap 4 A in the rat heart were significantly attenuated by protein kinase C (PKC) inhibitor chelerythrine but these effects were not affected by NO-synthase inhibitor L-NAME and guanylyl cyclase (sGC) inhibitor ODQ. In addition, substantial attenuation of Ap 4 A-caused negative inotropy in the left ventricle was produced by nonselective phsophodiesterase (PDE) inhibitor IBMX, while PDE type 2 inhibitor EHNA was ineffective. In conclusion, our results allow suggesting that Ap 4 A-induced inhibitory effects in the rat heart are mediated by PKC, but not by NO/sGC/PKG-related signaling pathway. In addition, PDE stimulation may contribute to Ap 4 A-caused inhibition of the rat heart contractility. Copyright © 2017 Elsevier B.V. All rights reserved.
Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling
Yun, Sanguk; Budatha, Madhusudhan; Dahlman, James E.; Coon, Brian G.; Cameron, Ryan T.; Langer, Robert; Anderson, Daniel G.; Baillie, George; Schwartz, Martin A.
2016-01-01
Atherosclerosis is primarily a disease of lipid metabolism and inflammation; however, it is also closely associated with endothelial extracellular matrix (ECM) remodelling, with fibronectin accumulating in the laminin–collagen basement membrane. To investigate how fibronectin modulates inflammation in arteries, we replaced the cytoplasmic tail of the fibronectin receptor integrin α5 with that of the collagen/laminin receptor integrin α2. This chimaera suppressed inflammatory signalling in endothelial cells on fibronectin and in knock-in mice. Fibronectin promoted inflammation by suppressing anti-inflammatory cAMP. cAMP was activated through endothelial prostacyclin secretion; however, this was ECM-independent. Instead, cells on fibronectin suppressed cAMP via enhanced phosphodiesterase (PDE) activity, through direct binding of integrin α5 to phosphodiesterase-4D5 (PDE4D5), which induced PP2A-dependent dephosphorylation of PDE4D5 on the inhibitory site Ser651. In vivo knockdown of PDE4D5 inhibited inflammation at athero-prone sites. These data elucidate a molecular mechanism linking ECM remodelling and inflammation, thereby identifying a new class of therapeutic targets. PMID:27595237
Wang, Xiao; Wang, Xinghuan; Liu, Tao; He, Qianwen; Wang, Yipeng; Zhang, Xinhua
2014-01-01
Prostate cancer is relatively common cancer occurring in males. Radical prostatectomy (RP) is the most effective treatment for a localized tumor but erectile dysfunction (ED) is common complication, even when bilateral nerve-sparing RP (BNSRP) is performed. Clinical trials have shown varied effectiveness of phosphodiesterase type-5 inhibitors (PDE5-Is) for treatment of post-BNSRP ED, but there remains controversy over the application of this treatment and no formal systematic review and meta-analysis for the use of PDE5-Is for this condition has been conducted. This review was to systematically assess the efficacy and safety of oral PDE5-Is for post-BNSRP ED. A database search was conducted to identify randomized controlled trials (RCTs). The comparative efficacy of treatments was analyzed by fixed or random effect modeling. Erectile function was measured using the International Index of Erectile Function (IIEF), Sexual Encounter Profile (SEP) question-2, 3 and the Global Assessment Question (GAQ). The rate and incidence of adverse events (AEs) were determined. The quality of included studies was appraised using the Cochrane Collaboration bias appraisal tool. Eight RCTs were included in the analyses. PDE5-Is were effective for treating post-BNSRP ED compared to placebo when erectile function was determined using the IIEF score [mean difference (MD) 5.63, 95% confidence interval (CI) (4.26–6.99)], SEP-2 [relative risk (RR) 1.63, 95% CI (1.18–2.25) ], SEP-3 [RR 2.00, 95% CI (1.27–3.15) ] and GAQ [RR 3.35, 95% CI (2.68–4.67) ]. The subgroup analysis could find a trend that longer treatment duration, higher dosage, on-demand dosing, sildenafil and mild ED are associated with more responsiveness to PDE5-Is. PDE5-Is were overall well tolerated with headache being the most commonly reported AE. Our data provides compelling evidence for the use of PDE5-Is as a primary treatment for post-BNSRP ED. However, further studies are required to optomize usage parameters (such as dosage and duration of treatment). PMID:24618671
Xin, Wenkuan; Li, Ning; Cheng, Qiuping
2014-01-01
Elevation of intracellular cAMP and activation of protein kinase A (PKA) lead to activation of large conductance voltage- and Ca2+-activated K+ (BK) channels, thus attenuation of detrusor smooth muscle (DSM) contractility. In this study, we investigated the mechanism by which pharmacological inhibition of cAMP-specific phosphodiesterase 4 (PDE4) with rolipram or Ro-20-1724 (C15H22N2O3) suppresses guinea pig DSM excitability and contractility. We used high-speed line-scanning confocal microscopy, ratiometric fluorescence Ca2+ imaging, and perforated whole-cell patch-clamp techniques on freshly isolated DSM cells, along with isometric tension recordings of DSM isolated strips. Rolipram caused an increase in the frequency of Ca2+ sparks and the spontaneous transient BK currents (TBKCs), hyperpolarized the cell membrane potential (MP), and decreased the intracellular Ca2+ levels. Blocking BK channels with paxilline reversed the hyperpolarizing effect of rolipram and depolarized the MP back to the control levels. In the presence of H-89 [N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride], a PKA inhibitor, rolipram did not cause MP hyperpolarization. Rolipram or Ro-20-1724 reduced DSM spontaneous and carbachol-induced phasic contraction amplitude, muscle force, duration, and frequency, and electrical field stimulation-induced contraction amplitude, muscle force, and tone. Paxilline recovered DSM contractility, which was suppressed by pretreatment with PDE4 inhibitors. Rolipram had reduced inhibitory effects on DSM contractility in DSM strips pretreated with paxilline. This study revealed a novel cellular mechanism whereby pharmacological inhibition of PDE4 leads to suppression of guinea pig DSM contractility by increasing the frequency of Ca2+ sparks and the functionally coupled TBKCs, consequently hyperpolarizing DSM cell MP. Collectively, this decreases the global intracellular Ca2+ levels and DSM contractility in a BK channel-dependent manner. PMID:24459245
A pathophysiological role of PDE3 in allergic airway inflammation
Beute, Jan; Lukkes, Melanie; Koekoek, Ewout P.; Nastiti, Hedwika; Ganesh, Keerthana; de Bruijn, Marjolein J.W.; Hockman, Steve; van Nimwegen, Menno; Braunstahl, Gert-Jan; Boon, Louis; Lambrecht, Bart N.; Manganiello, Vince C.; Hendriks, Rudi W.
2018-01-01
Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation, reported side effects preclude its application as an antiasthma drug in humans. Case reports showed that enoximone, which is a smooth muscle relaxant that inhibits PDE3, is beneficial and lifesaving in status asthmaticus and is well tolerated. However, clinical observations also showed antiinflammatory effects of PDE3 inhibition. In this study, we investigated the role of PDE3 in a house dust mite–driven (HDM-driven) allergic airway inflammation (AAI) model that is characterized by T helper 2 cell activation, eosinophilia, and reduced mucosal barrier function. Compared with wild-type (WT) littermates, mice with a targeted deletion of the PDE3A or PDE3B gene showed significantly reduced HDM-driven AAI. Therapeutic intervention in WT mice showed that all hallmarks of HDM-driven AAI were abrogated by the PDE3 inhibitors enoximone and milrinone. Importantly, we found that enoximone also reduced the upregulation of the CD11b integrin on mouse and human eosinophils in vitro, which is crucial for their recruitment during allergic inflammation. This study provides evidence for a hitherto unknown antiinflammatory role of PDE3 inhibition in allergic airway inflammation and offers a potentially novel treatment approach. PMID:29367458
Central serous chorioretinopathy due to tadalafil use.
Türkcü, Fatih Mehmet; Yüksel, Harun; Şahin, Alparslan; Murat, Mehmet; Bozkurt, Yaşar; Çaça, Ihsan
2013-04-01
Phosphodiesterase-5 (PDE5) inhibitors are commonly used in the treatment of erectile dysfunction. There are a small number of case reports that associate this agent with central serous chorioretinopathy (CSCR). Our report presents the treatment approach to a 42-year-old patient who described blurred vision and metamorphopsia and was diagnosed with CSCR following the use of tadalafil, a PDE5 inhibitor.
Pacjuk, Olga; Hernández-Huguet, Silvia; Körner, Johanna; Scherer, Katharina; Richling, Elke
2017-01-01
Background: Phosphodiesterases (PDEs) play a major role in the regulation of cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts (Arbutus unedo, Camellia sinensis, Cynara scolymus, Zingiber officinale) with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit (Arbutus unedo) and tea (Camellia sinensis) extracts did not inhibit PDE markedly. Alternatively, artichoke (Cynara scolymus) extract had a significant inhibitory influence on PDE activity (IC50 = 0.9 ± 0.1 mg/mL) as well as its flavone luteolin (IC50 = 41 ± 10 μM) and 3,4-dicaffeoylquinic acid (IC50 > 1.0 mM). Additionally, the ginger (Zingiber officinale) extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC50 = 1.7 ± 0.2 mg/mL and IC50 > 1.7 mM, respectively). Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC50 = 455 ± 19 μg/mL). Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research. PMID:29113064
A novel thermoregulatory role for PDE10A in mouse and human adipocytes.
Hankir, Mohammed K; Kranz, Mathias; Gnad, Thorsten; Weiner, Juliane; Wagner, Sally; Deuther-Conrad, Winnie; Bronisch, Felix; Steinhoff, Karen; Luthardt, Julia; Klöting, Nora; Hesse, Swen; Seibyl, John P; Sabri, Osama; Heiker, John T; Blüher, Matthias; Pfeifer, Alexander; Brust, Peter; Fenske, Wiebke K
2016-07-01
Phosphodiesterase type 10A (PDE10A) is highly enriched in striatum and is under evaluation as a drug target for several psychiatric/neurodegenerative diseases. Preclinical studies implicate PDE10A in the regulation of energy homeostasis, but the mechanisms remain unclear. By utilizing small-animal PET/MRI and the novel radioligand [(18)F]-AQ28A, we found marked levels of PDE10A in interscapular brown adipose tissue (BAT) of mice. Pharmacological inactivation of PDE10A with the highly selective inhibitor MP-10 recruited BAT and potentiated thermogenesis in vivo In diet-induced obese mice, chronic administration of MP-10 caused weight loss associated with increased energy expenditure, browning of white adipose tissue, and improved insulin sensitivity. Analysis of human PET data further revealed marked levels of PDE10A in the supraclavicular region where brown/beige adipocytes are clustered in adults. Finally, the inhibition of PDE10A with MP-10 stimulated thermogenic gene expression in human brown adipocytes and induced browning of human white adipocytes. Collectively, our findings highlight a novel thermoregulatory role for PDE10A in mouse and human adipocytes and promote PDE10A inhibitors as promising candidates for the treatment of obesity and diabetes. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
ERIC Educational Resources Information Center
Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun
2010-01-01
Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…
Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: a review.
Travadi, J N; Patole, S K
2003-12-01
Persistent pulmonary hypertension of the newborn (PPHN) is a complex syndrome with multiple causes, with an incidence of 0.43-6.8/1,000 live births and a mortality of 10-20%. Survivors have high morbidity in the forms of neurodevelopmental and audiological impairment, cognitive delays, hearing loss, and a high rate of rehospitalization. The optimal approach to the management of PPHN remains controversial. Inhaled nitric oxide (iNO) is currently regarded as the gold standard therapy, but with as many as 30% of cases failing to respond, has not proven to be the single magic bullet. Given the complex pathophysiology of the disease, any such magic bullet is unlikely. A number of recent studies have suggested a role for specific phosphodiesterase (PDE) inhibitors in the management of PPHN. Sildenafil, a specific PDE5 inhibitor, appears the most promising of such agents. We aim to review the current status and limitations of iNO and the potential of PDE inhibitors in the management of PPHN. The reasons why caution is warranted before specific PDE5 inhibitors like sildenafil are labelled as potential magic bullets for PPHN will be discussed. The need for randomized-controlled trials to determine the safety, efficacy, and long-term outcome following treatment with sildenafil in PPHN is emphasized. Copyright 2003 Wiley-Liss, Inc.
Jensen, Jeffrey T; Stouffer, Richard L; Stanley, Jessica E; Zelinski, Mary B
2010-02-01
The study was conducted to determine whether a phosphodiesterase (PDE) 3 inhibitor has potential as a novel contraceptive in primates. Regularly cycling adult female cynomolgus macaques of proven fertility (n=16) were treated for 7 months with placebo (controls) or the PDE3 inhibitor ORG 9935 as a daily food treat (150 mg/kg) or as a weekly depot injection (150 mg/kg, sc). After 1 month, a male of proven fertility was introduced into each group. Females underwent weekly monitoring of progesterone (P) and ultrasound evaluation for pregnancy if P remained elevated (1.0 ng/mL) >3 weeks. ORG 9935 values were evaluated using high-performance liquid chromatography. Overall, the pregnancy rate in ORG 9935-treated monkeys (4/8, 50%) did not differ from controls (7/8, 88%; p=.5). However, no animal became pregnant in a cycle when the serum level of ORG 9935 exceeded 300 nmol/L. Moreover, two treated monkeys who mated throughout the treatment phase and did not conceive became pregnant within four cycles after stopping ORG 9935. The other two animals were discontinued prematurely from the protocol. These results demonstrate that ORG 9935 may prevent pregnancy in primates at serum concentrations above 300 nmol/L and that the effect is reversible.
Seebeck, Thomas; Sterk, Geert Jan; Ke, Hengming
2011-01-01
Protozoan infections remain a major unsolved medical problem in many parts of our world. A major obstacle to their treatment is the blatant lack of medication that is affordable, effective, safe and easy to administer. For some of these diseases, including human sleeping sickness, very few compounds are available, many of them old and all of them fraught with toxic side effects. We explore a new concept for developing new-generation antiprotozoan drugs that are based on phosphodiesterase (PDE) inhibitors. Such inhibitors are already used extensively in human pharmacology. Given the high degree of structural similarity between the human and the protozoan PDEs, the vast expertise available in the human field can now be applied to developing disease-specific PDE inhibitors as new antiprotozoan drugs. PMID:21859303
Liu, De-Feng; Jiang, Hui; Hong, Kai; Zhao, Lian-Ming; Tang, Wen-Hao; Ma, Lu-Lin
2010-11-01
Erectile dysfunction (ED) is a common impairment among older men, and the prevalence rates increase sharply after age of 60 years. Most studies have focused on the prevalence rate or dangerous factors. The aim of this study was to investigate the basic epidemiologic data about ED patients with different ED courses. The purpose of this research was to understand the therapeutic effect of phosphodiesterase type 5 inhibitor (PDE5-I) and see how and why the ED course impact the progress of ED and the therapeutic effect of PDE5-I treatment. From June 2008 to June 2009, 4252 questionnaires (Quality of Erection Questionnaire, QEQ) were gathered from 46 centers by urology or andrology doctors all around China. Patients with ED (age ≥ 20 years) filled in first half of the questionnaires when they came for the first time, and then completed the second half 4 weeks after PDE5-I therapy. ED courses of most patients were less than 5 years (< 5 years, 74.0%; 5 - 10 years 20.8%; > 10 years, 5.2%). As ED course increasing, the incidence of the risk factors of ED, such as smoking, drinking, hypertension, diabetes, heart disease and hyperlipidemia also increase (P ≤ 0.01). PDE5-I was effective in improving the quality of sexual activities (P ≤ 0.01). Administration of PDE5-I improves satisfaction, enjoyment and frequency of sexual activities. The longer the ED course, the worse the therapeutic effect (< 5 years, 96.1%; 5 - 10 years, 94.9%; > 10 years, 89.0%) (P ≤ 0.01). The ED course greatly affected the therapeutic effect of PDE5-1, the patients with ED should consult doctor at early stage of the disease. Administration of PDE5-I effectively improves the penile erection and the quality of sexual life of the patients hence should be considered as first-line medicine in the treatment of ED.
Towards selective phosphodiesterase 2A (PDE2A) inhibitors: a patent review (2010 - present).
Trabanco, Andrés A; Buijnsters, Peter; Rombouts, Frederik J R
2016-08-01
The cyclic nucleotides cAMP and cGMP are ubiquitous intracellular second messengers regulating a large variety of biological processes. The intracellular concentration of these biologically relevant molecules is modulated by the activity of phosphodiesterases (PDEs), a class of enzymes that is grouped in 11 families. The expression of PDEs is tissue- and cell-specific allowing spatiotemporal integration of multiple signaling cascades. PDE2A is a dual substrate enzyme and is expressed in both the periphery and in the central nervous system, however its expression is highest in the brain, where it is mainly localized in the cortex, hippocampus, and striatum. This suggests that this enzyme may regulate intraneuronal cGMP and cAMP levels in brain areas involved in emotion, perception, concentration, learning and memory. This review covers the patent applications published between January 2010 and February 2016 on phosphodiesterase 2A inhibitors. Recent publications in the literature and in filed patent applications demonstrate the interest of pharmaceutical companies for PDE2A. This has increased the insights of its possible therapeutic role but the few clinical trials were terminated. Based on the ongoing interest in the field it is likely that new clinical trials can be expected and will unravel the therapeutic potential of PDE2A inhibition.
Joniec-Maciejak, Ilona; Cudna, Agnieszka; Mirowska-Guzel, Dagmara; Kurkowska-Jastrzębska, Iwona
2017-01-01
Background/Aims Since the degeneration of the nigrostriatal dopaminergic pathway in Parkinson’s disease (PD) is associated with the inflammation process and decreased levels of cyclic nucleotides, inhibition of up-regulated cyclic nucleotide phosphodiesterases (PDEs) appears to be a promising therapeutic strategy. We used ibudilast (IBD), a non-selective PDE3,4,10,11 inhibitor, due to the abundant PDE 4 and 10 expression in the striatum. The present study for the first time examined the efficacy of IBD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Methods IBD [0, 20, 30, 40, or 50 mg/kg] was injected b.i.d. subcutaneously for nine days to three-month-old male C57Bl/10Tar mice, beginning two days prior to MPTP (60 mg/kg) intoxication. High-pressure liquid chromatography, Western blot analysis, and real time RT-PCR methods were applied. Results Our study demonstrated that chronic administration of IBD attenuated astroglial reactivity and increased glial cell-derived neurotrophic factor (GDNF) production in the striatum. Moreover, IBD reduced TNF-α, IL-6, and IL-1β expression. Conclusion IBD had a well-defined effect on astroglial activation in the mouse model of PD; however, there was no protective effect in the acute phase of injury. Diminished inflammation and an increased level of GDNF may provide a better outcome in the later stages of neurodegeneration. PMID:28753652
Jeong, Ji Hye; Lee, Ji Hyun; Kim, Hyung Joo; Park, Hyoung Joon; Hwang, In Sun; Han, Kyoung Moon; Yoon, Chang-Yong; Cho, Sooyeul; Kim, Woo Seong
2016-01-01
A number of 188 food and dietary supplement samples were collected from 2009 to the first half of 2013 in Korean online and offline stores. A method to identify phosphodiesterase-5 (PDE-5) inhibitors and their analogues using liquid chromatography-electrospray ionisation-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) was validated. Limit of detection and limit of quantitation of liquid-type and solid-type negative samples ranged from 0.05 to 3.33 ng/mL or ng/g and from 0.15 to 10.00 ng/mL or ng/g, respectively. Recoveries ranged from 83% to 112%. Nineteen PDE-5 inhibitors and their analogues were detected, with tadalafil group compounds being the most frequently observed (53.0%), followed by the sildenafil group (42.5%). Tadalafil concentrations ranged from 0.08 to 138.69 mg/g. Compounds were most frequently detected in capsules (in 40 of 80 adulterated samples). To protect public health and food safety, appropriate monitoring of PDE-5 inhibitors and their analogues in foods and dietary supplements is recommended.
Rickmann, A; Macek, M A; Szurman, P; Boden, K
2017-08-03
We report the case of acute painless monocular loss of vision in a 53-year-old man. An interdisciplinary etiological evaluation remained without pathological findings with respect to arterial branch occlusion. A reevaluation of the patient history led to a possible association with the administration of phosphodiesterase type 5 inhibitor (PDE5 inhibitor). A critical review of the literature on PDE5 inhibitor administration with ocular participation was performed.
Association between a variation in the phosphodiesterase 4D gene and bone mineral density.
Reneland, Richard H; Mah, Steven; Kammerer, Stefan; Hoyal, Carolyn R; Marnellos, George; Wilson, Scott G; Sambrook, Philip N; Spector, Tim D; Nelson, Matthew R; Braun, Andreas
2005-03-07
Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD) is a useful surrogate marker for risk of fracture and is a highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown. We performed a large-scale association study investigating more than 25,000 single nucleotide polymorphisms (SNPs) located within 16,000 genes. Allele frequencies were estimated in contrasting DNA pools from white females selected for low (<0.87 g/cm2, n = 319) and high (> 1.11 g/cm2, n = 321) BMD at the lumbar spine. Significant findings were verified in two additional sample collections. Based on allele frequency differences between DNA pools and subsequent individual genotyping, one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D) gene region on chromosome 5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with low (<0.91 g/cm2) and 138 females with high (>1.04 g/cm2) lumbar spine BMD. Odds ratios were 1.5 (P = 0.035) in the original sample and 2.1 (P = 0.018) in the replication sample. Association fine mapping with 80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09). We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to interact biologically with PDE4D, with BMD. This study indicates that variants in the gene encoding PDE4D account for some of the genetic contribution to bone mineral density variation in humans. The contrasting results from different samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase bone mass in normal and osteopenic mice, but up until now there have been no reports implicating any member of the PDE4 gene family in human osteoporosis.
Duez, Mathieu; Etter, Matthieu; Klinger, Nadine; Cirimele, Vincent
2014-06-01
If classic phosphodiesterase-5 (PDE-5) inhibitors are well known, new synthetic PDE-5 analogues are of more recent introduction. Some of them have already been tested in dietary supplements. We describe here a rape case following the consumption of pills bought on the Internet and containing new synthetic PDE-5 inhibitors. The assailant declared that he lost control after ingesting these pills for the first time. Analyses of conventional matrices (blood, urine) don't allow us to highlight the intake of any substances in relation to this offence due to late sampling (5 days after the offence). Therefore, we have developed an analytical approach to test for PDE-5 inhibitors in hair including the two new synthetic PDE-5 inhibitors analogues - thiosildenafil and hydroxythiohomosildenafil - previously identified in the pills. This new method was validated and applied to the hair samples of the victim and the suspect. Analyses were conducted using a liquid/liquid extraction followed by liquid chromatography coupled with a mass spectrometer in multiple reaction monitoring mode detection. The 2-centimetre proximal hair section of the suspect revealed the presence of thiosildenafil (48 pg/mg), hydroxythiohomosildenafil (24 pg/mg), and sildenafil (7.5 pg/mg). To our knowledge, it is the first time that these two new synthetic PDE-5 inhibitors were detected in biological samples and especially in hair. Complementary investigations showed that a single pill taken by a volunteer provided similar levels in thiosildenafil (35 pg/mg), hydroxythiohomosildenafil (17 pg/mg), and sildenafil (8 pg/mg) to those found in the previous case described here. Copyright © 2014 John Wiley & Sons, Ltd.
Tsai, Yung-Fong; Yu, Huang-Ping; Chung, Pei-Jen; Leu, Yann-Lii; Kuo, Liang-Mou; Chen, Chun-Yu; Hwang, Tsong-Long
2015-12-01
Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Bing; Zhu, Linxin; Zhong, Jingxiang; Zeng, Guohua; Deng, Tuo
2018-06-05
Phosphodiesterase type 5 inhibitors (PDE5-Is) are first-line drugs for erectile dysfunction. Non-arteritic anterior ischemic optic neuropathy (NAION) has been linked with PDE5-I use. However, no meta-analysis or conclusive review has explored the association between NAION and PDE5-I use. To investigate the association between PDE5-I use and risk of NAION. A comprehensive literature search was conducted using online databases in October 2017 to obtain studies researching the association between PDE5-I application and occurrence of NAION. Summarized unadjusted risk ratios (RRs) with 95% CIs were calculated for the strength of this association. This study was conducted in accordance to Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines and registered in PROSPERO under number CRD42017080865. The strength of association between PDE5-I use and risk of NAION was assessed through pooled unadjusted RRs and 95% CIs. 5 original articles with 6 clinical observations were included in the meta-analysis. No significant higher risk of NAION was observed after the use of PDE5-Is within a 1-month period (RR = 1.16, 95% CI = 0.98-1.39, P = .09). Subgroup analyses indicated 2 PDE5-Is were significantly related to NAION (tadalafil: RR = 2.14, 95% CI = 1.20-3.84, P = .01; sildenafil: RR = 2.25, 95% CI = 1.29-3.94, P = .004). Although we found no association between NAION and PDE5-I use, our results should be interpreted cautiously because we included only observational studies and could not control for potential confounders. Because NAION is a rare ocular disease and difficult to diagnose, this association should be confirmed in prospective comparative studies with larger samples and more rigorous designs. Liu B, Zhu L, Zhong J, et al. The Association Between Phosphodiesterase Type 5 Inhibitor Use and Risk of Non-Arteritic Anterior Ischemic Optic Neuropathy: A Systematic Review and Meta-Analysis. Sex Med 2018;X:XXX-XXX. Copyright © 2018. Published by Elsevier Inc.
Wang, Jie; Shen, Yigen; Wang, Jiaoni; Xue, Yangjing; Liao, Lianming; Thapa, Saroj; Ji, Kangting
2017-07-11
Data on the association between using PDE5 inhibitors and malignant melanoma are conflicting. To estimate the relation of using PDE5 inhibitors with risk of malignant melanoma, Medline (Ovid) and Embase (Ovid) databases were searched up to February 2017, and a random effects model was used to calculate the summary risk estimates. Five observational studies were included. Five studies reports encompassed a total of 15,979 melanoma cases occurring among 1, 188,414 participants. The pooled multivariable-adjusted RR of melanoma in patients with using PDE5 inhibitors was 1.12 (95% CI: 1.03-1.21, I2 = 0.48). Findings from this systematic review support that PDE5 inhibitor use is associated with increased risk of melanoma in ED patients, the result remains inclusive and warrants further study in the future.
Studies on the cardiac actions of flosequinan in vitro.
Gristwood, R. W.; Beleta, J.; Bou, J.; Cardelús, I.; Fernández, A. G.; Llenas, J.; Berga, P.
1992-01-01
1. We have investigated the in vitro cardiac actions of flosequinan and of its major metabolite in man, BTS 53554. 2. Positive inotropic activity was seen with flosequinan in guinea-pig isolated ventricles, the threshold concentration for effect being less than 1 x 10(-5) M. BTS 53554 was approximately half as potent as the parent compound. 3. In guinea-pig working whole hearts flosequinan increased left ventricular dp/dtmax, indicating a positive inotropic action. This effect was accompanied by increases in heart rate, cardiac output and stroke volume. 4. The virtual complete inhibition of inotropic responses to flosequinan and BTS 53554 by carbachol suggests that these responses are adenosine 3':5'-cyclic monophosphate (cyclic AMP)-mediated. 5. Flosequinan was shown to increase calcium inward current in guinea-pig ventricle, an action consistent with a cyclic AMP involvement in the response. 6. The inotropic activity of flosequinan was not potentiated by the selective phosphodiesterase (PDE) III inhibitor SK&F 94120, a result which indicates that flosequinan does not increase cyclic AMP concentrations via stimulation of adenylate cyclase. 7. Flosequinan inotropic responses were potentiated by rolipram, a selective PDE IV inhibitor, a result consistent with flosequinan being itself a PDE III inhibitor. 8. Biochemical studies with purified enzymes confirmed that flosequinan and BTS 53554 are relatively selective inhibitors of PDE III. 9. A comparison of pharmacological and biochemical data for both flosequinan and BTS 53554 indicates that their PDE III inhibitory potency is sufficient to account for their inotropic activity. PMID:1324061
Pharmacologic therapy for erectile dysfunction and its interaction with the cardiovascular system.
Ioakeimidis, Nikolaos; Kostis, John B
2014-01-01
Phosphodiesterase (PDE) enzymes are widely distributed throughout the body, having numerous effects and functions. The PDE type 5 (PDE5) inhibitors are widely used to treat erectile dysfunction (ED). Recent, intense preclinical and clinical research with PDE5 inhibitors has shed light on new mechanisms and has revealed a number of pleiotropic effects on the cardiovascular (CV) system. To date, PDE5 inhibition has been shown to be effective for the treatment of idiopathic pulmonary arterial hypertension, and both sildenafil and tadalafil are approved for this indication. However, current or future PDE5 inhibitors have the potential of becoming clinically useful in a variety of CV conditions such as heart failure, coronary artery disease, and hypertension. The present review discusses recent findings regarding pharmacologic treatment of ED and its interaction with the CV system and highlights current and future clinical applications beyond ED.
Advances in targeting cyclic nucleotide phosphodiesterases
Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.
2014-01-01
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066
Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.
Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G
2016-02-01
The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toward the identification of the cardiac cGMP inhibited-phosphodiesterase catalytic site
NASA Astrophysics Data System (ADS)
Fossa, Paola; Boggia, Raffaella; Mosti, Luisa
1998-07-01
Cyclic nucleotide phosphodiesterases (PDEs) comprise a complex group of enzymes; five major PDE families or classes with distinctive properties have been identified. Among these a great deal of interest has recently been focused on the so called cGMP-inhibited low Km cAMP phosphodiesterase (cGI PDE) or PDE III. A number of positive inotropic agents, including the well-known milrinone, display a specific inhibition of PDE III as primary mechanism of action. Recent studies have been carried out to develop a pharmacophore model of the PDE III active site. We therefore performed molecular modelling and 3D-SAR studies so as to better define structural requirements for potent and selective enzymatic inhibition. The DISCO (DIStance COmparison) strategy has been applied on a set of compounds taken from literature and a milrinone analogue previously synthesized by us, all of which are characterized by a marked inotropic effect but with varying degrees of enzyme selectivity. A common pharmacophoric model was derived, validated and considered as starting point to perform a 3D-SAR study using the GRID force field and PCA (Principal Component Analysis) with the aim of rationally designing more selective inhibitors. This paper presents the results of this theoretical approach.
Hennenberg, Martin; Schott, Melanie; Kan, Aysenur; Keller, Patrick; Tamalunas, Alexander; Ciotkowska, Anna; Rutz, Beata; Wang, Yiming; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Stief, Christian G; Gratzke, Christian
2016-11-01
The phosphodiesterase (PDE) 5 inhibitor tadalafil is available for treatment of male lower urinary tract symptoms (LUTS), while the role of other PDE isoforms for prostate smooth muscle tone is still unknown. Here, we examined effects of the PDE10-selective inhibitor TC-E 5005 on smooth muscle contraction in human prostate tissue. Prostate samples were obtained from patients undergoing radical prostatectomy. Expression of PDE10 was addressed by RT-PCR, Western blot, and fluorescence staining with different markers. Effects of TC-E 5005 and tadalafil on contraction, and relaxation of prostate strips were studied via organ bath. PDE10A was detectable by RT-PCR, Western blot, and fluorescence staining in prostate tissues. Colocalization with markers suggested expression of PDE10A in smooth muscle cells and catecholaminergic nerves. Norepinephrine, the α1 -adrenergic agonist phenylephrine, the thromboxane A2 analogue U46619, and endothelins 1-3 induced concentration-dependent contractions of prostate strips, while electric field stimulation (EFS) induced frequence-dependent contractions. Application of TC-E 5005 (500 nM) caused significant inhibition of norepinephrine-, phenylephrine-, and endothelin-3-induced contractions. Inhibition of EFS-induced contractions by TC-E 5005 ranged around 50%, resembling inhibition of EFS-induced contractions by tadalafil (10 μM). The prostacyclin analog treprostinil and the nitric oxide donor DEA NONOate induced relaxations of precontracted prostate strips, which were significantly amplified by TCE 5005. The PDE10-selective inhibitor TC-E 5005 inhibits adrenergic and neurogenic smooth muscle contractions in the human prostate. TC-E 5005 inhibits neurogenic contractions with similar efficacy than tadalafil, so that urodynamic effects in vivo appear possible. Prostate 76:1364-1374, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
New Therapeutic Applications of Phosphodiesterase 5 Inhibitors (PDE5-Is).
Ribaudo, Giovanni; Pagano, Mario Angelo; Bova, Sergio; Zagotto, Giuseppe
2016-01-01
Phosphodiesterase 5 inhibitors (PDE5-Is) sildenafil, vardenafil, tadalafil and the recently approved avanafil represent the first-line choice for both on-demand and chronic treatment of erectile dysfunction (ED). In addition to this, sildenafil and tadalafil, have also been approved for the treatment of pulmonary arterial hypertension. Due to its expression and localization in many tissues, PDE5 and its regulation has been reported to be involved in several other diseases. We aim to provide an updated overview of the emerging therapeutic applications of PDE5-Is besides ED, taking into account the latest ongoing research reports. We searched online databases (Pubmed, Reaxys, Scopus) to lay the bases for an accurate, quality criteria-based literature update. We focused our attention on most recent research reports, in particular when supported by pre-clinical and clinical data. The regulation of PDE5 may influence pathological conditions such as, among the others, heart failure, cystic fibrosis, cancer, CNS-related diseases, diabetes and dysfunctions affecting male urinary/reproductive system. Sildenafil, vardenafil, tadalafil and the other chemical entities considered PDE5-Is showed overall positive results and significant improvements in the studied disease, thus some discordant results, in particular when comparing pre-clinical and clinical data, have to be pointed out, suggesting that further insights are needed especially to assess the exact molecular pathway underlying.
Miller, Clint L.; Oikawa, Masayoshi; Cai, Yujun; Wojtovich, Andrew P.; Nagel, David J.; Xu, Xiangbin; Xu, Haodong; Florio, Vince; Rybalkin, Sergei D.; Beavo, Joseph A.; Chen, Yiu-Fai; Li, Jian-Dong; Blaxall, Burns C.; Abe, Jun-ichi; Yan, Chen
2009-01-01
Rationale Cyclic nucleotide phosphodiesterases (PDE) through the degradation of second messenger cyclic guanosine monophosphate (cGMP) play critical roles in maintaining cardiomyocyte homeostasis. Ca2+/CaM-activated cGMP-hydrolyzing PDE1 family may play a pivotal role in balancing intracellular Ca2+/CaM and cGMP signaling, however its function in cardiomyocytes is unknown. Objective Herein we investigate the role of Ca2+/CaM-stimulated PDE1 in regulating pathological cardiomyocyte hypertrophy in neonatal and adult rat ventricular myocytes (NRVM and ARVM) and in the heart in vivo. Methods and Results Inhibition of PDE1 activity using a PDE1 selective inhibitor IC86340 or downregulation of PDE1A using siRNA prevented phenylephrine (PE) induced pathological myocyte hypertrophy and hypertrophic marker expression in neonatal (NRVM) and adult (ARVM) rat ventricular myocytes. Importantly, administration of the PDE1 inhibitor IC86340 attenuated cardiac hypertrophy induced by chronic ISO infusion in vivo. Both PDE1A and PDE1C mRNA and protein were detected in human hearts, however PDE1A expression was conserved in rodent hearts. Moreover, PDE1A expression was significantly upregulated in vivo in the heart and myocytes from various pathological hypertrophy animal models and in vitro in isolated NRVM and ARVM treated with neurohumoral stimuli such as angiotensin II (Ang II) and ISO. Further, PDE1A plays a critical role in PE-induced reduction of intracellular cGMP and PKG activity, and thereby cardiomyocyte hypertrophy in vitro. Conclusions These results elucidate a novel role for Ca2+/CaM-stimulated PDE1, particularly PDE1A, in regulating pathological cardiomyocyte hypertrophy via a cGMP/PKG-dependent mechanism, thereby demonstrating Ca2+ and cGMP signaling cross-talk during cardiac hypertrophy. PMID:19797176
Effects of Phosphodiesterase 4 Inhibition on Alveolarization and Hyperoxia Toxicity in Newborn Rats
Méhats, Céline; Franco-Montoya, Marie-Laure; Boucherat, Olivier; Lopez, Emmanuel; Schmitz, Thomas; Zana, Elodie; Evain-Brion, Danièle; Bourbon, Jacques; Delacourt, Christophe; Jarreau, Pierre-Henri
2008-01-01
Background Prolonged neonatal exposure to hyperoxia is associated with high mortality, leukocyte influx in airspaces, and impaired alveolarization. Inhibitors of type 4 phosphodiesterases are potent anti-inflammatory drugs now proposed for lung disorders. The current study was undertaken to determine the effects of the prototypal phosphodiesterase-4 inhibitor rolipram on alveolar development and on hyperoxia-induced lung injury. Methodology/Findings Rat pups were placed under hyperoxia (FiO2>95%) or room air from birth, and received rolipram or its diluent daily until sacrifice. Mortality rate, weight gain and parameters of lung morphometry were recorded on day 10. Differential cell count and cytokine levels in bronchoalveolar lavage and cytokine mRNA levels in whole lung were recorded on day 6. Rolipram diminished weight gain either under air or hyperoxia. Hyperoxia induced huge mortality rate reaching 70% at day 10, which was prevented by rolipram. Leukocyte influx in bronchoalveolar lavage under hyperoxia was significantly diminished by rolipram. Hyperoxia increased transcript and protein levels of IL-6, MCP1, and osteopontin; rolipram inhibited the increase of these proteins. Alveolarization was impaired by hyperoxia and was not restored by rolipram. Under room air, rolipram-treated pups had significant decrease of Radial Alveolar Count. Conclusions Although inhibition of phosphodiesterases 4 prevented mortality and lung inflammation induced by hyperoxia, it had no effect on alveolarization impairment, which might be accounted for by the aggressiveness of the model. The less complex structure of immature lungs of rolipram-treated pups as compared with diluent-treated pups under room air may be explained by the profound effect of PDE4 inhibition on weight gain that interfered with normal alveolarization. PMID:18941502
de Melo Souza, Paula L; Arruda, Evilanna L; Pazini, Francine; Menegatti, Ricardo; Vaz, Boniek G; Lião, Luciano M; de Oliveira, Valéria
2016-07-01
An efficient and rapid process for N-glycosylation of 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole-LQFM 021 (1), a new synthetic derivative of pyrazole with phosphodiesterase-3 (PDE-3) inhibitory action, vasorelaxant activity and low toxicity catalyzed by filamentous fungi biofilm in bioreactor was successfully developed. A maximum N-glycosyl yield of 68% was obtained with Cunninghamella echinulata ATCC 9244 biofilm in bioreactor with conditions of 25mgml(-1) of 1 in PDSM medium at 28°C for 96h. After extraction with ethyl acetate, the derivative was identified by Ultrahigh Resolution Mass Spectrometry and (1)H-(13)C HSQC/HMBC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H
1999-01-01
Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.
Dunkel, Bettina; Rickards, Karen J; Werling, Dirk; Page, Clive P; Cunningham, Fiona M
2010-05-01
To determine whether expression of equine platelet activation-dependent surface markers is influenced by phospodiesterase (PDE) isoenzyme activity and whether antigen challenge alters platelet PDE activity in horses with recurrent airway obstruction (RAO). 16 horses. 7 healthy horses were used for in vitro experiments, 6 horses with RAO were used for antigen challenge, and 6 healthy horses were used as control animals. Three of the healthy horses had also been used in the in vitro experiments. Effects of PDE inhibition and activation of adenylyl cyclase on CD41/61 and CD62P expression on platelets and platelet-neutrophil aggregate formation in vitro were investigated via flow cytometry. Platelet PDE activity and sensitivity to inhibition of PDE3 and PDE5 isoenzymes were examined in horses with RAO and control horses before and after antigen challenge. Inhibition of PDE or activation of adenylyl cyclase significantly inhibited stimulus-induced expression of CD41/61 and CD62P (by approx 94% and 40%, respectively) and percentage of CD62P positive cells (by approx 30%). Only the PDE3 inhibitor, trequinsin, caused a significant (53%) reduction in platelet-neutrophil aggregate formation. Platelet PDE activity decreased following antigen challenge in RAO-affected horses and control horses. In horses with RAO, a significant increase in sensitivity of platelet PDE to inhibition by the PDE5 inhibitor zaprinast was observed after 5 hours. Results provided further evidence that PDE3 is an important regulator of equine platelet activation and suggested that changes in regulation of platelet PDE5 may contribute to antigen-induced response in horses with RAO.
Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Siwek, Agata; Głuch-Lutwin, Monika; Starowicz, Gabriela; Kazek, Grzegorz; Partyka, Anna; Wesołowska, Anna; Słoczyńska, Karolina; Pękala, Elżbieta; Pawłowski, Maciej
2016-01-01
A series of 2-fluoro and 3-trifluoromethylphenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (4-21) were synthesized and evaluated for their serotonin (5-HT 1A /5-HT 7 ) receptor affinity and phosphodiesterase (PDE4B and PDE10A) inhibitor activity. The study enabled the identification of potent 5-HT 1A , 5-HT 7 and mixed 5-HT 1A /5-HT 7 receptor ligands with weak inhibitory potencies for PDE4B and PDE10A. The tests have been completed with the determination of lipophilicity and metabolic stability using micellar electrokinetic chromatography (MEKC) system and human liver microsomes (HLM) model. In preliminary pharmacological in vivo studies, selected compound 8-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyl)-1,3,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (9) behaved as a potential antidepressant in forced swim test (FST) in mice. Moreover, potency of antianxiety effects evoked by 9 (2.5 mg/kg) is greater than that of the reference anxiolytic drug, diazepam. Molecular modeling revealed that fluorinated arylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione have major significance for the provision of lead compounds for antidepressant and/or anxiolytic application.
García-Perdomo, Herney Andrés
2017-01-01
Purpose To determine the efficacy of phosphodiesterase type 5 inhibitors (PDE5i) as medical expulsive therapy (MET) for the treatment of distal ureteral calculi. Materials and Methods A search strategy was conducted in the MEDLINE, CENTRAL, and Embase databases. Searches were also conducted in other databases and unpublished literature. Clinical trials were included without language restrictions. The risk of bias was evaluated with the Cochrane Collaboration's tool. An analysis of random effects due to statistical heterogeneity was conducted. The primary outcome was the expulsion rate of the distal ureteral calculus in 28 days. The secondary outcomes were the time to expulsion, side effects of treatment, and amount (mg) of nonopioid analgesia. The measure of the effect was the risk difference (RD) with a 95% confidence interval (CI). The planned interventions were PDE5i vs. placebo, tadalafil vs. placebo, and tadalafil vs. tamsulosin. Results Four articles were included in the qualitative and quantitative analysis. Records of 580 patients were found among the four studies. A low risk of bias was shown for the majority of the study items. The calculi expulsion rate had an RD of 0.26 (95% CI, 0.15–0.37) and a less prolonged expulsion as a secondary outcome with a mean difference of -4.39 days (95% CI, -6.69 to -2.09) in favor of PDE5i compared with the placebo. No significant difference was found for these outcomes when comparing tadalafil with tamsulosin. Conclusions Compared with a placebo, PDE5i could be effective as MET for the treatment of distal ureter calculi. PMID:28261676
Erectile Dysfunction Medication Use in Veterans Eligible for Medicare Part D.
Spencer, Samantha H; Suda, Katie J; Smith, Bridget M; Huo, Zhiping; Bailey, Lauren; Stroupe, Kevin T
2016-07-01
Erectile dysfunction (ED) medications are therapeutically effective and associated with satisfaction. Medicare Part D included ED medications on the formulary during 2006 and inadvertently in 2007-2008. To characterize phosphodiesterase-5 inhibitor (PDE-5) medication use among veterans who were dually eligible for Veterans Affairs (VA) and Medicare Part D benefits. Veterans aged > 66 years who received PDE-5 inhibitors between 2005 and 2009 were included. Veterans were categorized by PDE-5 inhibitor claims: VA-only, Part D-only, or dual users of VA and Part D-reimbursed pharmacies. T-tests and chi-square tests were applied as appropriate. From 2005 to 2009, the majority (85.2%) of veterans used VA benefits exclusively for their PDE-5 inhibitors; 11.4% used Medicare Part D exclusively; and 3.4% were dual users. The Part D-only group was older, more frequently not black, had a VA copay, and had a higher income (P < 0.03). The VA group was more likely to have comorbidities, smoke, and have a history of substance abuse (P < 0.001). With the inception of Medicare Part D in 2006, the number of patients filling prescriptions for PDE-5 inhibitors (-68%) and total number of PDE-5 inhibitor 30-day equivalents dispensed (-86.7%) from the VA decreased. Part D prescriptions increased through 2006 (full coverage period) and 2007 (accidental partial coverage) and decreased in 2008. While Part D accounted for only 10% of PDE-5 inhibitor 30-day equivalents, it equaled 29.2% of dispensed tablets. In October 2007, VA PDE-5 inhibitor use returned to 2005 levels. Implementation of Medicare Part D reduced VA PDE-5 inhibitor acquisition. However, after removal of PDE-5 inhibitors from the Part D formulary, use of VA pharmacies for PDE-5 inhibitors resumed. Medication policies outside the VA can affect medication use. Veterans with access to non-VA health care may obtain medications from the private sector because of VA restrictions. This may be especially true for nonformulary and lifestyle medications. The authors received funding support for this research project from the Department of Veterans Affairs, Veterans Health Administration, Health Services Research and Development Service as grant IIR 07-165-2. The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans Affairs or Health Services Research and Development Service. Study concept and design were contributed by Smith and Stroupe, assisted by the other authors. Huo, Bailey, and Stroupe took the lead in data collection, assisted by the other authors. Data interpretation was performed by Spencer and Suda, along with Smith and Stroupe and assisted by Huo and Bailey. The manuscript was primarily written by Spencer and Suda, with assistance from the other authors, and revised by Spencer, along with the other authors.
SOP conservative (medical and mechanical) treatment of erectile dysfunction.
Porst, Hartmut; Burnett, Arthur; Brock, Gerald; Ghanem, Hussein; Giuliano, Francois; Glina, Sidney; Hellstrom, Wayne; Martin-Morales, Antonio; Salonia, Andrea; Sharlip, Ira
2013-01-01
Erectile dysfunction (ED) is the most frequently treated male sexual dysfunction worldwide. ED is a chronic condition that exerts a negative impact on male self-esteem and nearly all life domains including interpersonal, family, and business relationships. The aim of this study is to provide an updated overview on currently used and available conservative treatment options for ED with a special focus on their efficacy, tolerability, safety, merits, and limitations including the role of combination therapies for monotherapy failures. The methods used were PubMed and MEDLINE searches using the following keywords: ED, phosphodiesterase type 5 (PDE5) inhibitors, oral drug therapy, intracavernosal injection therapy, transurethral therapy, topical therapy, and vacuum-erection therapy/constriction devices. Additionally, expert opinions by the authors of this article are included. Level 1 evidence exists that changes in sedentary lifestyle with weight loss and optimal treatment of concomitant diseases/risk factors (e.g., diabetes, hypertension, and dyslipidemia) can either improve ED or add to the efficacy of ED-specific therapies, e.g., PDE5 inhibitors. Level 1 evidence also exists that treatment of hypogonadism with total testosterone < 300 ng/dL (10.4 nmol/L) can either improve ED or add to the efficacy of PDE5 inhibitors. There is level 1 evidence regarding the efficacy and safety of the following monotherapies in a spectrum-wide range of ED populations: PDE5 inhibitors, intracavernosal injection therapy with prostaglandin E1 (PGE1, synonymous alprostadil) or vasoactive intestinal peptide (VIP)/phentolamine, and transurethral PGE1 therapy. There is level 2 evidence regarding the efficacy and safety of the following ED treatments: vacuum-erection therapy in a wide range of ED populations, oral L-arginine (3-5 g), topical PGE1 in special ED populations, intracavernosal injection therapy with papaverine/phentolamine (bimix), or papaverine/phentolamine/PGE1 (trimix) combination mixtures. There is level 3 evidence regarding the efficacy and safety of oral yohimbine in nonorganic ED. There is level 3 evidence that combination therapies of PDE5 inhibitors + either transurethral or intracavernosal injection therapy generate better efficacy rates than either monotherapy alone. There is level 4 evidence showing enhanced efficacy with the combination of vacuum-erection therapy + either PDE5 inhibitor or transurethral PGE1 or intracavernosal injection therapy. There is level 5 evidence (expert opinion) that combination therapy of PDE5 inhibitors + L-arginine or daily dosing of tadalafil + short-acting PDE5 inhibitors pro re nata may rescue PDE5 inhibitor monotherapy failures. There is level 5 evidence (expert opinion) that adding either PDE5 inhibitors or transurethral PGE1 may improve outcome of penile prosthetic surgery regarding soft (cold) glans syndrome. There is level 5 evidence (expert opinion) that the combination of PDE5 inhibitors and dapoxetine is effective and safe in patients suffering from both ED and premature ejaculation. © 2013 International Society for Sexual Medicine.
Fragment-Based Discovery of Pyrimido[1,2-b]indazole PDE10A Inhibitors.
Chino, Ayaka; Seo, Ryushi; Amano, Yasushi; Namatame, Ichiji; Hamaguchi, Wataru; Honbou, Kazuya; Mihara, Takuma; Yamazaki, Mayako; Tomishima, Masaki; Masuda, Naoyuki
2018-01-01
In this study, we report the identification of potent pyrimidoindazoles as phosphodiesterase10A (PDE10A) inhibitors by using the method of fragment-based drug discovery (FBDD). The pyrazolopyridine derivative 2 was found to be a fragment hit compound which could occupy a part of the binding site of PDE10A enzyme by using the method of the X-ray co-crystal structure analysis. On the basis of the crystal structure of compound 2 and PDE10A protein, a number of compounds were synthesized and evaluated, by means of structure-activity relationship (SAR) studies, which culminated in the discovery of a novel pyrimidoindazole derivative 13 having good physicochemical properties.
Defining the Phosphodiesterase Superfamily Members in Rat Brain Microvessels
2011-01-01
Eleven phosphodiesterase (PDE) families are known, each having several different isoforms and splice variants. Recent evidence indicates that expression of individual PDE family members is tissue-specific. Little is known concerning detailed PDE component expression in brain microvessels where the blood-brain-barrier and the local cerebral blood flow are thought to be regulated by PDEs. The present study attempted to identify PDE family members that are expressed in brain microvessels. Adult male F344 rats were sacrificed and blocks of the cerebral cortex and infratentorial areas were dissected. Microvessels were isolated using a filtration method, and total RNA was extracted. RNA quality and quantity were determined using an Agilent bioanalyzer. The isolated cortical and infratentorial microvessel total RNA amounts were 2720 ± 750 ng (n = 2) and 250 ± 40 ng (n = 2), respectively. Microarrays with 22 000 transcripts demonstrated that there were 16 PDE transcripts in the PDE superfamily, exhibiting quantifiable density in the microvessels. An additional immunofluorescent study verified that PDE4D (cAMP-specific) and PDE5A (cGMP-specific) were colocalized with RECA-1 (an endothelial marker) in the cerebral cortex using both F344 rats and Sprague–Dawley rats (n = 3–6/strain). In addition, PDE4D and PDE5A were found to be colocalized with alpha-smooth muscle actin which delineates cerebral arteries and arterioles as well as pericytes. In conclusion, a filtration method followed by microarray analyses allows PDE components to be identified in brain microvessels, and confirmed that PDE4D and PDE5A are the primary forms expressed in rat brain microvessels. PMID:22860158
Lee, Mary; Sharifi, Roohollah
2018-03-01
Phosphodiesterase type 5 inhibitors (PDE5Is) are the drug of choice for medical management of erectile dysfunction (ED). On-demand PDE5Is have an overall efficacy of 60-70% for ED; 30-35% of patients fail to respond to a PDE5I, and 30-50% of non-responders can be salvaged with detailed counseling on proper use and physician follow-up to ensure that the patient has been prescribed an appropriate and full PDE5I clinical trial. True non-responders may be offered intracavernosal injections of erectogenic drugs, intraurethral alprostadil, or surgical insertion of a penile prosthesis. Such options are not discreet and are associated with more adverse effects than PDE5Is. Thus patients may request additional non-invasive medical management options. This review describes published literature on patients who failed to respond to an on-demand PDE5I regimen and were treated with a non-invasive PDEI-based regimen, including switching from one PDE5I to another; increasing the dose of PDE5I above the labeled dosage range; using two PDE5Is concurrently; using a daily PDE5I regimen; or combining a PDE5I with a testosterone supplement, α-adrenergic antagonist, intraurethral or intracavernosal alprostadil, vacuum erection device, or low-intensity shock wave therapy. The limitations of published clinical trials do not allow for sufficient evidence to recommend one option over another. Therefore, in PDE5I-refractory patients, the choice of a specific next step should be individualized based on the preference of the patient and his sexual partner, the advantages and disadvantages of the various options, the concurrent medical illnesses and medications of the patient, and the patient's response to treatment.
Uthayathas, Subramaniam; Parameshwaran, Kodeeswaran; Karuppagounder, Senthilkumar S; Ahuja, Manuj; Dhanasekaran, Muralikrishnan; Suppiramaniam, Vishnu
2013-11-01
Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.
Wilson, Lindsay S; Guo, Manhong; Umana, M Bibiana; Maurice, Donald H
2017-08-01
Cyclic GMP (cGMP) translates and integrates much of the information encoded by nitric oxide (NO · ) and several natriuretic peptides, including the atrial natriuretic peptide (ANP). Previously, we reported that integration of a cGMP-specific cyclic nucleotide phosphodiesterase, namely phosphodiesterase 5A (PDE5A), into a protein kinase G (PKG)- and inositol-1,4,5-trisphosphate receptor (IP 3 R)-containing endoplasmic reticulum (ER) signalosome allows localized control of PDE5A activity and of PKG-dependent inhibition of IP 3 -mediated release of ER Ca 2+ in human platelets. Herein, we report that PDE5A integrates into an analogous signalosome in human arterial smooth muscle cells (HASMC), wherein it regulates muscarinic agonist-dependent Ca 2+ release and is activated selectively by PKG-dependent phosphorylation. In addition, we report that PDE5A also regulates HASMC functions via events independent of PKG, but rather through actions coordinated by competitive cGMP-mediated inhibition of cAMP hydrolysis by the so-called cGMP-inhibited cAMP PDE, namely phosphodiesterase 3A (PDE3A). Indeed, we show that ANP increases both cGMP and cAMP levels in HASMC and promotes phosphorylation of vasodilator-stimulated phospho-protein (VASP) at each the PKG and PKA phospho-acceptor sites. Since selective inhibition of PDE5 decreased DNA synthesis and chemotaxis of HASMC, and that PDE3A knockdown obviated these effects, our findings are consistent with a role for a PDE5A-PDE3A-PKA axis in their regulation. Our findings provide insight into the existence of distinct "pools" of PDE5A in HASMC and support the idea that these discrete compartments regulate distinct cGMP-dependent events. As a corollary, we suggest that it may be possible to target these distinct PDE5A-regulated pools and in so-doing differentially impact selected cGMP-regulated functions in these cells. Copyright © 2017. Published by Elsevier Inc.
Zagórska, Agnieszka; Gryzło, Beata; Satała, Grzegorz; Bojarski, Andrzej J; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Pawłowski, Maciej
2016-01-01
A series of octahydro- and 6,7-dimethoxy-3,4-dihydro- isoquinolin-2(1H)-yl-alkyl derivatives of imidazo- and pyrimidino[2,1-f]purines were synthesized and biologically evaluated in in vitro competition binding experiments for serotonin 5-HT(1A), 5-HT(6), 5-HT(7), and dopamine D2 receptors and inhibitory potencies for phosphodiesterases - PDE4B1 and PDE10A. The structure-activity relationships allowed to determine the structural features responsible for receptor and enzyme activity. Compound 5 (8-(4-(6,7-dimethoxy-3,4-dihydroiso- quinolin-2(1H)butyl)1,3-dimethyl-H-imidazo[2,1-f]purine-2,4(3H,8H)-dione) could be regarded as promising structure for further modification and detailed mechanistic study for obtained hybrid ligands.
Dong, Xiao; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Ihara, Tatsuya; Kira, Satoru; Sawada, Norifumi; Mitsui, Takahiko; Takeda, Masayuki
2018-03-22
To investigate the localization of phosphodiesterase 5 (PDE5) and the molecular mechanism underlying the effect of the PDE5 inhibitor tadalafil in signal transduction in the bladder urothelium. PDE5 expression in rat bladder tissues and cultured primary rat bladder urothelial cells was evaluated using immunochemistry and western blot assays. Ca 2+ influx in cells exposed to isotonic solution, hypotonic solution, a selective transient receptor potential vanilloid 2 (TRPV2) channel agonist (cannabidiol), a selective TRPV4 channel agonist (GSK1016790A), a TRP cation channel melastatin 7 (TRPM7) channel agonist (PIP2), or a purinergic receptor agonist (ATP) in the presence or absence of 10 µM tadalafil was evaluated using calcium imaging techniques. We also evaluated stretch-induced changes in ATP concentration in the mouse bladder in the presence or absence of 100 µM tadalafil. Immunochemistry and western blot analyses demonstrated that PDE5 is abundantly expressed in the bladder urothelium and in primary rat urothelial cells. Ca 2+ influx induced by hypotonic stimulation, GSK1016790A, or cannabidiol was significantly inhibited by tadalafil, whereas ATP-induced Ca 2+ influx was unaffected by tadalafil. PIP2 did not induce Ca2+ influx. ATP release in tadalafil-pretreated bladders significantly decreased compared to control bladders. Tadalafil attenuates Ca 2+ influx via TRPV4 and TRPV2, and inhibits ATP release in the bladder urothelium. These findings indicate that tadalafil functions as an inhibitor of urothelial signal transduction. © 2018 Wiley Periodicals, Inc.
Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line.
Hong, Eun-Seon; Kim, Bit-Na; Kim, Yang-Hoon; Min, Jiho
2017-02-28
The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or 100 µ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with 10 µ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.
Insight into the Phosphodiesterase Mechanism from Combined QM/MM Free Energy Simulations
Wong, Kin-Yiu; Gao, Jiali
2011-01-01
Summary Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an SN2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal/mol and an overall reaction free energy is about −17 kcal/mol, both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal/mol. We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn2+ and Mg2+ in the active site as the reaction proceeds from the Michaelis complex to the transition state. PMID:21595828
Cairoli, Carlos; Reyes, Luis Antonio; Henneges, Carsten; Sorsaburu, Sebastian
2014-01-01
Characterize persistence and adherence to phosphodiesterase type - 5 inhibitor (PDE5I) on-demand therapy over 6 months among Brazilian men in an observational, non-interventional study of Latin American men naïve to PDE5Is with erectile dysfunction (ED). Men were prescribed PDE5Is per routine clinical practice. Persistence was defined as using ≥ 1 dose during the previous 4 - weeks, and adherence as following dosing instructions for the most recent dose, assessed using the Persistence and Adherence Questionnaire. Other measures included the Self - Esteem and Relationship (SEAR) Questionnaire, and International Index of Erectile Function (IIEF). Multivariate logistic regression was used to identify factors associated with persistence/adherence. 104 Brazilian men were enrolled; mean age by treatment was 53 to 59 years, and most presented with moderate ED (61.7%). The prescribed PDE5I was sildenafil citrate for 50 (48.1%), tadalafil for 36 (34.6%), vardenafil for 15 (14.4%), and lodenafil for 3 patients (2.9%). Overall treatment persistence was 69.2% and adherence was 70.2%; both were numerically higher with tadalafil (75.0%) versus sildenafil or vardenafil (range 60.0% to 68.0%). Potential associations of persistence and/or adherence were observed with education level, ED etiology, employment status, and coronary artery disease. Improvements in all IIEF domain scores, and both SEAR domain scores were observed for all treatments. Study limitations included the observational design, brief duration, dependence on patient self - reporting, and limited sample size. Approximately two-thirds of PDE5I-naive, Brazilian men with ED were treatment persistent and adherent after 6 months. Further study is warranted to improve long-term outcomes of ED treatment.
Lukyanenko, Yevgeniya O; Younes, Antoine; Lyashkov, Alexey E; Tarasov, Kirill V; Riordon, Daniel R; Lee, Joonho; Sirenko, Syevda G; Kobrinsky, Evgeny; Ziman, Bruce; Tarasova, Yelena S; Juhaszova, Magdalena; Sollott, Steven J; Graham, David R; Lakatta, Edward G
2016-09-01
Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function. Copyright © 2016. Published by Elsevier Ltd.
Medina-Rodríguez, E M; Arenzana, F J; Pastor, J; Redondo, M; Palomo, V; García de Sola, R; Gil, C; Martínez, A; Bribián, A; de Castro, F
2013-09-01
During the development of the central nervous system (CNS), oligodendrocyte precursors (OPCs) are generated in specific sites within the neural tube and then migrate to colonize the entire CNS, where they differentiate into myelin-forming oligodendrocytes. Demyelinating diseases such as multiple sclerosis (MS) are characterized by the death of these cells. The CNS reacts to demyelination and by promoting spontaneous remyelination, an effect mediated by endogenous OPCs, cells that represent approximately 5-7 % of the cells in the adult brain. Numerous factors influence oligodendrogliogenesis and oligodendrocyte differentiation, including morphogens, growth factors, chemotropic molecules, extracellular matrix proteins, and intracellular cAMP levels. Here, we show that during development and in early adulthood, OPCs in the murine cerebral cortex contain phosphodiesterase-7 (PDE7) that metabolizes cAMP. We investigated the effects of different PDE7 inhibitors (the well-known BRL-50481 and two new ones, TC3.6 and VP1.15) on OPC proliferation, survival, and differentiation. While none of the PDE7 inhibitors analyzed altered OPC proliferation, TC3.6 and VP1.15 enhanced OPC survival and differentiation, processes in which ERK intracellular signaling played a key role. PDE7 expression was also observed in OPCs isolated from adult human brains and the differentiation of these OPCs into more mature oligodendroglial phenotypes was accelerated by treatment with both new PDE7 inhibitors. These findings reveal new roles for PDE7 in regulating OPC survival and differentiation during brain development and in adulthood, and they may further our understanding of myelination and facilitate the development of therapeutic remyelination strategies for the treatment of MS.
Li, Yan; Wu, Wenzhao; Ren, Hong; Wang, Jinghui; Zhang, Shuwei; Li, Guohui; Yang, Ling
2012-09-01
Phosphodiesterase type 5 (PDE5) inhibitors are clinically indicated for the treatment of erectile dysfunction, pulmonary hypertension and various other diseases. In this work, both ligand- and receptor-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques on 122 pyrazinone derivatives as PDE inhibitors. The resultant optimum 3D-QSAR model exhibits a proper predictive ability as indicated by the statistical results of Q² of 0.584, R(ncv)² of 0.884 and R(pre)² of 0.817, respectively. In addition, docking analysis and molecular dynamics (MD) simulation were also applied to elucidate the probable binding modes of these inhibitors. Our main findings are: (1) Introduction of bulky, electropositive and hydrophobic substituents at 12- and 19-positions can increase the biological activities. (2) N atom at 8-position is detrimental to the inhibitor activity, and the effect of N atoms at 5- and 6-positions on compound activity is co-determined by both the hydrophobic force and the π-π stacking interaction. (3) Bulky and hydrophilic substitutions are favored at the 27-position of ring D. (4) Electronegative and hydrophilic substitutions around 5- and 6-positions increase the inhibitory activity. (5) Hydrophobic forces and π-π stacking interaction with Phe786 and Phe820 are crucial in determining the binding of pyrazinone derivatives to PDE5. (6) Bulky substitutions around ring C favors selectivity against PDE11, while bulky groups near the 21-position disfavor the selectivity. The information obtained from this work can be utilized to accurately predict the binding affinity of related analogues and also facilitate future rational designs of novel PDE5 inhibitors with improved activity and selectivity. Copyright © 2012 Elsevier Inc. All rights reserved.
Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats.
Sharma, S; Deshmukh, R
2015-02-12
Up-regulation in phosphodiesterase 1 (PDE1) expression and decreased levels of cyclic nucleotides (cAMP and cGMP) have been reported in patients and experimental animal models of Parkinson's disease (PD). Phosphodiesterase (PDE) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study is designed to investigate the effect of vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Movement abnormalities were assessed by a battery of behavioral tests. Moreover, levels of malondialdehyde, nitrite and reduced glutathione were measured in striatal brain homogenate to confirm the role of oxidative and nitrosative stress in PD. Repeated intranigral administration of MPTP produced stable motor deficits, reduced the cyclic nucleotides and dopamine levels and caused elevation in oxidative-nitrosative stress markers. Chronic administration of vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of vinpocetine in PD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Lee, Daniel J; Cheetham, Philippa; Badani, Ketan K
2010-02-01
Therapy (case series). 4. To evaluate factors that affect compliance in men who enroll in a phosphodiesterase type 5 inhibitor (PDE5I) protocol after nerve-sparing robot-assisted prostatectomy (RAP), and report on short-term outcomes, as PDE5Is may help restore erectile function after RAP and patient adherence to the regimen is a factor that potentially can affect outcome. We prospectively followed 77 men who had nerve-sparing RAP and enrolled in a postoperative penile rehabilitation protocol. The men received either sildenafil citrate or tadalafil three times weekly. The minimum follow-up was 8 weeks. Potency was defined as erection adequate for penetration and complete intercourse. Compliance was defined as men adhering to the regimen for > or =2 months. The mean age of the cohort was 57.8 years and the median follow-up was 8 months. In all, 32% of the men discontinued the therapy <2 months after RAP and were deemed noncompliant with an additional 39% discontinuing therapy by 6 months, with the high cost of medication being the primary reason (65%). Long-term compliance and preoperative erectile dysfunction were independent predictors of potency return after adjusting for age and nerve sparing. The high cost of medication remains a significant barrier to maintaining therapy. Noncompliance to PDE5I therapy in a tertiary care centre was much higher than reported in clinical trial settings. With longer-term follow-up, we need to further define the factors that improve overall recovery of sexual function after RAP.
MYOCARDIAL RESPONSE TO MILRINONE IN SINGLE RIGHT VENTRICLE HEART DISEASE
Nakano, Stephanie J.; Nelson, Penny; Sucharov, Carmen C.; Miyamoto, Shelley D.
2016-01-01
Objectives Empiric treatment with milrinone, a phosphodiesterase 3 inhibitor (PDE3i), has become increasingly common in patients with single ventricle heart disease of right ventricular morphology (SRV); our objective was to characterize the myocardial response to PDE3i in the pediatric population with SRV. Study design Cyclic adenosine monophosphate (cAMP) levels, phosphodiesterase (PDE) activity, and phospholamban phosphorylation (pPLN) were determined in explanted human ventricular myocardium from nonfailing pediatric donors (n=10) and pediatric patients transplanted secondary to SRV. SRV subjects were further classified by PDE3i treatment (n=13 with PDE3i and n=12 without PDE3i). Results In comparison with nonfailing RV myocardium, cAMP levels are lower in patients with SRV treated with PDE3i (p=0.021). Chronic PDE3i does not alter total PDE or PDE3 activity in SRV myocardium. When compared with nonfailing RV myocardium, SRV myocardium (both with and without PDE3i) demonstrates equivalent pPLN at the protein kinase A phosphorylation site. Conclusions As evidenced by preserved pPLN, the molecular adaptation associated with SRV differs significantly from that demonstrated in pediatric heart failure due to dilated cardiomyopathy. These alterations support a pathophysiologically distinct mechanism of heart failure in pediatric patients with SRV, which has direct implications regarding the presumed response to PDE3i treatment in this population. PMID:27181939
Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.
Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted
2016-08-24
Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Copyright © 2016 Havekes et al.
Mendes, Gustavo D; dos Santos Filho, Hilton Oliveira; dos Santos Pereira, Alberto; Mendes, Fabiana D; Ilha, Jaime O; Alkharfy, Khalid M; De Nucci, Gilberto
2012-12-01
Lodenafil carbonate is a new phosphodiesterase Type 5 (PDE5) inhibitor used in treatment of erectile dysfunction. The present study was conducted to evaluate the safety, tolerability, and pharmacokinetics of lodenafil carbonate after administering ascending (1 - 100 mg) single oral doses to healthy male volunteers (n = 33). The study was an open label, dose-escalation, Phase I clinical trial involving the administration of single oral doses of lodenafil carbonate. Lodenafil carbonate was administered sequentially, escalating in single doses of 1 mg - 100 mg with a washout period of at least 1 week between each dose. The progression to the next dose was allowed after clinical and laboratory exams, Ambulatory Monitoring of Arterial Pressure (AMAP) without relevant clinical modifications and adverse events without clinical relevancy. Blood samples were collected at pre-dose, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 10, 12, 14, 16, 20 and 24 h post-dosing. Plasma samples for measurement of lodenafil carbonate and lodenafil were analyzed by liquid chromatography coupled to tandem mass spectrometry. No serious adverse events were observed, and none of the subjects discontinued the study due to intolerance. The AMAP measurements, clinical and laboratory exams and ECG revealed no significant changes even at higher doses. Lodenafil carbonate was not detected in any samples, indicating that it acts as a prodrug. The mean lodenafil pharmacokinetic parameters for tmax and t1/2 were 1.6 ( ± 0.4) h and 3.3 ( ± 1.1) h, respectively. This study demonstrated that lodenafil carbonate was well tolerated and showed a good safety profile in healthy male volunteers.
PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction
Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen
2016-01-01
Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092
Bai, Wen-Jun; Li, Hong-Jun; Dai, Yu-Tian; He, Xue-You; Huang, Yi-Ran; Liu, Ji-Hong; Sorsaburu, Sebastian; Ji, Chen; Jin, Jian-Jun; Wang, Xiao-Feng
2015-01-01
The study was to compare treatment preference, efficacy, and tolerability of sildenafil citrate (sildenafil) and tadalafil for treating erectile dysfunction (ED) in Chinese men naïve to phosphodiesterase 5 (PDE5) inhibitor therapies. This multicenter, randomized, open-label, crossover study evaluated whether Chinese men with ED preferred 20-mg tadalafil or 100-mg sildenafil. After a 4 weeks baseline assessment, 383 eligible patients were randomized to sequential 20-mg tadalafil per 100-mg sildenafil or vice versa for 8 weeks respectively and then chose which treatment they preferred to take during the 8 weeks extension. Primary efficacy was measured by Question 1 of the PDE5 Inhibitor Treatment Preference Questionnaire (PITPQ). Secondary efficacy was analyzed by PITPQ Question 2, the International Index of Erectile Function (IIEF) erectile function (EF) domain, sexual encounter profile (SEP) Questions 2 and 3, and the Drug Attributes Questionnaire. Three hundred and fifty men (91%) completed the randomized treatment phase. Two hundred and forty-two per 350 (69.1%) patients preferred 20-mg tadalafil, and 108/350 (30.9%) preferred 100-mg sildenafil (P < 0.001) as their treatment in the 8 weeks extension. Ninety-two per 242 (38%) patients strongly preferred tadalafil and 37/108 (34.3%) strongly the preferred sildenafil. The SEP2 (penetration), SEP3 (successful intercourse), and IIEF-EF domain scores were improved in both tadalafil and sildenafil treatment groups. For patients who preferred tadalafil, getting an erection long after taking the medication was the most reported reason for tadalafil preference. The only treatment-emergent adverse event reported by > 2% of men was headache. After tadalafil and sildenafil treatments, more Chinese men with ED naïve to PDE5 inhibitor preferred tadalafil. Both sildenafil and tadalafil treatments were effective and safe. PMID:25370206
Bai, Wen-Jun; Li, Hong-Jun; Dai, Yu-Tian; He, Xue-You; Huang, Yi-Ran; Liu, Ji-Hong; Sorsaburu, Sebastian; Ji, Chen; Jin, Jian-Jun; Wang, Xiao-Feng
2015-01-01
The study was to compare treatment preference, efficacy, and tolerability of sildenafil citrate (sildenafil) and tadalafil for treating erectile dysfunction (ED) in Chinese men naοve to phosphodiesterase 5 (PDE5) inhibitor therapies. This multicenter, randomized, open-label, crossover study evaluated whether Chinese men with ED preferred 20-mg tadalafil or 100-mg sildenafil. After a 4 weeks baseline assessment, 383 eligible patients were randomized to sequential 20-mg tadalafil per 100-mg sildenafil or vice versa for 8 weeks respectively and then chose which treatment they preferred to take during the 8 weeks extension. Primary efficacy was measured by Question 1 of the PDE5 Inhibitor Treatment Preference Questionnaire (PITPQ). Secondary efficacy was analyzed by PITPQ Question 2, the International Index of Erectile Function (IIEF) erectile function (EF) domain, sexual encounter profile (SEP) Questions 2 and 3, and the Drug Attributes Questionnaire. Three hundred and fifty men (91%) completed the randomized treatment phase. Two hundred and forty-two per 350 (69.1%) patients preferred 20-mg tadalafil, and 108/350 (30.9%) preferred 100-mg sildenafil (P < 0.001) as their treatment in the 8 weeks extension. Ninety-two per 242 (38%) patients strongly preferred tadalafil and 37/108 (34.3%) strongly the preferred sildenafil. The SEP2 (penetration), SEP3 (successful intercourse), and IIEF-EF domain scores were improved in both tadalafil and sildenafil treatment groups. For patients who preferred tadalafil, getting an erection long after taking the medication was the most reported reason for tadalafil preference. The only treatment-emergent adverse event reported by > 2% of men was headache. After tadalafil and sildenafil treatments, more Chinese men with ED naοve to PDE5 inhibitor preferred tadalafil. Both sildenafil and tadalafil treatments were effective and safe.
Wang, Qingtong; Liu, Yongming; Fu, Qin; Xu, Bing; Zhang, Yuan; Kim, Sungjin; Tan, Ruensern; Barbagallo, Federica; West, Toni; Anderson, Ethan; Wei, Wei; Abel, E Dale; Xiang, Yang K
2017-01-03
Type 2 diabetes mellitus (DM) and obesity independently increase the risk of heart failure by incompletely understood mechanisms. We propose that hyperinsulinemia might promote adverse consequences in the hearts of subjects with type-2 DM and obesity. High-fat diet feeding was used to induce obesity and DM in wild-type mice or mice lacking β 2 -adrenergic receptor (β 2 AR) or β-arrestin2. Wild-type mice fed with high-fat diet were treated with a β-blocker carvedilol or a GRK2 (G-protein-coupled receptor kinase 2) inhibitor. We examined signaling and cardiac contractile function. High-fat diet feeding selectively increases the expression of phosphodiesterase 4D (PDE4D) in mouse hearts, in concert with reduced protein kinase A phosphorylation of phospholamban, which contributes to systolic and diastolic dysfunction. The expression of PDE4D is also elevated in human hearts with DM. The induction of PDE4D expression is mediated by an insulin receptor, insulin receptor substrate, and GRK2 and β-arrestin2-dependent transactivation of a β 2 AR-extracellular regulated protein kinase signaling cascade. Thus, pharmacological inhibition of β 2 AR or GRK2, or genetic deletion of β 2 AR or β-arrestin2, all significantly attenuate insulin-induced phosphorylation of extracellular regulated protein kinase and PDE4D induction to prevent DM-related contractile dysfunction. These studies elucidate a novel mechanism by which hyperinsulinemia contributes to heart failure by increasing PDE4D expression and identify β 2 AR or GRK2 as plausible therapeutic targets for preventing or treating heart failure in subjects with type 2 DM. © 2016 American Heart Association, Inc.
Manabe, H; Akuta, K; Okamura, K; Ohmori, K
1997-12-01
Phosphodiesterase (PDE) 4 inhibitors are well known for their inhibitory effect on bronchoconstriction and inflammation and may be promising anti-asthma drugs. Platelet-activating factor (PAF) has been proposed as an inflammatory mediator to be relevant to asthma. It causes bronchoconstriction, airway microvascular leakage, inflammatory cell accumulation in the lung and hyperresponsiveness. In this study, we therefore have investigated the anti-asthmatic effects of the inhaled KF19514 [5-phenyl-3'-(3-pyridyl)methyl-3H-imidazo(4,5-c)(1,8) naphthyridin-4(5H)-one], a PDE 4 and 1 inhibitor, on PAF-induced lung inflammatory responses in guinea pigs. The inhaled KF19514 (0.0001-0.01%) significantly inhibited PAF-induced eosinophil and neutrophil accumulation into the airway and hyperresponsiveness in guinea pigs. The IC50 value of KF19514 against eosinophil accumulation was 14.8 microM (0.00063%). Moreover, the effect of KF19514 on the electrical field stimulation-induced bronchial contraction was examined using the main bronchi of guinea pigs in vitro. KF19514 inhibited both cholinergic and tachykininergic contraction and, in particular, produced a potent inhibitory effect on tachykininergic contraction (IC50 = 0.49 microM). The mechanism by which KF19514 inhibited the PAF-induced hyperresponsiveness may in part be the suppression of the tachykinin release. Based on these results, it was demonstrated that the inhaled KF19514 might have a significant potential effect on the inflammatory cell accumulation and hyperresponsiveness induced by PAF.
Insight into the phosphodiesterase mechanism from combined QM/MM free energy simulations.
Wong, Kin-Yiu; Gao, Jiali
2011-07-01
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state. © 2011 The Authors Journal compilation © 2011 FEBS.
Su, Tao; Zhang, Tianhua; Xie, Shishun; Yan, Jun; Wu, Yinuo; Li, Xingshu; Huang, Ling; Luo, Hai-Bin
2016-02-25
Recently, phosphodiesterase-9 (PDE9) inhibitors and biometal-chelators have received much attention as potential therapeutics for the treatment of Alzheimer's disease (AD). Here, we designed, synthesized, and evaluated a novel series of PDE9 inhibitors with the ability to chelate metal ions. The bioassay results showed that most of these molecules strongly inhibited PDE9 activity. Compound 16 showed an IC50 of 34 nM against PDE9 and more than 55-fold selectivity against other PDEs. In addition, this compound displayed remarkable metal-chelating capacity and a considerable ability to halt copper redox cycling. Notably, in comparison to the reference compound clioquinol, it inhibited metal-induced Aβ(1-42) aggregation more effectively and promoted greater disassembly of the highly structured Aβ fibrils generated through Cu(2+)-induced Aβ aggregation. These activities of 16, together with its favorable blood-brain barrier permeability, suggest that 16 may be a promising compound for treatment of AD.
Böttcher, René; Dulla, Kalyan; van Strijp, Dianne; Dits, Natasja; Verhoef, Esther I.; Baillie, George S.; van Leenders, Geert J.L.H.; Houslay, Miles D.; Jenster, Guido; Hoffmann, Ralf
2016-01-01
Phosphodiesterase 4D7 was recently shown to be specifically over-expressed in localized prostate cancer, raising the question as to which regulatory mechanisms are involved and whether other isoforms of this gene family (PDE4D) are affected under the same conditions. We investigated PDE4D isoform composition in prostatic tissues using a total of seven independent expression datasets and also included data on DNA methylation, copy number and AR and ERG binding in PDE4D promoters to gain insight into their effect on PDE4D transcription. We show that expression of PDE4D isoforms is consistently altered in primary human prostate cancer compared to benign tissue, with PDE4D7 being up-regulated while PDE4D5 and PDE4D9 are down-regulated. Disease progression is marked by an overall down-regulation of long PDE4D isoforms, while short isoforms (PDE4D1/2) appear to be relatively unaffected. While these alterations seem to be independent of copy number alterations in the PDE4D locus and driven by AR and ERG binding, we also observed increased DNA methylation in the promoter region of PDE4D5, indicating a long lasting alteration of the isoform composition in prostate cancer tissues. We propose two independent metrics that may serve as diagnostic and prognostic markers for prostate disease: (PDE4D7 - PDE4D5) provides an effective means for distinguishing PCa from normal adjacent prostate, whereas PDE4D1/2 - (PDE4D5 + PDE4D7 + PDE4D9) offers strong prognostic potential to detect aggressive forms of PCa and is associated with metastasis free survival. Overall, our findings highlight the relevance of PDE4D as prostate cancer biomarker and potential drug target. PMID:27683107
Scaglione, Francesco; Donde, Shaantanu; Hassan, Tarek A; Jannini, Emmanuele A
2017-02-01
The purpose of this review is to provide an overview of the pharmacology, tolerability, and efficacy of the different phosphodiesterase type 5 (PDE5) inhibitors available for the treatment of erectile dysfunction (ED), with a special focus on the sildenafil orodispersible tablet (ODT) formulation. A literature search was performed in PubMed, EMBASE, and Cochrane Reviews using the terms erectile dysfunction, patient preference, sildenafil, and PDE5 inhibitors to identify articles published in English between May 1, 2006, and November 18, 2016. A total of 29 studies were included in this review. There are substantial data in the literature on the use of PDE5 inhibitors for the treatment of ED. Oral PDE5 inhibitors have been found to be efficacious in the treatment of ED based on results from standard tools used to assess treatment outcomes, such as the Global Assessment Questionnaire 1. In addition, PDE5 inhibitors are defined as well tolerated because of the low occurrence of serious adverse effects or discomfort. Mild adverse reactions, compared with a placebo, include headache, flushing, dyspepsia, abnormal vision, nasal congestion, back pain, myalgia, nausea, dizziness, and rash. Both the film-coated tablet and ODT formulations of sildenafil with or without water have equivalent systemic exposure. However, use of a sildenafil ODT formulation offers a convenient alternative method of administration that would be advantageous for patients with ED. According to the published literature, the PDE5 inhibitors are considered an effective and well-tolerated option for the treatment of ED as determined by data generated from standard instruments used in the assessment of treatment outcomes in ED and reported types and severity of adverse effects. The sildenafil ODT formulation, which disintegrates rapidly in the mouth, is an alternative to the solid film-coated tablet formulation that offers administration benefit with the potential to improve treatment adherence, thereby enhancing the sexual health and sense of psychological well-being of patients and their partners. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnet, N.; Bernard, P.; Greenpharma S. A., 3, allee du titane, 45100 Orleans
The aim of this study was to evaluate the effects of various drugs which present antidepressant properties: selective serotonin-reuptake inhibitors (SSRIs, fluoxetine), serotonin and noradrenaline-reuptake inhibitors (Desipramine) and phosphodiesterase inhibitors (PDE, rolipram and tofisopam) on bone microarchitecture and biomechanical properties. Twelve female mice were studied per group starting at an age of 10 weeks. During 4 weeks, they received subcutaneously either placebo or 20 mg kg{sup -1} day{sup -1} of desipramine, fluoxetine or 10 mg kg{sup -1} day{sup -1} of rolipram or tofisopam. Serum Osteocalcin and CTx were evaluated by ELISA. Bone microarchitecture of the distal femur was characterized bymore » X-ray microCT (Skyscan1072). Mechanical properties were assessed by three-point bending test (Instron 4501) and antidepressant efficacy by forced swimming and open field tests. Fluoxetine displayed lower TbTh (- 6.1%, p < 0.01) and tofisopam higher TbTh (+ 5.0%, p < 0.05) versus placebo. Rolipram and tofisopam treatments induced higher BV/TV than placebo (+ 23.8% and + 18.3% respectively). Desipramine group had significantly higher cortical area (+ 4.8%, p < 0.01) and fluoxetine lower cortical area (- 6.1%, p < 0.01) compared to placebo. The stiffness and Young's modulus were lower in the fluoxetine group (77 {+-} 13 N mm{sup -1}, 6431 {+-} 1182 MPa) than in placebo (101 {+-} 9 N mm{sup -1}, 8441 {+-} 1180 MPa). Bone markers indicated a significantly higher bone formation in tofisopam (+ 8.6%) and a lower in fluoxetine (- 56.1%) compared to placebo. These data suggest deleterious effects for SSRIs, both on trabecular and cortical bone and a positive effect of PDE inhibitors on trabecular bone. Furthermore tofisopam anabolic effect in terms of bone markers, suggests a potential therapeutic effect of the PDE inhibitors on bone.« less
Mitra, Jyotirmoy; Bhattacharyya, Debasish
2014-09-01
Phosphodiesterases (PDEs) belong to a super-family of enzymes that have multiple roles in the metabolism of extracellular nucleotides and regulation of nucleotide-based intercellular signalling. A PDE from Russell's viper (Daboia russelli russelli) venom (DR-PDE) was purified by gel filtration, ion exchange and affinity chromatographies. Homogeneity of the preparation was verified by SDS-PAGE, SE-HPLC and mass spectrometry. It was free from 5'-nucleotidase, alkaline phosphatase and protease activities. Identity of the enzyme was ensured from partial sequence homology with other PDEs. DR-PDE was inactivated by polyvalent anti-venom serum and metal chelators. The enzyme was partially inhibited by the root extracts of four medicinal plants but remained unaffected by inhibitors of intracellular PDEs. DR-PDE hydrolyses ADP and thus, strongly inhibits ADP-induced platelet aggregation in human platelet rich plasma. This study leads to better understanding of a component of Russell's viper venom that affects homoeostatic system of the victim. Copyright © 2014 Elsevier Ltd. All rights reserved.
Homer, L; Launay, E; Joram, N; Jacqueline, C; Jarreau, P-H; Caillon, J; Moyon, T; Branger, B; Potel, G; Roze, J C; Méhats, C; Gras-Leguen, C
2012-03-01
Chorioamnionitis is implicated in the pathophysiology of bronchopulmonary disease, and the associated inflammatory response is responsible for adverse effects on alveolar development. The aim of this work was to analyze the effects of a phosphodiesterase 4 (PDE4)-selective inhibitor, rolipram (a modulator of the inflammatory response), in an experimental model of chorioamnionitis on pulmonary development and on the processes of infection and inflammation. Rabbit mothers were assigned to four groups: 1) saline serum inoculation (controls); 2) Escherichia coli intrauterine inoculation (C+); 3) rolipram infusion (R+); and 4) E. coli inoculation + rolipram infusion (C+R+). High rates of morbility and mortality were noticed in mothers and pups (5 of 13 pregnant rabbits in groups with rolipram). Alveolar development, inflammation, and infection were analyzed in pups at day 0 and day 5. At day 0, in the context of chorioamnionitis, rolipram significantly decreased birth weight (p < 0.01) relative to that of controls (p < 0.05). At day 5, weight normalized in group C+R+ but not in group C+ relative to controls (p < 0.001); moreover, alveolar airspace volume was preserved in group C+R+ but not in group C+ (p < 0.05). Interstitial volume decreased in group C+ versus controls (p < 0.05) but was preserved in group C+R+. Specific alveolar area was not significantly modified by rolipram. No significant difference was found concerning bronchoalveolar lavage cellularity, and all blood cultures remained sterile. In this model of impaired alveologenesis, rolipram significantly preserved specific alveolar density. However, PDE4 inhibition induced antenatal fetal demise and growth retardation.
Puerta, Elena; Hervias, Isabel; Barros-Miñones, Lucía; Jordan, Joaquin; Ricobaraza, Ana; Cuadrado-Tejedor, Mar; García-Osta, Ana; Aguirre, Norberto
2010-05-01
In this study we tested whether phosphodiesterase 5 (PDE5) inhibitors, sildenafil and vardenafil, would afford protection against 3-nitropropionic acid (3NP), which produces striatal lesions that closely mimic some of the neuropathological features of Huntington's Disease (HD). The neurotoxin was given over 5 days by constant systemic infusion using osmotic minipumps. Animals treated with PDE5 inhibitors (sildenafil or vardenafil) showed improved neurologic scores, reduced the loss of striatal DARPP-32 protein levels and lesion volumes, and decreased calpain activation produced by 3NP. This protective effect was independent of changes in 3NP-induced succinate dehydrogenase inhibition. Furthermore, striatal p-CREB levels along with the expression of BDNF were significantly increased in sildenafil-treated rats. In summary, PDE5 inhibitors protected against 3NP-induced striatal degeneration by reducing calpain activation and by promoting survival pathways. These data encourage further evaluation of PDE5 inhibitors in transgenic mouse models of HD. Copyright 2010 Elsevier Inc. All rights reserved.
Jensterle, Mojca; Kocjan, Tomaz; Janez, Andrej
2014-08-01
Phosphodiesterase (PDE) enzymes, including members of PDE4, have been investigated in the regulation of endocrine and reproductive functions of ovaries. In addition, selective inhibition of PDE4 enzyme has recently been implicated in the regulation of metabolism with positive effects on glucose homeostasis and weight reduction. The aim of this study was to evaluate whether the PDE4 inhibitor roflumilast affects body weight and hormonal and metabolic status in obese women with polycystic ovary syndrome (PCOS). Design/Participants/Main Outcome Measures: A 12-week prospective randomized open-label study was conducted with 36 obese women with PCOS diagnosed by the National Eunice Kennedy Shriver Institute of Child Health and Human Development criteria that had been pretreated with metformin (MET). They were randomized to MET 1000 mg twice a day or combined treatment (COM) with MET 1000 mg twice a day and roflumilast 500 μg every day. The primary outcome was change in anthropometric measures of obesity. Thirty-one patients (aged 33.8 ± 7.4 y, twice a day 36.4 ± 5.1 kg/m(2), mean ± SD) completed the study: 16 on MET and 15 on COM. Subjects treated with COM lost on average 4.2 ± 2.8 kg compared with a 0.9 ± 2.5 kg weight gain in the MET group (P = .025). Body mass index decreased for 1.6 ± 1.1 kg/m(2) in COM arm compared with increase for 0.9 ± 2.4 kg/m(2) in the MET arm (P = .046). Visceral adipose tissue area as assessed by dual-energy x-ray absorptiometry decreased from 136.7 ± 37.8 to 121.2 ± 36.2 cm(2) in the COM arm compared with an increase from 155.3 ± 61.9 to 166.7 ± 67.2 cm(2) in the MET arm (P = .02). From baseline to study end, both treatment interventions resulted in a significant reduction of androstenedione (P = .013), free T (P = .002), and homeostasis model assessment for insulin resistance score (P = .027) and a significant increase in SHBG (P = .024), although the between-treatment differences of the changes have not been statistically significant yet. Roflumilast added to metformin reduced body weight in obese women with PCOS, primarily due to a loss of fat mass.
Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects.
Gauvreau, Gail M; Boulet, Louis-Philippe; Schmid-Wirlitsch, Christine; Côté, Johanne; Duong, Mylinh; Killian, Kieran J; Milot, Joanne; Deschesnes, Francine; Strinich, Tara; Watson, Richard M; Bredenbröker, Dirk; O'Byrne, Paul M
2011-10-26
Phosphodiesterase 4 (PDE4) inhibitors increase intracellular cyclic adenosine monophosphate (cAMP), leading to regulation of inflammatory cell functions. Roflumilast is a potent and targeted PDE4 inhibitor. The objective of this study was to evaluate the effects of roflumilast on bronchoconstriction, airway hyperresponsiveness (AHR), and airway inflammation in mild asthmatic patients undergoing allergen inhalation challenge. 25 subjects with mild allergic asthma were randomized to oral roflumilast 500 mcg or placebo, once daily for 14 days in a double-blind, placebo-controlled, crossover study. Allergen challenge was performed on Day 14, and FEV1 was measured until 7 h post challenge. Methacholine challenge was performed on Days 1 (pre-dose), 13 (24 h pre-allergen), and 15 (24 h post-allergen), and sputum induction was performed on Days 1, 13, 14 (7 h post-allergen), and 15. Roflumilast inhibited the allergen-induced late phase response compared to placebo; maximum % fall in FEV1 (p = 0.02) and the area under the curve (p = 0.01). Roflumilast had a more impressive effect inhibiting allergen-induced sputum eosinophils, neutrophils, and eosinophil cationic protein (ECP) at 7 h post-allergen (all p = 0.02), and sputum neutrophils (p = 0.04), ECP (p = 0.02), neutrophil elastase (p = 0.0001) and AHR (p = 0.004) at 24 h post-allergen. This study demonstrates a protective effect of roflumilast on allergen-induced airway inflammation. The observed attenuation of sputum eosinophils and neutrophils demonstrates the anti-inflammatory properties of PDE4 inhibition and supports the roles of both cell types in the development of late phase bronchoconstriction and AHR. ClinicalTrials.gov: NCT01365533.
PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer.
Das, Anindita; Durrant, David; Salloum, Fadi N; Xi, Lei; Kukreja, Rakesh C
2015-03-01
The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Pekcec, Anton; Schülert, Niklas; Stierstorfer, Birgit; Deiana, Serena; Dorner-Ciossek, Cornelia; Rosenbrock, Holger
2018-05-03
Insufficient prefrontal dopamine 1 (D1) receptor signalling has been linked to cognitive dysfunction in several psychiatric conditions. Because the phosphodiesterase-1 (PDE1) isoform B (PDE1B) is postulated to regulate D1 receptor-dependent signal transduction, this study intended to elucidate the role of PDE1 for cognitive processes reliant on D1 receptor function. Cognitive performance of the D1 receptor agonist, SKF38393, was studied in the T-maze continuous alternation task and the 5-Choice Serial Reaction Time Task. D1 receptor/ PDE1B double-immunohistochemistry was performed using human and rat prefrontal brain sections. Pharmacological activity of the PDE1 inhibitor, ITI-214, was assessed by measuring the increase of cAMP/ cGMP in prefrontal brain tissue and its effect on working memory performance. Mechanistic studies on modulation of prefrontal neuronal transmission by SKF38393 and ITI-214 were performed using extracellular recordings in brain slices. SKF38393 improved working memory and attentional performance in rodents. D1 receptor/ PDE1B co-expression was verified in both, human and rat prefrontal brain sections. The pharmacological activity of ITI-214 on its target was demonstrated by increased prefrontal cAMP/ cGMP upon administration. In addition, ITI-214 improved working memory performance. SKF38393 and ITI-214 facilitated neuronal transmission in prefrontal brain slices. We hypothesise that PDE1 inhibition may improve working memory performance by increasing prefrontal synaptic transmission and/or postsynaptic D1 receptor signalling, by modulating prefrontal downstream second messenger levels. These data may therefore support the use of PDE1 inhibitors as a potential approach for the treatment of cognitive dysfunction. This article is protected by copyright. All rights reserved.
Roesler, Rafael; Reolon, Gustavo K.; Maurmann, Natasha; Schwartsmann, Gilberto; Schröder, Nadja; Amaral, Olavo B.; Valvassori, Samira; Quevedo, João
2014-01-01
Established fear-related memories can undergo phenomena such as extinction or reconsolidation when recalled. Extinction probably involves the creation of a new, competing memory trace that decreases fear expression, whereas reconsolidation can mediate memory maintenance, updating, or strengthening. The factors determining whether retrieval will initiate extinction, reconsolidation, or neither of these two processes include training intensity, duration of the retrieval session, and age of the memory. However, previous studies have not shown that the same behavioral protocol can be used to induce either extinction or reconsolidation and strengthening, depending on the pharmacological intervention used. Here we show that, within an experiment that leads to extinction in control rats, memory can be strengthened if rolipram, a selective inhibitor of phosphodiesterase type 4 (PDE4), is administered into the dorsal hippocampus immediately after retrieval. The memory-enhancing effect of rolipram lasted for at least 1 week, was blocked by the protein synthesis inhibitor anisomycin, and did not occur when drug administration was not paired with retrieval. These findings indicate that the behavioral outcome of memory retrieval can be pharmacologically switched from extinction to strengthening. The cAMP/protein kinase A (PKA) signaling pathway might be a crucial mechanism determining the fate of memories after recall. PMID:24672454
Liu, Ruijie; Wang, Dayong; Shi, Qian; Fu, Qin; Hizon, Steven; Xiang, Yang K
2012-01-01
β(2) adrenergic receptor (β(2)AR) is a prototypical G-protein coupled receptor that stimulates the classic cAMP-protein kinase A (PKA) signaling pathway. Recent studies indicate that the cAMP-PKA activities are spatiotemporally regulated in part due to dynamic association of β(2)AR with phosphodiesterase 4D (PDE4D), a group of cAMP degradation enzymes. Here, we demonstrate that in cardiomyocytes, palmitoylation of β(2)AR, the covalent acylation of cysteine residue 341, plays a critical role in shaping subcellular cAMP-PKA activities in cardiomyocytes via regulating β(2)AR association with arrestin/PDE4D. Replacing cysteine 341 on β(2)AR with alanine (C341A) leads to an impaired binding to β arrestin 2. Surprisingly, the C341A mutant is able to internalize via an arrestin-independent pathway at saturated concentration of agonist stimulation; the internalization becomes caveolae-dependent and requires dynamin GTPase. However, the impaired binding to β arrestin 2 also leads to an impaired recruitment of PDE4D to the C341A mutant. Thus, the mutant C341A β(2)AR is transported alone from the plasma membrane to the endosome without recruiting PDE4D. This alteration leads to an enhanced cytoplasmic cAMP signal for PKA activation under β(2)AR stimulation. Functionally, Mutation of the C341 residue or inhibition of palmitoylation modification of β(2)AR enhances the receptor-induced PKA activities in the cytoplasm and increases in myocyte contraction rate. Our data reveal a novel function of palmitoylation in shaping subcellular cAMP-PKA signaling in cardiomyocytes via modulating the recruitment of β arrestin 2-PDE4D complexes to the agonist-stimulated β(2)AR.
Liu, Ruijie; Wang, Dayong; Shi, Qian; Fu, Qin; Hizon, Steven; Xiang, Yang K.
2012-01-01
β2 adrenergic receptor (β2AR) is a prototypical G-protein coupled receptor that stimulates the classic cAMP-protein kinase A (PKA) signaling pathway. Recent studies indicate that the cAMP-PKA activities are spatiotemporally regulated in part due to dynamic association of β2AR with phosphodiesterase 4D (PDE4D), a group of cAMP degradation enzymes. Here, we demonstrate that in cardiomyocytes, palmitoylation of β2AR, the covalent acylation of cysteine residue 341, plays a critical role in shaping subcellular cAMP-PKA activities in cardiomyocytes via regulating β2AR association with arrestin/PDE4D. Replacing cysteine 341 on β2AR with alanine (C341A) leads to an impaired binding to β arrestin 2. Surprisingly, the C341A mutant is able to internalize via an arrestin-independent pathway at saturated concentration of agonist stimulation; the internalization becomes caveolae-dependent and requires dynamin GTPase. However, the impaired binding to β arrestin 2 also leads to an impaired recruitment of PDE4D to the C341A mutant. Thus, the mutant C341A β2AR is transported alone from the plasma membrane to the endosome without recruiting PDE4D. This alteration leads to an enhanced cytoplasmic cAMP signal for PKA activation under β2AR stimulation. Functionally, Mutation of the C341 residue or inhibition of palmitoylation modification of β2AR enhances the receptor-induced PKA activities in the cytoplasm and increases in myocyte contraction rate. Our data reveal a novel function of palmitoylation in shaping subcellular cAMP-PKA signaling in cardiomyocytes via modulating the recruitment of β arrestin 2-PDE4D complexes to the agonist-stimulated β2AR. PMID:22912718
Hu, Essa; Kunz, Roxanne K; Chen, Ning; Rumfelt, Shannon; Siegmund, Aaron; Andrews, Kristin; Chmait, Samer; Zhao, Sharon; Davis, Carl; Chen, Hang; Lester-Zeiner, Dianna; Ma, Ji; Biorn, Christopher; Shi, Jianxia; Porter, Amy; Treanor, James; Allen, Jennifer R
2013-11-14
Our development of PDE10A inhibitors began with an HTS screening hit (1) that exhibited both high p-glycoprotein (P-gp) efflux ratios in rat and human and poor metabolic stability. On the basis of cocrystal structure of 1 in human PDE10A enzyme, we designed a novel keto-benzimidazole 26 with comparable PDE10A potency devoid of efflux liabilities. On target in vivo coverage of PDE10A in rat brain was assessed using our previously reported LC-MS/MS receptor occupancy (RO) technology. Compound 26 achieved 55% RO of PDE10A at 30 mg/kg po and covered PDE10A receptors in rat brain in a dose-dependent manner. Cocrystal structure of 26 in PDE10A confirmed the binding mode of the novel scaffold. Further optimization resulted in the identification of keto-benzimidazole 34, which showed an increased in vivo efficacy of 57% RO in rats at 10 mg/kg po and an improved in vivo rat clearance and oral bioavailability.
Souness, J. E.; Brazdil, R.; Diocee, B. K.; Jordan, R.
1989-01-01
1. The mechanism by which M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine (MIMAX), which have been described as selective cyclic GMP phosphodiesterase (PDE) inhibitors, relax rat aorta was investigated. 2. Three cyclic nucleotide PDEs were identified in the soluble fraction of rat aorta; a Ca2+-insensitive form exhibiting substrate selectivity for cyclic GMP (cGMP PDE), a Ca2+/calmodulin-stimulated form which also preferentially hydrolyzed cyclic GMP (Ca2+ PDE), and a form demonstrating substrate selectivity for cyclic AMP (cAMP PDE). 3. M&B 22,948 and MIMAX inhibited cGMP PDE (Ki = 0.16 microM and 0.43 microM, respectively) and Ca2+ PDE (Ki = 9.9 microM and 0.55 microM, respectively), but exhibited weak activity against cAMP PDE (Ki = 249 microM and 42 microM, respectively). MY-5445 selectivity inhibited cGMP PDE (Ki = 1.3 microM) and vinpocetine selectively inhibited Ca2+ PDE (Ki = 14 microM). 4. M&B 22,948 and MIMAX induced dose-dependent increases in the accumulation of cyclic GMP, but not cyclic AMP, in rat aorta pieces. These effects were greatly reduced by endothelial denudation and by methylene blue (5 microM) which blocks the actions of endothelium-derived relaxant factor. MY-5445 and vinpocetine had no effect on rat aorta cyclic GMP or cyclic AMP accumulation. 5. All four compounds caused dose-related relaxation of 5-hydroxytryptamine (10 microM) contracted, endothelium-intact rat aorta, the effects of M&B 22,948 and MIMAX being greatly reduced by methylene blue (5 microM). Methylene blue also caused 10 fold and 100 fold rightward shifts in the dose-response curves of MY-5445 and vinpocetine, respectively. 6. The results are consistent with the smooth muscle relaxant actions of M&B 22,948 and MIMAX, but not vinpocetine and MY-5445, being mediated through a mechanism involving inhibition of cyclic GMP hydrolysis. PMID:2480168
Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin
2014-01-01
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. PMID:25077971
Nardone, Beatrice; Orrell, Kelsey A; Vakharia, Paras P; West, Dennis P
2018-02-01
Skin cancers, including both malignant melanoma (MM) and nonmelanoma skin cancer (NMSC), are the most commonly diagnosed cancers in the US. The incidence of both MM and NMSC continues to rise. Areas covered: Current evidence for an association between four of the most commonly prescribed classes of drugs in the U.S. and risk for MM and NMSC is reported. Medline was searched (January 2000 to May 2017) for each drug in the classes and for 'basal cell carcinoma', 'squamous cell carcinoma', 'non-melanoma skin cancer', 'skin cancer' and 'melanoma'. Skin cancer risk information was reported for: tumor necrosis factor alpha inhibitors (TNF-αIs), angiotensin-receptor blockers (ARBs), phosphodiesterase type 5 inhibitors (PDE5Is) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-reductase inhibitors (statins). Expert opinion: Since skin cancer risk is associated with all four classes of these commonly prescribed drugs that represent nearly 20% of the Top 100 drugs in the U.S., these important findings warrant enhanced education, especially for prescribers and those patients at high risk for skin cancer.
Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Gordon, Sarah; Dent, Paul
2017-01-01
Phosphodiesterase 5 (PDE5) inhibitors prevent the breakdown of cGMP that results in prolonged protein kinase G activation and the generation of nitric oxide. PDE5 inhibitors enhanced the anti-NSCLC cell effects of the NSCLC therapeutic pemetrexed. [Pemetrexed + sildenafil] activated an eIF2α – ATF4 – CHOP – Beclin1 pathway causing formation of toxic autophagosomes; activated a protective IRE1 – XBP-1 – chaperone induction pathway; and activated a toxic eIF2α – CHOP – DR4 / DR5 / CD95 induction pathway. [Pemetrexed + sildenafil] reduced the expression of c-FLIP-s, MCL-1 and BCL-XL that was blocked in a cell-type -dependent fashion by either over-expression of HSP90 / GRP78 / HSP70 / HSP27 or by blockade of eIF2α-CHOP signaling. Knock down of PKGI/II abolished the ability of sildenafil to enhance pemetrexed toxicity whereas pan-inhibition of NOS using L-NAME or knock down of [iNOS + eNOS] only partially reduced the lethal drug interaction. Pemetrexed reduced the ATPase activities of HSP90 and HSP70 in an ATM-AMPK-dependent fashion that was enhanced by sildenafil signaling via PKGI/II. The drug combination activated an ATM-AMPK-TSC2 pathway that was associated with reduced mTOR S2448 and ULK-1 S757 phosphorylation and increased ULK-1 S317 and ATG13 S318 phosphorylation. These effects were prevented by chaperone over-expression or by expression of an activated form of mTOR that prevented autophagosome formation and reduced cell killing. In two models of NSCLC, sildenafil enhanced the ability of pemetrexed to suppress tumor growth. Collectively we argue that the combination of [pemetrexed + PDE5 inhibitor] should be explored in a new NSCLC phase I trial. PMID:27903966
Stokol, Tracy; Serpa, Priscila Beatriz da Silva; Zahid, Muhammad N; Brooks, Marjory B
2016-01-01
Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo . We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1-0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation. These drugs have potential as adjunctive therapy to reduce the serious complications associated with EHV-1-induced thrombosis. Treatment trials are warranted to determine whether these drugs yield clinical benefit when administered to horses infected with EHV-1.
Koch, Diana A; Silva, Rodrigo B M; de Souza, Alessandra H; Leite, Carlos E; Nicoletti, Natália F; Campos, Maria M; Laufer, Stefan; Morrone, Fernanda B
2014-03-01
Mitogen-activated protein kinase (MAPK) p38 inhibitors have entered the clinical phase, although many of them have failed due to high toxicity and lack of efficacy. In the present study we compared the effects of the selective p38 inhibitor ML3403 and the dual p38-PDE4 inhibitor CBS-3595, on inflammatory and nociceptive parameters in a model of polyarthritis in rats. Male Wistar rats (180-200 g) were used for the complete Freund's adjuvant (CFA)-induced arthritis model and they were evaluated at 14-21 days. We also analysed the effects of these pharmacological tools on liver and gastrointestinal toxicity and on cytokine levels. Repeated CBS-3595 (3 mg/kg) or ML3403 (10 mg/kg) administration produced significant anti-inflammatory actions in the chronic arthritis model induced by CFA. CBS-3595 and ML3403 treatment also markedly reduced the production of the proinflammatory cytokine IL-6 in the paw tissue, whereas it widely increased the levels of the anti-inflammatory cytokine IL-10. Moreover, CBS-3595 produced partial anti-allodynic effects in the CFA model at 4 and 8 days after treatment. Notably, ML3403 and CBS-3595 did not show marked signs of hepatoxicity, as supported by unaltered histological observations in the liver sections. Finally, both compounds were safe in the gastrointestinal tract, according to evaluation of intestinal biopsies. CBS-3595 displayed a superior profile regarding its anti-inflammatory effects. Thus p38 MAPK/PDE4 blocking might well constitute a relevant strategy for the treatment of RA.
Megas, Georgios; Papadopoulos, Georgios; Stathouros, Georgios; Moschonas, Dimitrios; Gkialas, Ioannis; Ntoumas, Konstantinos
2013-07-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Erectile dysfunction after nerve-sparing radical retropubic prostatectomy constitutes a challenge to the urologist. The mainstay of medical treatment after radical prostatectomy to restore spontaneous erectile function remains phosphodiesterase (PDE5) inhibitors, despite the fact that data from animal studies suggesting that PDE5 inhibitors can prevent smooth muscle apoptosis and fibrosis have not yet been extrapolated to humans because of a lack of standardized protocols. If the above treatment fails, second-line therapies such as intraurethral prostaglandins, penile injection therapy and vacuum devices are offered. When less invasive therapies are ineffective, interventions that preserve sexual function such as penile prosthesis implantation become the treatment of choice. Our study reveals the alternative of penile prosthesis implantation as first-line treatment in erectile dysfunction after nerve-sparing radical prostatectomy. It also highlights its superiority to the oral PDE5 inhibitor treatment, regarding the erection, frequency, firmness, maintenance and penetration ability. This suggests that a concept of an early penile intervention in the future would be promising for those patients who wish to remain sexually active without depending on oral formulations with doubtful and delayed results. To evaluate the outcome of penile prosthesis surgery in comparison to oral phosphodiesterase type 5 (PDE5) inhibitor administration, in men with erectile dysfunction after nerve-sparing radical prostatectomy, as early penile intervention therapy. A total of 174 patients treated by nerve-sparing retropubic radical prostatectomy (RRP) for clinically localized prostate cancer, between January 2006 and September 2009 enrolled in the study, 153 patients fulfilled the inclusion criteria, and 69 (45%) patients presented with post-RRP erectile dysfunction 6 months after primary surgery. Fifty-four patients were disease-free and subdivided into two arms according to treatment modality, either tadalafil three times/week or penile prosthesis implantation. All patients were evaluated using the International Index of Erectile Function (IIEF) questionnaire preoperatively and at 6, 12 and 24 month postoperatively. Repeated measurements analysis of variance was conducted to evaluate the effect of time and group on IIEF total score. There was a significant reduction in IIEF score from preoperative values to the first measurement after surgery in both treatment groups. The overall degree of change from the first time point immediately after surgery to 2 years was greater in the penile prosthesis group than the tadalafil group (20.4 ± 1.3 vs 8.1 ± 2.4, P < 0.001). The efficacy and satisfaction results of both treatment types are considered acceptable. However, regarding the erection frequency, firmness, penetration ability, maintenance and erection confidence it seems that penile prosthesis implantation is superior to oral treatment. The concept of early penile intervention should be considered and is promising for all patients with post-RRP erectile dysfunction. © 2012 BJU International.
Lowe, Gregory; Costabile, Raymond A
2012-01-01
To ensure public safety all Food and Drug Administration (FDA)-approved medications undergo postapproval safety analysis. Phosphodiesterase type-5 inhibitors (PDE5-i) are generally regarded as safe and effective. We performed a nonindustry-sponsored analysis of FDA reports for sildenafil, tadalafil, and vardenafil to evaluate the reported cardiovascular and mortality events over the past 10 years. Summarized reports of adverse events (AEs) for each PDE5-i were requested from the Center for Drug Evaluation and Research within the FDA. These data are available under the Freedom of Information Act and document industry and nonindustry reports of AEs entered into the computerized system maintained by the Office of Surveillance and Epidemiology. The data were analyzed for the number of AE reports, number of objective cardiovascular events, and reported deaths. Overall, 14,818 AEs were reported for sildenafil. There were 1,824 (12.3%) reported deaths, and reports of cardiovascular AEs numbered 2,406 (16.2%). Tadalafil was associated with 5,548 AEs and 236 deaths were reported. Vardenafil was associated with 6,085 AEs and 121 reports of deaths. The percentage of reported severe cardiovascular disorders has stabilized at 10% to 15% of all AE reports for sildenafil and tadalafil and 5% to 10% for vardenafil. Only 10% of AE reports sent to the FDA for PDE5-i were from pharmaceutical manufacturers. Reports of deaths associated with PDE5-i remain around 5% of total reported events. Despite inherent limitations from evaluating FDA reports of AEs, it is important that these reports be reviewed outside pharmaceutical industry support in order to provide due diligence and transparency. Lowe G and Costabile RA. 10-year analysis of adverse event reports to the Food and Drug Administration for phosphodiesterase type-5 inhibitors. J Sex Med 2012;9:265-270. © 2011 International Society for Sexual Medicine.
Co-possession of phosphodiesterase type-5 inhibitors (PDE5-I) with nitrates.
Chang, Li-Ling; Ma, Mark; Allmen, Heather von; Henderson, Scott C; Harper, Kristine; Hornbuckle, Kenneth
2010-06-01
Estimate the proportion of phosphodiesterase type-5 inhibitor (PDE5-I) patients who co-possess nitrates and compare the proportion of tadalafil patients dispensed nitrates to a matched control group. Secondarily, examine the percentage of co-possession of PDE5-Is and nitrates where the products were dispensed on the same day or written by the same prescriber. Male patients aged 18+ years filling PDE5-I prescriptions between December 2003 and March 2006 were identified using a U.S. longitudinal prescription database (IMS Health LRx). Similar patients not dispensed a PDE5-I during this period were matched to the tadalafil-dispensed cohort using a propensity score approach. Co-possession, as a proxy for concurrent use, was defined as an overlap in time on therapy for a PDE5-I and nitrate and was compared for the three PDE5-Is and for tadalafil to the matched control group. Among 601,063 tadalafil patients, 3.31% were dispensed a nitrate during the study period, compared to 6.18% in control patients (n = 601,063). When co-possessed prescriptions were defined by overlapping exposure periods, the proportion of PDE5-I patients with co-possessed nitrates ranged from 1.44% (tadalafil) to 1.72% (vardenafil) and 2.13% (sildenafil). Co-possession percentages of PDE5-I prescriptions were 0.83% for tadalafil and 1.07% for sildenafil and vardenafil. The majority (54.29%) of co-possessed PDE5-I and nitrate prescriptions had the nitrate dispensed prior to the PDE5-I prescription identified in the study cohort. Keeping in mind the limitations of observational studies, these results suggest that co-dispensing of nitrates and PDE5-Is is low. Compared to control patients, the proportion of nitrate co-possession was lowest for patients filling tadalafil. Tadalafil patients also had the lowest co-possessed proportion among the three PDE5-I cohorts. While the majority of co-possessed drug pairs were prescribed by different providers, the highest percentage of co-prescribing from the same physician was among cardiologists. These results suggest that physicians adhere to contraindications and are careful about co-prescribing of nitrates with PDE-5Is.
Wang, Xing-Huan; Wang, Xiao; Shi, Ming-Jun; Li, Sheng; Liu, Tao; Zhang, Xin-Hua
2015-01-01
The aim of this systematic review is to determine the comparative effectiveness and safety of phosphodiesterase 5 inhibitors (PDE5-Is) and α-blockers used alone or combined for the treatment of lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH). An electronic search of PubMed, Cochrane Library and Embase up to January 2014 was performed to identify randomized controlled trials comparing the efficacy and safety of PDE5-Is and α-blockers for treatment of lower urinary tract symptoms due to benign prostatic hyperplasia, which assessed IPSS score, maximum flow rate, postvoided residual urine, quality of life and Erectile Function (IIEF) score as outcomes. Data were analyzed by fixed or random effect models using Cochrane Collaboration review manager software. A total of 12 studies were included. Our novel data demonstrated that there was a trend that α-blockers were more efficacious than PDE5-Is on decreasing IPSS score and increasing maximum flow rate. α-blockers were significantly more effective than PDE5-Is on reduction of postvoided residual urine with a mean difference of 3.67 (95% CI 1.56 to 5.77, P = 0.0006) and PDE5-Is showed greater effect than α-blockers on increasing IIEF score with a mean difference of 9.82 (95% CI 3.80 to 15.85, P = 0.001). In conclusion, our novel data demonstrated that PDE5-Is plus ABs ranked the highest on the improvement of LUTS/BPH. PDE5-Is monotherapy was also effective in this kind of disorder except less reduction of PVR than ABs. In addition, both combined- or mono-therapy were safe. PMID:25994648
Tsai, Chia-Chun; Wang, Chii-Jye; Lee, Yung-Chin; Kuo, Yen-Ting; Lin, Hsiao-Hua; Li, Ching-Chia; Wu, Wen-Jeng; Liu, Chia-Chu
2017-01-01
Managing patients with erectile dysfunction (ED) who failed to respond to phosphodiesterase type 5 inhibitors (PDE5is) is a challenging task. Recently, low-intensity extracorporeal shockwave therapy (LI-ESWT) was reported to improve ED by enhancing perfusion of the penis. The current study was performed to evaluate whether combined treatment with LI-ESWT and PDE5is can restore erectile function in patients who failed to respond to PDE5is alone. This was an open-label single-arm prospective study. ED patients with an erection hardness score (EHS) ≦2 under a maximal dosage of PDE5is were enrolled. Sociodemographic information and detailed medical history were recorded. LI-ESWT treatment consisted of 3,000 shockwaves once weekly for 12 weeks. All patients continued their regular PDE5is use. The EHS and the 5-item version of the International Index of Erectile Function (IIEF-5) were used to evaluate the change in erectile function 1 and 3 months after LI-ESWT. A total of 52 patients were enrolled. After LI-ESWT treatment, 35 of the 52 patients (67.3%) could achieve an erection hard enough for intercourse (EHS ≧ 3) under PDE5is use at the 1-month follow-up. Initial severity of ED was the only significant predictor of a successful response (EHS1: 35.7% vs. EHS2: 78.9%, p = .005). Thirty-three of the 35 (94.3%) subjects who responded to LI-ESWT could still maintain their erectile function at the 3-month follow-up. LI-ESWT can serve as a salvage therapy for ED patients who failed to respond to PDE5is. Initial severity of ED was an important predictor of a successful response. PMID:28884638
Borrelli, F; Capasso, R; Severino, B; Fiorino, F; Aviello, G; De Rosa, G; Mazzella, M; Romano, B; Capasso, F; Fasolino, I; Izzo, A A
2011-08-01
Bromelain (BR) is a cysteine protease with inhibitory effects on intestinal secretion and inflammation. However, its effects on intestinal motility are largely unexplored. Thus, we investigated the effect of this plant-derived compound on intestinal contractility and transit in mice. Contractility in vitro was evaluated by stimulating the mouse isolated ileum, in an organ bath, with acetylcholine, barium chloride, or electrical field stimulation. Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine. Transit was also evaluated in pathophysiologic states induced by the pro-inflammatory compound croton oil or by the diabetogenic agent streptozotocin. Bromelain inhibited the contractions induced by different spasmogenic compounds in the mouse ileum with similar potency. The antispasmodic effect was reduced or counteracted by the proteolytic enzyme inhibitor, gabexate (15 × 10(-6) mol L(-1) ), protease-activated receptor-2 (PAR-2) antagonist, N(1) -3-methylbutyryl-N(4) -6-aminohexanoyl-piperazine (10(-4) mol L(-1) ), phospholipase C (PLC) inhibitor, neomycin (3 × 10(-3) mol L(-1) ), and phosphodiesterase 4 (PDE4) inhibitor, rolipram (10(-6) mol L(-1) ). In vivo, BR preferentially inhibited motility in pathophysiologic states in a PAR-2-antagonist-sensitive manner. Our data suggest that BR inhibits intestinal motility - preferentially in pathophysiologic conditions - with a mechanism possibly involving membrane PAR-2 and PLC and PDE4 as intracellular signals. Bromelain could be a lead compound for the development of new drugs, able to normalize the intestinal motility in inflammation and diabetes. © 2011 Blackwell Publishing Ltd.
Hufgard, Jillian R; Williams, Michael T; Skelton, Matthew R; Grubisha, Olivera; Ferreira, Filipa M; Sanger, Helen; Wright, Mary E; Reed-Kessler, Tracy M; Rasmussen, Kurt; Duman, Ronald S; Vorhees, Charles V
2017-06-01
Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.
Patel, Brijeshkumar S; Rahman, Md Mostafizur; Rumzhum, Nowshin N; Oliver, Brian G; Verrills, Nicole M; Ammit, Alaina J
2016-06-01
Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation.
NASA Astrophysics Data System (ADS)
Qiu, Shi.; Tang, Zhuang; Deng, Linghui; Liu, Liangren; Han, Ping; Yang, Lu; Wei, Qiang
2016-09-01
Phosphodiesterase type-5 inhibitors (PDE5-Is) have been recommended as first line therapy for erectile dysfunction for patients received nerve-sparing radical prostatectomy for prostate cancer. We examed the efficiency of PDE5-Is and considered the optimal application. Systematic search of PubMed, Embase and the Cochrane Library was performed to identify all the studies. We identified 103 studies including 3175 patients, of which 14 were recruited for systematic review. Compared with placebo, PDE5-Is significantly ameliorated the International Index of Erectile Function-Erectile Function domain score (IIEF) scores (MD 4.89, 95% CI 4.25-5.53, p < 0.001). By network meta-analysis, sildenafil seems to be the most efficiency with a slightly higher rate of treatment-emergent adverse events (TEATs), whereas tadalafil had the lowest TEATs. In terms of IIEF scores, regular regimen was remarkably better than on-demand (MD 3.28, 95% CI 1.67-4.89, p < 0.001). Regular use was not associated with higher proportion of patients suffering TEATs compared with on-demand (RR 1.02, 95% CI 0.90-1.16, p = 0.72). Compared with placebo, PDE5-Is manifested significantly improved treatment outcomes. Overall, regular regimen demonstrated statistically pronounced better potency than on-demand. Coupled with the comparable rate of side effects, these findings support the regular delivery procedure to be a cost-effective option for patients.
Assessing the New and Emerging Treatments for Atopic Dermatitis.
Eichenfield, Lawrence F; Friedlander, Sheila F; Simpson, Eric L; Irvine, Alan D
2016-06-01
The newer and emerging treatments for atopic dermatitis (AD) focus on blockade of inflammatory cytokines, especially those that derive from T helper cell type 2 (TH2) and are associated with a pathway of immunoglobulin E (IgE) sensitization. Among the proinflammatory cytokines that have been identified as promising therapeutic targets are chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), IgE, thymic stromal lymphopoietin (TSLP), and several monoclonal antibodies that block key cytokine pathways in the innate immune response. Two agents that have been studied in phase III clinical trials are the boronbased phosphodiesterase-4 (PDE-4) inhibitor, crisaborole, and dupilumab, an antibody that inhibits the interleukin-4/ IL-13 receptor α chain. Semin Cutan Med Surg 35(supp5):S92-S96. 2016 published by Frontline Medical Communications.
Liu, Xuemei; Chen, Rui; Zeng, Guanghuai; Gao, Ying; Liu, Xiuping; Zhang, Donglei; Hu, Pei; Wang, Hongyun; Jiang, Ji
2018-06-04
Hemay005 is a novel small-molecule inhibitor of phosphodiesterase-4 developed for the treatment of psoriasis. Measurement of Hemay005 in biological samples is critical for evaluation of its pharmacokinetics in clinical studies. Methodology & results: Plasma and urine samples were extracted and then chromatographed on an Acquity UPLC HSS T3 column with a gradient elution. Detection was performed on a Xevo TQ-S tandem mass spectrometer using negative ESI. For the first time, a sensitive and robust ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established and validated for the quantitative determination of Hemay005 in human plasma and urine, and it was successfully applied to evaluate the pharmacokinetics of Hemay005 in healthy subjects in a first-in-human study.
Smith-Harrison, L I; Patel, Abhishek; Smith, Ryan P
2016-04-01
Erectile dysfunction (ED) is a common sexual disorder with numerous etiologies involving multiple organ systems that leads to significant distress and decreased quality of life for the affected men. Fortunately, there are several modalities and interventions for treating ED. Oral medications, intra-urethral compounds, intracorporeal injections, vacuum-assist devices and surgically implanted prostheses are all part of the treatment algorithm. One of the first-lines and certainly the most widely used options for treating ED is the family of oral phosphodiesterase type 5 inhibitors (PDE5I). The introduction of these medications in the late 1990s revolutionized the field of sexual medicine. Currently there are no guidelines and minimal literature to help providers choose among drugs in this class. This review will address differences in efficacy and side effects between various members of the oral selective phosphodiesterase-5 inhibitor class of drugs.
In silico design of novel hERG-neutral sildenafil-like PDE5 inhibitors.
Kayık, Gülru; Tüzün, Nurcan Ş; Durdagi, Serdar
2017-10-01
Cyclic nucleotide phosphodiesterase enzymes (PDEs) have functions in regulating the levels of intracellular second messengers, 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), via hydrolysis and decomposing mechanisms in cells. They take essential roles in modulating various cellular activities such as memory and smooth muscle functions. PDE type 5 (PDE5) inhibitors enhance the vasodilatory effects of cGMP in the corpus cavernosum and they are used to treat erectile dysfunction. Patch clamp experiments showed that the IC 50 values of the human ether-à-go-go-related gene (hERG1) potassium (K) ion channel blocking affinity of PDE5 inhibitors sildenafil, vardenafil, and tadalafil as 33, 12, and 100 μM, respectively. hERG1 channel is responsible for the regulation of the action potential of human ventricular myocyte by contributing the rapid component of delayed rectifier K + current (I Kr ) component of the cardiac action potential. In this work, interaction patterns and binding affinity predictions of selected PDE5 inhibitors against the hERG1 channel are studied. It is attempted to develop PDE5 inhibitor analogs with lower binding affinity to hERG1 ion channel while keeping their pharmacological activity against their principal target PDE5 using in silico methods. Based on detailed analyses of docking poses and predicted interaction energies, novel analogs of PDE5 inhibitors with lower predicted binding affinity to hERG1 channels without loosing their principal target activity were proposed. Moreover, molecular dynamics (MD) simulations and post-processing MD analyses (i.e. Molecular Mechanics/Generalized Born Surface Area calculations) were performed. Detailed analysis of molecular simulations helped us to better understand the PDE5 inhibitor-target binding interactions in the atomic level. Results of this study can be useful for designing of novel and safe PDE5 inhibitors with enhanced activity and other tailored properties.
PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes.
Yu, Hea Min; Chung, Hyo Kyun; Kim, Koon Soon; Lee, Jae Min; Hong, Jun Hwa; Park, Kang Seo
2017-11-04
Adipocytes are involved in many metabolic disorders. It was recently reported that phosphodiesterase type 5 (PDE5) is expressed in human adipose tissue. In addition, PDE5 inhibitors have been shown to improve insulin sensitivity in humans. However, the mechanism underlying the role of PDE5 inhibitors as an insulin sensitizer remains largely unknown. The present study was undertaken to investigate the role of the PDE5 inhibitor udenafil in insulin signaling in adipocytes and whether this is mediated through the regulation of mitochondrial function. To study the mechanism underlying the insulin sensitizing action of PDE5 inhibitors, we evaluated quantitative changes in protein or mRNA levels of mitochondrial oxidative phosphorylation (OxPhos) complex, oxygen consumption rate (OCR), and fatty acid oxidation with varying udenafil concentrations in 3T3-L1 cells. Our cell study suggested that udenafil enhanced the insulin signaling pathway in 3T3-L1 cells. Following udenafil treatment, basal mitochondrial OCR, maximal OxPhos capacity, and OxPhos gene expression significantly increased. Finally, we examined whether udenafil can affect the fatty acid oxidation process. Treatment of 3T3-L1 cells with udenafil (10 and 20 μM) significantly increased fatty acid oxidation rate in a dose-dependent manner. In addition, the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) significantly increased. We demonstrated that the PDE5 inhibitor udenafil enhances insulin sensitivity by improving mitochondrial function in 3T3-L1 cells. This might be the mechanism underlying the PDE5 inhibitor-enhanced insulin signaling in adipocytes. This also suggests that udenafil may provide benefit in the treatment of type 2 diabetes and other related cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Do, Tiên T K; Theocharis, Grigorios; Reich, Eike
2015-01-01
An HPTLC method is proposed to permit effective screening for the presence of three phosphodiesterase type 5 inhibitors (PDE5-Is; sildenafil, vardenafil, and tadalafil) and eight of their analogs (hydroxyacetildenafil, homosildenafil, thiohomosildenafil, acetildenafil, acetaminotadalafil, propoxyphenyl hydroxyhomosildenafil, hydroxyhomosildenafil, and hydroxythiohomosildenafil) in finished products, including tablets, capsules, chocolate, instant coffee, syrup, and chewing gum. For all the finished products, the same simple sample preparation may be applied: ultrasound-assisted extraction in 10 mL methanol for 30 min followed by centrifugation. The Rf values of individual HPTLC bands afford preliminary identification of potential PDE5-Is. Scanning densitometry capabilities enable comparison of the unknown UV spectra with those of known standard compounds and allow further structural insight. Mass spectrometric analysis of the material derived from individual zones supplies an additional degree of confidence. Significantly, the proposed screening technique allows focus on the already known PDE5 Is and provides a platform for isolation and chemical categorization of the newly-synthesized analogs. Furthermore, the scope could be expanded to other therapeutic categories (e.g., analgesics, antidiabetics, and anorexiants) that are occasionally coadulterated along with the PDE5-Is. The method was successfully applied to screening of 45 commercial lifestyle products. Of those, 31 products tested positive for at least one illegal component (sildenafil, tadalafil, propoxyphenyl hydroxyhomosildenafil, or dimethylsildenafil).
Jensen, Jeffrey T; Zelinski, Mary B; Stanley, Jessica E; Fanton, John W; Stouffer, Richard L
2008-04-01
The study was conducted to determine whether the phosphodiesterase (PDE) 3 inhibitor ORG 9935 prevents the resumption of meiosis in primate oocytes during natural menstrual cycles. Regularly cycling adult female macaques (n=8) were followed during the follicular phase and then started on a 2-day treatment regimen of human recombinant gonadotropins to control the timing of ovulation. Monkeys received no further treatment (controls) or ORG 9935. Oocytes were recovered by laparoscopic follicle aspiration 27 h after an ovulatory stimulus, cultured in vitro in the absence of inhibitor and inseminated. The primary outcome was the meiotic stage of the oocyte. In six ORG 9935 cycles, five of the recovered oocytes were germinal vesicle (GV)-intact, and one exhibited GV breakdown (GVBD). In contrast, all three oocytes that recovered during control cycles were GVBD (p<.05). None of the ORG 9935-treated oocytes underwent fertilization compared with 2/3 (67%) from controls. These results demonstrate that ORG 9935 blocks resumption of meiosis in the naturally selected dominant follicle in primates and suggest that PDE3 inhibitors have potential clinical use as contraceptives in women.
Nawrocki, Andrea R; Rodriguez, Carlos G; Toolan, Dawn M; Price, Olga; Henry, Melanie; Forrest, Gail; Szeto, Daphne; Keohane, Carol Ann; Pan, Yie; Smith, Karen M; Raheem, Izzat T; Cox, Christopher D; Hwa, Joyce; Renger, John J; Smith, Sean M
2014-01-01
Phosphodiesterase 10A (PDE10A) is a novel therapeutic target for the treatment of schizophrenia. Here we report a novel role of PDE10A in the regulation of caloric intake and energy homeostasis. PDE10A-deficient mice are resistant to diet-induced obesity (DIO) and associated metabolic disturbances. Inhibition of weight gain is due to hypophagia after mice are fed a highly palatable diet rich in fats and sugar but not a standard diet. PDE10A deficiency produces a decrease in caloric intake without affecting meal frequency, daytime versus nighttime feeding behavior, or locomotor activity. We tested THPP-6, a small molecule PDE10A inhibitor, in DIO mice. THPP-6 treatment resulted in decreased food intake, body weight loss, and reduced adiposity at doses that produced antipsychotic efficacy in behavioral models. We show that PDE10A inhibition increased whole-body energy expenditure in DIO mice fed a Western-style diet, achieving weight loss and reducing adiposity beyond the extent seen with food restriction alone. Therefore, chronic THPP-6 treatment conferred improved insulin sensitivity and reversed hyperinsulinemia. These data demonstrate that PDE10A inhibition represents a novel antipsychotic target that may have additional metabolic benefits over current medications for schizophrenia by suppressing food intake, alleviating weight gain, and reducing the risk for the development of diabetes.
Sallustio, Fabrizio; Studer, Valeria
2016-01-01
Alzheimer's disease (AD) is the most common cause of dementia among the elderly. It is pathologically characterized by diffused extracellular deposits, senile plaques, and intracellular neurofibrillary tangles in the brain, responsible for neuronal dysfunction and cell death. Memory, language and other cognitive functions can be affected to a limited extent in the initial stage called mild cognitive impairment (MCI) or in a more severe and daily life interfering manner in the later stage called dementia. Currently no effective disease-modifying treatment exists for the majority of neurodegenerative diseases. Failure of therapy aimed at affecting beta amyloid pathology has led research to investigate alternative approaches. Recent findings address statins and phosphodiesterase (PDE) inhibitors as compounds able to affect different mechanisms underlying AD. Statins could exert several effects based on their lipid-lowering and cerebral blood flow increasing abilities but also pleiotropic/antinflammatory and neuroprotective properties have been claimed. PDEs act as regulators of intracellular signaling cascades through the control of two second messengers, cyclic adenosine monophosphate and cyclic guanosine monophosphate. PDE inhibitors effects in animal models of AD have been promising and their proven safety in clinical use create high expectations for the treatment of AD. In this review, we will report main data and evidence on: 1. Current pathophysiological theories of AD in order to better understand which mechanisms lead to pathological changes and can be affected by therapies; 2. The use of statins and PDE inhibitors in animal models of AD and in humans, analyzing their mechanisms of action.
Bujang, Nur Baizura; Chee, Chin Fei; Heh, Choon Han; Rahman, Noorsaadah Abd; Buckle, Michael J C
2017-07-01
Adulteration of herbal health supplements with phosphodiesterase-5 (PDE-5) inhibitors and their analogues is becoming a worldwide problem. The aim of this study was to investigate herbal and food products sold in the Malaysian market for the presence of these adulterants. Sixty-two products that claim to enhance men's sexual health were sampled between April 2014 and April 2016. These products included unregistered products seized by the Pharmacy Enforcement Division of the Ministry of Health (n = 39), products sent to the National Pharmaceutical Regulatory Agency for pre-registration testing (n = 9) and products investigated under the post-registration market surveillance programme (n = 14). The products were tested against an in-house spectral library consisting of 61 PDE-5 inhibitors and analogues using a validated liquid chromatography-mass spectrometry ion-trap-time-of-flight (LC-MS IT-TOF) method. Thirty-two (82%) of the unregistered products and two (14%) of the registered products were found to be adulterated with at least one PDE-5 inhibitor or analogue, while none of the pre-registration products contained adulterants. A total of 16 different adulterants were detected and 36% of the adulterated products contained a mixture of two or more adulterants. This study has demonstrated that the adulteration of unregistered herbal products in the Malaysian market is an alarming issue that needs to be urgently addressed by the relevant authorities.
Regulation of ecto-apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3)
Baek, Amy E.; Kanthi, Yogendra; Sutton, Nadia R.; Liao, Hui; Pinsky, David J.
2013-01-01
The ectoenzyme CD39 suppresses thrombosis and inflammation by suppressing ATP and ADP to AMP. However, mechanisms of CD39 transcriptional and post-translational regulation are not well known. Here we show that CD39 levels are modulated by inhibition of phosphodiesterase 3 (PDE3). RAW macrophages and human umbilical vein endothelial cells (HUVECs) were treated with the PDE3 inhibitors cilostazol and milrinone, then analyzed using qRT-PCR, immunoprecipitation/Western blot, immunofluorescent staining, radio-thin-layer chromatography, a malachite green assay, and ELISA. HUVECs expressed elevated CD39 protein (2-fold [P<0.05] for cilostazol and 2.5-fold [P<0.01] for milrinone), while macrophage CD39 mRNA and protein were both elevated after PDE3 inhibition. HUVEC ATPase activity increased by 25% with cilostazol and milrinone treatment (P<0.05 and P<0.01, respectively), as did ADPase activity (47% and 61%, P<0.001). There was also a dose-dependent elevation of soluble CD39 after treatment with 8-Br-cAMP, with maximal elevation of 60% more CD39 present compared to controls (1 mM, P<0.001). Protein harvested after 8-Br-cAMP treatment showed that ubiquitination of CD39 was decreased by 43% compared to controls. A DMSO or PBS vehicle control was included for each experiment based on solubility of cilostazol, milrinone, and 8-Br-cAMP. These results indicate that PDE3 inhibition regulates endothelial CD39 at a post-translational level.—Baek, A. E., Kanthi, Y., Sutton, N. R., Liao, H., Pinsky, D. J. Regulation of ecto-apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3). PMID:23901069
Vasquez, Elisardo C; Gava, Agata L; Graceli, Jones B; Balarini, Camille M; Campagnaro, Bianca P; Pereira, Thiago Melo C; Meyrelles, Silvana S
2016-01-01
The usefulness of selective inhibitors of phosphodiesterase 5 (PDE5) is well known, first for the treatment of male erectile dysfunction and more recently for pulmonary hypertension. The discovery that PDE5 is present in the systemic artery endothelium and smooth muscle cells led investigators to test the extra sexual effects of sildenafil, the first and most investigated PDE5 inhibitor, in diseases affecting the systemic arteries. Cumulative data from experimental and clinical studies have revealed beneficial effects of sildenafil on systemic arterial hypertension and its target organs, such as the heart, kidneys and vasculature. An important effect of sildenafil is reduction of hypertension and improvement of endothelial function in experimental models of hypertension and hypertensive subjects. Interestingly, in angiotensin-dependent hypertension, its beneficial effects on endothelial and kidney dysfunctions seem to at least in part be caused by its ability to decrease the levels of angiotensin II and increase angiotensin 1-7, in addition to improving nitric oxide bioavailability and diminishing reactive oxygen species. Another remarkable finding on the effects of sildenafil comes from studies in apolipoprotein E knockout mice, a model of atherosclerosis that closely resembles human atherosclerotic disease. In this review, we focus on the promising beneficial effects of sildenafil for treating systemic high blood pressure, especially resistant hypertension, and the endothelial dysfunction that is present in hypertension and atherosclerosis.
Kleiman, Robin J; Chapin, Douglas S; Christoffersen, Curt; Freeman, Jody; Fonseca, Kari R; Geoghegan, Kieran F; Grimwood, Sarah; Guanowsky, Victor; Hajós, Mihály; Harms, John F; Helal, Christopher J; Hoffmann, William E; Kocan, Geralyn P; Majchrzak, Mark J; McGinnis, Dina; McLean, Stafford; Menniti, Frank S; Nelson, Fredrick; Roof, Robin; Schmidt, Anne W; Seymour, Patricia A; Stephenson, Diane T; Tingley, Francis David; Vanase-Frawley, Michelle; Verhoest, Patrick R; Schmidt, Christopher J
2012-05-01
Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.
Effects of chlorogenic acid on carbachol-induced contraction of mouse urinary bladder.
Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa
2018-01-01
Chlorogenic acid (CGA) is a polyphenol found in coffee and medicinal herbs such as Lonicera japonica. In this study, the effect of CGA-induced relaxation on carbachol (CCh)-induced contraction of mouse urinary bladder was investigated. CGA (30-300 μg/ml) inhibited CCh- or U46619-induced contraction in a concentration-dependent manner. SQ22536 (adenylyl cyclase inhibitor) recovered CGA-induced relaxation of CCh-induced contraction; however, ODQ (guanylyl cyclase inhibitor) did not have the same effect. In addition, 3-isobutyl-1-methylxanthine (IBMX) enhanced CGA-induced relaxation; however, forskolin or sodium nitroprusside did not have the same effect. Moreover, Ro 20-1724, a selective phosphodiesterase (PDE) 4 inhibitor, enhanced CGA-induced relaxation, but vardenafil, a selective PDE5 inhibitor, did not have the same effect. In the presence of CCh, CGA increased cyclic adenosine monophosphate (cAMP) level, whereas SQ22536 inhibited the increase of cAMP levels. Moreover, higher cAMP levels were obtained with CGA plus IBMX treatment than the total cAMP levels obtained with separate CGA and IBMX treatments. In conclusion, these results suggest that CGA inhibited CCh-induced contraction of mouse urinary bladder by partly increasing cAMP levels via adenylyl cyclase activation. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
A study of the management of erectile dysfunction in general practice.
Griffiths, L; Bush, N; Mottram, D; Armstrong, D
2005-06-01
The Department of Health issued guidelines for the NHS treatment of erectile dysfunction (ED) with phosphodiesterase type 5 inhibitors (PDE 5 inhibitors) in 1999. There has been an increasing trend in the prescribing of PDE 5 inhibitors within Bebington and West Wirral Primary Care Trust (PCT) over the 3-year period from February 2001 to January 2004. The objective of the study was to investigate implementation of Government guidelines on prescribing of PDE 5 inhibitors for ED and the cost of prescribing outside these guidelines. Practice data were collected for all patients prescribed a PDE 5 inhibitor in 16 surgeries within Bebington and West Wirral Primary Care Trust, from November 2002 to December 2003. The data were evaluated with respect to adherence to UK Government guidelines. Analysis was made on the cost to the PCT with respect to treatment provided outside the guidelines. Prescribing for 78% of patients was within Government guidelines. With respect to frequency of prescribing, 89% of patients in the PCT received less than or equal to the recommended frequency of one tablet per week. The percentage range for practices was 67-100%. The cost to the PCT for PDE 5 inhibitor treatment provided outside the guidelines was 19,060 pounds sterling over the period of study. Prescribers generally follow Government guidelines, however, stricter adherence to guidelines could result in more efficient use of National Health Service resources.
Martínez-Salamanca, Juan I; La Fuente, José M; Cardoso, José; Fernández, Argentina; Cuevas, Pedro; Wright, Harold M; Angulo, Javier
2014-05-01
The efficacy of oral pharmacotherapy for erectile dysfunction (ED) (i.e., type 5 phosphodiesterase[PDE5] inhibitors) is significantly reduced in diabetic patients. Nebivolol is a selective β1-blocker used for treatinghy pertension that has been shown to increase the efficacy of sildenafil to reverse ED in diabetic rats. To evaluate the effects of nebivolol on the efficacy of the PDE5 inhibitors, sildenafil, tadalafil, and vardenafil to relax human corpus cavernosum (HCC) and vasodilate human penile resistance arteries (HPRA) from diabetic patients with ED (DMED). The influence of nebivolol on the capacity of these three PDE5 inhibitors to stimulate cyclic guanosine monophosphate (cGMP) production in HCC was also evaluated. HCC and HPRA were obtained from organ donors without ED (NEND; n = 18) or patients with diabetes undergoing penile prosthesis implantation (DMED; n = 19). Relaxations of HCC strips and HPRA to sildenafil,tadalafil, and vardenafil were evaluated in organ chambers and wire myographs. cGMP content in HCC was determined by ether extraction and quantification by ELISA. Effects of nebivolol on PDE5 inhibitor-induced relaxation of HCC, vasodilation ofHPRA and cGMP accumulation in HCC. Treatment with nebivolol (1 μM) significantly potentiated sildenafil-, tadalafil- and vardenafil-induced relaxations of HCC and vasodilations of HPRA from both NEND and DMED. Enhancement of relaxant capacity by nebivolol resulted in reversion of the impairment of PDE5 inhibition-induced responses in DMED and it was accompanied by enhancing the ability of PDE5 inhibitors to increase cGMP in HCC restoring reduced cGMP levelsin HCC from DMED. Nebivolol potentiated the capacity of PDE5 inhibitors to relax vascular structures of erectile tissue from diabetic patients by enhancing the nitric oxide (NO)/cGMP pathway in these tissues. These effects suggest a potential therapeutic utility of nebivolol as an adjunct to PDE5 inhibitors for the treatment of ED associated with diabetes.
Karachaliou, Niki; Codony-Servat, Jordi; Teixidó, Cristina; Pilotto, Sara; Drozdowskyj, Ana; Codony-Servat, Carles; Giménez-Capitán, Ana; Molina-Vila, Miguel Angel; Bertrán-Alamillo, Jordi; Gervais, Radj; Massuti, Bartomeu; Morán, Teresa; Majem, Margarita; Felip, Enriqueta; Carcereny, Enric; García-Campelo, Rosario; Viteri, Santiago; González-Cao, María; Morales-Espinosa, Daniela; Verlicchi, Alberto; Crisetti, Elisabetta; Chaib, Imane; Santarpia, Mariacarmela; Luis Ramírez, José; Bosch-Barrera, Joaquim; Felipe Cardona, Andrés; de Marinis, Filippo; López-Vivanco, Guillermo; Miguel Sánchez, José; Vergnenegre, Alain; Sánchez Hernández, José Javier; Sperduti, Isabella; Bria, Emilio; Rosell, Rafael
2015-12-07
BIM is a proapoptotic protein that initiates apoptosis triggered by EGFR tyrosine kinase inhibitors (TKI). mTOR negatively regulates apoptosis and may influence response to EGFR TKI. We examined mRNA expression of BIM and MTOR in 57 patients with EGFR-mutant NSCLC from the EURTAC trial. Risk of mortality and disease progression was lower in patients with high BIM compared with low/intermediate BIM mRNA levels. Analysis of MTOR further divided patients with high BIM expression into two groups, with those having both high BIM and MTOR experiencing shorter overall and progression-free survival to erlotinib. Validation of our results was performed in an independent cohort of 19 patients with EGFR-mutant NSCLC treated with EGFR TKIs. In EGFR-mutant lung adenocarcinoma cell lines with high BIM expression, concomitant high mTOR expression increased IC50 of gefitinib for cell proliferation. We next sought to analyse the signalling pattern in cell lines with strong activation of mTOR and its substrate P-S6. We showed that mTOR and phosphodiesterase 4D (PDE4D) strongly correlate in resistant EGFR-mutant cancer cell lines. These data suggest that the combination of EGFR TKI with mTOR or PDE4 inhibitors could be adequate therapy for EGFR-mutant NSCLC patients with high pretreatment levels of BIM and mTOR.
Naccarato, A M E P; Reis, L O; Ferreira, U; Denardi, F
2016-12-01
The aim of this study was to evaluate the impact of group psychotherapy and the use of a phosphodiesterase-5 inhibitor (PDE-5i) in the early rehabilitation stage of patients with prostate cancer undergoing radical prostatectomy (RP). Fifty-six patients undergoing RP for prostate cancer were randomised into four groups, and 53 completed the protocol: Group 1 - control (n = 11), Group 2 - group psychotherapy (n = 16), Group 3 - lodenafil 80 mg/one tablet per week (n = 12) and Group 4 - group psychotherapy + lodenafil 80 mg/one tablet per week (n = 14). The groups were individually evaluated for erectile function (IIEF-5) and quality of life - QoL (SF-36) weekly, with two meetings held a week apart before the RP and 12 weekly meetings after surgery. The ages ranged from 39 to 76 years, average 61.84. There were no significant medication side effects. Only Group 4 showed improvement in intimacy with a partner and satisfaction with their sex life (P = 0.045 and P = 0.013 respectively), and with no significant worsening of the IIEF-5 (P = 0.250) reported. All groups showed worsening in the final result of the role limitations caused by physical problems (P = 0.009) and role limitations caused by emotional problems (P = 0.002) of the SF-36, but Group 4 had a significantly higher score for the role limitations caused by physical problems (P = 0.009) than the other groups. In conclusion, precocious integral treatment involving group psychotherapy and PDE-5i before and after RP led to less deterioration of erectile function and other domains related to physical aspects (SF-36), with improvement in intimacy with their partner and satisfaction in their sex life, being superior to single treatments. © 2016 Blackwell Verlag GmbH.
Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki
2018-04-01
The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Hackett, Geoffrey; Jones, Peter W; Strange, Richard C; Ramachandran, Sudarshan
2017-01-01
AIM To determine how statins, testosterone (T) replacement therapy (TRT) and phosphodiesterase 5-inhibitors (PDE5I) influence age related mortality in diabetic men. METHODS We studied 857 diabetic men screened for the BLAST study, stratifying them (mean follow-up = 3.8 years) into: (1) Normal T levels/untreated (total T > 12 nmol/L and free T > 0.25 nmol/L), Low T/untreated and Low T/treated; (2) PDE5I/untreated and PDE5I/treated; and (3) statin/untreated and statin/treated groups. The relationship between age and mortality, alone and with T/TRT, statin and PDE5I treatment was studied using logistic regression. Mortality probability and 95%CI were calculated from the above models for each individual. RESULTS Age was associated with mortality (logistic regression, OR = 1.10, 95%CI: 1.08-1.13, P < 0.001). With all factors included, age (OR = 1.08, 95%CI: 1.06-1.11, P < 0.001), Low T/treated (OR = 0.38, 95%CI: 0.15-0.92, P = 0.033), PDE5I/treated (OR = 0.17, 95%CI: 0.053-0.56, P = 0.004) and statin/treated (OR = 0.59, 95%CI: 0.36-0.97, P = 0.038) were associated with lower mortality. Age related mortality was as described by Gompertz, r2 = 0.881 when Ln (mortality) was plotted against age. The probability of mortality and 95%CI (from logistic regression) of individuals, treated/untreated with the drugs, alone and in combination was plotted against age. Overlap of 95%CI lines was evident with statins and TRT. No overlap was evident with PDE5I alone and with statins and TRT, this suggesting a change in the relationship between age and mortality. CONCLUSION We show that statins, PDE5I and TRT reduce mortality in diabetes. PDE5I, alone and with the other treatments significantly alter age related mortality in diabetic men. PMID:28344753
Musicki, Biljana; Bivalacqua, Trinity J.; Champion, Hunter C.; Burnett, Arthur L.
2014-01-01
Introduction Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. Aims We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. Methods SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Main Outcome Measures Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Results Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Conclusion Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. PMID:24251665
Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L
2014-02-01
Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.
Katz, Eric G; Tan, Ronny BW; Rittenberg, Daniel; Hellstrom, Wayne J
2014-01-01
The treatment modalities of erectile dysfunction range from oral pharmacotherapy to intracavernosal injections, intraurethral pellets, vacuum erectile devices, and the surgical option of penile prosthesis insertion. Oral phosphodiesterase 5 inhibitors still remain the preferred treatment for patients since they are the least invasive, not to mention that they can be prescribed by non-urologists. Due to these factors, there has been development of newer drugs with fewer side effects. This is a review of the second generation phosphodiesterase 5 inhibitor, avanafil, looking into its pharmacology as well as its clinical utility. Avanafil’s faster onset and shorter duration of action has made it preferred as compared to other PDE5 inhibitors for patients with multiple comorbidities. PMID:25210457
2% Crisaborole topical ointment for the treatment of mild-to-moderate atopic dermatitis.
Cheape, Alice C; Murrell, Dedee F
2017-05-01
Crisaborole 2% topical ointment is an anti-inflammatory, non-steroidal phosphodiesterase 4 inhibitor which is currently under investigation for its potential role in the treatment of atopic dermatitis and psoriasis. Areas covered: So far, 7 trials have been completed in atopic dermatitis. The 2% strength appeared to be the superior dosing regimen. Pruritus improved significantly within one week. The improvements in objective efficacy assessments in crisaborole-treated patients were also statistically significant compared to the vehicle. Expert commentary: Crisaborole has several key features in its mode of action which distinguish it from existing treatments for atopic dermatitis (AD), notably its activity against the phosphodiesterase E4 (PDE4) pathway, regulating cyclic AMP (cAMP) levels. This is less immunosuppressive than other pathways and has no effect on skin thinning. The pathway interrupts the itch sensation (pruritus) which means that the itch-scratch cycle, the bane in the life of patients with AD, is interrupted, usually as early as a few days into treatment. Hence, with the promising safety profile demonstrated, early treatment of mild to moderate AD patients might help to control AD better and improve quality of life for patients.
Sildenafil Can Affect Innate and Adaptive Immune System in Both Experimental Animals and Patients
Boguska, Agnieszka
2017-01-01
Sildenafil, a type 5 phosphodiesterase inhibitor (PDE5-I), is primarily used for treating erectile dysfunction. Sildenafil inhibits the degradation of cyclic guanosine monophosphate (cGMP) by competing with cGMP for binding site of PDE5. cGMP is a secondary messenger activating protein kinases and a common regulator of ion channel conductance, glycogenolysis, and cellular apoptosis. PDE5 inhibitors (PDE-Is) found application in cardiology, nephrology, urology, dermatology, oncology, and gynecology. Positive result of sildenafil treatment is closely connected with its immunomodulatory effects. Sildenafil influences angiogenesis, platelet activation, proliferation of regulatory T cells, and production of proinflammatory cytokines and autoantibodies. Sildenafil action in humans and animals appears to be different. Surprisingly, it also acts differently in males and females organisms. Although the immunomodulatory effects of PDE5 inhibitors appear to be promising, none of them reached the point of being tested in clinical trials. Data on the influence of selective PDE5-Is on the human immune system are limited. The main objective of this review is to discuss the immunomodulatory effects of sildenafil in both patients and experimental animals. This is the first review of the current state of knowledge about the effects of sildenafil on the immune system. PMID:28316997
Castro-Ferreira, Ricardo; Neves, João Sérgio; Ladeiras-Lopes, Ricardo; Leite-Moreira, André M; Neiva-Sousa, Manuel; Almeida-Coelho, João; Ferreira-Martins, João; F Leite-Moreira, Adelino
2014-09-01
The myocardial response to acute stretch consists of a two-phase increase in contractility: an acute increase by the Frank-Starling mechanism and a gradual and time-dependent increase in force generated known as the slow force response (SFR). The SFR is actively modulated by different signaling pathways, but the role of protein kinase G (PKG) signaling is unknown. In this study we aim to characterize the role of the PKG signaling pathway in the SFR under normal and ischemic conditions. Rabbit papillary muscles were stretched from 92 to 100% of maximum length (Lmax) under basal conditions, in the absence (1) or presence of: a PKG agonist (2) and a PKG inhibitor (3); under ischemic conditions in the absence (4) or presence of: a PKG agonist (5); a nitric oxide (NO) donor (6) and a phosphodiesterase 5 (PDE5) inhibitor (7). Under normoxia, the SFR was significantly attenuated by inhibition of PKG and remained unaltered with PKG activation. Ischemia induced a progressive decrease in myocardial contractility after stretch. Neither the PKG agonist nor the NO donor altered the myocardial response to stretch under ischemic conditions. However, the use of a PDE5 inhibitor in ischemia partially reversed the progressive deterioration in contractility. PKG activity is essential for the SFR. During ischemia, a progressive decline in the force is observed in response to acute myocardial stretch. This dysfunctional response can be partially reversed by the use of PDE5 inhibitors. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference.
Mu, Ying; Ren, Zhaoxiang; Jia, Jia; Gao, Bo; Zheng, Longtai; Wang, Guanghui; Friedman, Eitan; Zhen, Xuechu
2014-09-25
Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum. Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced conditioned place preference (CPP). The results show that 2.5 mg/kg MP-10, administered subcutaneously, significantly inhibited the acquisition of morphine-induced CPP. The same dose of MP-10 alone did not result in the CPP. Moreover, MP-10 did not alter the expression of morphine-induced CPP, but did accelerate the extinction of morphine-induced CPP. Additionally, chronic treatment with 2.5 mg/kg MP-10 decreased expression of phosphorylated CREB (pCREB), activated cAMP response element binding protein, in dorsomedial striatum, in shell of NAc, and in anterior cingulate cortex (ACC) as well as decreased expression of ΔFosB in the shell of NAc and ACC. The results suggest that inhibition of PDE10A may have therapeutic potential in the treatment of opioid addiction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang,H.; Yan, Z.; Geng, J.
2007-01-01
Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Angstroms resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bondmore » with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.« less
Juergens, Uwe R; Stöber, M; Libertus, H; Darlath, W; Gillissen, A; Vetter, H
2004-07-30
Beta2-adrenergic receptor agonists have several effects on airway function, most of which are mediated in a variety of cell types resulting in increased c-AMP-production and inhibition of inflammatory mediator production. However, their stimulating effects on cAMP-production became known to be inversed by increasing phosphodiesterase (PDE) activity and degradation of cAMP. Therefore, in this study we have evaluated the efficacy of reproterol, a dual acting beta2-adrenoceptor agonist and PDE-inhibitor, as compared to salbutamol and fenoterol with respect to production of cAMP and LTB4 in cultured monocytes. Isolated human monocytes (10(5)/ml) were incubated (n = 9) in suspension with beta2-adrenoceptor agonists (10(-10) -10(-4) M) for 30 minutes with and without IBMX. Then, cAMP production was determined following treatment with Triton-X100. Production of LTB4 was measured following incubation of beta2-adrenoceptor agonists for 4 hrs in the presence of LPS (10 mg/ml). cAMP and LTB subset 4 were measured in culture supernatants by enzyme immunoassay. At 10(-5) M, production of cAMP was significantly stimulated by reproterol > fenoterol > salbutamol in a dose-dependent manner to an extent of *128%, *65%, 13% (*p<0.04) respectively. In contrast, LTB4-production was inhibited significantly to a similar degree by salbutamol and reproterol in a dose-dependent manner by 59% and 49% (10(-5) M, p<0.03), respectively, with decreasing inhibition (15%) after fenoterol. Following co-incubation with IBMX, cAMP production only increased significantly (p<0.002) after fenoterol (+110%) compared to salbutamol (+29%) and reproterol (+50%) (ANOVA, p<0.001). These data suggest effects of the theophylline constituent of reproterol to inhibit adenylyl cyclase induced phosphodiesterase activity. The advantageous synergistic effects of reproterol on cAMP-production need to be further explored in trials.
Heckman, P R A; Blokland, A; Bollen, E P P; Prickaerts, J
2018-04-01
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; ...
2014-08-05
Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a K M of 110 μM and a k cat of 16.9 s⁻¹ for cAMP and a K M of 105 μM and a k cat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (k cat/K McAMP)/(k cat/K M cGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMPmore » at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less
YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.
Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching
2012-04-15
Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E₁ (a stable PGE₂ analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE₁- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE₁ significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE₁-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE₁ also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE₁-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.
An assessment of the genetic toxicology of novel boron-containing therapeutic agents.
Ciaravino, Vic; Plattner, Jacob; Chanda, Sanjay
2013-06-01
Boron-containing compounds are being studied as potential therapeutic agents. As part of the safety assessment of these therapeutic agents, a battery of genetic toxicology studies was conducted. The battery included a bacterial reverse mutation (Ames) assay, an in vitro chromosome aberration assay in peripheral human lymphocytes, and an in vivo rat micronucleus study. The following compounds represent some of the boron-containing compounds that have been advanced to human clinical trials in various therapeutic areas. The borinic picolinate, AN0128, is an antibacterial compound with anti-inflammatory activity that has been studied in clinical trials for acne and the treatment of mild to moderate atopic dermatitis. AN2690 (tavaborole) is a benzoxaborole in Phase 3 clinical trials for the topical treatment of onychomycosis, a fungal infection of the toenails and fingernails. Another benzoxaborole derivative, AN2728, a phosphodiesterase-4 (PDE4) inhibitor, is in Phase 2 clinical trials for the treatment of atopic dermatitis. AN2898, also a PDE4 inhibitor, has been studied in clinical trials for atopic dermatitis and psoriasis. AN3365 is a leucyl-tRNA synthetase inhibitor that has been in clinical development for the treatment of various Gram-negative bacterial infections. These five representative compounds were negative in the three genotoxicity assays. Furthermore, AN2690 has been studied in mouse and rat 2-year bioassays and was not found to have any carcinogenic potential. These results demonstrate that it is possible to design boron-based therapeutic agents with no genetic toxicology liabilities. Copyright © 2013 Wiley Periodicals, Inc.
Calcium-dependent phosphodiesterase 1C inhibits renin release from isolated juxtaglomerular cells
Ortiz-Capisano, M. Cecilia; Liao, Tang-Dong; Ortiz, Pablo A.
2009-01-01
Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by calcium. We previously showed JG cells contain a calcium sensing receptor (CaSR), which, when stimulated, decreases cAMP formation and inhibits renin release. We hypothesize CaSR activation decreases cAMP and renin release, in part, by stimulating a calcium calmodulin-activated phosphodiesterase 1 (PDE1). We incubated our primary culture of JG cells with two selective PDE1 inhibitors [8-methoxymethil-IBMX (8-MM-IBMX; 20 μM) and vinpocetine (40 μM)] and the calmodulin inhibitor W-7 (10 μM) and measured cAMP and renin release. Stimulation of the JG cell CaSR with the calcimimetic cinacalcet (1 μM) resulted in decreased cAMP from a basal of 1.13 ± 0.14 to 0.69 ± 0.08 pM/mg protein (P < 0.001) and in renin release from 0.89 ± 0.16 to 0.38 ± 0.08 μg ANG I/ml·h−1·mg protein−1 (P < 0.001). However, the addition of 8-MM-IBMX with cinacalcet returned both cAMP (1.10 ± 0.19 pM/mg protein) and renin (0.57 ± 0.16 μg ANG I/ml·h−1·mg protein−1) to basal levels. Similar results were obtained with vinpocetine, and also with W-7. Combining 8-MM-IBMX and W-7 had no additive effect. To determine which PDE1 isoform is involved, we performed Western blot analysis for PDE1A, B, and C. Only Western blot analysis for PDE1C showed a characteristic band apparent at 80 kDa. Immunofluorescence showed cytoplasmic distribution of PDE1C and renin in the JG cells. In conclusion, PDE1C is expressed in isolated JG cells, and contributes to calcium's inhibitory modulation of renin release from JG cells. PMID:19741056
Gurney, Mark E; Cogram, Patricia; Deacon, Robert M; Rex, Christopher; Tranfaglia, Michael
2017-11-07
Fragile-X syndrome (FXS) patients display intellectual disability and autism spectrum disorder due to silencing of the X-linked, fragile-X mental retardation-1 (FMR1) gene. Dysregulation of cAMP metabolism is a consistent finding in patients and in the mouse and fly FXS models. We therefore explored if BPN14770, a prototypic phosphodiesterase-4D negative allosteric modulator (PDE4D-NAM) in early human clinical trials, might provide therapeutic benefit in the mouse FXS model. Daily treatment of adult male fmr1 C57Bl6 knock-out mice with BPN14770 for 14 days reduced hyperarousal, improved social interaction, and improved natural behaviors such as nesting and marble burying as well as dendritic spine morphology. There was no decrement in behavioral scores in control C57Bl6 treated with BPN14770. The behavioral benefit of BPN14770 persisted two weeks after washout of the drug. Thus, BPN14770 may be useful for the treatment of fragile-X syndrome and other disorders with decreased cAMP signaling.
The 4′-Hydroxyl Group of Resveratrol Is Functionally Important for Direct Activation of PPARα
Takizawa, Yoshie; Nakata, Rieko; Fukuhara, Kiyoshi; Yamashita, Hiroshi; Kubodera, Hideo; Inoue, Hiroyasu
2015-01-01
Long-term moderate consumption of red wine is associated with a reduced risk of developing lifestyle-related diseases such as cardiovascular disease and cancer. Therefore, resveratrol, a constituent of grapes and various other plants, has attracted substantial interest. This study focused on one molecular target of resveratrol, the peroxisome proliferator activated receptor α (PPARα). Our previous study in mice showed that resveratrol-mediated protection of the brain against stroke requires activation of PPARα; however, the molecular mechanisms involved in this process remain unknown. Here, we evaluated the chemical basis of the resveratrol-mediated activation of PPARα by performing a docking mode simulation and examining the structure-activity relationships of various polyphenols. The results of experiments using the crystal structure of the PPARα ligand-binding domain and an analysis of the activation of PPARα by a resveratrol analog 4-phenylazophenol (4-PAP) in vivo indicate that the 4′-hydroxyl group of resveratrol is critical for the direct activation of PPARα. Activation of PPARα by 5 μM resveratrol was enhanced by rolipram, an inhibitor of phosphodiesterase (PDE) and forskolin, an activator of adenylate cyclase. We also found that resveratrol has a higher PDE inhibitory activity (IC50 = 19 μM) than resveratrol analogs trans-4-hydroxystilbene and 4-PAP (IC50 = 27-28 μM), both of which has only 4′-hydroxyl group, indicating that this 4′-hydroxyl group of resveratrol is not sufficient for the inhibition of PDE. This result is consistent with that 10 μM resveratrol has a higher agonistic activity of PPARα than these analogs, suggesting that there is a feedforward activation loop of PPARα by resveratrol, which may be involved in the long-term effects of resveratrol in vivo. PMID:25798826
Regulation of Phosphodiesterase 3 in the Pulmonary Arteries During the Perinatal Period in Sheep
Chen, Bernadette; Lakshminrusimha, Satyan; Czech, Lyubov; Groh, Beezly S.; Gugino, Sylvia F.; Russell, James A.; Farrow, Kathryn N.; Steinhorn, Robin H.
2009-01-01
The role of cAMP in the pulmonary vasculature during the transition from intrauterine to extrauterine life is poorly understood. We hypothesized that cAMP levels are regulated by alterations in phosphodiesterase 3 (PDE3), which hydrolyzes cAMP. PDE3 protein expression and hydrolytic activity were increased in resistance pulmonary arteries (PA) from spontaneously breathing one-day-old (1dSB) lambs relative to equivalent-gestation fetuses. This was accompanied by a decrease in steady-state cAMP. Ventilation with 21% O2 and 100% O2 for 24h disrupted the normal transition, whereas ventilation with 100% O2+inhaled NO (iNO) for 24h restored both PDE3 activity and cAMP to 1dSB levels. Consistent with these findings, relaxation to milrinone, a PDE3 inhibitor, was greater in PA isolated from 1dSB and 100% O2+iNO lambs, relative to fetal, 21% O2, and 100% O2 lambs. In conclusion, PDE3 expression and activity in PA dramatically increase after birth, with a concomitant decrease in steady-state cAMP. Ventilation with either 21% O2 or 100% O2 blunts this PDE3 increase, whereas iNO restores PDE3 activity to levels equivalent to 1dSB lambs. The vasodilatory effects of milrinone were most pronounced in vessels from lambs with the highest PDE3 activity, i.e. 1dSB and 100% O2+iNO lambs. Thus, milrinone may be most beneficial when used in conjunction with iNO. PMID:19707176
Mydlo, Jack H; Viterbo, Rosalia; Crispen, Paul
2005-04-01
To report experience with combined therapy using intracorporal injection (ICI) of alprostadil and oral phosphodiesterase 5 (PDE-5) inhibitors for the minimally invasive treatment of erectile dysfunction (ED) after radical prostatectomy (RP), as PDE-5 inhibitors are effective but a few patients may have a suboptimal response. In a retrospective study, 34 men (aged 46-66 years) had a nerve-sparing retropubic RP and subsequent ED. Patients were titrated on sildenafil citrate or vardenafil to maximum doses. All had a suboptimal response after a maximum of eight doses of oral therapy and were then treated with ICI therapy using 15 or 20 microg alprostadil. Erectile function was assessed with the Sexual Health Inventory for Men (SHIM). Of the 32 patients who continued combined therapy, 22 (68%) had an improvement in erectile function after ICI therapy, as assessed by the SHIM score. On follow-up, 36% of these patients used ICI therapy only intermittently, instead of regularly, as they felt that this was adequate enough for good results. PDE-5 oral pharmacotherapy is the most commonly used effective therapy for ED but may not be as effective in patients who have radical surgery; the addition of testosterone patches may have side-effects or be considered a risk in patients with a history of prostate cancer. The use of ICI therapy as an adjunct or maintenance therapy to their oral medication may be another alternative in these patients.
Li, Longhu; Haider, Husnain Kh; Wang, Linlin; Lu, Gang; Ashraf, Muhammad
2012-05-15
We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction.
Li, Longhu; Haider, Husnain Kh.; Wang, Linlin; Lu, Gang
2012-01-01
We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction. PMID:22447941
Hoeper, Marius M; Simonneau, Gérald; Corris, Paul A; Ghofrani, Hossein-Ardeschir; Klinger, James R; Langleben, David; Naeije, Robert; Jansa, Pavel; Rosenkranz, Stephan; Scelsi, Laura; Grünig, Ekkehard; Vizza, Carmine Dario; Chang, MiKyung; Colorado, Pablo; Meier, Christian; Busse, Dennis; Benza, Raymond L
2017-09-01
A proportion of pulmonary arterial hypertension (PAH) patients do not reach treatment goals with phosphodiesterase-5 inhibitors (PDE5i). RESPITE investigated the safety, feasibility and benefit of switching from PDE5i to riociguat in these patients.RESPITE was a 24-week, open-label, multicentre, uncontrolled study. Patients in World Health Organization (WHO) functional class (FC) III, with 6-min walking distance (6MWD) 165-440 m, cardiac index <3.0 L·min -1 ·m -2 and pulmonary vascular resistance >400 dyn·s·cm -5 underwent a 1-3 day PDE5i treatment-free period before receiving riociguat adjusted up to 2.5 mg maximum t.i.d Exploratory end-points included change in 6MWD, WHO FC, N -terminal prohormone of brain natriuretic peptide (NT-proBNP) and safety.Of 61 patients enrolled, 51 (84%) completed RESPITE. 50 (82%) were receiving concomitant endothelin receptor antagonists. At week 24, mean±sd 6MWD had increased by 31±63 m, NT-proBNP decreased by 347±1235 pg·mL -1 and WHO FC improved in 28 patients (54%). 32 patients (52%) experienced study drug-related adverse events and 10 (16%) experienced serious adverse events (2 (3%) study drug-related, none during the PDE5i treatment-free period). Six patients (10%) experienced clinical worsening, including death in two (not study drug-related).In conclusion, selected patients with PAH may benefit from switching from PDE5i to riociguat, but this strategy needs to be further studied. Copyright ©ERS 2017.
Gupta, Surbhi; Sharma, Bhupesh
2014-06-05
Huntington׳s disease (HD), a devastating neurodegenerative disorder, is characterized by weight loss, impairment of motor function, cognitive dysfunction, neuropsychiatric disturbances and striatal damage. Phosphodiesterase-1 (PDE1) has been implicated in various neurological diseases. Mitochondrial potassium channels in the brain take part in neuroprotection. This study has been structured to investigate the role of vinpocetine, a selective PDE1 inhibitor as well as nicorandil, selective ATP sensitive potassium (KATP) channel opener in 3-nitropropionic acid (3-NP) induced HD symptoms in rats. Systemic administration of 3-NP significantly, reduced body weight, impaired locomotion, grip strength and impaired cognition. 3-NP elicited marked oxidative stress in the brain (enhanced malondialdehyde-MDA, reduced glutathione-GSH content, superoxide dismutase-SOD and catalase-CAT), elevated brain acetylcholinesterase activity and inflammation (myeloperoxidase-MPO), with marked nitrosative stress (nitrite/nitrate) in the brain. 3-NP has also induced mitochondrial dysfunction (impaired mitochondrial NADH dehydrogenase-complex I, succinate dehydrogenase-complex II and cytochrome oxidase-complex IV) activities in the striatum of the rat. Tetrabenazine was used as a positive control. Treatment with vinpocetine, nicorandil and tetrabenazine ameliorated 3-NP induced reduction in body weight, impaired locomotion, grip strength and impaired cognition. Treatment with these drugs reduced brain striatum oxidative (MDA, GSH, SOD and CAT) and nitrosative (nitrite/nitrate) stress, acetylcholinesterase activity, inflammation and mitochondrial dysfunctions. These results indicate that vinpocetine, a selective PDE1 inhibitor and nicorandil, a KATP channel opener have attenuated 3-NP induced experimental HD. Hence, pharmacological modulation of PDE1 as well as KATP channels may be considered as potential research targets for mitigation of HD. Copyright © 2014 Elsevier B.V. All rights reserved.
Ciaravino, Vic; Coronado, Dina; Lanphear, Cheryl; Chanda, Sanjay
2017-08-01
Crisaborole is a novel, topical nonsteroidal, anti-inflammatory, phosphodiesterase 4 (PDE4) inhibitor for the treatment of mild to moderate atopic dermatitis. As part of a nonclinical safety testing program, these 2-year studies tested the carcinogenic potential of crisaborole. Crisaborole ointment, 2%, 5%, or 7%, was applied once daily topically to mice, and crisaborole was administered orally to rats at doses of 30, 100, or 300mg/kg/day for up to 104 weeks. Systemic exposure to crisaborole and its metabolites, moribundity/death, clinical signs, and tumor formation were assessed in each study. Crisaborole treatment was not tumorigenic in mice at any of the doses administered and did not increase the incidence of neoplastic or nonneoplastic microscopic lesions compared with controls. Oral administration of crisaborole at the high dose (300mg/kg/day) to female rats increased the incidence of treatment-related benign granular cell tumors in the distal reproductive tract (uterus with cervix and vagina) but did not cause moribundity/death. Crisaborole was well tolerated and not tumorigenic in mice. It was not tumorigenic in male rats at 300mg/kg/day at exposures that were 3× the human area under the concentration-time curve (AUC 24 ) and was nontumorigenic in female rats at 100mg/kg/day at exposures that were 1× the human AUC 24 . Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Moustafa, Farah; Feldman, Steven R
2014-05-16
Phosphodiesterase inhibitors are commonly used drugs. Specific phosphodiesterase inhibitors with anti-inflammatory properties are being assessed as dermatological treatments. To describe important aspects of phosphodiesterase inhibition and the safety and efficacy of 2 phosphodiesterase- 4 inhibitors being studied for the treatment of dermatologic diseases We did a non-systematic analysis of literature on phosphodiesterase inhibition followed by a review of published information on apremilast and topical AN2728 and their use for psoriasis and atopic dermatitis. Apremilast and topical AN2728 have modest efficacy in treatment of psoriasis. Apremilast achieved PASI-75 scores ranging from 24-33%. In phase 2 studies, AN2728 had modest efficacy for psoriasis (40% of patients achieved a ≥ 2 grade improvement as assessed by the Overall target Plaque Severity Score). In phase 2 studies of AN2728 use in atopic dermatitis, subjects achieved a 71% improvement from baseline Atopic Dermatitis Severity Index. In all studies, most adverse effects were minimal. The limitations of this paper are the limited number of published studies, the lack of long-term data, and the lack of head -to - head trials directly comparing phosphodiesterase inhibitors with other treatments. Phosphodiesterase inhibitors constitute a widely used class of drugs that may see growing use for inflammatory dermatologic diseases.
Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei
2011-01-01
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943
Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A
2017-04-01
Familial isolated pituitary adenoma (FIPA) is caused in about 20% of cases by loss-of-function germline mutations in the AIP gene. Patients harboring AIP mutations usually present with somatotropinomas resulting either in gigantism or young-onset acromegaly. AIP encodes for a co-chaperone protein endowed with tumor suppressor properties in somatotroph cells. Among other mechanisms proposed to explain this function, a regulatory effect over the 3',5'-cyclic adenosine monophosphate (cAMP) signaling pathway seems to play a prominent role. In this setting, the well-known interaction between AIP and 2 different isoforms of phosphodiesterases (PDEs), PDE2A3 and PDE4A5, is of particular interest. While the interaction with over-expressed AIP does not seem to affect PDE2A3 function, the reported effect on PDE4A5 is, in contrast, reduced enzymatic activity. In this review, we explore the possible implications of these molecular interactions for the function of somatotroph cells. In particular, we discuss how both PDEs and AIP could act as negative regulators of the cAMP pathway in the pituitary, probably both by shared and independent mechanisms. Moreover, we describe how the evaluation of the AIP-PDE4A5 interaction has proven to be a useful tool for testing AIP mutations, complementing other in silico, in vitro, and in vivo analyses. Improved assessment of the pathogenicity of AIP mutations is indeed paramount to provide adequate guidance for genetic counseling and clinical screening in AIP mutation carriers, which can lead to prospective diagnosis of pituitary adenomas. © Georg Thieme Verlag KG Stuttgart · New York.
Zhang, Lijun; Seo, Jae Hong; Li, Huan; Nam, Ghilsoo; Yang, Hyun Ok
2018-05-30
Inhibition of PDE5 has been demonstrated to improve synaptic plasticity and memory via enhancing of cGMP expression, thus activating the cGMP/CREB signaling pathway. This study aimed to investigate the ameliorating effect of PDE5 inhibitor on scopolamine-induced cognitive dysfunction using memory-related behavioral tests and biochemical assays. After the mice were pretreated with PDE5 inhibitor, amnesia was induced by scopolamine administration. The learning and memory abilities of mice were tested using the Morris water maze test, the Y-maze test, the passive avoidance test and the novel object recognition test in sequence. Expression of memory-related bio-molecules and oxidative stress parameters in brain tissue were measured using western blot and spectrophotometry, respectively. KJH-1002, a novel inhibitor of phosphodiesterase 5 (PDE5), was synthesized (IC 50 of 0.059 ±0.04 nmol·L -1 ), and it markedly improved the memory performance impaired by scopolamine in the behavioral tests, indicating a restoration of cognitive function in the mice. Moreover, KJH-1002 increased the cGMP level in the cortex, the scopolamine-reduced expression of phosphorylated cAMP response element binding protein (CREB), extracellular-regulated kinase 1/2 (ERK 1/2), protein kinase B (Akt) and brain-derived neurotrophic factor (BDNF) in the cortex and hippocampus were reversed by KJH-1002 treatment. In addition, KJH-1002 administration increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR), and decreased the level of malondialdehyde (MDA). KJH-1002 restored cognitive function in scopolamine-induced amnesia mice by activating the cGMP/CREB signaling pathway and attenuating oxidative stress. The beneficial effect of KJH-1002 on cognition suggests its potential as a therapeutic candidate for Alzheimer's disease. This article is protected by copyright. All rights reserved.
Association of Phosphodiesterase 4D with ischemic stroke: a population-based case-control study.
Woo, Daniel; Kaushal, Ritesh; Kissela, Brett; Sekar, Padmini; Wolujewicz, Michael; Pal, Prodipto; Alwell, Kathleen; Haverbusch, Mary; Ewing, Irene; Miller, Rosie; Kleindorfer, Dawn; Flaherty, Matthew; Chakraborty, Ranajit; Deka, Ranjan; Broderick, Joseph
2006-02-01
The Phosphodiesterase 4D (PDE4D) gene was reported recently to be associated with ischemic stroke in an Icelandic population. The association was found predominately with large vessel and cardioembolic stroke. However, 2 recent reports were unable to confirm this association, although a trend toward association with cardioembolic stroke was reported. None of the reports included significant proportions of blacks. We tested for genotype and haplotype association of polymorphisms of the PDE4D gene with ischemic stroke in a population-based, biracial, case-control study. A total of 357 cases of ischemic stroke and 482 stroke-free controls from the same community were examined. Single nucleotide polymorphisms (SNPs) were chosen based on significant associations reported previously. Linkage disequilibrium (LD), SNP, and haplotype association analysis was performed using PHASE 2.0 and Haploview 3.2. Although several univariate associations were identified, only 1 SNP (rs2910829) was found to be significantly associated with cardioembolic stroke among both whites and blacks. The rs152312 SNP was associated with cardioembolic stroke among whites after multiple comparison corrections. The same SNP was not associated with cardioembolic stroke among blacks. However, significant haplotype association was identified for both whites and blacks for all ischemic stroke, cardioembolic stroke, and stroke of unknown origin. Haplotype association was identified for small vessel stroke among whites. PDE4D is a risk factor for ischemic stroke and, in particular, for cardioembolic stroke, among whites and blacks. Further study of this gene is warranted.
Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen
2014-01-01
Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434
Zhu, Bing; Strada, Samuel J
2007-01-01
PDE5 is a key enzyme involved in the regulation of cGMP-specific signaling pathways in normal physiological processes such as smooth muscle contraction and relaxation. For this reason, inhibition of the enzyme can alter those pathophysiological conditions associated with a lowering cGMP level in tissues. For example, selective PDE5 inhibitors, such as sildenafil (Viagra, Pfizer), tadalafil (Cialis, Lilly-ICOS), and vardenafil (Levitra, Bayer), have been successfully used to treat the condition of human erectile dysfunction. More recently, the involvement of this enzyme has been proposed to influence antiproliferation and proapoptotic mechanism in multiple carcinomas. The data supporting this idea is based on increases in PDE5 activities in many carcinomas and the ability of PDE5 inhibitors such as exisulind and its analogs related to anticancer activities. Inhibition of PDE5 that results in sustained increases in [cGMP](i) are required to modify the process of apoptosis and mitotic arrest in those carcinoma cells with enhanced PDE5 expressions. Increases in PDE5 are also involved in contributing to the pathological changes in the pulmonary system resulting in hyper-proliferative remodeling of both smooth muscle and endothelium in models of pulmonary hypertension. For this reason, the use of PDE5 inhibitors in the treatment of human pulmonary hypertension has met with some success. The differences that we have previously noted in PDE isoenzymes in pulmonary arterial and microvascular endothelial cells may provide a more selective cellular strategy for use of such inhibitor. Additional studies on structure biology of these enzymes should lead to the development of agents with better cellular specificity than currently available drugs. Considering the enormous progress that has been made in the last few years, the future looks promising for agents affecting this enzyme and related systems.
Shih, Chung-Hung; Chang, Tsu-Ya; Ko, Wun-Chang
2016-01-01
In traditional Chinese medicine (TCM), a combination of kudzu and Chen-Pi is frequently prescribed for relieving colds, fever, bronchitis, and cough. It contains daidzein and hesperetin, selective inhibitors of family 3 (PDE3), and 4 (PDE4) of phosphodiesterases (PDEs), respectively. In passively sensitized human airways, allergen-induced contraction was reported to be inhibited only by the simultaneous inhibition of PDE3 and PDE4, but not by single inhibition of either isozyme. Therefore, we are interested in investigating the interaction between daidzein and hesperetin on their antispasmodic effects in the isolated sensitized and non-sensitized guinea-pig tracheas, to clarify the difference between these two tissues, because effects of TCM prescription on patients with or without allergic asthma are often different. Guinea-pigs were sensitized by subcutaneous injection of ovalbumin (OVA) into legs. After sensitization, the baseline and cumulative OVA-induced contractions of the sensitized trachea were isometrically recorded on a polygraph. In the same way, the histamine (30 μM)-induced tonic contraction of non-sensitized guinea-pig trachea was recorded. The isobole method was used to analyze the antagonism and synergism between daidzein and hesperetin. The isoboles showed antagonism between daidzein and hesperetin on baseline relaxant effect and OVA (100 μg/ml)-induced contraction in the sensitized guinea-pig trachea. In contrast, the isobole showed synergism between daidzein and hesperetin on the relaxant effect of histamine-induced tonic contraction in non-sensitized guinea-pig trachea. These results suggest that the combination of kudzu and Chen-Pi for relieving colds, fever, bronchitis and cough is effective in patients without, but might show little effect in patients with allergic asthma.
Shih, Chung-Hung; Chang, Tsu-Ya; Ko, Wun-Chang
2016-01-01
In traditional Chinese medicine (TCM), a combination of kudzu and Chen-Pi is frequently prescribed for relieving colds, fever, bronchitis, and cough. It contains daidzein and hesperetin, selective inhibitors of family 3 (PDE3), and 4 (PDE4) of phosphodiesterases (PDEs), respectively. In passively sensitized human airways, allergen-induced contraction was reported to be inhibited only by the simultaneous inhibition of PDE3 and PDE4, but not by single inhibition of either isozyme. Therefore, we are interested in investigating the interaction between daidzein and hesperetin on their antispasmodic effects in the isolated sensitized and non-sensitized guinea-pig tracheas, to clarify the difference between these two tissues, because effects of TCM prescription on patients with or without allergic asthma are often different. Guinea-pigs were sensitized by subcutaneous injection of ovalbumin (OVA) into legs. After sensitization, the baseline and cumulative OVA-induced contractions of the sensitized trachea were isometrically recorded on a polygraph. In the same way, the histamine (30 μM)-induced tonic contraction of non-sensitized guinea-pig trachea was recorded. The isobole method was used to analyze the antagonism and synergism between daidzein and hesperetin. The isoboles showed antagonism between daidzein and hesperetin on baseline relaxant effect and OVA (100 μg/ml)-induced contraction in the sensitized guinea-pig trachea. In contrast, the isobole showed synergism between daidzein and hesperetin on the relaxant effect of histamine-induced tonic contraction in non-sensitized guinea-pig trachea. These results suggest that the combination of kudzu and Chen-Pi for relieving colds, fever, bronchitis and cough is effective in patients without, but might show little effect in patients with allergic asthma. PMID:27064479
Marte, Antonella; Pepicelli, Olimpia; Cavallero, Anna; Raiteri, Maurizio; Fedele, Ernesto
2008-11-15
We have characterized the various phosphodiesterases (PDE) that degrade cyclic GMP in the prefrontal cortex, hippocampus, and cerebellum using the microdialysis technique to measure in vivo extracellular cyclic GMP in awake rats. The following PDE blockers were used (100 and 1,000 microM): 8-methoxymethyl-IBMX (8-MM-IBMX), erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), milrinone, rolipram, and zaprinast. For solubility reasons, sildenafil was tested only at 100 microM. All drugs were administered locally in the brain regions through the dialysis probe. At 100 microM, 8-MM-IBMX enhanced the cyclic nucleotide extracellular levels in the prefrontal cortex and hippocampus but not in the cerebellum; EHNA and milrinone were active only in the hippocampus; rolipram was devoid of any effect; zaprinast and sildenafil were effective in all three brain areas. At 1 mM, 8-MM-IBMX, milrinone, and zaprinast increased extracellular cyclic GMP in all the brain regions examined, EHNA became active also in the prefrontal cortex and rolipram showed a significant effect only in the cerebellum. This is the first in vivo functional study showing that, in cortex, PDE1, -2, and -5/9 degrade cGMP, with PDE9 probably playing a major role; in hippocampus, PDE5/9 and PDE1 are mainly involved and seem almost equally active, but PDE2 and -3 also contribute; in cerebellum, PDE5/9 are the main cGMP hydrolyzing enzymes, but also PDE1 and -4 significantly operate.
Is PDE4 too difficult a drug target?
Higgs, Gerry
2010-05-01
The search for selective inhibitors of PDE4 as novel anti-inflammatory drugs has continued for more than 30 years. Although several compounds have demonstrated therapeutic effects in diseases such as asthma, COPD, atopic dermatitis and psoriasis, none have reached the market. A persistent challenge in the development of PDE4 inhibitors has been drug-induced gastrointestinal adverse effects, such as nausea. However, extensive clinical trials with well-tolerated doses of roflumilast (Daxas; Nycomed/Mitsubishi Tanabe Pharma Corp/Forest Laboratories Inc) in COPD, a disease that is generally unresponsive to existing therapies, have demonstrated significant therapeutic improvements. In addition, GlaxoSmithKline plc is developing 256066, an inhaled formulation of a PDE4 inhibitor that has demonstrated efficacy in trials in asthma, and apremilast from Celgene Corp has been reported to be effective for the treatment of psoriasis. Despite the challenges and complications that have been encountered during the development of PDE4 inhibitors, these drugs may provide a genuinely novel class of anti-inflammatory agents, and there are several compounds in development that could fulfill that promise.
Yuan, Jin-Qiu; Mao, Chen; Yang, Zu-Yao; Fu, Xiao-Hong; Wong, Samuel Y; Tang, Jin-Ling
2016-01-01
The effectiveness of phosphodiesterase type 5 inhibitors (PDE5-Is) for erectile dysfunction (ED) varies considerably among trials, but available studies investigating the factors that affect the effectiveness are few and findings are not consistent. A systematic search was performed in PubMed, Cochrane Library, and EMBASE to identify randomized controlled trials comparing PDE5-Is with placebo for the treatment of ED. The methodological quality of included studies was assessed by the Cochrane Collaboration's tool for assessing risk of bias. The associations between prespecified study-level factors and effectiveness were tested by a random effects meta-regression model. This study included 93 trials with 26 139 patients. When all PDE5-Is were grouped together, Caucasian ethnicity was associated with 15.636% (95% confidence interval [CI]: 0.858% to 32.579%) increase in risk ratio (RR) for Global Assessment Questionnaire question-1 (GAQ-1), and 1.473 (95% CI: 0.406 to 2.338) score increase in mean difference (MD) for posttreatment International Index of Erectile Function-Erectile Function domain score (IIEF-EF), compared to Asian ethnicity. A one-score increase in baseline IIEF-EF was associated with −5.635% (95% CI: −9.120% to −2.017%) reduction in RR for GAQ-1, and −0.229 (95% CI: −0.425 to −0.042) score decrease in MD for posttreatment IIEF-EF. In conclusion, PDE5-Is are more effective in Caucasians than Asians, and in patients with more severe ED. PMID:25966626
Aversa, Antonio; Bruzziches, Roberto; Francomano, Davide; Natali, Marco; Lenzi, Andrea
2009-01-01
Normal vascular endothelium is essential for the synthesis and release of substances affecting vascular tone (e.g. nitric oxide; NO), cell adhesion (e.g. endothelins, interleukins), and the homeostasis of clotting and fibrinolysis (e.g. plasminogen inhibitors, von Willebrand factor). The degeneration of endothelial integrity promotes adverse events (AEs) leading to increased atherogenesis and to the development of vascular systemic and penile end-organ disease. Testosterone (T) is an important player in the regulation of vascular tone through non-genomic actions exerted via blockade of extracellular-calcium entry or activation of potassium channels; also, adequate T concentrations are paramount for the regulation of phosphodiesterase type-5 (PDE5) expression and finally, for the actions exerted by hydrogen sulphide, a gas involved in the alternative pathway controlling vasodilator responses in penile tissue. It is known that an age-related decline of serum T is reported in approximately 20 to 30% of men whereas T deficiency is reported in up to 50% of men with metabolic syndrome or diabetes. A number of laboratory and human studies have shown the combination of T and other treatments for erectile dysfunction (ED), such as PDE5 inhibitors, to be more beneficial in patients with ED and hypogonadism, who fail monotherapy for sexual disturbances. The aim of this review is to show evidence on the role of T and PDE5 inhibitors, alone or in combination, as potential boosters of endothelial function in internal medicine diseases associated with reduced T or NO bioavailability, i.e. metabolic syndrome, obesity, diabetes, coronary artery disease, hyperhomocysteinemia, that share common risk factors with ED. Furthermore, the possibility of such a strategy to prevent endothelial dysfunction in men at increased cardiovascular risk is discussed. PMID:21789066
Yang, Kunlong; Liu, Yinghang; Liang, Linlin; Li, Zhenguo; Qin, Qiuping; Nie, Xinyi; Wang, Shihua
2017-04-01
Cyclic AMP signaling controls a range of physiological processes in response to extracellular stimuli in organisms. Among the signaling cascades, cAMP, as a second messenger, is orchestrated by adenylate cyclase (biosynthesis) and cAMP phosphodiesterases (PDEs) (hydrolysis). In this study, we investigated the function of the high-affinity (PdeH) and low-affinity (PdeL) cAMP phosphodiesterase from the carcinogenic aflatoxin producing fungus Aspergillus flavus, and found that instead of PdeL, inactivation of PdeH exhibited a reduction in conidiation and sclerotia formation. However, the ΔpdeL/ΔpdeH mutant exhibited an enhanced phenotype defects, a similar phenotype defects to wild-type strain treated with exogenous cAMP. The activation of PKA activity was inhibited in the ΔpdeH or ΔpdeL/ΔpdeH mutant, both of whom exhibited increasing AF production. Further analysis by qRT-PCR revealed that pdeH had a high transcriptional level compared to pdeL in wild-type strain, and affected pdeL transcription. Green fluorescent protein tagging at the C-terminus of PDEs showed that PdeH-GFP is broadly compartmentalized in the cytosol, while PdeL-GFP localized mainly to the nucleus. Overall, our results indicated that PdeH plays a major role, but has overlapping function with PdeL, in vegetative growth, development and AF biosynthesis in A. flavus. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Identification of New Signaling Components in the Sensory Epithelium of Human Saccule
Degerman, Eva; Rauch, Uwe; Göransson, Olga; Lindberg, Sven; Hultgårdh, Anna; Magnusson, Måns
2011-01-01
Objective: To locate components and target proteins of relevance for the cAMP and cGMP signaling networks including cAMP and cGMP phosphodiesterases (PDEs), salt-inducible kinases (SIKs), subunits of Na+, K+-ATPases, and aquaporins (AQPs) in the human saccule. Methods: The human saccule was dissected out during the removal of vestibular schwannoma via the translabyrinthine approach and immediately fixed. Immunohistochemistry was performed using PDE, SIK, Na+, K+-ATPase, and AQP antibodies. Results: PDEs selective for cAMP (PDE4A, PDE4D, and PDE8A) and cGMP (PDE9A) as well a dual specificity PDE (PDE10A) were detected in the sensory epithelium of the saccule. Furthermore, AQP2, 4, and 9, SIK1 and the α-1 subunit of the Na+, K+-ATPase were detected. Conclusion: cAMP and cGMP are important regulators of ion and water homeostasis in the inner ear. The identification of PDEs and SIK1 in the vestibular system offers new treatment targets for endolymphatic hydrops. Exactly how the PDEs are connected to SIK1 and the SIK1 substrate Na+, K+-ATPase and to AQPs 2, 4, 9 remains to be elucidated. The dissection of the signaling networks utilizing these components and evaluating their roles will add new basic knowledge regarding inner ear physiology. PMID:21886636
Bartolome, Fernando; de la Cueva, Macarena; Pascual, Consuelo; Antequera, Desiree; Fernandez, Tamara; Gil, Carmen; Martinez, Ana; Carro, Eva
2018-02-20
The phosphodiesterase (PDE) 7 inhibitor S14 is a cell-permeable small heterocyclic molecule that is able to cross the blood-brain barrier. We previously found that intraperitoneal treatment with S14 exerted neuroprotection in an Alzheimer's disease (AD) model (in APP/PS1 mice). The objective of this study was to investigate the neurogenic and cellular effects of oral administration of S14 on amyloid β (Aβ) overload. We orally administered the PDE7 inhibitor S14 (15 mg/kg/day) or vehicle in 6-month-old APP/PS1 mice. After 5 weeks of S14 treatment, we evaluated cognitive functions and brain tissues. We also assessed the effects of S14 on the Aβ-treated human neuroblastome SH-SY5Y cell line. Targeting the cyclic adenosine monophosphate (cAMP)/cAMP-response element binding protein (CREB) pathway, S14 rescued cognitive decline by improving hippocampal neurogenesis in APP/PS1 transgenic mice. Additionally, S14 treatment reverted the Aβ-induced reduction in mitochondrial mass in APP/PS1 mice and in the human neuroblastoma SH-SY5Y cells co-exposed to Aβ. The restoration of the mitochondrial mass was found to be a dual effect of S14: a rescue of the mitochondrial biogenesis formerly slowed down by Aβ overload, and a reduction in the Aβ-increased mitochondrial clearance mechanism of mitophagy. Here, we show new therapeutic effects of the PDE7 inhibitor, confirming S14 as a potential therapeutic drug for AD.
Rubio-Aurioles, Eusebio; El-Meliegy, Amr; Abdulwahed, Samer; Henneges, Carsten; Sorsaburu, Sebastian; Gurbuz, Sirel
2015-02-01
Phosphodiesterase type 5 (PDE5) inhibitors have discontinuation rates as high as 60% in men with erectile dysfunction. Treatment satisfaction has been significantly associated with treatment continuation. Understanding key characteristics in terms of treatment preference, relationship, and lifestyle issues could provide direction on how to improve compliance with PDE5 inhibitor treatment globally. The objective was to identify subgroups of interest in the pooled database of two observational studies conducted in Latin America (LA) and Middle East/North Africa (MENA) exploring patient characteristics and prescription of either a long- or short-acting PDE5 inhibitor at baseline. Two identical prospective, non-interventional, observational, studies in MENA (N = 493) and LA (N = 511) treated men with an 'on demand' (pro re nata, PRN) PDE5 inhibitor (sildenafil, tadalafil, vardenafil, or lodenafil) during 6 months. In this post-hoc meta-analysis of two observational studies with equal design, pooled data were analyzed to determine patient characteristics and PDE5 inhibitor prescribed/used most likely to be associated with patient expectations, satisfaction, self-esteem, and patient-partner relationships. Decision tree analyses, with and without weighting, were used to identify and describe key features. In each analysis of patient expectations, patient-partner relationship, and self-esteem, we describe the two major subgroups at baseline for each decision tree. Analyses of patient expectations and sexual self-esteem revealed that patients prescribed long-acting PDE5 inhibitors (59%) highlighted the importance of treatment effect duration, second to partner satisfaction with treatment, while patients prescribed short-acting PDE5 inhibitors (32%) placed less importance on treatment effect duration but considerable importance on treatment effect lasting until intercourse completion. Further insights regarding patients, partner relationship characteristics, and treatment expectations were identified. Our analyses have described key characteristics, such as self- and partner perceptions, sexual attitudes, and treatment expectations in relation to the patients' country and prescribed treatment, which might guide treatment decisions in MENA and LA men with ED.
Giannetta, Elisa; Feola, Tiziana; Gianfrilli, Daniele; Pofi, Riccardo; Dall'Armi, Valentina; Badagliacca, Roberto; Barbagallo, Federica; Lenzi, Andrea; Isidori, Andrea M
2014-10-20
The myocardial effects of phosphodiesterase type 5 inhibitors (PDE5i) have recently received consideration in several preclinical studies. The risk/benefit ratio in humans remains unclear. We performed a meta-analysis of randomized, placebo-controlled trials (RCTs) to evaluate the efficacy and safety of PDE5i on cardiac morphology and function. From March 2012 to December 2013 (update: May 2014), we searched English-language studies from MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials and SCOPUS-selecting RCTs of continuous PDE5i administration that reported cardiovascular outcomes: cardiac geometry and performance, afterload, endothelial function and safety. The pooled estimate of a weighted mean difference between treatment and placebo was obtained for all outcomes using a random effects model. A test for heterogeneity was performed and the I2 statistic calculated. Overall, 1,622 subjects were treated, with 954 randomized to PDE5i and 772 to placebo in 24 RCTs. According to our analysis, sustained PDE5 inhibition produced: (1) an anti-remodeling effect by reducing cardiac mass (-12.21 g/m2, 95% confidence interval (CI): -18.85; -5.57) in subjects with left ventricular hypertrophy (LVH) and by increasing end-diastolic volume (5.00 mL/m2; 95% CI: 3.29; 6.71) in non-LVH patients; (2) an improvement in cardiac performance by increasing cardiac index (0.30 L/min/m2, 95% CI: 0.202; 0.406) and ejection fraction (3.56%, 95% CI: 1.79; 5.33). These effects are parallel to a decline of N-terminal-pro brain natriuretic peptide (NT-proBNP) in subjects with severe LVH (-486.7 pg/ml, 95% CI: -712; -261). PDE5i administration also produced: (3) no changes in afterload parameters and (4) an improvement in flow-mediated vasodilation (3.31%, 95% CI: 0.53; 6.08). Flushing, headache, epistaxis and gastric symptoms were the commonest side effects. This meta-analysis suggests for the first time that PDE5i have anti-remodeling properties and improve cardiac inotropism, independently of afterload changes, with a good safety profile. Given the reproducibility of the findings and tolerability across different populations, PDE5i could be reasonably offered to men with cardiac hypertrophy and early stage heart failure. Given the limited gender data, a larger trial on the sex-specific response to long-term PDE5i treatment is required.
Sugita, Minoru; Miyakawa, Michiko
2010-07-01
The size of the market for counterfeit drugs throughout the world is considerable. Many cases of health impairment due to counterfeits have been reported. The market share of counterfeits in drug markets in developed countries is smaller than that in developing countries. However, the size of the market for counterfeits of phosphodiesterase type 5 inhibitors (PDE5Is) used as anti-erectile-dysfunction drugs is not small. The purpose of the present study was to analyze the health impairment risk of taking the counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, using an economic methodology in order to work out countermeasures for reducing the health impairment risk. Information was obtained by interviewing employees of pharmaceutical and chemical corporations in Japan. The size of the market for counterfeit PDE5Is in Japan was recently estimated to be about 2.5 times larger than that of genuine PDE5Is. The price of the counterfeits in their market is reported to be nearly equal to that of the genuine PDE5Is. An outbreak of severe hypoglycemia among users of counterfeit PDE5Is containing an antidiabetic drug in Singapore was reported in 2008, and seven patients remained comatose as a result of prolonged neuroglycopenia. Four of them subsequently died, so the health impairment risk due to counterfeit PDE5Is should not be ignored. In order to obtain a genuine PDE5I in Japan, a patient must be examined and have a prescription written at a medical institution, and buy it at a dispensing pharmacy. Focusing on the health impairment risk due to counterfeit PDE5Is and the convenience of obtaining the counterfeits in Japan, we analyzed the effects on the prices and quantities of PDE5Is in the market from demand and supply curves, using an economic methodology. From the analysis, it was shown that the health impairment risk due to the counterfeits is underestimated in the market in Japan. Physicians should warn their patients not to buy counterfeit PDE5Is, and when they write a prescription for purchasing genuine PDE5Is, should inform their patients of the severe health problems that occurred in Singapore. The present economic analysis indicates that the health impairment risk due to counterfeit PDE5Is is underestimated in the market in Japan. Clarification of the underestimation of the severe health impairment risk due to counterfeits is important.
Paller, Amy S; Tom, Wynnis L; Lebwohl, Mark G; Blumenthal, Robin L; Boguniewicz, Mark; Call, Robert S; Eichenfield, Lawrence F; Forsha, Douglass W; Rees, William C; Simpson, Eric L; Spellman, Mary C; Stein Gold, Linda F; Zaenglein, Andrea L; Hughes, Matilda H; Zane, Lee T; Hebert, Adelaide A
2016-09-01
Additional topical treatments for atopic dermatitis (AD) are needed that provide relief while minimizing risks. We sought to assess the efficacy and safety of crisaborole ointment, a phosphodiesterase 4 inhibitor, in two phase III AD studies (AD-301: NCT02118766; AD-302: NCT02118792). Two identically designed, vehicle-controlled, double-blind studies enrolled and randomly assigned (2:1, crisaborole:vehicle) patients aged 2 years or older with an Investigator's Static Global Assessment (ISGA) score of mild or moderate for twice-daily application for 28 days. The primary end point was ISGA score at day 29 of clear (0)/almost clear (1) with 2-grade or greater improvement from baseline. Additional analyses included time to success in ISGA score, percentage of patients achieving clear/almost clear, reduction in severity of AD signs, and time to improvement in pruritus. More crisaborole- than vehicle-treated patients achieved ISGA score success (clear/almost clear with ≥2-grade improvement; AD-301: 32.8% vs 25.4%, P = .038; AD-302: 31.4% vs 18.0%, P < .001), with a greater percentage with clear/almost clear (51.7% vs 40.6%, P = .005; 48.5% vs 29.7%, P < .001). Crisaborole-treated patients achieved success in ISGA score and improvement in pruritus earlier than those treated with vehicle (both P ≤ .001). Treatment-related adverse events were infrequent and mild to moderate in severity. Short study duration was a limitation. Crisaborole demonstrated a favorable safety profile and improvement in all measures of efficacy, including overall disease severity, pruritus, and other signs of AD. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
2007-04-01
ductal prostate adenocarcinomas in NBL / Cr and Sprague-Dawley Hsd:SD rats treated with a combination of testosterone and estradiol-17h or...Androl 1981;2(6):293–9. 80] Bosland MC, Ford H, Horton L. Induction at high incidence of ductal prostate adenocarcinomas in NBL /Cr and Sprague–Dawley
De Jonge, Hugo R.; Tilly, Ben C.; Hogema, Boris M.; Pfau, Daniel J.; Kelley, Catherine A.; Kelley, Megan H.; Melita, August M.; Morris, Montana T.; Viola, Ryan M.
2013-01-01
The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG. PMID:24259420
Lux, Arpad; Pokreisz, Peter; Swinnen, Melissa; Caluwe, Ellen; Gillijns, Hilde; Szelid, Zsolt; Merkely, Bela; Janssens, Stefan P
2016-02-01
Enhanced cyclic guanosine monophosphate (cGMP) signaling may attenuate myocardial ischemia-reperfusion injury (I/R) and improve left ventricular (LV) functional recovery after myocardial infarction (MI). We investigated the cardioprotection afforded by inhaled NO (iNO), the phosphodiesterase 5 (PDE5)-specific inhibitor tadalafil (TAD), or their combination (iNO+TAD) in C57Bl6J mice subjected to 6-minute left anterior descending artery ligation followed by reperfusion. We measured plasma and cardiac concentrations of cGMP during early reperfusion, quantified myocardial necrosis and inflammation by serial troponin-I (TnI) and myeloperoxidase-positive cell infiltration at day 3, and evaluated LV function and remodeling after 4 weeks using echocardiography and pressure-conductance catheterization. Administration of iNO, TAD, or both during I/R was safe and hemodynamically well tolerated. Compared with untreated mice (CON), only iNO+TAD increased plasma and cardiac-cGMP levels during early reperfusion (80 ± 12 versus 36 ± 6 pmol/ml and 0.15 ± 0.02 versus 0.05 ± 0.01 pmol/mg protein, P < 0.05 for both). Moreover, iNO+TAD reduced TnI at 4 hours to a greater extent (P < 0.001 versus CON) than either alone (P < 0.05 versus CON) and was associated with significantly less myocardial inflammatory cell infiltration at day 3. After 4 weeks and compared with CON, iNO+TAD was associated with increased fractional shortening (43 ± 1 versus 33 ± 2%, P < 0.01), larger stroke volumes (14.9 ± 1.2 versus 10.2 ± 0.9 μl, P < 0.05), enhanced septal and posterior wall thickening (P < 0.05 and P < 0.001, respectively), and attenuated LV dilatation (P < 0.001), whereas iNO or TAD alone conferred less benefit. Thus, iNO+TAD has superior efficacy to limit early reperfusion injury and attenuate adverse LV remodeling. Combination of inhaled NO with a long-acting PDE5 inhibitor may represent a promising strategy to reduce ischemic damage following reperfusion and better preserve LV function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Hu, Yun; Liu, Enkai; Bai, Xiaojia; Zhang, Aili
2010-03-01
The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.
Novel approaches to the management of noneosinophilic asthma
Thomson, Neil C.
2016-01-01
Noneosinophilic airway inflammation occurs in approximately 50% of patients with asthma. It is subdivided into neutrophilic or paucigranulocytic inflammation, although the proportion of each subtype is uncertain because of variable cut-off points used to define neutrophilia. This article reviews the evidence for noneosinophilic inflammation being a target for therapy in asthma and assesses clinical trials of licensed drugs, novel small molecules and biologics agents in noneosinophilic inflammation. Current symptoms, rate of exacerbations and decline in lung function are generally less in noneosinophilic asthma than eosinophilic asthma. Noneosinophilic inflammation is associated with corticosteroid insensitivity. Neutrophil activation in the airways and systemic inflammation is reported in neutrophilic asthma. Neutrophilia in asthma may be due to corticosteroids, associated chronic pulmonary infection, altered airway microbiome or delayed neutrophil apoptosis. The cause of poorly controlled noneosinophilic asthma may differ between patients and involve several mechanism including neutrophilic inflammation, T helper 2 (Th2)-low or other subtypes of airway inflammation or corticosteroid insensitivity as well as noninflammatory pathways such as airway hyperreactivity and remodelling. Smoking cessation in asthmatic smokers and removal from exposure to some occupational agents reduces neutrophilic inflammation. Preliminary studies of ‘off-label’ use of licensed drugs suggest that macrolides show efficacy in nonsmokers with noneosinophilic severe asthma and statins, low-dose theophylline and peroxisome proliferator-activated receptor gamma (PPARγ) agonists may benefit asthmatic smokers with noneosinophilic inflammation. Novel small molecules targeting neutrophilic inflammation, such as chemokine (CXC) receptor 2 (CXCR2) antagonists reduce neutrophils, but do not improve clinical outcomes in studies to date. Inhaled phosphodiesterase (PDE)4 inhibitors, dual PDE3 and PDE4 inhibitors, p38MAPK (mitogen-activated protein kinase) inhibitors, tyrosine kinase inhibitors and PI (phosphoinositide) 3kinase inhibitors are under development and these compounds may be of benefit in noneosinophilic inflammation. The results of clinical trials of biological agents targeting mediators associated with noneosinophilic inflammation, such as interleukin (IL)-17 and tumor necrosis factor (TNF)-α are disappointing. Greater understanding of the mechanisms of noneosinophilic inflammation in asthma should lead to improved therapies. PMID:26929306
Estimating the magnitude of near-membrane PDE4 activity in living cells.
Xin, Wenkuan; Feinstein, Wei P; Britain, Andrea L; Ochoa, Cristhiaan D; Zhu, Bing; Richter, Wito; Leavesley, Silas J; Rich, Thomas C
2015-09-15
Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. Copyright © 2015 the American Physiological Society.
Estimating the magnitude of near-membrane PDE4 activity in living cells
Xin, Wenkuan; Feinstein, Wei P.; Britain, Andrea L.; Ochoa, Cristhiaan D.; Zhu, Bing; Richter, Wito; Leavesley, Silas J.
2015-01-01
Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. PMID:26201952
Patocskai, Bence; Barajas-Martinez, Hector; Hu, Dan; Gurabi, Zsolt; Koncz, István; Antzelevitch, Charles
2016-06-01
Early repolarization syndrome (ERS) is associated with polymorphic ventricular tachycardia (PVT) and ventricular fibrillation, leading to sudden cardiac death. The present study tests the hypothesis that the transient outward potassium current (Ito)-blocking effect of phosphodiesterase-3 (PDE-3) inhibitors plays a role in reversing repolarization heterogeneities responsible for arrhythmogenesis in experimental models of ERS. Transmembrane action potentials (APs) were simultaneously recorded from epicardial and endocardial regions of coronary-perfused canine left ventricular (LV) wedge preparations, together with a transmural pseudo-electrocardiogram. The Ito agonist NS5806 (7-15 μM) and L-type calcium current (ICa) blocker verapamil (2-3 μM) were used to induce an early repolarization pattern and PVT. After stable induction of arrhythmogenesis, the PDE-3 inhibitors cilostazol and milrinone or isoproterenol were added to the coronary perfusate. All were effective in restoring the AP dome in the LV epicardium, thus abolishing the repolarization defects responsible for phase 2 reentry and PVT. Arrhythmic activity was suppressed in 7 of 8 preparations by cilostazol (10 μM), 6 of 7 by milrinone (2.5 μM), and 7 of 8 by isoproterenol (0.1-1 μM). Using voltage clamp techniques applied to LV epicardial myocytes, both cilostazol (10 μM) and milrinone (2.5 μM) were found to reduce Ito by 44.4% and 40.4%, respectively, in addition to their known effects to augment ICa. Our findings suggest that PDE-3 inhibitors exert an ameliorative effect in the setting of ERS by producing an inward shift in the balance of current during the early phases of the epicardial AP via inhibition of Ito as well as augmentation of ICa, thus reversing the repolarization defects underlying the development of phase 2 reentry and ventricular tachycardia/ventricular fibrillation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Patocskai, Bence; Barajas-Martinez, Hector; Hu, Dan; Gurabi, Zsolt; Koncz, István; Antzelevitch, Charles
2016-01-01
Background Early Repolarization Syndrome (ERS) is associated with polymorphic ventricular tachycardia (PVT) and fibrillation (VF), leading to sudden cardiac death. Objective The present study tests the hypothesis that the Ito-blocking effect of phosphodiesterase-3 (PDE-3) inhibitors plays a role in reversing repolarization heterogeneities responsible for arrhythmogenesis in experimental models of ERS. Methods Transmembrane action potentials (AP) were simultaneously recorded from epicardial and endocardial regions of coronary-perfused canine left-ventricular (LV) wedge preparations, together with a transmural pseudo-ECG. The Ito-agonist NS5806 (7–15 μM) and ICa-blocker verapamil (2–3 uM) were used to induce an ER pattern and PVT. Results Following stable induction of arrhythmogenesis, the PDE-3 inhibitors cilostazol and milrinone or isoproterenol were added to the coronary perfusate. All were effective in restoring the AP dome in the LV epicardium, thus abolishing the repolarization defects responsible for phase-2-reentry (P2R) and PVT. Arrhythmic activity was suppressed in 7/8 preparations by cilostazol (10 μM), 6/7 by milrinone (2.5 μM) and 7/8 by isoproterenol (0.1–1μM). Using voltage clamp techniques applied to LV epicardial myocytes, both cilostazol (10 μM) and milrinone (2.5 μM) were found to reduce Ito by 44.4% and 40.4%, respectively, in addition to their known effects to augment ICa. Conclusions Our findings suggest that PDE-3 inhibitors exert an ameliorative effect in the setting of ERS by producing an inward shift in the balance of current in the early phases of the epicardial AP via inhibition of Ito as well as augmentation of ICa, thus reversing the repolarization defects underlying development of P2R and VT/VF. PMID:26820510
Pharmacology of the lower urinary tract
Hennenberg, Martin; Stief, Christian G.; Gratzke, Christian
2014-01-01
Pharmacology of the lower urinary tract provides the basis for medical treatment of lower urinary tract symptoms (LUTS). Therapy of LUTS addresses obstructive symptoms (frequently explained by increased prostate smooth muscle tone and prostate enlargement) in patients with benign prostate hyperplasia (BPH) and storage symptoms in patients with overactive bladder (OAB). Targets for medical treatment include G protein-coupled receptors (α1-adrenoceptors, muscarinic acetylcholine receptors, β3-adrenoceptors) or intracellular enzymes (5α-reductase; phosphodiesterase-5, PDE5). Established therapies of obstructive symptoms aim to induce prostate smooth muscle relaxation by α1-blockers or PDE5 inhibitors, or to reduce prostate growth and volume with 5α-reductase inhibitors. Available options for treatment of OAB comprise anitmuscarinics, β3-adrenoceptor agonists, and botulinum toxin A, which improve storage symptoms by inhibition of bladder smooth muscle contraction. With the recent approval of β3-antagonists, PDE inhibitors, and silodosin for therapy of LUTS, progress from basic research of lower urinary tract pharmacology was translated into new clinical applications. Further targets are in preclinical stages of examination, including modulators of the endocannabinoid system and transient receptor potential (TRP) channels. PMID:24744518
Pharmacotherapy of Sexual Dysfunctions : Current Status
Avasthi, Ajith; Biswas, Parthasarathy
2004-01-01
The sexual dysfunctions are one of the most prevalent conditions. Sexual dysfunctions can have profound effect on the psychological well-being of an individual and the psychosexual relationship of a couple. Management of the sexual dysfunction should be preceded by an accurate diagnosis reached after a complete medical and sexual history and physical examination. Current focus of researchers has been on understanding the pathophysiology of erectile dysfunction, premature ejaculation and other sexual dysfunctions that can help in developing newer pharmacological cures for these conditions. Recently, a number of clinical trials have studied the potential effectiveness of the phosphodiesterase (PDE)-5 inhibitor sildenafil in the treatment of Erectile Dysfunction (ED) and Premature Ejaculation (PME). The introduction of PDE-5 inhibitors like sildenafil, vardenafil and tadalafil has revolutionized the treatment of sexual dysfunctions. This review focuses on the recent pharmacological advances in the treatment of common sexual dysfunctions like ED and PME with special focus on the role of PDE-5 inhibitors. Also discussed is the pharmacological treatment of other less prevalent and recognized disorders like female sexual dysfunction, drug induced sexual dysfunction etc. PMID:21224902
Mang, Samuel; Bucher, Hannes; Nickolaus, Peter
2016-01-01
The scintillation proximity assay (SPA) technology has been widely used to establish high throughput screens (HTS) for a range of targets in the pharmaceutical industry. PDE12 (aka. 2'- phosphodiesterase) has been published to participate in the degradation of oligoadenylates that are involved in the establishment of an antiviral state via the activation of ribonuclease L (RNAse-L). Degradation of oligoadenylates by PDE12 terminates these antiviral activities, leading to decreased resistance of cells for a variety of viral pathogens. Therefore inhibitors of PDE12 are discussed as antiviral therapy. Here we describe the use of the yttrium silicate SPA bead technology to assess inhibitory activity of compounds against PDE12 in a homogeneous, robust HTS feasible assay using tritiated adenosine-P-adenylate ([3H]ApA) as substrate. We found that the used [3H]ApA educt, was not able to bind to SPA beads, whereas the product [3H]AMP, as known before, was able to bind to SPA beads. This enables the measurement of PDE12 activity on [3H]ApA as a substrate using a wallac microbeta counter. This method describes a robust and high throughput capable format in terms of specificity, commonly used compound solvents, ease of detection and assay matrices. The method could facilitate the search for PDE12 inhibitors as antiviral compounds.
Li, Junfeng; Zhang, Xiang; Jin, Hongjun; Fan, Jinda; Flores, Hubert; Perlmutter, Joel S.; Tu, Zhude
2015-01-01
A series of fluorine-containing PDE10A inhibitors were designed and synthesized to improve the metabolic stability of [11C]MP-10. Twenty of the 22 new analogues had high potency and selectivity for PDE10A: 18a–j, 19d–j, 20a–b, and 21b had IC50 values <5 nM for PDE10A. Seven F-18 labeled compounds [18F]18a–e, [18F]18g, and [18F]20a were radiosynthesized by 18F-introduction onto the quinoline rather than the pyrazole moiety of the MP-10 pharmacophore and performed in vivo evaluation. Biodistribution studies in rats showed ~2-fold higher activity in the PDE10A-enriched striatum than nontarget brain regions; this ratio increased from 5 to 30 min postinjection, particularly for [18F]18a–d and [18F]20a. Micro-PET studies of [18F]18d and [18F]20a in nonhuman primates provided clear visualization of striatum with suitable equilibrium kinetics and favorable metabolic stability. These results suggest this strategy may identify a 18F-labeled PET tracer for quantifying the levels of PDE10A in patients with CNS disorders including Huntington’s disease and schizophrenia. PMID:26430878
Pang, Yefei; Thomas, Peter
2018-03-22
Natriuretic peptide type C (NPPC) and its receptor, natriuretic peptide receptor 2 (NPR2), have essential roles in maintaining meiotic arrest of oocytes in several mammalian species. However, it is not known if a similar mechanism exists in non-mammalian vertebrates. Using zebrafish as a model, we show that Nppc is expressed in ovarian follicle cells, whereas Npr2 is mainly detected in oocytes. Treatment of intact and defolliculated oocytes with 100 nM NPPC for 6 h caused a large increase in cGMP concentrations, and a significant decrease in oocyte maturation (OM), an effect that was mimicked by treatment with 8-Br-cGMP. Treatment with E2 and G-1, the specific GPER agonist, also increased cGMP levels. Cyclic AMP levels were also increased by treatments with 8-Br-cGMP, E2 and G1. The estrogen upregulation of cAMP levels was blocked by co-treatment with AG1478, an inhibitor of EGFR activation. Gene expression of npr2, but not nppc, was significantly upregulated in intact oocytes by 6 h treatments with 20 nM E2 and G-1. Both cilostamide, a phosphodiesterase 3 (PDE3) inhibitor, and rolipram, a PDE4 inhibitor, significantly decreased OM of intact and defolliculated oocytes, and enhanced the inhibitory effects of E2 and G-1 on OM. These findings indicate the presence of a Nppc/Npr2/cGMP pathway maintaining meiotic arrest in zebrafish oocytes that is upregulated by estrogen activation of Gper. Collectively, the results suggest that Nppc through Npr2 cooperates with E2 through Gper in upregulation of cGMP levels to inhibit phosphodiesterase activity resulting in maintenance of oocyte meiotic arrest in zebrafish. Copyright © 2018 Elsevier Inc. All rights reserved.
Doggrell, S
2007-01-01
Erectile dysfunction (ED) affects up to 50% of men between the ages of 40 and 70 years of age. Sildenafil, vardenafil and tadalafil have all been shown to be similarly effective in the treatment of men with ED of vary etiologies, to have similar adverse effects profiles, and to improve quality-of-life by similar amounts. As these phosphodiesterase 5 (PDE5) inhibitors all increase the hypotensive effects of nitrates, they are not suitable for use in patients taking nitrates for the treatment of ischaemic heart disease. All three inhibitors must be used with caution in patients taking alpha(1)-adrenoceptors antagonists for benign prostatic hyperplasia. Although nonarteritic anterior ischaemic neuropathy has been reported in some users of the PDE5 inhibitors, there is no conclusive evidence that PDE5 inhibitors cause this rare effect. Tadalafil has a longer half-life than sildenafil or vardenafil, and a longer duration of action than sildenafil and vardenafil. Most preference studies have shown tadalafil to be preferred, but there are serious limitations to some of these studies. One approach to treatment is to give each patient a short- and long-acting agent, and for individuals to decide their preference.
The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.
Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud
2017-09-01
Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β 1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β 1 -induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.
The role of ventral striatal cAMP signaling in stress-induced behaviors
Plattner, Florian; Hayashi, Kanehiro; Hernandez, Adan; Benavides, David R.; Tassin, Tara C.; Tan, Chunfeng; Day, Jonathan; Fina, Maggy W.; Yuen, Eunice Y.; Yan, Zhen; Goldberg, Matthew S.; Nairn, Angus C.; Greengard, Paul; Nestler, Eric J.; Taussig, Ronald; Nishi, Akinori; Houslay, Miles D.; Bibb, James A.
2015-01-01
The cAMP/PKA signaling cascade is a ubiquitous pathway acting downstream of multiple neuromodulators. We found that the phosphorylation of phosphodiesterase-4 (PDE4) by cyclin-dependent protein kinase 5 (Cdk5) facilitates cAMP degradation and homeostasis of cAMP/PKA signaling. In mice, loss of Cdk5 throughout the forebrain elevated cAMP levels and increased PKA activity in striatal neurons, and altered behavioral responses to acute or chronic stressors. Ventral striatum- or D1 dopamine receptor-specific conditional knockout of Cdk5, or ventral striatum infusion of a small interfering peptide that selectively targets the regulation of PDE4 by Cdk5, all produced analogical effects on stress-induced behavioral responses. Together, our results demonstrate that altering cAMP signaling in medium spiny neurons of the ventral striatum can effectively modulate stress-induced behavioral states. We propose that targeting the Cdk5 regulation of PDE4 could be a new therapeutic approach for clinical conditions associated with stress, such as depression. PMID:26192746
Mirodenafil for the Treatment of Erectile Dysfunction: A Systematic Review of the Literature
Park, Hyun Jun; Moon, Kyung Hyun; Lee, Seung Wook; Lee, Won Ki; Kam, Sung Chul; Lee, Jun Ho
2014-01-01
Phosphodiesterase type 5 (PDE5) inhibitors are the most commonly used treatment for erectile dysfunction (ED). Since the launch of sildenafil, several drugs-including mirodenafil, sildenafil citrate (sildenafil), tadalafil, vardenafil HCL (vardenafil), udenafil, and avanafil-have become available. Mirodenafil is a newly developed pyrrolopyrimidinone compound, which is a potent, reversible, and selective oral PDE5 inhibitor. Mirodenafil was launched in Korea in 2007, and an orally disintegrating film of mirodenafil was developed in 2011 for benefitting patients having difficulty in swallowing tablets. This study aimed to review the pharmacokinetic characteristic profile of mirodenafil and report evidence on its efficacy in the case of ED. In addition, we reviewed randomized controlled studies of mirodenafil's daily administration and efficacy for lower urinary tract symptoms. PMID:24872948
Choi, Hye-In; Kim, Dong Young; Choi, Soon-Jin; Shin, Chang-Yup; Hwang, Sungjoo Tommy; Kim, Kyu Han; Kwon, Ohsang
2018-07-01
Cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, increases the intracellular level of cyclic adenosine monophosphate to cause vasodilation. Topical application of cilostazol is reported to improve local blood flow and enhance wound healing; however, its effect on human hair follicles is unknown. The purpose of this study was to determine the effect of cilostazol on hair growth. We investigated the expression of PDE3 in human dermal papilla cells (DPCs), outer root sheath cells (ORSCs), and hair follicles. The effects of cilostazol on DPC and ORSC proliferation were evaluated using BrdU and WST-1 assays. The expression of various growth factors in DPCs was investigated by growth factor antibody array. Additionally, hair shaft elongation was measured using ex vivo hair follicle organ cultures, and anagen induction was evaluated in C57BL/6 mice. Finally, the effects of cilostazol on vessel formation and activation of the mitogen-activated protein kinase pathway were evaluated. We confirmed high mRNA and protein expression of PDE3 in human DPCs. Cilostazol not only enhanced the proliferation of human DPCs but also regulated the secretion of several growth factors responsible for hair growth. Furthermore, it promoted hair shaft elongation ex vivo, with increased proliferation of matrix keratinocytes. Cilostazol also accelerated anagen induction by stimulating vessel formation and upregulating the levels of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38 after its topical application in C57BL/6 mice. Our results show that cilostazol promotes hair growth and may serve as a therapeutic agent for the treatment of alopecia. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Burton, Peter; Adams, David R; Abraham, Achamma; Allcock, Robert W; Jiang, Zhong; McCahill, Angela; Gilmour, Jane; McAbney, John; Kaupisch, Alexandra; Kane, Nicole M; Baillie, George S; Baker, Andrew H; Milligan, Graeme; Houslay, Miles D; Mountford, Joanne C
2010-12-15
hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.
Polito, Marina; Guiot, Elvire; Gangarossa, Giuseppe; Longueville, Sophie; Doulazmi, Mohamed; Valjent, Emmanuel; Hervé, Denis; Girault, Jean-Antoine
2015-01-01
Abstract Type 10A phosphodiesterase (PDE10A) is highly expressed in the striatum, in striatonigral and striatopallidal medium-sized spiny neurons (MSNs), which express D1 and D2 dopamine receptors, respectively. PDE10A inhibitors have pharmacological and behavioral effects suggesting an antipsychotic profile, but the cellular bases of these effects are unclear. We analyzed the effects of PDE10A inhibition in vivo by immunohistochemistry, and imaged cAMP, cAMP-dependent protein kinase A (PKA), and cGMP signals with biosensors in mouse brain slices. PDE10A inhibition in mouse striatal slices produced a steady-state increase in intracellular cAMP concentration in D1 and D2 MSNs, demonstrating that PDE10A regulates basal cAMP levels. Surprisingly, the PKA-dependent AKAR3 phosphorylation signal was strong in D2 MSNs, whereas D1 MSNs remained unresponsive. This effect was also observed in adult mice in vivo since PDE10A inhibition increased phospho-histone H3 immunoreactivity selectively in D2 MSNs in the dorsomedial striatum. The PKA-dependent effects in D2 MSNs were prevented in brain slices and in vivo by mutation of the PKA-regulated phosphorylation site of 32 kDa dopamine- and cAMP-regulated phosphoprotein (DARPP-32), which is required for protein phosphatase-1 inhibition. These data highlight differences in the integration of the cAMP signal in D1 and D2 MSNs, resulting from stronger inhibition of protein phosphatase-1 by DARPP-32 in D2 MSNs than in D1 MSNs. This study shows that PDE10A inhibitors share with antipsychotic medications the property of activating preferentially PKA-dependent signaling in D2 MSNs. PMID:26465004
Wang, Huanchen; Robinson, Howard; Ke, Hengming
2010-01-01
The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes. PMID:20861010
Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Robinson, H.; Ke, H.
2010-12-03
The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
H Wang; H Robinson; H Ke
2011-12-31
The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less
USDA-ARS?s Scientific Manuscript database
White lupin (Lupinus albus L.) is a phosphate (Pi) deficiency tolerant legume which develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and...
Pogrmic-Majkic, Kristina; Samardzija, Dragana; Fa, Svetlana; Hrubik, Jelena; Glisic, Branka; Kaisarevic, Sonja; Andric, Nebojsa
2014-11-01
Premature luteinization is a possible cause of infertility in women. It is currently unknown whether environmental chemicals can induce changes associated with premature luteinization. Using rat granulosa cells (GC) in vitro, we demonstrated that exposure to atrazine (ATR), a widely used herbicide, causes GC phenotype that resembles that of human premature luteinization. At the end of the 48-h stimulation with FSH, ATR-exposed GC showed (1) higher levels of progesterone, (2) overexpression of luteal markers (Star and Cyp11a1), and (3) an increase in progesterone:estradiol ratio above 1. Mechanistic experiments were conducted to understand the signaling events engaged by ATR that lead to this phenotype. Western blot analysis revealed prolonged phosphorylation of protein kinase B (AKT) and cAMP response element-binding protein (CREB) in ATR- and FSH-exposed GC. An increased level of ERK1/2-dependent transcriptional factor CCATT/enhancer-binding protein beta (CEBPB) was observed after 4 h of ATR exposure. Inhibitors of PI3K (wortmannin) and MEK (U0126) prevented ATR-induced rise in progesterone level and expression of luteal markers in FSH-stimulated GC. Atrazine intensified AKT and CEBPB signaling and caused Star overexpression in forskolin-stimulated GC but not in epidermal growth factor (EGF)-stimulated GC. In the presence of rolipram, a specific inhibitor of phosphodiesterase 4 (PDE4), ATR was not able to further elevate AKT phosphorylation, CEBPB protein level, and Star mRNA in FSH-stimulated GC, suggesting that ATR inhibits PDE4. Overall, this study showed that ATR acts as a FSH sensitizer leading to enhanced cAMP, AKT, and CEBPB signaling and progesterone biosynthesis, which promotes premature luteinization phenotype in GC. © 2014 by the Society for the Study of Reproduction, Inc.
Rubio-Aurioles, Eusebio; Reyes, Luis Antonio; Borregales, Leonardo; Cairoli, Carlos; Sorsaburu, Sebastian
2013-06-01
To assess persistence/adherence rates of phosphodiesterase type-5 inhibitor (PDE5I) on-demand dosing in Latin American men with erectile dysfunction (ED), and explore patient characteristics and treatment factors that may be predictive for PDE5I persistence and adherence. Men from Brazil, Mexico, and Venezuela with ED who were naïve to PDE5Is were prescribed sildenafil, tadalafil, vardenafil, or lodenafil on-demand dosing and asked to provide information about PDE5I use at baseline and at 1, 3, and 6 months. Patients were persistent if they used ≥1 dose during the 4 week period prior to each evaluation. Patients were adherent if they complied with dosing instructions during most recent dose. Main outcome measures included Persistence and Adherence Questionnaire (PAQ), Partner Relationship Questionnaire (PRQ), Self-Esteem and Relationship (SEAR) Questionnaire, and International Index of Erectile Function (IIEF). Multivariate logistic regression was used to identify factors associated with persistence and adherence. A total of 511 men were enrolled; most had mild to moderate ED (77.1%); 317 patients (62.0%) were prescribed tadalafil, 116 (22.7%) sildenafil, 75 (14.7%) vardenafil, and 3 (0.6%) lodenafil (not further analyzed). A total of 340 patients (66.5%) were 'persistent' at 6 months; 345 (67.5%) were 'adherent'. Persistence and adherence were associated with age, education level, and ED duration. Reasons for non-persistence included medication cost and lack of efficacy. Study limitations included its design, brief observation period, its bias observed toward tadalafil selection; its dependence on patient self-reporting, limited number of factors that were analyzed for persistence/adherence association, its small number of participating patients and Latin American countries, and inherent differences in PDE5I preference and medical practices. Approximately two-thirds of PDE5I-naïve, Latin American men with ED were persistent and adherent after 6 months of therapy. Factors like education level, ED severity, and ED duration were associated with persistence and adherence; additional study is warranted to investigate the predictive value of these factors.
Holbrook, M.; Coker, S. J.
1989-01-01
1. The aim of this study was to compare the effects of the non-selective phosphodiesterase (PDE) inhibitor, isobutylmethylxanthine (IBMX) and the selective PDE III inhibitor, milrinone, in a rabbit model of acute myocardial ischaemia. 2. Coronary artery occlusion caused changes in the ST-segment of the ECG and ectopic activity in all control rabbits. Ventricular fibrillation occurred in 10 out of 14 (71%) of these animals. Pretreatment with IBMX 100 micrograms kg-1 plus 10 micrograms kg-1 min-1, starting 10 min before coronary artery occlusion, reduced ischaemia-induced ST-segment changes and ventricular fibrillation occurred in only 10% of this group (n = 10). A similar dose of milrinone had no antiarrhythmic activity, whereas with a lower dose of milrinone, 30 micrograms kg-1 plus 3 micrograms kg-1 min-1 (n = 10), only 30% of rabbits fibrillated and ST-segment changes were attenuated. 3. Acute administration of both IBMX and milrinone reduced arterial blood pressure. With the higher dose of milrinone a significant effect was still present after 10 min of drug infusion. A greater hypotensive response to the higher dose of milrinone was observed in the rabbits which subsequently fibrillated during ischaemia. A marked tachycardia was also observed after administration of the higher dose of milrinone. 4. At the end of the experiment platelet aggregation was studied ex vivo. ADP-induced aggregation was reduced by pretreatment of the rabbits with milrinone but not IBMX. Both PDE inhibitors enhanced the ability of isoprenaline to inhibit ADP-induced platelet aggregation but milrinone was more effective, particularly at the higher dose.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2478245
Discovery of Phosphodiesterase 10A (PDE10A) PET Tracer AMG 580 to Support Clinical Studies.
Hu, Essa; Chen, Ning; Kunz, Roxanne K; Hwang, Dah-Ren; Michelsen, Klaus; Davis, Carl; Ma, Ji; Shi, Jianxia; Lester-Zeiner, Dianna; Hungate, Randall; Treanor, James; Chen, Hang; Allen, Jennifer R
2016-07-14
We report the discovery of PDE10A PET tracer AMG 580 developed to support proof of concept studies with PDE10A inhibitors in the clinic. To find a tracer with higher binding potential (BPND) in NHP than our previously reported tracer 1, we implemented a surface plasmon resonance assay to measure the binding off-rate to identify candidates with slower washout rate in vivo. Five candidates (2-6) from two structurally distinct scaffolds were identified that possessed both the in vitro characteristics that would favor central penetration and the structural features necessary for PET isotope radiolabeling. Two cinnolines (2, 3) and one keto-benzimidazole (5) exhibited PDE10A target specificity and brain uptake comparable to or better than 1 in the in vivo LC-MS/MS kinetics distribution study in SD rats. In NHP PET imaging study, [(18)F]-5 produced a significantly improved BPND of 3.1 and was nominated as PDE10A PET tracer clinical candidate for further studies.
NASA Astrophysics Data System (ADS)
Li, Jinxuan; Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Qian; Wu, Yinuo; Wu, Deyan; Luo, Hai-Bin
2018-05-01
Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of thirteen designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.
Yang, You-Lan; Chen, Chi-Li; Chen, Chi-Ming; Ko, Wun-Chang
2017-05-30
We recently reported that hesperetin-5,7,3'-O-triacetate (HTA) dually inhibited phosphodiesterase (PDE)3/4 with a therapeutic ratio of 20.8. The application and development of PDE4 inhibitors for treating asthma or COPD are limited by their side effects, such as nausea, vomiting and gastric hypersecretion. PDE4 inhibitors were reported to reverse xylazine/ketamine-induced anesthesia in rats and triggered vomiting in ferrets. Thus the reversing effect of HTA on xylazine/ketamine-induced anesthesia in mice was studied to assess emetic effect of HTA. The aim of this study was to prove the therapeutic effect of HTA without vomiting effect at an effective dose for treating COPD. Ten female BALB/c mice in each group were sensitized by ovalbumin (OVA) on days 0 and 14. On day 21, these mice were emphasized the sensitization by Freund's complete adjuvant. Mice were challenged by 1% OVA nebulization on days 28, 29, and 30. Airway hyperresponsiveness (AHR) was assessed on day 32 in each group, using the FlexiVent system to determine airway resistance (R L ) and lung dynamic compliance (C dyn ) in anesthetized ovalbumin (OVA)-sensitized and challenged mice. Each group was orally administered HTA (10 ~ 100 μmol/kg), roflumilast (1 and 5 mg/kg) or vehicles (controls) 2 h before and 6 and 24 h after OVA provocation. For comparison, sham-treated mice were challenged with saline instead of 1% OVA. The ability to reverse xylazine/ketamine-induced anesthesia by HTA or roflumilast for 3 h was determined in normal mice. We used roflumilast, a selective PDE4 inhibitor and bronchodilator for severe COPD approved by the US Food and Drug Administration, as a reference drug. In the results, HTA (100 μmol/kg, p.o.) or roflumilast (5 mg/kg, p.o.) significantly suppressed all R L values of MCh at 0.78 ~ 25 mg/mL and enhanced C dyn values of MCh at 3.125 ~ 25 mg/mL compared to OVA-sensitized and -challenged control mice. Orally administered 1, 3 or 10 mg/kg roflumilast, but not 30 or 100 μmol/kg HTA, significantly reversed xylazine/ketamine-induced anesthesia. In contrast to roflumilast, HTA may ameliorate COPD but induce few side effects of nausea, vomiting and gastric hypersecretion at an effective dose for treating COPD, because HTA did not reverse xylazine/ketamine-induced anesthesia in mice.
Jamnagerwalla, Juzar; Howard, Lauren E; Vidal, Adriana C; Moreira, Daniel M; Castro-Santamaria, Ramiro; Andriole, Gerald L; Freedland, Stephen J
2016-09-01
Despite routine use of phosphodiesterase type 5 inhibitor to treat erectile dysfunction the role in prostate cancer chemoprevention remains unclear. Only a few studies have explored the link between phosphodiesterase type 5 inhibitor use and prostate cancer. We tested the association between phosphodiesterase type 5 inhibitor and prostate cancer risk in the REDUCE (Reduction by Dutasteride of Prostate Cancer Events) trial. REDUCE was a 4-year multicenter study testing the effect of daily dutasteride on prostate cancer risk in men with prostate specific antigen 2.5 to 10.0 ng/ml and negative biopsy who underwent study mandated biopsies at 2 and 4 years. The association of phosphodiesterase type 5 inhibitor with overall prostate cancer risk and disease grade (Gleason 2-6 and 7-10) was examined using adjusted logistic and multinomial regression analysis. Secondary analysis was performed to explore the association between phosphodiesterase type 5 inhibitor and prostate cancer risk in North American men, given the significantly higher use of phosphodiesterase type 5 inhibitor in these subjects. Phosphodiesterase type 5 inhibitor was not associated with prostate cancer diagnosis (OR 0.90, 95% CI 0.68-1.20, p = 0.476), low grade disease (OR 0.93, 95% CI 0.67-1.27, p = 0.632) or high grade disease (OR 0.85, 95% CI 0.51-1.39, p = 0.508). An inverse trend was seen between phosphodiesterase type 5 inhibitor and prostate cancer diagnosis in North American men but this was not statistically significant (OR 0.67, 95% CI 0.42-1.07, p = 0.091). Phosphodiesterase type 5 inhibitor use was not associated with decreased prostate cancer diagnoses on post-hoc analysis of REDUCE. In North American men, who had much higher baseline use of phosphodiesterase type 5 inhibitor, this treatment was associated with an inverse trend of prostate cancer diagnosis that approached but did not reach statistical significance. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Silva, Adauto Carvalho; Toffoletto, Odaly; Lucio, Luiz Antonio Galvão; Santos, Paula Ferreira Dos; Afiune, Jorge Barros; Massud Filho, João; Tufik, Sergio
2010-02-01
Millions of men around the world suffer from erectile dysfunction, for which phosphodiesterase 5 inhibitors (PDE-5 inhibitors) are currently the first treatment option. Sexual activity and alcohol consumption are closely related, and the simultaneous use of alcohol and PDE-5 inhibitors can happen. Lodenafil carbonate is a new PDE-5 inhibitor, developed by a Brazilian pharmaceutical company. This work aimed at evaluating the cardiovascular safety of lodenafil carbonate, with and without simultaneous alcohol consumption. Fifteen male volunteers received 160 mg lodenafil carbonate (LC), in three different moments. Participants were assigned to three groups, treated with LC in fasting condition, with alcohol or receiving only placebo. The volunteers were continuously monitored during 24 hours for physical impairment, blood pressure, heart rate, QT interval and lodenafil's pharmacokinetic parameters. Lodenafil carbonate alone or with alcohol did not induce clinically relevant modifications in arterial blood pressure or heart rate. A statistically significant decrease in blood pressure was seen four hours after LC and alcohol intake, and an increase in heart rate six hours after intake of lodenafil carbonate alone. The QTc interval was not significantly modified. Lodenafil carbonate bioavailability was increased in 74% when drug intake was associated with alcohol. These results show that the use of lodenafil carbonate did not have clinically relevant effects on blood pressure or heart rate, and was not associated with QT interval prolongation. The association of lodenafil carbonate and alcohol affected its pharmacokinetic properties, increasing the bioavailability of the drug.
Granovsky, A E; Artemyev, N O
2001-06-15
Photoreceptor cGMP phosphodiesterases (PDE6) are uniquely qualified to serve as effector enzymes in the vertebrate visual transduction cascade. In the dark-adapted photoreceptors, the activity of PDE6 is blocked via tight association with the inhibitory gamma-subunits (Pgamma). The Pgamma block is removed in the light-activated PDE6 by the visual G protein, transducin. Transducin-activated PDE6 exhibits an exceptionally high catalytic rate of cGMP hydrolysis ensuring high signal amplification. To identify the structural determinants for the inhibitory interaction with Pgamma and the remarkable cGMP hydrolytic ability, we sought to reproduce the PDE6 characteristics by mutagenesis of PDE5, a related cyclic GMP-specific, cGMP-binding PDE. PDE5 is insensitive to Pgamma and has a more than 100-fold lower k(cat) for cGMP hydrolysis. Our mutational analysis of chimeric PDE5/PDE6alpha' enzymes revealed that the inhibitory interaction of cone PDE6 catalytic subunits (PDE6alpha') with Pgamma is mediated primarily by three hydrophobic residues at the entry to the catalytic pocket, Met(758), Phe(777), and Phe(781). The maximal catalytic rate of PDE5 was enhanced by at least 10-fold with substitutions of PDE6alpha'-specific glycine residues for the corresponding PDE5 alanine residues, Ala(608) and Ala(612). The Gly residues are adjacent to the highly conserved metal binding motif His-Asn-X-X-His, which is essential for cGMP hydrolysis. Our results suggest that the unique Gly residues allow the PDE6 metal binding site to adopt a more favorable conformation for cGMP hydrolysis.
Gentzel, Renee C; Toolan, Dawn; Roberts, Rhonda; Koser, Amy Jo; Kandebo, Monika; Hershey, James; Renger, John J; Uslaner, Jason; Smith, Sean M
2015-12-01
Phosphodiesterase 10A (PDE10A) has garnered attention as a potential therapeutic target for schizophrenia due to its prominent striatal expression and ability to modulate striatal signaling. The present study used the selective PDE10A inhibitor MP-10 and the dopamine D2 antagonist haloperidol to compare effects of PDE10A inhibition and dopamine D2 blockade on striatopallidal (D2) and striatonigral (D1) pathway activation. Our studies confirmed that administration of MP-10 significantly elevates expression of the immediate early genes (IEG) c-fos, egr-1, and arc in rat striatum. Furthermore, we demonstrated that MP-10 induced egr-1 expression was distributed evenly between enkephalin-containing D2-neurons and substance P-containing D1-neurons. In contrast, haloperidol (3 mg/kg) selectively activated egr-1 expression in enkephalin neurons. Co-administration of MP-10 and haloperidol (0.5 mg/kg) increased IEG expression to a greater extent than either compound alone. Similarly, in a rat catalepsy assay, administration of haloperidol (0.5 mg/kg) or MP-10 (3-30 mg/kg) did not produce cataleptic behavior when dosed alone, but co-administration of haloperidol with MP-10 (3 and 10 mg/kg) induced cataleptic behaviors. Interestingly, co-administration of haloperidol with a high dose of MP-10 (30 mg/kg) failed to produce cataleptic behavior. These findings are important for understanding the neural circuits involved in catalepsy and suggest that the behavioral effects produced by PDE10A inhibitors may be influenced by concomitant medication and the level of PDE10A inhibition achieved by the dose of the inhibitor. Copyright © 2015. Published by Elsevier Ltd.
Vignozzi, Linda; Gacci, Mauro; Cellai, Ilaria; Morelli, Annamaria; Maneschi, Elena; Comeglio, Paolo; Santi, Raffaella; Filippi, Sandra; Sebastianelli, Arcangelo; Nesi, Gabriella; Serni, Sergio; Carini, Marco; Maggi, Mario
2013-09-01
Metabolic syndrome (MetS) and benign prostate hyperplasia (BPH)/low urinary tract symptoms (LUTS) are often comorbid. Chronic inflammation is one of the putative links between these diseases. Phosphodiesterase type 5 inhibitors (PDE5i) are recognized as an effective treatment of BPH-related LUTS. One proposed mechanism of action of PDE5 is the inhibition of intraprostatic inflammation. In this study we investigate whether PDE5i could blunt inflammation in the human prostate. Evaluation of the effect of tadalafil and vardenafil on secretion of interleukin 8 (IL-8, a surrogate marker of prostate inflammation) by human myofibroblast prostatic cells (hBPH) exposed to different inflammatory stimuli. We preliminary evaluate histological features of prostatic inflammatory infiltrates in BPH patients enrolled in a randomized, double bind, placebo controlled study aimed at investigating the efficacy of vardenafil (10 mg/day, for 12 weeks) on BPH/LUTS. In vitro treatment with tadalafil or vardenafil on hBPH reduced IL-8 secretion induced by either TNFα or metabolic factors, including oxidized low-density lipoprotein, oxLDL, to the same extent as a PDE5-insensitive PKG agonist Sp-8-Br-PET-cGMP. These effects were reverted by the PKG inhibitor KT5823, suggesting a cGMP/PKG-dependency. Treatment with tadalafil or vardenafil significantly suppressed oxLDL receptor (LOX-1) expression. Histological evaluation of anti-CD45 staining (CD45 score) in prostatectomy specimens of BPH patients showed a positive association with MetS severity. Reduced HDL-cholesterol and elevated triglycerides were the only MetS factors significantly associated with CD45 score. In the MetS cohort there was a significant lower CD45 score in the vardenafil-arm versus the placebo-one. © 2013 Wiley Periodicals, Inc.
Varnes, Jeffrey G; Geschwindner, Stefan; Holmquist, Christopher R; Forst, Janet; Wang, Xia; Dekker, Niek; Scott, Clay W; Tian, Gaochao; Wood, Michael W; Albert, Jeffrey S
2016-01-01
Fragment-based drug design (FBDD) relies on direct elaboration of fragment hits and typically requires high resolution structural information to guide optimization. In fragment-assisted drug discovery (FADD), fragments provide information to guide selection and design but do not serve as starting points for elaboration. We describe FADD and high-throughput screening (HTS) campaign strategies conducted in parallel against PDE10A where fragment hit co-crystallography was not available. The fragment screen led to prioritized fragment hits (IC50's ∼500μM), which were used to generate a hypothetical core scaffold. Application of this scaffold as a filter to HTS output afforded a 4μM hit, which, after preparation of a small number of analogs, was elaborated into a 16nM lead. This approach highlights the strength of FADD, as fragment methods were applied despite the absence of co-crystallographical information to efficiently identify a lead compound for further optimization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Xifeng; Guan, Wei; Liu, Haoran; Tang, Kun; Yan, Libin; Zhang, Yangjun; Zeng, Jin; Chen, Zhiqiang; Xu, Hua; Ye, Zhangqun
2018-05-03
Lower ureteric stones and lower urinary tract symptoms are common in urology.Drug treatment is one of standard therapy,but the efficacy was controversial.Thus we aimed to investigate the efficacy and safety of monotherapy or combination therapy of adrenoceptor1 blockers and phosphodiesterase5 inhibitors for treatment. Randomized controlled trials up to November 2016 were retrieved from PubMed, the Cochrane Library, Web of Science and Embase. A total of 17 studies were included. We analyzed data through random or fixed effect models. The heterogeneity between studies was assessed by the I 2 test statistic. As for lower ureter stones, our analysis demonstrated tadalafil had a significantly lower incidence of abnormal ejaculation than adrenoceptor1 blockers (2.31 95%CI 0.22to0.84, P = 0.01),while combination therapy had a higher expulsion rate (2.49 95%CI 1.44to4.29, P = 0.001) and shorter expulsion time (- 1.98 95%CI -3.08to0.88, P = 0.0004) than tamsulosin. As for lower urinary tract symptoms, our analysis indicated adrenoceptor1 blockers was more effective than phosphodiesterase5 inhibitors on decreasing International Prostate Symptom Score (1.96 95%CI 0.03to3.89, P = 0.05) and Post-Void Residual (9.41 95%CI 1.40to14.41, P = 0.02) and phosphodiesterase5 inhibitors showed a greater effect than adrenoceptor1 blockers on improving Erectile Dysfunction (2.23 95%CI 1.24to3.22, P<0.0001).Combination therapy had a significantly better effect on International Prostate Symptom Score (1.47 95%CI 1.25to1.69, P<0.0001), Maximum flow rate (0.87 95%CI 0.71to1.04, P<0.0001), Post-Void Residual (10.74 95%CI 3.53to17.96,P = 0.004) and Quality of life (0.59 95%CI 0.22to0.97, P = 0.002) but was associated with higher incidences of adverse events (3.40 95%CI 1.82to6.36, P = 0.0001) than adrenoceptor1 blockers. Combination therapy had a significantly better effect on International Prostate Symptom Score (4.19 95%CI 3.34to5.04, P<0.0001), Maximum flow rate (1.86 95%CI 1.32to2.39, P<0.0001), Post-Void Residual (22.58 95%CI 9.13to36.04, P = 0.001) and Quality of life (0.68 95%CI 0.37to1.00, P<0.0001) without higher incidences of adverse events than PDE5-Is. In conclusion, this meta-analysis suggested combination therapy had a best efficacy of therapy for lower ureteric stones or lower urinary tract symptoms correlated with benign prostatic hyperplasia than monotherapy. Adrenoceptor1 blockers was more effective than phosphodiesterase5 inhibitors on International Prostate Symptom Score and Post-Void Residual. Both monotherapy and combination therapy were safe.
Albersen, Maarten; Linsen, Loes; Tinel, Hanna; Sandner, Peter; Van Renterghem, Koenraad
2013-05-01
Overall efficacy rates of phosphodiesterase type 5 inhibitors (PDE5-i) for erectile dysfunction (ED) are 60-70%. PDE5-i treatment failures currently have to resort to invasive treatment options for restoration of erectile function. AIMS.: To assess changes in the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase (PKG) pathway in human corpus cavernosum (HCC) of PDE5-i nonresponders compared with healthy controls. To evaluate the effects of BAY 60-4552, a stimulator of soluble guanylate cyclase (sGC), and vardenafil on relaxation of HCC strips from PDE5-i nonresponders. mRNA expression, morphological localization of the NO/cGMP/PKG pathway, and relaxant capacity of both compounds alone or combined. Analysis of variance, t-test or Mann-Whitney test based upon number of groups and normality of data. HCC tissues were harvested after consent from individuals undergoing penile prosthesis implantation (patients) and potent patients undergoing transurethral surgery (healthy controls, needle biopsy). HCC tissues of patients were compared with those of healthy controls for the expression of mRNA coding for PDE5A, eNOS, PKGα1, PKG2, sGCα1, sGCα2, sGCβ1, sGCβ2, α-smooth muscle actin (aSMA) and β-actin by quantitative polymerase chain reaction (qPCR). The respective proteins were localized using immunofluorescence. Tissue strips of patients were precontracted with phenylepinephrine followed by incubation with 1 μM of either vardenafil or BAY 60-4552, or both simultaneously. The main targets in the NO/cGMP/sGC pathway were downregulated in PDE5-i nonresponders. The pathway was morphologically located to HCC smooth muscle, of which the overall content was preserved in ED patients based on aSMA expression. BAY 60-4552 and vardenafil have synergistic effects on relaxation of HCC of PDE5-i nonresponders. The main limitation is the small amount of control tissue precluding functional testing on these samples. Despite downregulation of the NO/cGMP/PKG pathway, combining BAY 60-4552 with vardenafil significantly enhanced relaxation HCC strips of PDE5-i nonresponders. © 2013 International Society for Sexual Medicine.
Lau, Justin Kai-Chi; Li, Xiao-Bo; Cheng, Yuen-Kit
2010-04-22
Phosphodiesterases (PDEs) catalyze the hydrolysis of second messengers cAMP and cGMP in regulating many important cellular signals and have been recognized as important drug targets. Experimentally, a range of specificity/selectivity toward cAMP and cGMP is well-known for the individual PDE families. The study reported here reveals that PDEs might also exhibit selectivity toward conformations of the endogenous substrates cAMP and cGMP. Molecular dynamics simulations and free energy study have been applied to study the binding of the cAMP torsional conformers about the glycosyl bond in PDE10A2. The computational results elucidated that PDE10A2 is energetically more favorable in complex with the syn cAMP conformer (as reported in the crystal structure) and the binding of anti cAMP to PDE10A2 would lead to either a nonreactive configuration or significant perturbation on the catalytic pocket of the enzyme. This experimentally inaccessible information provides important molecular insights for the development of effective PDE10 ligands.
Filgueiras, Claudio C.; Krahe, Thomas E.; Medina, Alexandre E.
2010-01-01
Deficits in learning and memory have been extensively observed in animal models of fetal alcohol spectrum disorders (FASD). Here we use the Morris Maze to test whether Vinpocetine, a Phosphodiesterase type 1 inhibitor, restores learning performance in rats exposed to alcohol during the third trimester equivalent of human gestation. Long Evans rats received ethanol (5 g/Kg ip) or saline on alternate days from postnatal day (P) 4 to P10. Two weeks later (P25), the latency to find a hidden platform was evaluated (2 trials per day spaced at 40-min inter-trial intervals) during 4 consecutive days. Vinpocetine treatment started on the first day of behavioral testing: animals received vinpocetine (20 mg/kg ip) or vehicle solution every other day until the end of behavioral procedures. Early alcohol exposure significantly affected the performance to find the hidden platform. The average latency of ethanol exposed animals was significantly higher than that observed for the control group. Treatment of alcohol-exposed animals with vinpocetine restored their performance to control levels. Our results show that inhibition of PDE1 improves learning and memory deficits in rats early exposed to alcohol and provide evidence for the potential therapeutic use of vinpocetine in FASD. PMID:20219634
Kwon, Young Suk; Farber, Nicholas; Yu, Ji Woong; Rhee, Kevin; Han, Christopher; Ney, Patrick; Hong, Jeong Hee; Lee, Paul; Gupta, Nikhil; Kim, Wun-Jae; Kim, Isaac Yi
2018-05-09
Penile length (PL) shortening is an underreported phenomenon following radical prostatectomy (RP) and risk factors are not fully explored. We aimed to describe longitudinal patterns of PL recovery and evaluate factors predicting complete return to baseline PL. PL measurement was performed during a preoperative and postoperative follow-up visits at 7 days and 3, 6, 9, and 12 months. Patients who completely recovered (CR: N = 397) their preoperative stretched PL measured during at least one of their follow-up visits were compared to those with incomplete recovery (IR: N = 131). Recovery patterns were analyzed for both groups and were also compared in regards to demographics, nerve-sparing techniques, prostate size, cardiovascular risk profiles, and phosphodiesterase-5 inhibitor (PDE5i) uses. Logistic regression analyses were performed using age and other relevant clinicopathologic variables to predict PL recovery. 60.2% of the total study population regained their preoperative PL at 12 months. Average percent (length) differences from baseline were - 1.70% (- 0.25 cm) and - 16.42% (- 2.35 cm) in the CR and the IR groups, respectively (p < 0.001). Multivariate logistic regression demonstrated that younger age (OR 0.962; 95%CI 0.931-0.994; p = 0.019), high preoperative erectile function (EF) (OR 1.028; 95%CI 1.001-1.056; p = 0.046), and consistent PDE5i use (OR 1.998; 95%CI 1.166-3.425; p = 0.012) were independent predictors of CR. At 12-month follow up, PL difference for consistent PDE5iusers was statistically different from those who did not use PDE5i consistently (- 3.25%vs. -6.64%; P = 0.001). Age, preoperative EF, and consistent use of PDE5i were associated with complete recovery of baseline PL after RP. The therapeutic effect of PDE5i was most pronounced at 12-month visit, suggesting an added benefit with long-term use.
Rochais, Francesca; Vandecasteele, Grégoire; Lefebvre, Florence; Lugnier, Claire; Lum, Hazel; Mazet, Jean-Luc; Cooper, Dermot M F; Fischmeister, Rodolphe
2004-12-10
Intracardiac cAMP levels are modulated by hormones and neuromediators with specific effects on contractility and metabolism. To understand how the same second messenger conveys different information, mutants of the rat olfactory cyclic nucleotide-gated (CNG) channel alpha-subunit CNGA2, encoded into adenoviruses, were used to monitor cAMP in adult rat ventricular myocytes. CNGA2 was not found in native myocytes but was strongly expressed in infected cells. In whole cell patch-clamp experiments, the forskolin analogue L-858051 (L-85) elicited a non-selective, Mg2+ -sensitive current observed only in infected cells, which was thus identified as the CNG current (ICNG). The beta-adrenergic agonist isoprenaline (ISO) also activated ICNG, although the maximal efficiency was approximately 5 times lower than with L-85. However, ISO and L-85 exerted a similar maximal increase of the L-type Ca2+ current. The use of a CNGA2 mutant with a higher sensitivity for cAMP indicated that this difference is caused by the activation of a localized fraction of CNG channels by ISO. cAMP-dependent protein kinase (PKA) blockade with H89 or PKI, or phosphodiesterase (PDE) inhibition with IBMX, dramatically potentiated ISO- and L-85-stimulated ICNG. A similar potentiation of beta-adrenergic stimulation occurred when PDE4 was blocked, whereas PDE3 inhibition had a smaller effect (by 2-fold). ISO and L-85 increased total PDE3 and PDE4 activities in cardiomyocytes, although this effect was insensitive to H89. However, in the presence of IBMX, H89 had no effect on ISO stimulation of ICNG. This study demonstrates that subsarcolemmal cAMP levels are dynamically regulated by a negative feedback involving PKA stimulation of subsarcolemmal cAMP-PDE.
The role of phosphodiesterase activity on the temperature-dependent responses of calf cardiac vein.
Nurullahoglu, Z U
2013-01-01
To evaluate the role of phosphodiesterase (PDE) activity in the cooling (to 28 °C) and warming (41 °C)-induced effects of carbachol on calf cardiac vein. Rings obtained from calf hearts were suspended in organ baths containing 25 ml of Krebs-Henseleit solution, maintained at 37 °C, continuously gassed with 95%O2-5%CO2. At the end of the resting period the preparations were contracted with carbachol (10-9-3x10-4M), at 37 °C. The same protocol was repeated at 28 °C and 41 °C after the preparations were allowed to equilibrate at this temperature for 60 min. In order to analyze the role of PDE activity in the cooling-and warming-induced vascular response, carbachol (10-9-3x10-4M) was applied in the presence of cilostazol (10-6 M), IBMX (10-6 M) and rolipram (10-6 M), respectively. The sensitivity of carbachol was significantly lower during cooling, and higher during warming. Cooling to 28 and warming to 41 °C, after treatment with IBMX, cilostazol or rolipram, significantly decreased the sensitivity to carbachol (p<0.05). The results of the present study suggest that PDE activity plays an essential role in cooling-and warming-induced changes of calf cardiac vein treated with carbachol (Tab. 1, Fig. 2, Ref. 34). Text in PDF www.elis.sk.
Kim, Edward; Seftel, Allen; Goldfischer, Evan; Baygani, Simin; Burns, Patrick
2015-02-01
Phosphodiesterase type-5 inhibitors (PDE5Is) are first-line therapies for erectile dysfunction (ED). Sildenafil (SIL) and vardenafil (VAR) are approved for as-needed (PRN) dosing; tadalafil (TAD) is approved for both PRN and once-a-day (OaD) dosing for ED. Recent evidence suggests that TAD-OaD may be effective as therapy in men with an incomplete response to PRN-PDE5I therapy. This study evaluated whether TAD-OaD provides similar efficacy in men with ED who had previously demonstrated a partial response to PRN-PDE5I therapy. In this randomized, double-blind, placebo-controlled trial, men with a ≥3 month ED history received SIL 100 mg, TAD 20 mg, or VAR 20 mg during a 4 week open-label lead-in period. Those with International Index of Erectile Function - Erectile Function (IIEF-EF) domain scores <26 following lead-in treatment completed a 4 week washout period, then randomized to TAD 2.5 mg up-titrated to 5 mg, TAD 5 mg, or placebo (PBO) OaD for 12 weeks. MAIN OUTCOME MEASURES obtained from patients treated with TAD-OaD were compared to PBO-treated patients. Additionally, results of treatment with TAD-OaD were compared to results obtained from 4 week PRN-PDE5I therapy to determine whether OaD and PRN regimens provided comparable efficacy. NCT01130532. International Index of Erectile Function (IIEF) domain scores; Sexual Encounter Profile (SEP) questions 2-5. Endpoint data was obtained from 590 men (391 TAD; 199 PBO). RESULTS for all IIEF and SEP measures were significantly better for TAD-OaD (p < 0.001 for all) compared to PBO and were comparable to those observed during PRN-PDE5I treatment. TAD 2.5 mg and TAD 5 mg OaD therapy were safe and generally well tolerated. Tadalafil once daily is a viable alternative to as-needed PDE5I therapy in men with ED. Key limitations include the lack of a PRN PDE5I study group during the double-blind period, and that many more patients took tadalafil than sildenafil or vardenafil during the PRN period.
Lee, D M; Nazroo, J; Pendleton, N
2015-07-01
The objective of this study was to examine the association between sexual activities, problems and satisfaction, and ED and PDE5 inhibitor (PDE5i) use. A nationally representative sample of men (n=2612) aged 51-87 years from the English Longitudinal Study of Ageing completed an in-depth Sexual Relationships and Activities Questionnaire. Associations between ED and/or PDE5i use and sexual outcomes were explored using logistic regression models adjusted for age, health and lifestyle factors. PDE5i use in the preceding 3 months was reported by a total of 191 (7%) men, whereas 542 (21%) reported ED but no PDE5i use (untreated ED). Compared with men without ED, PDE5i users were more likely to be sexually active and report more frequent sexual intercourse. Men with untreated ED reported the lowest frequency of sexual activities. Compared with men without ED, both PDE5i users and those with untreated ED were more likely to report being concerned about their level of sexual desire, frequency of sexual activities, erectile function, waking erections and orgasmic experience. PDE5i users were also more concerned about and dissatisfied with their overall sex life than men without ED. This population-based study shows that while PDE5i use is associated with improved sexual functioning, this is not equally reflected in decreased levels of concern and dissatisfaction with their overall sexual health. Clinicians should be aware of this disparity between functional gains and continuing sexual concerns and dissatisfaction, and, where appropriate, offer psychosexual counselling as an adjunct to PDE5i medication.
Maresca, Luigi; D'Agostino, Mariantonietta; Castaldo, Luigi; Vitelli, Alessandra; Mancini, Maria; Torella, Giorgio; Lucci, Rosa; Albano, Giovanna; Del Forno, Domenico; Ferro, Matteo; Altieri, Vincenzo; Giallauria, Francesco; Vigorito, Carlo
2013-12-01
Erectile dysfunction (ED) affects about 50% of males aged 40-70 years old. ED shares with atherosclerotic disease several common risk factors; therefore, it may be considered a surrogate marker of atherosclerosis. Since phosphodiesterase-5 inhibitors are well known pharmacologic agents capable of significant improvement in ED, we designed this study to evaluate whether exercise training is of added value in patients with ED who are already on PDE-5 inhibitors. We recruited 20 male patients affected by ED with metabolic syndrome. At baseline, all patients underwent Cardio-Pulmonary Exercise Testing (CPET) and the International Index of Erectile Function (IIEF) test. After the initial evaluation, patients were subdivided into two groups: tadalafil group (group T, n = 10), who were maintained only on tadalafil therapy, and a tadalafil/exercise training group (T/E group, n = 10) who continued tadalafil but in addition underwent a2-month structured exercise training program. Basal anthropometric characteristics of study population showed no significant differences. Although both-groups showed at 2 months an improvement of the IIEF score, this was more evident in the T/E group (T group: 11.2 vs 14.2, P = 0.02; T/E group: 10.8 vs 20.1, P < 0.001). There was an improvement of oxygen consumption at peak exercise (VO(2peak)) only in the T/E group patients (T group: 13.63 +/- 2.03 vs 14.24 +/- 2.98 mL/kg/min; P = 0.521; T/E group: 13.41 +/- 2.97 vs 16.58 +/- 3.17 mL/kg/min; P = 0.006). A significant correlation was found between the changes in VO(2peak) and the modifications in IIEF score (r = 0.575; P = 0.001). Exercise training in ED patients treated with PDE-5 inhibitors is of added value since further improves ED, as evaluated by IIEF score, and increases functional capacity.
Yoshida, Hideo; Ashikawa, Yuka; Itoh, Shinsuke; Nakagawa, Takashi; Asanuma, Akimune; Tanabe, Sohei; Inoue, Yoshihiro; Hidaka, Hiroyoshi
2012-01-01
Background K-134 is a more potent antiplatelet drug with a selective inhibitory effect on phosphodiesterase 3 (PDE3) compared with its analogue, cilostazol. Objectives This study was performed to compare the ameliorating effects of K-134 and cilostazol on brain damage in an experimental photothrombotic cerebral infarction model. Methods and Results We investigated the effects of oral preadministration of PDE3 inhibitors in a rat stroke model established by photothrombotic middle cerebral artery (MCA) occlusion. K-134 significantly prolonged MCA occlusion time at doses >10 mg/kg, and reduced cerebral infarct size at 30 mg/kg in the stroke model (n = 12, 87.5±5.6 vs. 126.8±7.5 mm3, P<0.01), indicating its potent antithrombotic effect. On the other hand, the effects of cilostazol on MCA occlusion time and cerebral infarct size are relatively weak even at the high dosage of 300 mg/kg. Furthermore, K-134 blocked rat platelet aggregation more potently than cilostazol in vitro. Also in an arteriovenous shunt thrombosis model, K-134 showed an antithrombotic effect greater than cilostazol. Conclusions These findings suggest that K-134, which has strong antithrombotic activity, is a promising drug for prevention of cerebral infarction associated with platelet hyperaggregability. PMID:23110051
Yoshida, Hideo; Ashikawa, Yuka; Itoh, Shinsuke; Nakagawa, Takashi; Asanuma, Akimune; Tanabe, Sohei; Inoue, Yoshihiro; Hidaka, Hiroyoshi
2012-01-01
K-134 is a more potent antiplatelet drug with a selective inhibitory effect on phosphodiesterase 3 (PDE3) compared with its analogue, cilostazol. This study was performed to compare the ameliorating effects of K-134 and cilostazol on brain damage in an experimental photothrombotic cerebral infarction model. We investigated the effects of oral preadministration of PDE3 inhibitors in a rat stroke model established by photothrombotic middle cerebral artery (MCA) occlusion. K-134 significantly prolonged MCA occlusion time at doses >10 mg/kg, and reduced cerebral infarct size at 30 mg/kg in the stroke model (n = 12, 87.5±5.6 vs. 126.8±7.5 mm(3), P<0.01), indicating its potent antithrombotic effect. On the other hand, the effects of cilostazol on MCA occlusion time and cerebral infarct size are relatively weak even at the high dosage of 300 mg/kg. Furthermore, K-134 blocked rat platelet aggregation more potently than cilostazol in vitro. Also in an arteriovenous shunt thrombosis model, K-134 showed an antithrombotic effect greater than cilostazol. These findings suggest that K-134, which has strong antithrombotic activity, is a promising drug for prevention of cerebral infarction associated with platelet hyperaggregability.
The management of erectile dysfunction: innovations and future perspectives.
Leonardi, Rosario; Alemanni, Matteo
2011-03-01
Phosphodiesterase 5 (PDE5) inhibitors are recommended as first line therapy for the treatment of erectile dysfunction (ED). To date, three PDE5 inhibitors are on the market: sildenafil, vardenafil and tadalafil. These compounds are available as oral tablets; they are rapidly absorbed in the gastrointestinal tract and are excreted mainly in the fces and to a lexer extent in the urine. Recently, an orodisnersible formulation of feces and, to a lesser extent, in the urine. Recently, an orodispersible formulation of vardenafil (vardenafil ODT) has been developed, which is able to dissolve in the mouth within seconds, releasing a minty flavor, without the need of being swallowed with water. The clinical studies so far performed showed that vardenafil ODT has a bioavailability superior to the traditional film-coated tablet. Among the other PDE5 inhibitors under development we report mirodenafil, lodenafil carbonate, avalafil and SLx-2101 It is likely that in the future molecules that act on pathways other than the one of NO/cGMP will be available. Such as Rho-kinase inhibitors, which inhibit the mechanism that leads to smooth muscle contraction thus allowing erection and hydrogen sulphide (H2S), an endogenous molecule synthesized from cysteine that can be both a vasodilator and a vasoconstrictor according to its concentration.
Lee, J H; Chae, M R; Park, J K; Jeon, J H; Lee, S W
2012-01-01
ED is closely associated with its comorbidities (hypertension, dyslipidemia and lower urinary tract symptoms (LUTS)). Therefore, several drugs have been prescribed simultaneously with PDE5 inhibitors. If a specific medication for ED comorbidities has enhancing effects on PDE5 inhibitors, it offers alternative combination therapy in nonresponders to monotherapy with PDE5 inhibitors and allows clinicians to treat ED and its comorbidities simultaneously. To establish theoretical basis of choosing an appropriate medication for ED and concomitant disease, we examined the effects combining a PDE5 inhibitor with representative drugs for hypertension, dyslipidemia and LUTS on relaxing the corpus cavernosum of rabbits using the organ-bath technique. The effect of mirodenafil on relaxing phenylephrine-induced cavernosal contractions was significantly enhanced by the presence of 10(-4) M losartan, 10(-6) M nifedipine, 10(-6) M amlodipine, 10(-7) M doxazosin and 10(-9) M tamsulosin (P<0.05). The maximum relaxation effects were 47.2±3.8%, 57.6±2.6%, 64.0±3.7%, 76.1±5.7% and 71.7±5.4%, respectively. Enalapril and simvastatin had no enhancing effects. The relaxation induced by sodium nitroprusside alone (39.0±4.0%) was significantly enhanced in the presence of the 10(-4) M losartan (66.0±6.0%, P<0.05). Tetraethylammonium (1 mM) significantly inhibited the enhancement effects of tamsulosin and doxazosin on mirodenafil-induced relaxation (doxazosin: 76.1±5.7% vs 45.3±2.3%; tamsulosin: 71.7±5.4% vs 48.1±3.5%). On the basis of these findings, losartan seemed to induce synergistic effects through an interaction with nitric oxide. In addition, K(+) channel activation could be one of the mechanisms for the synergistic effect of combining mirodenafil with doxazosin or tamsulosin. We believe that the combination of a PDE5 inhibitor with losartan, nifedipine, amlodipine, doxazosin or tamsulosin could be a pharmacologic strategy for simultaneously treating ED and its comorbidities and increasing response rates to PDE5 inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, S.; Bownds, M.D.
1981-05-01
The light-activated guanosine 3',5'-cyclic monophosphate (cyclic GMP) phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed by measuring the evolution of protons that accompanies cyclic GMP hydrolysis. The validity of this assay has been confirmed by comparison with an isotope assay used in previous studies (Robinson et al. 1980. J. Gen. Physiol. 76: 631-645). The PDE activity elicited by either flash or continuous dim illumination is reduced if ATP is added to outer segment suspensions. This desensitization is most pronounced at low calcium levels. In 10(-9) M Ca/sup + +/, with 0.5 mM ATP and 0.5 mM GTP present, PDEmore » activity remains almost constant as dim illumination and rhodopsin bleaching continue. At intermediate Ca/sup + +/ levels (10-7-10-5M) the activity slowly increases during illumination. Finally, in 10(-4) and PDE activity is more a reflection of the total number of rhodopsin molecules bleached than of the rate of the rhodopsin bleaching. At intermediate or low calcium levels a short-lived inhibitory process is revealed by observing a nonlinear summation of responses of the enzyme to closely spaced flashes of light. Each flash makes PDE activity less responsive to successive flashes, and a steady state is obtained in which activation and inactivation are balanced. It is suggested that calcium and ATP regulation of PDE play a role in the normal light adaption processes of frog photoreceptor membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Frederick J.; Reynolds, Lucy J.; Toward, Toby J.
This study investigated whether a correlation between leukocyte-derived elastolytic activity, alveolar epithelial type-1 cell damage, and leukocyte infiltration of the airways existed in guinea-pigs chronically exposed to inhaled lipopolysaccharide (LPS). The airway pathology of this model, notably the neutrophilia, resembles chronic obstructive pulmonary disease (COPD). The effect of the corticosteroid, dexamethasone, or the phosphodiesterase-4 (PDE4)-inhibitor, rolipram, on these features was studied. Conscious guinea-pigs were exposed for 1 h to single or repeated (nine) doses of LPS (30 {mu}g ml{sup -1}). Dexamethasone (20 mg kg{sup -1}, ip) or rolipram (1 mg kg{sup -1}, ip) was administered 24 and 0.5 h beforemore » the first exposure and daily thereafter. Bronchoalveolar lavage fluid (BALF) was removed and elastolytic activity determined as the elastase-like release of Congo Red from impregnated elastin. The presence of the specific epithelial cell type-1 protein (40-42 kDa) RT1{sub 40} in BALF was identified by Western blotting using a rat monoclonal antibody and semi-quantified by dot-blot analysis. The antibody was found to identify guinea-pig RT1{sub 40}. BALF inflammatory cells, particularly neutrophils and macrophages, and elastolytic activity were increased in chronic LPS-exposed guinea-pigs, the latter by 90%. Chronic LPS exposure also increased (10.5-fold) RT1{sub 40} levels, indicating significant alveolar epithelial type-1 cell damage. Dexamethasone or rolipram treatment reduced the influx of inflammatory cells, the elastolytic activity (by 40% and 38%, respectively), and RT1{sub 40} levels (by 50% and 57%, respectively). In conclusion, chronic LPS-exposed guinea-pigs, like COPD, exhibit elastolytic lung damage. This was prevented by a PDE4 inhibitor and supports their development for suppressing this leukocyte-mediated pathology.« less
De Toni, L; Strapazzon, G; Gianesello, L; Caretta, N; Pilon, C; Bruttocao, A; Foresta, C
2011-11-01
An excess of adipose tissue (AT) in obese individuals is linked to increased cardiovascular risk and mitochondria have been shown to be defective in the muscle and AT of patients with metabolic disorders such as obesity and Type 2 diabetes. Nitric oxide (NO) generated by endothelial NO synthase (eNOS) plays a role in mitochondrial biogenesis through cyclic-GMP (cGMP). AT harbors the whole molecular signaling pathway of NO, together with type 5-phosphodiesterase (PDE- 5), the main cGMP catabolising enzyme. Our aim was to evaluate the effect of the modulation of NO pathway, through PDE-5 inhibition, on energy metabolism and mitochondria biogenesis in human omental AT. Cultured human omental AT was stimulated with PDE-5 inhibitor, vardenafil, at different concentration for 24 and 72 h. Analysis of the expression of both key-regulator genes of adipocyte metabolism and mitochondria-biogenesis markers was performed. We found an increased gene expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), adiponectin, and proliferator- activated receptor gamma coactivator-1 α (PGC-1α) after a 24-h stimulation with vardenafil at the lowest concentration employed compared to controls (p<0.05). After 72 h of stimulation, a significant increase of mitochondrial DNA was found compared to control samples (p<0.05). Our data suggest that PDE-5 inhibition could have an impact on mitochondrial content of human AT suggesting a positive effect on energy metabolism and adding new elements in the comprehension of AT pathophysiology.
Yang, Li-Na; Yin, Ziyi; Zhang, Xi; Feng, Wanzhen; Xiao, Yuhan; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang
2018-05-01
The cyclic adenosine monophosphate (cAMP) signalling pathway mediates signal communication and sensing during infection-related morphogenesis in eukaryotes. Many studies have implicated cAMP as a critical mediator of appressorium development in the rice blast fungus, Magnaporthe oryzae. The cAMP phosphodiesterases, MoPdeH and MoPdeL, as key regulators of intracellular cAMP levels, play pleiotropic roles in cell wall integrity, cellular morphology, appressorium formation and infectious growth in M. oryzae. Here, we analysed the roles of domains of MoPdeH and MoPdeL separately or in chimeras. The results indicated that the HD and EAL domains of MoPdeH are indispensable for its phosphodiesterase activity and function. Replacement of the MoPdeH HD domain with the L1 and L2 domains of MoPdeL, either singly or together, resulted in decreased cAMP hydrolysis activity of MoPdeH. All of the transformants exhibited phenotypes similar to that of the ΔMopdeH mutant, but also revealed that EAL and L1 play additional roles in conidiation, and that L1 is involved in infectious growth. We further found that the intracellular cAMP level is important for surface signal recognition and hyphal autolysis. The intracellular cAMP level negatively regulates Mps1-MAPK and positively regulates Pmk1-MAPK in the rice blast fungus. Our results provide new information to better understand the cAMP signalling pathway in the development, differentiation and plant infection of the fungus. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Zhu, Lei; Yang, Jing-yu; Xue, Xue; Dong, Ying-xu; Liu, Yang; Miao, Feng-rong; Wang, Yong-feng; Xue, Hong; Wu, Chun-fu
2015-09-01
In Alzheimer's disease (AD), activated microglia invade and surround β-amyloid plaques, possibly contributing to the aggregation of amyloid β (Aβ), which affect the survival of neurons and lead to memory loss. Phosphodiesterase-5 (PDE-5) inhibitors have recently been shown a potential therapeutic effect on AD. In this study, the effects of yonkenafil (yonk), a novel PDE-5 inhibitor, on cognitive behaviors as well as the pathological features in transgenic AD mice were investigated. Seven-month-old APP/PS1 transgenic mice were treated with yonk (2, 6, or 18 mg/kg, intraperitoneal injection (i.p.)) or sildenafil (sild) (6 mg/kg, i.p.) daily for 3 months and then behavioral tests were performed. The results demonstrated that yonk improved nesting-building ability, ameliorated working memory deficits in the Y-maze tasks, and significantly improved learning and memory function in the Morris water maze (MWM) tasks. In addition, yonk reduced the area of Aβ plaques, and inhibited over-activation of microglia and astrocytes. Furthermore, yonk increased neurogenesis in the dentate granule brain region of APP/PS1 mice, indicated by increased BrdU(+)/NeuN(+) and BrdU(+)/DCX(+) cells compared to vehicle-treated transgenic mice. These results suggest that yonk could rescue cognitive deficits by ameliorated amyloid burden through regulating APP processing, inhibited the over-activation of microglia and astrocytes as well as restored neurogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Myocardial Response to Milrinone in Single Right Ventricle Heart Disease.
Nakano, Stephanie J; Nelson, Penny; Sucharov, Carmen C; Miyamoto, Shelley D
2016-07-01
Empiric treatment with milrinone, a phosphodiesterase (PDE) 3 inhibitor, has become increasingly common in patients with single ventricle heart disease of right ventricular (RV) morphology (SRV); our objective was to characterize the myocardial response to PDE3 inhibition (PDE3i) in the pediatric population with SRV. Cyclic adenosine monophosphate levels, PDE activity, and phosphorylated phospholamban (PLN) were determined in explanted human ventricular myocardium from nonfailing pediatric donors (n = 10) and pediatric patients transplanted secondary to SRV. Subjects with SRV were further classified by PDE3i treatment (n = 13 with PDE3i and n = 12 without PDE3i). In comparison with nonfailing RV myocardium (n = 8), cyclic adenosine monophosphate levels are lower in patients with SRV treated with PDE3i (n = 12, P = .021). Chronic PDE3i does not alter total PDE or PDE3 activity in SRV myocardium. Compared with nonfailing RV myocardium, SRV myocardium (both with and without PDE3i) demonstrates equivalent phosphorylated PLN at the protein kinase A phosphorylation site. As evidenced by preserved phosphorylated PLN, the molecular adaptation associated with SRV differs significantly from that demonstrated in pediatric heart failure because of dilated cardiomyopathy. These alterations support a pathophysiologically distinct mechanism of heart failure in pediatric patients with SRV, which has direct implications regarding the presumed response to PDE3i treatment in this population. Copyright © 2016 Elsevier Inc. All rights reserved.
Giachini, Fernanda R.; Lima, Victor V.; Carneiro, Fernando S.; Tostes, Rita C.; Webb, R. Clinton
2011-01-01
Recent evidence suggests that angiotensin II (Ang II) upregulates phosphodiesterase (PDE)-1A expression. We hypothesized that Ang II augmented PDE1 activation, decreasing the bioavailability of cyclic cyclic guanosine 3', 5'-monophosphate (cGMP), contributing to increased vascular contractility. Male Sprague-Dawley rats received mini-osmotic pumps with Ang II (60 ng.min−1) or saline for 14 days. PE-induced contractions were increased in aorta (Emax168±8 vs. 136±4%) and small-mesenteric arteries [(SMA), Emax170±6 vs. 143±3%] from Ang II infused rats compared to control. PDE1 inhibition with vinpocetine (10µM) reduced PE-induced contraction in aortas from Ang II rats (Emax94±12%) but not in control (154±7%). Vinpocetine decreased the sensitivity to PE in SMA from Ang II rats compared to vehicle (pD2 5.1±0.1 vs. 5.9±0.06), but not in control (6.0±0.03 vs. 6.1±0.04). Sildenafil (10µM), a PDE5 inhibitor reduced PE-induced maximal contraction similarly in Ang II and control rats. Arteries were contracted with PE (1µM) and concentration-dependent relaxation to vinpocetine and sildenafil was evaluated. Aortas from Ang II rats displayed increased relaxation to vinpocetine compared to control (Emax82±12 vs. 44±5%). SMA from Ang II rats showed greater sensitivity during vinpocetine-induced relaxation, compared to control (pD2 6.1±0.3 vs. 5.3±0.1). No differences in sildenafil-induced relaxation were observed. PDE1A and PDE1C expressions in aorta and PDE1A expression in SMA were increased in Ang II rats. cGMP production, which is decreased in arteries from Ang II rats, was restored after PDE1 blockade. We conclude that PDE1 activation reduces cGMP bioavailability in arteries from ANG II, contributing to increased contractile responsiveness. PMID:21282562
Shi, Qian; Li, Minghui; Mika, Delphine; Fu, Qin; Kim, Sungjin; Phan, Jason; Shen, Ao; Vandecasteele, Gregoire; Xiang, Yang K.
2017-01-01
Aims Cardiac β-adrenergic receptor (βAR) signalling is susceptible to heterologous desensitization by different neurohormonal stimuli in clinical conditions associated with heart failure. We aim to examine the underlying mechanism of cross talk between βARs and a set of G-protein coupled receptors (GPCRs) activated by hormones/agonists. Methods and results Rat ventricular cardiomyocytes were used to determine heterologous phosphorylation of βARs under a series of GPCR agonists. Activation of Gs-coupled dopamine receptor, adenosine receptor, relaxin receptor and prostaglandin E2 receptor, and Gq-coupled α1 adrenergic receptor and angiotensin II type 1 receptor promotes phosphorylation of β1AR and β2AR at putative protein kinase A (PKA) phosphorylation sites; but activation of Gi-coupled α2 adrenergic receptor and activation of protease-activated receptor does not. The GPCR agonists that promote β2AR phosphorylation effectively inhibit βAR agonist isoproterenol-induced PKA phosphorylation of phospholamban and contractile function in ventricular cardiomyocytes. Heterologous GPCR stimuli have minimal to small effect on isoproterenol-induced β2AR activation and G-protein coupling for cyclic adenosine monophosphate (cAMP) production. However, these GPCR stimuli significantly promote phosphorylation of phosphodiesterase 4D (PDE4D), and recruit PDE4D to the phosphorylated β2AR in a β-arrestin 2 dependent manner without promoting β2AR endocytosis. The increased binding between β2AR and PDE4D effectively hydrolyzes cAMP signal generated by subsequent stimulation with isoproterenol. Mutation of PKA phosphorylation sites in β2AR, inhibition of PDE4, or genetic ablation of PDE4D or β-arrestin 2 abolishes this heterologous inhibitory effect. Ablation of β-arrestin 2 or PDE4D gene also rescues β-adrenergic stimuli-induced myocyte contractile function. Conclusions These data reveal essential roles of β-arrestin 2 and PDE4D in a common mechanism for heterologous desensitization of cardiac βARs under hormonal stimulation, which is associated with impaired cardiac function during the development of pathophysiological conditions. PMID:28339772
Shi, Qian; Li, Minghui; Mika, Delphine; Fu, Qin; Kim, Sungjin; Phan, Jason; Shen, Ao; Vandecasteele, Gregoire; Xiang, Yang K
2017-05-01
Cardiac β-adrenergic receptor (βAR) signalling is susceptible to heterologous desensitization by different neurohormonal stimuli in clinical conditions associated with heart failure. We aim to examine the underlying mechanism of cross talk between βARs and a set of G-protein coupled receptors (GPCRs) activated by hormones/agonists. Rat ventricular cardiomyocytes were used to determine heterologous phosphorylation of βARs under a series of GPCR agonists. Activation of Gs-coupled dopamine receptor, adenosine receptor, relaxin receptor and prostaglandin E2 receptor, and Gq-coupled α1 adrenergic receptor and angiotensin II type 1 receptor promotes phosphorylation of β1AR and β2AR at putative protein kinase A (PKA) phosphorylation sites; but activation of Gi-coupled α2 adrenergic receptor and activation of protease-activated receptor does not. The GPCR agonists that promote β2AR phosphorylation effectively inhibit βAR agonist isoproterenol-induced PKA phosphorylation of phospholamban and contractile function in ventricular cardiomyocytes. Heterologous GPCR stimuli have minimal to small effect on isoproterenol-induced β2AR activation and G-protein coupling for cyclic adenosine monophosphate (cAMP) production. However, these GPCR stimuli significantly promote phosphorylation of phosphodiesterase 4D (PDE4D), and recruit PDE4D to the phosphorylated β2AR in a β-arrestin 2 dependent manner without promoting β2AR endocytosis. The increased binding between β2AR and PDE4D effectively hydrolyzes cAMP signal generated by subsequent stimulation with isoproterenol. Mutation of PKA phosphorylation sites in β2AR, inhibition of PDE4, or genetic ablation of PDE4D or β-arrestin 2 abolishes this heterologous inhibitory effect. Ablation of β-arrestin 2 or PDE4D gene also rescues β-adrenergic stimuli-induced myocyte contractile function. These data reveal essential roles of β-arrestin 2 and PDE4D in a common mechanism for heterologous desensitization of cardiac βARs under hormonal stimulation, which is associated with impaired cardiac function during the development of pathophysiological conditions. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Jansen, Chimed; Wang, Huanchen; Kooistra, Albert J.; de Graaf, Chris; Orrling, Kristina; Tenor, Hermann; Seebeck, Thomas; Bailey, David; de Esch, Iwan J.P.; Ke, Hengming; Leurs, Rob
2013-01-01
Trypanosoma brucei cyclic nucleotide phosphodiesterase B1 (TbrPDEB1) and TbrPDEB2 have recently been validated as new therapeutic targets for human African Trypanosomiasis by both genetic and pharmacological means. In this study we report the crystal structure of the catalytic domain of the unliganded TbrPDEB1 and its use for the in silico screening for new TbrPDEB1 inhibitors with novel scaffolds. The TbrPDEB1 crystal structure shows the characteristic folds of human PDE enzymes, but also contains the parasite-specific P-pocket found in the structures of Leishmania major PDEB1 and Trypanosoma cruzi PDEC. The unliganded TbrPDEB1 X-ray structure was subjected to a structure-based in silico screening approach that combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. This approach identified, six novel TbrPDEB1 inhibitors with IC50 values of 10–80 μM, which may be further optimized as potential selective TbrPDEB inhibitors. PMID:23409953
2008-04-01
margins ” of one’s genetic make-up. Keywords DNAmethylation . Histone modification . Chromatin remodeling . Nongenomic heritage . Developmental plasticity...palliative care to personalized preventive medicine which could be based, in part, on the epigenetic marks engraved along the “book- margins ” of one’s...investigations. Other demands for successful utilization of RLGS are he requirements for a fairly elaborate gel electrophoresis set-up and a powerful mage
Hadiji, N; Benbouzid, R; Previnaire, J G; Leblond, C; Mieusset, R; Enjalbert, M; Soler, J M
2013-12-01
To evaluate the erectile dysfunction and ejaculatory on patients injured in conus medullaris (CMI) and the efficacy of treatment. Ninety patients with injured conus medullaris underwent a retrospective and monocentric study. They have all an assessment of erectile dysfunction and ejaculatory by the International Index of Erectile Function (IIEF-15) and a clinic scenario. We evaluated the erection by a clinical scoring scale (Shrameck). Seventy-seven out of 90 (85.55%) had therapeutic tests to restore erection: prostaglandin (PGE1), phosphodiesterase type 5 inhibitors (PDE5) and Papaverine. Seventy-four out of 90 (82.22%) underwent a penile stimulation tests (VM) more or less associated with Midodrine(®) (alpha mimetic) to cause ejaculation with a systematic search of spermatozoa in urine. Data were entered and analyzed using Microsoft Office Excel. Ninety patients with a complete lesion of the sacral metameres (S2S3S4) were included. They were responding to PGE1, PDE5, respectively 81.63% and 30.76%. The association VM/Midodrine(®) improves ejaculation in 52.63% of cases. Orgasm is absent in all our CMI. In this series of BCM patients, we observed a good efficacy of PGE1 and PDE 5 on erection. We also observed positive results of vibromassage and alpha-agonists on ejaculation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae.
Colicelli, J; Nicolette, C; Birchmeier, C; Rodgers, L; Riggs, M; Wigler, M
1991-01-01
Saccharomyces cerevisiae strains expressing the activated RAS2Val19 gene or lacking both cAMP phosphodiesterase genes, PDE1 and PDE2, have impaired growth control and display an acute sensitivity to heat shock. We have isolated two classes of mammalian cDNAs from yeast expression libraries that suppress the heat shock-sensitive phenotype of RAS2Val19 strain. Members of the first class of cDNAs also suppress the heat shock-sensitive phenotype of pde1- pde2- strains and encode cAMP phosphodiesterases. Members of the second class fail to suppress the phenotype of pde1- pde2- strains and therefore are candidate cDNAs encoding proteins that interact with RAS proteins. We report the nucleotide sequence of three members of this class. Two of these cDNAs share considerable sequence similarity, but none are clearly similar to previously isolated genes. Images PMID:1849280
Han, Byung Hee; Vellimana, Ananth Kesav; Zhou, Meng-Liang; Milner, Eric; Zipfel, Gregory Joseph
2014-01-01
Background Cerebral vasospasm is an independent predictor of poor outcome after subarachnoid hemorrhage (SAH). The nitric oxide-cyclic GMP (NO-cGMP) vasodilatory pathway is strongly implicated in its pathophysiology. Preliminary studies suggest that phosphodiesterase 5 (PDE5) – an enzyme that degrades cGMP – may play a role, as the PDE5 inhibitor sildenafil was found to reduce vasospasm after SAH. However, several questions that are critical when considering translational studies remain unanswered. Objective To elucidate the mechanism of action of sildenafil against vasospasm, and to assess whether sildenafil attenuates SAH-induced neuronal cell death, improves functional outcome after SAH, or causes significant physiological side effects when administered at therapeutically relevant doses. Methods SAH was induced via endovascular perforation in male C57BL6 mice. Beginning two hours later, mice received sildenafil citrate (0.7, 2 or 5mg/kg P.O. BID) or vehicle. Neurological outcome was assessed daily. Vasospasm was determined on post-SAH Day 3. Brain PDE5 expression and activity, cGMP content, neuronal cell death, arterial blood pressure (BP), and intracranial pressure (ICP) were examined. Results We found that PDE5 activity (but not expression) is increased after SAH, leading to decreased cGMP levels. Sildenafil attenuates this increase in PDE5 activity and restores cGMP levels after SAH. Post-SAH initiation of sildenafil was found to reduce vasospasm, decrease neuronal cell death, and markedly improve neurological outcome, without causing significant physiological side effects. Conclusion Sildenafil–an FDA-approved drug with a proven track record of safety in humans –is a promising new therapy for vasospasm and neurological deficits following SAH. PMID:21796010
Grunstein, Judith S.; McDonough, Joseph; Kreiger, Portia A.; Josephson, Maureen B.; Choi, John K.; Grunstein, Michael M.
2012-01-01
Since the Gβγ subunit of Gi protein has been importantly implicated in regulating immune and inflammatory responses, this study investigated the potential role and mechanism of action of Gβγ signaling in regulating the induction of airway hyperresponsiveness (AHR) in a rabbit model of allergic asthma. Relative to non-sensitized animals, OVA-sensitized rabbits challenged with inhaled OVA exhibited AHR, lung inflammation, elevated BAL levels of IL-13, and increased airway phosphodiesterase-4 (PDE4) activity. These proasthmatic responses were suppressed by pretreatment with an inhaled membrane-permeable anti-Gβγ blocking peptide, similar to the suppressive effect of glucocorticoid pretreatment. Extended mechanistic studies demonstrated that: 1) corresponding proasthmatic changes in contractility exhibited in isolated airway smooth muscle (ASM) sensitized with serum from OVA-sensitized+challenged rabbits or IL-13 were also Gβγ-dependent and mediated by MAPK-upregulated PDE4 activity; and 2) the latter was attributed to Gβγ-induced direct stimulation of the non-receptor tyrosine kinase, c-Src, resulting in downstream activation of ERK1/2 and its consequent transcriptional upregulation of PDE4. Collectively, these data are the first to identify that a mechanism involving Gβγ-induced direct activation of c-Src, leading to ERK1/2-mediated upregulation of PDE4 activity, plays a decisive role in regulating the induction of AHR and inflammation in a rabbit model of allergic airway disease. PMID:22384144
Lehrke, Michael; Kahles, Florian; Makowska, Anna; Tilstam, Pathricia V; Diebold, Sebastian; Marx, Judith; Stöhr, Robert; Hess, Katharina; Endorf, Elizabeth B; Bruemmer, Dennis; Marx, Nikolaus; Findeisen, Hannes M
2015-04-01
Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2.
Zoccarato, Anna; Surdo, Nicoletta C; Aronsen, Jan M; Fields, Laura A; Mancuso, Luisa; Dodoni, Giuliano; Stangherlin, Alessandra; Livie, Craig; Jiang, He; Sin, Yuan Yan; Gesellchen, Frank; Terrin, Anna; Baillie, George S; Nicklin, Stuart A; Graham, Delyth; Szabo-Fresnais, Nicolas; Krall, Judith; Vandeput, Fabrice; Movsesian, Matthew; Furlan, Leonardo; Corsetti, Veronica; Hamilton, Graham; Lefkimmiatis, Konstantinos; Sjaastad, Ivar; Zaccolo, Manuela
2015-09-25
Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications. © 2015 American Heart Association, Inc.
Vinpocetine Improves Scopolamine Induced Learning and Memory Dysfunction in C57 BL/6J Mice.
Shang, Yu; Wang, Lei; Li, Yue; Gu, Pei-Fei
2016-09-01
Vinpocetine is an inhibitor of phosphodiesterase type 1 (PDE1), which has been used for treating stroke for over 40 years. However, according to current clinical dosage and treatment period, its direct effect on memory is unclear. In this study, we investigated whether vinpocetine could reverse the scopolamine (SCO)-induced cognitive deficits in animals. Behavioral experiments, including open field, Y-maze, and fear conditioning tests were used to determine the possible role of vinpocetine on scopolamine-induced memory dysfunction. In the open field and Y-maze tests, there were significant differences between the control (CON) group and SCO group. Vinpocetine (4 mg/kg) administration for consecutive 28 d significantly improved the scopolamine-induced memory dysfunction. In the fear conditioning test, vinpocetine (2, 4 mg/kg) administration had certain beneficial effect on emotional memory. Our results suggest that vinpocetine could improve cognitive function in memory deficient mice and high clinic dosage might be better.
Inhibition of protein kinase A and GIRK channel reverses fentanyl-induced respiratory depression.
Liang, Xiaonan; Yong, Zheng; Su, Ruibin
2018-06-11
Opioid-induced respiratory depression is a major obstacle to improving the clinical management of moderate to severe chronic pain. Opioids inhibit neuronal activity via various pathways, including calcium channels, adenylyl cyclase, and potassium channels. Currently, the underlying molecular pathway of opioid-induced respiratory depression is only partially understood. This study aimed to investigate the mechanisms of opioid-induced respiratory depression in vivo by examining the effects of different pharmacological agents on fentanyl-induced respiratory depression. Respiratory parameters were detected using whole body plethysmography in conscious rats. We show that pre-treatment with the protein kinase A (PKA) inhibitor H89 reversed the fentanyl-related effects on respiratory rate, inspiratory time, and expiratory time. Pre-treatment with the G protein-gated inwardly rectifying potassium (GIRK) channel blocker Tertiapin-Q dose-dependently reversed the fentanyl-related effects on respiratory rate and inspiratory time. A phosphodiesterase 4 (PDE4) inhibitor and cyclic adenosine monophosphate (cAMP) analogs did not affect fentanyl-induced respiratory depression. These findings suggest that PKA and GIRK may be involved in fentanyl-induced respiratory depression and could represent useful therapeutic targets for the treatment of fentanyl-induced ventilatory depression. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Kyung-Ok; Park, Shin-Young; Han, Chang-Woo; Chung, Hyun Kee; Ryu, Dae-Hyun
2008-01-01
The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines. PMID:18587266
Li, Longhu; Zhao, Dong; Jin, Zhe; Zhang, Jian; Paul, Christian; Wang, Yigang
2015-01-01
Treatment with short hairpin RNA (shRNA) interference therapy targeting phosphodiesterase 5a after myocardial infarction (MI) has been shown to mitigate post-MI heart failure. We investigated the mechanisms that underpin the beneficial effects of PDE5a inhibition through shRNA on post-MI heart failure. An adenoviral vector with an shRNA sequence inserted was adopted for the inhibition of phosphodiesterase 5a (Ad-shPDE5a) in vivo and in vitro. Myocardial infarction (MI) was induced in male C57BL/6J mice by left coronary artery ligation, and immediately after that, the Ad-shPDE5a was injected intramyocardially around the MI region and border areas. Four weeks post-MI, the Ad-shPDE5a-treated mice showed significant mitigation of the left ventricular (LV) dilatation and dysfunction compared to control mice. Infarction size and fibrosis were also significantly reduced in Ad-shPDE5a-treated mice. Additionally, Ad-shPDE5a treatment decreased the MI-induced inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β1, which was confirmed in vitro in Ad-shPDE5a transfected myofibroblasts cultured under oxygen glucose deprivation. Finally, Ad-shPDE5a treatment was found to activate the myocardial Akt signaling pathway in both in vivo and in vitro experiments. These findings indicate that PDE5a inhibition by Ad-shPDE5a via the Akt signal pathway could be of significant value in the design of future therapeutics for post-MI heart failure.
Metabolic benefits of inhibiting cAMP-PDEs with resveratrol.
Chung, Jay H
2012-10-01
Calorie restriction (CR) extends lifespan in species ranging from yeast to mammals. There is evidence that CR also protects against aging-related diseases in non-human primates. This has led to an intense interest in the development of CR-mimetics to harness the beneficial effects of CR to treat aging-related diseases. One CR-mimetic that has received a great deal of attention is resveratrol. Resveratrol extends the lifespan of obese mice and protects against obesity-related diseases such as type 2 diabetes. The specific mechanism of resveratrol action has been difficult to elucidate because resveratrol has a promiscuous target profile. A recent finding indicates that the metabolic effects of resveratrol may result from competitive inhibition of cAMP-degrading phosphodiesterases (PDEs), which increases cAMP levels. The cAMP-dependent pathways activate AMP-activated protein kinase (AMPK), which is essential for the metabolic effects of resveratrol. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including protection against diet-induced obesity and an increase in mitochondrial function, physical stamina and glucose tolerance in mice. This discovery suggests that PDE inhibitors may be useful for treating metabolic diseases associated with aging.
The dangers of sexual enhancement supplements and counterfeit drugs to "treat" erectile dysfunction.
Chiang, Jason; Yafi, Faysal A; Dorsey, Philip J; Hellstrom, Wayne J G
2017-02-01
Counterfeit phosphodiesterase-5 inhibitors (PDE-5i) are an increasing problem. Already in widespread use, the market for PDE-5i is steadily growing as the population ages. Counterfeiters are taking advantage of this growing market by developing illicit and counterfeit PDE-5i products. Many factors are contributing to the rapid growth of the illicit market, such as the low risk of prosecution, potentially high financial reward, and ease of distribution via Internet pharmacies. Consumers of illicit PDE-5i often do not realize they are using counterfeit products and placing themselves at an unnecessary health risk. Others seek to bypass the legitimate healthcare system due to either embarrassment of the underlying condition or desire for cheaper alternatives. However, taking illicit PDE-5i may harm consumers directly, as many illicit products contain detrimental contaminants and inaccurate amounts of the active ingredient without the appropriate warnings. Bypassing the legitimate healthcare system also endangers consumers indirectly, as erectile dysfunction (ED) is often associated with other medical comorbidities that patients should be screened for. Furthermore, PDE-5i can have potentially dangerous interactions with other pharmaceuticals that are rarely warned against with counterfeit PDE-5i. This communication reviews the literature regarding counterfeit PDE-5i, and summarizes both the scope and dangers of the illicit PDE-5i market.
Percival, Justin M; Whitehead, Nicholas P; Adams, Marvin E; Adamo, Candace M; Beavo, Joseph A; Froehner, Stanley C
2012-09-01
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO-cGMP signalling with PDE5 inhibitors in dystrophin-deficient muscle. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2015-05-01
Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Boccia, M M; Blake, M G; Krawczyk, M C; Baratti, C M
2011-07-07
Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation. Copyright © 2011 Elsevier B.V. All rights reserved.
Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling
2014-01-01
The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Current medical treatment of lower urinary tract symptoms/BPH: do we have a standard?
Silva, João; Silva, Carlos Martins; Cruz, Francisco
2014-01-01
The pharmacological treatment of lower urinary tract symptoms (LUTS) in patients with benign prostatic hyperplasia (BPH) is based on alpha-blockers and 5α-reductase inhibitors isolated or in combination. Silodosin, an alpha-1A specific alpha-blocker is the only innovation in these groups of agents. This classical paradigm is being challenged by antimuscarinics, 5-phosphodiesterase inhibitors (PDE5i) and β3-adrenoreceptor agonists. Silodosin is effective in reducing BPH/LUTS, including nocturia and shows little cardiovascular adverse events. Antimuscarinic drugs isolated or in combination with alpha-blockers improve storage symptoms without any harmful effect to the voiding function. PDE5i alone improve BPH/LUTS. Combination of PDE5i with alpha-blockers provides better symptomatic control than alpha-blockers alone. A recent head-to-head comparison of tadalafil 5 mg/day with tamsulosin 0.4 mg/day showed that these agents provided the same improvement in BPH/LUTS and, surprisingly, the same improvement in the urinary flow. In fact, previous studies with tadalafil had not shown any effect of tadalafil on flow. In addition, tadalafil but not tamsulosin improved sexual function. Mirabegron, the first β3-adrenoreceptor agonist, while improving BPH/LUTS in men with bladder outlet obstruction, do not decrease urinary flow or detrusor pressure. The standard medical treatment for BPH/LUTS is still based on alpha-blockers, 5ARIs or its combination. In the future, it is expected that BPH/LUTS treatment will become individualized, according to the type of symptoms, presence of sexual dysfunction and risk of BPH progression. This will challenge our concept of standard treatment for BPH/LUTS.
Ding, Lianshu; Zhang, Chong; Masood, Anbrin; Li, Jianxin; Sun, Jiao; Nadeem, Ahmed; Zhang, Han-Ting; O' Donnell, James M; Xu, Ying
2014-07-15
Stress occurs in everyday life, but the relationship between stress and the onset or development of depression/anxiety remains unknown. Increasing evidence suggests that the impairment of antioxidant defense and the neuronal cell death are important in the process of emotional disorders. Chronic stress impairs the homeostasis of antioxidants/oxidation, which results in the aberrant stimulation of the cell cycle proteins where cGMP-PKG signaling is thought to have an inhibitory role. Phosphodiesterase 2 (PDE2) is linked to cGMP-PKG signaling and highly expressed in the limbic brain regions including hippocampus and amygdala, which may play important roles in the treatment of depression and anxiety. To address the possible effects of PDE2 inhibitors on depression-/anxiety-like behaviors and the underlying mechanisms, Bay 60-7550 (0.75, 1.5 and 3 mg/kg, i.p.) was administered 30 min before chronic stress. The results suggested that Bay 60-7550 not only restored the behavioral changes but also regulated Cu/Zn superoxide dismutase (SOD) levels differentially in hippocampus and amygdala, which were increased in the hippocampus while decreased in the amygdala. It was also significant that Bay 60-7550 regulated the abnormalities of pro- and anti-apoptotic components, such as Bax, Caspase 3 and Bcl-2, and the indicator of PKG signaling characterized by pVASP(ser239), in these two brain regions. The results suggested that Bay 60-7550 is able to alleviate oxidative stress and mediate part of the apoptotic machinery in neuronal cells possibly through SOD-cGMP/PKG-anti-apoptosis signaling and that inhibition of PDE2 may represent a novel therapeutic target for psychiatric disorders, such as depression and anxiety. Copyright © 2014 Elsevier B.V. All rights reserved.
Goren, A; Mccoy, J; Kovacevic, M; Situm, M; Lonky, N
2017-01-01
Herpes simplex encephalitis (HSE) is associated with significant mortality and morbidity. As a consequence of HSE, up to 75% of infected individuals die or experience irreversible neurological damage. While the pathogenesis of the disease is unknown, it is traditionally hypothesized that the viral infection occurs by neuronal transmission directly from peripheral sites. Non-neuronal modes of infection have generally been overlooked as the brain is protected by the blood-brain-barrier (BBB). The BBB poses an effective barrier to pathogens as well as to drugs such as chemotherapies. In the pursuit to deliver chemotherapeutic agents to the brain, several studies demonstrated that phosphodiesterase type 5 (PDE5) inhibitors, such as sildenafil, may increase the permeability of the BBB enabling successful delivery of chemotherapeutic agents to the brain. In this communication, we report a case of HSE infection in a 62-year-old man, which we suspect was facilitated by the use of sildenafil during a primary genital herpes simple virus (HSV) infection. Due to large number of patients treated with PDE5 inhibitors for erectile dysfunction and the high incidence of genital HSV infection in the general population, a larger study should examine the potential risk of developing HSE in patients treated with PDE5 inhibitors.
Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou
2014-11-01
cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation.
Kimura, Masaki; Caso, Jorge R; Bañez, Lionel L; Koontz, Bridget F; Gerber, Leah; Senocak, Cagri; Donatucci, Craig F; Vujaskovic, Zeljko; Moul, Judd W; Polascik, Thomas J
2012-12-01
Study Type--Therapy (case series) Level of Evidence 4. What's known on the subject? and What does the study add? The role of the vacuum erection device (VED) has increased with its use in combined therapy with a phosphodiesterase type 5 inhibitor (PDE5i) for penile rehabilitation after radical prostatectomy (RP) and radiotherapy. The advantages of the VED are non-invasive, cost-effective, and a possibility of preventing shrinkage of penis length. Albeit current widespread use of penile rehabilitation programmes for post-RP erectile dysfunction, independent predictors for the rehabilitation participants, as well as for its treatment success have not been fully investigated. In the present study, we have added several new predictors for rehabilitation participation, e.g. African-Americans and higher preoperative sexual function. Conversely, higher preoperative PSA concentrations and the presence of positive surgical margins were predictors for avoidance of rehabilitation. Notably, there was a primary surgeon difference, which had a trend for predicting outcome of the rehabilitation among the participants, implying their surgical technique and follow-up might influence success of the rehabilitation. • To investigate baseline demographic and clinicopathological characteristics of men who participate in our penile rehabilitation programme after radical prostatectomy (RP). • To determine predictors for participation in rehabilitation, as well as successful rehabilitation outcome using multivariable logistic regression analyses. • We analysed data on 2345 consecutive patients who underwent RP between 2001 and 2009 in our institution. • The decision to participate in penile rehabilitation using phosphodiesterase type 5 inhibitor (PDE5i) with a vacuum erection device (VED) was based on the patient's choice after post-RP discussions. • Rehabilitation success was defined using the following criteria: (i) patients who continued the penile rehabilitation programme and did not switch treatment from PDE5i to other erectile aids, (ii) success was noted in men who had an Expanded Prostate Cancer Index Composite (EPIC) sexual function (SF) score of >75% of the patient's baseline EPIC score, and (iii) patients who answered that they achieved adequate erections with a PDE5i. • Logistic regression analysis was used to identify factors associated with treatment participation and its success. • Of 676 patients, 354 (53.2%) men participated in a penile rehabilitation programme. Among 329 rehabilitation participants with available data, 96 (29.2%) had treatment success. • In multivariable regression analysis, African-Americans (odds ratio [OR] 3.47, P < 0.001), and higher preoperative SF (OR 1.02, P < 0.001) were associated with participation in rehabilitation. • Higher preoperative PSA concentration (OR 0.50, P = 0.004) and presence of positive surgical margins (OR 0.68, P = 0.042) were found to be independent predictors for non-participation in the rehabilitation. • For rehabilitation outcomes, being older at surgery (OR 0.93, P = 0.001) and adjuvant therapy (OR 0.34, P = 0.047) had a negative association with successful outcome. • There was a trend in the relationship between primary surgeon and rehabilitation success (OR 1.05, P = 0.053) • Those patients who have risk factors, e.g. adverse prostate cancer features, need to be carefully counselled and encouraged to participate in the penile rehabilitation programme. • Clinicians could lead patients toward successful outcomes if appropriate surgical techniques and rehabilitation are provided. © 2012 BJU INTERNATIONAL.
YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Tang, Ming-Chi
2012-04-15
Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383more » alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation. ► The combined effects were reversed by H89. ► The combination of rolipram and PGE1 triggered NO production and iNOS expression. ► Effect of YC-1 occurred through inhibition of cAMP-specific PDE.« less
Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted
2016-01-01
Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340
Press, Neil J; Taylor, Roger J; Fullerton, Joseph D; Tranter, Pamela; McCarthy, Clive; Keller, Thomas H; Arnold, Nicola; Beer, David; Brown, Lyndon; Cheung, Robert; Christie, Julie; Denholm, Alastair; Haberthuer, Sandra; Hatto, Julia D I; Keenan, Mark; Mercer, Mark K; Oakman, Helen; Sahri, Helene; Tuffnell, Andrew R; Tweed, Morris; Trifilieff, Alexandre
2015-09-10
Herein we describe the optimization of a series of PDE4 inhibitors, with special focus on solubility and pharamcokinetics, to clinical compound 2, 4-(8-(3-fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic acid. Although compound 2 produces emesis in humans when given as a single dose, its exemplary pharmacokinetic properties enabled a novel dosing regime comprising multiple escalating doses and the resultant achievement of high plasma drug levels without associated nausea or emesis.
[Sex, erectile dysfunction, and the heart: a growing problem].
Görge, Günter; Flüchter, Stephan; Kirstein, Michael; Kunz, Thomas
2003-06-01
Erectile dysfunction (ED) is defined as the inability to attain and/or maintain penile erection sufficient for satisfactory sexual performance. ED may also be an early sign of cardiovascular disease. The main risk factors for coronary heart disease (high LDL, smoking, hypertension, diabetes) and ED are the same. ED after the diagnosis of coronary artery disease or myocardial infarction is also common. Cardiac and metabolic expenditures during sexual intercourse will vary depending on the type of sexual activity. When oxygen uptake was measured in men, an average metabolic expenditure during stimulation and orgasm of 2.5 metabolic equivalents (METs) was found for woman-on-top coitus, and of 3.3 METs for man-on-top coitus (range 2.0-5.4 METs). However, coital death is rare, encompassing only 0.6% of all sudden death cases. A retrospective case-crossover study has shown that although sexual activity can trigger the onset of myocardial infarction, the relative risk in the 2 h after sexual activity was low (2.5; 95% confidence interval [CI] 1.7-3.7). Sexual activity was a likely contributor to the onset of myocardial infarction only 0.9% of the time. Regular exercise appears to prevent triggering. It has to be cautioned that these reassuring data should not be extrapolated to patients taking sildenafil, if they perform at higher cardiac and metabolic expenditures during coitus. The hemodynamic changes associated with sexual activity may be far greater with an unfamiliar partner, in unfamiliar settings, and after excessive eating and drinking. The Princeton Consensus Table for estimation of cardiovascular risk during sexual intercourse gives a first orientation regarding the question which patients can perform sex safely and which subgroup needs further diagnosis and treatment. PHOSPHODIESTERASE-5 INHIBITORS FOR ED TREATMENT: The introduction of sildenafil has been a valuable contribution to the treatment of ED. Sildenafil acts as a selective inhibitor of cyclic guanosine monophosphate-(cGMP-)specific phosphodiesterase type 5 (PDE 5), resulting in smooth muscle relaxation, vasodilation, and enhanced penile erection. Reported cardiovascular side effects in healthy males are headache, flushing, and < 10% decreases in systolic and diastolic blood pressures. Significant hypotension can be found in patients who are concurrently taking nitrates. On the basis of the pharmacokinetic profile of sildenafil, the co-administration of a nitrate within the first 24 h is likely to produce a severe, potentially lifethreatening hypotensive response and is therefore contraindicated. The risk of precipitating a cardiotoxic, hypotensive, or hemorrhagic event secondary to combining sildenafil (a PDE 5 inhibitor) with specific PDE 3 inhibitors such as milrinone and enoximone or with nonspecific PDE inhibitors such as theophylline and pentoxifylline is unlikely. Sildenafil is predominantly metabolized by both the P450 2C9 pathway and the P450 3A4 pathway. Thus, potent inhibitors of the P450 3A4 pathway may increase the plasma concentrations of sildenafil, like cimetidine, erythromycin, digitoxin, and CSE inhibitors (simvastatin, atorvastatin, etc.). A creatinine clearance < 30 ml/min also increases plasma levels of sildenafil. Sildenafil is safe in healthy subjects. In a postmarketing study on 6,527 males, no increase of cardiovascular events was found. However, in older males with coronary heart disease, the risk of sildenafil and the risk of physical exercise during sexual intercourse contribute both to fatal outcomes. Of 69 cases reported to the FDA, 46 patients might have had a cardiovascular event, and in twelve a possible interaction with nitrate use has been reported. Sildenafil is absolutely contraindicated in patients taking long-acting nitrates, those with severe aortic stenosis, and patients with hypertrophic obstructive cardiomyopathy (HOCM). No nitrates should be used within 24 h of sildenafil use. Caution is necessary in patients with a combination of antihypertensive medications, and in patients with cardiac insufficiency. A "pre-Viagra" treadmill test to assess for the presence of stress-induced ischemia can be helpful for both the patient and the physician. If the patient can achieve > or = 5 METs without demonstrating ischemia, the risk of ischemia during coitus is low. If severe hypotension occurs, aggressive fluid resuscitation is the first step, followed by administration of vasoactive drugs and, if necessary, by intraaortic balloon counterpulsation. If unstable angina or myocardial infarctions occurs after the use of sildenafil, the patient is treated according to the guidelines, but without nitrates. Sexual activity is a cornerstone of quality of life. However, giving the incidence of "occult" cardiovascular disease in patients with ED and the indications and contraindications of PDE 5 inhibitors in patients with cardiovascular diseases, all patients with ED must be evaluated by a cardiovascular specialist.
Muzaffar, S; Shukla, N; Bond, M; Sala-Newby, G B; Newby, A C; Angelini, G D; Jeremy, J Y
2008-11-01
To determine whether there is an association between vascular NADPH oxidase (NOX), superoxide, the small GTPase Rac(1) and PDE type 5 (PDE5) in human vascular smooth muscle cell (hVSMCs). hVSMCs were incubated with xanthine-xanthine oxidase (X-XO; a superoxide generating system) or the thromboxane A(2) analogue, U46619 (+/-superoxide dismutase (SOD) or apocynin) for 16 h. The expression of PDE5 and NOX-1 was assessed using Western blotting and superoxide measured. The role of Rac(1) in superoxide generation was assessed by overexpressing either the dominant-negative or constitutively active Rac isoforms. The effects of iloprost, DETA-NONOate and the Rho-kinase inhibitor, Y27632, on PDE5 and NOX-1 expression were also studied. Following 16 h incubation, U46619 and X-XO promoted the expression of PDE5 and NOX-1, an effect blocked by SOD or apocynin when co-incubated over the same time course. X-XO and U46619 both promoted the formation of superoxide. Overexpression of dominant-negative Rac(1) or addition of iloprost, DETA-NONOate or Y27632 completely blocked both superoxide release and PDE5 protein expression and activity. These data demonstrate that superoxide derived from NOX upregulates the expression of PDE5 in human VSMCs. As PDE5 hydrolyses cyclic GMP, this effect may blunt the vasculoprotective actions of NO.
Fusco, Ferdinando; Creta, Massimiliano; De Nunzio, Cosimo; Gacci, Mauro; Li Marzi, Vincenzo; Finazzi Agrò, Enrico
2018-03-31
To perform a systematic review and meta-analysis of studies evaluating the urodynamic outcomes of alpha-1 adrenergic antagonists (ABs), 5-alpha reductase inhibitors (5-ARIs), phosphodiesterase type 5 inhibitors (PDE5is), and phytotherapic compounds in patients with lower urinary tract symptoms related to benign prostatic obstruction (LUTS/BPO). A systematic review of PubMed/Medline, ISI Web of Knowledge, and Scopus databases was performed in June 2017. We included full papers that met the following criteria: original research; English language; human studies; enrolling LUTS/BPO patients; reporting maximum urinary flow (Qmax), and detrusor pressure at maximum urinary flow (PdetQmax). The primary endpoint was variation in bladder outlet obstruction index (BOOI). Secondary endpoints were variations in Qmax and PdetQmax. Twenty-three studies involving 1044 patients were included in the final analysis. Eighteen, three, two, and one study evaluated the urodynamic outcomes of ABs, 5-ARIs, PDE5is, and phytotherapic compounds, respectively. BOOI, PdetQmax, and Qmax improved in a statistically significant manner in patients receiving ABs and in those receiving 5-ARIs. The overall pooled data showed a mean BOOI change of -15.40 (P < 0.00001) and of -10.55 (P = 0,004) for ABs and 5-ARIs, respectively. Mean PdetQmax and Qmax changes were:12.30 cm H 2 O (P < 0.00001) and +2.27 ml/s (P < 0.00001) for ABs and -9.63 cm H 2 O (P = 0.05), and +1.18 mL/s (P = 0.04) for 5-ARIs. PDE5is and phytotherapic compounds had no significant effects on urodynamic parameters. ABs and 5-ARIs efficiently improve BOOI in men with LUTS/BPO. Both treatments are associated with a clinically significant decrease in PdetQmax but only marginal improvements in Qmax. © 2018 Wiley Periodicals, Inc.
Immunoprecipitation of PDE2 phosphorylated and inactivated by an associated protein kinase.
Bentley, J Kelley
2005-01-01
A PDE2A2-associated protein kinase phosphorylates PDE2A2 in vivo and in vitro to inhibit its catalytic activity. Rat brain PDE2A2 may be solubilized using nona (ethylene glycol) mono dodecyl ether (Lubrol 12A9). PDE2A2 exists in a complex with a protein kinase regulating its activity in an adenosine triphosphate-dependent manner. When native or recombinant PDE2 is immunoprecipitated from PC12 cells using an antibody to the amino terminus in a buffer containing Lubrol 12A9, protease inhibitors, and phosphatase inhibitors, a coimmunoprecipitating nerve growth factor-stimulated protein kinase acts to phosphorylate it. PDE2A2 phosphoryla-tion occurs optimally at pH 6.5 in a sodium 2-(4-morpholino)-ethane sulfonate buffer with 5 mM MgCl2 and 1 mM Na3VO4. I describe protocols for producing an antibody to an amino-terminal bacterial fusion protein encoding amino acids 1-251 of PDE2A2 as well as the use of this antibody in immunoprecipitating a PDE2: tyrosine protein-kinase complex from rat brain or PC12 cells.
Abukhashim, Mohamed; Wiebe, Glenis J; Seubert, John M
2011-10-01
Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which in turn are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). EETs are known to modulate a number of vascular and renal functions, but the exact signaling mechanism(s) of these EET-mediated effects remains unknown. The purpose of this study is to investigate the role of EETs and DHETs in regulating cyclic adenosine monophosphate (cAMP) production via adenylyl cyclase in a human embryonic kidney cell line (HEK293). HEK293 cells were treated with vehicle, forskolin, epinephrine, 11,12-EET, 11,12-DHET, as well as potential pathway and G-protein inhibitors to assess changes in cAMP production. Co-administering 11,12-EET with forskolin effectively eliminated the increased cAMP levels observed in cells treated with forskolin alone. The inhibitory effect of EETs on forskolin-mediated cAMP production was abolished when cells were treated with a sEH inhibitor (tAUCB). 11,12-DHET also negated the effects of forskolin, suggesting that the inhibitory effect observed in EET-treated cells could be attributed to the downstream metabolites, DHETs. In contrast, inhibition of phosphodiesterase IV (PDE4) with rolipram eliminated the effects of EETs or DHETs, and inhibition of Gαi with pertussis toxin also resulted in enhanced cAMP production. Our data suggest that DHETs regulate cAMP production via PDE4 and Gαi protein. Moreover, they provide novel evidence as to how EET-mediated signaling may alter G-protein coupling in HEK293 cells. © Springer Science+Business Media B.V. 2011
Lauver, D. Adam; Carey, E . Grant; Bergin, Ingrid L.; Lucchesi, Benedict R.; Gurm, Hitinder S.
2014-01-01
Contrast-induced acute kidney injury (CIAKI) is one of the commonest complications associated with contrast media (CM). Although the exact etiology of CIAKI remains unclear, one hypothesis involves vasoconstriction of afferent arterioles resulting in renal ischemia. Increased renal blood flow, therefore, might represent an attractive target for the treatment of CIAKI. In this study we evaluated the protective effects of the phosphodiesterase type 5 (PDE5) inhibitor, sildenafil citrate, in a rabbit model of CIAKI. New Zealand white rabbits were used due to their susceptibility to CIAKI. To evaluate the effects of sildenafil, the drug was administered before CM infusion and repeatedly throughout the remainder of the experiment (6 mg/kg, p.o.). Animals were sacrificed after 48 hours and kidneys were prepared for histological evaluation. Intravenous administration of CM produced marked kidney injury. Serum creatinine concentrations were elevated within two hours of the infusion and remained elevated for the duration of the experiment. Histological evaluation of the kidneys revealed significant tubular necrosis. The effects of the CM were dose dependent. Treatment with sildenafil was associated with lesser degree of histological injury, attenuation in markers of acute kidney injury (48 hour creatinine 1.54±0.21 versus 4.42±1.31 mg/dl, p<0.05) and reduction in electrolyte derangement (percent change in serum K+ at 48 hours 2.55±3.80% versus 15.53±4.47%, p<0.05; serum Na+ at 48 hours −0.14±0.26% versus −1.97±1.29%, p = 0.20). The results suggest a possible role for PDE5 inhibitors in the treatment of CIAKI and warrant further evaluation to determine the exact mechanism of protection. PMID:25426714
Lauver, D Adam; Carey, E Grant; Bergin, Ingrid L; Lucchesi, Benedict R; Gurm, Hitinder S
2014-01-01
Contrast-induced acute kidney injury (CIAKI) is one of the commonest complications associated with contrast media (CM). Although the exact etiology of CIAKI remains unclear, one hypothesis involves vasoconstriction of afferent arterioles resulting in renal ischemia. Increased renal blood flow, therefore, might represent an attractive target for the treatment of CIAKI. In this study we evaluated the protective effects of the phosphodiesterase type 5 (PDE5) inhibitor, sildenafil citrate, in a rabbit model of CIAKI. New Zealand white rabbits were used due to their susceptibility to CIAKI. To evaluate the effects of sildenafil, the drug was administered before CM infusion and repeatedly throughout the remainder of the experiment (6 mg/kg, p.o.). Animals were sacrificed after 48 hours and kidneys were prepared for histological evaluation. Intravenous administration of CM produced marked kidney injury. Serum creatinine concentrations were elevated within two hours of the infusion and remained elevated for the duration of the experiment. Histological evaluation of the kidneys revealed significant tubular necrosis. The effects of the CM were dose dependent. Treatment with sildenafil was associated with lesser degree of histological injury, attenuation in markers of acute kidney injury (48 hour creatinine 1.54±0.21 versus 4.42±1.31 mg/dl, p<0.05) and reduction in electrolyte derangement (percent change in serum K+ at 48 hours 2.55±3.80% versus 15.53±4.47%, p<0.05; serum Na+ at 48 hours -0.14±0.26% versus -1.97±1.29%, p = 0.20). The results suggest a possible role for PDE5 inhibitors in the treatment of CIAKI and warrant further evaluation to determine the exact mechanism of protection.
Woo, Seung Hyo; Kang, Dong Il; Ha, Yun-Sok; Salmasi, Amirali Hassanzadeh; Kim, Jeong Hyun; Lee, Dong-Hyeon; Kim, Wun-Jae; Kim, Isaac Yi
2014-02-01
The recovery of potency following radical prostatectomy is complex and has a very wide range. In this study, we analyzed in detail the precise pattern of recovery of potency following robot-assisted radical prostatectomy (RARP). Prospectively collected database of patients with a minimum follow-up of 1 year after RARP were evaluated retrospectively. Of 503 patients identified, 483 patients completed the sexual health inventory for men (SHIM) preoperatively and postoperatively every 3 months for the first 12 months. Overall potency, usage of phosphodiesterase type-5 (PDE-5) inhibitors, and return to baseline erectile function were evaluated. Potency was defined as having erection that is sufficient for sexual intercourse more than 50% of attempts, while quality potency was defined as being potent without the use of PDE-5 inhibitors. Preoperatively, the overall potency and quality potency rate were 67.1% and 48.1%, respectively. Postoperatively, the overall potency rate was 61.4%, while the quality potency rate was 37.2%. In multivariate regression analysis, independent predictors of potency recovery were young age (<60), preoperative potency status, and bilateral preservation of neurovascular bundles (NVBs). In men with SHIM>21, the overall potency and quality potency rate were 79.7% and 41.2%, respectively. More importantly, only 21.4% of the men with normal erection preoperatively (SHIM>21) returned to baseline erectile function (SHIM>21) 12 months after surgery. This study indicates that young age (<60), preoperative potency, and bilateral preservation of NVBs were positive predictors of potency recovery following RARP. However, an overwhelming majority of men experience a deterioration in the overall quality of erection after RARP.
Hoppmann, Julia; Gesing, Julia; Silve, Caroline; Leroy, Chrystel; Bertsche, Astrid; Hirsch, Franz Wolfgang; Kiess, Wieland; Pfäffle, Roland; Schuster, Volker
2017-01-01
Acrodysostosis is a very rare congenital multisystem condition characterized by skeletal dysplasia with severe brachydactyly, midfacial hypoplasia, and short stature, varying degrees of intellectual disability, and possible resistance to multiple G protein-coupled receptor signalling hormones. Two distinct subtypes are differentiated: acrodysostosis type 1 resulting from defects in protein kinase type 1-α regulatory subunit and acrodysostosis type 2 caused by mutations in phosphodiesterase 4D (PDE4D). Most cases are sporadic. We report on a rare multigenerational familial case of acrodysostosis type 2 due to a novel autosomal dominantly inherited PDE4D mutation. A 3.5-year-old boy presented with short stature, midfacial hypoplasia, severe brachydactyly, developmental delay, and behavioural problems. Laboratory investigations revealed mild thyrotropin resistance. His mother shared some characteristic features, such as midfacial hypoplasia and severe brachydactyly, but did not show short stature, intellectual disability or hormonal resistance. Genetic analysis identified the identical, novel heterozygous missense mutation of the PDE4D gene c.569C>T (p.Ser190Phe) in both patients. This case illustrates the significant phenotypic variability of acrodysostosis even within one family with identical mutations. Hence, a specific clinical diagnosis of acrodysostosis remains challenging because of great interindividual variability and a substantial overlap of the two subtypes as well as with other related Gsα-cAMP-signalling-linked disorders. PMID:28515031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuanyuan; Cui, Wenjun; Huang, Manna
Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a K M of 110 μM and a k cat of 16.9 s⁻¹ for cAMP and a K M of 105 μM and a k cat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (k cat/K McAMP)/(k cat/K M cGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMPmore » at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less
Rodríguez-Ramos, Fernando; Navarrete, Andrés; González-Andrade, Martín; Alarcón, Carlos; Aguilera-Cruz, Alejandro; Reyes-Ramírez, Adelfo
2013-10-01
Chromone (4), which form the base structure of various flavonoids isolated as natural products, is capable of relaxing smooth muscle. This is relevant to the treatment of high blood pressure, asthma and chronic obstructive pulmonary disease. The former disorder involves the contraction of vascular smooth muscle (VSM), and the latter two bronchoconstriction of airway smooth muscle (ASM). One of the principal mechanisms by which flavonoids relax muscle tissue is the inhibition of phosphodiesterases (PDEs), present in both VSM and ASM. Therefore, a study was designed to analyze the structure-activity relationship of chromone derivatives in vaso- and bronchorelaxation through the inhibition of PDE. Docking studies showed that these chromones bind at the catalytic site of PDEs. Consequently, we synthesized analogs of chromones substituted at position C-2 with alkyl and naphthyl groups. These compounds were synthesized from 2-hydroxyacetophenone and acyl chlorides in the presence of DBU and pyridine, modifying the methodology reported for the synthesis of 3-acylchromones by changing the reaction temperature from 80 to 30°C and using methylene chloride as solvent, yielding the corresponding phenolic esters 10a-10h. These compounds were cyclized with an equivalent of DBU, pyridine as solvent, and heated at reflux temperature, yielding the chromones 11a-11h. Evaluation of the vasorelaxant effect of 4, 11a-11h on rat aorta demonstrated that potency decreases with branched alkyl groups. Whereas the EC50 of compound 11d (substituted by an n-hexyl group) was 8.64±0.39 μM, that of 11f (substituted by an isobutyl group) was 14.58±0.64 μM. Contrarily, the effectiveness of the compound is directly proportional to the length of the alkyl chain, as evidenced by the increase in maximal effect of compound 11c versus 11d (66% versus 100%) and 11e versus 11f (60% versus 96%). With an aromatic group like naphthyl as the C-2 substituent, the effectiveness was only 43%. All compounds tested on guinea pig trachea showed less than 55% effectiveness. Compounds 4, 11a-11h were evaluated as PDE inhibitors in vitro, with 11d showing the greatest effect (73%), corroborating the importance of a long alkyl chain, which inhibits the decomposition of cGMP. Docking studies showed that the compound 11d was selective for the inhibition of PDE-5. Copyright © 2013 Elsevier Inc. All rights reserved.
Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion.
Katona, Dávid; Rajki, Anikó; Di Benedetto, Giulietta; Pozzan, Tullio; Spät, András
2015-09-05
Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair
Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.
2017-01-01
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622
Granovsky, A E; Artemyev, N O
2000-12-29
Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the G protein-mediated visual transduction cascade. In the dark, the activity of PDE6 is shut off by the inhibitory gamma subunit (Pgamma). Chimeric proteins between cone PDE6alpha' and cGMP-binding and cGMP-specific PDE (PDE5) have been constructed and expressed in Sf9 cells to study the mechanism of inhibition of PDE6 catalytic activity by Pgamma. Substitution of the segment PDE5-(773-820) by the corresponding PDE6alpha'-(737-784) sequence in the wild-type PDE5 or in a PDE5/PDE6alpha' chimera containing the catalytic domain of PDE5 results in chimeric enzymes capable of inhibitory interaction with Pgamma. The catalytic properties of the chimeric PDEs remained similar to those of PDE5. Ala-scanning mutational analysis of the Pgamma-binding region, PDE6alpha'-(750-760), revealed PDE6alpha' residues essential for the interaction. The M758A mutation markedly impaired and the Q752A mutation moderately impaired the inhibition of chimeric PDE by Pgamma. The analysis of the catalytic properties of mutant PDEs and a model of the PDE6 catalytic domain suggest that residues Met(758) and Gln(752) directly bind Pgamma. A model of the PDE6 catalytic site shows that PDE6alpha'-(750-760) forms a loop at the entrance to the cGMP-binding pocket. Binding of Pgamma to Met(758) would effectively block access of cGMP to the catalytic cavity, providing a structural basis for the mechanism of PDE6 inhibition.
Cortijo, J; Naline, E; Ortiz, J L; Berto, L; Girard, V; Malbezin, M; Advenier, C; Morcillo, E J
1998-01-02
We have investigated the role of human bronchial cyclic nucleotide phosphodiesterases in the effects of fenspiride, a drug endowed with bronchodilator and anti-inflammatory properties. Functional studies on human isolated bronchi showed that fenspiride (10(-6)-3 x 10(-3) M, 30 min) induced a shift to the left of the concentration-response curves for isoprenaline and sodium nitroprusside with -logEC50 values of 4.1+/-0.1 (n = 7) and 3.5+/-0.2 (n = 8), respectively. Biochemical studies were carried out on three human bronchi in which separation of cyclic nucleotide phosphodiesterase isoenzymes was performed by ion exchange chromatography followed by determination of phosphodiesterase activity with a radioisotopic method. Phosphodiesterase 4 (cyclic AMP-specific) and phosphodiesterase 5 (cyclic GMP-specific) were the major phosphodiesterase isoforms present in the human bronchial tissue. The presence of phosphodiesterase 1 (Ca2+/calmodulin-stimulated), phosphodiesterase 2 (cyclic GMP-stimulated) and, in two cases, phosphodiesterase 3 (cyclic GMP-inhibited) was also identified. Fenspiride inhibited phosphodiesterase 4 and phosphodiesterase 3 activities with -logIC50 values of 4.16+/-0.09 and 3.44+/-0.12, respectively. Phosphodiesterase 5 activity was also inhibited with a -logIC50 value of approximately 3.8. Fenspiride (< or = 10(-3) M) produced less than 25% inhibition of phosphodiesterase 1 and phosphodiesterase 2 activities. In conclusion, fenspiride is an effective inhibitor of both cyclic AMP and cyclic GMP hydrolytic activity in human bronchial tissues and this action may contribute to its airway effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikaus, Clemens C.; Stout, Joseph R.; Sekharan, Monica R.
2008-08-15
Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular NOEs.
Facius, Axel; Krause, Andreas; Claret, Laurent; Bruno, Rene; Lahu, Gezim
2017-08-01
Roflumilast is a selective phosphodiesterase 4 inhibitor (PDE4i) for the treatment of severe chronic obstructive pulmonary disease (COPD). In 2 large phase 3 trials in a broader population of COPD patients (BY217/M2-111, ClinicalTrials.gov: NCT00076089 and BY217/M2-112, ClinicalTrials.gov: NCT00430729), treatment with roflumilast reduced the rate of exacerbations; however, the reduction did not reach statistical significance. Two linked dose-response models for the primary (annualized COPD exacerbation counts) and secondary (change from baseline in forced expiratory volume in 1 second [FEV 1 ]) end points were therefore developed to characterize and quantify effect sizes and the patient characteristics influencing them. The models showed that disease severity and bronchitis, particularly the severity of bronchitis expressed in cough-and-sputum scores, were good predictors of exacerbation rates and differential benefit of roflumilast in exacerbation reduction. The models were used to support the rational design of 2 phase 3 randomized, placebo-controlled clinical trials (BY217/M2-124, ClinicalTrials.gov: NCT00297102 and BY217/M2-125, ClinicalTrials.gov: NCT00297115) by identifying the most appropriate patient population using clinical trial simulations. Model predictions for both end points were found to be highly accurate - as confirmed by the results from these trials, which led to the approval of roflumilast as the first oral PDE4i for the treatment of COPD in patients associated with chronic bronchitis and a history of exacerbations. © 2017, The American College of Clinical Pharmacology.
Low-Intensity Shock Wave Therapy and Its Application to Erectile Dysfunction
Lei, Hongen; Liu, Jing; Li, Huixi; Wang, Lin; Xu, Yongde; Tian, Wenjie; Lin, Guiting
2013-01-01
Although phosphodiesterase type 5 inhibitors (PDE5Is) are a revolution in the treatment of erectile dysfunction (ED) and have been marketed since 1998, they cannot restore pathological changes in the penis. Low-energy shock wave therapy (LESWT) has been developed for treating ED, and clinical studies have shown that LESWT has the potential to affect PDE5I non-responders with ED with few adverse effects. Animal studies have shown that LESWT significantly improves penile hemodynamics and restores pathological changes in the penis of diabetic ED animal models. Although the mechanisms remain to be investigated, recent studies have reported that LESWT could partially restore corpus cavernosum fibromuscular pathological changes, endothelial dysfunction, and peripheral neuropathy. LESWT could be a novel modality for treating ED, and particularly PDE5I non-responders with organic ED, in the near future. However, further extensive evidence-based basic and clinical studies are needed. This review intends to summarize the scientific background underlying the effect of LESWT on ED. PMID:24459653
Low-intensity shock wave therapy and its application to erectile dysfunction.
Lei, Hongen; Liu, Jing; Li, Huixi; Wang, Lin; Xu, Yongde; Tian, Wenjie; Lin, Guiting; Xin, Zhongcheng
2013-12-01
Although phosphodiesterase type 5 inhibitors (PDE5Is) are a revolution in the treatment of erectile dysfunction (ED) and have been marketed since 1998, they cannot restore pathological changes in the penis. Low-energy shock wave therapy (LESWT) has been developed for treating ED, and clinical studies have shown that LESWT has the potential to affect PDE5I non-responders with ED with few adverse effects. Animal studies have shown that LESWT significantly improves penile hemodynamics and restores pathological changes in the penis of diabetic ED animal models. Although the mechanisms remain to be investigated, recent studies have reported that LESWT could partially restore corpus cavernosum fibromuscular pathological changes, endothelial dysfunction, and peripheral neuropathy. LESWT could be a novel modality for treating ED, and particularly PDE5I non-responders with organic ED, in the near future. However, further extensive evidence-based basic and clinical studies are needed. This review intends to summarize the scientific background underlying the effect of LESWT on ED.
Molenaar, Peter; Christ, Torsten; Hussain, Rizwan I; Engel, Andreas; Berk, Emanuel; Gillette, Katherine T; Chen, Lu; Galindo-Tovar, Alejandro; Krobert, Kurt A; Ravens, Ursula; Levy, Finn Olav; Kaumann, Alberto J
2013-01-01
Background and Purpose PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3–1 μM) or PDE4 inhibitor rolipram (1–10 μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental Approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through β1 adrenoceptors (β2 adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2 adrenoceptors (β1 adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key Results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P = 0.037) of the positive inotropic effects of (-)-adrenaline (0.78 ± 0.12 log units) than (-)-noradrenaline (0.47 ± 0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and Implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1 and β2 adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2 adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle. Linked Article This article is commented on by Eschenhagen, pp 524–527 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12168 PMID:23489141
Muradov, Khakim G; Granovsky, Alexey E; Schey, Kevin L; Artemyev, Nikolai O
2002-03-26
Retinal rod and cone cGMP phosphodiesterases (PDE6 family) function as the effector enzyme in the vertebrate visual transduction cascade. The activity of PDE6 catalytic subunits is controlled by the Pgamma-subunits. In addition to the inhibition of cGMP hydrolysis at the catalytic sites, Pgamma is known to stimulate a noncatalytic binding of cGMP to the regulatory GAFa-GAFb domains of PDE6. The latter role of Pgamma has been attributed to its polycationic region. To elucidate the structural basis for the regulation of cGMP binding to the GAF domains of PDE6, a photoexcitable peptide probe corresponding to the polycationic region of Pgamma, Pgamma-21-45, was specifically cross-linked to rod PDE6alphabeta. The site of Pgamma-21-45 cross-linking was localized to Met138Gly139 within the PDE6alpha GAFa domain using mass spectrometric analysis. Chimeras between PDE5 and cone PDE6alpha', containing GAFa and/or GAFb domains of PDE6alpha' have been generated to probe a potential role of the GAFb domains in binding to Pgamma. Analysis of the inhibition of the PDE5/PDE6alpha' chimeras by Pgamma supported the role of PDE6 GAFa but not GAFb domains in the interaction with Pgamma. Our results suggest that a direct binding of the polycationic region of Pgamma to the GAFa domains of PDE6 may lead to a stabilization of the noncatalytic cGMP-binding sites.
Khan, K M; Shah, Zarbad; Ahmad, V U; Ambreen, N; Khan, M; Taha, M; Rahim, F; Noreen, S; Perveen, S; Choudhary, M I; Voelter, W
2012-02-15
6-Nitrobenzimidazole derivatives (1-30) synthesized and their phosphodiesterase inhibitory activities determined. Out of thirty tested compounds, ten showed a varying degrees of phosphodiesterase inhibition with IC(50) values between 1.5±0.043 and 294.0±16.7 μM. Compounds 30 (IC(50)=1.5±0.043 μM), 1 (IC(50)=2.4±0.049 μM), 11 (IC(50)=5.7±0.113 μM), 13 (IC(50)=6.4±0.148 μM), 14 (IC(50)=10.5±0.51 μM), 9 (IC(50)=11.49±0.08 μM), 3 (IC(50)=63.1±1.48 μM), 10 (IC(50)=120.0±4.47 μM), and 6 (IC(50)=153.2±5.6 μM) showed excellent phosphodiesterase inhibitory activity, much superior to the standard EDTA (IC(50)=274±0.007 μM), and thus are potential molecules for the development of a new class of phosphodiesterase inhibitors. A structure-activity relationship is evaluated. All compounds are characterized by spectroscopic parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Muzaffar, S; Shukla, N; Bond, M; Sala-Newby, G B; Newby, A C; Angelini, G D; Jeremy, J Y
2008-01-01
Background and purpose: To determine whether there is an association between vascular NADPH oxidase (NOX), superoxide, the small GTPase Rac1 and PDE type 5 (PDE5) in human vascular smooth muscle cell (hVSMCs). Experimental approach: hVSMCs were incubated with xanthine–xanthine oxidase (X-XO; a superoxide generating system) or the thromboxane A2 analogue, U46619 (±superoxide dismutase (SOD) or apocynin) for 16 h. The expression of PDE5 and NOX-1 was assessed using Western blotting and superoxide measured. The role of Rac1 in superoxide generation was assessed by overexpressing either the dominant-negative or constitutively active Rac isoforms. The effects of iloprost, DETA-NONOate and the Rho-kinase inhibitor, Y27632, on PDE5 and NOX-1 expression were also studied. Key results: Following 16 h incubation, U46619 and X-XO promoted the expression of PDE5 and NOX-1, an effect blocked by SOD or apocynin when co-incubated over the same time course. X-XO and U46619 both promoted the formation of superoxide. Overexpression of dominant-negative Rac1 or addition of iloprost, DETA-NONOate or Y27632 completely blocked both superoxide release and PDE5 protein expression and activity. Conclusions and implications: These data demonstrate that superoxide derived from NOX upregulates the expression of PDE5 in human VSMCs. As PDE5 hydrolyses cyclic GMP, this effect may blunt the vasculoprotective actions of NO. PMID:18660830
Ribeiro, Joaquim A; Sebastião, Ana M
2010-01-01
Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.
Tomkinson, A.; Raeburn, D.
1996-01-01
1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552
Tom, Wynnis L; Van Syoc, Merrie; Chanda, Sanjay; Zane, Lee T
2016-01-01
Phosphodiesterase-4 (PDE4) is an emerging target in treating inflammatory skin diseases. Crisaborole topical ointment, 2% is a novel, boron-based, topical PDE4 inhibitor under investigation for treatment of mild to moderate atopic dermatitis (AD). Adolescent patients aged 12 to 17 years with treatable AD lesions involving ≥ 10% to ≤ 35% body surface area (BSA) were enrolled into a phase 2a, open-label study comprising pharmacokinetic (PK), safety, tolerability, and efficacy assessments. Crisaborole topical ointment, 2% was applied twice daily to affected areas for 28 days, with dosage based on baseline treatable BSA. PK blood samples were collected on days 1, 2, 4, 6, 8, and 9. Safety assessments included adverse events (AEs), laboratory parameters, and vital signs. Efficacy assessments included the Investigator's Static Global Assessment (ISGA) score and severity of AD signs and symptoms. Twenty-three patients were enrolled; 22 completed the study (1 patient discontinued due to an AE [application site dermatitis]). PK analysis demonstrated limited exposure to crisaborole topical ointment, 2% after 8 days of dosing. Ten patients reported a total of 19 AEs, most commonly application site pain and nasopharyngitis (3 patients each). There were no clinically meaningful changes in laboratory or vital sign parameters. Efficacy was demonstrated by reductions in mean ISGA and AD sign and symptom severity scores. At day 29, eight patients (35%) had achieved an ISGA score ≤ 1 with ≥ 2-grade improvement. Mean treatable BSA declined from 17.6% to 8.2%. These results provide preliminary evidence for the limited systemic exposure, safety, and effectiveness of crisaborole topical ointment, 2% in adolescents with mild to moderate AD. © 2016 Wiley Periodicals, Inc.
Cigarette Smoke Upregulates PDE3 and PDE4 to Decrease cAMP in Airway Cells.
Zuo, Haoxiao; Han, Bing; Poppinga, Wilfred J; Ringnalda, Lennard; Kistemaker, Loes E M; Halayko, Andrew J; Gosens, Reinoud; Nikolaev, Viacheslav O; Schmidt, Martina
2018-05-03
3', 5'-cyclic adenosine monophosphate (cAMP) is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease (COPD), a lung disease primarily provoked by cigarette smoke (CS), the induction of cAMP-dependent pathways, via inhibition of hydrolyzing phosphodiesterases (PDEs), is a prime therapeutic strategy. Mechanisms that disrupt cAMP signaling in airway cells, in particular regulation of endogenous PDEs are poorly understood. We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mouse in vivo, ex vivo precision cut lung slices (PCLS), and in human in vitro cell models to track the effects of CS exposure. Under fenoterol stimulated conditions, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein upregulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed downregulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways. We show that CS upregulates expression and activity of both PDE3 and PDE4, which regulate real-time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS-induced pulmonary pathophysiology. This article is protected by copyright. All rights reserved.
Rzasa, Robert M; Frohn, Michael J; Andrews, Kristin L; Chmait, Samer; Chen, Ning; Clarine, Jeffrey G; Davis, Carl; Eastwood, Heather A; Horne, Daniel B; Hu, Essa; Jones, Adrie D; Kaller, Matthew R; Kunz, Roxanne K; Miller, Silke; Monenschein, Holger; Nguyen, Thomas; Pickrell, Alexander J; Porter, Amy; Reichelt, Andreas; Zhao, Xiaoning; Treanor, James J S; Allen, Jennifer R
2014-12-01
We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure-activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability. X-ray crystallographic studies revealed two distinct binding modes to the catalytic site of the PDE10A enzyme. An ex vivo receptor occupancy assay in rats demonstrated that this series of compounds covered the target within the striatum.
Phosphodiesterase 7 Inhibition Induces Dopaminergic Neurogenesis in Hemiparkinsonian Rats
Morales-Garcia, Jose A.; Alonso-Gil, Sandra; Gil, Carmen; Martinez, Ana; Santos, Angel
2015-01-01
Parkinson’s disease is characterized by a loss of dopaminergic neurons in a specific brain region, the ventral midbrain. Parkinson’s disease is diagnosed when approximately 50% of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) have degenerated and the others are already affected by the disease. Thus, it is conceivable that all therapeutic strategies, aimed at neuroprotection, start too late. Therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs with disease-modifying properties. In this regard, modulation of endogenous adult neurogenesis toward a dopaminergic phenotype might provide a new strategy to target Parkinson’s disease by partially ameliorating the dopaminergic cell loss that occurs in this disorder. We have previously shown that a phosphodiesterase 7 (PDE7) inhibitor, S14, exerts potent neuroprotective and anti-inflammatory effects in different rodent models of Parkinson’s disease, indicating that this compound could represent a novel therapeutic agent to stop the dopaminergic cell loss that occurs during the progression of the disease. In this report we show that, in addition to its neuroprotective effect, the PDE7 inhibitor S14 is also able to induce endogenous neuroregenerative processes toward a dopaminergic phenotype. We describe a population of actively dividing cells that give rise to new neurons in the SNpc of hemiparkinsonian rats after treatment with S14. In conclusion, our data identify S14 as a novel regulator of dopaminergic neuron generation. Significance Parkinson’s disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the ventral midbrain. Currently, no cure and no effective disease-modifying therapy are available for Parkinson’s disease; therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs for the treatment of this disorder. The present study reports that an inhibitor of the enzyme phosphodiesterase 7 (S14) induces proliferation in vitro and in vivo of neural stem cells, promoting its differentiation toward a dopaminergic phenotype and therefore enhancing dopaminergic neuron generation. Because this drug is also able to confer neuroprotection of these cells in animal models of Parkinson’s disease, S14 holds great promise as a therapeutic new strategy for this disorder. PMID:25925836
Rosano, Giuseppe M C; Aversa, Antonio; Vitale, Cristiana; Fabbri, Andrea; Fini, Massimo; Spera, Giovanni
2005-02-01
Erectile dysfunction (ED) is often associated with a cluster of risk factors for coronary artery disease and reduced endothelial function. Acute and chronic administration of oral sildenafil, a phosphodiesterase type 5 (PDE5) inhibitor, improves endothelial function in patients with ED. Tadalafil (TAD) is a new PDE5 inhibitor with a long half life that allows alternate day administration. Aim of the study was to evaluate whether chronic therapy (4 weeks) with TAD improves endothelial function in patients with increased cardiovascular risk and whether this effect is sustained after discontinuation of therapy. We randomized 32 patients with increased cardiovascular risk to receive either TAD 20 mg on alternate days or matching placebo (PLB) for 4 weeks. Patients underwent evaluation of brachial artery flow-mediated dilation (FMD), nitrite/nitrate and endothelin-1 plasma levels at baseline, at the end of treatment period and after two-weeks follow-up. At 4 weeks, FMD was significantly improved by TAD (from 4.2+/-3.2 to 9.3+/-3.7%, p<0.01 vs. baseline), but was not modified by PLB (from 4.1+/-2.8 to 4.0+/-3.4%, p=NS). At 6 weeks the benefit in FMD was sustained in patients that received TAD (9.1+/-3.9% vs. 4.2+/-3.2%, p=0.01 vs. baseline; 9.1+/-3.9% vs. 9.3+/-3.7%, vs. 4 weeks, p=NS) while no changes in FMD were observed in patients randomized to PLB. Also, compared to baseline, a net increase in nitrite/nitrate levels (38.2+/-12.3 vs. 52.6+/-11.7 and 51.1+/-3.1, p<0.05) and a decrease in endothelin-1 levels (3.3+/-0.9 vs. 2.9.+/-0.7 and 2.9+/-0.9, p<0.05) was found both at four and six-weeks after TAD; these changes were inversely correlated as shown by regression analysis (adjusted R2=0.81, p<0.0001). Chronic therapy with TAD improves endothelial function in patients with increased cardiovascular risk regardless their degree of ED. The benefit of this therapy is sustained for at least two weeks after the discontinuation of therapy. Larger studies are needed in order to assess the possible clinical implications of chronic therapy with TAD.
Haj Slimane, Zeineb; Bedioune, Ibrahim; Lechêne, Patrick; Varin, Audrey; Lefebvre, Florence; Mateo, Philippe; Domergue-Dupont, Valérie; Dewenter, Matthias; Richter, Wito; Conti, Marco; El-Armouche, Ali; Zhang, Jin; Fischmeister, Rodolphe; Vandecasteele, Grégoire
2014-01-01
Aims The cAMP-dependent protein kinase (PKA) mediates β-adrenoceptor (β-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes. Methods and results Cytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. β-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus. Conclusion Our study reveals a differential integration of cytoplasmic and nuclear PKA responses to β-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to β-AR stimulation. PMID:24550350
The future is today: emerging drugs for the treatment of erectile dysfunction
Albersen, Maarten; Shindel, Alan; Mwamukonda, Kuwong; Lue, Tom
2011-01-01
Erectile Dysfunction (ED) is the most common male sexual dysfunction presented for treatment, and the most thoroughly studied sexual dysfunction in men. In the late 20th century, important discoveries were made regarding both the physiologic processes of penile erection and the pathophysiology of ED. These discoveries led to the commercial introduction of the phosphodiesterase type 5 inhibitors (PDE5I), a class of medications which now accounts for the largest segment of the ED market. While these drugs are highly efficacious for many men, a relatively large subset of ED patients who do not respond to PDE5I has been identified. Recognition of this subset of the ED population and the ageing of the population has driven researchers to investigate novel treatment targets for ED. Increased research efforts have resulted in the development of several orally available compounds that combine high efficacy with low rates of adverse events. In this review we report on various compounds that regulate penile erection both centrally (Clavulanic acid, Dopamine and Melanocortin receptor agonists) and peripherally (novel PDE5I, soluble and particulate Guanylil Cyclase activators, Rho-kinase inhibitors and Maxi-K channel openers), and discuss the preclinical and clinical evidence supporting the development of these emerging drugs for ED. PMID:20415601
Yang, Kai-Chun; Stepanov, Vladimir; Amini, Nahid; Martinsson, Stefan; Takano, Akihiro; Nielsen, Jacob; Bundgaard, Christoffer; Bang-Andersen, Benny; Grimwood, Sarah; Halldin, Christer; Farde, Lars; Finnema, Sjoerd J
2017-02-01
[ 11 C]Lu AE92686 is a positron emission tomography (PET) radioligand that has recently been validated for examining phosphodiesterase 10A (PDE10A) in the human striatum. [ 11 C]Lu AE92686 has high affinity for PDE10A (IC 50 = 0.39 nM) and may also be suitable for examination of the substantia nigra, a region with low density of PDE10A. Here, we report characterization of regional [ 11 C]Lu AE92686 binding to PDE10A in the nonhuman primate (NHP) brain. A total of 11 PET measurements, seven baseline and four following pretreatment with unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were performed in five NHPs using a high resolution research tomograph (HRRT). [ 11 C]Lu AE92686 binding was quantified using a radiometabolite-corrected arterial input function and compartmental and graphical modeling approaches. Regional time-activity curves were best described with the two-tissue compartment model (2TCM). However, the distribution volume (V T ) values for all regions were obtained by the Logan plot analysis, as reliable cerebellar V T values could not be derived by the 2TCM. For cerebellum, a proposed reference region, V T values increased by ∼30 % with increasing PET measurement duration from 63 to 123 min, while V T values in target regions remained stable. Both pretreatment drugs significantly decreased [ 11 C]Lu AE92686 binding in target regions, while no significant effect on cerebellum was observed. Binding potential (BP ND ) values, derived with the simplified reference tissue model (SRTM), were 13-17 in putamen and 3-5 in substantia nigra and correlated well to values from the Logan plot analysis. The method proposed for quantification of [ 11 C]Lu AE92686 binding in applied studies in NHP is based on 63 min PET data and SRTM with cerebellum as a reference region. The study supports that [ 11 C]Lu AE92686 can be used for PET examinations of PDE10A binding also in substantia nigra.
Current Status and Clinical Studies of Oriental Herbs in Sexual Medicine in Korea
Shin, Yu Seob; Zhao, Chen; Zhang, Li Tao
2015-01-01
Erectile dysfunction (ED) is one of the most common diseases among aging men. Although previous studies have shown that type 5 phosphodiesterase inhibitors (PDE5-Is) are very effective for the treatment of ED, many researchers are currently attempting to identify therapeutic agents from natural sources with comparable or better effects than PDE5-Is. Herbal medicine is thought to be advantageous because it is natural; moreover, it not only treats isolated symptoms, but also maintains general well-being. Furthermore, since newly created chemical compound libraries have limited structural diversity with regard to pharmaceutical agents, more attention has recently been paid to the ability of oriental herbs to enhance physical health, including sexual function. Herein, we review the current status of Korean preclinical or clinical studies of the application of oriental herbs to sexual medicine. PMID:26331122
Kalash, Leen; Val, Cristina; Azuaje, Jhonny; Loza, María I; Svensson, Fredrik; Zoufir, Azedine; Mervin, Lewis; Ladds, Graham; Brea, José; Glen, Robert; Sotelo, Eddy; Bender, Andreas
2017-12-30
Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A 1 and A 2A receptors (A 1 R and A 2A R) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A 1 and A 2A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at A 1 R, A 2A R and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as A 1 R/A 2A R-PDE10A ligands, with IC 50 values of 2.4-10.0 μM at PDE10A and K i values of 34-294 nM at A 1 R and/or A 2A R. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards A 1 R, A 2A R and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.
Avanafil for the treatment of erectile dysfunction: initial data and clinical key properties.
Kedia, George T; Uckert, Stefan; Assadi-Pour, Farhang; Kuczyk, Markus A; Albrecht, Knut
2013-02-01
Orally active, selective inhibitors of phosphodiesterase type 5 (PDE 5, cyclic GMP PDE), such as sildenafil, tadalafil and vardenafil, are currently the first-choice treatment options for the clinical management of erectile dysfunction (ED) of various etiologies and severities. However, a significant number of patients remain dissatisfied with the available therapies due a lack of efficacy or discomfort arising from adverse events. Several new PDE5 inhibitors, among which are avanafil (TA-1790), lodenafil, mirodenafil, udenafil, SLX-2101, JNJ-10280205 and JNJ-10287069, have recently been approved and introduced into the market or are in the final stages of their clinical development. Avanafil (marketed in the US under the brand name STENDRA(™)) has been developed by VIVUS Inc. (Mountain View, CA, USA) and has recently received approval from the US Food and Drug Administration (FDA) for use in the treatment of male ED. The drug has demonstrated improved selectivity for PDE5, is rapidly absorbed after oral administration with a fast onset of action and a plasma half-life that is comparable to sildenfil and vardenafil. In phase II and phase III clinical trials that included a large number of patients, avanafil has been shown to be effective and well tolerated. Owing to its favorable pharmacodynamic and pharmacokinetic profile, avanafil is considered as a promising new option in the treatment of ED. The present article summarizes the initial data and clinical key properties of avanafil.
Avanafil for the treatment of erectile dysfunction: initial data and clinical key properties
Ückert, Stefan; Assadi-Pour, Farhang; Kuczyk, Markus A.; Albrecht, Knut
2013-01-01
Orally active, selective inhibitors of phosphodiesterase type 5 (PDE 5, cyclic GMP PDE), such as sildenafil, tadalafil and vardenafil, are currently the first-choice treatment options for the clinical management of erectile dysfunction (ED) of various etiologies and severities. However, a significant number of patients remain dissatisfied with the available therapies due a lack of efficacy or discomfort arising from adverse events. Several new PDE5 inhibitors, among which are avanafil (TA-1790), lodenafil, mirodenafil, udenafil, SLX-2101, JNJ-10280205 and JNJ-10287069, have recently been approved and introduced into the market or are in the final stages of their clinical development. Avanafil (marketed in the US under the brand name STENDRA™) has been developed by VIVUS Inc. (Mountain View, CA, USA) and has recently received approval from the US Food and Drug Administration (FDA) for use in the treatment of male ED. The drug has demonstrated improved selectivity for PDE5, is rapidly absorbed after oral administration with a fast onset of action and a plasma half-life that is comparable to sildenfil and vardenafil. In phase II and phase III clinical trials that included a large number of patients, avanafil has been shown to be effective and well tolerated. Owing to its favorable pharmacodynamic and pharmacokinetic profile, avanafil is considered as a promising new option in the treatment of ED. The present article summarizes the initial data and clinical key properties of avanafil. PMID:23372609
Horvath, Anelia; Giatzakis, Christoforos; Tsang, Kitman; Greene, Elizabeth; Osorio, Paulo; Boikos, Sosipatros; Libè, Rossella; Patronas, Yianna; Robinson-White, Audrey; Remmers, Elaine; Bertherat, Jerôme; Nesterova, Maria; Stratakis, Constantine A.
2009-01-01
Bilateral adrenocortical hyperplasia (BAH) is the second most common cause of corticotropin-independent Cushing syndrome (CS). Genetic forms of BAH have been associated with complex syndromes such as Carney Complex and McCune Albright syndrome or may present as isolated micronodular adrenocortical disease (iMAD) usually in children and young adults with CS. A genome-wide association study identified inactivating phosphodiesterase (PDE) 11A (PDE11A) sequencing defects as low-penetrance predisposing factors for iMAD and related abnormalities; we also described a mutation (c.914A>C/H305P) in cAMP-specific PDE8B, in a patient with iMAD. In this study we further characterize this mutation; we also found a novel PDE8B isoform, highly expressed in the adrenal gland. This mutation is shown to significantly affect the ability of the protein to degrade cAMP in vitro. Tumor tissues from patients with iMAD and no mutations in the coding PDE8B sequence or any other related genes (PRKAR1A, PDE11A) showed down-regulated PDE8B expression (compared to normal adrenal cortex). Pde8b is detectable in the adrenal gland of newborn mice and is widely expressed in other mouse tissues. We conclude that PDE8B is another PDE gene linked to iMAD; it is a candidate causative gene for other adrenocortical lesions linked to the cAMP-signaling pathway, and possibly for tumors in other tissues. PMID:18431404
Sildenafil-associated hepatoxicity: a review of the literature.
Graziano, S; Montana, A; Zaami, S; Rotolo, M C; Minutillo, A; Busardò, F P; Marinelli, E
2017-03-01
Sildenafil citrate (Viagra®) is a vasoactive agent available worldwide since 1998 for the treatment of male erectile dysfunction. It is a selective phosphodiesterase type 5-enzyme inhibitor able to potentiate the downstream effects of nitric oxide on smooth muscle relaxation and vasodilation through its effects on the cyclic guanosine monophosphate (c-GMP) pathway in the erectile tissue of the penis. When sildenafil is orally administered, it is rapidly absorbed with a maximum plasma concentration achieved within 1 h and has a terminal half-life of between 3 to 6 h. The drug is extensively and rapidly metabolized by the liver, primarily by the CYP3A4 enzyme. Although the drug is well tolerated, specific adverse events have been observed, like flushing, headaches, dyspepsia, and visual disturbances. Liver toxicity related to sildenafil consumption has been considered a very rare event. However, in the last decade, some cases of sildenafil-associated hepatotoxicity have been reported. Furthermore, some hepatic intoxications have been reported after the intake of "natural" or "herbal" aphrodisiac supplements sold through Internet, sex shops, social media, and by word-of-mouth found to contain sildenafil and other phosphodiesterase type 5 (PDE-5) inhibitors. Studies investigating a possible link between sildenafil use and liver damage are limited, and the underlying mechanism responsible for hepatotoxicity is still missing. Studies in animals evidence that the hematopoietic function of the liver may have severely been affected as a result of a probable toxic effect of sildenafil. Here, the studies reporting liver toxicity by sildenafil in humans and in animals are reported and discussed.
Currie, Graeme P; Butler, Claire A; Anderson, Wendy J; Skinner, Chris
2008-01-01
Chronic obstructive pulmonary disease represents a major global health care burden for both primary and secondary care providers and is the most common respiratory condition necessitating hospital admission. Short-acting bronchodilators play a vital role in immediate relief of symptoms, while inhaled long-acting bronchodilators and inhaled corticosteroids are advocated for regular use in individuals with persistent symptoms and exacerbations. Theophylline is a nonspecific phosphodiesterase inhibitor and is usually reserved for patients with ongoing symptoms despite optimum inhaled bronchodilator treatment or when difficulty is encountered with inhaler devices. However, it is often not widely used mainly due to frequency of dose-related adverse effects, numerous drug interactions and narrow therapeutic index. This in turn has lead to the development of more selective phosphodiesterase inhibitors in an attempt to create a drug which patients can use with beneficial effects but without the problems associated with theophylline. Current data do indicate that phosphodiesterase 4 inhibitors confer some benefits in chronic obstructive pulmonary disease when compared to placebo in terms of lung function, quality of life and exacerbations. They are also generally well tolerated. Further studies are required to determine fully their long-term beneficial and adverse effect profiles and ultimately where they might comfortably sit in management algorithms. PMID:18341675
Ohoka, Nobumichi; Okuhira, Keiichiro; Ito, Masahiro; Nagai, Katsunori; Shibata, Norihito; Hattori, Takayuki; Ujikawa, Osamu; Shimokawa, Kenichiro; Sano, Osamu; Koyama, Ryokichi; Fujita, Hisashi; Teratani, Mika; Matsumoto, Hirokazu; Imaeda, Yasuhiro; Nara, Hiroshi; Cho, Nobuo; Naito, Mikihiko
2017-03-17
Many diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation. To this end, we recently developed a protein knockdown system based on hybrid small molecule SNIPERs ( S pecific and N ongenetic I AP-dependent P rotein Er asers) that recruit inhibitor of the apoptosis protein (IAP) ubiquitin ligases to specifically degrade targeted proteins. Here, we extend our previous study to show a proof of concept of the SNIPER technology in vivo By incorporating a high affinity IAP ligand, we developed a novel SNIPER against estrogen receptor α (ERα), SNIPER(ER)-87, that has a potent protein knockdown activity. The SNIPER(ER) reduced ERα levels in tumor xenografts and suppressed the growth of ERα-positive breast tumors in mice. Mechanistically, it preferentially recruits X-linked IAP (XIAP) rather than cellular IAP1, to degrade ERα via the ubiquitin-proteasome pathway. With this IAP ligand, potent SNIPERs against other pathogenic proteins, BCR-ABL, bromodomain-containing protein 4 (BRD4), and phosphodiesterase-4 (PDE4) could also be developed. These results indicate that forced ubiquitylation by SNIPERs is a useful method to achieve efficient protein knockdown with potential therapeutic activities and could also be applied to study the role of ubiquitylation in many cellular processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Itoh, Tetsuji; Tokumura, Miwa; Abe, Kohji
2004-09-13
The brain cAMP regulating system and its downstream elements play a pivotal role in the therapeutic effects of antidepressants. We previously reported the increase in activities of phosphodiesterase 4, a major phosphodiesterase isozyme hydrolyzing cAMP, in the frontal cortex and hippocampus of learned helplessness rats, an animal model for depression. The present study was undertaken to examine the combination of effects of rolipram, a phosphodiesterase 4 inhibitor, with imipramine, a typical tricyclic antidepressant, on depressive behavior in learned helplessness rats. Concurrently, cAMP-response element (CRE)-binding activity and brain-derived neurotrophic factor (BDNF) levels related to the therapeutic effects of antidepressants were determined. Repeated administration of imipramine (1.25-10 mg/kg, i.p.) or rolipram (1.25 mg/kg, i.p.) reduced the number of escape failures in learned helplessness rats. Imipramine could not completely ameliorate the escape behavior to a level similar to that of non-stressed rats even at 10 mg/kg. However, repeated coadministration of rolipram with imipramine (1.25 and 2.5 mg/kg, respectively) almost completely eliminated the escape failures in learned helplessness rats. The reduction of CRE-binding activities and BDNF levels in the frontal cortex or hippocampus in learned helplessness rats were ameliorated by treatment with imipramine or rolipram alone. CRE-binding activities and/or BDNF levels of the frontal cortex and hippocampus were significantly increased by treatment with a combination of rolipram and imipramine compared to those in imipramine-treated rats. These results indicated that coadministration of phosphodiesterase type 4 inhibitors with antidepressants may be more effective for depression therapy and suggest that elevation of the cAMP signal transduction pathway is involved in the antidepressive effects.
Comparison of [11C]TZ1964B and [18F]MNI659 for PET imaging brain PDE10A in nonhuman primates.
Liu, Hui; Jin, Hongjun; Yue, Xuyi; Han, Junbin; Yang, Hao; Flores, Hubert; Su, Yi; Alagille, David; Perlmutter, Joel S; Tamagnan, Gilles; Tu, Zhude
2016-10-01
Phosphodiesterase 10A (PDE10A) inhibitors show therapeutic effects for diseases with striatal pathology. PET radiotracers have been developed to quantify in vivo PDE10A levels and target engagement for therapeutic interventions. The aim of this study was to compare two potent and selective PDE10A radiotracers, [ 11 C]TZ1964B and [ 18 F]MNI659 in the nonhuman primate (NHP) brain. Double scans in the same cynomolgus monkey on the same day were performed after injection of [ 11 C]TZ1964B and [ 18 F]MNI659. Specific uptake was determined in two ways: nondisplaceable binding potential (BP ND ) was calculated using cerebellum as the reference region and the PDE-10A enriched striatum as the target region of interest (ROI); the area under the time-activity curve (AUC) for the striatum to cerebellum ratio was also calculated. High-performance liquid chromatography (HPLC) analysis of solvent-extracted NHP plasma identified the percentage of intact tracer versus radiolabeled metabolites samples post injection of each radiotracer. Both radiotracers showed high specific accumulation in NHP striatum. [ 11 C]TZ1964B has higher striatal retention and lower specific striatal uptake than [ 18 F]MNI659. The BP ND estimates of [ 11 C]TZ1964B were 3.72 by Logan Reference model (LoganREF) and 4.39 by simplified reference tissue model (SRTM); the BP ND estimates for [ 18 F]MNI659 were 5.08 (LoganREF) and 5.33 (SRTM). AUC ratios were 5.87 for [ 11 C]TZ1964B and 7.60 for [ 18 F]MNI659. Based on BP ND values in NHP striatum, coefficients of variation were ~10% for [ 11 C]TZ1964B and ~30% for [ 18 F]MNI659. Moreover, the metabolism study showed the percentage of parent compounds were ~70% for [ 11 C]TZ1964B and ~50% for [ 18 F]MNI659 60 min post injection. These data indicate that either [ 11 C]TZ1964B or [ 18 F]MNI659 could serve as suitable PDE10A PET radiotracers with distinguishing features for particular clinical application.
Increased Risk of Non-Fatal Myocardial Infarction Following Testosterone Therapy Prescription in Men
Finkle, William D.; Greenland, Sander; Ridgeway, Gregory K.; Adams, John L.; Frasco, Melissa A.; Cook, Michael B.; Fraumeni, Joseph F.; Hoover, Robert N.
2014-01-01
Background An association between testosterone therapy (TT) and cardiovascular disease has been reported and TT use is increasing rapidly. Methods We conducted a cohort study of the risk of acute non-fatal myocardial infarction (MI) following an initial TT prescription (N = 55,593) in a large health-care database. We compared the incidence rate of MI in the 90 days following the initial prescription (post-prescription interval) with the rate in the one year prior to the initial prescription (pre-prescription interval) (post/pre). We also compared post/pre rates in a cohort of men prescribed phosphodiesterase type 5 inhibitors (PDE5I; sildenafil or tadalafil, N = 167,279), and compared TT prescription post/pre rates with the PDE5I post/pre rates, adjusting for potential confounders using doubly robust estimation. Results In all subjects, the post/pre-prescription rate ratio (RR) for TT prescription was 1.36 (1.03, 1.81). In men aged 65 years and older, the RR was 2.19 (1.27, 3.77) for TT prescription and 1.15 (0.83, 1.59) for PDE5I, and the ratio of the rate ratios (RRR) for TT prescription relative to PDE5I was 1.90 (1.04, 3.49). The RR for TT prescription increased with age from 0.95 (0.54, 1.67) for men under age 55 years to 3.43 (1.54, 7.56) for those aged ≥75 years (ptrend = 0.03), while no trend was seen for PDE5I (ptrend = 0.18). In men under age 65 years, excess risk was confined to those with a prior history of heart disease, with RRs of 2.90 (1.49, 5.62) for TT prescription and 1.40 (0.91, 2.14) for PDE5I, and a RRR of 2.07 (1.05, 4.11). Discussion In older men, and in younger men with pre-existing diagnosed heart disease, the risk of MI following initiation of TT prescription is substantially increased. PMID:24489673
Zhang, Jian; Jin, Zhe; Li, Longhu; Gang, Li; Yu, Qin; Wang, Meilan; Song, Ailin; Hong, Bingzhe
2014-04-01
To observe the impact of PDE5shRNA on cardiac remodeling and heart function following myocardial infarction in mice. Myocardial infarction (MI) was induced in mice by left coronary artery ligation. Mice were randomly assigned to sham group (n = 6), PDE5shRNA group (n = 12), common adenovirus group (n = 15) and DMEM group (n = 8). Four weeks post-MI, the survival rate was evaluated. Cardiac function was examined by echocardiography. HE staining and Masson staining were used to evaluate the myocardial infarction size and fibrosis. The number of blood vessels was evaluated by immunohistochemistry, PDE5 protein expression in the left ventricular was detected using Western blot, level of cGMP or PKG activity in the left ventricle was evaluated with ELISA. Four weeks post-MI, all mice survived in the sham group, 3(37%) mice died in the DMEM group, 1 (8%) died in the PDE5shRNA group and 5 died in the common adenovirus group (33%). Infarct size was significantly reduced in PDE5shRNA group compared with the common adenovirus group and DMEM group [(25.4 ± 2.9)% vs. (42.0 ± 3.2)% and (43.4 ± 2.6) %, P < 0.05]. Cardiac function was significantly improved in PDE5shRNA group compared to common adenovirus group and DMEM group[LVFS: (21.1 ± 3.7)% vs. (14.2 ± 2.9)% and (14.22 ± 2.91)%, all P < 0.05; LVEF: (48.2 ± 7.1)% vs. (34.6 ± 6.2)% and (38.1 ± 2.8)%, all P < 0.05; LVESD: (3.87 ± 0.45) mm vs.(4.91 ± 0.62) mm and (4.63 ± 0.37) mm, all P < 0.05]. The blood vessel density was also higher in PDE5shRNA group compared with common adenovirus group (infarct area:14.3 ± 2.0 vs. 6.6 ± 1.2, P < 0.05; periinfarct area: 23.6 ± 2.1 vs. 13.7 ± 2.4, P < 0.05). Compared with common adenovirus group, level of PDE5 was significantly downregulated and level of cGMP or PKG was significantly upregulated in PDE5shRNA group (all P < 0.05). Present study suggests PDE5shRNA improves cardiac function and attenuates cardiac remodeling through reducing infarction size and cardiac fibrosis and these beneficial effects are possibly mediated by activating cGMP/PKG signaling pathway.
Evaluation of vardenafil for the treatment of subjective tinnitus: a controlled pilot study
Mazurek, Birgit; Haupt, Heidemarie; Szczepek, Agnieszka J; Sandmann, Jörg; Gross, Johann; Klapp, Burghard F; Kiesewetter, Holger; Kalus, Ulrich; Stöver, Timo; Caffier, Philipp P
2009-01-01
Background Vardenafil (Levitra®) represents a potent and highly selective phosphodiesterase type 5 (PDE5) inhibitor, which is established for treatment of various diseases. There are several unpublished reports from patients stating that vardenafil has a considerable therapeutic effect on their concomitant tinnitus. This pilot study was conducted to specifically assess the effect of vardenafil in patients with chronic tinnitus. Methods This trial was based on a prospective, randomized, double-blind, placebo-controlled, parallel group design. Fourty-two consecutive subjects with mon- or binaural chronic tinnitus received 10 mg vardenafil (N = 21) or matching placebo tablets (N = 21) administered orally twice a day over a period of 12 weeks. Clinical examination and data acquisition took place at each visit: at baseline, after 4 weeks, after 12 weeks (end of treatment with study medication), and at non-medicated follow-up after 16 weeks. Assessment of clinical effectiveness was based on a standardized tinnitus questionnaire (TQ), the Short Form 36 health survey (SF-36), audiometric measurements (mode, pitch and loudness of tinnitus; auditory thresholds) and biomarkers of oxidative stress in patients' blood (malondialdehyde, protein carbonyl, homocysteine and total antioxidative status). Therapeutic efficacy was evaluated by comparison of subjective and objective parameters with baseline data between both treatment groups (ANCOVA). Results Vardenafil had no superior efficacy over placebo in the treatment of chronic tinnitus during this study. The primary efficacy criterion 'TQ total score' failed to demonstrate significant improvement compared to placebo. Subjective reports of TQ subscales and general quality of life areas (SF-36), objective audiometric examinations as well as investigated biomarkers for oxidative stress did not reveal any significant treatment effects. The safety profile was favorable and consistent with that in other vardenafil studies. Conclusion Although hypoxia and ischemia play a special role in the pathogenesis of tinnitus, the PDE5-inhibitor-induced increase of nitric oxide-mediated vasodilatation exerted no specific influence on tinnitus symptomatology. Considering the unclear risk of rarely associated hearing impairment, systemic application of vardenafil or other PDE5 inhibitors prove to be not appropriate for therapy of chronic tinnitus. PMID:19222841
Murrell, Dedee F; Gebauer, Kurt; Spelman, Lynda; Zane, Lee T
2015-10-01
A novel approach for treating atopic dermatitis (AD) is the inhibition of phosphodiesterase 4 (PDE4), an enzyme involved in the proinflammatory cascade. Crisaborole topical ointment, 2% is a novel, boron-based small-molecule PDE4 inhibitor with anti-inflammatory properties. The objective of this proof-of-concept study was to assess the efficacy and safety of crisaborole topical ointment, 2% in adults with mild to moderate AD. This phase 2a, randomized, double-blind, bilateral, 6-week study of crisaborole topical ointment, 2% was conducted in adult patients with mild to moderate AD with 2 comparable target AD lesions. Patients were randomly assigned to twice-daily application of crisaborole topical ointment, 2% or vehicle, each to 1 of the 2 target lesions. The primary efficacy endpoint was change from baseline in Atopic Dermatitis Severity Index (ADSI) score at day 28. Safety assessments included local tolerability and incidence of adverse events (AEs). A total of 25 enrolled patients received study medication. At day 28, 17 patients (68%) experienced a greater decrease in ADSI score in the active-treated lesion than in the vehicle-treated lesion; 5 patients (20%) had a greater decrease in ADSI score in the vehicle-treated lesion than in the active-treated lesion. Local application-site reactions were reported in 3 patients (12%). A total of 29 AEs were reported in 11 patients; most (90%) were mild in intensity and unrelated to study medication. No serious or severe AEs were reported, and no patient discontinued due to an AE. These findings provide preliminary evidence of the efficacy and safety of treatment with crisaborole topical ointment, 2% in adults with mild to moderate AD. The study is registered on ClinicalTrials.gov (identifier NCT01301508).
Hsu, Lewis L.; Berkowitz, Dan E.; Champion, Hunter C.; Burnett, Arthur L.
2013-01-01
Sildenafil citrate revolutionized the practice of sexual medicine upon its federal regulatory agency approval approximately 15 years ago as the prototypical phosphodiesterase type 5 inhibitor indicated for the treatment of male erectile dysfunction. We now provide scientific support for its alternative use in the management of priapism, a clinical disorder of prolonged and uncontrolled penile erection. Sildenafil administered continuously to sickle cell mice, which show a priapism phenotype, reverses oxidative/nitrosative stress effects in the penis, mainly via reversion of uncoupled endothelial nitric oxide synthase to the functional coupled state of the enzyme, which in turn corrects aberrant signaling and function of the nitric oxide/cyclic GMP/protein kinase G/phosphodiesterase type 5 cascade. Priapism tendencies in these mice are reverted partially toward normal neurostimulated erection frequencies and durations after sildenafil treatment in association with normalized cyclic GMP concentration, protein kinase G activity and phosphodiesterase type 5 activity in the penis. Thus, sildenafil exerts pleiotropic effects in the penis that extend to diverse erection disorders. PMID:23844149
Bivalacqua, Trinity J; Musicki, Biljana; Hsu, Lewis L; Berkowitz, Dan E; Champion, Hunter C; Burnett, Arthur L
2013-01-01
Sildenafil citrate revolutionized the practice of sexual medicine upon its federal regulatory agency approval approximately 15 years ago as the prototypical phosphodiesterase type 5 inhibitor indicated for the treatment of male erectile dysfunction. We now provide scientific support for its alternative use in the management of priapism, a clinical disorder of prolonged and uncontrolled penile erection. Sildenafil administered continuously to sickle cell mice, which show a priapism phenotype, reverses oxidative/nitrosative stress effects in the penis, mainly via reversion of uncoupled endothelial nitric oxide synthase to the functional coupled state of the enzyme, which in turn corrects aberrant signaling and function of the nitric oxide/cyclic GMP/protein kinase G/phosphodiesterase type 5 cascade. Priapism tendencies in these mice are reverted partially toward normal neurostimulated erection frequencies and durations after sildenafil treatment in association with normalized cyclic GMP concentration, protein kinase G activity and phosphodiesterase type 5 activity in the penis. Thus, sildenafil exerts pleiotropic effects in the penis that extend to diverse erection disorders.
Damiano, Fabio; Silva, Claudia; Gregori, Adolfo; Vacondio, Federica; Mor, Marco; Menozzi, Mattia; Di Giorgio, Domenico
2014-05-01
Identification of pharmaceutical active ingredients sildenafil and tadalafil and the characterization of a dimethylated thio-derivative of sildenafil, called thioaildenafil or thiodimethylsildenafil, in illicit dietary supplements were described. A multi-residual ultra-performance liquid chromatography-time of flight mass spectrometry (UPLC-TOF/MS) method was developed to screen for the presence of the phosphodiesterase-5 (PDE-5) inhibitors sildenafil, tadalafil, and vardenafil and their analogues thioaildenafil and thiohomosildenafil in powders and pharmaceutical dosage forms. The study was developed in connection with an operation supervised by the Italian Medicines Agency (A.I.F.A.), aimed to monitor dietary supplements in the Italian market. In two of the eleven specimens under investigation, high-resolution mass spectrometry (HR-MS) allowed the identification of the PDE-5 inhibitors sildenafil and tadalafil, while another specimen proved to contain a unapproved dimethylated thioderivative of sildenafil, thioaildenafil or thiodimethylsildenafil, identified for the first time in Italy as adulterant in food supplements. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Silva, Fábio H; Karakus, Serkan; Musicki, Biljana; Matsui, Hotaka; Bivalacqua, Trinity J; Dos Santos, Jean L; Costa, Fernando F; Burnett, Arthur L
2016-11-01
Patients with sickle cell disease (SCD) display priapism, and dysregulated nitric oxide (NO) pathway may contribute to this condition. However, current therapies offered for the prevention of priapism in SCD are few. The 3-(1,3-dioxoisoindolin-2-yl)benzyl nitrate (compound 4C) was synthesized through molecular hybridization of hydroxyurea and thalidomide, which displays an NO-donor property. This study aimed to evaluate the effects of compound 4C on functional and molecular alterations of erectile function in murine models that display low NO bioavailability, SCD transgenic mice, and endothelial NO synthase and neuronal NO synthase double gene-deficient (dNOS -/ ) mice, focusing on the dysregulated NO-cGMP- phosphodiesterase type 5 (PDE5) pathway and oxidative stress in erectile tissue. Wild-type, SCD, and dNOS -/- mice were treated with compound 4C (100 μmol/kg/d, 3 weeks). Intracavernosal pressure in anesthetized mice was evaluated. Corpus cavernosum tissue was dissected free and mounted in organ baths. SCD and dNOS -/- mice displayed a priapism phenotype, which was reversed by compound 4C treatment. Increased corpus cavernosum relaxant responses to acetylcholine and electrical-field stimulation were reduced by 4C in SCD mice. Likewise, increased sodium nitroprusside-induced relaxant responses were reduced by 4C in cavernosal tissue from SCD and dNOS -/- mice. Compound 4C reversed PDE5 protein expression and reduced protein expressions of reactive oxygen species markers, NADPH oxidase subunit gp91 phox , and 3-nitrotyrosine in penises from SCD and dNOS -/- mice. In conclusion, 3-week therapy with the NO donor 4C reversed the priapism in murine models that display lower NO bioavailability. NO donor compounds may constitute an additional strategy to prevent priapism in SCD. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Expression of phosphodiesterase 6 (PDE6) in human breast cancer cells.
Dong, Hongli; Claffey, Kevin P; Brocke, Stefan; Epstein, Paul M
2013-01-01
Considerable epidemiological evidence demonstrates a positive association between artificial light at night (LAN) levels and incidence rates of breast cancer, suggesting that exposure to LAN is a risk factor for breast cancer. There is a 30-50% higher risk of breast cancer in the highest LAN exposed countries compared to the lowest LAN countries, and studies showing higher incidence of breast cancer among shift workers exposed to more LAN have led the International Agency for Research on Cancer to classify shift work as a probable human carcinogen. Nevertheless, the means by which light can affect breast cancer is still unknown. In this study we examined established human breast cancer cell lines and patients' primary breast cancer tissues for expression of genetic components of phosphodiesterase 6 (PDE6), a cGMP-specific PDE involved in transduction of the light signal, and previously thought to be selectively expressed in photoreceptors. By microarray analysis we find highly significant expression of mRNA for the PDE6B, PDE6C, and PDE6D genes in both the cell lines and patients' tissues, minimal expression of PDE6A and PDE6G and no expression of PDE6H. Using antibody specific for PDE6β, we find expression of PDE6B protein in a wide range of patients' tissues by immunohistochemistry, and in MCF-7 breast cancer cells by immunofluorescence and Western blot analysis. Considerable expression of key circadian genes, PERIOD 2, CLOCK, TIMELESS, CRYPTOCHROME 1, and CRYPTOCHROME 2 was also seen in all breast cancer cell lines and all patients' breast cancer tissues. These studies indicate that genes for PDE6 and control of circadian rhythm are expressed in human breast cancer cells and tissues and may play a role in transducing the effects of light on breast cancer.
Siuciak, J A; McCarthy, S A; Chapin, D S; Reed, T M; Vorhees, C V; Repaske, D R
2007-07-01
PDE1B is a calcium-dependent cyclic nucleotide phosphodiesterase that is highly expressed in the striatum. In order to investigate the physiological role of PDE1B in the central nervous system, PDE1B knockout mice (C57BL/6N background) were assessed in behavioral tests and their brains were assayed for monoamine content. In a variety of well-characterized behavioral tasks, including the elevated plus maze (anxiety-like behavior), forced swim test (depression-like behavior), hot plate (nociception) and two cognition models (passive avoidance and acquisition of conditioned avoidance responding), PDE1B knockout mice performed similarly to wild-type mice. PDE1B knockout mice showed increased baseline exploratory activity when compared to wild-type mice. When challenged with amphetamine (AMPH) and methamphetamine (METH), male and female PDE1B knockout mice showed an exaggerated locomotor response. Male PDE1B knockout mice also showed increased locomotor responses to higher doses of phencyclidine (PCP) and MK-801; however, this effect was not consistently observed in female knockout mice. In the striatum, increased dopamine turnover (DOPAC/DA and HVA/DA ratios) was found in both male and female PDE1B knockout mice. Striatal serotonin (5-HT) levels were also decreased in PDE1B knockout mice, although levels of the metabolite, 5HIAA, were unchanged. The present studies demonstrate increased striatal dopamine turnover in PDE1B knockout mice associated with increased baseline motor activity and an exaggerated locomotor response to dopaminergic stimulants such as methamphetamine and amphetamine. These data further support a role for PDE1B in striatal function.
Fisher, William A; Rosen, Raymond C; Eardley, Ian; Sand, Michael; Goldstein, Irwin
2005-09-01
Much research has explored the experience of erectile dysfunction (ED) among men with ED, but far less attention has been paid to the perceptions and sexual experiences of the female partners of men with ED. The objective of this study was to characterize the attitudes, beliefs, and sexual experience of female partners of men with erectile difficulties. Female partners of men with ED who had participated in the Men's Attitudes to Life Events and Sexuality (MALES) study were recruited for this research via mail or Internet, after their male partners consented to this contact. Female partners of men with ED (N = 293) responded to questionnaire measures assessing their frequency of sexual activity and the nature of their sexual experience, both before and after the development of their partner's ED, and in relation to their partner's use of phosphodiesterase type 5 (PDE5) inhibitors. Women reported engaging in sexual activity significantly less frequently after their partner developed ED in comparison with before (P < 0.001). Moreover, significantly fewer women experienced sexual desire, arousal, or orgasm "almost always" or "most times," and significantly fewer women reported satisfaction with their sexual relationship after their partner developed ED, compared with before (P < 0.001). Decreases in female sexual satisfaction and frequency of orgasm were significantly related to the male partner's self-reported severity of ED (P < 0.01). The proportion of women who experienced sexual desire, arousal, and orgasm "almost always" or "most times" was significantly higher in the group whose partners were currently using a PDE5 inhibitor (P < 0.05). Erectile dysfunction has significant adverse effects on the female partner's sexual experience. Women with partners who were currently using PDE5 inhibitors had a more satisfying sexual experience than those whose partners did not use a PDE5 inhibitor.
Ragavendran, J Vaigunda; Laferrière, André; Xiao, Wen Hua; Bennett, Gary J; Padi, Satyanarayana S V; Zhang, Ji; Coderre, Terence J
2013-01-01
Growing evidence indicates that various chronic pain syndromes exhibit tissue abnormalities caused by microvasculature dysfunction in the blood vessels of skin, muscle, or nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in animal models of complex regional pain syndrome type I (CRPS-I) and neuropathic pain. We hypothesized that topical administration of either α(2)-adrenergic (α(2)A) receptor agonists or nitric oxide (NO) donors combined with either phosphodiesterase (PDE) or phosphatidic acid (PA) inhibitors would effectively reduce allodynia in these animal models of chronic pain. Single topical agents produced significant dose-dependent antiallodynic effects in rats with chronic postischemia pain, and the antiallodynic dose-response curves of PDE and PA inhibitors were shifted 2.5- to 10-fold leftward when combined with nonanalgesic doses of α(2)A receptor agonists or NO donors. Topical combinations also produced significant antiallodynic effects in rats with sciatic nerve injury, painful diabetic neuropathy, and chemotherapy-induced painful neuropathy. These effects were shown to be produced by a local action, lasted up to 6 hours after acute treatment, and did not produce tolerance over 15 days of chronic daily dosing. The present results support the hypothesis that allodynia in animal models of CRPS-I and neuropathic pain is effectively relieved by topical combinations of α(2)A or NO donors with PDE or PA inhibitors. This suggests that topical treatments aimed at improving microvascular function may reduce allodynia in patients with CRPS-I and neuropathic pain. This article presents the synergistic antiallodynic effects of combinations of α(2)A or NO donors with PDE or PA inhibitors in animal models of CRPS-I and neuropathic pain. The data suggest that effective clinical treatment of chronic neuropathic pain may be achieved by therapies that alleviate microvascular dysfunction in affected areas. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Clewell, A; Qureshi, I; Endres, J; Horváth, J; Financsek, I; Neal-Kababick, J; Jade, K; Schauss, A G
2010-06-01
The dietary supplement, 112 Degrees, was formulated with the goal of supporting sexual functioning in men. Due to rampant problems with drug adulteration for this category of products, a comprehensive screening for active pharmaceutical agents, with an emphasis on drugs prescribed for erectile dysfunction such as type 5 phosphodiesterase (PDE-5) inhibitors, and known unapproved PDE-5 drug analogues, was performed along with preclinical toxicology studies prior to the introduction of this product into the marketplace. 112 Degrees was found to be free of all pharmaceutical adulterants tested, and was not mutagenic, clastogenic, or genotoxic as demonstrated by the Ames test, chromosomal aberration assay, and mouse micronucleus assay, respectively. The LD(50) in the 14-day acute oral toxicity study was greater than 5000 mg/kg, the highest dose tested. (c) 2009 Elsevier Inc. All rights reserved.
Muradov, Khakim G; Granovsky, Alexey E; Artemyev, Nikolai O
2003-03-25
Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the vertebrate visual transduction cascade. The activity of rod PDE6 catalytic alpha- and beta-subunits is blocked in the dark by two inhibitory Pgamma-subunits. The inhibition is released upon light-stimulation of photoreceptor cells. Mutation H258N in PDE6beta has been linked to congenital stationary night blindness (CSNB) in a large Danish family (Rambusch pedigree) (Gal, A., Orth, U., Baehr, W., Schwinger, E., and Rosenberg, T. (1994) Nat. Genet. 7, 64-67.) We have analyzed the consequences of this mutation for PDE6 function using a Pgamma-sensitive PDE6alpha'/PDE5 chimera, Chi16. Biochemical analysis of the H257N mutant, an equivalent of PDE6betaH258N, demonstrates that this substitution does not alter the ability of chimeric PDE to dimerize or the enzyme's catalytic properties. The sensitivity of H257N to a competitive inhibitor zaprinast was also unaffected. However, the mutant displayed a significant impairment in the inhibitory interaction with Pgamma, which was apparent from a approximately 20-fold increase in the K(i) value (46 nM) and incomplete maximal inhibition. The inhibitory defect of H257N is not due to perturbation of noncatalytic cGMP binding to the PDE6alpha' GAF domains. The noncatalytic cGMP-binding characteristics of the H257N mutant were similar to those of the parent PDE6alpha'/PDE5 chimera. Since rod PDE6 in the Rambusch CSNB is a catalytic heterodimer of the wild-type PDE6alpha and mutant PDE6beta, Chi16 and H257N were coexpressed, and a heterodimeric PDE, Chi16/H257N, was isolated. It displayed two Pgamma inhibitory sites with the K(i) values of 5 and 57 nM. Our results support the hypothesis that mutation H258N in PDE6beta causes CSNB through incomplete inhibition of PDE6 activity by Pgamma, which leads to desensitization of rod photoreceptors.
The effect of methamphetamine on an animal model of erectile function
Tar, Moses T.; Martinez, Luis R.; Nosanchuk, Joshua D.; Davies, Kelvin P.
2014-01-01
In the U.S. methamphetamine is considered a first-line treatment for attention-deficit hyperactivity disorder. It is also a common drug of abuse. Reports in patients and abusers suggest its use results in impotence. The efficacy of phosphodiesterase-5 inhibitors (PDE5i) to restore erectile function in these patient groups also has not been determined. In these studies we determined if the rat is a suitable animal model for the physiological effects of methamphetamine on erectile function, and if a PDE5i (tadalafil) has an effect on erectile function following methamphetamine treatment. In acute phase studies, erectile function was measured in male Sprague-Dawley rats, before and after administration of 10 mg/kg methamphetamine i.p. Chronically treated animals received escalating doses of methamphetamine (2.5 mg/kg (1st week), 5 mg/kg (2nd week), and 10 mg/kg (3rd week)) i.p. daily for three weeks and erectile function compared to untreated controls. The effect of co-administration of tadalafil was also investigated in rats acutely and chronically treated with methamphetamine. Erectile function was determined by measuring the intracorporal pressure/blood pressure ratio (ICP/BP) following cavernous nerve stimulation. In both acute and chronic phase studies we observed a significant increase in the rates of spontaneous erections after methamphetamine administration. In addition, following stimulation of the cavernous nerve at 4 and 6mA, there was a significant decrease in the ICP/BP ratio (approximately 50%), indicative of impaired erectile function. Tadalafil treatment reversed this effect. In chronically treated animals the ICP/BP ratio following 4 and 6mA stimulation decreased by approximately 50% compared to untreated animals and erectile dysfunction was also reversed by tadalafil. Overall our data suggests that the rat is a suitable animal model to study the physiological effect of methamphetamine on erectile function. Our work also provides a rationale for treating patients that report erectile dysfunction associated with therapeutics containing methamphetamine or amphetamine with PDE5i. PMID:24706617
Egbert, Jeremy R; Yee, Siu-Pok; Jaffe, Laurinda A
2018-03-01
Prior to birth, oocytes within mammalian ovarian follicles initiate meiosis, but then arrest in prophase until puberty, when with each reproductive cycle, one or more follicles are stimulated by luteinizing hormone (LH) to resume meiosis in preparation for fertilization. Within preovulatory follicles, granulosa cells produce high levels of cGMP, which diffuses into the oocyte to maintain meiotic arrest. LH signaling restarts meiosis by rapidly lowering the levels of cGMP in the follicle and oocyte. Part of this decrease is mediated by the dephosphorylation and inactivation the NPR2 guanylyl cyclase in response to LH, but the mechanism for the remainder of the cGMP decrease is unknown. At least one cGMP phosphodiesterase, PDE5, is activated by LH signaling, which would contribute to lowering cGMP. PDE5 exhibits increased cGMP-hydrolytic activity when phosphorylated on serine 92, and we recently demonstrated that LH signaling phosphorylates PDE5 on this serine and increases its activity in rat follicles. To test the extent to which this mechanism contributes to the cGMP decrease that restarts meiosis, we generated a mouse line in which serine 92 was mutated to alanine (Pde5-S92A), such that it cannot be phosphorylated. Here we show that PDE5 phosphorylation is required for the LH-induced increase in cGMP-hydrolytic activity, but that this increase has only a modest effect on the LH-induced cGMP decrease in mouse follicles, and does not affect the timing of meiotic resumption. Though we show that the activation of PDE5 is among the mechanisms contributing to the cGMP decrease, these results suggest that another cGMP phosphodiesterase is also activated by LH signaling. Copyright © 2018 Elsevier Inc. All rights reserved.
Bacconi, L; Gressier, F
2017-02-01
Sexual dysfunction is an important public health problem in men and is associated with reduced quality of life. It is more common in patients with schizophrenia. It is well-established that antipsychotic drugs cause sexual dysfunction with consequences on the quality of life of patients, adherence to treatment, and public health costs. Phosphodiesterase type 5 inhibitors (PDE5 inhibitors) are indicated for the management of erectile dysfunction. However, there is little information on such treatment in schizophrenic patients. This literature review aimed to summarize the current data on the efficacy and tolerability of PDE-5 inhibitors in the erectile dysfunction in schizophrenic patients. PubMed, PsycInfo and Cochrane databases were searched for studies published until August 2014. Only 6 studies met the inclusion criteria. Three were randomized, double-blind, cross-over, placebo-controlled trials and three were open studies. Various scales were used to measure erectile and orgasmic function, desire, satisfaction during intercourse, overall satisfaction, quality of life and intensity of schizophrenic symptoms. In the 3 randomized studies (one with sildenafil 25-50 mg, one with lodenafil carbonate 80 mg/j and the last one with tadalafil 10 mg), the rate of participants who completed the trial was high (around 95 %). All three included patients with schizophrenia or schizophrenia spectrum disorders. Patients reported significant improvement on sexual dysfunction. However, no statistical difference was reported between lodenafil and placebo, on different scales, suggesting a very important placebo effect in patients with schizophrenia. All three found a good tolerance of PDE-5 inhibitors. Side effects were rare and were mainly nasal congestion, headaches, nausea and dizziness. There were no major side effects or drug interactions. Considering the 3 open studies, 2 involved sildenafil and one tadalafil. All concluded in improved erectile and orgasmic function, desire, satisfaction during intercourse, overall satisfaction, and even the quality of life when it was studied. However, very few patients were included. Little data are available on the use of PDE5 inhibitors in schizophrenic patients. The 6 studies included few patients which reduces the power and the scope of their conclusions. There is also an important bias due to the use of self-questionnaires. The methodologies of the studies differ in many aspects which limits the comparability. Inclusion and exclusion criteria, drugs used and scales varied among the studies. However, the management of erectile disorder seems to be a consistent target in an integrative approach for the overall well-being of schizophrenic patients. PDE-5 inhibitors appear to be safe and could improve erectile function in schizophrenic patients. In total, the current data suggest efficiency and good tolerance of the use of PDE-5 inhibitors in schizophrenic patients with erectile dysfunction. However, further studies focusing on PDE-5 inhibitors are needed to more deeply assess their efficacy and safety in patients with schizophrenia. Copyright © 2016 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Combination therapy for erectile dysfunction: an update review.
Dhir, Rohit R; Lin, Hao-Cheng; Canfield, Steven E; Wang, Run
2011-05-01
The introduction of oral phosphodiesterase-5 inhibitors (PDE5Is) in the late 1990s and early 2000s revolutionized the field of sexual medicine and PDE5Is are currently first-line monotherapy for erectile dysfunction (ED). However, a significant proportion of patients with complex ED will be therapeutic non-responders to PDE5I monotherapy. Combination therapy has recently been adopted for more refractory cases of ED, but a critical evaluation of current combination therapies is lacking. A thorough PubMed and Cochrane Library search was conducted focusing on the effectiveness of combination therapies for ED in therapeutic non-responders to PDE5I therapy. Journal articles spanning the time period between January 1990 and December 2010 were reviewed. Criteria included all pertinent review articles, randomized controlled trials, cohort studies and retrospective analyses. References from retrieved articles were also manually scanned for additional relevant publications. Published combination therapies include PDE5I plus vacuum erectile device (VED), intraurethral medication, intracavernosal injection (ICI), androgen supplement, α-blocker or miscellaneous combinations. Based on this review, some of these combination treatments appeared to be quite effective in preliminary testing. Caution must be advised, however, as the majority of combination therapy articles in the last decade have numerous limitations including study biases and small subject size. Regardless of limitations, present combination therapy research provides a solid foundation for future studies in complex ED management.
Hwang, Dah-Ren; Hu, Essa; Allen, Jennifer R; Davis, Carl; Treanor, James; Miller, Silke; Chen, Hang; Shi, Bingzhi; Narayanan, Tanjorie K; Barret, Olivier; Alagille, David; Yu, Zhigang; Slifstein, Mark
2015-08-01
Phosphodiesterase 10A (PDE10A) is an intracellular enzyme responsible for the breakdown of cyclic nucleotides which are important second messengers for neurotransmission. Inhibition of PDE10A has been identified as a potential target for treatment of various neuropsychiatric disorders. To assist drug development, we have identified a selective PDE10A positron emission tomography (PET) tracer, AMG 580. We describe here the radiosynthesis of [(18)F]AMG 580 and in vitro and in vivo characterization results. The potency and selectivity were determined by in vitro assay using [(3)H]AMG 580 and baboon brain tissues. [(18)F]AMG 580 was prepared by a 1-step [(18)F]fluorination procedure. Dynamic brain PET scans were performed in non-human primates. Regions-of-interest were defined on individuals' MRIs and transferred to the co-registered PET images. Data were analyzed using two tissue compartment analysis (2TC), Logan graphical (Logan) analysis with metabolite-corrected input function and the simplified reference tissue model (SRTM) method. A PDE10A inhibitor and unlabeled AMG 580 were used to demonstrate the PDE10A specificity. KD was estimated by Scatchard analysis of high and low affinity PET scans. AMG 580 has an in vitro KD of 71.9 pM. Autoradiography showed specific uptake in striatum. Mean activity of 121 ± 18 MBq was used in PET studies. In Rhesus, the baseline BPND for putamen and caudate was 3.38 and 2.34, respectively, via 2TC, and 3.16, 2.34 via Logan, and 2.92, and 2.01 via SRTM. A dose dependent decrease of BPND was observed by the pre-treatment with a PDE10A inhibitor. In baboons, 0.24 mg/kg dose of AMG 580 resulted in about 70% decrease of BPND. The in vivo KD of [(18)F]AMG 580 was estimated to be around 0.44 nM in baboons. [(18)F]AMG 580 is a selective and potent PDE10A PET tracer with excellent specific striatal binding in non-human primates. It warrants further evaluation in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Lagman, David; Franzén, Ilkin E; Eggert, Joel; Larhammar, Dan; Abalo, Xesús M
2016-06-13
Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade.
Huang, Wei; Cane, Matthew C; Mukherjee, Rajarshi; Szatmary, Peter; Zhang, Xiaoying; Elliott, Victoria; Ouyang, Yulin; Chvanov, Michael; Latawiec, Diane; Wen, Li; Booth, David M; Haynes, Andrea C; Petersen, Ole H; Tepikin, Alexei V; Criddle, David N
2017-01-01
Objective Caffeine reduces toxic Ca2+ signals in pancreatic acinar cells via inhibition of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated signalling, but effects of other xanthines have not been evaluated, nor effects of xanthines on experimental acute pancreatitis (AP). We have determined effects of caffeine and its xanthine metabolites on pancreatic acinar IP3R-mediated Ca2+ signalling and experimental AP. Design Isolated pancreatic acinar cells were exposed to secretagogues, uncaged IP3 or toxins that induce AP and effects of xanthines, non-xanthine phosphodiesterase (PDE) inhibitors and cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP/cGMP) determined. The intracellular cytosolic calcium concentration ([Ca2+]C), mitochondrial depolarisation and necrosis were assessed by confocal microscopy. Effects of xanthines were evaluated in caerulein-induced AP (CER-AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP) or palmitoleic acid plus ethanol-induced AP (fatty acid ethyl ester AP (FAEE-AP)). Serum xanthines were measured by liquid chromatography-mass spectrometry. Results Caffeine, dimethylxanthines and non-xanthine PDE inhibitors blocked IP3-mediated Ca2+ oscillations, while monomethylxanthines had little effect. Caffeine and dimethylxanthines inhibited uncaged IP3-induced Ca2+ rises, toxin-induced Ca2+ release, mitochondrial depolarisation and necrotic cell death pathway activation; cAMP/cGMP did not inhibit toxin-induced Ca2+ rises. Caffeine significantly ameliorated CER-AP with most effect at 25 mg/kg (seven injections hourly); paraxanthine or theophylline did not. Caffeine at 25 mg/kg significantly ameliorated TLCS-AP and FAEE-AP. Mean total serum levels of dimethylxanthines and trimethylxanthines peaked at >2 mM with 25 mg/kg caffeine but at <100 µM with 25 mg/kg paraxanthine or theophylline. Conclusions Caffeine and its dimethylxanthine metabolites reduced pathological IP3R-mediated pancreatic acinar Ca2+ signals but only caffeine ameliorated experimental AP. Caffeine is a suitable starting point for medicinal chemistry. PMID:26642860
USDA-ARS?s Scientific Manuscript database
White lupin (Lupinus albus L.), a well adapted species to phosphate (Pi) impoverished soils, develops short, densely clustered lateral roots (cluster/proteoid roots) to increase Pi uptake. Here, we report two white lupin glycerophosphodiester phosphodiesterase (GPX-PDE) genes which share strong homo...
Glina, Sidney; Toscano, Iderpol; Gomatzky, Celso; de Góes, Plínio Moreira; Júnior, Archimedes Nardozza; Claro, Joaquim Francisco de Almeida; Pagani, Eduardo
2009-02-01
Oral treatment with phosphodiesterase type 5 inhibitor (PDE5) is considered the first-line treatment for patients with erectile dysfunction (ED). Lodenafil carbonate (LC) is a novel PDE5. This is a phase II, prospective, randomized, double-blind, and placebo controlled clinical trial of LC. Efficacy end points were International Index of Sexual Function (IIEF) erectile domain, IIEF questions 3 and 4, and Sexual Encounter Profile (SEP) questions 2 and 3, before and after the use of LC or placebo. Seventy-two men older than 18 years, with ED for at least 6 months with stable sexual relationship were enrolled. Patients were randomized to placebo or LC 80 mg, 40 mg, or 20 mg and followed for 4 weeks. IIEF erectile domain scores before and after the use of medications were (mean +/- standard deviation [SD]): placebo: 11.9 +/- 3.4 and 12.6 +/- 5.5; LC 20 mg: 15.8 +/- 4.1 and 18.9 +/- 6.6; LC 40 mg: 11.9 +/- 4.4 and 15.4 +/- 8.1; LC 80 mg: 14.2 +/- 4.7 and 22.8 +/- 6.0 (ANOVA P < 0.01). The SEP-2 scores before and after the use of medications were (Mean +/- SD): placebo: 71.0 +/- 33.1 and 51.2 +/- 43.1; LC 20 mg 70.3 +/- 34.2 and 75.5 +/- 31.5; LC 40 mg: 48.4 +/- 42.1 and 60.8 +/- 42.5; LC 80 mg: 68.6 +/- 33.5 and 89.6 +/- 26.0. The SEP-3 scores were: placebo 23.3 +/- 27.6 and 33.6 +/- 42.3; LC 20 mg: 32.3 +/- 38.9 and 51.2 +/- 41.7; LC 40 mg: 39.7 +/- 44.7 and 46.7 +/- 41.1; LC 80 mg* 17.2 +/- 29.5 and 74.3 +/- 36.4 (*P < 0.05 for difference to placebo). The drug was well tolerated. Adverse reactions were mild and self-limited and included headache, rhinitis, flushing, color visual disorders, and dyspepsia. This study showed that the dosage of 80 mg of LC was significantly more efficacious than placebo and well tolerated.
Van Laere, Koen; Ahmad, Rawaha U; Hudyana, Hendra; Celen, Sofie; Dubois, Kristof; Schmidt, Mark E; Bormans, Guy; Koole, Michel
2013-01-01
Phosphodiesterase 10A (PDE10A) is a cAMP/cGMP-hydrolysing enzyme with a central role in striatal signalling and implicated in neuropsychiatric disorders such as Huntington's disease, Parkinson's disease, schizophrenia and addiction. We have developed a novel PDE10A PET ligand, (18)F-JNJ42259152, and describe here its human dynamic biodistribution, safety and dosimetry. Six male subjects (age range 23-67 years) underwent ten dynamic whole-body PET/CT scans over 6 h after bolus injection of 175.5 ± 9.4 MBq (18)F-JNJ42259152. Source organs were delineated on PET/CT and individual organ doses and effective dose were determined using the OLINDA software. F-JNJ42259152 was readily taken up by the brain and showed exclusive retention in the brain, especially in the striatum with good washout starting after 20 min. The tracer was cleared through both the hepatobiliary and the urinary routes. No defluorination was observed. Organ absorbed doses were largest for the gallbladder (239 μSv/MBq) and upper large intestine (138 μSv/MBq). The mean effective dose was 24.9 ± 4.1 μSv/MBq. No adverse events were encountered. In humans, (18)F-JNJ42259152 has an appropriate distribution, brain kinetics and safety. The estimated effective dose was within WHO class IIb with low interindividual variability. Therefore, the tracer is suitable for further kinetic evaluation in humans.
Kumar, Amit; Misra, Shubham; Kumar, Pradeep; Sagar, Ram; Gulati, Arti; Prasad, Kameshwar
2017-08-01
Stroke remains a leading cause of death and disability worldwide. Ischemic stroke (IS) accounts for around 80-85% of total stroke and is a complex polygenic multi-factorial disorder which is affected by a complex combination of vascular, environmental, and genetic factors. The study was conducted with an aim to examine the relationship of single nucleotide polymorphisms (SNPs) of PDE4D (T83C, C87T, and C45T) gene with increasing risk of IS in patients in North Indian population. In this hospital-based case-control study, 250 IS subjects and 250 age-and sex-matched control subjects were enrolled from the Neurosciences Centre, A.I.I.M.S., New Delhi, India. Deoxyribonucleic acids (DNAs) were extracted using the conventional Phenol-Chloroform isolation method. Different genotypes were determined by Polymerase chain reaction- Restriction fragment length polymorphism method. Odds ratio (OR) and 95% Confidence Interval (CI) of relationship of polymorphisms with risk of IS were calculated by conditional multivariable regression analysis. High blood pressure, low socioeconomic status, dyslipidemia, diabetes, and family history of stroke were observed to be statistically significant risk factors for IS. Multivariable adjusted analysis demonstrated a statistically significant relationship between SNP 83 of PDE4D gene polymorphism and increasing odds of IS under the dominant model of inheritance (OR, 1.59; 95% CI, 1.02 to 2.50; p value = 0.04) after adjustment of potential confounding variables. Stratified analysis on the basis of TOAST classification demonstrated a statistically significant association for increasing 2.73 times odds for developing large vessel disease stroke as compared to controls (OR, 2.73; 95% CI, 1.16 to 0.02; p value = 0.02). We did not find any significant association of SNPs (C87T and C45T) of the PDE4D gene with the risk of IS. SNP 83 of PDE4D gene may increase the risk for developing IS whereas SNP 87 and SNP45 of PDE4D may not be associated with the risk of IS in the North Indian population. Prospective cohort studies are required to corroborate these findings.
Wijitsettakul, Udomsak; Pempongkosol, Sompol
2013-06-01
To evaluate the efficacy and safety of Elonza (generic product of sildenafil) 100 mg, a phosphodiesterase type 5 (PDE5) inhibitor, in Thai men with erectile dysfunction (ED). This prospective, Cohort study was conducted for eight weeks. Two hundred ten male patients, older than 20 years of age with ED were enrolled to receive generic product of sildenafil 100 mg taken as needed. Efficacy is evaluated through the International Index of Erectile Function (IIEF) scores for the five separate response domains, erectile function, orgasmic function, sexual desire, intercourse satisfaction, and overall satisfaction domain. After sildenafil administration, erectile function domain scores were significantly increased from baseline, 5.02 (p < 0.001) and 7.19 (p < 0.001) in one month and two months, respectively. Intercourse satisfaction domain scores and overall satisfaction domain scores were significantly increased from baseline, 3.17 (p < 0.001) and 1.74 (p < 0.001) in two months, respectively. Most treatment emergent adverse events were mild or moderate. The most frequent treatment-emergent adverse events were flushing (13.2%), nasal congestion (9.8%), abnormal vision (4.9%), headache (4.4%), dizziness (2.9%), and dyspepsia (0.5%). Elonza, a generic product of sildenafil, was an effective and well-tolerated treatment for ED in Thai men.
Hascoet, Sebastien; Fournier, Emmanuelle; Jaïs, Xavier; Le Gloan, Lauriane; Dauphin, Claire; Houeijeh, Ali; Godart, Francois; Iriart, Xavier; Richard, Adelaïde; Radojevic, Jelena; Amedro, Pascal; Bosser, Gilles; Souletie, Nathalie; Bernard, Yvette; Moceri, Pamela; Bouvaist, Hélène; Mauran, Pierre; Barre, Elise; Basquin, Adeline; Karsenty, Clement; Bonnet, Damien; Iserin, Laurence; Sitbon, Olivier; Petit, Jérôme; Fadel, Elie; Humbert, Marc; Ladouceur, Magalie
2017-05-01
The relationship between pulmonary arterial hypertension-specific drug therapy (PAH-SDT) and mortality in Eisenmenger syndrome (ES) is controversial. To investigate outcomes in patients with ES, and their relationship with PAH-SDT. Retrospective, observational, nationwide, multicentre cohort study. We included 340 patients with ES: genetic syndrome (n=119; 35.3%); pretricuspid defect (n=75; 22.1%). Overall, 276 (81.2%) patients received PAH-SDT: monotherapy (endothelin receptor antagonist [ERA] or phosphodiesterase 5 inhibitor [PDE5I]) 46.7%; dual therapy (ERA+PDE5I) 40.9%; triple therapy (ERA+PDE5I+prostanoid) 9.1%. Median PAH-SDT duration was 5.5 years [3.0-9.1 years]. Events (death, lung or heart-lung transplantation) occurred in 95 (27.9%) patients at a median age of 40.5 years [29.4-47.6]. The cumulative occurrence of events was 16.7% [95% confidence interval 12.8-21.6%] and 46.4% [95% confidence interval 38.2-55.4%] at age 40 and 60 years, respectively. With age at evaluation or time since PAH diagnosis as time scales, cumulative occurrence of events was lower in patients taking one or two PAH-SDTs (P=0.0001 and P=0.004, respectively), with the largest differences in the post-tricuspid defect subgroup (P<0.001 and P<0.02, respectively) versus patients without PAH-SDT. By multivariable Cox analysis, with time since PAH diagnosis as time scale, New York Heart Association/World Health Organization functional class III/IV, lower peripheral arterial oxygen saturation and pretricuspid defect were associated with a higher risk of events (P=0.002, P=0.01 and P=0.04, respectively), and one or two PAH-SDTs with a lower risk of events (P=0.009). Outcomes are poor in ES, but seem better with PAH-SDT. ES with pretricuspid defects has worse outcomes despite the delayed disease onset. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Sweet taste transduction in hamster: role of protein kinases.
Varkevisser, B; Kinnamon, S C
2000-05-01
Two different second-messenger pathways have been implicated in sweet taste transduction: sugars produce cyclic AMP (cAMP), whereas synthetic sweeteners stimulate production of inositol 1,4, 5-tris-phosphate (IP(3)) and diacylglycerol (DAG). Both sugars and sweeteners depolarize taste cells by blocking the same resting K(+) conductance, but the intermediate steps in the transduction pathways have not been examined. In this study, the loose-patch recording technique was used to examine the role of protein kinases and other downstream regulatory proteins in the two sweet transduction pathways. Bursts of action currents were elicited from approximately 35% of fungiform taste buds in response to sucrose (200 mM) or NC-00274-01 (NC-01, 200 microM), a synthetic sweetener. To determine whether protein kinase C (PKC) plays a role in sweet transduction, taste buds were stimulated with the PKC activator PDBu (10 microM). In all sweet-responsive taste buds tested (n = 11), PDBu elicited burst of action currents. In contrast, PDBu elicited responses in only 4 of 19 sweet-unresponsive taste buds. Inhibition of PKC by bisindolylmaleimide I (0.15 microM) resulted in inhibition of the NC-01 response by approximately 75%, whereas the response to sucrose either increased or remained unchanged. These data suggest that activation of PKC is required for the transduction of synthetic sweeteners. To determine whether protein kinase A (PKA) is required for the transduction of sugars, sweet responses were examined in the presence of the membrane-permeant PKA inhibitor H-89 (10 and 19 microM). Surprisingly, H-89 did not decrease responses to either sucrose or NC-01. Instead, responses to both compounds were increased in the presence of the inhibitor. These data suggest that PKA is not required for the transduction of sugars, but may play a modulatory role in both pathways, such as adaptation of the response. We also examined whether Ca(2+)-calmodulin dependent cAMP phosphodiesterase (CaM-PDE) plays a role in sweet taste transduction, by examining responses to sucrose and synthetic sweeteners in the presence of the CaM-PDE inhibitor W-7 (100 microM). Inhibition resulted in an increase in the response to sucrose, whereas the response to NC-01 remained unchanged. These data suggest that the pathways for sugars and sweeteners are negatively coupled; the Ca(2+) that is released from intracellular stores during stimulation with synthetic sweeteners may inhibit the response to sucrose by activation of CaM-PDE.
Szél, Tamás; Koncz, István; Antzelevitch, Charles
2013-01-01
Background: Brugada syndrome is an inherited disease associated with vulnerability to ventricular tachycardia and sudden cardiac death in young adults. Milrinone and cilostazol, oral phosphodiesterase (PDE) type III inhibitors, have been shown to increase ICa and modestly increase heart rate by elevating the level of intracellular cyclic AMP. Objective: The present study examines the effectiveness of these PDE inhibitors to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Methods: Action potential (AP) and ECG recordings were obtained from epicardial and endocardial sites of coronary-perfused canine right ventricular wedge preparations. The Ito agonist NS5806 (5 μM) and Ca2+ channel blocker verapamil (2 μM) were used to pharmacologically mimic Brugada phenotype. Results: The combination induced all-or-none repolarization at some epicardial sites but not others, leading to ST-segment elevation as well as an increase in both epicardial and transmural dispersion of repolarization. Under these conditions, phase 2 reentry developed as the epicardial AP dome propagated from sites where it was maintained to sites at which it was lost, generating closely coupled extrasystoles and ventricular tachycardia. Addition of the PDE inhibitor milrinone (2.5 μM) or cilostazol (5-10 μM) to the coronary perfusate restored the epicardial AP dome, reduced dispersion and abolished phase 2 reentry—induced extrasystoles and ventricular tachycardia. Conclusions: Our study identifies milrinone as a more potent alternative to cilostazol for reversing the repolarization defects responsible for the electrocardiographic and arrhythmic manifestations of Brugada syndrome. Both drugs normalize ST segment elevation, and suppress arrhythmogenesis in experimental models of Brugada syndrome. PMID:23911896
Patel, Brijeshkumar S; Kugel, Michael J; Baehring, Gina; Ammit, Alaina J
2017-08-01
The xanthine doxofylline has been examined in clinical trials and shown to have efficacy and greater tolerability than theophylline in asthma and chronic obstructive pulmonary disease. The 'novofylline' doxofylline has demonstrated bronchodilatory and anti-inflammatory actions in in vivo and ex vivo experimental models of respiratory disease. However, there are limited studies in vitro. We address this herein and examine whether doxofylline has anti-inflammatory impact on primary cultures of airway smooth muscle (ASM) cells. We conduct a series of investigations comparing and contrasting doxofylline with the archetypal xanthine, theophylline, and the specific phosphodiesterase (PDE) 4 inhibitor, cilomilast. We confirm that the xanthine drugs do not have action as PDE inhibitors in ASM cells. Unlike cilomilast, doxofylline (and theophylline) do not increase cAMP production in ASM cells induced by long-acting β 2 -agonist formoterol. Similar to theophylline, and consistent with the lack of cAMP potentiation, doxofylline does not augment formoterol-induced upregulation of the anti-inflammatory protein mitogen-activated protein kinase phosphatase 1 (MKP-1). However, when we examine the effect of doxofylline on secretion of the interleukin 8 from ASM cells stimulated by tumour necrosis factor (an in vitro surrogate measure of inflammation), there was no repression of inflammation. This is in contrast to the anti-inflammatory impact exerted by theophylline and cilomilast in confirmatory experiments. In summary, our study is the first to examine the effect of doxofylline on ASM cells in vitro and highlights some distinct differences between two key members of xanthine drug family, doxofylline and theophylline. Copyright © 2017 Elsevier Ltd. All rights reserved.
Limberg, Jacqueline K.; Malterer, Katherine R.; Kellawan, J. Mikhail; Schrage, William G.; Wilkins, Brad W.; Nicholson, Wayne T.; Eisenach, John H.; Joyner, Michael J.; Curry, Timothy B.
2017-01-01
Purpose Previous work has shown nitric oxide (NO) contributes to ~15% of the hyperemic response to dynamic exercise in healthy humans. This NO-mediated vasodilation occurs, in part, via increases in intracellular cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase. We sought to examine the effect of phosphodiesterase-5 (PDE-5) inhibition on forearm blood flow (FBF responses to dynamic handgrip exercise in healthy humans and the role of NO. We hypothesized exercise hyperemia would be augmented by sildenafil citrate (SDF, PDE-5 inhibitor). We further hypothesized any effect of SDF on exercise hyperemia would be abolished with intra-arterial infusion of the NO synthase (NOS) inhibitor L-NG-monomethyl arginine (L-NMMA). Methods FBF (Doppler ultrasound) was assessed at rest and during 5 minutes of dynamic forearm handgrip exercise at 15% of maximal voluntary contraction under control (saline) conditions and during 3 experimental protocols: 1) oral SDF (n=10), 2) intra-arterial L-NMMA (n=20), 3) SDF and L-NMMA (n=10). FBF responses to intra-arterial sodium nitroprusside (NTP, NO donor) were also assessed. Results FBF increased with exercise (p<0.01). Intra-arterial infusion of L-NMMA resulted in a reduction in exercise hyperemia (17±1 to 15±1 mL/dL/min, p<0.01). Although the hyperemic response to NTP was augmented by SDF (Area under the curve: 41±7 vs 61±11 AU, p<0.01), there was no effect of SDF on exercise hyperemia (p=0.33). Conclusions Despite improving NTP-mediated vasodilation, oral SDF failed to augment exercise hyperemia in young, healthy adults. These observations reflect a minor contribution of NO and the cGMP pathway during exercise hyperemia in healthy young humans. PMID:28013386
Wu, Xiaojing; Yang, Te; Zhou, Qi; Li, Shuangfei; Huang, Lan
2014-04-01
Increased indiscriminate use of pulmonary artery hypertension-targeted drugs has been observed in patients with pulmonary hypertension (PH) secondary to heart failure. We performed a meta-analysis to evaluate the chronic effects of using phosphodiesterase 5 (PDE5) inhibitors to treat patients with PH secondary to chronic systolic heart failure. PubMed, EMBASE, and the Cochrane Library were searched up to October 2013 for randomized controlled trials (RCTs) assessing PDE5 inhibitor treatments in PH patients secondary to chronic heart failure. Six RCTs involving 206 chronic systolic heart failure patients with PH complications were included. Sildenafil was used in all trials. Sildenafil treatment resulted in fewer hospital admissions compared with the placebo treatment (3.15% vs. 12.20%; risk ratio 0.29; 95% confidence interval 0.11-0.77). Various haemodynamic parameters were improved with additional sildenafil treatment, including reduced mean pulmonary artery pressure [weighted mean difference (WMD) -5.71 mmHg, P<0.05] and pulmonary vascular resistance (WMD -81.5 dynes/cm(-5), P<0.00001), increased LVEF (WMD 3.95%, P<0.01), and unchanged heart rate and blood pressure. The exercise capacity improved (oxygen consumption at peak exercise, WMD 3.20 mL/min(-1)/kg(-1), P<0.00001; ventilation to CO2 production slope, WMD -5.89, P<0.00001), and the clinical symptoms were relieved based on the breathlessness (WMD 7.72, P<0.00001), fatigue (WMD 2.28, P<0.05), and emotional functioning (WMD 5.92, P<0.00001) scores. Additional sildenafil treatment is a potential therapeutic method to improve pulmonary exercise capacity and quality of life by ameliorating PH in patients with chronic systolic heart failure. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.
Cardarelli, Silvia; Giorgi, Mauro; Naro, Fabio; Malatesta, Francesco; Biagioni, Stefano; Saliola, Michele
2017-09-22
Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying K m , V max and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.
Tapson, Victor F; Torres, Fernando; Kermeen, Fiona; Keogh, Anne M; Allen, Roblee P; Frantz, Robert P; Badesch, David B; Frost, Adaani E; Shapiro, Shelley M; Laliberte, Kevin; Sigman, Jeffrey; Arneson, Carl; Galiè, Nazzareno
2012-12-01
Infused and inhaled treprostinil are effective for treatment of pulmonary arterial hypertension (PAH), although their administration routes have limitations. This study assessed the efficacy and safety of bid oral sustained-release treprostinil in the treatment of PAH with a concomitant endothelin receptor antagonist (ERA) and/or phosphodiesterase type 5 inhibitor. A 16-week, multicenter, double-blind, placebo-controlled study was conducted in 350 patients with PAH randomized to placebo or oral treprostinil. All patients were stable on background ERA, PDE-5 inhibitor, or both. Primary end point was Hodges-Lehmann placebo-corrected median difference in change from baseline 6-min walk distance (6MWD) at week 16. Secondary end points included time to clinical worsening, change in World Health Organization functional class, Borg dyspnea score, and dyspnea fatigue index score. Thirty-nine patients (22%) receiving oral treprostinil and 24 patients (14%) receiving placebo discontinued the study. Placebo-corrected median difference in change from baseline 6MWD at week 16 was 11 m (P = .07). Improvements in dyspnea fatigue index score (P = .01) and combined 6MWD and Borg dyspnea score (P = .01) were observed with oral treprostinil vs placebo treatment. Patients who achieved a week-16 bid oral treprostinil dose of 1.25 to 3.25 mg and 3.5 to 16 mg experienced a greater change in 6MWD (18 m and 34 m, respectively) than patients who achieved a bid dose of < 1 mg or discontinued because of adverse events (4 m). The primary end point of improvement in 6MWD at week 16 did not achieve significance. This study enhanced understanding of oral treprostinil titration and dosing, which has set the stage for additional studies. ClinicalTrials.gov; No.: NCT00325442; URL: www.clinicaltrials.gov.
Obox4 critically regulates cAMP-dependent meiotic arrest and MI-MII transition in oocytes.
Lee, Hyun-Seo; Kim, Eun-Young; Kim, Kyeoung-Hwa; Moon, Jisook; Park, Kyung-Soon; Kim, Kwang-Soo; Lee, Kyung-Ah
2010-07-01
Extra follicular oocytes spontaneously resume meiosis in vitro, but the intact germinal vesicle (GV) is retained if the oocytes are cultured in medium containing phosphodiesterase (PDE) inhibitors or cAMP analogues. On the basis of our finding that Obox4 is prominently expressed in oocytes, the present study was conducted to determine the functional role of the homeodomain-containing factor Obox4 during in vitro oocyte maturation. After microinjection of Obox4 dsRNA into the cytoplasm of GV oocytes cultured in M16 medium, oocytes were arrested at metaphase I (MI, 77.7%) and metaphase II (MII, 22.3%). Surprisingly, however, 89% of Obox4 RNAi-treated oocytes resumed meiosis and developed to MI and MII when cultured in medium containing 0.2 mM 3-isobutyl-1-methyl-xanthine (IBMX), in which untreated oocytes maintain intact GVs. Spindles were aberrant, and chromosomes were severely aggregated with decreased MPF and MAP kinase activities in arrested MI oocytes after exposure to Obox4 RNAi. Oocytes overexpressing Obox4 retained intact GVs when cultured in M16 medium. Taken together, for the first time to our knowledge, these findings indicate that Obox4 plays a key role in the cAMP-dependent signaling cascades that maintain GV arrest. Oocytes not expressing Obox4 failed to maintain intact GVs in IBMX-supplemented medium, while GVs remained intact when oocytes were kept in plain medium and overexpressing Obox4, suggesting that Obox4 plays a critical role in cAMP-dependent cascade for maintaining intact GVs.
Gene therapy as future treatment of erectile dysfunction
Yoshimura, Naoki; Kato, Ryuichi; Chencellor, Michael B.; Nelson, Joel B.; Glorioso, Joseph C.
2011-01-01
Importance of the field Erectile dysfunction (ED) is a major men’s health problem. Although the high success rate of treating ED by phosphodiesterase 5 (PDE5) inhibitors has been reported, there are a significant number of ED patients who do not respond to currently available treatment modalities. Areas covered in this review To understand the current status of gene therapy application for ED, gene therapy approaches for ED treatment are reviewed. What the reader will gain Gene therapy strategies that can enhance nitric oxide (NO) production or NO-mediated signaling pathways, growth factor-mediated nerve regeneration or K+ channel activity in the smooth muscle could be promising approaches for the treatment of ED. Although the majority of gene therapy studies are still in the preclinical phase, the first clinical trial using non-viral gene transfer of Ca2+-activated, large-conductance K+ channels into the corpus cavernosum of ED patients showed positive results. Take home message Gene therapy represents an exciting future treatment option for ED, especially for people with severe ED unresponsive to current first-line therapies such as PDE5 inhibitors although the long-term safety of both viral and non-viral gene therapies should be established. PMID:20662742
Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram
2012-01-01
Low-intensity shock wave therapy (LI-ESWT) has been reported as an effective treatment in men with mild and moderate erectile dysfunction (ED). The aim of this study is to determine the efficacy of LI-ESWT in severe ED patients who were poor responders to phosphodiesterase type 5 inhibitor (PDE5i) therapy. This was an open-label single-arm prospective study on ED patients with an erection hardness score (EHS) ≤ 2 at baseline. The protocol comprised two treatment sessions per week for 3 weeks, which were repeated after a 3-week no-treatment interval. Patients were followed at 1 month (FU1), and only then an active PDE5i medication was provided for an additional month until final follow-up visit (FU2). At each treatment session, LI-ESWT was applied on the penile shaft and crus at five different anatomical sites (300 shocks, 0.09 mJ/mm(2) intensity at 120 shocks/min). Each subject underwent a full baseline assessment of erectile function using validated questionnaires and objective penile hemodynamic testing before and after LI-ESWT. Outcome measures used are changes in the International Index of Erectile Function-erectile function domain (IIEF-ED) scores, the EHS measurement, and the three parameters of penile hemodynamics and endothelial function. Twenty-nine men (mean age of 61.3) completed the study. Their mean IIEF-ED scores increased from 8.8 ± 1 (baseline) to 12.3 ± 1 at FU1 (P = 0.035). At FU2 (on active PDE5i treatment), their IIEF-ED further increased to 18.8 ± 1 (P < 0.0001), and 72.4% (P < 0.0001) reached an EHS of ≥ 3 (allowing full sexual intercourse). A significant improvement (P = 0.0001) in penile hemodynamics was detected after treatment and this improvement significantly correlated with increases in the IIEF-ED (P < 0.05). No noteworthy adverse events were reported. Penile LI-ESWT is a new modality that has the potential to treat a subgroup of severe ED patients. These preliminary data need to be reconfirmed by multicenter sham control studies in a larger group of ED patients. © 2011 International Society for Sexual Medicine.
Horvath, Anelia; Korde, Larissa; Greene, Mark H.; Libe, Rosella; Osorio, Paulo; Faucz, Fabio Rueda; Raffin-Sanson, Marie Laure; Tsang, Kit Man; Drori-Herishanu, Limor; Patronas, Yianna; Remmers, Elaine F; Nikita, Maria-Elena; Moran, Jason; Greene, Joseph; Nesterova, Maria; Merino, Maria; Bertherat, Jerome; Stratakis, Constantine A.
2009-01-01
Inactivating germline mutations in phosphodiesterase 11A (PDE11A) have been implicated in adrenal tumor susceptibility. PDE11A is highly-expressed in endocrine steroidogenic tissues, especially the testis, and mice with inactivated Pde11a exhibit male infertility, a known testicular germ cell tumor (TGCT) risk factor. We sequenced the PDE11A gene-coding region in 95 patients with TGCT from 64 unrelated kindreds. We identified 8 non-synonymous substitutions in 20 patients from 15 families: four (R52T; F258Y; G291R; V820M) were newly-recognized, three (R804H; R867G; M878V) were functional variants previously implicated in adrenal tumor predisposition, and one (Y727C) was a known polymorphism. We compared the frequency of these variants in our patients to unrelated controls that had been screened and found negative for any endocrine diseases: only the two previously-reported variants, R804H and R867G, known to be frequent in general population, were detected in these controls. The frequency of all PDE11A-gene variants (combined) was significantly higher among patients with TGCT (P=0.0002), present in 19% of the families of our cohort. Most variants were detected in the general population, but functional studies showed that all these mutations reduced PDE activity, and that PDE11A protein expression was decreased (or absent) in TGCT samples from carriers. This is the first demonstration of a PDE gene’s involvement in TGCT, although the cAMP signaling pathway has been investigated extensively in other reproductive organs and their diseases. In conclusion, we report that PDE11A-inactivating sequence variants may modify the risk of familial and bilateral TGCT. PMID:19549888
Erectile hydraulics: maximizing inflow while minimizing outflow.
Meldrum, David R; Burnett, Arthur L; Dorey, Grace; Esposito, Katherine; Ignarro, Louis J
2014-05-01
Penile rigidity depends on maximizing inflow while minimizing outflow. The aim of this review is to describe the principal factors and mechanisms involved. Erectile quality is the main outcome measure. Data from the pertinent literature were examined to inform our conclusions. Nitric oxide (NO) is the principal factor increasing blood flow into the penis. Penile engorgement and the pelvic floor muscles maintain an adequate erection by impeding outflow of blood by exerting pressure on the penile veins from within and from outside of the penile tunica. Extrinsic pressure by the pelvic floor muscles further raises intracavernosal pressure above maximum inflow pressure to achieve full penile rigidity. Aging and poor lifestyle choices are associated with metabolic impediments to NO production. Aging is also associated with fewer smooth muscle cells and increased fibrosis within the corpora cavernosa, preventing adequate penile engorgement and pressure on the penile veins. Those same penile structural changes occur rapidly following the penile nerve injury that accompanies even "nerve-sparing" radical prostatectomy and are largely prevented in animal models by early chronic use of a phosphodiesterase type 5 (PDE5) inhibitor. Pelvic floor muscles may also decrease in tone and bulk with age, and pelvic floor muscle exercises have been shown to improve erectile function to a similar degree compared with a PDE5 inhibitor in men with erectile dysfunction (ED). Because NO is critical for vascular health and ED is strongly associated with cardiovascular disease, maximal attention should be focused on measures known to increase vascular NO production, including the use of PDE5 inhibitors. Attention should also be paid to early, regular use of PDE5 inhibition to reduce the incidence of ED following penile nerve injury and to assuring normal function of the pelvic floor muscles. These approaches to maximizing erectile function are complementary rather than competitive, as they operate on entirely different aspects of erectile hydraulics. © 2014 International Society for Sexual Medicine.
Giralt, Albert; Saavedra, Ana; Carretón, Olga; Xifró, Xavier; Alberch, Jordi; Pérez-Navarro, Esther
2011-11-01
Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. However, the molecular events involved in this cognitive decline are still poorly understood. Here, using three different paradigms, the novel object recognition test, the T-maze spontaneous alternation task and the Morris water maze, we detected severe cognitive deficits in the R6/1 mouse model of HD before the onset of motor symptoms. When we examined the putative molecular pathways involved in these alterations, we observed hippocampal cAMP-dependent protein kinase (PKA) hyper-activation in naïve R6/1 mice compared with wild-type (WT) mice, whereas extracellular signal-regulated kinase 1/2 and calcineurin activities were not modified. Increased PKA activity resulted in hyper-phosphorylation of its substrates N-methyl-D-aspartate receptor subunit 1, Ras-guanine nucleotide releasing factor-1 and striatal-enriched protein tyrosine phosphatase, but not cAMP-responsive element binding protein or the microtubule-associated protein tau. In correlation with the over-activation of the PKA pathway, we found a down-regulation of the protein levels of some phosphodiesterase (PDE) 4 family members. Similar molecular changes were found in the hippocampus of R6/2 mice and HD patients. Furthermore, chronic treatment of WT mice with the PDE4 inhibitor rolipram up-regulated PKA activity, and induced learning and memory deficits similar to those seen in R6 mice, but had no effect on R6/1 mice cognitive impairment. Importantly, hippocampal PKA inhibition by infusion of Rp-cAMPS restored long-term memory in R6/2 mice. Thus, our results suggest that occlusion of PKA-dependent processes is one of the molecular mechanisms underlying cognitive decline in R6 animals.
Fojecki, Grzegorz Lukasz; Tiessen, Stefan; Osther, Palle Jörn Sloth
2017-01-01
The objective was to evaluate high-level evidence studies of extracorporeal shock wave therapy (ESWT) for urological disorders. We included randomized controlled trials reporting outcomes of ESWT in urology. Literature search on trials published in English using EMBASE, Medline and PubMed was carried out. The systematic review was performed according to PRISMA guidelines. We identified 10 trials on 3 urological indications. Two of 3 trials on Peyronie's disease (PD) involving 238 patients reported improvement in pain; however, no clinical significant changes in penile deviation and plaque size were observed. Four studies on erectile dysfunction (ED) including 337 participants were included. Using International Index of Erectile Function (IIEF-EF) and erectile hardness scale (EHS) data suggested a significant positive effect of ESWT in phosphodiesterase-5 inhibitor (PDE-5i) responders in 2 of 4 trials and 3 of 4 trials, respectively. Three studies on chronic pelvic pain (CPP) engaging 200 men reported positive changes in National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI). There was considerable heterogeneity between trials both with regard to treatment techniques and outcome measures, making it difficult to compare results. ESWT may resolve pain in PD patients, while evidence for reducing curvature and plaques size is poor. Effects of ESWT on IIEF in ED patients are inconsistent; however, data on EHS does imply that the treatment potentially may recover natural erection in PDE-5i responders. ESWT seems to be able to resolve pain in CPP patients in the short term. In all three disease entities, long-term outcome data are still warranted.
β2-Agonist Induced cAMP Is Decreased in Asthmatic Airway Smooth Muscle Due to Increased PDE4D
Trian, Thomas; Burgess, Janette K.; Niimi, Kyoko; Moir, Lyn M.; Ge, Qi; Berger, Patrick; Liggett, Stephen B.; Black, Judith L.; Oliver, Brian G.
2011-01-01
Background and Objective Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. Objective To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism. Methods We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined. Results In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM. Conclusion Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed. PMID:21611147
Does educational status affect a patient's behavior toward erectile dysfunction?
Salonia, Andrea; Abdollah, Firas; Gallina, Andrea; Pellucchi, Federico; Castillejos Molina, Ricardo Alonso; Maccagnano, Carmen; Rocchini, Lorenzo; Zanni, Giuseppe; Rigatti, Patrizio; Montorsi, Francesco
2008-08-01
Educational status has been investigated rarely as a potential factor affecting the behavior of patients with new onset erectile dysfunction (ED) toward seeking first medical help and subsequent compliance with prescribed phosphodiesterase type 5 inhibitor (PDE5) therapy. To test whether the educational status of patients with new onset ED and naïve to PDE5 therapy may have a significant impact on the delay before seeking first medical help (DSH) and compliance with the suggested PDE5. Assessing DSH and compliance with PDE5 in new onset ED patients according to their educational status by means of detailed logistic regression analyses. Data from 302 consecutive patients with new onset ED and naïve to PDE5s were comprehensively analyzed. Patients were segregated according to their educational status into low (elementary and/or secondary school education) and high (high school and/or university degrees) educational levels. Complete data were available for 231 assessable patients. Univariate (UVA) and multivariate (MVA) logistic regression analyses addressed the association between educational status and DSH after adjusting for age, relationship status, and Sexual Health Inventory for Men score. Likewise, UVA and MVA were performed to test the association between educational status and patient compliance with PDE5 at the 9-month median follow-up. Median DSH was 24 months (range 1-350; mean 38.1 +/- 42.8). The lower the educational status, the shorter the DSH (P = 0.03). In contrast, a significantly (P < 0.0001) greater proportion of patients with a higher educational status showed compliance with the suggested PDE5 at the 9-month follow-up. Overall, educational status was not an independent predictor of either DSH or patient compliance with PDE5 therapy. After adjusting for other variables, our findings suggest that in new onset ED patients, educational status does not independently affect the DSH and patient compliance with PDE5 therapy.
Halkitis, Perry N; Green, Kelly A
2007-06-01
Data ascertained in a study of club drug use among 450 gay and bisexual men indicate that at least one class of PDE-5 (phosphodiesterase type 5 inhibitor, sildenafil [Viagra]) is used frequently in combination with club drugs such as methamphetamine, MDMA (3,4 methylenedioxymethamphetamine [ecstasy]), ketamine, cocaine, and GHB (gamma hydroxy butyrate). Patterns of sildenafil use in combination with each of the club drugs differ among key demographics including race and age. Multivariate models, controlling for demographic factors, suggest that contextual factors are key to understanding why men mix sildenafil with club drugs, although age may still be an important issue to consider. Of particular importance is the fact that use of club drugs in combination with sildenafil is strongly associated with circuit and sex parties, where a centerpiece of these environments focuses on sexual exchange. These models imply interplay between person-level and contextual factors in explaining drug use patterns and further indicate that interventions aimed at addressing illicit substance use must carefully consider the role of environmental factors in explaining behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, S.C.; Hanifin, J.M.; Holden, C.A.
1985-08-01
The BG dog manifests various characteristics of human asthma, including airway hyperreactivity to low concentrations of methacholine. Studies have suggested that airway hyperreactivity in asthma is related to inadequate intracellular cAMP responses. The authors studied cAMP characteristics in MNL from 19 BG and 14 mongrel dogs. beta-Adrenergic receptors were assessed by /sup 125/I CYP in the presence and absence of propranolol. The responses of cAMP to ISO were measured by radioimmunoassay. Adenylate cyclase activity was determined in homogenized MNL preparations by cAMP generation. PDE activity was quantitated by radioenzyme assay. Mongrel dog leukocyte ISO-stimulated cAMP levels doubled, whereas there weremore » negligible increases in MNL from BG dogs. Basal PDE levels were higher in BG dogs than in mongrel dogs. The PDE inhibitor Ro 20-1724 restored ISO-stimulated cAMP responses in MNL of BG dogs. Adenylate cyclase activity was not lower in MNL homogenates from BG dogs than in mongrel dogs. Cells from both BG and mongrel dogs demonstrated similar receptor numbers and affinities of saturable, specific beta-adrenergic binding over a 10 pM to 400 pM range. The results suggest that depressed cAMP responses in BG dogs are due to high PDE activity rather than to a defect in the beta-adrenergic receptor adenylate cyclase system.« less
Penile Low-Intensity Shock Wave Therapy: A Promising Novel Modality for Erectile Dysfunction
Kitrey, Noam D.; Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram
2014-01-01
Penile extracorporeal low-intensity shock wave therapy (LIST) to the penis has recently emerged as a novel and promising modality in the treatment of erectile dysfunction (ED). LIST has angiogenic properties and stimulates neovascularization. If applied to the corpora cavernosa, LIST can improve penile blood flow and endothelial function. In a series of clinical trials, including randomized double-blind sham-controlled studies, LIST has been shown to have a substantial effect on penile hemodynamics and erectile function in patients with vasculogenic ED. LIST is effective in patients who are responsive to phosphodiesterase 5 inhibitors (PDE5i) and can also convert PDE5i nonresponders to responders. The response to LIST wanes gradually over time, and after 2 years, about half of the patients maintain their function. Extensive research is needed to understand the effect of LIST on erectile tissue, to modify the treatment protocol to maximize its outcomes, and to identify the patients who will benefit the most from this treatment. PMID:24868332
Penile low-intensity shock wave therapy: a promising novel modality for erectile dysfunction.
Abu-Ghanem, Yasmin; Kitrey, Noam D; Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram
2014-05-01
Penile extracorporeal low-intensity shock wave therapy (LIST) to the penis has recently emerged as a novel and promising modality in the treatment of erectile dysfunction (ED). LIST has angiogenic properties and stimulates neovascularization. If applied to the corpora cavernosa, LIST can improve penile blood flow and endothelial function. In a series of clinical trials, including randomized double-blind sham-controlled studies, LIST has been shown to have a substantial effect on penile hemodynamics and erectile function in patients with vasculogenic ED. LIST is effective in patients who are responsive to phosphodiesterase 5 inhibitors (PDE5i) and can also convert PDE5i nonresponders to responders. The response to LIST wanes gradually over time, and after 2 years, about half of the patients maintain their function. Extensive research is needed to understand the effect of LIST on erectile tissue, to modify the treatment protocol to maximize its outcomes, and to identify the patients who will benefit the most from this treatment.
Szél, Tamás; Koncz, István; Antzelevitch, Charles
2013-11-01
Brugada syndrome is an inherited disease associated with vulnerability to ventricular tachycardia and sudden cardiac death in young adults. Milrinone and cilostazol, oral phosphodiesterase (PDE) type III inhibitors, have been shown to increase L-type calcium channel current (ICa) and modestly increase heart rate by elevating the level of intracellular cyclic adenosine monophosphate. To examine the effectiveness of these PDE inhibitors to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Action potential (AP) and electrocardiographic recordings were obtained from epicardial and endocardial sites of coronary-perfused canine right ventricular wedge preparations. The Ito agonist NS5806 (5 μM) and Ca(2+) channel blocker verapamil (2 μM) were used to pharmacologically mimic Brugada phenotype. The combination induced all-or-none repolarization at some epicardial sites but not others, leading to ST-segment elevation as well as an increase in both epicardial and transmural dispersion of repolarization. Under these conditions, phase 2 reentry developed as the epicardial AP dome propagated from sites where it was maintained to sites at which it was lost, generating closely coupled extrasystoles and ventricular tachycardia. The addition of the PDE inhibitor milrinone (2.5 μM) or cilostazol (5-10 μM) to the coronary perfusate restored the epicardial AP dome, reduced dispersion, and abolished phase 2 reentry-induced extrasystoles and ventricular tachycardia. Our study identifies milrinone as a more potent alternative to cilostazol for reversing the repolarization defects responsible for the electrocardiographic and arrhythmic manifestations of Brugada syndrome. Both drugs normalize ST-segment elevation and suppress arrhythmogenesis in experimental models of Brugada syndrome. © 2013 Heart Rhythm Society. All rights reserved.
Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu
2017-01-01
Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Ferrini, Monica G; Garcia, Eduardo; Abraham, Andrea; Artaza, Jorge N; Nguyen, Sabine; Rajfer, Jacob
2018-06-01
COMP-4 is a natural compound-based dietary supplement consisting of the combination of ginger, Paullinia cupana, muira puama and l-citrulline, which when given long-term has been shown in the aged rat to a) upregulate iNOS in the penile smooth muscle cells (SMC), b) reverse the corporal SMC apoptosis and fibrosis associated with corporal veno-occlusive dysfunction (CVOD), and c) improve resulting erectile function. To elucidate the mechanism of how COMP-4 and its individual components modulate the iNOS-cGMP pathway, an in vitro study was conducted using a rat corporal primary SMC culture to determine its effect on NOS, soluble guanylate cyclase (sGC), cGMP and the phosphodiesterase 5 enzyme (PDE5). Primary SMC cultures using the explant technique were initiated by cutting small pieces of corporal tissue from 8 week old Sprague-Dawley rats. The SMC were grown in Dulbecco media with 20% fetal calf serum. The SMC were then incubated with or without COMP-4 (0.69 mg/ml) or its ingredients alone (ginger: 0.225 mg/ml; muira puama, Paullinia cupana and l-citrulline each at 0.9 mg/ml) for up to 24 h mRNA and protein were extracted and used for the determination of NOS, sGC and PDE5 content. cGMP content was determined by ELISA. L-NIL (4 μM) was used as an inhibitor of iNOS activity. Compared to the control values, COMP-4 upregulated expression of cGMP by 85%, induced a 42 fold increase in sGC as well as a 15 fold increase in both iNOS protein and mRNA content while it decreased both PDE5 mRNA and protein content each by about 50%. L-NIL completely inhibited the effect of COMP-4 on cGMP production. When compared with each of the individual four components of COMP-4, it appears that COMP-4 itself had the most profound effect in modulating each one the specific steps within the iNOS-cGMP pathway. This in vitro study demonstrates that COMP-4 is capable of activating the endogenous cellular iNOS-cGMP pathway within the CSM cells, which is theorized to be responsible for reducing the fibrosis and apoptosis as well as the CVOD observed in the aging rat penis. Further studies will be necessary in order to determine whether supplementation of COMP-4 on a daily basis may be beneficial in halting or reversing this aging related erectile dysfunction in the clinical setting. Copyright © 2018 Elsevier Inc. All rights reserved.
Phosphodiesterase type 5 and cancers: progress and challenges
Barone, Ines; Giordano, Cinzia; Bonofiglio, Daniela; Andò, Sebastiano; Catalano, Stefania
2017-01-01
Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings. PMID:29228762
Functional characterization of the human phosphodiesterase 7A1 promoter.
Torras-Llort, Mònica; Azorín, Fernando
2003-01-01
In this paper, the human phosphodiesterase 7A1 (h PDE7A1 ) promoter region was identified and functionally characterized. Transient transfection experiments indicated that a 2.9 kb fragment of the h PDE7A1 5'-flanking region, to position -2907, has strong promoter activity in Jurkat T-cells. Deletion analysis showed that the proximal region, up to position -988, contains major cis -regulatory elements of the h PDE7A1 promoter. This minimal promoter region contains a regulatory CpG island which is essential for promoter activity. The CpG island contains three potential cAMP-response-element-binding protein (CREB)-binding sites that, as judged by in vivo dimethyl sulphate (DMS) footprinting, are occupied in Jurkat T-cells. Moreover, over-expression of CREB results in increased promoter activity, but, on the other hand, promoter activity decreases when a dominant-negative form of CREB (KCREB) is over-expressed. In vivo DMS footprinting strongly indicates that other transcription factors, such Ets-2, nuclear factor of activated T-cells 1 (NFAT-1) and nuclear factor kappaB (NF-kappaB), might also contribute to the regulation of h PDE7A1 promoter. Finally, h PDE7A1 promoter was found to be induced by treatment with PMA, but not by treatment with dibutyryl cAMP or forskolin. These results provide insights into the factors and mechanisms that regulate expression of the h PDE7A gene. PMID:12737631
The kinetics of inactivation of the rod phototransduction cascade with constant Ca2+i
1996-01-01
A rich variety of mechanisms govern the inactivation of the rod phototransduction cascade. These include rhodopsin phosphorylation and subsequent binding of arrestin; modulation of rhodopsin kinase by S- modulin (recoverin); regulation of G-protein and phosphodiesterase inactivation by GTPase-activating factors; and modulation of guanylyl cyclase by a high-affinity Ca(2+)-binding protein. The dependence of several of the inactivation mechanisms on Ca2+i makes it difficult to assess the contributions of these mechanisms to the recovery kinetics in situ, where Ca2+i is dynamically modulated during the photoresponse. We recorded the circulating currents of salamander rods, the inner segments of which are held in suction electrodes in Ringer's solution. We characterized the response kinetics to flashes under two conditions: when the outer segments are in Ringer's solution, and when they are in low-Ca2+ choline solutions, which we show clamp Ca2+i very near its resting level. At T = 20-22 degrees C, the recovery phases of responses to saturating flashes producing 10(2.5)-10(4.5) photoisomerizations under both conditions are characterized by a dominant time constant, tau c = 2.4 +/- 0.4 s, the value of which is not dependent on the solution bathing the outer segment and therefore not dependent on Ca2+i. We extended a successful model of activation by incorporating into it a first-order inactivation of R*, and a first-order, simultaneous inactivation of G-protein (G*) and phosphodiesterase (PDE*). We demonstrated that the inactivation kinetics of families of responses obtained with Ca2+i clamped to rest are well characterized by this model, having one of the two inactivation time constants (tau r* or tau PDE*) equal to tau c, and the other time constant equal to 0.4 +/- 0.06 s. PMID:8741728
Topical Combinations to Treat Microvascular Dysfunction of Chronic Postischemia Pain
Laferrière, André; Abaji, Rachid; Tsai, Cheng-Yu Mark; Ragavendran, J. Vaigunda; Coderre, Terence J.
2015-01-01
Background Growing evidence indicates that patients with complex regional pain syndrome (CRPS) exhibit tissue abnormalities caused by microvascular dysfunction in the blood vessels of skin, muscle and nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in an animal model of CRPS. We hypothesized that topical administration of either α2-adrenergic (α2A) receptor agonists or nitric oxide (NO) donors given to increase arterial blood flow, combined with either phosphatidic acid (PA) or phosphodiesterase (PDE) inhibitors to increase capillary blood flow, would effectively reduce allodynia and signs of microvascular dysfunction in the animal model of chronic pain. Methods Mechanical allodynia was induced in the hind paws of rats with chronic postischemia pain (CPIP). Allodynia was assessed before and after topical application of vehicle, single drugs or combinations of an α2A receptor agonist (apraclonidine) or an NO donor (linsidomine), with PA or PDE inhibitors (lisofylline, pentoxifylline). A topical combination of apraclonidine + lisofylline was also evaluated for its effects on a measure of microvascular function (post-occlusive reactive hyperemia) and tissue oxidative capacity (formazan production by tetrazolium reduction) in CPIP rats. Results Each of the single topical drugs produced significant dose-dependent antiallodynic effects compared to vehicle in CPIP rats (n = 30), and the antiallodynic dose-response curves of either PA or PDE inhibitors were shifted 5 to 10 fold to the left when combined with nonanalgesic doses of α2A receptor agonists or NO donors (n = 28). The potent antiallodynic effects of ipsilateral treatment with combinations of α2A receptor agonists or NO donors with PA or PDE inhibitors, were not reproduced by the same treatment of the contralateral hindpaw (n = 28). Topical combinations produced antiallodynic effects lasting up to 6 h (n = 15), and were significantly enhanced by low dose systemic pregabalin in early, but not late, CPIP rats (n = 18). An antiallodynic topical combination of apraclonidine + lisofylline was also found to effectively relieve depressed post-occlusive reactive hyperemia in CPIP rats (n = 61), and to increase formazan production in postischemic tissues (skin and muscle) (n = 56). Conclusions The present results support the hypothesis that allodynia in an animal model of CRPS is effectively relieved by topical combinations of α2A receptor agonists or NO donors with PA or PDE inhibitors. This suggests that topical treatments aimed at improving microvascular function by increasing both arterial and capillary blood flow produce effective analgesia for CRPS. PMID:24651238
Koon, Chong Siew; Sidi, Hatta; Kumar, Jaya; Das, Srijit; Xi, Ong Wan; Hatta, Muhammad Hizri; Alfonso, Cesar
2017-02-15
Erectile function (EF) is a prerequisite for satisfactory sexual intercourse (SI) and central to male sexual functioning. Satisfactory SI eventually leads to orgasm - a biopsychophysiological state of euphoria - leading to a sense of bliss, enjoyment and positive mental well being. For a psychiatrist, treating ED is self-propelled to harmonize these pleasurable experiences alongside with encouragement of physical wellness and sensuality. Hence, the role of PDE-5i is pivotal in the context of treating ED constitutes a therapeutic challenge. PDE-5i work via the dopaminergic-oxytocin-nitric oxide pathway by increasing the availability of endothelial's guanosine monophosphate (GMP), immediately causing relaxation of the penile smooth muscle and an erection. The PDE-5i, like sildenafil, vardenafil and tadalafil, are effective in the treatment of ED with some benefits and disadvantages compared to other treatment modalities. Prescribed PDE-5i exclusively improve EF, fostering male's self-confidence and self-esteem. Treatment failures are associated with factors such as absent (or insufficient) sexual stimulation, psychosexual conflicts and the co-existence of medical disorders. Managing ED requires dealing with underlying medical diseases, addressing other co-morbid sexual dysfunctions like premature ejaculation (PE), and educating the patient on healthy life-styles beside being cautious with the potential side-effects and drug-drug interactions. Furthermore, by dealing with interpersonal dynamics within the couple and embracing adequate lifestyles (managing stress and revising one's sexual scripts), PDE-5i treatment benefits may be enhanced. In this review, we propose a holistic conceptual framework approach for psychiatric management of patients with ED. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Aversa, A; Fittipaldi, S; Bimonte, V M; Wannenes, F; Papa, V; Francomano, D; Greco, E A; Lenzi, A; Migliaccio, S
2016-02-01
Phosphodiesterase type-5 inhibitor (PDE5i) tadalafil administration in men with erectile dysfunction is associated with increased testosterone/estradiol ratio, leading to hypothesize a potential increased effect of androgen action on target tissues. We aimed to characterize, in a cellular model system in vitro, the potential modulation of aromatase and sex steroid hormone receptors upon exposure to tadalafil (TAD). Human osteoblast-like cells SAOS-2 were chosen as an in vitro model system since osteoblasts are target of steroid hormones. Cells were tested for viability upon TAD exposure, which increased cell proliferation. Then, cells were treated with/without TAD for several times to evaluate potential modulation in PDE5, aromatase (ARO), androgen (AR) and estrogen (ER) receptor expression. Osteoblasts express significant levels of both PDE5 mRNA and protein. Exposure of cells to increasing concentrations of TAD (10(-8)-10(-7) M) decreased PDE5 mRNA and protein expression. Also, TAD inhibited ARO mRNA and protein expression leading to an increase in testosterone levels in the supernatants. Interestingly, TAD increased total AR mRNA and protein expression and decreased ERα, with an increased ratio of AR/ER, suggesting preferential androgenic vs estrogenic pathway activation. Our results demonstrate for the first time that TAD decreases ARO expression and increases AR protein expression in human SAOS-2, strongly suggesting a new control of steroid hormones pathway by PDE5i. These findings might represent the first evidence of translational actions of PDE5i on AR, which leads to hypothesize a growing relevance of this molecule in men with prostate cancer long-term treated with TAD for sexual rehabilitation.
Zane, Lee T; Kircik, Leon; Call, Robert; Tschen, Eduardo; Draelos, Zoe Diana; Chanda, Sanjay; Van Syoc, Merrie; Hebert, Adelaide A
2016-07-01
Phosphodiesterase-4 (PDE4) is a promising target in atopic dermatitis (AD) treatment. The pharmacokinetics (PK), safety, and efficacy of crisaborole topical ointment, 2% (formerly AN2728) (Anacor Pharmaceuticals, Palo Alto, CA), a boron-based benzoxaborole PDE4 inhibitor, were evaluated in children with mild to moderate AD. This phase 1b, open-label, maximal-use study of crisaborole topical ointment, 2% applied twice daily (dose 3 mg/cm(2) ) for 28 days enrolled patients ages 2 to 17 years with extensive AD involving 25% or more or 35% or more treatable body surface area, depending on age. Primary PK and safety assessments included systemic exposure to crisaborole and its metabolites after 7 days of treatment and the incidence of treatment-emergent adverse events (TEAEs). Secondary efficacy assessments included change from baseline in Investigator Static Global Assessment (ISGA), treatment success (ISGA score ≤1 with a two-grade or greater improvement from baseline), and improvement in five AD signs and symptoms. Of 34 patients enrolled, 31 completed the study. Crisaborole was rapidly absorbed, with limited systemic exposure between days 1 and 8. Twenty-three of 34 patients reported one or more TEAEs; 95% were mild or moderate and one patient discontinued because of a TEAE. Mean ISGA scores declined from 2.65 at baseline to 1.15 at day 29, 47.1% of patients achieved treatment success, and 64.7% of patients achieved ISGA scores of clear (0) or almost clear . Mean severity scores for AD signs and symptoms declined throughout the study. This open-label study provides evidence that crisaborole topical ointment, 2% was well tolerated, with limited systemic exposure under maximal-use conditions in patients ages 2 years and older. © 2016 The Authors. Pediatric Dermatology Published by Wiley Periodicals, Inc.
Schwarz, Simon; Ravens, Ursula; Knaut, Michael
2016-01-01
Abstract Background and Purpose 5‐HT increases force and L‐type Ca2 + current (ICa,L) and causes arrhythmias through 5‐HT4 receptors in human atrium. In permanent atrial fibrillation (peAF), atrial force responses to 5‐HT are blunted, arrhythmias abolished but ICa,L responses only moderately attenuated. We investigated whether, in peAF, this could be due to an increased function of PDE3 and/or PDE4, using the inhibitors cilostamide (300 nM) and rolipram (1 μM) respectively. Experimental Approach Contractile force, arrhythmic contractions and ICa,L were assessed in right atrial trabeculae and myocytes, obtained from patients with sinus rhythm (SR), paroxysmal atrial fibrillation (pAF) and peAF. Key Results Maximum force responses to 5‐HT were reduced to 15% in peAF, but not in pAF. Cilostamide, but not rolipram, increased both the blunted force responses to 5‐HT in peAF and the inotropic potency of 5‐HT fourfold to sevenfold in trabeculae of patients with SR, pAF and peAF. Lusitropic responses to 5‐HT were not decreased in peAF. Responses of ICa,L to 5‐HT did not differ and were unaffected by cilostamide or rolipram in myocytes from patients with SR or peAF. Concurrent cilostamide and rolipram increased 5‐HT's propensity to elicit arrhythmias in trabeculae from patients with SR, but not with peAF. Conclusions and Implications PDE3, but not PDE4, reduced inotropic responses to 5‐HT in peAF, independently of lusitropy and ICa,L, but PDE3 activity was the same as that in patients with SR and pAF. Atrial remodelling in peAF abolished the facilitation of 5‐HT to induce arrhythmias by inhibition of PDE3 plus PDE4. PMID:27238373
The effect of methamphetamine on an animal model of erectile function.
Tar, M T; Martinez, L R; Nosanchuk, J D; Davies, K P
2014-07-01
In the US methamphetamine is considered a first-line treatment for attention-deficit hyperactivity disorder. It is also a common drug of abuse. Reports in patients and abusers suggest its use results in impotence. The efficacy of phosphodiesterase-5 inhibitors (PDE5i) to restore erectile function in these patient groups also has not been determined. In these studies, we determined if the rat is a suitable animal model for the physiological effects of methamphetamine on erectile function, and if a PDE5i (tadalafil) has an effect on erectile function following methamphetamine treatment. In acute phase studies, erectile function was measured in male Sprague-Dawley rats, before and after administration of 10 mg/kg methamphetamine i.p. Chronically treated animals received escalating doses of methamphetamine [2.5 mg/kg (1st week), 5 mg/kg (2nd week), and 10 mg/kg (3rd week)] i.p. daily for 3 weeks and erectile function compared with untreated controls. The effect of co-administration of tadalafil was also investigated in rats acutely and chronically treated with methamphetamine. Erectile function was determined by measuring the intracorporal pressure/blood pressure ratio (ICP/BP) following cavernous nerve stimulation. In both acute and chronic phase studies, we observed a significant increase in the rates of spontaneous erections after methamphetamine administration. In addition, following stimulation of the cavernous nerve at 4 and 6 mA, there was a significant decrease in the ICP/BP ratio (approximately 50%), indicative of impaired erectile function. Tadalafil treatment reversed this effect. In chronically treated animals, the ICP/BP ratio following 4 and 6 mA stimulation decreased by approximately 50% compared with untreated animals and erectile dysfunction (ED) was also reversed by tadalafil. Overall, our data suggest that the rat is a suitable animal model to study the physiological effect of methamphetamine on erectile function. Our work also provides a rationale for treating patients that report ED associated with therapeutics-containing methamphetamine or amphetamine with PDE5i. © 2014 American Society of Andrology and European Academy of Andrology.
Libé, Rossella; Horvath, Anelia; Vezzosi, Delphine; Fratticci, Amato; Coste, Joel; Perlemoine, Karine; Ragazzon, Bruno; Guillaud-Bataille, Marine; Groussin, Lionel; Clauser, Eric; Raffin-Sanson, Marie-Laure; Siegel, Jennifer; Moran, Jason; Drori-Herishanu, Limor; Faucz, Fabio Rueda; Lodish, Maya; Nesterova, Maria; Bertagna, Xavier; Bertherat, Jerome; Stratakis, Constantine A
2011-01-01
Carney complex (CNC) is an autosomal dominant multiple neoplasia, caused mostly by inactivating mutations of the regulatory subunit 1A of the protein kinase A (PRKAR1A). Primary pigmented nodular adrenocortical disease (PPNAD) is the most frequent endocrine manifestation of CNC with a great inter-individual variability. Germline, protein-truncating mutations of phosphodiesterase type 11A (PDE11A) have been described to predispose to a variety of endocrine tumors, including adrenal and testicular tumors. Our objective was to investigate the role of PDE11A as a possible gene modifier of the phenotype in a series of 150 patients with CNC. A higher frequency of PDE11A variants in patients with CNC compared with healthy controls was found (25.3 vs. 6.8%, P < 0.0001). Among CNC patients, those with PPNAD were significantly more frequently carriers of PDE11A variants compared with patients without PPNAD (30.8 vs. 13%, P = 0.025). Furthermore, men with PPNAD were significantly more frequently carriers of PDE11A sequence variants (40.7%) than women with PPNAD (27.3%) (P < 0.001). A higher frequency of PDE11A sequence variants was also found in patients with large-cell calcifying Sertoli cell tumors (LCCSCT) compared with those without LCCSCT (50 vs. 10%, P = 0.0056). PDE11A variants were significantly associated with the copresence of PPNAD and LCCSCT in men: 81 vs. 20%, P < 0.004). The simultaneous inactivation of PRKAR1A and PDE11A by small inhibitory RNA led to an increase in cAMP-regulatory element-mediated transcriptional activity under basal conditions and after stimulation by forskolin. We demonstrate, in a large cohort of CNC patients, a high frequency of PDE11A variants, suggesting that PDE11A is a genetic modifying factor for the development of testicular and adrenal tumors in patients with germline PRKAR1A mutation.
Intrafascial nerve-sparing endoscopic extraperitoneal radical prostatectomy.
Stolzenburg, Jens-Uwe; Rabenalt, Robert; Do, Minh; Schwalenberg, Thilo; Winkler, Mathias; Dietel, Anja; Liatsikos, Evangelos
2008-05-01
Based on our recently published anatomic studies, we present the most recent refinement of the endoscopic extraperitoneal radical prostatectomy (EERPE), the intrafascial nerve-sparing EERPE (nsEERPE). As part of the intrafascial technique, the dissection plane is directly on the prostatic capsule, freeing the prostate laterally from its thin surrounding fascia that contains small vessels and nerves. The technique enables puboprostatic ligament preservation, leaving intact endopelvic fascia, periprostatic fascia, and neurovascular bundles. The operation was performed in 150 patients with indications for nerve-sparing procedure. The mean operative time was 131 min (range: 50-210 min) and the mean catheterization time was 5.9 d (range: 4-20 d). Twelve months postoperatively, 94.3% of the patients were continent (no need for pads), 4.6% had minimal stress incontinence, and one patient required >2 pads/d. At the 12-mo follow-up, the potency rates (erections sufficient for intercourse with or without the use of phosphodiesterase 5 [PDE5] inhibitors) of the patients who underwent bilateral intrafascial nsEERPE were 89.7% (age: 44-55 yr), 81.1% (age: 56-65 yr), and 61.9% (age: >65 yr). Positive surgical margins in pT2 and pT3 tumors were 4.5% and 29.4%, respectively. The intrafascial nsEERPE enables the dissection of the prostate with limited trauma to the surrounding fascias and the enclosed neurovascular bundles. We propose that the preserved neurovascular bundles with intrafascial nsEERPE are more viable. The results advocate this proposition.
Elevated Cyclic AMP Levels in T Lymphocytes Transformed by Human T-Cell Lymphotropic Virus Type 1▿
Kress, Andrea K.; Schneider, Grit; Pichler, Klemens; Kalmer, Martina; Fleckenstein, Bernhard; Grassmann, Ralph
2010-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), transforms CD4+ T cells to permanent growth through its transactivator Tax. HTLV-1-transformed cells share phenotypic properties with memory and regulatory T cells (T-reg). Murine T-reg-mediated suppression employs elevated cyclic AMP (cAMP) levels as a key regulator. This led us to determine cAMP levels in HTLV-1-transformed cells. We found elevated cAMP concentrations as a consistent feature of all HTLV-1-transformed cell lines, including in vitro-HTLV-1-transformed, Tax-transformed, and patient-derived cells. In transformed cells with conditional Tax expression, high cAMP levels coincided with the presence of Tax but were lost without it. However, transient ectopic expression of Tax alone was not sufficient to induce cAMP. We found specific downregulation of the cAMP-degrading phosphodiesterase 3B (PDE3B) in HTLV-1-transformed cells, which was independent of Tax in transient expression experiments. This is in line with the notion that PDE3B transcripts and cAMP levels are inversely correlated. Overexpression of PDE3B led to a decrease of cAMP in HTLV-1-transformed cells. Decreased expression of PDE3B was associated with inhibitory histone modifications at the PDE3B promoter and the PDE3B locus. In summary, Tax transformation and its continuous expression contribute to elevated cAMP levels, which may be regulated through PDE3B suppression. This shows that HTLV-1-transformed cells assume biological features of long-lived T-cell populations that potentially contribute to viral persistence. PMID:20573814
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murashima, Seiko; Tanaka, Takayuki; Hockman, S.
1990-06-05
In the absence of detergent, {approx}80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; {approx}85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity {approx}100% and calmodulin-stimulated {approx}400-500%. Although 1% Lubrol readily solubilized these PDE activities, {approx}75% of the cAMP PDE activity (0.5 {mu}M ({sup 3}H)cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide.more » Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. The brain enzyme exhibited a slightly greater subunit M{sub r} than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V{sub 8} protease produced several peptides of similar size, as well as at least two distinct fragments of {approx}27 kDa from the brain and {approx}23 kDa from the liver enzyme. After photolabeling in the presence of ({sup 32}P)cGMP and digestion with V{sub 8} protease, ({sup 32}P)cGMP in each PDE was predominantly recovered with a peptide of {approx}14 kDa. All of these observations are consistent with the existence of at least two discrete forms (isoenzymes) of cGMP-stimulated PDE.« less
Deshmukh, Rahul; Sharma, Vivek; Mehan, Sidharth; Sharma, Nidhi; Bedi, K L
2009-10-12
Enhancing cyclic nucleotides signaling by inhibition of phosphodiesterases (PDEs) is known to be beneficial in disorders associated with cognitive decline. The present study was designed to investigate the effect of vinpocetine (PDE1 inhibitor) on intracerebroventricular (i.c.v.) streptozotocin induced experimental sporadic dementia of Alzheimer's type. Infusion of streptozotocin impaired learning and memory, increased oxidative-nitritive stress and induced cholinergic hypofunction in rats. Chronic treatment with vinpocetine (5, 10 and 20 mg/kg i.p.) for 21 days following first i.c.v. streptozotocin infusion significantly improved learning and memory in Morris water maze and passive avoidance paradigms. Further, vinpocetine significantly reduced the oxidative-nitritive stress, as evidenced by decrease in malondialdehyde (MDA) and nitrite levels, and restored the reduced glutathione (GSH) levels. Significant increase in acetylcholinesterase activity and lactate dehydrogenase levels was observed in the present model indicating cholinergic hypofunction and increase in neuronal cell damage. Chronic treatment with vinpocetine also reduced significantly the increase in acetylcholinesterase activity and lactate dehydrogenase levels indicating restorative capacity of vinpocetine with respect to cholinergic functions and preventing the neuronal damage. The observed beneficial effects of vinpocetine on spatial memory may be due to its ability to favorably modulate cholinergic functions, prevent neuronal cell damage and possibly through its antioxidant mechanism also.
Chang, Lei; Lee, Sang-Yong; Leonczak, Piotr; Rozenski, Jef; De Jonghe, Steven; Hanck, Theodor; Müller, Christa E; Herdewijn, Piet
2014-12-11
Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) belongs to the family of ecto-nucleotidases, which control extracellular nucleotide, nucleoside, and (di)phosphate levels. To study the (patho)physiological roles of NPP1 potent and selective inhibitors with drug-like properties are required. Therefore, a compound library was screened for NPP1 inhibitors using a colorimetric assay with p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as an artificial substrate. This led to the discovery of 2-(3H-imidazo[4,5-b]pyridin-2-ylthio)-N-(3,4-dimethoxyphenyl)acetamide (5a) as a hit compound with a Ki value of 217 nM. Subsequent structure-activity relationship studies led to the development of purine and imidazo[4,5-b]pyridine analogues with high inhibitory potency (Ki values of 5.00 nM and 29.6 nM, respectively) when assayed with p-Nph-5'-TMP as a substrate. Surprisingly, the compounds were significantly less potent when tested versus ATP as a substrate, with Ki values in the low micromolar range. A prototypic inhibitor was investigated for its mechanism of inhibition and found to be competitive versus both substrates.
Duranti, Guglielmo; Ceci, Roberta; Sgrò, Paolo; Sabatini, Stefania; Di Luigi, Luigi
2017-05-01
Phosphodiesterase type 5 inhibitors (PDE5Is), widely known for their beneficial effects onto male erectile dysfunction, seem to exert favorable effects onto metabolism as well. Tadalafil exposure increases oxidative metabolism of C2C12 skeletal muscle cells. A rise in fatty acid (FA) metabolism, requiring more oxygen, could induce a larger reactive oxygen species (ROS) release as a byproduct thus leading to a redox imbalance. The aim of this study was to determine how PDE5I tadalafil influences redox status in skeletal muscle cells to match the increasing oxidative metabolism. To this purpose, differentiated C2C12 skeletal muscle cells were treated with tadalafil and analyzed for total antioxidant capacity (TAC) and glutathione levels as marker of redox status; enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) engaged in antioxidant defense; and lipid peroxidation (TBARS) and protein carbonyls (PrCar) as markers of oxidative damage. Tadalafil increased total intracellular glutathione (tGSH), CAT, SOD, and GPx enzymatic activities while no changes were found in TAC. A perturbation of redox status, as showed by the decrease in the ratio between reduced/oxidized glutathione (GSH/GSSG), was observed. Nevertheless, it did not cause any change in TBARS and PrCar levels probably due to the enhancement in the antioxidant enzymatic network. Taken together, these data indicate that tadalafil, besides improving oxidative metabolism, may be beneficial to skeletal muscle cells by enhancing the enzymatic antioxidant system capacity.
AbouEzzeddine, Omar F; Haines, Phillip; Stevens, Susanna; Nativi-Nicolau, Jose; Felker, G Michael; Borlaug, Barry A; Chen, Horng H; Tracy, Russell P; Braunwald, Eugene; Redfield, Margaret M
2015-03-01
This study hypothesized that elevated galectin-3 (Gal-3) levels would identify patients with more advanced heart failure (HF) with preserved ejection fraction (HFpEF) as assessed by key pathophysiological domains. Gal-3 is implicated in the pathogenesis of cardiac fibrosis but is also increased with normal aging and renal dysfunction. Cardiac fibrosis may contribute to cardiac dysfunction, exercise intolerance, and congestion in HFpEF. Two hundred eight patients from the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure) trial of sildenafil in HFpEF had Gal-3 measured at enrollment. Pathophysiological domains assessed included biomarkers of neurohumoral activation, fibrosis, inflammation and myocardial necrosis, congestion severity and quality of life, cardiac structure and function, and exercise performance. Analysis adjusted for age, sex, and/or cystatin-C levels. Potential interaction between baseline Gal-3 and treatment (sildenafil) effect on the RELAX study primary endpoint (change in peak oxygen consumption) was tested. Gal-3 levels were associated with age and severity of renal dysfunction. Adjusting for age, sex, and/or cystatin-C, Gal-3 was not associated with biomarkers of neurohumoral activation, fibrosis, inflammation or myocardial necrosis, congestion or quality-of-life impairment, cardiac remodeling or dysfunction, or exercise intolerance. Gal-3 did not identify patients who responded to phosphodiesterase type 5 (PDE-5) inhibitors (interaction p = 0.53). In overt HFpEF, Gal-3 was related to severity of renal dysfunction and accounting for this, was not independently associated with severity of pathophysiological derangements or response PDE-5 inhibition. These findings underscore the need to adjust for renal function when interpreting Gal-3 levels, and call into question the value of Gal-3 to quantify disease severity in overt HFpEF. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Topanurak, Supachai; Ferraris, Joan D; Li, Jinxi; Izumi, Yuichiro; Williams, Chester K; Gucek, Marjan; Wang, Guanghui; Zhou, Xiaoming; Burg, Maurice B
2013-04-30
Glycerophosphocholine (GPC) is high in cells of the renal inner medulla where high interstitial NaCl and urea power concentration of the urine. GPC protects inner medullary cells against the perturbing effects of high NaCl and urea by stabilizing intracellular macromolecules. Degradation of GPC is catalyzed by the glycerophosphocholine phosphodiesterase activity of glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). We previously found that inhibitory posttranslational modification (PTM) of GDPD5 contributes to high NaCl- and urea-induced increase of GPC. The purpose of the present studies was to identify the PTM(s). We find at least three such PTMs in HEK293 cells: (i) Formation of a disulfide bond between C25 and C571. High NaCl and high urea increase reactive oxygen species (ROS). The ROS increase disulfide bonding between GDPD5-C25 and -C571, which inhibits GDPD5 activity, as supported by the findings that the antioxidant N-acetylcysteine prevents high NaCl- and urea-induced inhibition of GDPD5; GDPD5-C25S/C571S mutation or over expression of peroxiredoxin increases GDPD5 activity; H2O2 inhibits activity of wild type GDPD5, but not of GDPD5-C25S/C571S; and peroxiredoxin is relatively low in the renal inner medulla where GPC is high. (ii) Dephosphorylation of GDPD5-T587. GDPD5 threonine 587 is constitutively phosphorylated. High NaCl and high urea dephosphorylate GDPD5-T587. Mutation of GDPD5-T587 to alanine, which cannot be phosphorylated, decreases GPC-PDE activity of GDPD5. (iii) Alteration at an unknown site mediated by CDK1. Inhibition of CDK1 protein kinase reduces GDE-PDE activity of GDPD5 without altering phosphorylation at T587, and CDK1/5 inhibitor reduces activity of GDPD5- C25S/C571S-T587A.
Topanurak, Supachai; Ferraris, Joan D.; Li, Jinxi; Izumi, Yuichiro; Williams, Chester K.; Gucek, Marjan; Wang, Guanghui; Zhou, Xiaoming; Burg, Maurice B.
2013-01-01
Glycerophosphocholine (GPC) is high in cells of the renal inner medulla where high interstitial NaCl and urea power concentration of the urine. GPC protects inner medullary cells against the perturbing effects of high NaCl and urea by stabilizing intracellular macromolecules. Degradation of GPC is catalyzed by the glycerophosphocholine phosphodiesterase activity of glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). We previously found that inhibitory posttranslational modification (PTM) of GDPD5 contributes to high NaCl- and urea-induced increase of GPC. The purpose of the present studies was to identify the PTM(s). We find at least three such PTMs in HEK293 cells: (i) Formation of a disulfide bond between C25 and C571. High NaCl and high urea increase reactive oxygen species (ROS). The ROS increase disulfide bonding between GDPD5-C25 and -C571, which inhibits GDPD5 activity, as supported by the findings that the antioxidant N-acetylcysteine prevents high NaCl- and urea-induced inhibition of GDPD5; GDPD5-C25S/C571S mutation or over expression of peroxiredoxin increases GDPD5 activity; H2O2 inhibits activity of wild type GDPD5, but not of GDPD5-C25S/C571S; and peroxiredoxin is relatively low in the renal inner medulla where GPC is high. (ii) Dephosphorylation of GDPD5-T587. GDPD5 threonine 587 is constitutively phosphorylated. High NaCl and high urea dephosphorylate GDPD5-T587. Mutation of GDPD5-T587 to alanine, which cannot be phosphorylated, decreases GPC-PDE activity of GDPD5. (iii) Alteration at an unknown site mediated by CDK1. Inhibition of CDK1 protein kinase reduces GDE-PDE activity of GDPD5 without altering phosphorylation at T587, and CDK1/5 inhibitor reduces activity of GDPD5- C25S/C571S-T587A. PMID:23589856
Quigley, Raymond; Chakravarty, Sumana; Baum, Michel
2014-01-01
Neonates cannot concentrate their urine to the same degree as adults. One of the key factors in concentrating the urine is the renal collecting duct osmotic water permeability (Pf) response to antidiuretic hormone (ADH). Neonatal cortical collecting ducts have a blunted Pf response to ADH compared with adult tubules (Pf: 119.0 ± 12.5 vs. 260.1 ± 29.5 µm/s, P < 0.05). We found that the phosphodiesterase activity in the neonatal collecting ducts was higher than that in the adult collecting ducts (3,970 ± 510 vs. 2,440 ± 220 cpm·µg tubular protein−1·20 min−1, P < 0.05). After pretreatment of in vitro microperfused tubules with the nonspecific phosphodiesterase inhibitor IBMX (10−6 M in the bath), the Pf response to ADH in neonatal collecting ducts was 271.4 ± 51.7 µm/s, which was identical to that of the adult collecting duct [315.3 ± 31.3 µm/s, P = not significant (NS)]. Rolipram, a specific type IV phosphodiesterase inhibitor, lowered the elevated phosphodiesterase activity in the neonatal tubules to that in the adult tubules (2,460 ± 210 vs. 2,160 ± 230 cpm·µg tubular protein−1·20 min−1, P = NS). Neonatal tubules pretreated with rolipram (10−5 M) in the bath also had a Pf response to ADH that was comparable to that of the adult tubules (258.2 ± 17.0 vs. 271.4 ± 32.6 µm/s, P = NS). Thus the elevated phosphodiesterase activity in the neonatal tubules appears to be due to an increase in type IV phosphodiesterase activity. Hence, one of the key factors in the decreased ability of neonates to concentrate their urine is overactivity of phosphodiesterase in the cortical collecting duct that blunts the neonatal collecting duct Pf response to ADH. PMID:14644747
Lewis, Roger J; Connor, Jason T; Teerlink, John R; Murphy, James R; Cooper, Leslie T; Hiatt, William R; Brass, Eric P
2011-05-25
Claudication secondary to peripheral artery disease (PAD) is associated with substantial functional impairment. Phosphodiesterase (PDE) inhibitors have been shown to increase walking performance in these patients. K-134 is a selective PDE 3 inhibitor being developed as a potential treatment for claudication. The use of K-134, as with other PDE 3 inhibitors, in patients with PAD raises important safety and tolerability concerns, including the induction of cardiac ischemia, tachycardia, and hypotension. We describe the design, oversight, and implementation of an adaptive, phase II, dose-finding trial evaluating K-134 for the treatment of stable, intermittent claudication. The study design was a double-blind, multi-dose (25 mg, 50 mg, and 100 mg of K-134), randomized trial with both placebo and active comparator arms conducted in the United States and Russia. The primary objective of the study was to compare the highest tolerable dose of K-134 versus placebo using peak walking time after 26 weeks of therapy as the primary outcome. Study visits with intensive safety assessments were included early in the study period to provide data for adaptive decision making. The trial used an adaptive, dose-finding strategy to efficiently identify the highest dose(s) most likely to be safe and well tolerated, based on the side effect profiles observed within the trial, so that less promising doses could be abandoned. Protocol specified criteria for safety and tolerability endpoints were used and modeled prior to the adaptive decision making. The maximum target sample size was 85 subjects in each of the retained treatment arms. When 199 subjects had been randomized and 28-day data were available from 143, the Data Monitoring Committee (DMC) recommended termination of the lowest dose (25 mg) treatment arm. Safety evaluations performed during 14- and 28-day visits which included in-clinic dosing and assessments at peak drug concentrations provided core data for the DMC review. At the time of review, no subject in any of the five treatment arms (placebo, three K-134-containing arms, and cilostazol) had met pre-specified definitions for resting tachycardia or ischemic changes on exercise ECG. If, instead of dropping the 25-mg K-134 treatment arm, all arms had been continued to full enrollment, then approximately 43 additional research subjects would have been required to complete the trial. In this phase II, dose-finding trial of K-134 in the treatment of stable intermittent claudication, no concerning safety signals were seen at interim analysis, allowing the discontinuation of the lowest-dose-containing arm and the retention of the two highest-dose-containing arms. The adaptive design facilitated safe and efficient evaluation of K-134 in this high-risk cardiovascular population. ClinicalTrials.gov: NCT00783081.
Sousa, C T; Brito, T S; Lima, F J B; Siqueira, R J B; Magalhães, P J C; Lima, A A M; Santos, A A; Havt, A
2011-06-01
Inhibition of type-5 phosphodiesterase by sildenafil decreases capacitative Ca2+ entry mediated by transient receptor potential proteins (TRPs) in the pulmonary artery. These families of channels, especially the canonical TRP (TRPC) subfamily, may be involved in the development of bronchial hyperresponsiveness, a hallmark of asthma. In the present study, we evaluated i) the effects of sildenafil on tracheal rings of rats subjected to antigen challenge, ii) whether the extent of TRPC gene expression may be modified by antigen challenge, and iii) whether inhibition of type-5 phosphodiesterase (PDE5) may alter TRPC gene expression after antigen challenge. Sildenafil (0.1 µM to 0.6 mM) fully relaxed carbachol-induced contractions in isolated tracheal rings prepared from naive male Wistar rats (250-300 g) by activating the NO-cGMP-K+ channel pathway. Rats sensitized to antigen by intraperitoneal injections of ovalbumin were subjected to antigen challenge by ovalbumin inhalation, and their tracheal rings were used to study the effects of sildenafil, which more effectively inhibited contractions induced by either carbachol (10 µM) or extracellular Ca2+ restoration after thapsigargin (1 µM) treatment. Antigen challenge increased the expression of the TRPC1 and TRPC4 genes but not the expression of the TRPC5 and TRPC6 genes. Applied before the antigen challenge, sildenafil increased the gene expression, which was evaluated by RT-PCR, of TRPC1 and TRPC6, decreased TRPC5 expression, and was inert against TRPC4. Thus, we conclude that PDE5 inhibition is involved in the development of an airway hyperresponsive phenotype in rats after antigen challenge by altering TRPC gene expression.